1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Lantiq / Intel GSWIP switch driver for VRX200 SoCs
4 *
5 * Copyright (C) 2010 Lantiq Deutschland
6 * Copyright (C) 2012 John Crispin <john@phrozen.org>
7 * Copyright (C) 2017 - 2019 Hauke Mehrtens <hauke@hauke-m.de>
8 *
9 * The VLAN and bridge model the GSWIP hardware uses does not directly
10 * matches the model DSA uses.
11 *
12 * The hardware has 64 possible table entries for bridges with one VLAN
13 * ID, one flow id and a list of ports for each bridge. All entries which
14 * match the same flow ID are combined in the mac learning table, they
15 * act as one global bridge.
16 * The hardware does not support VLAN filter on the port, but on the
17 * bridge, this driver converts the DSA model to the hardware.
18 *
19 * The CPU gets all the exception frames which do not match any forwarding
20 * rule and the CPU port is also added to all bridges. This makes it possible
21 * to handle all the special cases easily in software.
22 * At the initialization the driver allocates one bridge table entry for
23 * each switch port which is used when the port is used without an
24 * explicit bridge. This prevents the frames from being forwarded
25 * between all LAN ports by default.
26 */
27
28 #include <linux/clk.h>
29 #include <linux/delay.h>
30 #include <linux/etherdevice.h>
31 #include <linux/firmware.h>
32 #include <linux/if_bridge.h>
33 #include <linux/if_vlan.h>
34 #include <linux/iopoll.h>
35 #include <linux/mfd/syscon.h>
36 #include <linux/module.h>
37 #include <linux/of_mdio.h>
38 #include <linux/of_net.h>
39 #include <linux/of_platform.h>
40 #include <linux/phy.h>
41 #include <linux/phylink.h>
42 #include <linux/platform_device.h>
43 #include <linux/regmap.h>
44 #include <linux/reset.h>
45 #include <net/dsa.h>
46 #include <dt-bindings/mips/lantiq_rcu_gphy.h>
47
48 #include "lantiq_pce.h"
49
50 /* GSWIP MDIO Registers */
51 #define GSWIP_MDIO_GLOB 0x00
52 #define GSWIP_MDIO_GLOB_ENABLE BIT(15)
53 #define GSWIP_MDIO_CTRL 0x08
54 #define GSWIP_MDIO_CTRL_BUSY BIT(12)
55 #define GSWIP_MDIO_CTRL_RD BIT(11)
56 #define GSWIP_MDIO_CTRL_WR BIT(10)
57 #define GSWIP_MDIO_CTRL_PHYAD_MASK 0x1f
58 #define GSWIP_MDIO_CTRL_PHYAD_SHIFT 5
59 #define GSWIP_MDIO_CTRL_REGAD_MASK 0x1f
60 #define GSWIP_MDIO_READ 0x09
61 #define GSWIP_MDIO_WRITE 0x0A
62 #define GSWIP_MDIO_MDC_CFG0 0x0B
63 #define GSWIP_MDIO_MDC_CFG1 0x0C
64 #define GSWIP_MDIO_PHYp(p) (0x15 - (p))
65 #define GSWIP_MDIO_PHY_LINK_MASK 0x6000
66 #define GSWIP_MDIO_PHY_LINK_AUTO 0x0000
67 #define GSWIP_MDIO_PHY_LINK_DOWN 0x4000
68 #define GSWIP_MDIO_PHY_LINK_UP 0x2000
69 #define GSWIP_MDIO_PHY_SPEED_MASK 0x1800
70 #define GSWIP_MDIO_PHY_SPEED_AUTO 0x1800
71 #define GSWIP_MDIO_PHY_SPEED_M10 0x0000
72 #define GSWIP_MDIO_PHY_SPEED_M100 0x0800
73 #define GSWIP_MDIO_PHY_SPEED_G1 0x1000
74 #define GSWIP_MDIO_PHY_FDUP_MASK 0x0600
75 #define GSWIP_MDIO_PHY_FDUP_AUTO 0x0000
76 #define GSWIP_MDIO_PHY_FDUP_EN 0x0200
77 #define GSWIP_MDIO_PHY_FDUP_DIS 0x0600
78 #define GSWIP_MDIO_PHY_FCONTX_MASK 0x0180
79 #define GSWIP_MDIO_PHY_FCONTX_AUTO 0x0000
80 #define GSWIP_MDIO_PHY_FCONTX_EN 0x0100
81 #define GSWIP_MDIO_PHY_FCONTX_DIS 0x0180
82 #define GSWIP_MDIO_PHY_FCONRX_MASK 0x0060
83 #define GSWIP_MDIO_PHY_FCONRX_AUTO 0x0000
84 #define GSWIP_MDIO_PHY_FCONRX_EN 0x0020
85 #define GSWIP_MDIO_PHY_FCONRX_DIS 0x0060
86 #define GSWIP_MDIO_PHY_ADDR_MASK 0x001f
87 #define GSWIP_MDIO_PHY_MASK (GSWIP_MDIO_PHY_ADDR_MASK | \
88 GSWIP_MDIO_PHY_FCONRX_MASK | \
89 GSWIP_MDIO_PHY_FCONTX_MASK | \
90 GSWIP_MDIO_PHY_LINK_MASK | \
91 GSWIP_MDIO_PHY_SPEED_MASK | \
92 GSWIP_MDIO_PHY_FDUP_MASK)
93
94 /* GSWIP MII Registers */
95 #define GSWIP_MII_CFGp(p) (0x2 * (p))
96 #define GSWIP_MII_CFG_RESET BIT(15)
97 #define GSWIP_MII_CFG_EN BIT(14)
98 #define GSWIP_MII_CFG_ISOLATE BIT(13)
99 #define GSWIP_MII_CFG_LDCLKDIS BIT(12)
100 #define GSWIP_MII_CFG_RGMII_IBS BIT(8)
101 #define GSWIP_MII_CFG_RMII_CLK BIT(7)
102 #define GSWIP_MII_CFG_MODE_MIIP 0x0
103 #define GSWIP_MII_CFG_MODE_MIIM 0x1
104 #define GSWIP_MII_CFG_MODE_RMIIP 0x2
105 #define GSWIP_MII_CFG_MODE_RMIIM 0x3
106 #define GSWIP_MII_CFG_MODE_RGMII 0x4
107 #define GSWIP_MII_CFG_MODE_MASK 0xf
108 #define GSWIP_MII_CFG_RATE_M2P5 0x00
109 #define GSWIP_MII_CFG_RATE_M25 0x10
110 #define GSWIP_MII_CFG_RATE_M125 0x20
111 #define GSWIP_MII_CFG_RATE_M50 0x30
112 #define GSWIP_MII_CFG_RATE_AUTO 0x40
113 #define GSWIP_MII_CFG_RATE_MASK 0x70
114 #define GSWIP_MII_PCDU0 0x01
115 #define GSWIP_MII_PCDU1 0x03
116 #define GSWIP_MII_PCDU5 0x05
117 #define GSWIP_MII_PCDU_TXDLY_MASK GENMASK(2, 0)
118 #define GSWIP_MII_PCDU_RXDLY_MASK GENMASK(9, 7)
119
120 /* GSWIP Core Registers */
121 #define GSWIP_SWRES 0x000
122 #define GSWIP_SWRES_R1 BIT(1) /* GSWIP Software reset */
123 #define GSWIP_SWRES_R0 BIT(0) /* GSWIP Hardware reset */
124 #define GSWIP_VERSION 0x013
125 #define GSWIP_VERSION_REV_SHIFT 0
126 #define GSWIP_VERSION_REV_MASK GENMASK(7, 0)
127 #define GSWIP_VERSION_MOD_SHIFT 8
128 #define GSWIP_VERSION_MOD_MASK GENMASK(15, 8)
129 #define GSWIP_VERSION_2_0 0x100
130 #define GSWIP_VERSION_2_1 0x021
131 #define GSWIP_VERSION_2_2 0x122
132 #define GSWIP_VERSION_2_2_ETC 0x022
133
134 #define GSWIP_BM_RAM_VAL(x) (0x043 - (x))
135 #define GSWIP_BM_RAM_ADDR 0x044
136 #define GSWIP_BM_RAM_CTRL 0x045
137 #define GSWIP_BM_RAM_CTRL_BAS BIT(15)
138 #define GSWIP_BM_RAM_CTRL_OPMOD BIT(5)
139 #define GSWIP_BM_RAM_CTRL_ADDR_MASK GENMASK(4, 0)
140 #define GSWIP_BM_QUEUE_GCTRL 0x04A
141 #define GSWIP_BM_QUEUE_GCTRL_GL_MOD BIT(10)
142 /* buffer management Port Configuration Register */
143 #define GSWIP_BM_PCFGp(p) (0x080 + ((p) * 2))
144 #define GSWIP_BM_PCFG_CNTEN BIT(0) /* RMON Counter Enable */
145 #define GSWIP_BM_PCFG_IGCNT BIT(1) /* Ingres Special Tag RMON count */
146 /* buffer management Port Control Register */
147 #define GSWIP_BM_RMON_CTRLp(p) (0x81 + ((p) * 2))
148 #define GSWIP_BM_CTRL_RMON_RAM1_RES BIT(0) /* Software Reset for RMON RAM 1 */
149 #define GSWIP_BM_CTRL_RMON_RAM2_RES BIT(1) /* Software Reset for RMON RAM 2 */
150
151 /* PCE */
152 #define GSWIP_PCE_TBL_KEY(x) (0x447 - (x))
153 #define GSWIP_PCE_TBL_MASK 0x448
154 #define GSWIP_PCE_TBL_VAL(x) (0x44D - (x))
155 #define GSWIP_PCE_TBL_ADDR 0x44E
156 #define GSWIP_PCE_TBL_CTRL 0x44F
157 #define GSWIP_PCE_TBL_CTRL_BAS BIT(15)
158 #define GSWIP_PCE_TBL_CTRL_TYPE BIT(13)
159 #define GSWIP_PCE_TBL_CTRL_VLD BIT(12)
160 #define GSWIP_PCE_TBL_CTRL_KEYFORM BIT(11)
161 #define GSWIP_PCE_TBL_CTRL_GMAP_MASK GENMASK(10, 7)
162 #define GSWIP_PCE_TBL_CTRL_OPMOD_MASK GENMASK(6, 5)
163 #define GSWIP_PCE_TBL_CTRL_OPMOD_ADRD 0x00
164 #define GSWIP_PCE_TBL_CTRL_OPMOD_ADWR 0x20
165 #define GSWIP_PCE_TBL_CTRL_OPMOD_KSRD 0x40
166 #define GSWIP_PCE_TBL_CTRL_OPMOD_KSWR 0x60
167 #define GSWIP_PCE_TBL_CTRL_ADDR_MASK GENMASK(4, 0)
168 #define GSWIP_PCE_PMAP1 0x453 /* Monitoring port map */
169 #define GSWIP_PCE_PMAP2 0x454 /* Default Multicast port map */
170 #define GSWIP_PCE_PMAP3 0x455 /* Default Unknown Unicast port map */
171 #define GSWIP_PCE_GCTRL_0 0x456
172 #define GSWIP_PCE_GCTRL_0_MTFL BIT(0) /* MAC Table Flushing */
173 #define GSWIP_PCE_GCTRL_0_MC_VALID BIT(3)
174 #define GSWIP_PCE_GCTRL_0_VLAN BIT(14) /* VLAN aware Switching */
175 #define GSWIP_PCE_GCTRL_1 0x457
176 #define GSWIP_PCE_GCTRL_1_MAC_GLOCK BIT(2) /* MAC Address table lock */
177 #define GSWIP_PCE_GCTRL_1_MAC_GLOCK_MOD BIT(3) /* Mac address table lock forwarding mode */
178 #define GSWIP_PCE_PCTRL_0p(p) (0x480 + ((p) * 0xA))
179 #define GSWIP_PCE_PCTRL_0_TVM BIT(5) /* Transparent VLAN mode */
180 #define GSWIP_PCE_PCTRL_0_VREP BIT(6) /* VLAN Replace Mode */
181 #define GSWIP_PCE_PCTRL_0_INGRESS BIT(11) /* Accept special tag in ingress */
182 #define GSWIP_PCE_PCTRL_0_PSTATE_LISTEN 0x0
183 #define GSWIP_PCE_PCTRL_0_PSTATE_RX 0x1
184 #define GSWIP_PCE_PCTRL_0_PSTATE_TX 0x2
185 #define GSWIP_PCE_PCTRL_0_PSTATE_LEARNING 0x3
186 #define GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING 0x7
187 #define GSWIP_PCE_PCTRL_0_PSTATE_MASK GENMASK(2, 0)
188 #define GSWIP_PCE_VCTRL(p) (0x485 + ((p) * 0xA))
189 #define GSWIP_PCE_VCTRL_UVR BIT(0) /* Unknown VLAN Rule */
190 #define GSWIP_PCE_VCTRL_VIMR BIT(3) /* VLAN Ingress Member violation rule */
191 #define GSWIP_PCE_VCTRL_VEMR BIT(4) /* VLAN Egress Member violation rule */
192 #define GSWIP_PCE_VCTRL_VSR BIT(5) /* VLAN Security */
193 #define GSWIP_PCE_VCTRL_VID0 BIT(6) /* Priority Tagged Rule */
194 #define GSWIP_PCE_DEFPVID(p) (0x486 + ((p) * 0xA))
195
196 #define GSWIP_MAC_FLEN 0x8C5
197 #define GSWIP_MAC_CTRL_0p(p) (0x903 + ((p) * 0xC))
198 #define GSWIP_MAC_CTRL_0_PADEN BIT(8)
199 #define GSWIP_MAC_CTRL_0_FCS_EN BIT(7)
200 #define GSWIP_MAC_CTRL_0_FCON_MASK 0x0070
201 #define GSWIP_MAC_CTRL_0_FCON_AUTO 0x0000
202 #define GSWIP_MAC_CTRL_0_FCON_RX 0x0010
203 #define GSWIP_MAC_CTRL_0_FCON_TX 0x0020
204 #define GSWIP_MAC_CTRL_0_FCON_RXTX 0x0030
205 #define GSWIP_MAC_CTRL_0_FCON_NONE 0x0040
206 #define GSWIP_MAC_CTRL_0_FDUP_MASK 0x000C
207 #define GSWIP_MAC_CTRL_0_FDUP_AUTO 0x0000
208 #define GSWIP_MAC_CTRL_0_FDUP_EN 0x0004
209 #define GSWIP_MAC_CTRL_0_FDUP_DIS 0x000C
210 #define GSWIP_MAC_CTRL_0_GMII_MASK 0x0003
211 #define GSWIP_MAC_CTRL_0_GMII_AUTO 0x0000
212 #define GSWIP_MAC_CTRL_0_GMII_MII 0x0001
213 #define GSWIP_MAC_CTRL_0_GMII_RGMII 0x0002
214 #define GSWIP_MAC_CTRL_2p(p) (0x905 + ((p) * 0xC))
215 #define GSWIP_MAC_CTRL_2_MLEN BIT(3) /* Maximum Untagged Frame Lnegth */
216
217 /* Ethernet Switch Fetch DMA Port Control Register */
218 #define GSWIP_FDMA_PCTRLp(p) (0xA80 + ((p) * 0x6))
219 #define GSWIP_FDMA_PCTRL_EN BIT(0) /* FDMA Port Enable */
220 #define GSWIP_FDMA_PCTRL_STEN BIT(1) /* Special Tag Insertion Enable */
221 #define GSWIP_FDMA_PCTRL_VLANMOD_MASK GENMASK(4, 3) /* VLAN Modification Control */
222 #define GSWIP_FDMA_PCTRL_VLANMOD_SHIFT 3 /* VLAN Modification Control */
223 #define GSWIP_FDMA_PCTRL_VLANMOD_DIS (0x0 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
224 #define GSWIP_FDMA_PCTRL_VLANMOD_PRIO (0x1 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
225 #define GSWIP_FDMA_PCTRL_VLANMOD_ID (0x2 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
226 #define GSWIP_FDMA_PCTRL_VLANMOD_BOTH (0x3 << GSWIP_FDMA_PCTRL_VLANMOD_SHIFT)
227
228 /* Ethernet Switch Store DMA Port Control Register */
229 #define GSWIP_SDMA_PCTRLp(p) (0xBC0 + ((p) * 0x6))
230 #define GSWIP_SDMA_PCTRL_EN BIT(0) /* SDMA Port Enable */
231 #define GSWIP_SDMA_PCTRL_FCEN BIT(1) /* Flow Control Enable */
232 #define GSWIP_SDMA_PCTRL_PAUFWD BIT(3) /* Pause Frame Forwarding */
233
234 #define GSWIP_TABLE_ACTIVE_VLAN 0x01
235 #define GSWIP_TABLE_VLAN_MAPPING 0x02
236 #define GSWIP_TABLE_MAC_BRIDGE 0x0b
237 #define GSWIP_TABLE_MAC_BRIDGE_STATIC 0x01 /* Static not, aging entry */
238
239 #define XRX200_GPHY_FW_ALIGN (16 * 1024)
240
241 struct gswip_hw_info {
242 int max_ports;
243 int cpu_port;
244 };
245
246 struct xway_gphy_match_data {
247 char *fe_firmware_name;
248 char *ge_firmware_name;
249 };
250
251 struct gswip_gphy_fw {
252 struct clk *clk_gate;
253 struct reset_control *reset;
254 u32 fw_addr_offset;
255 char *fw_name;
256 };
257
258 struct gswip_vlan {
259 struct net_device *bridge;
260 u16 vid;
261 u8 fid;
262 };
263
264 struct gswip_priv {
265 __iomem void *gswip;
266 __iomem void *mdio;
267 __iomem void *mii;
268 const struct gswip_hw_info *hw_info;
269 const struct xway_gphy_match_data *gphy_fw_name_cfg;
270 struct dsa_switch *ds;
271 struct device *dev;
272 struct regmap *rcu_regmap;
273 struct gswip_vlan vlans[64];
274 int num_gphy_fw;
275 struct gswip_gphy_fw *gphy_fw;
276 u32 port_vlan_filter;
277 };
278
279 struct gswip_pce_table_entry {
280 u16 index; // PCE_TBL_ADDR.ADDR = pData->table_index
281 u16 table; // PCE_TBL_CTRL.ADDR = pData->table
282 u16 key[8];
283 u16 val[5];
284 u16 mask;
285 u8 gmap;
286 bool type;
287 bool valid;
288 bool key_mode;
289 };
290
291 struct gswip_rmon_cnt_desc {
292 unsigned int size;
293 unsigned int offset;
294 const char *name;
295 };
296
297 #define MIB_DESC(_size, _offset, _name) {.size = _size, .offset = _offset, .name = _name}
298
299 static const struct gswip_rmon_cnt_desc gswip_rmon_cnt[] = {
300 /** Receive Packet Count (only packets that are accepted and not discarded). */
301 MIB_DESC(1, 0x1F, "RxGoodPkts"),
302 MIB_DESC(1, 0x23, "RxUnicastPkts"),
303 MIB_DESC(1, 0x22, "RxMulticastPkts"),
304 MIB_DESC(1, 0x21, "RxFCSErrorPkts"),
305 MIB_DESC(1, 0x1D, "RxUnderSizeGoodPkts"),
306 MIB_DESC(1, 0x1E, "RxUnderSizeErrorPkts"),
307 MIB_DESC(1, 0x1B, "RxOversizeGoodPkts"),
308 MIB_DESC(1, 0x1C, "RxOversizeErrorPkts"),
309 MIB_DESC(1, 0x20, "RxGoodPausePkts"),
310 MIB_DESC(1, 0x1A, "RxAlignErrorPkts"),
311 MIB_DESC(1, 0x12, "Rx64BytePkts"),
312 MIB_DESC(1, 0x13, "Rx127BytePkts"),
313 MIB_DESC(1, 0x14, "Rx255BytePkts"),
314 MIB_DESC(1, 0x15, "Rx511BytePkts"),
315 MIB_DESC(1, 0x16, "Rx1023BytePkts"),
316 /** Receive Size 1024-1522 (or more, if configured) Packet Count. */
317 MIB_DESC(1, 0x17, "RxMaxBytePkts"),
318 MIB_DESC(1, 0x18, "RxDroppedPkts"),
319 MIB_DESC(1, 0x19, "RxFilteredPkts"),
320 MIB_DESC(2, 0x24, "RxGoodBytes"),
321 MIB_DESC(2, 0x26, "RxBadBytes"),
322 MIB_DESC(1, 0x11, "TxAcmDroppedPkts"),
323 MIB_DESC(1, 0x0C, "TxGoodPkts"),
324 MIB_DESC(1, 0x06, "TxUnicastPkts"),
325 MIB_DESC(1, 0x07, "TxMulticastPkts"),
326 MIB_DESC(1, 0x00, "Tx64BytePkts"),
327 MIB_DESC(1, 0x01, "Tx127BytePkts"),
328 MIB_DESC(1, 0x02, "Tx255BytePkts"),
329 MIB_DESC(1, 0x03, "Tx511BytePkts"),
330 MIB_DESC(1, 0x04, "Tx1023BytePkts"),
331 /** Transmit Size 1024-1522 (or more, if configured) Packet Count. */
332 MIB_DESC(1, 0x05, "TxMaxBytePkts"),
333 MIB_DESC(1, 0x08, "TxSingleCollCount"),
334 MIB_DESC(1, 0x09, "TxMultCollCount"),
335 MIB_DESC(1, 0x0A, "TxLateCollCount"),
336 MIB_DESC(1, 0x0B, "TxExcessCollCount"),
337 MIB_DESC(1, 0x0D, "TxPauseCount"),
338 MIB_DESC(1, 0x10, "TxDroppedPkts"),
339 MIB_DESC(2, 0x0E, "TxGoodBytes"),
340 };
341
gswip_switch_r(struct gswip_priv * priv,u32 offset)342 static u32 gswip_switch_r(struct gswip_priv *priv, u32 offset)
343 {
344 return __raw_readl(priv->gswip + (offset * 4));
345 }
346
gswip_switch_w(struct gswip_priv * priv,u32 val,u32 offset)347 static void gswip_switch_w(struct gswip_priv *priv, u32 val, u32 offset)
348 {
349 __raw_writel(val, priv->gswip + (offset * 4));
350 }
351
gswip_switch_mask(struct gswip_priv * priv,u32 clear,u32 set,u32 offset)352 static void gswip_switch_mask(struct gswip_priv *priv, u32 clear, u32 set,
353 u32 offset)
354 {
355 u32 val = gswip_switch_r(priv, offset);
356
357 val &= ~(clear);
358 val |= set;
359 gswip_switch_w(priv, val, offset);
360 }
361
gswip_switch_r_timeout(struct gswip_priv * priv,u32 offset,u32 cleared)362 static u32 gswip_switch_r_timeout(struct gswip_priv *priv, u32 offset,
363 u32 cleared)
364 {
365 u32 val;
366
367 return readx_poll_timeout(__raw_readl, priv->gswip + (offset * 4), val,
368 (val & cleared) == 0, 20, 50000);
369 }
370
gswip_mdio_r(struct gswip_priv * priv,u32 offset)371 static u32 gswip_mdio_r(struct gswip_priv *priv, u32 offset)
372 {
373 return __raw_readl(priv->mdio + (offset * 4));
374 }
375
gswip_mdio_w(struct gswip_priv * priv,u32 val,u32 offset)376 static void gswip_mdio_w(struct gswip_priv *priv, u32 val, u32 offset)
377 {
378 __raw_writel(val, priv->mdio + (offset * 4));
379 }
380
gswip_mdio_mask(struct gswip_priv * priv,u32 clear,u32 set,u32 offset)381 static void gswip_mdio_mask(struct gswip_priv *priv, u32 clear, u32 set,
382 u32 offset)
383 {
384 u32 val = gswip_mdio_r(priv, offset);
385
386 val &= ~(clear);
387 val |= set;
388 gswip_mdio_w(priv, val, offset);
389 }
390
gswip_mii_r(struct gswip_priv * priv,u32 offset)391 static u32 gswip_mii_r(struct gswip_priv *priv, u32 offset)
392 {
393 return __raw_readl(priv->mii + (offset * 4));
394 }
395
gswip_mii_w(struct gswip_priv * priv,u32 val,u32 offset)396 static void gswip_mii_w(struct gswip_priv *priv, u32 val, u32 offset)
397 {
398 __raw_writel(val, priv->mii + (offset * 4));
399 }
400
gswip_mii_mask(struct gswip_priv * priv,u32 clear,u32 set,u32 offset)401 static void gswip_mii_mask(struct gswip_priv *priv, u32 clear, u32 set,
402 u32 offset)
403 {
404 u32 val = gswip_mii_r(priv, offset);
405
406 val &= ~(clear);
407 val |= set;
408 gswip_mii_w(priv, val, offset);
409 }
410
gswip_mii_mask_cfg(struct gswip_priv * priv,u32 clear,u32 set,int port)411 static void gswip_mii_mask_cfg(struct gswip_priv *priv, u32 clear, u32 set,
412 int port)
413 {
414 /* There's no MII_CFG register for the CPU port */
415 if (!dsa_is_cpu_port(priv->ds, port))
416 gswip_mii_mask(priv, clear, set, GSWIP_MII_CFGp(port));
417 }
418
gswip_mii_mask_pcdu(struct gswip_priv * priv,u32 clear,u32 set,int port)419 static void gswip_mii_mask_pcdu(struct gswip_priv *priv, u32 clear, u32 set,
420 int port)
421 {
422 switch (port) {
423 case 0:
424 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU0);
425 break;
426 case 1:
427 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU1);
428 break;
429 case 5:
430 gswip_mii_mask(priv, clear, set, GSWIP_MII_PCDU5);
431 break;
432 }
433 }
434
gswip_mdio_poll(struct gswip_priv * priv)435 static int gswip_mdio_poll(struct gswip_priv *priv)
436 {
437 int cnt = 100;
438
439 while (likely(cnt--)) {
440 u32 ctrl = gswip_mdio_r(priv, GSWIP_MDIO_CTRL);
441
442 if ((ctrl & GSWIP_MDIO_CTRL_BUSY) == 0)
443 return 0;
444 usleep_range(20, 40);
445 }
446
447 return -ETIMEDOUT;
448 }
449
gswip_mdio_wr(struct mii_bus * bus,int addr,int reg,u16 val)450 static int gswip_mdio_wr(struct mii_bus *bus, int addr, int reg, u16 val)
451 {
452 struct gswip_priv *priv = bus->priv;
453 int err;
454
455 err = gswip_mdio_poll(priv);
456 if (err) {
457 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
458 return err;
459 }
460
461 gswip_mdio_w(priv, val, GSWIP_MDIO_WRITE);
462 gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_WR |
463 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
464 (reg & GSWIP_MDIO_CTRL_REGAD_MASK),
465 GSWIP_MDIO_CTRL);
466
467 return 0;
468 }
469
gswip_mdio_rd(struct mii_bus * bus,int addr,int reg)470 static int gswip_mdio_rd(struct mii_bus *bus, int addr, int reg)
471 {
472 struct gswip_priv *priv = bus->priv;
473 int err;
474
475 err = gswip_mdio_poll(priv);
476 if (err) {
477 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
478 return err;
479 }
480
481 gswip_mdio_w(priv, GSWIP_MDIO_CTRL_BUSY | GSWIP_MDIO_CTRL_RD |
482 ((addr & GSWIP_MDIO_CTRL_PHYAD_MASK) << GSWIP_MDIO_CTRL_PHYAD_SHIFT) |
483 (reg & GSWIP_MDIO_CTRL_REGAD_MASK),
484 GSWIP_MDIO_CTRL);
485
486 err = gswip_mdio_poll(priv);
487 if (err) {
488 dev_err(&bus->dev, "waiting for MDIO bus busy timed out\n");
489 return err;
490 }
491
492 return gswip_mdio_r(priv, GSWIP_MDIO_READ);
493 }
494
gswip_mdio(struct gswip_priv * priv,struct device_node * mdio_np)495 static int gswip_mdio(struct gswip_priv *priv, struct device_node *mdio_np)
496 {
497 struct dsa_switch *ds = priv->ds;
498 int err;
499
500 ds->slave_mii_bus = mdiobus_alloc();
501 if (!ds->slave_mii_bus)
502 return -ENOMEM;
503
504 ds->slave_mii_bus->priv = priv;
505 ds->slave_mii_bus->read = gswip_mdio_rd;
506 ds->slave_mii_bus->write = gswip_mdio_wr;
507 ds->slave_mii_bus->name = "lantiq,xrx200-mdio";
508 snprintf(ds->slave_mii_bus->id, MII_BUS_ID_SIZE, "%s-mii",
509 dev_name(priv->dev));
510 ds->slave_mii_bus->parent = priv->dev;
511 ds->slave_mii_bus->phy_mask = ~ds->phys_mii_mask;
512
513 err = of_mdiobus_register(ds->slave_mii_bus, mdio_np);
514 if (err)
515 mdiobus_free(ds->slave_mii_bus);
516
517 return err;
518 }
519
gswip_pce_table_entry_read(struct gswip_priv * priv,struct gswip_pce_table_entry * tbl)520 static int gswip_pce_table_entry_read(struct gswip_priv *priv,
521 struct gswip_pce_table_entry *tbl)
522 {
523 int i;
524 int err;
525 u16 crtl;
526 u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSRD :
527 GSWIP_PCE_TBL_CTRL_OPMOD_ADRD;
528
529 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
530 GSWIP_PCE_TBL_CTRL_BAS);
531 if (err)
532 return err;
533
534 gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
535 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
536 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
537 tbl->table | addr_mode | GSWIP_PCE_TBL_CTRL_BAS,
538 GSWIP_PCE_TBL_CTRL);
539
540 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
541 GSWIP_PCE_TBL_CTRL_BAS);
542 if (err)
543 return err;
544
545 for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
546 tbl->key[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_KEY(i));
547
548 for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
549 tbl->val[i] = gswip_switch_r(priv, GSWIP_PCE_TBL_VAL(i));
550
551 tbl->mask = gswip_switch_r(priv, GSWIP_PCE_TBL_MASK);
552
553 crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
554
555 tbl->type = !!(crtl & GSWIP_PCE_TBL_CTRL_TYPE);
556 tbl->valid = !!(crtl & GSWIP_PCE_TBL_CTRL_VLD);
557 tbl->gmap = (crtl & GSWIP_PCE_TBL_CTRL_GMAP_MASK) >> 7;
558
559 return 0;
560 }
561
gswip_pce_table_entry_write(struct gswip_priv * priv,struct gswip_pce_table_entry * tbl)562 static int gswip_pce_table_entry_write(struct gswip_priv *priv,
563 struct gswip_pce_table_entry *tbl)
564 {
565 int i;
566 int err;
567 u16 crtl;
568 u16 addr_mode = tbl->key_mode ? GSWIP_PCE_TBL_CTRL_OPMOD_KSWR :
569 GSWIP_PCE_TBL_CTRL_OPMOD_ADWR;
570
571 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
572 GSWIP_PCE_TBL_CTRL_BAS);
573 if (err)
574 return err;
575
576 gswip_switch_w(priv, tbl->index, GSWIP_PCE_TBL_ADDR);
577 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
578 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
579 tbl->table | addr_mode,
580 GSWIP_PCE_TBL_CTRL);
581
582 for (i = 0; i < ARRAY_SIZE(tbl->key); i++)
583 gswip_switch_w(priv, tbl->key[i], GSWIP_PCE_TBL_KEY(i));
584
585 for (i = 0; i < ARRAY_SIZE(tbl->val); i++)
586 gswip_switch_w(priv, tbl->val[i], GSWIP_PCE_TBL_VAL(i));
587
588 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
589 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
590 tbl->table | addr_mode,
591 GSWIP_PCE_TBL_CTRL);
592
593 gswip_switch_w(priv, tbl->mask, GSWIP_PCE_TBL_MASK);
594
595 crtl = gswip_switch_r(priv, GSWIP_PCE_TBL_CTRL);
596 crtl &= ~(GSWIP_PCE_TBL_CTRL_TYPE | GSWIP_PCE_TBL_CTRL_VLD |
597 GSWIP_PCE_TBL_CTRL_GMAP_MASK);
598 if (tbl->type)
599 crtl |= GSWIP_PCE_TBL_CTRL_TYPE;
600 if (tbl->valid)
601 crtl |= GSWIP_PCE_TBL_CTRL_VLD;
602 crtl |= (tbl->gmap << 7) & GSWIP_PCE_TBL_CTRL_GMAP_MASK;
603 crtl |= GSWIP_PCE_TBL_CTRL_BAS;
604 gswip_switch_w(priv, crtl, GSWIP_PCE_TBL_CTRL);
605
606 return gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
607 GSWIP_PCE_TBL_CTRL_BAS);
608 }
609
610 /* Add the LAN port into a bridge with the CPU port by
611 * default. This prevents automatic forwarding of
612 * packages between the LAN ports when no explicit
613 * bridge is configured.
614 */
gswip_add_single_port_br(struct gswip_priv * priv,int port,bool add)615 static int gswip_add_single_port_br(struct gswip_priv *priv, int port, bool add)
616 {
617 struct gswip_pce_table_entry vlan_active = {0,};
618 struct gswip_pce_table_entry vlan_mapping = {0,};
619 unsigned int cpu_port = priv->hw_info->cpu_port;
620 unsigned int max_ports = priv->hw_info->max_ports;
621 int err;
622
623 if (port >= max_ports) {
624 dev_err(priv->dev, "single port for %i supported\n", port);
625 return -EIO;
626 }
627
628 vlan_active.index = port + 1;
629 vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
630 vlan_active.key[0] = 0; /* vid */
631 vlan_active.val[0] = port + 1 /* fid */;
632 vlan_active.valid = add;
633 err = gswip_pce_table_entry_write(priv, &vlan_active);
634 if (err) {
635 dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
636 return err;
637 }
638
639 if (!add)
640 return 0;
641
642 vlan_mapping.index = port + 1;
643 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
644 vlan_mapping.val[0] = 0 /* vid */;
645 vlan_mapping.val[1] = BIT(port) | BIT(cpu_port);
646 vlan_mapping.val[2] = 0;
647 err = gswip_pce_table_entry_write(priv, &vlan_mapping);
648 if (err) {
649 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
650 return err;
651 }
652
653 return 0;
654 }
655
gswip_port_enable(struct dsa_switch * ds,int port,struct phy_device * phydev)656 static int gswip_port_enable(struct dsa_switch *ds, int port,
657 struct phy_device *phydev)
658 {
659 struct gswip_priv *priv = ds->priv;
660 int err;
661
662 if (!dsa_is_user_port(ds, port))
663 return 0;
664
665 if (!dsa_is_cpu_port(ds, port)) {
666 err = gswip_add_single_port_br(priv, port, true);
667 if (err)
668 return err;
669 }
670
671 /* RMON Counter Enable for port */
672 gswip_switch_w(priv, GSWIP_BM_PCFG_CNTEN, GSWIP_BM_PCFGp(port));
673
674 /* enable port fetch/store dma & VLAN Modification */
675 gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_EN |
676 GSWIP_FDMA_PCTRL_VLANMOD_BOTH,
677 GSWIP_FDMA_PCTRLp(port));
678 gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
679 GSWIP_SDMA_PCTRLp(port));
680
681 if (!dsa_is_cpu_port(ds, port)) {
682 u32 mdio_phy = 0;
683
684 if (phydev)
685 mdio_phy = phydev->mdio.addr & GSWIP_MDIO_PHY_ADDR_MASK;
686
687 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_ADDR_MASK, mdio_phy,
688 GSWIP_MDIO_PHYp(port));
689 }
690
691 return 0;
692 }
693
gswip_port_disable(struct dsa_switch * ds,int port)694 static void gswip_port_disable(struct dsa_switch *ds, int port)
695 {
696 struct gswip_priv *priv = ds->priv;
697
698 if (!dsa_is_user_port(ds, port))
699 return;
700
701 gswip_switch_mask(priv, GSWIP_FDMA_PCTRL_EN, 0,
702 GSWIP_FDMA_PCTRLp(port));
703 gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
704 GSWIP_SDMA_PCTRLp(port));
705 }
706
gswip_pce_load_microcode(struct gswip_priv * priv)707 static int gswip_pce_load_microcode(struct gswip_priv *priv)
708 {
709 int i;
710 int err;
711
712 gswip_switch_mask(priv, GSWIP_PCE_TBL_CTRL_ADDR_MASK |
713 GSWIP_PCE_TBL_CTRL_OPMOD_MASK,
714 GSWIP_PCE_TBL_CTRL_OPMOD_ADWR, GSWIP_PCE_TBL_CTRL);
715 gswip_switch_w(priv, 0, GSWIP_PCE_TBL_MASK);
716
717 for (i = 0; i < ARRAY_SIZE(gswip_pce_microcode); i++) {
718 gswip_switch_w(priv, i, GSWIP_PCE_TBL_ADDR);
719 gswip_switch_w(priv, gswip_pce_microcode[i].val_0,
720 GSWIP_PCE_TBL_VAL(0));
721 gswip_switch_w(priv, gswip_pce_microcode[i].val_1,
722 GSWIP_PCE_TBL_VAL(1));
723 gswip_switch_w(priv, gswip_pce_microcode[i].val_2,
724 GSWIP_PCE_TBL_VAL(2));
725 gswip_switch_w(priv, gswip_pce_microcode[i].val_3,
726 GSWIP_PCE_TBL_VAL(3));
727
728 /* start the table access: */
729 gswip_switch_mask(priv, 0, GSWIP_PCE_TBL_CTRL_BAS,
730 GSWIP_PCE_TBL_CTRL);
731 err = gswip_switch_r_timeout(priv, GSWIP_PCE_TBL_CTRL,
732 GSWIP_PCE_TBL_CTRL_BAS);
733 if (err)
734 return err;
735 }
736
737 /* tell the switch that the microcode is loaded */
738 gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MC_VALID,
739 GSWIP_PCE_GCTRL_0);
740
741 return 0;
742 }
743
gswip_port_vlan_filtering(struct dsa_switch * ds,int port,bool vlan_filtering,struct switchdev_trans * trans)744 static int gswip_port_vlan_filtering(struct dsa_switch *ds, int port,
745 bool vlan_filtering,
746 struct switchdev_trans *trans)
747 {
748 struct gswip_priv *priv = ds->priv;
749
750 /* Do not allow changing the VLAN filtering options while in bridge */
751 if (switchdev_trans_ph_prepare(trans)) {
752 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
753
754 if (!bridge)
755 return 0;
756
757 if (!!(priv->port_vlan_filter & BIT(port)) != vlan_filtering)
758 return -EIO;
759
760 return 0;
761 }
762
763 if (vlan_filtering) {
764 /* Use port based VLAN tag */
765 gswip_switch_mask(priv,
766 GSWIP_PCE_VCTRL_VSR,
767 GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
768 GSWIP_PCE_VCTRL_VEMR,
769 GSWIP_PCE_VCTRL(port));
770 gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_TVM, 0,
771 GSWIP_PCE_PCTRL_0p(port));
772 } else {
773 /* Use port based VLAN tag */
774 gswip_switch_mask(priv,
775 GSWIP_PCE_VCTRL_UVR | GSWIP_PCE_VCTRL_VIMR |
776 GSWIP_PCE_VCTRL_VEMR,
777 GSWIP_PCE_VCTRL_VSR,
778 GSWIP_PCE_VCTRL(port));
779 gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_TVM,
780 GSWIP_PCE_PCTRL_0p(port));
781 }
782
783 return 0;
784 }
785
gswip_setup(struct dsa_switch * ds)786 static int gswip_setup(struct dsa_switch *ds)
787 {
788 struct gswip_priv *priv = ds->priv;
789 unsigned int cpu_port = priv->hw_info->cpu_port;
790 int i;
791 int err;
792
793 gswip_switch_w(priv, GSWIP_SWRES_R0, GSWIP_SWRES);
794 usleep_range(5000, 10000);
795 gswip_switch_w(priv, 0, GSWIP_SWRES);
796
797 /* disable port fetch/store dma on all ports */
798 for (i = 0; i < priv->hw_info->max_ports; i++) {
799 struct switchdev_trans trans;
800
801 /* Skip the prepare phase, this shouldn't return an error
802 * during setup.
803 */
804 trans.ph_prepare = false;
805
806 gswip_port_disable(ds, i);
807 gswip_port_vlan_filtering(ds, i, false, &trans);
808 }
809
810 /* enable Switch */
811 gswip_mdio_mask(priv, 0, GSWIP_MDIO_GLOB_ENABLE, GSWIP_MDIO_GLOB);
812
813 err = gswip_pce_load_microcode(priv);
814 if (err) {
815 dev_err(priv->dev, "writing PCE microcode failed, %i", err);
816 return err;
817 }
818
819 /* Default unknown Broadcast/Multicast/Unicast port maps */
820 gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP1);
821 gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP2);
822 gswip_switch_w(priv, BIT(cpu_port), GSWIP_PCE_PMAP3);
823
824 /* Deactivate MDIO PHY auto polling. Some PHYs as the AR8030 have an
825 * interoperability problem with this auto polling mechanism because
826 * their status registers think that the link is in a different state
827 * than it actually is. For the AR8030 it has the BMSR_ESTATEN bit set
828 * as well as ESTATUS_1000_TFULL and ESTATUS_1000_XFULL. This makes the
829 * auto polling state machine consider the link being negotiated with
830 * 1Gbit/s. Since the PHY itself is a Fast Ethernet RMII PHY this leads
831 * to the switch port being completely dead (RX and TX are both not
832 * working).
833 * Also with various other PHY / port combinations (PHY11G GPHY, PHY22F
834 * GPHY, external RGMII PEF7071/7072) any traffic would stop. Sometimes
835 * it would work fine for a few minutes to hours and then stop, on
836 * other device it would no traffic could be sent or received at all.
837 * Testing shows that when PHY auto polling is disabled these problems
838 * go away.
839 */
840 gswip_mdio_w(priv, 0x0, GSWIP_MDIO_MDC_CFG0);
841
842 /* Configure the MDIO Clock 2.5 MHz */
843 gswip_mdio_mask(priv, 0xff, 0x09, GSWIP_MDIO_MDC_CFG1);
844
845 /* Disable the xMII interface and clear it's isolation bit */
846 for (i = 0; i < priv->hw_info->max_ports; i++)
847 gswip_mii_mask_cfg(priv,
848 GSWIP_MII_CFG_EN | GSWIP_MII_CFG_ISOLATE,
849 0, i);
850
851 /* enable special tag insertion on cpu port */
852 gswip_switch_mask(priv, 0, GSWIP_FDMA_PCTRL_STEN,
853 GSWIP_FDMA_PCTRLp(cpu_port));
854
855 /* accept special tag in ingress direction */
856 gswip_switch_mask(priv, 0, GSWIP_PCE_PCTRL_0_INGRESS,
857 GSWIP_PCE_PCTRL_0p(cpu_port));
858
859 gswip_switch_mask(priv, 0, GSWIP_MAC_CTRL_2_MLEN,
860 GSWIP_MAC_CTRL_2p(cpu_port));
861 gswip_switch_w(priv, VLAN_ETH_FRAME_LEN + 8 + ETH_FCS_LEN,
862 GSWIP_MAC_FLEN);
863 gswip_switch_mask(priv, 0, GSWIP_BM_QUEUE_GCTRL_GL_MOD,
864 GSWIP_BM_QUEUE_GCTRL);
865
866 /* VLAN aware Switching */
867 gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_VLAN, GSWIP_PCE_GCTRL_0);
868
869 /* Flush MAC Table */
870 gswip_switch_mask(priv, 0, GSWIP_PCE_GCTRL_0_MTFL, GSWIP_PCE_GCTRL_0);
871
872 err = gswip_switch_r_timeout(priv, GSWIP_PCE_GCTRL_0,
873 GSWIP_PCE_GCTRL_0_MTFL);
874 if (err) {
875 dev_err(priv->dev, "MAC flushing didn't finish\n");
876 return err;
877 }
878
879 gswip_port_enable(ds, cpu_port, NULL);
880 return 0;
881 }
882
gswip_get_tag_protocol(struct dsa_switch * ds,int port,enum dsa_tag_protocol mp)883 static enum dsa_tag_protocol gswip_get_tag_protocol(struct dsa_switch *ds,
884 int port,
885 enum dsa_tag_protocol mp)
886 {
887 return DSA_TAG_PROTO_GSWIP;
888 }
889
gswip_vlan_active_create(struct gswip_priv * priv,struct net_device * bridge,int fid,u16 vid)890 static int gswip_vlan_active_create(struct gswip_priv *priv,
891 struct net_device *bridge,
892 int fid, u16 vid)
893 {
894 struct gswip_pce_table_entry vlan_active = {0,};
895 unsigned int max_ports = priv->hw_info->max_ports;
896 int idx = -1;
897 int err;
898 int i;
899
900 /* Look for a free slot */
901 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
902 if (!priv->vlans[i].bridge) {
903 idx = i;
904 break;
905 }
906 }
907
908 if (idx == -1)
909 return -ENOSPC;
910
911 if (fid == -1)
912 fid = idx;
913
914 vlan_active.index = idx;
915 vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
916 vlan_active.key[0] = vid;
917 vlan_active.val[0] = fid;
918 vlan_active.valid = true;
919
920 err = gswip_pce_table_entry_write(priv, &vlan_active);
921 if (err) {
922 dev_err(priv->dev, "failed to write active VLAN: %d\n", err);
923 return err;
924 }
925
926 priv->vlans[idx].bridge = bridge;
927 priv->vlans[idx].vid = vid;
928 priv->vlans[idx].fid = fid;
929
930 return idx;
931 }
932
gswip_vlan_active_remove(struct gswip_priv * priv,int idx)933 static int gswip_vlan_active_remove(struct gswip_priv *priv, int idx)
934 {
935 struct gswip_pce_table_entry vlan_active = {0,};
936 int err;
937
938 vlan_active.index = idx;
939 vlan_active.table = GSWIP_TABLE_ACTIVE_VLAN;
940 vlan_active.valid = false;
941 err = gswip_pce_table_entry_write(priv, &vlan_active);
942 if (err)
943 dev_err(priv->dev, "failed to delete active VLAN: %d\n", err);
944 priv->vlans[idx].bridge = NULL;
945
946 return err;
947 }
948
gswip_vlan_add_unaware(struct gswip_priv * priv,struct net_device * bridge,int port)949 static int gswip_vlan_add_unaware(struct gswip_priv *priv,
950 struct net_device *bridge, int port)
951 {
952 struct gswip_pce_table_entry vlan_mapping = {0,};
953 unsigned int max_ports = priv->hw_info->max_ports;
954 unsigned int cpu_port = priv->hw_info->cpu_port;
955 bool active_vlan_created = false;
956 int idx = -1;
957 int i;
958 int err;
959
960 /* Check if there is already a page for this bridge */
961 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
962 if (priv->vlans[i].bridge == bridge) {
963 idx = i;
964 break;
965 }
966 }
967
968 /* If this bridge is not programmed yet, add a Active VLAN table
969 * entry in a free slot and prepare the VLAN mapping table entry.
970 */
971 if (idx == -1) {
972 idx = gswip_vlan_active_create(priv, bridge, -1, 0);
973 if (idx < 0)
974 return idx;
975 active_vlan_created = true;
976
977 vlan_mapping.index = idx;
978 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
979 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
980 vlan_mapping.val[0] = 0;
981 } else {
982 /* Read the existing VLAN mapping entry from the switch */
983 vlan_mapping.index = idx;
984 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
985 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
986 if (err) {
987 dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
988 err);
989 return err;
990 }
991 }
992
993 /* Update the VLAN mapping entry and write it to the switch */
994 vlan_mapping.val[1] |= BIT(cpu_port);
995 vlan_mapping.val[1] |= BIT(port);
996 err = gswip_pce_table_entry_write(priv, &vlan_mapping);
997 if (err) {
998 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
999 /* In case an Active VLAN was creaetd delete it again */
1000 if (active_vlan_created)
1001 gswip_vlan_active_remove(priv, idx);
1002 return err;
1003 }
1004
1005 gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1006 return 0;
1007 }
1008
gswip_vlan_add_aware(struct gswip_priv * priv,struct net_device * bridge,int port,u16 vid,bool untagged,bool pvid)1009 static int gswip_vlan_add_aware(struct gswip_priv *priv,
1010 struct net_device *bridge, int port,
1011 u16 vid, bool untagged,
1012 bool pvid)
1013 {
1014 struct gswip_pce_table_entry vlan_mapping = {0,};
1015 unsigned int max_ports = priv->hw_info->max_ports;
1016 unsigned int cpu_port = priv->hw_info->cpu_port;
1017 bool active_vlan_created = false;
1018 int idx = -1;
1019 int fid = -1;
1020 int i;
1021 int err;
1022
1023 /* Check if there is already a page for this bridge */
1024 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1025 if (priv->vlans[i].bridge == bridge) {
1026 if (fid != -1 && fid != priv->vlans[i].fid)
1027 dev_err(priv->dev, "one bridge with multiple flow ids\n");
1028 fid = priv->vlans[i].fid;
1029 if (priv->vlans[i].vid == vid) {
1030 idx = i;
1031 break;
1032 }
1033 }
1034 }
1035
1036 /* If this bridge is not programmed yet, add a Active VLAN table
1037 * entry in a free slot and prepare the VLAN mapping table entry.
1038 */
1039 if (idx == -1) {
1040 idx = gswip_vlan_active_create(priv, bridge, fid, vid);
1041 if (idx < 0)
1042 return idx;
1043 active_vlan_created = true;
1044
1045 vlan_mapping.index = idx;
1046 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1047 /* VLAN ID byte, maps to the VLAN ID of vlan active table */
1048 vlan_mapping.val[0] = vid;
1049 } else {
1050 /* Read the existing VLAN mapping entry from the switch */
1051 vlan_mapping.index = idx;
1052 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1053 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1054 if (err) {
1055 dev_err(priv->dev, "failed to read VLAN mapping: %d\n",
1056 err);
1057 return err;
1058 }
1059 }
1060
1061 vlan_mapping.val[0] = vid;
1062 /* Update the VLAN mapping entry and write it to the switch */
1063 vlan_mapping.val[1] |= BIT(cpu_port);
1064 vlan_mapping.val[2] |= BIT(cpu_port);
1065 vlan_mapping.val[1] |= BIT(port);
1066 if (untagged)
1067 vlan_mapping.val[2] &= ~BIT(port);
1068 else
1069 vlan_mapping.val[2] |= BIT(port);
1070 err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1071 if (err) {
1072 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1073 /* In case an Active VLAN was creaetd delete it again */
1074 if (active_vlan_created)
1075 gswip_vlan_active_remove(priv, idx);
1076 return err;
1077 }
1078
1079 if (pvid)
1080 gswip_switch_w(priv, idx, GSWIP_PCE_DEFPVID(port));
1081
1082 return 0;
1083 }
1084
gswip_vlan_remove(struct gswip_priv * priv,struct net_device * bridge,int port,u16 vid,bool pvid,bool vlan_aware)1085 static int gswip_vlan_remove(struct gswip_priv *priv,
1086 struct net_device *bridge, int port,
1087 u16 vid, bool pvid, bool vlan_aware)
1088 {
1089 struct gswip_pce_table_entry vlan_mapping = {0,};
1090 unsigned int max_ports = priv->hw_info->max_ports;
1091 unsigned int cpu_port = priv->hw_info->cpu_port;
1092 int idx = -1;
1093 int i;
1094 int err;
1095
1096 /* Check if there is already a page for this bridge */
1097 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1098 if (priv->vlans[i].bridge == bridge &&
1099 (!vlan_aware || priv->vlans[i].vid == vid)) {
1100 idx = i;
1101 break;
1102 }
1103 }
1104
1105 if (idx == -1) {
1106 dev_err(priv->dev, "bridge to leave does not exists\n");
1107 return -ENOENT;
1108 }
1109
1110 vlan_mapping.index = idx;
1111 vlan_mapping.table = GSWIP_TABLE_VLAN_MAPPING;
1112 err = gswip_pce_table_entry_read(priv, &vlan_mapping);
1113 if (err) {
1114 dev_err(priv->dev, "failed to read VLAN mapping: %d\n", err);
1115 return err;
1116 }
1117
1118 vlan_mapping.val[1] &= ~BIT(port);
1119 vlan_mapping.val[2] &= ~BIT(port);
1120 err = gswip_pce_table_entry_write(priv, &vlan_mapping);
1121 if (err) {
1122 dev_err(priv->dev, "failed to write VLAN mapping: %d\n", err);
1123 return err;
1124 }
1125
1126 /* In case all ports are removed from the bridge, remove the VLAN */
1127 if ((vlan_mapping.val[1] & ~BIT(cpu_port)) == 0) {
1128 err = gswip_vlan_active_remove(priv, idx);
1129 if (err) {
1130 dev_err(priv->dev, "failed to write active VLAN: %d\n",
1131 err);
1132 return err;
1133 }
1134 }
1135
1136 /* GSWIP 2.2 (GRX300) and later program here the VID directly. */
1137 if (pvid)
1138 gswip_switch_w(priv, 0, GSWIP_PCE_DEFPVID(port));
1139
1140 return 0;
1141 }
1142
gswip_port_bridge_join(struct dsa_switch * ds,int port,struct net_device * bridge)1143 static int gswip_port_bridge_join(struct dsa_switch *ds, int port,
1144 struct net_device *bridge)
1145 {
1146 struct gswip_priv *priv = ds->priv;
1147 int err;
1148
1149 /* When the bridge uses VLAN filtering we have to configure VLAN
1150 * specific bridges. No bridge is configured here.
1151 */
1152 if (!br_vlan_enabled(bridge)) {
1153 err = gswip_vlan_add_unaware(priv, bridge, port);
1154 if (err)
1155 return err;
1156 priv->port_vlan_filter &= ~BIT(port);
1157 } else {
1158 priv->port_vlan_filter |= BIT(port);
1159 }
1160 return gswip_add_single_port_br(priv, port, false);
1161 }
1162
gswip_port_bridge_leave(struct dsa_switch * ds,int port,struct net_device * bridge)1163 static void gswip_port_bridge_leave(struct dsa_switch *ds, int port,
1164 struct net_device *bridge)
1165 {
1166 struct gswip_priv *priv = ds->priv;
1167
1168 gswip_add_single_port_br(priv, port, true);
1169
1170 /* When the bridge uses VLAN filtering we have to configure VLAN
1171 * specific bridges. No bridge is configured here.
1172 */
1173 if (!br_vlan_enabled(bridge))
1174 gswip_vlan_remove(priv, bridge, port, 0, true, false);
1175 }
1176
gswip_port_vlan_prepare(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan)1177 static int gswip_port_vlan_prepare(struct dsa_switch *ds, int port,
1178 const struct switchdev_obj_port_vlan *vlan)
1179 {
1180 struct gswip_priv *priv = ds->priv;
1181 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1182 unsigned int max_ports = priv->hw_info->max_ports;
1183 u16 vid;
1184 int i;
1185 int pos = max_ports;
1186
1187 /* We only support VLAN filtering on bridges */
1188 if (!dsa_is_cpu_port(ds, port) && !bridge)
1189 return -EOPNOTSUPP;
1190
1191 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1192 int idx = -1;
1193
1194 /* Check if there is already a page for this VLAN */
1195 for (i = max_ports; i < ARRAY_SIZE(priv->vlans); i++) {
1196 if (priv->vlans[i].bridge == bridge &&
1197 priv->vlans[i].vid == vid) {
1198 idx = i;
1199 break;
1200 }
1201 }
1202
1203 /* If this VLAN is not programmed yet, we have to reserve
1204 * one entry in the VLAN table. Make sure we start at the
1205 * next position round.
1206 */
1207 if (idx == -1) {
1208 /* Look for a free slot */
1209 for (; pos < ARRAY_SIZE(priv->vlans); pos++) {
1210 if (!priv->vlans[pos].bridge) {
1211 idx = pos;
1212 pos++;
1213 break;
1214 }
1215 }
1216
1217 if (idx == -1)
1218 return -ENOSPC;
1219 }
1220 }
1221
1222 return 0;
1223 }
1224
gswip_port_vlan_add(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan)1225 static void gswip_port_vlan_add(struct dsa_switch *ds, int port,
1226 const struct switchdev_obj_port_vlan *vlan)
1227 {
1228 struct gswip_priv *priv = ds->priv;
1229 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1230 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1231 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1232 u16 vid;
1233
1234 /* We have to receive all packets on the CPU port and should not
1235 * do any VLAN filtering here. This is also called with bridge
1236 * NULL and then we do not know for which bridge to configure
1237 * this.
1238 */
1239 if (dsa_is_cpu_port(ds, port))
1240 return;
1241
1242 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid)
1243 gswip_vlan_add_aware(priv, bridge, port, vid, untagged, pvid);
1244 }
1245
gswip_port_vlan_del(struct dsa_switch * ds,int port,const struct switchdev_obj_port_vlan * vlan)1246 static int gswip_port_vlan_del(struct dsa_switch *ds, int port,
1247 const struct switchdev_obj_port_vlan *vlan)
1248 {
1249 struct gswip_priv *priv = ds->priv;
1250 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1251 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1252 u16 vid;
1253 int err;
1254
1255 /* We have to receive all packets on the CPU port and should not
1256 * do any VLAN filtering here. This is also called with bridge
1257 * NULL and then we do not know for which bridge to configure
1258 * this.
1259 */
1260 if (dsa_is_cpu_port(ds, port))
1261 return 0;
1262
1263 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1264 err = gswip_vlan_remove(priv, bridge, port, vid, pvid, true);
1265 if (err)
1266 return err;
1267 }
1268
1269 return 0;
1270 }
1271
gswip_port_fast_age(struct dsa_switch * ds,int port)1272 static void gswip_port_fast_age(struct dsa_switch *ds, int port)
1273 {
1274 struct gswip_priv *priv = ds->priv;
1275 struct gswip_pce_table_entry mac_bridge = {0,};
1276 int i;
1277 int err;
1278
1279 for (i = 0; i < 2048; i++) {
1280 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1281 mac_bridge.index = i;
1282
1283 err = gswip_pce_table_entry_read(priv, &mac_bridge);
1284 if (err) {
1285 dev_err(priv->dev, "failed to read mac bridge: %d\n",
1286 err);
1287 return;
1288 }
1289
1290 if (!mac_bridge.valid)
1291 continue;
1292
1293 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC)
1294 continue;
1295
1296 if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) != port)
1297 continue;
1298
1299 mac_bridge.valid = false;
1300 err = gswip_pce_table_entry_write(priv, &mac_bridge);
1301 if (err) {
1302 dev_err(priv->dev, "failed to write mac bridge: %d\n",
1303 err);
1304 return;
1305 }
1306 }
1307 }
1308
gswip_port_stp_state_set(struct dsa_switch * ds,int port,u8 state)1309 static void gswip_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1310 {
1311 struct gswip_priv *priv = ds->priv;
1312 u32 stp_state;
1313
1314 switch (state) {
1315 case BR_STATE_DISABLED:
1316 gswip_switch_mask(priv, GSWIP_SDMA_PCTRL_EN, 0,
1317 GSWIP_SDMA_PCTRLp(port));
1318 return;
1319 case BR_STATE_BLOCKING:
1320 case BR_STATE_LISTENING:
1321 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LISTEN;
1322 break;
1323 case BR_STATE_LEARNING:
1324 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_LEARNING;
1325 break;
1326 case BR_STATE_FORWARDING:
1327 stp_state = GSWIP_PCE_PCTRL_0_PSTATE_FORWARDING;
1328 break;
1329 default:
1330 dev_err(priv->dev, "invalid STP state: %d\n", state);
1331 return;
1332 }
1333
1334 gswip_switch_mask(priv, 0, GSWIP_SDMA_PCTRL_EN,
1335 GSWIP_SDMA_PCTRLp(port));
1336 gswip_switch_mask(priv, GSWIP_PCE_PCTRL_0_PSTATE_MASK, stp_state,
1337 GSWIP_PCE_PCTRL_0p(port));
1338 }
1339
gswip_port_fdb(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,bool add)1340 static int gswip_port_fdb(struct dsa_switch *ds, int port,
1341 const unsigned char *addr, u16 vid, bool add)
1342 {
1343 struct gswip_priv *priv = ds->priv;
1344 struct net_device *bridge = dsa_to_port(ds, port)->bridge_dev;
1345 struct gswip_pce_table_entry mac_bridge = {0,};
1346 unsigned int cpu_port = priv->hw_info->cpu_port;
1347 int fid = -1;
1348 int i;
1349 int err;
1350
1351 if (!bridge)
1352 return -EINVAL;
1353
1354 for (i = cpu_port; i < ARRAY_SIZE(priv->vlans); i++) {
1355 if (priv->vlans[i].bridge == bridge) {
1356 fid = priv->vlans[i].fid;
1357 break;
1358 }
1359 }
1360
1361 if (fid == -1) {
1362 dev_err(priv->dev, "Port not part of a bridge\n");
1363 return -EINVAL;
1364 }
1365
1366 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1367 mac_bridge.key_mode = true;
1368 mac_bridge.key[0] = addr[5] | (addr[4] << 8);
1369 mac_bridge.key[1] = addr[3] | (addr[2] << 8);
1370 mac_bridge.key[2] = addr[1] | (addr[0] << 8);
1371 mac_bridge.key[3] = fid;
1372 mac_bridge.val[0] = add ? BIT(port) : 0; /* port map */
1373 mac_bridge.val[1] = GSWIP_TABLE_MAC_BRIDGE_STATIC;
1374 mac_bridge.valid = add;
1375
1376 err = gswip_pce_table_entry_write(priv, &mac_bridge);
1377 if (err)
1378 dev_err(priv->dev, "failed to write mac bridge: %d\n", err);
1379
1380 return err;
1381 }
1382
gswip_port_fdb_add(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid)1383 static int gswip_port_fdb_add(struct dsa_switch *ds, int port,
1384 const unsigned char *addr, u16 vid)
1385 {
1386 return gswip_port_fdb(ds, port, addr, vid, true);
1387 }
1388
gswip_port_fdb_del(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid)1389 static int gswip_port_fdb_del(struct dsa_switch *ds, int port,
1390 const unsigned char *addr, u16 vid)
1391 {
1392 return gswip_port_fdb(ds, port, addr, vid, false);
1393 }
1394
gswip_port_fdb_dump(struct dsa_switch * ds,int port,dsa_fdb_dump_cb_t * cb,void * data)1395 static int gswip_port_fdb_dump(struct dsa_switch *ds, int port,
1396 dsa_fdb_dump_cb_t *cb, void *data)
1397 {
1398 struct gswip_priv *priv = ds->priv;
1399 struct gswip_pce_table_entry mac_bridge = {0,};
1400 unsigned char addr[6];
1401 int i;
1402 int err;
1403
1404 for (i = 0; i < 2048; i++) {
1405 mac_bridge.table = GSWIP_TABLE_MAC_BRIDGE;
1406 mac_bridge.index = i;
1407
1408 err = gswip_pce_table_entry_read(priv, &mac_bridge);
1409 if (err) {
1410 dev_err(priv->dev, "failed to write mac bridge: %d\n",
1411 err);
1412 return err;
1413 }
1414
1415 if (!mac_bridge.valid)
1416 continue;
1417
1418 addr[5] = mac_bridge.key[0] & 0xff;
1419 addr[4] = (mac_bridge.key[0] >> 8) & 0xff;
1420 addr[3] = mac_bridge.key[1] & 0xff;
1421 addr[2] = (mac_bridge.key[1] >> 8) & 0xff;
1422 addr[1] = mac_bridge.key[2] & 0xff;
1423 addr[0] = (mac_bridge.key[2] >> 8) & 0xff;
1424 if (mac_bridge.val[1] & GSWIP_TABLE_MAC_BRIDGE_STATIC) {
1425 if (mac_bridge.val[0] & BIT(port)) {
1426 err = cb(addr, 0, true, data);
1427 if (err)
1428 return err;
1429 }
1430 } else {
1431 if (((mac_bridge.val[0] & GENMASK(7, 4)) >> 4) == port) {
1432 err = cb(addr, 0, false, data);
1433 if (err)
1434 return err;
1435 }
1436 }
1437 }
1438 return 0;
1439 }
1440
gswip_phylink_validate(struct dsa_switch * ds,int port,unsigned long * supported,struct phylink_link_state * state)1441 static void gswip_phylink_validate(struct dsa_switch *ds, int port,
1442 unsigned long *supported,
1443 struct phylink_link_state *state)
1444 {
1445 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1446
1447 switch (port) {
1448 case 0:
1449 case 1:
1450 if (!phy_interface_mode_is_rgmii(state->interface) &&
1451 state->interface != PHY_INTERFACE_MODE_MII &&
1452 state->interface != PHY_INTERFACE_MODE_REVMII &&
1453 state->interface != PHY_INTERFACE_MODE_RMII)
1454 goto unsupported;
1455 break;
1456 case 2:
1457 case 3:
1458 case 4:
1459 if (state->interface != PHY_INTERFACE_MODE_INTERNAL)
1460 goto unsupported;
1461 break;
1462 case 5:
1463 if (!phy_interface_mode_is_rgmii(state->interface) &&
1464 state->interface != PHY_INTERFACE_MODE_INTERNAL)
1465 goto unsupported;
1466 break;
1467 default:
1468 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1469 dev_err(ds->dev, "Unsupported port: %i\n", port);
1470 return;
1471 }
1472
1473 /* Allow all the expected bits */
1474 phylink_set(mask, Autoneg);
1475 phylink_set_port_modes(mask);
1476 phylink_set(mask, Pause);
1477 phylink_set(mask, Asym_Pause);
1478
1479 /* With the exclusion of MII, Reverse MII and Reduced MII, we
1480 * support Gigabit, including Half duplex
1481 */
1482 if (state->interface != PHY_INTERFACE_MODE_MII &&
1483 state->interface != PHY_INTERFACE_MODE_REVMII &&
1484 state->interface != PHY_INTERFACE_MODE_RMII) {
1485 phylink_set(mask, 1000baseT_Full);
1486 phylink_set(mask, 1000baseT_Half);
1487 }
1488
1489 phylink_set(mask, 10baseT_Half);
1490 phylink_set(mask, 10baseT_Full);
1491 phylink_set(mask, 100baseT_Half);
1492 phylink_set(mask, 100baseT_Full);
1493
1494 bitmap_and(supported, supported, mask,
1495 __ETHTOOL_LINK_MODE_MASK_NBITS);
1496 bitmap_and(state->advertising, state->advertising, mask,
1497 __ETHTOOL_LINK_MODE_MASK_NBITS);
1498 return;
1499
1500 unsupported:
1501 bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1502 dev_err(ds->dev, "Unsupported interface '%s' for port %d\n",
1503 phy_modes(state->interface), port);
1504 return;
1505 }
1506
gswip_port_set_link(struct gswip_priv * priv,int port,bool link)1507 static void gswip_port_set_link(struct gswip_priv *priv, int port, bool link)
1508 {
1509 u32 mdio_phy;
1510
1511 if (link)
1512 mdio_phy = GSWIP_MDIO_PHY_LINK_UP;
1513 else
1514 mdio_phy = GSWIP_MDIO_PHY_LINK_DOWN;
1515
1516 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_LINK_MASK, mdio_phy,
1517 GSWIP_MDIO_PHYp(port));
1518 }
1519
gswip_port_set_speed(struct gswip_priv * priv,int port,int speed,phy_interface_t interface)1520 static void gswip_port_set_speed(struct gswip_priv *priv, int port, int speed,
1521 phy_interface_t interface)
1522 {
1523 u32 mdio_phy = 0, mii_cfg = 0, mac_ctrl_0 = 0;
1524
1525 switch (speed) {
1526 case SPEED_10:
1527 mdio_phy = GSWIP_MDIO_PHY_SPEED_M10;
1528
1529 if (interface == PHY_INTERFACE_MODE_RMII)
1530 mii_cfg = GSWIP_MII_CFG_RATE_M50;
1531 else
1532 mii_cfg = GSWIP_MII_CFG_RATE_M2P5;
1533
1534 mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1535 break;
1536
1537 case SPEED_100:
1538 mdio_phy = GSWIP_MDIO_PHY_SPEED_M100;
1539
1540 if (interface == PHY_INTERFACE_MODE_RMII)
1541 mii_cfg = GSWIP_MII_CFG_RATE_M50;
1542 else
1543 mii_cfg = GSWIP_MII_CFG_RATE_M25;
1544
1545 mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_MII;
1546 break;
1547
1548 case SPEED_1000:
1549 mdio_phy = GSWIP_MDIO_PHY_SPEED_G1;
1550
1551 mii_cfg = GSWIP_MII_CFG_RATE_M125;
1552
1553 mac_ctrl_0 = GSWIP_MAC_CTRL_0_GMII_RGMII;
1554 break;
1555 }
1556
1557 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_SPEED_MASK, mdio_phy,
1558 GSWIP_MDIO_PHYp(port));
1559 gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_RATE_MASK, mii_cfg, port);
1560 gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_GMII_MASK, mac_ctrl_0,
1561 GSWIP_MAC_CTRL_0p(port));
1562 }
1563
gswip_port_set_duplex(struct gswip_priv * priv,int port,int duplex)1564 static void gswip_port_set_duplex(struct gswip_priv *priv, int port, int duplex)
1565 {
1566 u32 mac_ctrl_0, mdio_phy;
1567
1568 if (duplex == DUPLEX_FULL) {
1569 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_EN;
1570 mdio_phy = GSWIP_MDIO_PHY_FDUP_EN;
1571 } else {
1572 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FDUP_DIS;
1573 mdio_phy = GSWIP_MDIO_PHY_FDUP_DIS;
1574 }
1575
1576 gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FDUP_MASK, mac_ctrl_0,
1577 GSWIP_MAC_CTRL_0p(port));
1578 gswip_mdio_mask(priv, GSWIP_MDIO_PHY_FDUP_MASK, mdio_phy,
1579 GSWIP_MDIO_PHYp(port));
1580 }
1581
gswip_port_set_pause(struct gswip_priv * priv,int port,bool tx_pause,bool rx_pause)1582 static void gswip_port_set_pause(struct gswip_priv *priv, int port,
1583 bool tx_pause, bool rx_pause)
1584 {
1585 u32 mac_ctrl_0, mdio_phy;
1586
1587 if (tx_pause && rx_pause) {
1588 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RXTX;
1589 mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1590 GSWIP_MDIO_PHY_FCONRX_EN;
1591 } else if (tx_pause) {
1592 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_TX;
1593 mdio_phy = GSWIP_MDIO_PHY_FCONTX_EN |
1594 GSWIP_MDIO_PHY_FCONRX_DIS;
1595 } else if (rx_pause) {
1596 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_RX;
1597 mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1598 GSWIP_MDIO_PHY_FCONRX_EN;
1599 } else {
1600 mac_ctrl_0 = GSWIP_MAC_CTRL_0_FCON_NONE;
1601 mdio_phy = GSWIP_MDIO_PHY_FCONTX_DIS |
1602 GSWIP_MDIO_PHY_FCONRX_DIS;
1603 }
1604
1605 gswip_switch_mask(priv, GSWIP_MAC_CTRL_0_FCON_MASK,
1606 mac_ctrl_0, GSWIP_MAC_CTRL_0p(port));
1607 gswip_mdio_mask(priv,
1608 GSWIP_MDIO_PHY_FCONTX_MASK |
1609 GSWIP_MDIO_PHY_FCONRX_MASK,
1610 mdio_phy, GSWIP_MDIO_PHYp(port));
1611 }
1612
gswip_phylink_mac_config(struct dsa_switch * ds,int port,unsigned int mode,const struct phylink_link_state * state)1613 static void gswip_phylink_mac_config(struct dsa_switch *ds, int port,
1614 unsigned int mode,
1615 const struct phylink_link_state *state)
1616 {
1617 struct gswip_priv *priv = ds->priv;
1618 u32 miicfg = 0;
1619
1620 miicfg |= GSWIP_MII_CFG_LDCLKDIS;
1621
1622 switch (state->interface) {
1623 case PHY_INTERFACE_MODE_MII:
1624 case PHY_INTERFACE_MODE_INTERNAL:
1625 miicfg |= GSWIP_MII_CFG_MODE_MIIM;
1626 break;
1627 case PHY_INTERFACE_MODE_REVMII:
1628 miicfg |= GSWIP_MII_CFG_MODE_MIIP;
1629 break;
1630 case PHY_INTERFACE_MODE_RMII:
1631 miicfg |= GSWIP_MII_CFG_MODE_RMIIM;
1632 break;
1633 case PHY_INTERFACE_MODE_RGMII:
1634 case PHY_INTERFACE_MODE_RGMII_ID:
1635 case PHY_INTERFACE_MODE_RGMII_RXID:
1636 case PHY_INTERFACE_MODE_RGMII_TXID:
1637 miicfg |= GSWIP_MII_CFG_MODE_RGMII;
1638 break;
1639 default:
1640 dev_err(ds->dev,
1641 "Unsupported interface: %d\n", state->interface);
1642 return;
1643 }
1644
1645 gswip_mii_mask_cfg(priv,
1646 GSWIP_MII_CFG_MODE_MASK | GSWIP_MII_CFG_RMII_CLK |
1647 GSWIP_MII_CFG_RGMII_IBS | GSWIP_MII_CFG_LDCLKDIS,
1648 miicfg, port);
1649
1650 switch (state->interface) {
1651 case PHY_INTERFACE_MODE_RGMII_ID:
1652 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK |
1653 GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1654 break;
1655 case PHY_INTERFACE_MODE_RGMII_RXID:
1656 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_RXDLY_MASK, 0, port);
1657 break;
1658 case PHY_INTERFACE_MODE_RGMII_TXID:
1659 gswip_mii_mask_pcdu(priv, GSWIP_MII_PCDU_TXDLY_MASK, 0, port);
1660 break;
1661 default:
1662 break;
1663 }
1664 }
1665
gswip_phylink_mac_link_down(struct dsa_switch * ds,int port,unsigned int mode,phy_interface_t interface)1666 static void gswip_phylink_mac_link_down(struct dsa_switch *ds, int port,
1667 unsigned int mode,
1668 phy_interface_t interface)
1669 {
1670 struct gswip_priv *priv = ds->priv;
1671
1672 gswip_mii_mask_cfg(priv, GSWIP_MII_CFG_EN, 0, port);
1673
1674 if (!dsa_is_cpu_port(ds, port))
1675 gswip_port_set_link(priv, port, false);
1676 }
1677
gswip_phylink_mac_link_up(struct dsa_switch * ds,int port,unsigned int mode,phy_interface_t interface,struct phy_device * phydev,int speed,int duplex,bool tx_pause,bool rx_pause)1678 static void gswip_phylink_mac_link_up(struct dsa_switch *ds, int port,
1679 unsigned int mode,
1680 phy_interface_t interface,
1681 struct phy_device *phydev,
1682 int speed, int duplex,
1683 bool tx_pause, bool rx_pause)
1684 {
1685 struct gswip_priv *priv = ds->priv;
1686
1687 if (!dsa_is_cpu_port(ds, port)) {
1688 gswip_port_set_link(priv, port, true);
1689 gswip_port_set_speed(priv, port, speed, interface);
1690 gswip_port_set_duplex(priv, port, duplex);
1691 gswip_port_set_pause(priv, port, tx_pause, rx_pause);
1692 }
1693
1694 gswip_mii_mask_cfg(priv, 0, GSWIP_MII_CFG_EN, port);
1695 }
1696
gswip_get_strings(struct dsa_switch * ds,int port,u32 stringset,uint8_t * data)1697 static void gswip_get_strings(struct dsa_switch *ds, int port, u32 stringset,
1698 uint8_t *data)
1699 {
1700 int i;
1701
1702 if (stringset != ETH_SS_STATS)
1703 return;
1704
1705 for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++)
1706 strncpy(data + i * ETH_GSTRING_LEN, gswip_rmon_cnt[i].name,
1707 ETH_GSTRING_LEN);
1708 }
1709
gswip_bcm_ram_entry_read(struct gswip_priv * priv,u32 table,u32 index)1710 static u32 gswip_bcm_ram_entry_read(struct gswip_priv *priv, u32 table,
1711 u32 index)
1712 {
1713 u32 result;
1714 int err;
1715
1716 gswip_switch_w(priv, index, GSWIP_BM_RAM_ADDR);
1717 gswip_switch_mask(priv, GSWIP_BM_RAM_CTRL_ADDR_MASK |
1718 GSWIP_BM_RAM_CTRL_OPMOD,
1719 table | GSWIP_BM_RAM_CTRL_BAS,
1720 GSWIP_BM_RAM_CTRL);
1721
1722 err = gswip_switch_r_timeout(priv, GSWIP_BM_RAM_CTRL,
1723 GSWIP_BM_RAM_CTRL_BAS);
1724 if (err) {
1725 dev_err(priv->dev, "timeout while reading table: %u, index: %u",
1726 table, index);
1727 return 0;
1728 }
1729
1730 result = gswip_switch_r(priv, GSWIP_BM_RAM_VAL(0));
1731 result |= gswip_switch_r(priv, GSWIP_BM_RAM_VAL(1)) << 16;
1732
1733 return result;
1734 }
1735
gswip_get_ethtool_stats(struct dsa_switch * ds,int port,uint64_t * data)1736 static void gswip_get_ethtool_stats(struct dsa_switch *ds, int port,
1737 uint64_t *data)
1738 {
1739 struct gswip_priv *priv = ds->priv;
1740 const struct gswip_rmon_cnt_desc *rmon_cnt;
1741 int i;
1742 u64 high;
1743
1744 for (i = 0; i < ARRAY_SIZE(gswip_rmon_cnt); i++) {
1745 rmon_cnt = &gswip_rmon_cnt[i];
1746
1747 data[i] = gswip_bcm_ram_entry_read(priv, port,
1748 rmon_cnt->offset);
1749 if (rmon_cnt->size == 2) {
1750 high = gswip_bcm_ram_entry_read(priv, port,
1751 rmon_cnt->offset + 1);
1752 data[i] |= high << 32;
1753 }
1754 }
1755 }
1756
gswip_get_sset_count(struct dsa_switch * ds,int port,int sset)1757 static int gswip_get_sset_count(struct dsa_switch *ds, int port, int sset)
1758 {
1759 if (sset != ETH_SS_STATS)
1760 return 0;
1761
1762 return ARRAY_SIZE(gswip_rmon_cnt);
1763 }
1764
1765 static const struct dsa_switch_ops gswip_switch_ops = {
1766 .get_tag_protocol = gswip_get_tag_protocol,
1767 .setup = gswip_setup,
1768 .port_enable = gswip_port_enable,
1769 .port_disable = gswip_port_disable,
1770 .port_bridge_join = gswip_port_bridge_join,
1771 .port_bridge_leave = gswip_port_bridge_leave,
1772 .port_fast_age = gswip_port_fast_age,
1773 .port_vlan_filtering = gswip_port_vlan_filtering,
1774 .port_vlan_prepare = gswip_port_vlan_prepare,
1775 .port_vlan_add = gswip_port_vlan_add,
1776 .port_vlan_del = gswip_port_vlan_del,
1777 .port_stp_state_set = gswip_port_stp_state_set,
1778 .port_fdb_add = gswip_port_fdb_add,
1779 .port_fdb_del = gswip_port_fdb_del,
1780 .port_fdb_dump = gswip_port_fdb_dump,
1781 .phylink_validate = gswip_phylink_validate,
1782 .phylink_mac_config = gswip_phylink_mac_config,
1783 .phylink_mac_link_down = gswip_phylink_mac_link_down,
1784 .phylink_mac_link_up = gswip_phylink_mac_link_up,
1785 .get_strings = gswip_get_strings,
1786 .get_ethtool_stats = gswip_get_ethtool_stats,
1787 .get_sset_count = gswip_get_sset_count,
1788 };
1789
1790 static const struct xway_gphy_match_data xrx200a1x_gphy_data = {
1791 .fe_firmware_name = "lantiq/xrx200_phy22f_a14.bin",
1792 .ge_firmware_name = "lantiq/xrx200_phy11g_a14.bin",
1793 };
1794
1795 static const struct xway_gphy_match_data xrx200a2x_gphy_data = {
1796 .fe_firmware_name = "lantiq/xrx200_phy22f_a22.bin",
1797 .ge_firmware_name = "lantiq/xrx200_phy11g_a22.bin",
1798 };
1799
1800 static const struct xway_gphy_match_data xrx300_gphy_data = {
1801 .fe_firmware_name = "lantiq/xrx300_phy22f_a21.bin",
1802 .ge_firmware_name = "lantiq/xrx300_phy11g_a21.bin",
1803 };
1804
1805 static const struct of_device_id xway_gphy_match[] = {
1806 { .compatible = "lantiq,xrx200-gphy-fw", .data = NULL },
1807 { .compatible = "lantiq,xrx200a1x-gphy-fw", .data = &xrx200a1x_gphy_data },
1808 { .compatible = "lantiq,xrx200a2x-gphy-fw", .data = &xrx200a2x_gphy_data },
1809 { .compatible = "lantiq,xrx300-gphy-fw", .data = &xrx300_gphy_data },
1810 { .compatible = "lantiq,xrx330-gphy-fw", .data = &xrx300_gphy_data },
1811 {},
1812 };
1813
gswip_gphy_fw_load(struct gswip_priv * priv,struct gswip_gphy_fw * gphy_fw)1814 static int gswip_gphy_fw_load(struct gswip_priv *priv, struct gswip_gphy_fw *gphy_fw)
1815 {
1816 struct device *dev = priv->dev;
1817 const struct firmware *fw;
1818 void *fw_addr;
1819 dma_addr_t dma_addr;
1820 dma_addr_t dev_addr;
1821 size_t size;
1822 int ret;
1823
1824 ret = clk_prepare_enable(gphy_fw->clk_gate);
1825 if (ret)
1826 return ret;
1827
1828 reset_control_assert(gphy_fw->reset);
1829
1830 ret = request_firmware(&fw, gphy_fw->fw_name, dev);
1831 if (ret) {
1832 dev_err(dev, "failed to load firmware: %s, error: %i\n",
1833 gphy_fw->fw_name, ret);
1834 return ret;
1835 }
1836
1837 /* GPHY cores need the firmware code in a persistent and contiguous
1838 * memory area with a 16 kB boundary aligned start address.
1839 */
1840 size = fw->size + XRX200_GPHY_FW_ALIGN;
1841
1842 fw_addr = dmam_alloc_coherent(dev, size, &dma_addr, GFP_KERNEL);
1843 if (fw_addr) {
1844 fw_addr = PTR_ALIGN(fw_addr, XRX200_GPHY_FW_ALIGN);
1845 dev_addr = ALIGN(dma_addr, XRX200_GPHY_FW_ALIGN);
1846 memcpy(fw_addr, fw->data, fw->size);
1847 } else {
1848 dev_err(dev, "failed to alloc firmware memory\n");
1849 release_firmware(fw);
1850 return -ENOMEM;
1851 }
1852
1853 release_firmware(fw);
1854
1855 ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, dev_addr);
1856 if (ret)
1857 return ret;
1858
1859 reset_control_deassert(gphy_fw->reset);
1860
1861 return ret;
1862 }
1863
gswip_gphy_fw_probe(struct gswip_priv * priv,struct gswip_gphy_fw * gphy_fw,struct device_node * gphy_fw_np,int i)1864 static int gswip_gphy_fw_probe(struct gswip_priv *priv,
1865 struct gswip_gphy_fw *gphy_fw,
1866 struct device_node *gphy_fw_np, int i)
1867 {
1868 struct device *dev = priv->dev;
1869 u32 gphy_mode;
1870 int ret;
1871 char gphyname[10];
1872
1873 snprintf(gphyname, sizeof(gphyname), "gphy%d", i);
1874
1875 gphy_fw->clk_gate = devm_clk_get(dev, gphyname);
1876 if (IS_ERR(gphy_fw->clk_gate)) {
1877 dev_err(dev, "Failed to lookup gate clock\n");
1878 return PTR_ERR(gphy_fw->clk_gate);
1879 }
1880
1881 ret = of_property_read_u32(gphy_fw_np, "reg", &gphy_fw->fw_addr_offset);
1882 if (ret)
1883 return ret;
1884
1885 ret = of_property_read_u32(gphy_fw_np, "lantiq,gphy-mode", &gphy_mode);
1886 /* Default to GE mode */
1887 if (ret)
1888 gphy_mode = GPHY_MODE_GE;
1889
1890 switch (gphy_mode) {
1891 case GPHY_MODE_FE:
1892 gphy_fw->fw_name = priv->gphy_fw_name_cfg->fe_firmware_name;
1893 break;
1894 case GPHY_MODE_GE:
1895 gphy_fw->fw_name = priv->gphy_fw_name_cfg->ge_firmware_name;
1896 break;
1897 default:
1898 dev_err(dev, "Unknown GPHY mode %d\n", gphy_mode);
1899 return -EINVAL;
1900 }
1901
1902 gphy_fw->reset = of_reset_control_array_get_exclusive(gphy_fw_np);
1903 if (IS_ERR(gphy_fw->reset)) {
1904 if (PTR_ERR(gphy_fw->reset) != -EPROBE_DEFER)
1905 dev_err(dev, "Failed to lookup gphy reset\n");
1906 return PTR_ERR(gphy_fw->reset);
1907 }
1908
1909 return gswip_gphy_fw_load(priv, gphy_fw);
1910 }
1911
gswip_gphy_fw_remove(struct gswip_priv * priv,struct gswip_gphy_fw * gphy_fw)1912 static void gswip_gphy_fw_remove(struct gswip_priv *priv,
1913 struct gswip_gphy_fw *gphy_fw)
1914 {
1915 int ret;
1916
1917 /* check if the device was fully probed */
1918 if (!gphy_fw->fw_name)
1919 return;
1920
1921 ret = regmap_write(priv->rcu_regmap, gphy_fw->fw_addr_offset, 0);
1922 if (ret)
1923 dev_err(priv->dev, "can not reset GPHY FW pointer");
1924
1925 clk_disable_unprepare(gphy_fw->clk_gate);
1926
1927 reset_control_put(gphy_fw->reset);
1928 }
1929
gswip_gphy_fw_list(struct gswip_priv * priv,struct device_node * gphy_fw_list_np,u32 version)1930 static int gswip_gphy_fw_list(struct gswip_priv *priv,
1931 struct device_node *gphy_fw_list_np, u32 version)
1932 {
1933 struct device *dev = priv->dev;
1934 struct device_node *gphy_fw_np;
1935 const struct of_device_id *match;
1936 int err;
1937 int i = 0;
1938
1939 /* The VRX200 rev 1.1 uses the GSWIP 2.0 and needs the older
1940 * GPHY firmware. The VRX200 rev 1.2 uses the GSWIP 2.1 and also
1941 * needs a different GPHY firmware.
1942 */
1943 if (of_device_is_compatible(gphy_fw_list_np, "lantiq,xrx200-gphy-fw")) {
1944 switch (version) {
1945 case GSWIP_VERSION_2_0:
1946 priv->gphy_fw_name_cfg = &xrx200a1x_gphy_data;
1947 break;
1948 case GSWIP_VERSION_2_1:
1949 priv->gphy_fw_name_cfg = &xrx200a2x_gphy_data;
1950 break;
1951 default:
1952 dev_err(dev, "unknown GSWIP version: 0x%x", version);
1953 return -ENOENT;
1954 }
1955 }
1956
1957 match = of_match_node(xway_gphy_match, gphy_fw_list_np);
1958 if (match && match->data)
1959 priv->gphy_fw_name_cfg = match->data;
1960
1961 if (!priv->gphy_fw_name_cfg) {
1962 dev_err(dev, "GPHY compatible type not supported");
1963 return -ENOENT;
1964 }
1965
1966 priv->num_gphy_fw = of_get_available_child_count(gphy_fw_list_np);
1967 if (!priv->num_gphy_fw)
1968 return -ENOENT;
1969
1970 priv->rcu_regmap = syscon_regmap_lookup_by_phandle(gphy_fw_list_np,
1971 "lantiq,rcu");
1972 if (IS_ERR(priv->rcu_regmap))
1973 return PTR_ERR(priv->rcu_regmap);
1974
1975 priv->gphy_fw = devm_kmalloc_array(dev, priv->num_gphy_fw,
1976 sizeof(*priv->gphy_fw),
1977 GFP_KERNEL | __GFP_ZERO);
1978 if (!priv->gphy_fw)
1979 return -ENOMEM;
1980
1981 for_each_available_child_of_node(gphy_fw_list_np, gphy_fw_np) {
1982 err = gswip_gphy_fw_probe(priv, &priv->gphy_fw[i],
1983 gphy_fw_np, i);
1984 if (err) {
1985 of_node_put(gphy_fw_np);
1986 goto remove_gphy;
1987 }
1988 i++;
1989 }
1990
1991 /* The standalone PHY11G requires 300ms to be fully
1992 * initialized and ready for any MDIO communication after being
1993 * taken out of reset. For the SoC-internal GPHY variant there
1994 * is no (known) documentation for the minimum time after a
1995 * reset. Use the same value as for the standalone variant as
1996 * some users have reported internal PHYs not being detected
1997 * without any delay.
1998 */
1999 msleep(300);
2000
2001 return 0;
2002
2003 remove_gphy:
2004 for (i = 0; i < priv->num_gphy_fw; i++)
2005 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2006 return err;
2007 }
2008
gswip_probe(struct platform_device * pdev)2009 static int gswip_probe(struct platform_device *pdev)
2010 {
2011 struct gswip_priv *priv;
2012 struct device_node *mdio_np, *gphy_fw_np;
2013 struct device *dev = &pdev->dev;
2014 int err;
2015 int i;
2016 u32 version;
2017
2018 priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2019 if (!priv)
2020 return -ENOMEM;
2021
2022 priv->gswip = devm_platform_ioremap_resource(pdev, 0);
2023 if (IS_ERR(priv->gswip))
2024 return PTR_ERR(priv->gswip);
2025
2026 priv->mdio = devm_platform_ioremap_resource(pdev, 1);
2027 if (IS_ERR(priv->mdio))
2028 return PTR_ERR(priv->mdio);
2029
2030 priv->mii = devm_platform_ioremap_resource(pdev, 2);
2031 if (IS_ERR(priv->mii))
2032 return PTR_ERR(priv->mii);
2033
2034 priv->hw_info = of_device_get_match_data(dev);
2035 if (!priv->hw_info)
2036 return -EINVAL;
2037
2038 priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
2039 if (!priv->ds)
2040 return -ENOMEM;
2041
2042 priv->ds->dev = dev;
2043 priv->ds->num_ports = priv->hw_info->max_ports;
2044 priv->ds->priv = priv;
2045 priv->ds->ops = &gswip_switch_ops;
2046 priv->dev = dev;
2047 version = gswip_switch_r(priv, GSWIP_VERSION);
2048
2049 /* bring up the mdio bus */
2050 gphy_fw_np = of_get_compatible_child(dev->of_node, "lantiq,gphy-fw");
2051 if (gphy_fw_np) {
2052 err = gswip_gphy_fw_list(priv, gphy_fw_np, version);
2053 of_node_put(gphy_fw_np);
2054 if (err) {
2055 dev_err(dev, "gphy fw probe failed\n");
2056 return err;
2057 }
2058 }
2059
2060 /* bring up the mdio bus */
2061 mdio_np = of_get_compatible_child(dev->of_node, "lantiq,xrx200-mdio");
2062 if (mdio_np) {
2063 err = gswip_mdio(priv, mdio_np);
2064 if (err) {
2065 dev_err(dev, "mdio probe failed\n");
2066 goto put_mdio_node;
2067 }
2068 }
2069
2070 err = dsa_register_switch(priv->ds);
2071 if (err) {
2072 dev_err(dev, "dsa switch register failed: %i\n", err);
2073 goto mdio_bus;
2074 }
2075 if (!dsa_is_cpu_port(priv->ds, priv->hw_info->cpu_port)) {
2076 dev_err(dev, "wrong CPU port defined, HW only supports port: %i",
2077 priv->hw_info->cpu_port);
2078 err = -EINVAL;
2079 goto disable_switch;
2080 }
2081
2082 platform_set_drvdata(pdev, priv);
2083
2084 dev_info(dev, "probed GSWIP version %lx mod %lx\n",
2085 (version & GSWIP_VERSION_REV_MASK) >> GSWIP_VERSION_REV_SHIFT,
2086 (version & GSWIP_VERSION_MOD_MASK) >> GSWIP_VERSION_MOD_SHIFT);
2087 return 0;
2088
2089 disable_switch:
2090 gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2091 dsa_unregister_switch(priv->ds);
2092 mdio_bus:
2093 if (mdio_np) {
2094 mdiobus_unregister(priv->ds->slave_mii_bus);
2095 mdiobus_free(priv->ds->slave_mii_bus);
2096 }
2097 put_mdio_node:
2098 of_node_put(mdio_np);
2099 for (i = 0; i < priv->num_gphy_fw; i++)
2100 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2101 return err;
2102 }
2103
gswip_remove(struct platform_device * pdev)2104 static int gswip_remove(struct platform_device *pdev)
2105 {
2106 struct gswip_priv *priv = platform_get_drvdata(pdev);
2107 int i;
2108
2109 /* disable the switch */
2110 gswip_mdio_mask(priv, GSWIP_MDIO_GLOB_ENABLE, 0, GSWIP_MDIO_GLOB);
2111
2112 dsa_unregister_switch(priv->ds);
2113
2114 if (priv->ds->slave_mii_bus) {
2115 mdiobus_unregister(priv->ds->slave_mii_bus);
2116 of_node_put(priv->ds->slave_mii_bus->dev.of_node);
2117 mdiobus_free(priv->ds->slave_mii_bus);
2118 }
2119
2120 for (i = 0; i < priv->num_gphy_fw; i++)
2121 gswip_gphy_fw_remove(priv, &priv->gphy_fw[i]);
2122
2123 return 0;
2124 }
2125
2126 static const struct gswip_hw_info gswip_xrx200 = {
2127 .max_ports = 7,
2128 .cpu_port = 6,
2129 };
2130
2131 static const struct of_device_id gswip_of_match[] = {
2132 { .compatible = "lantiq,xrx200-gswip", .data = &gswip_xrx200 },
2133 {},
2134 };
2135 MODULE_DEVICE_TABLE(of, gswip_of_match);
2136
2137 static struct platform_driver gswip_driver = {
2138 .probe = gswip_probe,
2139 .remove = gswip_remove,
2140 .driver = {
2141 .name = "gswip",
2142 .of_match_table = gswip_of_match,
2143 },
2144 };
2145
2146 module_platform_driver(gswip_driver);
2147
2148 MODULE_FIRMWARE("lantiq/xrx300_phy11g_a21.bin");
2149 MODULE_FIRMWARE("lantiq/xrx300_phy22f_a21.bin");
2150 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a14.bin");
2151 MODULE_FIRMWARE("lantiq/xrx200_phy11g_a22.bin");
2152 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a14.bin");
2153 MODULE_FIRMWARE("lantiq/xrx200_phy22f_a22.bin");
2154 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
2155 MODULE_DESCRIPTION("Lantiq / Intel GSWIP driver");
2156 MODULE_LICENSE("GPL v2");
2157