xref: /OK3568_Linux_fs/kernel/drivers/mtd/spi-nor/core.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
4  * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
5  *
6  * Copyright (C) 2005, Intec Automation Inc.
7  * Copyright (C) 2014, Freescale Semiconductor, Inc.
8  */
9 
10 #include <linux/err.h>
11 #include <linux/errno.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/mutex.h>
15 #include <linux/math64.h>
16 #include <linux/sizes.h>
17 #include <linux/slab.h>
18 
19 #include <linux/mtd/mtd.h>
20 #include <linux/of_platform.h>
21 #include <linux/sched/task_stack.h>
22 #include <linux/spi/flash.h>
23 #include <linux/mtd/spi-nor.h>
24 #include <linux/miscdevice.h>
25 
26 #include <uapi/linux/spi_nor_misc.h>
27 
28 #include "core.h"
29 
30 struct spi_nor_misc_dev {
31 	struct miscdevice dev;
32 	struct spi_nor *nor;
33 };
34 
35 /* Define max times to check status register before we give up. */
36 
37 /*
38  * For everything but full-chip erase; probably could be much smaller, but kept
39  * around for safety for now
40  */
41 #define DEFAULT_READY_WAIT_JIFFIES		(40UL * HZ)
42 
43 /*
44  * For full-chip erase, calibrated to a 2MB flash (M25P16); should be scaled up
45  * for larger flash
46  */
47 #define CHIP_ERASE_2MB_READY_WAIT_JIFFIES	(40UL * HZ)
48 
49 #define SPI_NOR_MAX_ADDR_WIDTH	4
50 
51 /**
52  * spi_nor_spimem_bounce() - check if a bounce buffer is needed for the data
53  *                           transfer
54  * @nor:        pointer to 'struct spi_nor'
55  * @op:         pointer to 'struct spi_mem_op' template for transfer
56  *
57  * If we have to use the bounce buffer, the data field in @op will be updated.
58  *
59  * Return: true if the bounce buffer is needed, false if not
60  */
spi_nor_spimem_bounce(struct spi_nor * nor,struct spi_mem_op * op)61 static bool spi_nor_spimem_bounce(struct spi_nor *nor, struct spi_mem_op *op)
62 {
63 	/* op->data.buf.in occupies the same memory as op->data.buf.out */
64 	if (object_is_on_stack(op->data.buf.in) ||
65 	    !virt_addr_valid(op->data.buf.in)) {
66 		if (op->data.nbytes > nor->bouncebuf_size)
67 			op->data.nbytes = nor->bouncebuf_size;
68 		op->data.buf.in = nor->bouncebuf;
69 		return true;
70 	}
71 
72 	return false;
73 }
74 
75 /**
76  * spi_nor_spimem_exec_op() - execute a memory operation
77  * @nor:        pointer to 'struct spi_nor'
78  * @op:         pointer to 'struct spi_mem_op' template for transfer
79  *
80  * Return: 0 on success, -error otherwise.
81  */
spi_nor_spimem_exec_op(struct spi_nor * nor,struct spi_mem_op * op)82 static int spi_nor_spimem_exec_op(struct spi_nor *nor, struct spi_mem_op *op)
83 {
84 	int error;
85 
86 	error = spi_mem_adjust_op_size(nor->spimem, op);
87 	if (error)
88 		return error;
89 
90 	return spi_mem_exec_op(nor->spimem, op);
91 }
92 
93 /**
94  * spi_nor_spimem_read_data() - read data from flash's memory region via
95  *                              spi-mem
96  * @nor:        pointer to 'struct spi_nor'
97  * @from:       offset to read from
98  * @len:        number of bytes to read
99  * @buf:        pointer to dst buffer
100  *
101  * Return: number of bytes read successfully, -errno otherwise
102  */
spi_nor_spimem_read_data(struct spi_nor * nor,loff_t from,size_t len,u8 * buf)103 static ssize_t spi_nor_spimem_read_data(struct spi_nor *nor, loff_t from,
104 					size_t len, u8 *buf)
105 {
106 	struct spi_mem_op op =
107 		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
108 			   SPI_MEM_OP_ADDR(nor->addr_width, from, 1),
109 			   SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
110 			   SPI_MEM_OP_DATA_IN(len, buf, 1));
111 	bool usebouncebuf;
112 	ssize_t nbytes;
113 	int error;
114 
115 	/* get transfer protocols. */
116 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
117 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
118 	op.dummy.buswidth = op.addr.buswidth;
119 	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
120 
121 	/* convert the dummy cycles to the number of bytes */
122 	op.dummy.nbytes = (nor->read_dummy * op.dummy.buswidth) / 8;
123 
124 	usebouncebuf = spi_nor_spimem_bounce(nor, &op);
125 
126 	if (nor->dirmap.rdesc) {
127 		nbytes = spi_mem_dirmap_read(nor->dirmap.rdesc, op.addr.val,
128 					     op.data.nbytes, op.data.buf.in);
129 	} else {
130 		error = spi_nor_spimem_exec_op(nor, &op);
131 		if (error)
132 			return error;
133 		nbytes = op.data.nbytes;
134 	}
135 
136 	if (usebouncebuf && nbytes > 0)
137 		memcpy(buf, op.data.buf.in, nbytes);
138 
139 	return nbytes;
140 }
141 
142 /**
143  * spi_nor_read_data() - read data from flash memory
144  * @nor:        pointer to 'struct spi_nor'
145  * @from:       offset to read from
146  * @len:        number of bytes to read
147  * @buf:        pointer to dst buffer
148  *
149  * Return: number of bytes read successfully, -errno otherwise
150  */
spi_nor_read_data(struct spi_nor * nor,loff_t from,size_t len,u8 * buf)151 ssize_t spi_nor_read_data(struct spi_nor *nor, loff_t from, size_t len, u8 *buf)
152 {
153 	if (nor->spimem)
154 		return spi_nor_spimem_read_data(nor, from, len, buf);
155 
156 	return nor->controller_ops->read(nor, from, len, buf);
157 }
158 
159 /**
160  * spi_nor_spimem_write_data() - write data to flash memory via
161  *                               spi-mem
162  * @nor:        pointer to 'struct spi_nor'
163  * @to:         offset to write to
164  * @len:        number of bytes to write
165  * @buf:        pointer to src buffer
166  *
167  * Return: number of bytes written successfully, -errno otherwise
168  */
spi_nor_spimem_write_data(struct spi_nor * nor,loff_t to,size_t len,const u8 * buf)169 static ssize_t spi_nor_spimem_write_data(struct spi_nor *nor, loff_t to,
170 					 size_t len, const u8 *buf)
171 {
172 	struct spi_mem_op op =
173 		SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
174 			   SPI_MEM_OP_ADDR(nor->addr_width, to, 1),
175 			   SPI_MEM_OP_NO_DUMMY,
176 			   SPI_MEM_OP_DATA_OUT(len, buf, 1));
177 	ssize_t nbytes;
178 	int error;
179 
180 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
181 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
182 	op.data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
183 
184 	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
185 		op.addr.nbytes = 0;
186 
187 	if (spi_nor_spimem_bounce(nor, &op))
188 		memcpy(nor->bouncebuf, buf, op.data.nbytes);
189 
190 	if (nor->dirmap.wdesc) {
191 		nbytes = spi_mem_dirmap_write(nor->dirmap.wdesc, op.addr.val,
192 					      op.data.nbytes, op.data.buf.out);
193 	} else {
194 		error = spi_nor_spimem_exec_op(nor, &op);
195 		if (error)
196 			return error;
197 		nbytes = op.data.nbytes;
198 	}
199 
200 	return nbytes;
201 }
202 
203 /**
204  * spi_nor_write_data() - write data to flash memory
205  * @nor:        pointer to 'struct spi_nor'
206  * @to:         offset to write to
207  * @len:        number of bytes to write
208  * @buf:        pointer to src buffer
209  *
210  * Return: number of bytes written successfully, -errno otherwise
211  */
spi_nor_write_data(struct spi_nor * nor,loff_t to,size_t len,const u8 * buf)212 ssize_t spi_nor_write_data(struct spi_nor *nor, loff_t to, size_t len,
213 			   const u8 *buf)
214 {
215 	if (nor->spimem)
216 		return spi_nor_spimem_write_data(nor, to, len, buf);
217 
218 	return nor->controller_ops->write(nor, to, len, buf);
219 }
220 
221 /**
222  * spi_nor_write_enable() - Set write enable latch with Write Enable command.
223  * @nor:	pointer to 'struct spi_nor'.
224  *
225  * Return: 0 on success, -errno otherwise.
226  */
spi_nor_write_enable(struct spi_nor * nor)227 int spi_nor_write_enable(struct spi_nor *nor)
228 {
229 	int ret;
230 
231 	if (nor->spimem) {
232 		struct spi_mem_op op =
233 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREN, 1),
234 				   SPI_MEM_OP_NO_ADDR,
235 				   SPI_MEM_OP_NO_DUMMY,
236 				   SPI_MEM_OP_NO_DATA);
237 
238 		ret = spi_mem_exec_op(nor->spimem, &op);
239 	} else {
240 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREN,
241 						     NULL, 0);
242 	}
243 
244 	if (ret)
245 		dev_dbg(nor->dev, "error %d on Write Enable\n", ret);
246 
247 	return ret;
248 }
249 
250 /**
251  * spi_nor_write_disable() - Send Write Disable instruction to the chip.
252  * @nor:	pointer to 'struct spi_nor'.
253  *
254  * Return: 0 on success, -errno otherwise.
255  */
spi_nor_write_disable(struct spi_nor * nor)256 int spi_nor_write_disable(struct spi_nor *nor)
257 {
258 	int ret;
259 
260 	if (nor->spimem) {
261 		struct spi_mem_op op =
262 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRDI, 1),
263 				   SPI_MEM_OP_NO_ADDR,
264 				   SPI_MEM_OP_NO_DUMMY,
265 				   SPI_MEM_OP_NO_DATA);
266 
267 		ret = spi_mem_exec_op(nor->spimem, &op);
268 	} else {
269 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRDI,
270 						     NULL, 0);
271 	}
272 
273 	if (ret)
274 		dev_dbg(nor->dev, "error %d on Write Disable\n", ret);
275 
276 	return ret;
277 }
278 
279 /**
280  * spi_nor_read_sr() - Read the Status Register.
281  * @nor:	pointer to 'struct spi_nor'.
282  * @sr:		pointer to a DMA-able buffer where the value of the
283  *              Status Register will be written.
284  *
285  * Return: 0 on success, -errno otherwise.
286  */
spi_nor_read_sr(struct spi_nor * nor,u8 * sr)287 static int spi_nor_read_sr(struct spi_nor *nor, u8 *sr)
288 {
289 	int ret;
290 
291 	if (nor->spimem) {
292 		struct spi_mem_op op =
293 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR, 1),
294 				   SPI_MEM_OP_NO_ADDR,
295 				   SPI_MEM_OP_NO_DUMMY,
296 				   SPI_MEM_OP_DATA_IN(1, sr, 1));
297 
298 		ret = spi_mem_exec_op(nor->spimem, &op);
299 	} else {
300 		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR,
301 						    sr, 1);
302 	}
303 
304 	if (ret)
305 		dev_dbg(nor->dev, "error %d reading SR\n", ret);
306 
307 	return ret;
308 }
309 
310 /**
311  * spi_nor_read_fsr() - Read the Flag Status Register.
312  * @nor:	pointer to 'struct spi_nor'
313  * @fsr:	pointer to a DMA-able buffer where the value of the
314  *              Flag Status Register will be written.
315  *
316  * Return: 0 on success, -errno otherwise.
317  */
spi_nor_read_fsr(struct spi_nor * nor,u8 * fsr)318 static int spi_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
319 {
320 	int ret;
321 
322 	if (nor->spimem) {
323 		struct spi_mem_op op =
324 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 1),
325 				   SPI_MEM_OP_NO_ADDR,
326 				   SPI_MEM_OP_NO_DUMMY,
327 				   SPI_MEM_OP_DATA_IN(1, fsr, 1));
328 
329 		ret = spi_mem_exec_op(nor->spimem, &op);
330 	} else {
331 		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDFSR,
332 						    fsr, 1);
333 	}
334 
335 	if (ret)
336 		dev_dbg(nor->dev, "error %d reading FSR\n", ret);
337 
338 	return ret;
339 }
340 
341 /**
342  * spi_nor_read_cr() - Read the Configuration Register using the
343  * SPINOR_OP_RDCR (35h) command.
344  * @nor:	pointer to 'struct spi_nor'
345  * @cr:		pointer to a DMA-able buffer where the value of the
346  *              Configuration Register will be written.
347  *
348  * Return: 0 on success, -errno otherwise.
349  */
spi_nor_read_cr(struct spi_nor * nor,u8 * cr)350 static int spi_nor_read_cr(struct spi_nor *nor, u8 *cr)
351 {
352 	int ret;
353 
354 	if (nor->spimem) {
355 		struct spi_mem_op op =
356 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDCR, 1),
357 				   SPI_MEM_OP_NO_ADDR,
358 				   SPI_MEM_OP_NO_DUMMY,
359 				   SPI_MEM_OP_DATA_IN(1, cr, 1));
360 
361 		ret = spi_mem_exec_op(nor->spimem, &op);
362 	} else {
363 		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDCR, cr, 1);
364 	}
365 
366 	if (ret)
367 		dev_dbg(nor->dev, "error %d reading CR\n", ret);
368 
369 	return ret;
370 }
371 
372 /**
373  * spi_nor_set_4byte_addr_mode() - Enter/Exit 4-byte address mode.
374  * @nor:	pointer to 'struct spi_nor'.
375  * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
376  *		address mode.
377  *
378  * Return: 0 on success, -errno otherwise.
379  */
spi_nor_set_4byte_addr_mode(struct spi_nor * nor,bool enable)380 int spi_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
381 {
382 	int ret;
383 
384 	if (nor->spimem) {
385 		struct spi_mem_op op =
386 			SPI_MEM_OP(SPI_MEM_OP_CMD(enable ?
387 						  SPINOR_OP_EN4B :
388 						  SPINOR_OP_EX4B,
389 						  1),
390 				  SPI_MEM_OP_NO_ADDR,
391 				  SPI_MEM_OP_NO_DUMMY,
392 				  SPI_MEM_OP_NO_DATA);
393 
394 		ret = spi_mem_exec_op(nor->spimem, &op);
395 	} else {
396 		ret = nor->controller_ops->write_reg(nor,
397 						     enable ? SPINOR_OP_EN4B :
398 							      SPINOR_OP_EX4B,
399 						     NULL, 0);
400 	}
401 
402 	if (ret)
403 		dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
404 
405 	return ret;
406 }
407 
408 /**
409  * spansion_set_4byte_addr_mode() - Set 4-byte address mode for Spansion
410  * flashes.
411  * @nor:	pointer to 'struct spi_nor'.
412  * @enable:	true to enter the 4-byte address mode, false to exit the 4-byte
413  *		address mode.
414  *
415  * Return: 0 on success, -errno otherwise.
416  */
spansion_set_4byte_addr_mode(struct spi_nor * nor,bool enable)417 static int spansion_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
418 {
419 	int ret;
420 
421 	nor->bouncebuf[0] = enable << 7;
422 
423 	if (nor->spimem) {
424 		struct spi_mem_op op =
425 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_BRWR, 1),
426 				   SPI_MEM_OP_NO_ADDR,
427 				   SPI_MEM_OP_NO_DUMMY,
428 				   SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));
429 
430 		ret = spi_mem_exec_op(nor->spimem, &op);
431 	} else {
432 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_BRWR,
433 						     nor->bouncebuf, 1);
434 	}
435 
436 	if (ret)
437 		dev_dbg(nor->dev, "error %d setting 4-byte mode\n", ret);
438 
439 	return ret;
440 }
441 
442 /**
443  * spi_nor_write_ear() - Write Extended Address Register.
444  * @nor:	pointer to 'struct spi_nor'.
445  * @ear:	value to write to the Extended Address Register.
446  *
447  * Return: 0 on success, -errno otherwise.
448  */
spi_nor_write_ear(struct spi_nor * nor,u8 ear)449 int spi_nor_write_ear(struct spi_nor *nor, u8 ear)
450 {
451 	int ret;
452 
453 	nor->bouncebuf[0] = ear;
454 
455 	if (nor->spimem) {
456 		struct spi_mem_op op =
457 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WREAR, 1),
458 				   SPI_MEM_OP_NO_ADDR,
459 				   SPI_MEM_OP_NO_DUMMY,
460 				   SPI_MEM_OP_DATA_OUT(1, nor->bouncebuf, 1));
461 
462 		ret = spi_mem_exec_op(nor->spimem, &op);
463 	} else {
464 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WREAR,
465 						     nor->bouncebuf, 1);
466 	}
467 
468 	if (ret)
469 		dev_dbg(nor->dev, "error %d writing EAR\n", ret);
470 
471 	return ret;
472 }
473 
474 /**
475  * spi_nor_xread_sr() - Read the Status Register on S3AN flashes.
476  * @nor:	pointer to 'struct spi_nor'.
477  * @sr:		pointer to a DMA-able buffer where the value of the
478  *              Status Register will be written.
479  *
480  * Return: 0 on success, -errno otherwise.
481  */
spi_nor_xread_sr(struct spi_nor * nor,u8 * sr)482 int spi_nor_xread_sr(struct spi_nor *nor, u8 *sr)
483 {
484 	int ret;
485 
486 	if (nor->spimem) {
487 		struct spi_mem_op op =
488 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_XRDSR, 1),
489 				   SPI_MEM_OP_NO_ADDR,
490 				   SPI_MEM_OP_NO_DUMMY,
491 				   SPI_MEM_OP_DATA_IN(1, sr, 1));
492 
493 		ret = spi_mem_exec_op(nor->spimem, &op);
494 	} else {
495 		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_XRDSR,
496 						    sr, 1);
497 	}
498 
499 	if (ret)
500 		dev_dbg(nor->dev, "error %d reading XRDSR\n", ret);
501 
502 	return ret;
503 }
504 
505 /**
506  * spi_nor_xsr_ready() - Query the Status Register of the S3AN flash to see if
507  * the flash is ready for new commands.
508  * @nor:	pointer to 'struct spi_nor'.
509  *
510  * Return: 1 if ready, 0 if not ready, -errno on errors.
511  */
spi_nor_xsr_ready(struct spi_nor * nor)512 static int spi_nor_xsr_ready(struct spi_nor *nor)
513 {
514 	int ret;
515 
516 	ret = spi_nor_xread_sr(nor, nor->bouncebuf);
517 	if (ret)
518 		return ret;
519 
520 	return !!(nor->bouncebuf[0] & XSR_RDY);
521 }
522 
523 /**
524  * spi_nor_clear_sr() - Clear the Status Register.
525  * @nor:	pointer to 'struct spi_nor'.
526  */
spi_nor_clear_sr(struct spi_nor * nor)527 static void spi_nor_clear_sr(struct spi_nor *nor)
528 {
529 	int ret;
530 
531 	if (nor->spimem) {
532 		struct spi_mem_op op =
533 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLSR, 1),
534 				   SPI_MEM_OP_NO_ADDR,
535 				   SPI_MEM_OP_NO_DUMMY,
536 				   SPI_MEM_OP_NO_DATA);
537 
538 		ret = spi_mem_exec_op(nor->spimem, &op);
539 	} else {
540 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLSR,
541 						     NULL, 0);
542 	}
543 
544 	if (ret)
545 		dev_dbg(nor->dev, "error %d clearing SR\n", ret);
546 }
547 
548 /**
549  * spi_nor_sr_ready() - Query the Status Register to see if the flash is ready
550  * for new commands.
551  * @nor:	pointer to 'struct spi_nor'.
552  *
553  * Return: 1 if ready, 0 if not ready, -errno on errors.
554  */
spi_nor_sr_ready(struct spi_nor * nor)555 static int spi_nor_sr_ready(struct spi_nor *nor)
556 {
557 	int ret = spi_nor_read_sr(nor, nor->bouncebuf);
558 
559 	if (ret)
560 		return ret;
561 
562 	if (nor->flags & SNOR_F_USE_CLSR &&
563 	    nor->bouncebuf[0] & (SR_E_ERR | SR_P_ERR)) {
564 		if (nor->bouncebuf[0] & SR_E_ERR)
565 			dev_err(nor->dev, "Erase Error occurred\n");
566 		else
567 			dev_err(nor->dev, "Programming Error occurred\n");
568 
569 		spi_nor_clear_sr(nor);
570 
571 		/*
572 		 * WEL bit remains set to one when an erase or page program
573 		 * error occurs. Issue a Write Disable command to protect
574 		 * against inadvertent writes that can possibly corrupt the
575 		 * contents of the memory.
576 		 */
577 		ret = spi_nor_write_disable(nor);
578 		if (ret)
579 			return ret;
580 
581 		return -EIO;
582 	}
583 
584 	return !(nor->bouncebuf[0] & SR_WIP);
585 }
586 
587 /**
588  * spi_nor_clear_fsr() - Clear the Flag Status Register.
589  * @nor:	pointer to 'struct spi_nor'.
590  */
spi_nor_clear_fsr(struct spi_nor * nor)591 static void spi_nor_clear_fsr(struct spi_nor *nor)
592 {
593 	int ret;
594 
595 	if (nor->spimem) {
596 		struct spi_mem_op op =
597 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 1),
598 				   SPI_MEM_OP_NO_ADDR,
599 				   SPI_MEM_OP_NO_DUMMY,
600 				   SPI_MEM_OP_NO_DATA);
601 
602 		ret = spi_mem_exec_op(nor->spimem, &op);
603 	} else {
604 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CLFSR,
605 						     NULL, 0);
606 	}
607 
608 	if (ret)
609 		dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
610 }
611 
612 /**
613  * spi_nor_fsr_ready() - Query the Flag Status Register to see if the flash is
614  * ready for new commands.
615  * @nor:	pointer to 'struct spi_nor'.
616  *
617  * Return: 1 if ready, 0 if not ready, -errno on errors.
618  */
spi_nor_fsr_ready(struct spi_nor * nor)619 static int spi_nor_fsr_ready(struct spi_nor *nor)
620 {
621 	int ret = spi_nor_read_fsr(nor, nor->bouncebuf);
622 
623 	if (ret)
624 		return ret;
625 
626 	if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
627 		if (nor->bouncebuf[0] & FSR_E_ERR)
628 			dev_err(nor->dev, "Erase operation failed.\n");
629 		else
630 			dev_err(nor->dev, "Program operation failed.\n");
631 
632 		if (nor->bouncebuf[0] & FSR_PT_ERR)
633 			dev_err(nor->dev,
634 			"Attempted to modify a protected sector.\n");
635 
636 		spi_nor_clear_fsr(nor);
637 
638 		/*
639 		 * WEL bit remains set to one when an erase or page program
640 		 * error occurs. Issue a Write Disable command to protect
641 		 * against inadvertent writes that can possibly corrupt the
642 		 * contents of the memory.
643 		 */
644 		ret = spi_nor_write_disable(nor);
645 		if (ret)
646 			return ret;
647 
648 		return -EIO;
649 	}
650 
651 	return !!(nor->bouncebuf[0] & FSR_READY);
652 }
653 
654 /**
655  * spi_nor_ready() - Query the flash to see if it is ready for new commands.
656  * @nor:	pointer to 'struct spi_nor'.
657  *
658  * Return: 1 if ready, 0 if not ready, -errno on errors.
659  */
spi_nor_ready(struct spi_nor * nor)660 static int spi_nor_ready(struct spi_nor *nor)
661 {
662 	int sr, fsr;
663 
664 	if (nor->flags & SNOR_F_READY_XSR_RDY)
665 		sr = spi_nor_xsr_ready(nor);
666 	else
667 		sr = spi_nor_sr_ready(nor);
668 	if (sr < 0)
669 		return sr;
670 	fsr = nor->flags & SNOR_F_USE_FSR ? spi_nor_fsr_ready(nor) : 1;
671 	if (fsr < 0)
672 		return fsr;
673 	return sr && fsr;
674 }
675 
676 /**
677  * spi_nor_wait_till_ready_with_timeout() - Service routine to read the
678  * Status Register until ready, or timeout occurs.
679  * @nor:		pointer to "struct spi_nor".
680  * @timeout_jiffies:	jiffies to wait until timeout.
681  *
682  * Return: 0 on success, -errno otherwise.
683  */
spi_nor_wait_till_ready_with_timeout(struct spi_nor * nor,unsigned long timeout_jiffies)684 static int spi_nor_wait_till_ready_with_timeout(struct spi_nor *nor,
685 						unsigned long timeout_jiffies)
686 {
687 	unsigned long deadline;
688 	int timeout = 0, ret;
689 
690 	deadline = jiffies + timeout_jiffies;
691 
692 	while (!timeout) {
693 		if (time_after_eq(jiffies, deadline))
694 			timeout = 1;
695 
696 		ret = spi_nor_ready(nor);
697 		if (ret < 0)
698 			return ret;
699 		if (ret)
700 			return 0;
701 
702 		cond_resched();
703 	}
704 
705 	dev_dbg(nor->dev, "flash operation timed out\n");
706 
707 	return -ETIMEDOUT;
708 }
709 
710 /**
711  * spi_nor_wait_till_ready() - Wait for a predefined amount of time for the
712  * flash to be ready, or timeout occurs.
713  * @nor:	pointer to "struct spi_nor".
714  *
715  * Return: 0 on success, -errno otherwise.
716  */
spi_nor_wait_till_ready(struct spi_nor * nor)717 int spi_nor_wait_till_ready(struct spi_nor *nor)
718 {
719 	return spi_nor_wait_till_ready_with_timeout(nor,
720 						    DEFAULT_READY_WAIT_JIFFIES);
721 }
722 
723 /**
724  * spi_nor_wait_till_ready_with_timeout_and_msleep() - Service routine to read the
725  * Status Register until ready with msleep, or timeout occurs.
726  * @nor:		pointer to "struct spi_nor".
727  * @timeout_jiffies:	jiffies to wait until timeout.
728  *
729  * Return: 0 on success, -errno otherwise.
730  */
spi_nor_wait_till_ready_with_timeout_and_msleep(struct spi_nor * nor,unsigned long timeout_jiffies)731 static int spi_nor_wait_till_ready_with_timeout_and_msleep(struct spi_nor *nor,
732 							   unsigned long timeout_jiffies)
733 {
734 	unsigned long deadline;
735 	int timeout = 0, ret;
736 
737 	deadline = jiffies + timeout_jiffies;
738 
739 	while (!timeout) {
740 		if (time_after_eq(jiffies, deadline))
741 			timeout = 1;
742 
743 		ret = spi_nor_ready(nor);
744 		if (ret < 0)
745 			return ret;
746 		if (ret)
747 			return 0;
748 
749 		msleep(10);
750 	}
751 
752 	dev_dbg(nor->dev, "flash operation timed out\n");
753 
754 	return -ETIMEDOUT;
755 }
756 
757 /**
758  * spi_nor_wait_till_ready_with_msleep() - Wait for a predefined amount of time for the
759  * flash to be ready with msleep, or timeout occurs.
760  * @nor:	pointer to "struct spi_nor".
761  *
762  * Return: 0 on success, -errno otherwise.
763  */
spi_nor_wait_till_ready_with_msleep(struct spi_nor * nor)764 int spi_nor_wait_till_ready_with_msleep(struct spi_nor *nor)
765 {
766 	return spi_nor_wait_till_ready_with_timeout_and_msleep(nor,
767 							       DEFAULT_READY_WAIT_JIFFIES);
768 }
769 
770 /**
771  * spi_nor_write_sr() - Write the Status Register.
772  * @nor:	pointer to 'struct spi_nor'.
773  * @sr:		pointer to DMA-able buffer to write to the Status Register.
774  * @len:	number of bytes to write to the Status Register.
775  *
776  * Return: 0 on success, -errno otherwise.
777  */
spi_nor_write_sr(struct spi_nor * nor,const u8 * sr,size_t len)778 static int spi_nor_write_sr(struct spi_nor *nor, const u8 *sr, size_t len)
779 {
780 	int ret;
781 
782 	ret = spi_nor_write_enable(nor);
783 	if (ret)
784 		return ret;
785 
786 	if (nor->spimem) {
787 		struct spi_mem_op op =
788 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR, 1),
789 				   SPI_MEM_OP_NO_ADDR,
790 				   SPI_MEM_OP_NO_DUMMY,
791 				   SPI_MEM_OP_DATA_OUT(len, sr, 1));
792 
793 		ret = spi_mem_exec_op(nor->spimem, &op);
794 	} else {
795 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR,
796 						     sr, len);
797 	}
798 
799 	if (ret) {
800 		dev_dbg(nor->dev, "error %d writing SR\n", ret);
801 		return ret;
802 	}
803 
804 	return spi_nor_wait_till_ready(nor);
805 }
806 
807 /**
808  * spi_nor_write_sr1_and_check() - Write one byte to the Status Register 1 and
809  * ensure that the byte written match the received value.
810  * @nor:	pointer to a 'struct spi_nor'.
811  * @sr1:	byte value to be written to the Status Register.
812  *
813  * Return: 0 on success, -errno otherwise.
814  */
spi_nor_write_sr1_and_check(struct spi_nor * nor,u8 sr1)815 static int spi_nor_write_sr1_and_check(struct spi_nor *nor, u8 sr1)
816 {
817 	int ret;
818 
819 	nor->bouncebuf[0] = sr1;
820 
821 	ret = spi_nor_write_sr(nor, nor->bouncebuf, 1);
822 	if (ret)
823 		return ret;
824 
825 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
826 	if (ret)
827 		return ret;
828 
829 	if (nor->bouncebuf[0] != sr1) {
830 		dev_dbg(nor->dev, "SR1: read back test failed\n");
831 		return -EIO;
832 	}
833 
834 	return 0;
835 }
836 
837 /**
838  * spi_nor_write_16bit_sr_and_check() - Write the Status Register 1 and the
839  * Status Register 2 in one shot. Ensure that the byte written in the Status
840  * Register 1 match the received value, and that the 16-bit Write did not
841  * affect what was already in the Status Register 2.
842  * @nor:	pointer to a 'struct spi_nor'.
843  * @sr1:	byte value to be written to the Status Register 1.
844  *
845  * Return: 0 on success, -errno otherwise.
846  */
spi_nor_write_16bit_sr_and_check(struct spi_nor * nor,u8 sr1)847 static int spi_nor_write_16bit_sr_and_check(struct spi_nor *nor, u8 sr1)
848 {
849 	int ret;
850 	u8 *sr_cr = nor->bouncebuf;
851 	u8 cr_written;
852 
853 	/* Make sure we don't overwrite the contents of Status Register 2. */
854 	if (!(nor->flags & SNOR_F_NO_READ_CR)) {
855 		ret = spi_nor_read_cr(nor, &sr_cr[1]);
856 		if (ret)
857 			return ret;
858 	} else if (nor->params->quad_enable) {
859 		/*
860 		 * If the Status Register 2 Read command (35h) is not
861 		 * supported, we should at least be sure we don't
862 		 * change the value of the SR2 Quad Enable bit.
863 		 *
864 		 * We can safely assume that when the Quad Enable method is
865 		 * set, the value of the QE bit is one, as a consequence of the
866 		 * nor->params->quad_enable() call.
867 		 *
868 		 * We can safely assume that the Quad Enable bit is present in
869 		 * the Status Register 2 at BIT(1). According to the JESD216
870 		 * revB standard, BFPT DWORDS[15], bits 22:20, the 16-bit
871 		 * Write Status (01h) command is available just for the cases
872 		 * in which the QE bit is described in SR2 at BIT(1).
873 		 */
874 		sr_cr[1] = SR2_QUAD_EN_BIT1;
875 	} else {
876 		sr_cr[1] = 0;
877 	}
878 
879 	sr_cr[0] = sr1;
880 
881 	ret = spi_nor_write_sr(nor, sr_cr, 2);
882 	if (ret)
883 		return ret;
884 
885 	ret = spi_nor_read_sr(nor, sr_cr);
886 	if (ret)
887 		return ret;
888 
889 	if (sr1 != sr_cr[0]) {
890 		dev_dbg(nor->dev, "SR: Read back test failed\n");
891 		return -EIO;
892 	}
893 
894 	if (nor->flags & SNOR_F_NO_READ_CR)
895 		return 0;
896 
897 	cr_written = sr_cr[1];
898 
899 	ret = spi_nor_read_cr(nor, &sr_cr[1]);
900 	if (ret)
901 		return ret;
902 
903 	if (cr_written != sr_cr[1]) {
904 		dev_dbg(nor->dev, "CR: read back test failed\n");
905 		return -EIO;
906 	}
907 
908 	return 0;
909 }
910 
911 /**
912  * spi_nor_write_cr() - Write the Configure Register.
913  * @nor:	pointer to 'struct spi_nor'.
914  * @sr:		pointer to DMA-able buffer to write to the Status Register.
915  * @len:	number of bytes to write to the Status Register.
916  *
917  * Return: 0 on success, -errno otherwise.
918  */
spi_nor_write_8bit_cr(struct spi_nor * nor,u8 cr)919 static int spi_nor_write_8bit_cr(struct spi_nor *nor, u8 cr)
920 {
921 	int ret;
922 	u8 *sr_cr = nor->bouncebuf;
923 
924 	ret = spi_nor_write_enable(nor);
925 	if (ret)
926 		return ret;
927 
928 	sr_cr[0] = cr;
929 
930 	if (nor->spimem) {
931 		struct spi_mem_op op =
932 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRCR, 1),
933 				   SPI_MEM_OP_NO_ADDR,
934 				   SPI_MEM_OP_NO_DUMMY,
935 				   SPI_MEM_OP_DATA_OUT(1, sr_cr, 1));
936 
937 		ret = spi_mem_exec_op(nor->spimem, &op);
938 	} else {
939 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRCR, sr_cr, 1);
940 	}
941 
942 	if (ret) {
943 		dev_dbg(nor->dev, "error %d writing SR\n", ret);
944 		return ret;
945 	}
946 
947 	return spi_nor_wait_till_ready(nor);
948 }
949 
950 /**
951  * spi_nor_write_16bit_cr_and_check() - Write the Status Register 1 and the
952  * Configuration Register in one shot. Ensure that the byte written in the
953  * Configuration Register match the received value, and that the 16-bit Write
954  * did not affect what was already in the Status Register 1.
955  * @nor:	pointer to a 'struct spi_nor'.
956  * @cr:		byte value to be written to the Configuration Register.
957  *
958  * Return: 0 on success, -errno otherwise.
959  */
spi_nor_write_16bit_cr_and_check(struct spi_nor * nor,u8 cr)960 static int spi_nor_write_16bit_cr_and_check(struct spi_nor *nor, u8 cr)
961 {
962 	int ret;
963 	u8 *sr_cr = nor->bouncebuf;
964 	u8 sr_written;
965 
966 	/* Keep the current value of the Status Register 1. */
967 	ret = spi_nor_read_sr(nor, sr_cr);
968 	if (ret)
969 		return ret;
970 
971 	sr_cr[1] = cr;
972 
973 	ret = spi_nor_write_sr(nor, sr_cr, 2);
974 	if (ret)
975 		return ret;
976 
977 	sr_written = sr_cr[0];
978 
979 	ret = spi_nor_read_sr(nor, sr_cr);
980 	if (ret)
981 		return ret;
982 
983 	if (sr_written != sr_cr[0]) {
984 		dev_dbg(nor->dev, "SR: Read back test failed\n");
985 		return -EIO;
986 	}
987 
988 	if (nor->flags & SNOR_F_NO_READ_CR)
989 		return 0;
990 
991 	ret = spi_nor_read_cr(nor, &sr_cr[1]);
992 	if (ret)
993 		return ret;
994 
995 	if (cr != sr_cr[1]) {
996 		dev_dbg(nor->dev, "CR: read back test failed\n");
997 		return -EIO;
998 	}
999 
1000 	return 0;
1001 }
1002 
1003 /**
1004  * spi_nor_write_sr_and_check() - Write the Status Register 1 and ensure that
1005  * the byte written match the received value without affecting other bits in the
1006  * Status Register 1 and 2.
1007  * @nor:	pointer to a 'struct spi_nor'.
1008  * @sr1:	byte value to be written to the Status Register.
1009  *
1010  * Return: 0 on success, -errno otherwise.
1011  */
spi_nor_write_sr_and_check(struct spi_nor * nor,u8 sr1)1012 int spi_nor_write_sr_and_check(struct spi_nor *nor, u8 sr1)
1013 {
1014 	if (nor->flags & SNOR_F_HAS_16BIT_SR)
1015 		return spi_nor_write_16bit_sr_and_check(nor, sr1);
1016 
1017 	return spi_nor_write_sr1_and_check(nor, sr1);
1018 }
1019 
1020 /**
1021  * spi_nor_write_sr2() - Write the Status Register 2 using the
1022  * SPINOR_OP_WRSR2 (3eh) command.
1023  * @nor:	pointer to 'struct spi_nor'.
1024  * @sr2:	pointer to DMA-able buffer to write to the Status Register 2.
1025  *
1026  * Return: 0 on success, -errno otherwise.
1027  */
spi_nor_write_sr2(struct spi_nor * nor,const u8 * sr2)1028 static int spi_nor_write_sr2(struct spi_nor *nor, const u8 *sr2)
1029 {
1030 	int ret;
1031 
1032 	ret = spi_nor_write_enable(nor);
1033 	if (ret)
1034 		return ret;
1035 
1036 	if (nor->spimem) {
1037 		struct spi_mem_op op =
1038 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_WRSR2, 1),
1039 				   SPI_MEM_OP_NO_ADDR,
1040 				   SPI_MEM_OP_NO_DUMMY,
1041 				   SPI_MEM_OP_DATA_OUT(1, sr2, 1));
1042 
1043 		ret = spi_mem_exec_op(nor->spimem, &op);
1044 	} else {
1045 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_WRSR2,
1046 						     sr2, 1);
1047 	}
1048 
1049 	if (ret) {
1050 		dev_dbg(nor->dev, "error %d writing SR2\n", ret);
1051 		return ret;
1052 	}
1053 
1054 	return spi_nor_wait_till_ready(nor);
1055 }
1056 
1057 /**
1058  * spi_nor_read_sr2() - Read the Status Register 2 using the
1059  * SPINOR_OP_RDSR2 (3fh) command.
1060  * @nor:	pointer to 'struct spi_nor'.
1061  * @sr2:	pointer to DMA-able buffer where the value of the
1062  *		Status Register 2 will be written.
1063  *
1064  * Return: 0 on success, -errno otherwise.
1065  */
spi_nor_read_sr2(struct spi_nor * nor,u8 * sr2)1066 static int spi_nor_read_sr2(struct spi_nor *nor, u8 *sr2)
1067 {
1068 	int ret;
1069 
1070 	if (nor->spimem) {
1071 		struct spi_mem_op op =
1072 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDSR2, 1),
1073 				   SPI_MEM_OP_NO_ADDR,
1074 				   SPI_MEM_OP_NO_DUMMY,
1075 				   SPI_MEM_OP_DATA_IN(1, sr2, 1));
1076 
1077 		ret = spi_mem_exec_op(nor->spimem, &op);
1078 	} else {
1079 		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDSR2,
1080 						    sr2, 1);
1081 	}
1082 
1083 	if (ret)
1084 		dev_dbg(nor->dev, "error %d reading SR2\n", ret);
1085 
1086 	return ret;
1087 }
1088 
1089 /**
1090  * spi_nor_erase_chip() - Erase the entire flash memory.
1091  * @nor:	pointer to 'struct spi_nor'.
1092  *
1093  * Return: 0 on success, -errno otherwise.
1094  */
spi_nor_erase_chip(struct spi_nor * nor)1095 static int spi_nor_erase_chip(struct spi_nor *nor)
1096 {
1097 	int ret;
1098 
1099 	dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd.size >> 10));
1100 
1101 	if (nor->spimem) {
1102 		struct spi_mem_op op =
1103 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CHIP_ERASE, 1),
1104 				   SPI_MEM_OP_NO_ADDR,
1105 				   SPI_MEM_OP_NO_DUMMY,
1106 				   SPI_MEM_OP_NO_DATA);
1107 
1108 		ret = spi_mem_exec_op(nor->spimem, &op);
1109 	} else {
1110 		ret = nor->controller_ops->write_reg(nor, SPINOR_OP_CHIP_ERASE,
1111 						     NULL, 0);
1112 	}
1113 
1114 	if (ret)
1115 		dev_dbg(nor->dev, "error %d erasing chip\n", ret);
1116 
1117 	return ret;
1118 }
1119 
spi_nor_convert_opcode(u8 opcode,const u8 table[][2],size_t size)1120 static u8 spi_nor_convert_opcode(u8 opcode, const u8 table[][2], size_t size)
1121 {
1122 	size_t i;
1123 
1124 	for (i = 0; i < size; i++)
1125 		if (table[i][0] == opcode)
1126 			return table[i][1];
1127 
1128 	/* No conversion found, keep input op code. */
1129 	return opcode;
1130 }
1131 
spi_nor_convert_3to4_read(u8 opcode)1132 u8 spi_nor_convert_3to4_read(u8 opcode)
1133 {
1134 	static const u8 spi_nor_3to4_read[][2] = {
1135 		{ SPINOR_OP_READ,	SPINOR_OP_READ_4B },
1136 		{ SPINOR_OP_READ_FAST,	SPINOR_OP_READ_FAST_4B },
1137 		{ SPINOR_OP_READ_1_1_2,	SPINOR_OP_READ_1_1_2_4B },
1138 		{ SPINOR_OP_READ_1_2_2,	SPINOR_OP_READ_1_2_2_4B },
1139 		{ SPINOR_OP_READ_1_1_4,	SPINOR_OP_READ_1_1_4_4B },
1140 		{ SPINOR_OP_READ_1_4_4,	SPINOR_OP_READ_1_4_4_4B },
1141 		{ SPINOR_OP_READ_1_1_8,	SPINOR_OP_READ_1_1_8_4B },
1142 		{ SPINOR_OP_READ_1_8_8,	SPINOR_OP_READ_1_8_8_4B },
1143 
1144 		{ SPINOR_OP_READ_1_1_1_DTR,	SPINOR_OP_READ_1_1_1_DTR_4B },
1145 		{ SPINOR_OP_READ_1_2_2_DTR,	SPINOR_OP_READ_1_2_2_DTR_4B },
1146 		{ SPINOR_OP_READ_1_4_4_DTR,	SPINOR_OP_READ_1_4_4_DTR_4B },
1147 	};
1148 
1149 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_read,
1150 				      ARRAY_SIZE(spi_nor_3to4_read));
1151 }
1152 
spi_nor_convert_3to4_program(u8 opcode)1153 static u8 spi_nor_convert_3to4_program(u8 opcode)
1154 {
1155 	static const u8 spi_nor_3to4_program[][2] = {
1156 		{ SPINOR_OP_PP,		SPINOR_OP_PP_4B },
1157 		{ SPINOR_OP_PP_1_1_4,	SPINOR_OP_PP_1_1_4_4B },
1158 		{ SPINOR_OP_PP_1_4_4,	SPINOR_OP_PP_1_4_4_4B },
1159 		{ SPINOR_OP_PP_1_1_8,	SPINOR_OP_PP_1_1_8_4B },
1160 		{ SPINOR_OP_PP_1_8_8,	SPINOR_OP_PP_1_8_8_4B },
1161 	};
1162 
1163 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_program,
1164 				      ARRAY_SIZE(spi_nor_3to4_program));
1165 }
1166 
spi_nor_convert_3to4_erase(u8 opcode)1167 static u8 spi_nor_convert_3to4_erase(u8 opcode)
1168 {
1169 	static const u8 spi_nor_3to4_erase[][2] = {
1170 		{ SPINOR_OP_BE_4K,	SPINOR_OP_BE_4K_4B },
1171 		{ SPINOR_OP_BE_32K,	SPINOR_OP_BE_32K_4B },
1172 		{ SPINOR_OP_SE,		SPINOR_OP_SE_4B },
1173 	};
1174 
1175 	return spi_nor_convert_opcode(opcode, spi_nor_3to4_erase,
1176 				      ARRAY_SIZE(spi_nor_3to4_erase));
1177 }
1178 
spi_nor_has_uniform_erase(const struct spi_nor * nor)1179 static bool spi_nor_has_uniform_erase(const struct spi_nor *nor)
1180 {
1181 	return !!nor->params->erase_map.uniform_erase_type;
1182 }
1183 
spi_nor_set_4byte_opcodes(struct spi_nor * nor)1184 static void spi_nor_set_4byte_opcodes(struct spi_nor *nor)
1185 {
1186 	nor->read_opcode = spi_nor_convert_3to4_read(nor->read_opcode);
1187 	nor->program_opcode = spi_nor_convert_3to4_program(nor->program_opcode);
1188 	nor->erase_opcode = spi_nor_convert_3to4_erase(nor->erase_opcode);
1189 
1190 	if (!spi_nor_has_uniform_erase(nor)) {
1191 		struct spi_nor_erase_map *map = &nor->params->erase_map;
1192 		struct spi_nor_erase_type *erase;
1193 		int i;
1194 
1195 		for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1196 			erase = &map->erase_type[i];
1197 			erase->opcode =
1198 				spi_nor_convert_3to4_erase(erase->opcode);
1199 		}
1200 	}
1201 }
1202 
spi_nor_lock_and_prep(struct spi_nor * nor)1203 int spi_nor_lock_and_prep(struct spi_nor *nor)
1204 {
1205 	int ret = 0;
1206 
1207 	mutex_lock(&nor->lock);
1208 
1209 	if (nor->controller_ops &&  nor->controller_ops->prepare) {
1210 		ret = nor->controller_ops->prepare(nor);
1211 		if (ret) {
1212 			mutex_unlock(&nor->lock);
1213 			return ret;
1214 		}
1215 	}
1216 	return ret;
1217 }
1218 
spi_nor_unlock_and_unprep(struct spi_nor * nor)1219 void spi_nor_unlock_and_unprep(struct spi_nor *nor)
1220 {
1221 	if (nor->controller_ops && nor->controller_ops->unprepare)
1222 		nor->controller_ops->unprepare(nor);
1223 	mutex_unlock(&nor->lock);
1224 }
1225 
spi_nor_convert_addr(struct spi_nor * nor,loff_t addr)1226 static u32 spi_nor_convert_addr(struct spi_nor *nor, loff_t addr)
1227 {
1228 	if (!nor->params->convert_addr)
1229 		return addr;
1230 
1231 	return nor->params->convert_addr(nor, addr);
1232 }
1233 
1234 /*
1235  * Initiate the erasure of a single sector
1236  */
spi_nor_erase_sector(struct spi_nor * nor,u32 addr)1237 static int spi_nor_erase_sector(struct spi_nor *nor, u32 addr)
1238 {
1239 	int i;
1240 
1241 	addr = spi_nor_convert_addr(nor, addr);
1242 
1243 	if (nor->spimem) {
1244 		struct spi_mem_op op =
1245 			SPI_MEM_OP(SPI_MEM_OP_CMD(nor->erase_opcode, 1),
1246 				   SPI_MEM_OP_ADDR(nor->addr_width, addr, 1),
1247 				   SPI_MEM_OP_NO_DUMMY,
1248 				   SPI_MEM_OP_NO_DATA);
1249 
1250 		return spi_mem_exec_op(nor->spimem, &op);
1251 	} else if (nor->controller_ops->erase) {
1252 		return nor->controller_ops->erase(nor, addr);
1253 	}
1254 
1255 	/*
1256 	 * Default implementation, if driver doesn't have a specialized HW
1257 	 * control
1258 	 */
1259 	for (i = nor->addr_width - 1; i >= 0; i--) {
1260 		nor->bouncebuf[i] = addr & 0xff;
1261 		addr >>= 8;
1262 	}
1263 
1264 	return nor->controller_ops->write_reg(nor, nor->erase_opcode,
1265 					      nor->bouncebuf, nor->addr_width);
1266 }
1267 
1268 /**
1269  * spi_nor_div_by_erase_size() - calculate remainder and update new dividend
1270  * @erase:	pointer to a structure that describes a SPI NOR erase type
1271  * @dividend:	dividend value
1272  * @remainder:	pointer to u32 remainder (will be updated)
1273  *
1274  * Return: the result of the division
1275  */
spi_nor_div_by_erase_size(const struct spi_nor_erase_type * erase,u64 dividend,u32 * remainder)1276 static u64 spi_nor_div_by_erase_size(const struct spi_nor_erase_type *erase,
1277 				     u64 dividend, u32 *remainder)
1278 {
1279 	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
1280 	*remainder = (u32)dividend & erase->size_mask;
1281 	return dividend >> erase->size_shift;
1282 }
1283 
1284 /**
1285  * spi_nor_find_best_erase_type() - find the best erase type for the given
1286  *				    offset in the serial flash memory and the
1287  *				    number of bytes to erase. The region in
1288  *				    which the address fits is expected to be
1289  *				    provided.
1290  * @map:	the erase map of the SPI NOR
1291  * @region:	pointer to a structure that describes a SPI NOR erase region
1292  * @addr:	offset in the serial flash memory
1293  * @len:	number of bytes to erase
1294  *
1295  * Return: a pointer to the best fitted erase type, NULL otherwise.
1296  */
1297 static const struct spi_nor_erase_type *
spi_nor_find_best_erase_type(const struct spi_nor_erase_map * map,const struct spi_nor_erase_region * region,u64 addr,u32 len)1298 spi_nor_find_best_erase_type(const struct spi_nor_erase_map *map,
1299 			     const struct spi_nor_erase_region *region,
1300 			     u64 addr, u32 len)
1301 {
1302 	const struct spi_nor_erase_type *erase;
1303 	u32 rem;
1304 	int i;
1305 	u8 erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
1306 
1307 	/*
1308 	 * Erase types are ordered by size, with the smallest erase type at
1309 	 * index 0.
1310 	 */
1311 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
1312 		/* Does the erase region support the tested erase type? */
1313 		if (!(erase_mask & BIT(i)))
1314 			continue;
1315 
1316 		erase = &map->erase_type[i];
1317 
1318 		/* Alignment is not mandatory for overlaid regions */
1319 		if (region->offset & SNOR_OVERLAID_REGION &&
1320 		    region->size <= len)
1321 			return erase;
1322 
1323 		/* Don't erase more than what the user has asked for. */
1324 		if (erase->size > len)
1325 			continue;
1326 
1327 		spi_nor_div_by_erase_size(erase, addr, &rem);
1328 		if (rem)
1329 			continue;
1330 		else
1331 			return erase;
1332 	}
1333 
1334 	return NULL;
1335 }
1336 
spi_nor_region_is_last(const struct spi_nor_erase_region * region)1337 static u64 spi_nor_region_is_last(const struct spi_nor_erase_region *region)
1338 {
1339 	return region->offset & SNOR_LAST_REGION;
1340 }
1341 
spi_nor_region_end(const struct spi_nor_erase_region * region)1342 static u64 spi_nor_region_end(const struct spi_nor_erase_region *region)
1343 {
1344 	return (region->offset & ~SNOR_ERASE_FLAGS_MASK) + region->size;
1345 }
1346 
1347 /**
1348  * spi_nor_region_next() - get the next spi nor region
1349  * @region:	pointer to a structure that describes a SPI NOR erase region
1350  *
1351  * Return: the next spi nor region or NULL if last region.
1352  */
1353 struct spi_nor_erase_region *
spi_nor_region_next(struct spi_nor_erase_region * region)1354 spi_nor_region_next(struct spi_nor_erase_region *region)
1355 {
1356 	if (spi_nor_region_is_last(region))
1357 		return NULL;
1358 	region++;
1359 	return region;
1360 }
1361 
1362 /**
1363  * spi_nor_find_erase_region() - find the region of the serial flash memory in
1364  *				 which the offset fits
1365  * @map:	the erase map of the SPI NOR
1366  * @addr:	offset in the serial flash memory
1367  *
1368  * Return: a pointer to the spi_nor_erase_region struct, ERR_PTR(-errno)
1369  *	   otherwise.
1370  */
1371 static struct spi_nor_erase_region *
spi_nor_find_erase_region(const struct spi_nor_erase_map * map,u64 addr)1372 spi_nor_find_erase_region(const struct spi_nor_erase_map *map, u64 addr)
1373 {
1374 	struct spi_nor_erase_region *region = map->regions;
1375 	u64 region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1376 	u64 region_end = region_start + region->size;
1377 
1378 	while (addr < region_start || addr >= region_end) {
1379 		region = spi_nor_region_next(region);
1380 		if (!region)
1381 			return ERR_PTR(-EINVAL);
1382 
1383 		region_start = region->offset & ~SNOR_ERASE_FLAGS_MASK;
1384 		region_end = region_start + region->size;
1385 	}
1386 
1387 	return region;
1388 }
1389 
1390 /**
1391  * spi_nor_init_erase_cmd() - initialize an erase command
1392  * @region:	pointer to a structure that describes a SPI NOR erase region
1393  * @erase:	pointer to a structure that describes a SPI NOR erase type
1394  *
1395  * Return: the pointer to the allocated erase command, ERR_PTR(-errno)
1396  *	   otherwise.
1397  */
1398 static struct spi_nor_erase_command *
spi_nor_init_erase_cmd(const struct spi_nor_erase_region * region,const struct spi_nor_erase_type * erase)1399 spi_nor_init_erase_cmd(const struct spi_nor_erase_region *region,
1400 		       const struct spi_nor_erase_type *erase)
1401 {
1402 	struct spi_nor_erase_command *cmd;
1403 
1404 	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
1405 	if (!cmd)
1406 		return ERR_PTR(-ENOMEM);
1407 
1408 	INIT_LIST_HEAD(&cmd->list);
1409 	cmd->opcode = erase->opcode;
1410 	cmd->count = 1;
1411 
1412 	if (region->offset & SNOR_OVERLAID_REGION)
1413 		cmd->size = region->size;
1414 	else
1415 		cmd->size = erase->size;
1416 
1417 	return cmd;
1418 }
1419 
1420 /**
1421  * spi_nor_destroy_erase_cmd_list() - destroy erase command list
1422  * @erase_list:	list of erase commands
1423  */
spi_nor_destroy_erase_cmd_list(struct list_head * erase_list)1424 static void spi_nor_destroy_erase_cmd_list(struct list_head *erase_list)
1425 {
1426 	struct spi_nor_erase_command *cmd, *next;
1427 
1428 	list_for_each_entry_safe(cmd, next, erase_list, list) {
1429 		list_del(&cmd->list);
1430 		kfree(cmd);
1431 	}
1432 }
1433 
1434 /**
1435  * spi_nor_init_erase_cmd_list() - initialize erase command list
1436  * @nor:	pointer to a 'struct spi_nor'
1437  * @erase_list:	list of erase commands to be executed once we validate that the
1438  *		erase can be performed
1439  * @addr:	offset in the serial flash memory
1440  * @len:	number of bytes to erase
1441  *
1442  * Builds the list of best fitted erase commands and verifies if the erase can
1443  * be performed.
1444  *
1445  * Return: 0 on success, -errno otherwise.
1446  */
spi_nor_init_erase_cmd_list(struct spi_nor * nor,struct list_head * erase_list,u64 addr,u32 len)1447 static int spi_nor_init_erase_cmd_list(struct spi_nor *nor,
1448 				       struct list_head *erase_list,
1449 				       u64 addr, u32 len)
1450 {
1451 	const struct spi_nor_erase_map *map = &nor->params->erase_map;
1452 	const struct spi_nor_erase_type *erase, *prev_erase = NULL;
1453 	struct spi_nor_erase_region *region;
1454 	struct spi_nor_erase_command *cmd = NULL;
1455 	u64 region_end;
1456 	int ret = -EINVAL;
1457 
1458 	region = spi_nor_find_erase_region(map, addr);
1459 	if (IS_ERR(region))
1460 		return PTR_ERR(region);
1461 
1462 	region_end = spi_nor_region_end(region);
1463 
1464 	while (len) {
1465 		erase = spi_nor_find_best_erase_type(map, region, addr, len);
1466 		if (!erase)
1467 			goto destroy_erase_cmd_list;
1468 
1469 		if (prev_erase != erase ||
1470 		    erase->size != cmd->size ||
1471 		    region->offset & SNOR_OVERLAID_REGION) {
1472 			cmd = spi_nor_init_erase_cmd(region, erase);
1473 			if (IS_ERR(cmd)) {
1474 				ret = PTR_ERR(cmd);
1475 				goto destroy_erase_cmd_list;
1476 			}
1477 
1478 			list_add_tail(&cmd->list, erase_list);
1479 		} else {
1480 			cmd->count++;
1481 		}
1482 
1483 		addr += cmd->size;
1484 		len -= cmd->size;
1485 
1486 		if (len && addr >= region_end) {
1487 			region = spi_nor_region_next(region);
1488 			if (!region)
1489 				goto destroy_erase_cmd_list;
1490 			region_end = spi_nor_region_end(region);
1491 		}
1492 
1493 		prev_erase = erase;
1494 	}
1495 
1496 	return 0;
1497 
1498 destroy_erase_cmd_list:
1499 	spi_nor_destroy_erase_cmd_list(erase_list);
1500 	return ret;
1501 }
1502 
1503 /**
1504  * spi_nor_erase_multi_sectors() - perform a non-uniform erase
1505  * @nor:	pointer to a 'struct spi_nor'
1506  * @addr:	offset in the serial flash memory
1507  * @len:	number of bytes to erase
1508  *
1509  * Build a list of best fitted erase commands and execute it once we validate
1510  * that the erase can be performed.
1511  *
1512  * Return: 0 on success, -errno otherwise.
1513  */
spi_nor_erase_multi_sectors(struct spi_nor * nor,u64 addr,u32 len)1514 static int spi_nor_erase_multi_sectors(struct spi_nor *nor, u64 addr, u32 len)
1515 {
1516 	LIST_HEAD(erase_list);
1517 	struct spi_nor_erase_command *cmd, *next;
1518 	int ret;
1519 
1520 	ret = spi_nor_init_erase_cmd_list(nor, &erase_list, addr, len);
1521 	if (ret)
1522 		return ret;
1523 
1524 	list_for_each_entry_safe(cmd, next, &erase_list, list) {
1525 		nor->erase_opcode = cmd->opcode;
1526 		while (cmd->count) {
1527 			ret = spi_nor_write_enable(nor);
1528 			if (ret)
1529 				goto destroy_erase_cmd_list;
1530 
1531 			ret = spi_nor_erase_sector(nor, addr);
1532 			if (ret)
1533 				goto destroy_erase_cmd_list;
1534 
1535 			addr += cmd->size;
1536 			cmd->count--;
1537 
1538 			ret = spi_nor_wait_till_ready_with_msleep(nor);
1539 			if (ret)
1540 				goto destroy_erase_cmd_list;
1541 		}
1542 		list_del(&cmd->list);
1543 		kfree(cmd);
1544 	}
1545 
1546 	return 0;
1547 
1548 destroy_erase_cmd_list:
1549 	spi_nor_destroy_erase_cmd_list(&erase_list);
1550 	return ret;
1551 }
1552 
1553 /*
1554  * Erase an address range on the nor chip.  The address range may extend
1555  * one or more erase sectors.  Return an error is there is a problem erasing.
1556  */
spi_nor_erase(struct mtd_info * mtd,struct erase_info * instr)1557 static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
1558 {
1559 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1560 	u32 addr, len;
1561 	uint32_t rem;
1562 	int ret;
1563 
1564 	dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
1565 			(long long)instr->len);
1566 
1567 	if (spi_nor_has_uniform_erase(nor)) {
1568 		div_u64_rem(instr->len, mtd->erasesize, &rem);
1569 		if (rem)
1570 			return -EINVAL;
1571 	}
1572 
1573 	addr = instr->addr;
1574 	len = instr->len;
1575 
1576 	ret = spi_nor_lock_and_prep(nor);
1577 	if (ret)
1578 		return ret;
1579 
1580 	/* whole-chip erase? */
1581 	if (len == mtd->size && !(nor->flags & SNOR_F_NO_OP_CHIP_ERASE)) {
1582 		unsigned long timeout;
1583 
1584 		ret = spi_nor_write_enable(nor);
1585 		if (ret)
1586 			goto erase_err;
1587 
1588 		ret = spi_nor_erase_chip(nor);
1589 		if (ret)
1590 			goto erase_err;
1591 
1592 		/*
1593 		 * Scale the timeout linearly with the size of the flash, with
1594 		 * a minimum calibrated to an old 2MB flash. We could try to
1595 		 * pull these from CFI/SFDP, but these values should be good
1596 		 * enough for now.
1597 		 */
1598 		timeout = max(CHIP_ERASE_2MB_READY_WAIT_JIFFIES,
1599 			      CHIP_ERASE_2MB_READY_WAIT_JIFFIES *
1600 			      (unsigned long)(mtd->size / SZ_2M));
1601 		ret = spi_nor_wait_till_ready_with_timeout(nor, timeout);
1602 		if (ret)
1603 			goto erase_err;
1604 
1605 	/* REVISIT in some cases we could speed up erasing large regions
1606 	 * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K.  We may have set up
1607 	 * to use "small sector erase", but that's not always optimal.
1608 	 */
1609 
1610 	/* "sector"-at-a-time erase */
1611 	} else if (spi_nor_has_uniform_erase(nor)) {
1612 		while (len) {
1613 			ret = spi_nor_write_enable(nor);
1614 			if (ret)
1615 				goto erase_err;
1616 
1617 			ret = spi_nor_erase_sector(nor, addr);
1618 			if (ret)
1619 				goto erase_err;
1620 
1621 			addr += mtd->erasesize;
1622 			len -= mtd->erasesize;
1623 
1624 			ret = spi_nor_wait_till_ready_with_msleep(nor);
1625 			if (ret)
1626 				goto erase_err;
1627 		}
1628 
1629 	/* erase multiple sectors */
1630 	} else {
1631 		ret = spi_nor_erase_multi_sectors(nor, addr, len);
1632 		if (ret)
1633 			goto erase_err;
1634 	}
1635 
1636 	ret = spi_nor_write_disable(nor);
1637 
1638 erase_err:
1639 	spi_nor_unlock_and_unprep(nor);
1640 
1641 	return ret;
1642 }
1643 
spi_nor_get_sr_bp_mask(struct spi_nor * nor)1644 static u8 spi_nor_get_sr_bp_mask(struct spi_nor *nor)
1645 {
1646 	u8 mask = SR_BP2 | SR_BP1 | SR_BP0;
1647 
1648 	if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6)
1649 		return mask | SR_BP3_BIT6;
1650 
1651 	if (nor->flags & SNOR_F_HAS_4BIT_BP)
1652 		return mask | SR_BP3;
1653 
1654 	return mask;
1655 }
1656 
spi_nor_get_sr_tb_mask(struct spi_nor * nor)1657 static u8 spi_nor_get_sr_tb_mask(struct spi_nor *nor)
1658 {
1659 	if (nor->flags & SNOR_F_HAS_SR_TB_BIT6)
1660 		return SR_TB_BIT6;
1661 	else
1662 		return SR_TB_BIT5;
1663 }
1664 
spi_nor_get_min_prot_length_sr(struct spi_nor * nor)1665 static u64 spi_nor_get_min_prot_length_sr(struct spi_nor *nor)
1666 {
1667 	unsigned int bp_slots, bp_slots_needed;
1668 	u8 mask = spi_nor_get_sr_bp_mask(nor);
1669 
1670 	/* Reserved one for "protect none" and one for "protect all". */
1671 	bp_slots = (1 << hweight8(mask)) - 2;
1672 	bp_slots_needed = ilog2(nor->info->n_sectors);
1673 
1674 	if (bp_slots_needed > bp_slots)
1675 		return nor->info->sector_size <<
1676 			(bp_slots_needed - bp_slots);
1677 	else
1678 		return nor->info->sector_size;
1679 }
1680 
spi_nor_get_locked_range_sr(struct spi_nor * nor,u8 sr,loff_t * ofs,uint64_t * len)1681 static void spi_nor_get_locked_range_sr(struct spi_nor *nor, u8 sr, loff_t *ofs,
1682 					uint64_t *len)
1683 {
1684 	struct mtd_info *mtd = &nor->mtd;
1685 	u64 min_prot_len;
1686 	u8 mask = spi_nor_get_sr_bp_mask(nor);
1687 	u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
1688 	u8 bp, val = sr & mask;
1689 
1690 	if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3_BIT6)
1691 		val = (val & ~SR_BP3_BIT6) | SR_BP3;
1692 
1693 	bp = val >> SR_BP_SHIFT;
1694 
1695 	if (!bp) {
1696 		/* No protection */
1697 		*ofs = 0;
1698 		*len = 0;
1699 		return;
1700 	}
1701 
1702 	min_prot_len = spi_nor_get_min_prot_length_sr(nor);
1703 	*len = min_prot_len << (bp - 1);
1704 
1705 	if (*len > mtd->size)
1706 		*len = mtd->size;
1707 
1708 	if (nor->flags & SNOR_F_HAS_SR_TB && sr & tb_mask)
1709 		*ofs = 0;
1710 	else
1711 		*ofs = mtd->size - *len;
1712 }
1713 
1714 /*
1715  * Return 1 if the entire region is locked (if @locked is true) or unlocked (if
1716  * @locked is false); 0 otherwise
1717  */
spi_nor_check_lock_status_sr(struct spi_nor * nor,loff_t ofs,uint64_t len,u8 sr,bool locked)1718 static int spi_nor_check_lock_status_sr(struct spi_nor *nor, loff_t ofs,
1719 					uint64_t len, u8 sr, bool locked)
1720 {
1721 	loff_t lock_offs;
1722 	uint64_t lock_len;
1723 
1724 	if (!len)
1725 		return 1;
1726 
1727 	spi_nor_get_locked_range_sr(nor, sr, &lock_offs, &lock_len);
1728 
1729 	if (locked)
1730 		/* Requested range is a sub-range of locked range */
1731 		return (ofs + len <= lock_offs + lock_len) && (ofs >= lock_offs);
1732 	else
1733 		/* Requested range does not overlap with locked range */
1734 		return (ofs >= lock_offs + lock_len) || (ofs + len <= lock_offs);
1735 }
1736 
spi_nor_is_locked_sr(struct spi_nor * nor,loff_t ofs,uint64_t len,u8 sr)1737 static int spi_nor_is_locked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
1738 				u8 sr)
1739 {
1740 	return spi_nor_check_lock_status_sr(nor, ofs, len, sr, true);
1741 }
1742 
spi_nor_is_unlocked_sr(struct spi_nor * nor,loff_t ofs,uint64_t len,u8 sr)1743 static int spi_nor_is_unlocked_sr(struct spi_nor *nor, loff_t ofs, uint64_t len,
1744 				  u8 sr)
1745 {
1746 	return spi_nor_check_lock_status_sr(nor, ofs, len, sr, false);
1747 }
1748 
1749 /*
1750  * Lock a region of the flash. Compatible with ST Micro and similar flash.
1751  * Supports the block protection bits BP{0,1,2}/BP{0,1,2,3} in the status
1752  * register
1753  * (SR). Does not support these features found in newer SR bitfields:
1754  *   - SEC: sector/block protect - only handle SEC=0 (block protect)
1755  *   - CMP: complement protect - only support CMP=0 (range is not complemented)
1756  *
1757  * Support for the following is provided conditionally for some flash:
1758  *   - TB: top/bottom protect
1759  *
1760  * Sample table portion for 8MB flash (Winbond w25q64fw):
1761  *
1762  *   SEC  |  TB   |  BP2  |  BP1  |  BP0  |  Prot Length  | Protected Portion
1763  *  --------------------------------------------------------------------------
1764  *    X   |   X   |   0   |   0   |   0   |  NONE         | NONE
1765  *    0   |   0   |   0   |   0   |   1   |  128 KB       | Upper 1/64
1766  *    0   |   0   |   0   |   1   |   0   |  256 KB       | Upper 1/32
1767  *    0   |   0   |   0   |   1   |   1   |  512 KB       | Upper 1/16
1768  *    0   |   0   |   1   |   0   |   0   |  1 MB         | Upper 1/8
1769  *    0   |   0   |   1   |   0   |   1   |  2 MB         | Upper 1/4
1770  *    0   |   0   |   1   |   1   |   0   |  4 MB         | Upper 1/2
1771  *    X   |   X   |   1   |   1   |   1   |  8 MB         | ALL
1772  *  ------|-------|-------|-------|-------|---------------|-------------------
1773  *    0   |   1   |   0   |   0   |   1   |  128 KB       | Lower 1/64
1774  *    0   |   1   |   0   |   1   |   0   |  256 KB       | Lower 1/32
1775  *    0   |   1   |   0   |   1   |   1   |  512 KB       | Lower 1/16
1776  *    0   |   1   |   1   |   0   |   0   |  1 MB         | Lower 1/8
1777  *    0   |   1   |   1   |   0   |   1   |  2 MB         | Lower 1/4
1778  *    0   |   1   |   1   |   1   |   0   |  4 MB         | Lower 1/2
1779  *
1780  * Returns negative on errors, 0 on success.
1781  */
spi_nor_sr_lock(struct spi_nor * nor,loff_t ofs,uint64_t len)1782 static int spi_nor_sr_lock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1783 {
1784 	struct mtd_info *mtd = &nor->mtd;
1785 	u64 min_prot_len;
1786 	int ret, status_old, status_new;
1787 	u8 mask = spi_nor_get_sr_bp_mask(nor);
1788 	u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
1789 	u8 pow, val;
1790 	loff_t lock_len;
1791 	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
1792 	bool use_top;
1793 
1794 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
1795 	if (ret)
1796 		return ret;
1797 
1798 	status_old = nor->bouncebuf[0];
1799 
1800 	/* If nothing in our range is unlocked, we don't need to do anything */
1801 	if (spi_nor_is_locked_sr(nor, ofs, len, status_old))
1802 		return 0;
1803 
1804 	/* If anything below us is unlocked, we can't use 'bottom' protection */
1805 	if (!spi_nor_is_locked_sr(nor, 0, ofs, status_old))
1806 		can_be_bottom = false;
1807 
1808 	/* If anything above us is unlocked, we can't use 'top' protection */
1809 	if (!spi_nor_is_locked_sr(nor, ofs + len, mtd->size - (ofs + len),
1810 				  status_old))
1811 		can_be_top = false;
1812 
1813 	if (!can_be_bottom && !can_be_top)
1814 		return -EINVAL;
1815 
1816 	/* Prefer top, if both are valid */
1817 	use_top = can_be_top;
1818 
1819 	/* lock_len: length of region that should end up locked */
1820 	if (use_top)
1821 		lock_len = mtd->size - ofs;
1822 	else
1823 		lock_len = ofs + len;
1824 
1825 	if (lock_len == mtd->size) {
1826 		val = mask;
1827 	} else {
1828 		min_prot_len = spi_nor_get_min_prot_length_sr(nor);
1829 		pow = ilog2(lock_len) - ilog2(min_prot_len) + 1;
1830 		val = pow << SR_BP_SHIFT;
1831 
1832 		if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3)
1833 			val = (val & ~SR_BP3) | SR_BP3_BIT6;
1834 
1835 		if (val & ~mask)
1836 			return -EINVAL;
1837 
1838 		/* Don't "lock" with no region! */
1839 		if (!(val & mask))
1840 			return -EINVAL;
1841 	}
1842 
1843 	status_new = (status_old & ~mask & ~tb_mask) | val;
1844 
1845 	/* Disallow further writes if WP pin is asserted */
1846 	status_new |= SR_SRWD;
1847 
1848 	if (!use_top)
1849 		status_new |= tb_mask;
1850 
1851 	/* Don't bother if they're the same */
1852 	if (status_new == status_old)
1853 		return 0;
1854 
1855 	/* Only modify protection if it will not unlock other areas */
1856 	if ((status_new & mask) < (status_old & mask))
1857 		return -EINVAL;
1858 
1859 	return spi_nor_write_sr_and_check(nor, status_new);
1860 }
1861 
1862 /*
1863  * Unlock a region of the flash. See spi_nor_sr_lock() for more info
1864  *
1865  * Returns negative on errors, 0 on success.
1866  */
spi_nor_sr_unlock(struct spi_nor * nor,loff_t ofs,uint64_t len)1867 static int spi_nor_sr_unlock(struct spi_nor *nor, loff_t ofs, uint64_t len)
1868 {
1869 	struct mtd_info *mtd = &nor->mtd;
1870 	u64 min_prot_len;
1871 	int ret, status_old, status_new;
1872 	u8 mask = spi_nor_get_sr_bp_mask(nor);
1873 	u8 tb_mask = spi_nor_get_sr_tb_mask(nor);
1874 	u8 pow, val;
1875 	loff_t lock_len;
1876 	bool can_be_top = true, can_be_bottom = nor->flags & SNOR_F_HAS_SR_TB;
1877 	bool use_top;
1878 
1879 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
1880 	if (ret)
1881 		return ret;
1882 
1883 	status_old = nor->bouncebuf[0];
1884 
1885 	/* If nothing in our range is locked, we don't need to do anything */
1886 	if (spi_nor_is_unlocked_sr(nor, ofs, len, status_old))
1887 		return 0;
1888 
1889 	/* If anything below us is locked, we can't use 'top' protection */
1890 	if (!spi_nor_is_unlocked_sr(nor, 0, ofs, status_old))
1891 		can_be_top = false;
1892 
1893 	/* If anything above us is locked, we can't use 'bottom' protection */
1894 	if (!spi_nor_is_unlocked_sr(nor, ofs + len, mtd->size - (ofs + len),
1895 				    status_old))
1896 		can_be_bottom = false;
1897 
1898 	if (!can_be_bottom && !can_be_top)
1899 		return -EINVAL;
1900 
1901 	/* Prefer top, if both are valid */
1902 	use_top = can_be_top;
1903 
1904 	/* lock_len: length of region that should remain locked */
1905 	if (use_top)
1906 		lock_len = mtd->size - (ofs + len);
1907 	else
1908 		lock_len = ofs;
1909 
1910 	if (lock_len == 0) {
1911 		val = 0; /* fully unlocked */
1912 	} else {
1913 		min_prot_len = spi_nor_get_min_prot_length_sr(nor);
1914 		pow = ilog2(lock_len) - ilog2(min_prot_len) + 1;
1915 		val = pow << SR_BP_SHIFT;
1916 
1917 		if (nor->flags & SNOR_F_HAS_SR_BP3_BIT6 && val & SR_BP3)
1918 			val = (val & ~SR_BP3) | SR_BP3_BIT6;
1919 
1920 		/* Some power-of-two sizes are not supported */
1921 		if (val & ~mask)
1922 			return -EINVAL;
1923 	}
1924 
1925 	status_new = (status_old & ~mask & ~tb_mask) | val;
1926 
1927 	/* Don't protect status register if we're fully unlocked */
1928 	if (lock_len == 0)
1929 		status_new &= ~SR_SRWD;
1930 
1931 	if (!use_top)
1932 		status_new |= tb_mask;
1933 
1934 	/* Don't bother if they're the same */
1935 	if (status_new == status_old)
1936 		return 0;
1937 
1938 	/* Only modify protection if it will not lock other areas */
1939 	if ((status_new & mask) > (status_old & mask))
1940 		return -EINVAL;
1941 
1942 	return spi_nor_write_sr_and_check(nor, status_new);
1943 }
1944 
1945 /*
1946  * Check if a region of the flash is (completely) locked. See spi_nor_sr_lock()
1947  * for more info.
1948  *
1949  * Returns 1 if entire region is locked, 0 if any portion is unlocked, and
1950  * negative on errors.
1951  */
spi_nor_sr_is_locked(struct spi_nor * nor,loff_t ofs,uint64_t len)1952 static int spi_nor_sr_is_locked(struct spi_nor *nor, loff_t ofs, uint64_t len)
1953 {
1954 	int ret;
1955 
1956 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
1957 	if (ret)
1958 		return ret;
1959 
1960 	return spi_nor_is_locked_sr(nor, ofs, len, nor->bouncebuf[0]);
1961 }
1962 
1963 static const struct spi_nor_locking_ops spi_nor_sr_locking_ops = {
1964 	.lock = spi_nor_sr_lock,
1965 	.unlock = spi_nor_sr_unlock,
1966 	.is_locked = spi_nor_sr_is_locked,
1967 };
1968 
spi_nor_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1969 static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1970 {
1971 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1972 	int ret;
1973 
1974 	ret = spi_nor_lock_and_prep(nor);
1975 	if (ret)
1976 		return ret;
1977 
1978 	ret = nor->params->locking_ops->lock(nor, ofs, len);
1979 
1980 	spi_nor_unlock_and_unprep(nor);
1981 	return ret;
1982 }
1983 
spi_nor_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1984 static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1985 {
1986 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
1987 	int ret;
1988 
1989 	ret = spi_nor_lock_and_prep(nor);
1990 	if (ret)
1991 		return ret;
1992 
1993 	ret = nor->params->locking_ops->unlock(nor, ofs, len);
1994 
1995 	spi_nor_unlock_and_unprep(nor);
1996 	return ret;
1997 }
1998 
spi_nor_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)1999 static int spi_nor_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2000 {
2001 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2002 	int ret;
2003 
2004 	ret = spi_nor_lock_and_prep(nor);
2005 	if (ret)
2006 		return ret;
2007 
2008 	ret = nor->params->locking_ops->is_locked(nor, ofs, len);
2009 
2010 	spi_nor_unlock_and_unprep(nor);
2011 	return ret;
2012 }
2013 
2014 /**
2015  * spi_nor_sr1_bit6_quad_enable() - Set the Quad Enable BIT(6) in the Status
2016  * Register 1.
2017  * @nor:	pointer to a 'struct spi_nor'
2018  *
2019  * Bit 6 of the Status Register 1 is the QE bit for Macronix like QSPI memories.
2020  *
2021  * Return: 0 on success, -errno otherwise.
2022  */
spi_nor_sr1_bit6_quad_enable(struct spi_nor * nor)2023 int spi_nor_sr1_bit6_quad_enable(struct spi_nor *nor)
2024 {
2025 	int ret;
2026 
2027 	ret = spi_nor_read_sr(nor, nor->bouncebuf);
2028 	if (ret)
2029 		return ret;
2030 
2031 	if (nor->bouncebuf[0] & SR1_QUAD_EN_BIT6)
2032 		return 0;
2033 
2034 	nor->bouncebuf[0] |= SR1_QUAD_EN_BIT6;
2035 
2036 	return spi_nor_write_sr1_and_check(nor, nor->bouncebuf[0]);
2037 }
2038 
2039 /**
2040  * spi_nor_sr2_bit1_quad_enable() - set the Quad Enable BIT(1) in the Status
2041  * Register 2.
2042  * @nor:       pointer to a 'struct spi_nor'.
2043  *
2044  * Bit 1 of the Status Register 2 is the QE bit for Spansion like QSPI memories.
2045  *
2046  * Return: 0 on success, -errno otherwise.
2047  */
spi_nor_sr2_bit1_quad_enable(struct spi_nor * nor)2048 int spi_nor_sr2_bit1_quad_enable(struct spi_nor *nor)
2049 {
2050 	int ret;
2051 
2052 	if (nor->flags & SNOR_F_NO_READ_CR)
2053 		return spi_nor_write_16bit_cr_and_check(nor, SR2_QUAD_EN_BIT1);
2054 
2055 	ret = spi_nor_read_cr(nor, nor->bouncebuf);
2056 	if (ret)
2057 		return ret;
2058 
2059 	if (nor->bouncebuf[0] & SR2_QUAD_EN_BIT1)
2060 		return 0;
2061 
2062 	nor->bouncebuf[0] |= SR2_QUAD_EN_BIT1;
2063 
2064 	return spi_nor_write_16bit_cr_and_check(nor, nor->bouncebuf[0]);
2065 }
2066 
2067 /**
2068  * spi_nor_sr2_bit7_quad_enable() - set QE bit in Status Register 2.
2069  * @nor:	pointer to a 'struct spi_nor'
2070  *
2071  * Set the Quad Enable (QE) bit in the Status Register 2.
2072  *
2073  * This is one of the procedures to set the QE bit described in the SFDP
2074  * (JESD216 rev B) specification but no manufacturer using this procedure has
2075  * been identified yet, hence the name of the function.
2076  *
2077  * Return: 0 on success, -errno otherwise.
2078  */
spi_nor_sr2_bit7_quad_enable(struct spi_nor * nor)2079 int spi_nor_sr2_bit7_quad_enable(struct spi_nor *nor)
2080 {
2081 	u8 *sr2 = nor->bouncebuf;
2082 	int ret;
2083 	u8 sr2_written;
2084 
2085 	/* Check current Quad Enable bit value. */
2086 	ret = spi_nor_read_sr2(nor, sr2);
2087 	if (ret)
2088 		return ret;
2089 	if (*sr2 & SR2_QUAD_EN_BIT7)
2090 		return 0;
2091 
2092 	/* Update the Quad Enable bit. */
2093 	*sr2 |= SR2_QUAD_EN_BIT7;
2094 
2095 	ret = spi_nor_write_sr2(nor, sr2);
2096 	if (ret)
2097 		return ret;
2098 
2099 	sr2_written = *sr2;
2100 
2101 	/* Read back and check it. */
2102 	ret = spi_nor_read_sr2(nor, sr2);
2103 	if (ret)
2104 		return ret;
2105 
2106 	if (*sr2 != sr2_written) {
2107 		dev_dbg(nor->dev, "SR2: Read back test failed\n");
2108 		return -EIO;
2109 	}
2110 
2111 	return 0;
2112 }
2113 
2114 /**
2115  * spi_nor_sr2_bit2_quad_enable() - set QE bit in Status Register 2.
2116  * @nor:	pointer to a 'struct spi_nor'
2117  *
2118  * Set the Quad Enable (QE) bit in the Status Register 2.
2119  *
2120  * Return: 0 on success, -errno otherwise.
2121  */
spi_nor_sr2_bit2_quad_enable(struct spi_nor * nor)2122 int spi_nor_sr2_bit2_quad_enable(struct spi_nor *nor)
2123 {
2124 	u8 *cr = nor->bouncebuf;
2125 	int ret;
2126 	u8 cr_written;
2127 
2128 	/* Check current Quad Enable bit value. */
2129 	ret = spi_nor_read_cr(nor, cr);
2130 	if (ret)
2131 		return ret;
2132 	if (*cr & SR2_QUAD_EN_BIT2)
2133 		return 0;
2134 
2135 	/* Update the Quad Enable bit. */
2136 	*cr |= SR2_QUAD_EN_BIT2;
2137 
2138 	ret = spi_nor_write_8bit_cr(nor, *cr);
2139 	if (ret)
2140 		return ret;
2141 
2142 	cr_written = *cr;
2143 
2144 	/* Read back and check it. */
2145 	ret = spi_nor_read_cr(nor, cr);
2146 	if (ret)
2147 		return ret;
2148 
2149 	if (*cr != cr_written) {
2150 		dev_dbg(nor->dev, "CR: Read back test failed\n");
2151 		return -EIO;
2152 	}
2153 
2154 	return 0;
2155 }
2156 
2157 static const struct spi_nor_manufacturer *manufacturers[] = {
2158 	&spi_nor_atmel,
2159 	&spi_nor_boya,
2160 	&spi_nor_catalyst,
2161 	&spi_nor_dosilicon,
2162 	&spi_nor_eon,
2163 	&spi_nor_esmt,
2164 	&spi_nor_everspin,
2165 	&spi_nor_fmsh,
2166 	&spi_nor_fujitsu,
2167 	&spi_nor_gigadevice,
2168 	&spi_nor_normem,
2169 	&spi_nor_intel,
2170 	&spi_nor_issi,
2171 	&spi_nor_macronix,
2172 	&spi_nor_micron,
2173 	&spi_nor_puya,
2174 	&spi_nor_st,
2175 	&spi_nor_spansion,
2176 	&spi_nor_sst,
2177 	&spi_nor_winbond,
2178 	&spi_nor_xilinx,
2179 	&spi_nor_xmc,
2180 	&spi_nor_xtx,
2181 };
2182 
2183 static const struct flash_info *
spi_nor_search_part_by_id(const struct flash_info * parts,unsigned int nparts,const u8 * id)2184 spi_nor_search_part_by_id(const struct flash_info *parts, unsigned int nparts,
2185 			  const u8 *id)
2186 {
2187 	unsigned int i;
2188 
2189 	for (i = 0; i < nparts; i++) {
2190 		if (parts[i].id_len &&
2191 		    !memcmp(parts[i].id, id, parts[i].id_len))
2192 			return &parts[i];
2193 	}
2194 
2195 	return NULL;
2196 }
2197 
spi_nor_read_id(struct spi_nor * nor)2198 static const struct flash_info *spi_nor_read_id(struct spi_nor *nor)
2199 {
2200 	const struct flash_info *info;
2201 	u8 *id = nor->bouncebuf;
2202 	unsigned int i;
2203 	int ret;
2204 
2205 	if (nor->spimem) {
2206 		struct spi_mem_op op =
2207 			SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDID, 1),
2208 				   SPI_MEM_OP_NO_ADDR,
2209 				   SPI_MEM_OP_NO_DUMMY,
2210 				   SPI_MEM_OP_DATA_IN(SPI_NOR_MAX_ID_LEN, id, 1));
2211 
2212 		ret = spi_mem_exec_op(nor->spimem, &op);
2213 	} else {
2214 		ret = nor->controller_ops->read_reg(nor, SPINOR_OP_RDID, id,
2215 						    SPI_NOR_MAX_ID_LEN);
2216 	}
2217 	if (ret) {
2218 		dev_dbg(nor->dev, "error %d reading JEDEC ID\n", ret);
2219 		return ERR_PTR(ret);
2220 	}
2221 
2222 	for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
2223 		info = spi_nor_search_part_by_id(manufacturers[i]->parts,
2224 						 manufacturers[i]->nparts,
2225 						 id);
2226 		if (info) {
2227 			nor->manufacturer = manufacturers[i];
2228 			return info;
2229 		}
2230 	}
2231 
2232 	dev_err(nor->dev, "unrecognized JEDEC id bytes: %*ph\n",
2233 		SPI_NOR_MAX_ID_LEN, id);
2234 	return ERR_PTR(-ENODEV);
2235 }
2236 
spi_nor_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2237 static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
2238 			size_t *retlen, u_char *buf)
2239 {
2240 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2241 	ssize_t ret;
2242 
2243 	dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
2244 
2245 	ret = spi_nor_lock_and_prep(nor);
2246 	if (ret)
2247 		return ret;
2248 
2249 	while (len) {
2250 		loff_t addr = from;
2251 
2252 		addr = spi_nor_convert_addr(nor, addr);
2253 
2254 		ret = spi_nor_read_data(nor, addr, len, buf);
2255 		if (ret == 0) {
2256 			/* We shouldn't see 0-length reads */
2257 			ret = -EIO;
2258 			goto read_err;
2259 		}
2260 		if (ret < 0)
2261 			goto read_err;
2262 
2263 		WARN_ON(ret > len);
2264 		*retlen += ret;
2265 		buf += ret;
2266 		from += ret;
2267 		len -= ret;
2268 	}
2269 	ret = 0;
2270 
2271 read_err:
2272 	spi_nor_unlock_and_unprep(nor);
2273 	return ret;
2274 }
2275 
2276 /*
2277  * Write an address range to the nor chip.  Data must be written in
2278  * FLASH_PAGESIZE chunks.  The address range may be any size provided
2279  * it is within the physical boundaries.
2280  */
spi_nor_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2281 static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
2282 	size_t *retlen, const u_char *buf)
2283 {
2284 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
2285 	size_t page_offset, page_remain, i;
2286 	ssize_t ret;
2287 
2288 	dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
2289 
2290 	ret = spi_nor_lock_and_prep(nor);
2291 	if (ret)
2292 		return ret;
2293 
2294 	for (i = 0; i < len; ) {
2295 		ssize_t written;
2296 		loff_t addr = to + i;
2297 
2298 		/*
2299 		 * If page_size is a power of two, the offset can be quickly
2300 		 * calculated with an AND operation. On the other cases we
2301 		 * need to do a modulus operation (more expensive).
2302 		 * Power of two numbers have only one bit set and we can use
2303 		 * the instruction hweight32 to detect if we need to do a
2304 		 * modulus (do_div()) or not.
2305 		 */
2306 		if (hweight32(nor->page_size) == 1) {
2307 			page_offset = addr & (nor->page_size - 1);
2308 		} else {
2309 			uint64_t aux = addr;
2310 
2311 			page_offset = do_div(aux, nor->page_size);
2312 		}
2313 		/* the size of data remaining on the first page */
2314 		page_remain = min_t(size_t,
2315 				    nor->page_size - page_offset, len - i);
2316 
2317 		addr = spi_nor_convert_addr(nor, addr);
2318 
2319 		ret = spi_nor_write_enable(nor);
2320 		if (ret)
2321 			goto write_err;
2322 
2323 		ret = spi_nor_write_data(nor, addr, page_remain, buf + i);
2324 		if (ret < 0)
2325 			goto write_err;
2326 		written = ret;
2327 
2328 		ret = spi_nor_wait_till_ready(nor);
2329 		if (ret)
2330 			goto write_err;
2331 		*retlen += written;
2332 		i += written;
2333 	}
2334 
2335 write_err:
2336 	spi_nor_unlock_and_unprep(nor);
2337 	return ret;
2338 }
2339 
spi_nor_check(struct spi_nor * nor)2340 static int spi_nor_check(struct spi_nor *nor)
2341 {
2342 	if (!nor->dev ||
2343 	    (!nor->spimem && !nor->controller_ops) ||
2344 	    (!nor->spimem && nor->controller_ops &&
2345 	    (!nor->controller_ops->read ||
2346 	     !nor->controller_ops->write ||
2347 	     !nor->controller_ops->read_reg ||
2348 	     !nor->controller_ops->write_reg))) {
2349 		pr_err("spi-nor: please fill all the necessary fields!\n");
2350 		return -EINVAL;
2351 	}
2352 
2353 	if (nor->spimem && nor->controller_ops) {
2354 		dev_err(nor->dev, "nor->spimem and nor->controller_ops are mutually exclusive, please set just one of them.\n");
2355 		return -EINVAL;
2356 	}
2357 
2358 	return 0;
2359 }
2360 
2361 static void
spi_nor_set_read_settings(struct spi_nor_read_command * read,u8 num_mode_clocks,u8 num_wait_states,u8 opcode,enum spi_nor_protocol proto)2362 spi_nor_set_read_settings(struct spi_nor_read_command *read,
2363 			  u8 num_mode_clocks,
2364 			  u8 num_wait_states,
2365 			  u8 opcode,
2366 			  enum spi_nor_protocol proto)
2367 {
2368 	read->num_mode_clocks = num_mode_clocks;
2369 	read->num_wait_states = num_wait_states;
2370 	read->opcode = opcode;
2371 	read->proto = proto;
2372 }
2373 
spi_nor_set_pp_settings(struct spi_nor_pp_command * pp,u8 opcode,enum spi_nor_protocol proto)2374 void spi_nor_set_pp_settings(struct spi_nor_pp_command *pp, u8 opcode,
2375 			     enum spi_nor_protocol proto)
2376 {
2377 	pp->opcode = opcode;
2378 	pp->proto = proto;
2379 }
2380 
spi_nor_hwcaps2cmd(u32 hwcaps,const int table[][2],size_t size)2381 static int spi_nor_hwcaps2cmd(u32 hwcaps, const int table[][2], size_t size)
2382 {
2383 	size_t i;
2384 
2385 	for (i = 0; i < size; i++)
2386 		if (table[i][0] == (int)hwcaps)
2387 			return table[i][1];
2388 
2389 	return -EINVAL;
2390 }
2391 
spi_nor_hwcaps_read2cmd(u32 hwcaps)2392 int spi_nor_hwcaps_read2cmd(u32 hwcaps)
2393 {
2394 	static const int hwcaps_read2cmd[][2] = {
2395 		{ SNOR_HWCAPS_READ,		SNOR_CMD_READ },
2396 		{ SNOR_HWCAPS_READ_FAST,	SNOR_CMD_READ_FAST },
2397 		{ SNOR_HWCAPS_READ_1_1_1_DTR,	SNOR_CMD_READ_1_1_1_DTR },
2398 		{ SNOR_HWCAPS_READ_1_1_2,	SNOR_CMD_READ_1_1_2 },
2399 		{ SNOR_HWCAPS_READ_1_2_2,	SNOR_CMD_READ_1_2_2 },
2400 		{ SNOR_HWCAPS_READ_2_2_2,	SNOR_CMD_READ_2_2_2 },
2401 		{ SNOR_HWCAPS_READ_1_2_2_DTR,	SNOR_CMD_READ_1_2_2_DTR },
2402 		{ SNOR_HWCAPS_READ_1_1_4,	SNOR_CMD_READ_1_1_4 },
2403 		{ SNOR_HWCAPS_READ_1_4_4,	SNOR_CMD_READ_1_4_4 },
2404 		{ SNOR_HWCAPS_READ_4_4_4,	SNOR_CMD_READ_4_4_4 },
2405 		{ SNOR_HWCAPS_READ_1_4_4_DTR,	SNOR_CMD_READ_1_4_4_DTR },
2406 		{ SNOR_HWCAPS_READ_1_1_8,	SNOR_CMD_READ_1_1_8 },
2407 		{ SNOR_HWCAPS_READ_1_8_8,	SNOR_CMD_READ_1_8_8 },
2408 		{ SNOR_HWCAPS_READ_8_8_8,	SNOR_CMD_READ_8_8_8 },
2409 		{ SNOR_HWCAPS_READ_1_8_8_DTR,	SNOR_CMD_READ_1_8_8_DTR },
2410 	};
2411 
2412 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_read2cmd,
2413 				  ARRAY_SIZE(hwcaps_read2cmd));
2414 }
2415 
spi_nor_hwcaps_pp2cmd(u32 hwcaps)2416 static int spi_nor_hwcaps_pp2cmd(u32 hwcaps)
2417 {
2418 	static const int hwcaps_pp2cmd[][2] = {
2419 		{ SNOR_HWCAPS_PP,		SNOR_CMD_PP },
2420 		{ SNOR_HWCAPS_PP_1_1_4,		SNOR_CMD_PP_1_1_4 },
2421 		{ SNOR_HWCAPS_PP_1_4_4,		SNOR_CMD_PP_1_4_4 },
2422 		{ SNOR_HWCAPS_PP_4_4_4,		SNOR_CMD_PP_4_4_4 },
2423 		{ SNOR_HWCAPS_PP_1_1_8,		SNOR_CMD_PP_1_1_8 },
2424 		{ SNOR_HWCAPS_PP_1_8_8,		SNOR_CMD_PP_1_8_8 },
2425 		{ SNOR_HWCAPS_PP_8_8_8,		SNOR_CMD_PP_8_8_8 },
2426 	};
2427 
2428 	return spi_nor_hwcaps2cmd(hwcaps, hwcaps_pp2cmd,
2429 				  ARRAY_SIZE(hwcaps_pp2cmd));
2430 }
2431 
2432 /**
2433  * spi_nor_spimem_check_op - check if the operation is supported
2434  *                           by controller
2435  *@nor:        pointer to a 'struct spi_nor'
2436  *@op:         pointer to op template to be checked
2437  *
2438  * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2439  */
spi_nor_spimem_check_op(struct spi_nor * nor,struct spi_mem_op * op)2440 static int spi_nor_spimem_check_op(struct spi_nor *nor,
2441 				   struct spi_mem_op *op)
2442 {
2443 	/*
2444 	 * First test with 4 address bytes. The opcode itself might
2445 	 * be a 3B addressing opcode but we don't care, because
2446 	 * SPI controller implementation should not check the opcode,
2447 	 * but just the sequence.
2448 	 */
2449 	op->addr.nbytes = 4;
2450 	if (!spi_mem_supports_op(nor->spimem, op)) {
2451 		if (nor->mtd.size > SZ_16M)
2452 			return -ENOTSUPP;
2453 
2454 		/* If flash size <= 16MB, 3 address bytes are sufficient */
2455 		op->addr.nbytes = 3;
2456 		if (!spi_mem_supports_op(nor->spimem, op))
2457 			return -ENOTSUPP;
2458 	}
2459 
2460 	return 0;
2461 }
2462 
2463 /**
2464  * spi_nor_spimem_check_readop - check if the read op is supported
2465  *                               by controller
2466  *@nor:         pointer to a 'struct spi_nor'
2467  *@read:        pointer to op template to be checked
2468  *
2469  * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2470  */
spi_nor_spimem_check_readop(struct spi_nor * nor,const struct spi_nor_read_command * read)2471 static int spi_nor_spimem_check_readop(struct spi_nor *nor,
2472 				       const struct spi_nor_read_command *read)
2473 {
2474 	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(read->opcode, 1),
2475 					  SPI_MEM_OP_ADDR(3, 0, 1),
2476 					  SPI_MEM_OP_DUMMY(0, 1),
2477 					  SPI_MEM_OP_DATA_IN(0, NULL, 1));
2478 
2479 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(read->proto);
2480 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(read->proto);
2481 	op.data.buswidth = spi_nor_get_protocol_data_nbits(read->proto);
2482 	op.dummy.buswidth = op.addr.buswidth;
2483 	op.dummy.nbytes = (read->num_mode_clocks + read->num_wait_states) *
2484 			  op.dummy.buswidth / 8;
2485 
2486 	return spi_nor_spimem_check_op(nor, &op);
2487 }
2488 
2489 /**
2490  * spi_nor_spimem_check_pp - check if the page program op is supported
2491  *                           by controller
2492  *@nor:         pointer to a 'struct spi_nor'
2493  *@pp:          pointer to op template to be checked
2494  *
2495  * Returns 0 if operation is supported, -ENOTSUPP otherwise.
2496  */
spi_nor_spimem_check_pp(struct spi_nor * nor,const struct spi_nor_pp_command * pp)2497 static int spi_nor_spimem_check_pp(struct spi_nor *nor,
2498 				   const struct spi_nor_pp_command *pp)
2499 {
2500 	struct spi_mem_op op = SPI_MEM_OP(SPI_MEM_OP_CMD(pp->opcode, 1),
2501 					  SPI_MEM_OP_ADDR(3, 0, 1),
2502 					  SPI_MEM_OP_NO_DUMMY,
2503 					  SPI_MEM_OP_DATA_OUT(0, NULL, 1));
2504 
2505 	op.cmd.buswidth = spi_nor_get_protocol_inst_nbits(pp->proto);
2506 	op.addr.buswidth = spi_nor_get_protocol_addr_nbits(pp->proto);
2507 	op.data.buswidth = spi_nor_get_protocol_data_nbits(pp->proto);
2508 
2509 	return spi_nor_spimem_check_op(nor, &op);
2510 }
2511 
2512 /**
2513  * spi_nor_spimem_adjust_hwcaps - Find optimal Read/Write protocol
2514  *                                based on SPI controller capabilities
2515  * @nor:        pointer to a 'struct spi_nor'
2516  * @hwcaps:     pointer to resulting capabilities after adjusting
2517  *              according to controller and flash's capability
2518  */
2519 static void
spi_nor_spimem_adjust_hwcaps(struct spi_nor * nor,u32 * hwcaps)2520 spi_nor_spimem_adjust_hwcaps(struct spi_nor *nor, u32 *hwcaps)
2521 {
2522 	struct spi_nor_flash_parameter *params = nor->params;
2523 	unsigned int cap;
2524 
2525 	/* DTR modes are not supported yet, mask them all. */
2526 	*hwcaps &= ~SNOR_HWCAPS_DTR;
2527 
2528 	/* X-X-X modes are not supported yet, mask them all. */
2529 	*hwcaps &= ~SNOR_HWCAPS_X_X_X;
2530 
2531 	for (cap = 0; cap < sizeof(*hwcaps) * BITS_PER_BYTE; cap++) {
2532 		int rdidx, ppidx;
2533 
2534 		if (!(*hwcaps & BIT(cap)))
2535 			continue;
2536 
2537 		rdidx = spi_nor_hwcaps_read2cmd(BIT(cap));
2538 		if (rdidx >= 0 &&
2539 		    spi_nor_spimem_check_readop(nor, &params->reads[rdidx]))
2540 			*hwcaps &= ~BIT(cap);
2541 
2542 		ppidx = spi_nor_hwcaps_pp2cmd(BIT(cap));
2543 		if (ppidx < 0)
2544 			continue;
2545 
2546 		if (spi_nor_spimem_check_pp(nor,
2547 					    &params->page_programs[ppidx]))
2548 			*hwcaps &= ~BIT(cap);
2549 	}
2550 }
2551 
2552 /**
2553  * spi_nor_set_erase_type() - set a SPI NOR erase type
2554  * @erase:	pointer to a structure that describes a SPI NOR erase type
2555  * @size:	the size of the sector/block erased by the erase type
2556  * @opcode:	the SPI command op code to erase the sector/block
2557  */
spi_nor_set_erase_type(struct spi_nor_erase_type * erase,u32 size,u8 opcode)2558 void spi_nor_set_erase_type(struct spi_nor_erase_type *erase, u32 size,
2559 			    u8 opcode)
2560 {
2561 	erase->size = size;
2562 	erase->opcode = opcode;
2563 	/* JEDEC JESD216B Standard imposes erase sizes to be power of 2. */
2564 	erase->size_shift = ffs(erase->size) - 1;
2565 	erase->size_mask = (1 << erase->size_shift) - 1;
2566 }
2567 
2568 /**
2569  * spi_nor_init_uniform_erase_map() - Initialize uniform erase map
2570  * @map:		the erase map of the SPI NOR
2571  * @erase_mask:		bitmask encoding erase types that can erase the entire
2572  *			flash memory
2573  * @flash_size:		the spi nor flash memory size
2574  */
spi_nor_init_uniform_erase_map(struct spi_nor_erase_map * map,u8 erase_mask,u64 flash_size)2575 void spi_nor_init_uniform_erase_map(struct spi_nor_erase_map *map,
2576 				    u8 erase_mask, u64 flash_size)
2577 {
2578 	/* Offset 0 with erase_mask and SNOR_LAST_REGION bit set */
2579 	map->uniform_region.offset = (erase_mask & SNOR_ERASE_TYPE_MASK) |
2580 				     SNOR_LAST_REGION;
2581 	map->uniform_region.size = flash_size;
2582 	map->regions = &map->uniform_region;
2583 	map->uniform_erase_type = erase_mask;
2584 }
2585 
spi_nor_post_bfpt_fixups(struct spi_nor * nor,const struct sfdp_parameter_header * bfpt_header,const struct sfdp_bfpt * bfpt,struct spi_nor_flash_parameter * params)2586 int spi_nor_post_bfpt_fixups(struct spi_nor *nor,
2587 			     const struct sfdp_parameter_header *bfpt_header,
2588 			     const struct sfdp_bfpt *bfpt,
2589 			     struct spi_nor_flash_parameter *params)
2590 {
2591 	int ret;
2592 
2593 	if (nor->manufacturer && nor->manufacturer->fixups &&
2594 	    nor->manufacturer->fixups->post_bfpt) {
2595 		ret = nor->manufacturer->fixups->post_bfpt(nor, bfpt_header,
2596 							   bfpt, params);
2597 		if (ret)
2598 			return ret;
2599 	}
2600 
2601 	if (nor->info->fixups && nor->info->fixups->post_bfpt)
2602 		return nor->info->fixups->post_bfpt(nor, bfpt_header, bfpt,
2603 						    params);
2604 
2605 	return 0;
2606 }
2607 
spi_nor_select_read(struct spi_nor * nor,u32 shared_hwcaps)2608 static int spi_nor_select_read(struct spi_nor *nor,
2609 			       u32 shared_hwcaps)
2610 {
2611 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_READ_MASK) - 1;
2612 	const struct spi_nor_read_command *read;
2613 
2614 	if (best_match < 0)
2615 		return -EINVAL;
2616 
2617 	cmd = spi_nor_hwcaps_read2cmd(BIT(best_match));
2618 	if (cmd < 0)
2619 		return -EINVAL;
2620 
2621 	read = &nor->params->reads[cmd];
2622 	nor->read_opcode = read->opcode;
2623 	nor->read_proto = read->proto;
2624 
2625 	/*
2626 	 * In the SPI NOR framework, we don't need to make the difference
2627 	 * between mode clock cycles and wait state clock cycles.
2628 	 * Indeed, the value of the mode clock cycles is used by a QSPI
2629 	 * flash memory to know whether it should enter or leave its 0-4-4
2630 	 * (Continuous Read / XIP) mode.
2631 	 * eXecution In Place is out of the scope of the mtd sub-system.
2632 	 * Hence we choose to merge both mode and wait state clock cycles
2633 	 * into the so called dummy clock cycles.
2634 	 */
2635 	nor->read_dummy = read->num_mode_clocks + read->num_wait_states;
2636 	return 0;
2637 }
2638 
spi_nor_select_pp(struct spi_nor * nor,u32 shared_hwcaps)2639 static int spi_nor_select_pp(struct spi_nor *nor,
2640 			     u32 shared_hwcaps)
2641 {
2642 	int cmd, best_match = fls(shared_hwcaps & SNOR_HWCAPS_PP_MASK) - 1;
2643 	const struct spi_nor_pp_command *pp;
2644 
2645 	if (best_match < 0)
2646 		return -EINVAL;
2647 
2648 	cmd = spi_nor_hwcaps_pp2cmd(BIT(best_match));
2649 	if (cmd < 0)
2650 		return -EINVAL;
2651 
2652 	pp = &nor->params->page_programs[cmd];
2653 	nor->program_opcode = pp->opcode;
2654 	nor->write_proto = pp->proto;
2655 	return 0;
2656 }
2657 
2658 /**
2659  * spi_nor_select_uniform_erase() - select optimum uniform erase type
2660  * @map:		the erase map of the SPI NOR
2661  * @wanted_size:	the erase type size to search for. Contains the value of
2662  *			info->sector_size or of the "small sector" size in case
2663  *			CONFIG_MTD_SPI_NOR_USE_4K_SECTORS is defined.
2664  *
2665  * Once the optimum uniform sector erase command is found, disable all the
2666  * other.
2667  *
2668  * Return: pointer to erase type on success, NULL otherwise.
2669  */
2670 static const struct spi_nor_erase_type *
spi_nor_select_uniform_erase(struct spi_nor_erase_map * map,const u32 wanted_size)2671 spi_nor_select_uniform_erase(struct spi_nor_erase_map *map,
2672 			     const u32 wanted_size)
2673 {
2674 	const struct spi_nor_erase_type *tested_erase, *erase = NULL;
2675 	int i;
2676 	u8 uniform_erase_type = map->uniform_erase_type;
2677 
2678 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2679 		if (!(uniform_erase_type & BIT(i)))
2680 			continue;
2681 
2682 		tested_erase = &map->erase_type[i];
2683 
2684 		/*
2685 		 * If the current erase size is the one, stop here:
2686 		 * we have found the right uniform Sector Erase command.
2687 		 */
2688 		if (tested_erase->size == wanted_size) {
2689 			erase = tested_erase;
2690 			break;
2691 		}
2692 
2693 		/*
2694 		 * Otherwise, the current erase size is still a valid canditate.
2695 		 * Select the biggest valid candidate.
2696 		 */
2697 		if (!erase && tested_erase->size)
2698 			erase = tested_erase;
2699 			/* keep iterating to find the wanted_size */
2700 	}
2701 
2702 	if (!erase)
2703 		return NULL;
2704 
2705 	/* Disable all other Sector Erase commands. */
2706 	map->uniform_erase_type &= ~SNOR_ERASE_TYPE_MASK;
2707 	map->uniform_erase_type |= BIT(erase - map->erase_type);
2708 	return erase;
2709 }
2710 
spi_nor_select_erase(struct spi_nor * nor)2711 static int spi_nor_select_erase(struct spi_nor *nor)
2712 {
2713 	struct spi_nor_erase_map *map = &nor->params->erase_map;
2714 	const struct spi_nor_erase_type *erase = NULL;
2715 	struct mtd_info *mtd = &nor->mtd;
2716 	u32 wanted_size = nor->info->sector_size;
2717 	int i;
2718 
2719 	/*
2720 	 * The previous implementation handling Sector Erase commands assumed
2721 	 * that the SPI flash memory has an uniform layout then used only one
2722 	 * of the supported erase sizes for all Sector Erase commands.
2723 	 * So to be backward compatible, the new implementation also tries to
2724 	 * manage the SPI flash memory as uniform with a single erase sector
2725 	 * size, when possible.
2726 	 */
2727 #ifdef CONFIG_MTD_SPI_NOR_USE_4K_SECTORS
2728 	/* prefer "small sector" erase if possible */
2729 	wanted_size = 4096u;
2730 #endif
2731 
2732 	if (spi_nor_has_uniform_erase(nor)) {
2733 		erase = spi_nor_select_uniform_erase(map, wanted_size);
2734 		if (!erase)
2735 			return -EINVAL;
2736 		nor->erase_opcode = erase->opcode;
2737 		mtd->erasesize = erase->size;
2738 		return 0;
2739 	}
2740 
2741 	/*
2742 	 * For non-uniform SPI flash memory, set mtd->erasesize to the
2743 	 * maximum erase sector size. No need to set nor->erase_opcode.
2744 	 */
2745 	for (i = SNOR_ERASE_TYPE_MAX - 1; i >= 0; i--) {
2746 		if (map->erase_type[i].size) {
2747 			erase = &map->erase_type[i];
2748 			break;
2749 		}
2750 	}
2751 
2752 	if (!erase)
2753 		return -EINVAL;
2754 
2755 	mtd->erasesize = erase->size;
2756 	return 0;
2757 }
2758 
spi_nor_default_setup(struct spi_nor * nor,const struct spi_nor_hwcaps * hwcaps)2759 static int spi_nor_default_setup(struct spi_nor *nor,
2760 				 const struct spi_nor_hwcaps *hwcaps)
2761 {
2762 	struct spi_nor_flash_parameter *params = nor->params;
2763 	u32 ignored_mask, shared_mask;
2764 	int err;
2765 
2766 	/*
2767 	 * Keep only the hardware capabilities supported by both the SPI
2768 	 * controller and the SPI flash memory.
2769 	 */
2770 	shared_mask = hwcaps->mask & params->hwcaps.mask;
2771 
2772 	if (nor->spimem) {
2773 		/*
2774 		 * When called from spi_nor_probe(), all caps are set and we
2775 		 * need to discard some of them based on what the SPI
2776 		 * controller actually supports (using spi_mem_supports_op()).
2777 		 */
2778 		spi_nor_spimem_adjust_hwcaps(nor, &shared_mask);
2779 	} else {
2780 		/*
2781 		 * SPI n-n-n protocols are not supported when the SPI
2782 		 * controller directly implements the spi_nor interface.
2783 		 * Yet another reason to switch to spi-mem.
2784 		 */
2785 		ignored_mask = SNOR_HWCAPS_X_X_X;
2786 		if (shared_mask & ignored_mask) {
2787 			dev_dbg(nor->dev,
2788 				"SPI n-n-n protocols are not supported.\n");
2789 			shared_mask &= ~ignored_mask;
2790 		}
2791 	}
2792 
2793 	/* Select the (Fast) Read command. */
2794 	err = spi_nor_select_read(nor, shared_mask);
2795 	if (err) {
2796 		dev_dbg(nor->dev,
2797 			"can't select read settings supported by both the SPI controller and memory.\n");
2798 		return err;
2799 	}
2800 
2801 	/* Select the Page Program command. */
2802 	err = spi_nor_select_pp(nor, shared_mask);
2803 	if (err) {
2804 		dev_dbg(nor->dev,
2805 			"can't select write settings supported by both the SPI controller and memory.\n");
2806 		return err;
2807 	}
2808 
2809 	/* Select the Sector Erase command. */
2810 	err = spi_nor_select_erase(nor);
2811 	if (err) {
2812 		dev_dbg(nor->dev,
2813 			"can't select erase settings supported by both the SPI controller and memory.\n");
2814 		return err;
2815 	}
2816 
2817 	return 0;
2818 }
2819 
spi_nor_setup(struct spi_nor * nor,const struct spi_nor_hwcaps * hwcaps)2820 static int spi_nor_setup(struct spi_nor *nor,
2821 			 const struct spi_nor_hwcaps *hwcaps)
2822 {
2823 	if (!nor->params->setup)
2824 		return 0;
2825 
2826 	return nor->params->setup(nor, hwcaps);
2827 }
2828 
2829 /**
2830  * spi_nor_manufacturer_init_params() - Initialize the flash's parameters and
2831  * settings based on MFR register and ->default_init() hook.
2832  * @nor:	pointer to a 'struct spi_nor'.
2833  */
spi_nor_manufacturer_init_params(struct spi_nor * nor)2834 static void spi_nor_manufacturer_init_params(struct spi_nor *nor)
2835 {
2836 	if (nor->manufacturer && nor->manufacturer->fixups &&
2837 	    nor->manufacturer->fixups->default_init)
2838 		nor->manufacturer->fixups->default_init(nor);
2839 
2840 	if (nor->info->fixups && nor->info->fixups->default_init)
2841 		nor->info->fixups->default_init(nor);
2842 }
2843 
2844 /**
2845  * spi_nor_sfdp_init_params() - Initialize the flash's parameters and settings
2846  * based on JESD216 SFDP standard.
2847  * @nor:	pointer to a 'struct spi_nor'.
2848  *
2849  * The method has a roll-back mechanism: in case the SFDP parsing fails, the
2850  * legacy flash parameters and settings will be restored.
2851  */
spi_nor_sfdp_init_params(struct spi_nor * nor)2852 static void spi_nor_sfdp_init_params(struct spi_nor *nor)
2853 {
2854 	struct spi_nor_flash_parameter sfdp_params;
2855 
2856 	memcpy(&sfdp_params, nor->params, sizeof(sfdp_params));
2857 
2858 	if (spi_nor_parse_sfdp(nor, nor->params)) {
2859 		memcpy(nor->params, &sfdp_params, sizeof(*nor->params));
2860 		nor->addr_width = 0;
2861 		nor->flags &= ~SNOR_F_4B_OPCODES;
2862 	}
2863 }
2864 
2865 /**
2866  * spi_nor_info_init_params() - Initialize the flash's parameters and settings
2867  * based on nor->info data.
2868  * @nor:	pointer to a 'struct spi_nor'.
2869  */
spi_nor_info_init_params(struct spi_nor * nor)2870 static void spi_nor_info_init_params(struct spi_nor *nor)
2871 {
2872 	struct spi_nor_flash_parameter *params = nor->params;
2873 	struct spi_nor_erase_map *map = &params->erase_map;
2874 	const struct flash_info *info = nor->info;
2875 	struct device_node *np = spi_nor_get_flash_node(nor);
2876 	u8 i, erase_mask;
2877 
2878 	/* Initialize legacy flash parameters and settings. */
2879 	params->quad_enable = spi_nor_sr2_bit1_quad_enable;
2880 	params->set_4byte_addr_mode = spansion_set_4byte_addr_mode;
2881 	params->setup = spi_nor_default_setup;
2882 	/* Default to 16-bit Write Status (01h) Command */
2883 	nor->flags |= SNOR_F_HAS_16BIT_SR;
2884 
2885 	/* Set SPI NOR sizes. */
2886 	params->size = (u64)info->sector_size * info->n_sectors;
2887 	params->page_size = info->page_size;
2888 
2889 	if (!(info->flags & SPI_NOR_NO_FR)) {
2890 		/* Default to Fast Read for DT and non-DT platform devices. */
2891 		params->hwcaps.mask |= SNOR_HWCAPS_READ_FAST;
2892 
2893 		/* Mask out Fast Read if not requested at DT instantiation. */
2894 		if (np && !of_property_read_bool(np, "m25p,fast-read"))
2895 			params->hwcaps.mask &= ~SNOR_HWCAPS_READ_FAST;
2896 	}
2897 
2898 	/* (Fast) Read settings. */
2899 	params->hwcaps.mask |= SNOR_HWCAPS_READ;
2900 	spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ],
2901 				  0, 0, SPINOR_OP_READ,
2902 				  SNOR_PROTO_1_1_1);
2903 
2904 	if (params->hwcaps.mask & SNOR_HWCAPS_READ_FAST)
2905 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_FAST],
2906 					  0, 8, SPINOR_OP_READ_FAST,
2907 					  SNOR_PROTO_1_1_1);
2908 
2909 	if (info->flags & SPI_NOR_DUAL_READ) {
2910 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_2;
2911 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_2],
2912 					  0, 8, SPINOR_OP_READ_1_1_2,
2913 					  SNOR_PROTO_1_1_2);
2914 	}
2915 
2916 	if (info->flags & SPI_NOR_QUAD_READ) {
2917 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_4;
2918 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_4],
2919 					  0, 8, SPINOR_OP_READ_1_1_4,
2920 					  SNOR_PROTO_1_1_4);
2921 	}
2922 
2923 	if (info->flags & SPI_NOR_OCTAL_READ) {
2924 		params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8;
2925 		spi_nor_set_read_settings(&params->reads[SNOR_CMD_READ_1_1_8],
2926 					  0, 8, SPINOR_OP_READ_1_1_8,
2927 					  SNOR_PROTO_1_1_8);
2928 	}
2929 
2930 	/* Page Program settings. */
2931 	params->hwcaps.mask |= SNOR_HWCAPS_PP;
2932 	spi_nor_set_pp_settings(&params->page_programs[SNOR_CMD_PP],
2933 				SPINOR_OP_PP, SNOR_PROTO_1_1_1);
2934 
2935 	/*
2936 	 * Sector Erase settings. Sort Erase Types in ascending order, with the
2937 	 * smallest erase size starting at BIT(0).
2938 	 */
2939 	erase_mask = 0;
2940 	i = 0;
2941 	if (info->flags & SECT_4K_PMC) {
2942 		erase_mask |= BIT(i);
2943 		spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2944 				       SPINOR_OP_BE_4K_PMC);
2945 		i++;
2946 	} else if (info->flags & SECT_4K) {
2947 		erase_mask |= BIT(i);
2948 		spi_nor_set_erase_type(&map->erase_type[i], 4096u,
2949 				       SPINOR_OP_BE_4K);
2950 		i++;
2951 	}
2952 	erase_mask |= BIT(i);
2953 	spi_nor_set_erase_type(&map->erase_type[i], info->sector_size,
2954 			       SPINOR_OP_SE);
2955 	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
2956 }
2957 
2958 /**
2959  * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
2960  * after SFDP has been parsed (is also called for SPI NORs that do not
2961  * support RDSFDP).
2962  * @nor:	pointer to a 'struct spi_nor'
2963  *
2964  * Typically used to tweak various parameters that could not be extracted by
2965  * other means (i.e. when information provided by the SFDP/flash_info tables
2966  * are incomplete or wrong).
2967  */
spi_nor_post_sfdp_fixups(struct spi_nor * nor)2968 static void spi_nor_post_sfdp_fixups(struct spi_nor *nor)
2969 {
2970 	if (nor->manufacturer && nor->manufacturer->fixups &&
2971 	    nor->manufacturer->fixups->post_sfdp)
2972 		nor->manufacturer->fixups->post_sfdp(nor);
2973 
2974 	if (nor->info->fixups && nor->info->fixups->post_sfdp)
2975 		nor->info->fixups->post_sfdp(nor);
2976 }
2977 
2978 /**
2979  * spi_nor_late_init_params() - Late initialization of default flash parameters.
2980  * @nor:	pointer to a 'struct spi_nor'
2981  *
2982  * Used to set default flash parameters and settings when the ->default_init()
2983  * hook or the SFDP parser let voids.
2984  */
spi_nor_late_init_params(struct spi_nor * nor)2985 static void spi_nor_late_init_params(struct spi_nor *nor)
2986 {
2987 	/*
2988 	 * NOR protection support. When locking_ops are not provided, we pick
2989 	 * the default ones.
2990 	 */
2991 	if (nor->flags & SNOR_F_HAS_LOCK && !nor->params->locking_ops)
2992 		nor->params->locking_ops = &spi_nor_sr_locking_ops;
2993 }
2994 
2995 /**
2996  * spi_nor_init_params() - Initialize the flash's parameters and settings.
2997  * @nor:	pointer to a 'struct spi_nor'.
2998  *
2999  * The flash parameters and settings are initialized based on a sequence of
3000  * calls that are ordered by priority:
3001  *
3002  * 1/ Default flash parameters initialization. The initializations are done
3003  *    based on nor->info data:
3004  *		spi_nor_info_init_params()
3005  *
3006  * which can be overwritten by:
3007  * 2/ Manufacturer flash parameters initialization. The initializations are
3008  *    done based on MFR register, or when the decisions can not be done solely
3009  *    based on MFR, by using specific flash_info tweeks, ->default_init():
3010  *		spi_nor_manufacturer_init_params()
3011  *
3012  * which can be overwritten by:
3013  * 3/ SFDP flash parameters initialization. JESD216 SFDP is a standard and
3014  *    should be more accurate that the above.
3015  *		spi_nor_sfdp_init_params()
3016  *
3017  *    Please note that there is a ->post_bfpt() fixup hook that can overwrite
3018  *    the flash parameters and settings immediately after parsing the Basic
3019  *    Flash Parameter Table.
3020  *
3021  * which can be overwritten by:
3022  * 4/ Post SFDP flash parameters initialization. Used to tweak various
3023  *    parameters that could not be extracted by other means (i.e. when
3024  *    information provided by the SFDP/flash_info tables are incomplete or
3025  *    wrong).
3026  *		spi_nor_post_sfdp_fixups()
3027  *
3028  * 5/ Late default flash parameters initialization, used when the
3029  * ->default_init() hook or the SFDP parser do not set specific params.
3030  *		spi_nor_late_init_params()
3031  */
spi_nor_init_params(struct spi_nor * nor)3032 static int spi_nor_init_params(struct spi_nor *nor)
3033 {
3034 	nor->params = devm_kzalloc(nor->dev, sizeof(*nor->params), GFP_KERNEL);
3035 	if (!nor->params)
3036 		return -ENOMEM;
3037 
3038 	spi_nor_info_init_params(nor);
3039 
3040 	spi_nor_manufacturer_init_params(nor);
3041 
3042 	if ((nor->info->flags & (SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)) &&
3043 	    !(nor->info->flags & SPI_NOR_SKIP_SFDP))
3044 		spi_nor_sfdp_init_params(nor);
3045 
3046 	spi_nor_post_sfdp_fixups(nor);
3047 
3048 	spi_nor_late_init_params(nor);
3049 
3050 	return 0;
3051 }
3052 
3053 /**
3054  * spi_nor_quad_enable() - enable Quad I/O if needed.
3055  * @nor:                pointer to a 'struct spi_nor'
3056  *
3057  * Return: 0 on success, -errno otherwise.
3058  */
spi_nor_quad_enable(struct spi_nor * nor)3059 static int spi_nor_quad_enable(struct spi_nor *nor)
3060 {
3061 	if (!nor->params->quad_enable)
3062 		return 0;
3063 
3064 	if (!(spi_nor_get_protocol_width(nor->read_proto) == 4 ||
3065 	      spi_nor_get_protocol_width(nor->write_proto) == 4))
3066 		return 0;
3067 
3068 	return nor->params->quad_enable(nor);
3069 }
3070 
3071 /**
3072  * spi_nor_try_unlock_all() - Tries to unlock the entire flash memory array.
3073  * @nor:	pointer to a 'struct spi_nor'.
3074  *
3075  * Some SPI NOR flashes are write protected by default after a power-on reset
3076  * cycle, in order to avoid inadvertent writes during power-up. Backward
3077  * compatibility imposes to unlock the entire flash memory array at power-up
3078  * by default.
3079  *
3080  * Unprotecting the entire flash array will fail for boards which are hardware
3081  * write-protected. Thus any errors are ignored.
3082  */
spi_nor_try_unlock_all(struct spi_nor * nor)3083 static void spi_nor_try_unlock_all(struct spi_nor *nor)
3084 {
3085 	int ret;
3086 
3087 	if (!(nor->flags & SNOR_F_HAS_LOCK))
3088 		return;
3089 
3090 	ret = spi_nor_unlock(&nor->mtd, 0, nor->params->size);
3091 	if (ret)
3092 		dev_dbg(nor->dev, "Failed to unlock the entire flash memory array\n");
3093 }
3094 
spi_nor_init(struct spi_nor * nor)3095 static int spi_nor_init(struct spi_nor *nor)
3096 {
3097 	int err;
3098 
3099 	err = spi_nor_quad_enable(nor);
3100 	if (err) {
3101 		dev_dbg(nor->dev, "quad mode not supported\n");
3102 		return err;
3103 	}
3104 
3105 	spi_nor_try_unlock_all(nor);
3106 
3107 	if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES)) {
3108 		/*
3109 		 * If the RESET# pin isn't hooked up properly, or the system
3110 		 * otherwise doesn't perform a reset command in the boot
3111 		 * sequence, it's impossible to 100% protect against unexpected
3112 		 * reboots (e.g., crashes). Warn the user (or hopefully, system
3113 		 * designer) that this is bad.
3114 		 */
3115 		WARN_ONCE(nor->flags & SNOR_F_BROKEN_RESET,
3116 			  "enabling reset hack; may not recover from unexpected reboots\n");
3117 		nor->params->set_4byte_addr_mode(nor, true);
3118 	}
3119 
3120 	return 0;
3121 }
3122 
3123 /* mtd resume handler */
spi_nor_resume(struct mtd_info * mtd)3124 static void spi_nor_resume(struct mtd_info *mtd)
3125 {
3126 	struct spi_nor *nor = mtd_to_spi_nor(mtd);
3127 	struct device *dev = nor->dev;
3128 	int ret;
3129 
3130 	/* re-initialize the nor chip */
3131 	ret = spi_nor_init(nor);
3132 	if (ret)
3133 		dev_err(dev, "resume() failed\n");
3134 }
3135 
spi_nor_get_device(struct mtd_info * mtd)3136 static int spi_nor_get_device(struct mtd_info *mtd)
3137 {
3138 	struct mtd_info *master = mtd_get_master(mtd);
3139 	struct spi_nor *nor = mtd_to_spi_nor(master);
3140 	struct device *dev;
3141 
3142 	if (nor->spimem)
3143 		dev = nor->spimem->spi->controller->dev.parent;
3144 	else
3145 		dev = nor->dev;
3146 
3147 	if (!try_module_get(dev->driver->owner))
3148 		return -ENODEV;
3149 
3150 	return 0;
3151 }
3152 
spi_nor_put_device(struct mtd_info * mtd)3153 static void spi_nor_put_device(struct mtd_info *mtd)
3154 {
3155 	struct mtd_info *master = mtd_get_master(mtd);
3156 	struct spi_nor *nor = mtd_to_spi_nor(master);
3157 	struct device *dev;
3158 
3159 	if (nor->spimem)
3160 		dev = nor->spimem->spi->controller->dev.parent;
3161 	else
3162 		dev = nor->dev;
3163 
3164 	module_put(dev->driver->owner);
3165 }
3166 
spi_nor_restore(struct spi_nor * nor)3167 void spi_nor_restore(struct spi_nor *nor)
3168 {
3169 	/* restore the addressing mode */
3170 	if (nor->addr_width == 4 && !(nor->flags & SNOR_F_4B_OPCODES) &&
3171 	    nor->flags & SNOR_F_BROKEN_RESET)
3172 		nor->params->set_4byte_addr_mode(nor, false);
3173 }
3174 EXPORT_SYMBOL_GPL(spi_nor_restore);
3175 
spi_nor_match_id(struct spi_nor * nor,const char * name)3176 static const struct flash_info *spi_nor_match_id(struct spi_nor *nor,
3177 						 const char *name)
3178 {
3179 	unsigned int i, j;
3180 
3181 	for (i = 0; i < ARRAY_SIZE(manufacturers); i++) {
3182 		for (j = 0; j < manufacturers[i]->nparts; j++) {
3183 			if (!strcmp(name, manufacturers[i]->parts[j].name)) {
3184 				nor->manufacturer = manufacturers[i];
3185 				return &manufacturers[i]->parts[j];
3186 			}
3187 		}
3188 	}
3189 
3190 	return NULL;
3191 }
3192 
spi_nor_set_addr_width(struct spi_nor * nor)3193 static int spi_nor_set_addr_width(struct spi_nor *nor)
3194 {
3195 	if (nor->addr_width) {
3196 		/* already configured from SFDP */
3197 	} else if (nor->info->addr_width) {
3198 		nor->addr_width = nor->info->addr_width;
3199 	} else {
3200 		nor->addr_width = 3;
3201 	}
3202 
3203 	if (nor->addr_width == 3 && nor->mtd.size > 0x1000000) {
3204 		/* enable 4-byte addressing if the device exceeds 16MiB */
3205 		nor->addr_width = 4;
3206 	}
3207 
3208 	if (nor->addr_width > SPI_NOR_MAX_ADDR_WIDTH) {
3209 		dev_dbg(nor->dev, "address width is too large: %u\n",
3210 			nor->addr_width);
3211 		return -EINVAL;
3212 	}
3213 
3214 	/* Set 4byte opcodes when possible. */
3215 	if (nor->addr_width == 4 && nor->flags & SNOR_F_4B_OPCODES &&
3216 	    !(nor->flags & SNOR_F_HAS_4BAIT))
3217 		spi_nor_set_4byte_opcodes(nor);
3218 
3219 	return 0;
3220 }
3221 
spi_nor_debugfs_init(struct spi_nor * nor,const struct flash_info * info)3222 static void spi_nor_debugfs_init(struct spi_nor *nor,
3223 				 const struct flash_info *info)
3224 {
3225 	struct mtd_info *mtd = &nor->mtd;
3226 
3227 	mtd->dbg.partname = info->name;
3228 	mtd->dbg.partid = devm_kasprintf(nor->dev, GFP_KERNEL, "spi-nor:%*phN",
3229 					 info->id_len, info->id);
3230 }
3231 
spi_nor_get_flash_info(struct spi_nor * nor,const char * name)3232 static const struct flash_info *spi_nor_get_flash_info(struct spi_nor *nor,
3233 						       const char *name)
3234 {
3235 	const struct flash_info *info = NULL;
3236 
3237 	if (name)
3238 		info = spi_nor_match_id(nor, name);
3239 	/* Try to auto-detect if chip name wasn't specified or not found */
3240 	if (!info)
3241 		info = spi_nor_read_id(nor);
3242 	if (IS_ERR_OR_NULL(info))
3243 		return ERR_PTR(-ENOENT);
3244 
3245 	/*
3246 	 * If caller has specified name of flash model that can normally be
3247 	 * detected using JEDEC, let's verify it.
3248 	 */
3249 	if (name && info->id_len) {
3250 		const struct flash_info *jinfo;
3251 
3252 		jinfo = spi_nor_read_id(nor);
3253 		if (IS_ERR(jinfo)) {
3254 			return jinfo;
3255 		} else if (jinfo != info) {
3256 			/*
3257 			 * JEDEC knows better, so overwrite platform ID. We
3258 			 * can't trust partitions any longer, but we'll let
3259 			 * mtd apply them anyway, since some partitions may be
3260 			 * marked read-only, and we don't want to lose that
3261 			 * information, even if it's not 100% accurate.
3262 			 */
3263 			dev_warn(nor->dev, "found %s, expected %s\n",
3264 				 jinfo->name, info->name);
3265 			info = jinfo;
3266 		}
3267 	}
3268 
3269 	return info;
3270 }
3271 
spi_nor_scan(struct spi_nor * nor,const char * name,const struct spi_nor_hwcaps * hwcaps)3272 int spi_nor_scan(struct spi_nor *nor, const char *name,
3273 		 const struct spi_nor_hwcaps *hwcaps)
3274 {
3275 	const struct flash_info *info;
3276 	struct device *dev = nor->dev;
3277 	struct mtd_info *mtd = &nor->mtd;
3278 	struct device_node *np = spi_nor_get_flash_node(nor);
3279 	int ret;
3280 	int i;
3281 
3282 	ret = spi_nor_check(nor);
3283 	if (ret)
3284 		return ret;
3285 
3286 	/* Reset SPI protocol for all commands. */
3287 	nor->reg_proto = SNOR_PROTO_1_1_1;
3288 	nor->read_proto = SNOR_PROTO_1_1_1;
3289 	nor->write_proto = SNOR_PROTO_1_1_1;
3290 
3291 	/*
3292 	 * We need the bounce buffer early to read/write registers when going
3293 	 * through the spi-mem layer (buffers have to be DMA-able).
3294 	 * For spi-mem drivers, we'll reallocate a new buffer if
3295 	 * nor->page_size turns out to be greater than PAGE_SIZE (which
3296 	 * shouldn't happen before long since NOR pages are usually less
3297 	 * than 1KB) after spi_nor_scan() returns.
3298 	 */
3299 	nor->bouncebuf_size = PAGE_SIZE;
3300 	nor->bouncebuf = devm_kmalloc(dev, nor->bouncebuf_size,
3301 				      GFP_KERNEL);
3302 	if (!nor->bouncebuf)
3303 		return -ENOMEM;
3304 
3305 	info = spi_nor_get_flash_info(nor, name);
3306 	if (IS_ERR(info))
3307 		return PTR_ERR(info);
3308 
3309 	nor->info = info;
3310 
3311 	spi_nor_debugfs_init(nor, info);
3312 
3313 	mutex_init(&nor->lock);
3314 
3315 	/*
3316 	 * Make sure the XSR_RDY flag is set before calling
3317 	 * spi_nor_wait_till_ready(). Xilinx S3AN share MFR
3318 	 * with Atmel SPI NOR.
3319 	 */
3320 	if (info->flags & SPI_NOR_XSR_RDY)
3321 		nor->flags |=  SNOR_F_READY_XSR_RDY;
3322 
3323 	if (info->flags & SPI_NOR_HAS_LOCK)
3324 		nor->flags |= SNOR_F_HAS_LOCK;
3325 
3326 	mtd->_write = spi_nor_write;
3327 
3328 	/* Init flash parameters based on flash_info struct and SFDP */
3329 	ret = spi_nor_init_params(nor);
3330 	if (ret)
3331 		return ret;
3332 
3333 	if (!mtd->name)
3334 		mtd->name = dev_name(dev);
3335 
3336 	if (IS_ENABLED(CONFIG_SPI_ROCKCHIP_SFC))
3337 		mtd->name = "sfc_nor";
3338 
3339 	mtd->priv = nor;
3340 	mtd->type = MTD_NORFLASH;
3341 	mtd->writesize = 1;
3342 	mtd->flags = MTD_CAP_NORFLASH;
3343 	mtd->size = nor->params->size;
3344 	mtd->_erase = spi_nor_erase;
3345 	mtd->_read = spi_nor_read;
3346 	mtd->_resume = spi_nor_resume;
3347 	mtd->_get_device = spi_nor_get_device;
3348 	mtd->_put_device = spi_nor_put_device;
3349 
3350 	if (nor->params->locking_ops) {
3351 		mtd->_lock = spi_nor_lock;
3352 		mtd->_unlock = spi_nor_unlock;
3353 		mtd->_is_locked = spi_nor_is_locked;
3354 	}
3355 
3356 	if (info->flags & USE_FSR)
3357 		nor->flags |= SNOR_F_USE_FSR;
3358 	if (info->flags & SPI_NOR_HAS_TB) {
3359 		nor->flags |= SNOR_F_HAS_SR_TB;
3360 		if (info->flags & SPI_NOR_TB_SR_BIT6)
3361 			nor->flags |= SNOR_F_HAS_SR_TB_BIT6;
3362 	}
3363 
3364 	if (info->flags & NO_CHIP_ERASE)
3365 		nor->flags |= SNOR_F_NO_OP_CHIP_ERASE;
3366 	if (info->flags & USE_CLSR)
3367 		nor->flags |= SNOR_F_USE_CLSR;
3368 
3369 	if (info->flags & SPI_NOR_4BIT_BP) {
3370 		nor->flags |= SNOR_F_HAS_4BIT_BP;
3371 		if (info->flags & SPI_NOR_BP3_SR_BIT6)
3372 			nor->flags |= SNOR_F_HAS_SR_BP3_BIT6;
3373 	}
3374 
3375 	if (info->flags & SPI_NOR_NO_ERASE)
3376 		mtd->flags |= MTD_NO_ERASE;
3377 
3378 	mtd->dev.parent = dev;
3379 	nor->page_size = nor->params->page_size;
3380 	mtd->writebufsize = nor->page_size;
3381 
3382 	if (of_property_read_bool(np, "broken-flash-reset"))
3383 		nor->flags |= SNOR_F_BROKEN_RESET;
3384 
3385 	/*
3386 	 * Configure the SPI memory:
3387 	 * - select op codes for (Fast) Read, Page Program and Sector Erase.
3388 	 * - set the number of dummy cycles (mode cycles + wait states).
3389 	 * - set the SPI protocols for register and memory accesses.
3390 	 */
3391 	ret = spi_nor_setup(nor, hwcaps);
3392 	if (ret)
3393 		return ret;
3394 
3395 	if (info->flags & SPI_NOR_4B_OPCODES)
3396 		nor->flags |= SNOR_F_4B_OPCODES;
3397 
3398 	ret = spi_nor_set_addr_width(nor);
3399 	if (ret)
3400 		return ret;
3401 
3402 	/* Send all the required SPI flash commands to initialize device */
3403 	ret = spi_nor_init(nor);
3404 	if (ret)
3405 		return ret;
3406 
3407 	dev_info(dev, "%s (%lld Kbytes) read_data x%d\n", info->name,
3408 			(long long)mtd->size >> 10, spi_nor_get_protocol_data_nbits(nor->read_proto));
3409 
3410 	dev_dbg(dev,
3411 		"mtd .name = %s, .size = 0x%llx (%lldMiB), "
3412 		".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
3413 		mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
3414 		mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
3415 
3416 	if (mtd->numeraseregions)
3417 		for (i = 0; i < mtd->numeraseregions; i++)
3418 			dev_dbg(dev,
3419 				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
3420 				".erasesize = 0x%.8x (%uKiB), "
3421 				".numblocks = %d }\n",
3422 				i, (long long)mtd->eraseregions[i].offset,
3423 				mtd->eraseregions[i].erasesize,
3424 				mtd->eraseregions[i].erasesize / 1024,
3425 				mtd->eraseregions[i].numblocks);
3426 	return 0;
3427 }
3428 EXPORT_SYMBOL_GPL(spi_nor_scan);
3429 
spi_nor_create_read_dirmap(struct spi_nor * nor)3430 static int spi_nor_create_read_dirmap(struct spi_nor *nor)
3431 {
3432 	struct spi_mem_dirmap_info info = {
3433 		.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->read_opcode, 1),
3434 				      SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
3435 				      SPI_MEM_OP_DUMMY(nor->read_dummy, 1),
3436 				      SPI_MEM_OP_DATA_IN(0, NULL, 1)),
3437 		.offset = 0,
3438 		.length = nor->mtd.size,
3439 	};
3440 	struct spi_mem_op *op = &info.op_tmpl;
3441 
3442 	/* get transfer protocols. */
3443 	op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->read_proto);
3444 	op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->read_proto);
3445 	op->dummy.buswidth = op->addr.buswidth;
3446 	op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->read_proto);
3447 
3448 	/* convert the dummy cycles to the number of bytes */
3449 	op->dummy.nbytes = (nor->read_dummy * op->dummy.buswidth) / 8;
3450 
3451 	nor->dirmap.rdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3452 						       &info);
3453 	return PTR_ERR_OR_ZERO(nor->dirmap.rdesc);
3454 }
3455 
spi_nor_create_write_dirmap(struct spi_nor * nor)3456 static int spi_nor_create_write_dirmap(struct spi_nor *nor)
3457 {
3458 	struct spi_mem_dirmap_info info = {
3459 		.op_tmpl = SPI_MEM_OP(SPI_MEM_OP_CMD(nor->program_opcode, 1),
3460 				      SPI_MEM_OP_ADDR(nor->addr_width, 0, 1),
3461 				      SPI_MEM_OP_NO_DUMMY,
3462 				      SPI_MEM_OP_DATA_OUT(0, NULL, 1)),
3463 		.offset = 0,
3464 		.length = nor->mtd.size,
3465 	};
3466 	struct spi_mem_op *op = &info.op_tmpl;
3467 
3468 	/* get transfer protocols. */
3469 	op->cmd.buswidth = spi_nor_get_protocol_inst_nbits(nor->write_proto);
3470 	op->addr.buswidth = spi_nor_get_protocol_addr_nbits(nor->write_proto);
3471 	op->dummy.buswidth = op->addr.buswidth;
3472 	op->data.buswidth = spi_nor_get_protocol_data_nbits(nor->write_proto);
3473 
3474 	if (nor->program_opcode == SPINOR_OP_AAI_WP && nor->sst_write_second)
3475 		op->addr.nbytes = 0;
3476 
3477 	nor->dirmap.wdesc = devm_spi_mem_dirmap_create(nor->dev, nor->spimem,
3478 						       &info);
3479 	return PTR_ERR_OR_ZERO(nor->dirmap.wdesc);
3480 }
3481 
spi_nor_misc_open(struct inode * inode,struct file * file)3482 static int spi_nor_misc_open(struct inode *inode, struct file *file)
3483 {
3484 	struct miscdevice *miscdev = file->private_data;
3485 	struct spi_nor_misc_dev *nor_dev;
3486 
3487 	nor_dev = container_of(miscdev, struct spi_nor_misc_dev, dev);
3488 	file->private_data = nor_dev->nor;
3489 
3490 	return 0;
3491 }
3492 
spi_nor_misc_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3493 static long spi_nor_misc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3494 {
3495 	struct spi_nor *nor = (struct spi_nor *)file->private_data;
3496 	struct nor_flash_user_info info;
3497 	void __user *uarg = (void __user *)arg;
3498 	int i, ret;
3499 
3500 	switch (cmd) {
3501 	case NOR_GET_FLASH_INFO:
3502 		for (i = 0; i < SPI_NOR_MAX_ID_LEN; i++)
3503 			info.id[i] = nor->info->id[i];
3504 
3505 		ret = copy_to_user(uarg, &info, sizeof(info));
3506 		if (ret) {
3507 			dev_err(nor->dev, "failed to get elbi data\n");
3508 			return -EFAULT;
3509 		}
3510 		break;
3511 	default:
3512 		break;
3513 	}
3514 	return 0;
3515 }
3516 
3517 static const struct file_operations spi_nor_misc_ops = {
3518 	.owner = THIS_MODULE,
3519 	.open = spi_nor_misc_open,
3520 	.unlocked_ioctl = spi_nor_misc_ioctl,
3521 };
3522 
spi_nor_add_misc(struct spi_nor * nor)3523 static int spi_nor_add_misc(struct spi_nor *nor)
3524 {
3525 	int ret;
3526 	struct spi_nor_misc_dev *nor_dev;
3527 	char name[24];
3528 
3529 	nor_dev = devm_kzalloc(nor->dev, sizeof(struct spi_nor_misc_dev),
3530 				GFP_KERNEL);
3531 	if (!nor_dev)
3532 		return -ENOMEM;
3533 
3534 	nor_dev->dev.minor = MISC_DYNAMIC_MINOR;
3535 	snprintf(name, sizeof(name), "%s%s", "nor_misc_", dev_name(nor->dev));
3536 	nor_dev->dev.name = devm_kstrdup(nor->dev, name, GFP_KERNEL);
3537 	nor_dev->dev.fops = &spi_nor_misc_ops;
3538 	nor_dev->dev.parent = nor->dev;
3539 
3540 	ret = misc_register(&nor_dev->dev);
3541 	if (ret) {
3542 		dev_err(nor->dev, "failed to register misc device.\n");
3543 		return ret;
3544 	}
3545 
3546 	nor_dev->nor = nor;
3547 	nor->misc_dev = &nor_dev->dev;
3548 
3549 	dev_info(nor->dev, "register misc device\n");
3550 
3551 	return 0;
3552 }
3553 
spi_nor_probe(struct spi_mem * spimem)3554 static int spi_nor_probe(struct spi_mem *spimem)
3555 {
3556 	struct spi_device *spi = spimem->spi;
3557 	struct flash_platform_data *data = dev_get_platdata(&spi->dev);
3558 	struct spi_nor *nor;
3559 	/*
3560 	 * Enable all caps by default. The core will mask them after
3561 	 * checking what's really supported using spi_mem_supports_op().
3562 	 */
3563 	const struct spi_nor_hwcaps hwcaps = { .mask = SNOR_HWCAPS_ALL };
3564 	char *flash_name;
3565 	int ret;
3566 
3567 	nor = devm_kzalloc(&spi->dev, sizeof(*nor), GFP_KERNEL);
3568 	if (!nor)
3569 		return -ENOMEM;
3570 
3571 	nor->spimem = spimem;
3572 	nor->dev = &spi->dev;
3573 	spi_nor_set_flash_node(nor, spi->dev.of_node);
3574 
3575 	spi_mem_set_drvdata(spimem, nor);
3576 
3577 	if (data && data->name)
3578 		nor->mtd.name = data->name;
3579 
3580 	if (!nor->mtd.name)
3581 		nor->mtd.name = spi_mem_get_name(spimem);
3582 
3583 	/*
3584 	 * For some (historical?) reason many platforms provide two different
3585 	 * names in flash_platform_data: "name" and "type". Quite often name is
3586 	 * set to "m25p80" and then "type" provides a real chip name.
3587 	 * If that's the case, respect "type" and ignore a "name".
3588 	 */
3589 	if (data && data->type)
3590 		flash_name = data->type;
3591 	else if (!strcmp(spi->modalias, "spi-nor"))
3592 		flash_name = NULL; /* auto-detect */
3593 	else
3594 		flash_name = spi->modalias;
3595 
3596 	ret = spi_nor_scan(nor, flash_name, &hwcaps);
3597 	if (ret)
3598 		return ret;
3599 
3600 	/*
3601 	 * None of the existing parts have > 512B pages, but let's play safe
3602 	 * and add this logic so that if anyone ever adds support for such
3603 	 * a NOR we don't end up with buffer overflows.
3604 	 */
3605 	if (nor->page_size > PAGE_SIZE) {
3606 		nor->bouncebuf_size = nor->page_size;
3607 		devm_kfree(nor->dev, nor->bouncebuf);
3608 		nor->bouncebuf = devm_kmalloc(nor->dev,
3609 					      nor->bouncebuf_size,
3610 					      GFP_KERNEL);
3611 		if (!nor->bouncebuf)
3612 			return -ENOMEM;
3613 	}
3614 
3615 	ret = spi_nor_create_read_dirmap(nor);
3616 	if (ret)
3617 		return ret;
3618 
3619 	ret = spi_nor_create_write_dirmap(nor);
3620 	if (ret)
3621 		return ret;
3622 
3623 	if (IS_ENABLED(CONFIG_MTD_SPI_NOR_MISC))
3624 		spi_nor_add_misc(nor);
3625 
3626 	return mtd_device_register(&nor->mtd, data ? data->parts : NULL,
3627 				   data ? data->nr_parts : 0);
3628 }
3629 
spi_nor_remove(struct spi_mem * spimem)3630 static int spi_nor_remove(struct spi_mem *spimem)
3631 {
3632 	struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3633 
3634 	spi_nor_restore(nor);
3635 
3636 	if (IS_ENABLED(CONFIG_MTD_SPI_NOR_MISC) && nor->misc_dev)
3637 		misc_deregister(nor->misc_dev);
3638 
3639 	/* Clean up MTD stuff. */
3640 	return mtd_device_unregister(&nor->mtd);
3641 }
3642 
spi_nor_shutdown(struct spi_mem * spimem)3643 static void spi_nor_shutdown(struct spi_mem *spimem)
3644 {
3645 	struct spi_nor *nor = spi_mem_get_drvdata(spimem);
3646 
3647 	spi_nor_restore(nor);
3648 }
3649 
3650 /*
3651  * Do NOT add to this array without reading the following:
3652  *
3653  * Historically, many flash devices are bound to this driver by their name. But
3654  * since most of these flash are compatible to some extent, and their
3655  * differences can often be differentiated by the JEDEC read-ID command, we
3656  * encourage new users to add support to the spi-nor library, and simply bind
3657  * against a generic string here (e.g., "jedec,spi-nor").
3658  *
3659  * Many flash names are kept here in this list (as well as in spi-nor.c) to
3660  * keep them available as module aliases for existing platforms.
3661  */
3662 static const struct spi_device_id spi_nor_dev_ids[] = {
3663 	/*
3664 	 * Allow non-DT platform devices to bind to the "spi-nor" modalias, and
3665 	 * hack around the fact that the SPI core does not provide uevent
3666 	 * matching for .of_match_table
3667 	 */
3668 	{"spi-nor"},
3669 
3670 	/*
3671 	 * Entries not used in DTs that should be safe to drop after replacing
3672 	 * them with "spi-nor" in platform data.
3673 	 */
3674 	{"s25sl064a"},	{"w25x16"},	{"m25p10"},	{"m25px64"},
3675 
3676 	/*
3677 	 * Entries that were used in DTs without "jedec,spi-nor" fallback and
3678 	 * should be kept for backward compatibility.
3679 	 */
3680 	{"at25df321a"},	{"at25df641"},	{"at26df081a"},
3681 	{"mx25l4005a"},	{"mx25l1606e"},	{"mx25l6405d"},	{"mx25l12805d"},
3682 	{"mx25l25635e"},{"mx66l51235l"},
3683 	{"n25q064"},	{"n25q128a11"},	{"n25q128a13"},	{"n25q512a"},
3684 	{"s25fl256s1"},	{"s25fl512s"},	{"s25sl12801"},	{"s25fl008k"},
3685 	{"s25fl064k"},
3686 	{"sst25vf040b"},{"sst25vf016b"},{"sst25vf032b"},{"sst25wf040"},
3687 	{"m25p40"},	{"m25p80"},	{"m25p16"},	{"m25p32"},
3688 	{"m25p64"},	{"m25p128"},
3689 	{"w25x80"},	{"w25x32"},	{"w25q32"},	{"w25q32dw"},
3690 	{"w25q80bl"},	{"w25q128"},	{"w25q256"},
3691 
3692 	/* Flashes that can't be detected using JEDEC */
3693 	{"m25p05-nonjedec"},	{"m25p10-nonjedec"},	{"m25p20-nonjedec"},
3694 	{"m25p40-nonjedec"},	{"m25p80-nonjedec"},	{"m25p16-nonjedec"},
3695 	{"m25p32-nonjedec"},	{"m25p64-nonjedec"},	{"m25p128-nonjedec"},
3696 
3697 	/* Everspin MRAMs (non-JEDEC) */
3698 	{ "mr25h128" }, /* 128 Kib, 40 MHz */
3699 	{ "mr25h256" }, /* 256 Kib, 40 MHz */
3700 	{ "mr25h10" },  /*   1 Mib, 40 MHz */
3701 	{ "mr25h40" },  /*   4 Mib, 40 MHz */
3702 
3703 	{ },
3704 };
3705 MODULE_DEVICE_TABLE(spi, spi_nor_dev_ids);
3706 
3707 static const struct of_device_id spi_nor_of_table[] = {
3708 	/*
3709 	 * Generic compatibility for SPI NOR that can be identified by the
3710 	 * JEDEC READ ID opcode (0x9F). Use this, if possible.
3711 	 */
3712 	{ .compatible = "jedec,spi-nor" },
3713 	{ /* sentinel */ },
3714 };
3715 MODULE_DEVICE_TABLE(of, spi_nor_of_table);
3716 
3717 /*
3718  * REVISIT: many of these chips have deep power-down modes, which
3719  * should clearly be entered on suspend() to minimize power use.
3720  * And also when they're otherwise idle...
3721  */
3722 static struct spi_mem_driver spi_nor_driver = {
3723 	.spidrv = {
3724 		.driver = {
3725 			.name = "spi-nor",
3726 			.of_match_table = spi_nor_of_table,
3727 		},
3728 		.id_table = spi_nor_dev_ids,
3729 	},
3730 	.probe = spi_nor_probe,
3731 	.remove = spi_nor_remove,
3732 	.shutdown = spi_nor_shutdown,
3733 };
3734 module_spi_mem_driver(spi_nor_driver);
3735 
3736 MODULE_LICENSE("GPL v2");
3737 MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
3738 MODULE_AUTHOR("Mike Lavender");
3739 MODULE_DESCRIPTION("framework for SPI NOR");
3740