xref: /OK3568_Linux_fs/kernel/drivers/mtd/mtdcore.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
31 
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
34 
35 #include "mtdcore.h"
36 
37 struct backing_dev_info *mtd_bdi;
38 
39 #ifdef CONFIG_PM_SLEEP
40 
mtd_cls_suspend(struct device * dev)41 static int mtd_cls_suspend(struct device *dev)
42 {
43 	struct mtd_info *mtd = dev_get_drvdata(dev);
44 
45 	return mtd ? mtd_suspend(mtd) : 0;
46 }
47 
mtd_cls_resume(struct device * dev)48 static int mtd_cls_resume(struct device *dev)
49 {
50 	struct mtd_info *mtd = dev_get_drvdata(dev);
51 
52 	if (mtd)
53 		mtd_resume(mtd);
54 	return 0;
55 }
56 
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59 #else
60 #define MTD_CLS_PM_OPS NULL
61 #endif
62 
63 static struct class mtd_class = {
64 	.name = "mtd",
65 	.owner = THIS_MODULE,
66 	.pm = MTD_CLS_PM_OPS,
67 };
68 
69 static DEFINE_IDR(mtd_idr);
70 
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72    should not use them for _anything_ else */
73 DEFINE_MUTEX(mtd_table_mutex);
74 EXPORT_SYMBOL_GPL(mtd_table_mutex);
75 
__mtd_next_device(int i)76 struct mtd_info *__mtd_next_device(int i)
77 {
78 	return idr_get_next(&mtd_idr, &i);
79 }
80 EXPORT_SYMBOL_GPL(__mtd_next_device);
81 
82 static LIST_HEAD(mtd_notifiers);
83 
84 
85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86 
87 /* REVISIT once MTD uses the driver model better, whoever allocates
88  * the mtd_info will probably want to use the release() hook...
89  */
mtd_release(struct device * dev)90 static void mtd_release(struct device *dev)
91 {
92 	struct mtd_info *mtd = dev_get_drvdata(dev);
93 	dev_t index = MTD_DEVT(mtd->index);
94 
95 	/* remove /dev/mtdXro node */
96 	device_destroy(&mtd_class, index + 1);
97 }
98 
mtd_type_show(struct device * dev,struct device_attribute * attr,char * buf)99 static ssize_t mtd_type_show(struct device *dev,
100 		struct device_attribute *attr, char *buf)
101 {
102 	struct mtd_info *mtd = dev_get_drvdata(dev);
103 	char *type;
104 
105 	switch (mtd->type) {
106 	case MTD_ABSENT:
107 		type = "absent";
108 		break;
109 	case MTD_RAM:
110 		type = "ram";
111 		break;
112 	case MTD_ROM:
113 		type = "rom";
114 		break;
115 	case MTD_NORFLASH:
116 		type = "nor";
117 		break;
118 	case MTD_NANDFLASH:
119 		type = "nand";
120 		break;
121 	case MTD_DATAFLASH:
122 		type = "dataflash";
123 		break;
124 	case MTD_UBIVOLUME:
125 		type = "ubi";
126 		break;
127 	case MTD_MLCNANDFLASH:
128 		type = "mlc-nand";
129 		break;
130 	default:
131 		type = "unknown";
132 	}
133 
134 	return snprintf(buf, PAGE_SIZE, "%s\n", type);
135 }
136 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
137 
mtd_flags_show(struct device * dev,struct device_attribute * attr,char * buf)138 static ssize_t mtd_flags_show(struct device *dev,
139 		struct device_attribute *attr, char *buf)
140 {
141 	struct mtd_info *mtd = dev_get_drvdata(dev);
142 
143 	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
144 }
145 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
146 
mtd_size_show(struct device * dev,struct device_attribute * attr,char * buf)147 static ssize_t mtd_size_show(struct device *dev,
148 		struct device_attribute *attr, char *buf)
149 {
150 	struct mtd_info *mtd = dev_get_drvdata(dev);
151 
152 	return snprintf(buf, PAGE_SIZE, "%llu\n",
153 		(unsigned long long)mtd->size);
154 }
155 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
156 
mtd_erasesize_show(struct device * dev,struct device_attribute * attr,char * buf)157 static ssize_t mtd_erasesize_show(struct device *dev,
158 		struct device_attribute *attr, char *buf)
159 {
160 	struct mtd_info *mtd = dev_get_drvdata(dev);
161 
162 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
163 }
164 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
165 
mtd_writesize_show(struct device * dev,struct device_attribute * attr,char * buf)166 static ssize_t mtd_writesize_show(struct device *dev,
167 		struct device_attribute *attr, char *buf)
168 {
169 	struct mtd_info *mtd = dev_get_drvdata(dev);
170 
171 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
172 }
173 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
174 
mtd_subpagesize_show(struct device * dev,struct device_attribute * attr,char * buf)175 static ssize_t mtd_subpagesize_show(struct device *dev,
176 		struct device_attribute *attr, char *buf)
177 {
178 	struct mtd_info *mtd = dev_get_drvdata(dev);
179 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
180 
181 	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
182 }
183 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
184 
mtd_oobsize_show(struct device * dev,struct device_attribute * attr,char * buf)185 static ssize_t mtd_oobsize_show(struct device *dev,
186 		struct device_attribute *attr, char *buf)
187 {
188 	struct mtd_info *mtd = dev_get_drvdata(dev);
189 
190 	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
191 }
192 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
193 
mtd_oobavail_show(struct device * dev,struct device_attribute * attr,char * buf)194 static ssize_t mtd_oobavail_show(struct device *dev,
195 				 struct device_attribute *attr, char *buf)
196 {
197 	struct mtd_info *mtd = dev_get_drvdata(dev);
198 
199 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
200 }
201 static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
202 
mtd_numeraseregions_show(struct device * dev,struct device_attribute * attr,char * buf)203 static ssize_t mtd_numeraseregions_show(struct device *dev,
204 		struct device_attribute *attr, char *buf)
205 {
206 	struct mtd_info *mtd = dev_get_drvdata(dev);
207 
208 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
209 }
210 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
211 	NULL);
212 
mtd_name_show(struct device * dev,struct device_attribute * attr,char * buf)213 static ssize_t mtd_name_show(struct device *dev,
214 		struct device_attribute *attr, char *buf)
215 {
216 	struct mtd_info *mtd = dev_get_drvdata(dev);
217 
218 	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
219 }
220 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
221 
mtd_ecc_strength_show(struct device * dev,struct device_attribute * attr,char * buf)222 static ssize_t mtd_ecc_strength_show(struct device *dev,
223 				     struct device_attribute *attr, char *buf)
224 {
225 	struct mtd_info *mtd = dev_get_drvdata(dev);
226 
227 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
228 }
229 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
230 
mtd_bitflip_threshold_show(struct device * dev,struct device_attribute * attr,char * buf)231 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
232 					  struct device_attribute *attr,
233 					  char *buf)
234 {
235 	struct mtd_info *mtd = dev_get_drvdata(dev);
236 
237 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
238 }
239 
mtd_bitflip_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)240 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
241 					   struct device_attribute *attr,
242 					   const char *buf, size_t count)
243 {
244 	struct mtd_info *mtd = dev_get_drvdata(dev);
245 	unsigned int bitflip_threshold;
246 	int retval;
247 
248 	retval = kstrtouint(buf, 0, &bitflip_threshold);
249 	if (retval)
250 		return retval;
251 
252 	mtd->bitflip_threshold = bitflip_threshold;
253 	return count;
254 }
255 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
256 		   mtd_bitflip_threshold_show,
257 		   mtd_bitflip_threshold_store);
258 
mtd_ecc_step_size_show(struct device * dev,struct device_attribute * attr,char * buf)259 static ssize_t mtd_ecc_step_size_show(struct device *dev,
260 		struct device_attribute *attr, char *buf)
261 {
262 	struct mtd_info *mtd = dev_get_drvdata(dev);
263 
264 	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
265 
266 }
267 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
268 
mtd_ecc_stats_corrected_show(struct device * dev,struct device_attribute * attr,char * buf)269 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
270 		struct device_attribute *attr, char *buf)
271 {
272 	struct mtd_info *mtd = dev_get_drvdata(dev);
273 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
274 
275 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
276 }
277 static DEVICE_ATTR(corrected_bits, S_IRUGO,
278 		   mtd_ecc_stats_corrected_show, NULL);
279 
mtd_ecc_stats_errors_show(struct device * dev,struct device_attribute * attr,char * buf)280 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
281 		struct device_attribute *attr, char *buf)
282 {
283 	struct mtd_info *mtd = dev_get_drvdata(dev);
284 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285 
286 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
287 }
288 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
289 
mtd_badblocks_show(struct device * dev,struct device_attribute * attr,char * buf)290 static ssize_t mtd_badblocks_show(struct device *dev,
291 		struct device_attribute *attr, char *buf)
292 {
293 	struct mtd_info *mtd = dev_get_drvdata(dev);
294 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
295 
296 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
297 }
298 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
299 
mtd_bbtblocks_show(struct device * dev,struct device_attribute * attr,char * buf)300 static ssize_t mtd_bbtblocks_show(struct device *dev,
301 		struct device_attribute *attr, char *buf)
302 {
303 	struct mtd_info *mtd = dev_get_drvdata(dev);
304 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
305 
306 	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
307 }
308 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
309 
310 static struct attribute *mtd_attrs[] = {
311 	&dev_attr_type.attr,
312 	&dev_attr_flags.attr,
313 	&dev_attr_size.attr,
314 	&dev_attr_erasesize.attr,
315 	&dev_attr_writesize.attr,
316 	&dev_attr_subpagesize.attr,
317 	&dev_attr_oobsize.attr,
318 	&dev_attr_oobavail.attr,
319 	&dev_attr_numeraseregions.attr,
320 	&dev_attr_name.attr,
321 	&dev_attr_ecc_strength.attr,
322 	&dev_attr_ecc_step_size.attr,
323 	&dev_attr_corrected_bits.attr,
324 	&dev_attr_ecc_failures.attr,
325 	&dev_attr_bad_blocks.attr,
326 	&dev_attr_bbt_blocks.attr,
327 	&dev_attr_bitflip_threshold.attr,
328 	NULL,
329 };
330 ATTRIBUTE_GROUPS(mtd);
331 
332 static const struct device_type mtd_devtype = {
333 	.name		= "mtd",
334 	.groups		= mtd_groups,
335 	.release	= mtd_release,
336 };
337 
mtd_partid_debug_show(struct seq_file * s,void * p)338 static int mtd_partid_debug_show(struct seq_file *s, void *p)
339 {
340 	struct mtd_info *mtd = s->private;
341 
342 	seq_printf(s, "%s\n", mtd->dbg.partid);
343 
344 	return 0;
345 }
346 
347 DEFINE_SHOW_ATTRIBUTE(mtd_partid_debug);
348 
mtd_partname_debug_show(struct seq_file * s,void * p)349 static int mtd_partname_debug_show(struct seq_file *s, void *p)
350 {
351 	struct mtd_info *mtd = s->private;
352 
353 	seq_printf(s, "%s\n", mtd->dbg.partname);
354 
355 	return 0;
356 }
357 
358 DEFINE_SHOW_ATTRIBUTE(mtd_partname_debug);
359 
360 static struct dentry *dfs_dir_mtd;
361 
mtd_debugfs_populate(struct mtd_info * mtd)362 static void mtd_debugfs_populate(struct mtd_info *mtd)
363 {
364 	struct device *dev = &mtd->dev;
365 	struct dentry *root;
366 
367 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
368 		return;
369 
370 	root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
371 	mtd->dbg.dfs_dir = root;
372 
373 	if (mtd->dbg.partid)
374 		debugfs_create_file("partid", 0400, root, mtd,
375 				    &mtd_partid_debug_fops);
376 
377 	if (mtd->dbg.partname)
378 		debugfs_create_file("partname", 0400, root, mtd,
379 				    &mtd_partname_debug_fops);
380 }
381 
382 #ifndef CONFIG_MMU
mtd_mmap_capabilities(struct mtd_info * mtd)383 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
384 {
385 	switch (mtd->type) {
386 	case MTD_RAM:
387 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
388 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
389 	case MTD_ROM:
390 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
391 			NOMMU_MAP_READ;
392 	default:
393 		return NOMMU_MAP_COPY;
394 	}
395 }
396 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
397 #endif
398 
mtd_reboot_notifier(struct notifier_block * n,unsigned long state,void * cmd)399 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
400 			       void *cmd)
401 {
402 	struct mtd_info *mtd;
403 
404 	mtd = container_of(n, struct mtd_info, reboot_notifier);
405 	mtd->_reboot(mtd);
406 
407 	return NOTIFY_DONE;
408 }
409 
410 /**
411  * mtd_wunit_to_pairing_info - get pairing information of a wunit
412  * @mtd: pointer to new MTD device info structure
413  * @wunit: write unit we are interested in
414  * @info: returned pairing information
415  *
416  * Retrieve pairing information associated to the wunit.
417  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
418  * paired together, and where programming a page may influence the page it is
419  * paired with.
420  * The notion of page is replaced by the term wunit (write-unit) to stay
421  * consistent with the ->writesize field.
422  *
423  * The @wunit argument can be extracted from an absolute offset using
424  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
425  * to @wunit.
426  *
427  * From the pairing info the MTD user can find all the wunits paired with
428  * @wunit using the following loop:
429  *
430  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
431  *	info.pair = i;
432  *	mtd_pairing_info_to_wunit(mtd, &info);
433  *	...
434  * }
435  */
mtd_wunit_to_pairing_info(struct mtd_info * mtd,int wunit,struct mtd_pairing_info * info)436 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
437 			      struct mtd_pairing_info *info)
438 {
439 	struct mtd_info *master = mtd_get_master(mtd);
440 	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
441 
442 	if (wunit < 0 || wunit >= npairs)
443 		return -EINVAL;
444 
445 	if (master->pairing && master->pairing->get_info)
446 		return master->pairing->get_info(master, wunit, info);
447 
448 	info->group = 0;
449 	info->pair = wunit;
450 
451 	return 0;
452 }
453 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
454 
455 /**
456  * mtd_pairing_info_to_wunit - get wunit from pairing information
457  * @mtd: pointer to new MTD device info structure
458  * @info: pairing information struct
459  *
460  * Returns a positive number representing the wunit associated to the info
461  * struct, or a negative error code.
462  *
463  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
464  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
465  * doc).
466  *
467  * It can also be used to only program the first page of each pair (i.e.
468  * page attached to group 0), which allows one to use an MLC NAND in
469  * software-emulated SLC mode:
470  *
471  * info.group = 0;
472  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
473  * for (info.pair = 0; info.pair < npairs; info.pair++) {
474  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
475  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
476  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
477  * }
478  */
mtd_pairing_info_to_wunit(struct mtd_info * mtd,const struct mtd_pairing_info * info)479 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
480 			      const struct mtd_pairing_info *info)
481 {
482 	struct mtd_info *master = mtd_get_master(mtd);
483 	int ngroups = mtd_pairing_groups(master);
484 	int npairs = mtd_wunit_per_eb(master) / ngroups;
485 
486 	if (!info || info->pair < 0 || info->pair >= npairs ||
487 	    info->group < 0 || info->group >= ngroups)
488 		return -EINVAL;
489 
490 	if (master->pairing && master->pairing->get_wunit)
491 		return mtd->pairing->get_wunit(master, info);
492 
493 	return info->pair;
494 }
495 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
496 
497 /**
498  * mtd_pairing_groups - get the number of pairing groups
499  * @mtd: pointer to new MTD device info structure
500  *
501  * Returns the number of pairing groups.
502  *
503  * This number is usually equal to the number of bits exposed by a single
504  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
505  * to iterate over all pages of a given pair.
506  */
mtd_pairing_groups(struct mtd_info * mtd)507 int mtd_pairing_groups(struct mtd_info *mtd)
508 {
509 	struct mtd_info *master = mtd_get_master(mtd);
510 
511 	if (!master->pairing || !master->pairing->ngroups)
512 		return 1;
513 
514 	return master->pairing->ngroups;
515 }
516 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
517 
mtd_nvmem_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)518 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
519 			      void *val, size_t bytes)
520 {
521 	struct mtd_info *mtd = priv;
522 	size_t retlen;
523 	int err;
524 
525 	err = mtd_read(mtd, offset, bytes, &retlen, val);
526 	if (err && err != -EUCLEAN)
527 		return err;
528 
529 	return retlen == bytes ? 0 : -EIO;
530 }
531 
mtd_nvmem_add(struct mtd_info * mtd)532 static int mtd_nvmem_add(struct mtd_info *mtd)
533 {
534 	struct nvmem_config config = {};
535 
536 	config.id = -1;
537 	config.dev = &mtd->dev;
538 	config.name = dev_name(&mtd->dev);
539 	config.owner = THIS_MODULE;
540 	config.reg_read = mtd_nvmem_reg_read;
541 	config.size = mtd->size;
542 	config.word_size = 1;
543 	config.stride = 1;
544 	config.read_only = true;
545 	config.root_only = true;
546 	config.no_of_node = true;
547 	config.priv = mtd;
548 
549 	mtd->nvmem = nvmem_register(&config);
550 	if (IS_ERR(mtd->nvmem)) {
551 		/* Just ignore if there is no NVMEM support in the kernel */
552 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
553 			mtd->nvmem = NULL;
554 		} else {
555 			dev_err(&mtd->dev, "Failed to register NVMEM device\n");
556 			return PTR_ERR(mtd->nvmem);
557 		}
558 	}
559 
560 	return 0;
561 }
562 
563 /**
564  *	add_mtd_device - register an MTD device
565  *	@mtd: pointer to new MTD device info structure
566  *
567  *	Add a device to the list of MTD devices present in the system, and
568  *	notify each currently active MTD 'user' of its arrival. Returns
569  *	zero on success or non-zero on failure.
570  */
571 
add_mtd_device(struct mtd_info * mtd)572 int add_mtd_device(struct mtd_info *mtd)
573 {
574 	struct mtd_info *master = mtd_get_master(mtd);
575 	struct mtd_notifier *not;
576 	int i, error;
577 
578 	/*
579 	 * May occur, for instance, on buggy drivers which call
580 	 * mtd_device_parse_register() multiple times on the same master MTD,
581 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
582 	 */
583 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
584 		return -EEXIST;
585 
586 	BUG_ON(mtd->writesize == 0);
587 
588 	/*
589 	 * MTD drivers should implement ->_{write,read}() or
590 	 * ->_{write,read}_oob(), but not both.
591 	 */
592 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
593 		    (mtd->_read && mtd->_read_oob)))
594 		return -EINVAL;
595 
596 	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
597 		    !(mtd->flags & MTD_NO_ERASE)))
598 		return -EINVAL;
599 
600 	/*
601 	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
602 	 * master is an MLC NAND and has a proper pairing scheme defined.
603 	 * We also reject masters that implement ->_writev() for now, because
604 	 * NAND controller drivers don't implement this hook, and adding the
605 	 * SLC -> MLC address/length conversion to this path is useless if we
606 	 * don't have a user.
607 	 */
608 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
609 	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
610 	     !master->pairing || master->_writev))
611 		return -EINVAL;
612 
613 	mutex_lock(&mtd_table_mutex);
614 
615 	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
616 	if (i < 0) {
617 		error = i;
618 		goto fail_locked;
619 	}
620 
621 	mtd->index = i;
622 	mtd->usecount = 0;
623 
624 	/* default value if not set by driver */
625 	if (mtd->bitflip_threshold == 0)
626 		mtd->bitflip_threshold = mtd->ecc_strength;
627 
628 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
629 		int ngroups = mtd_pairing_groups(master);
630 
631 		mtd->erasesize /= ngroups;
632 		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
633 			    mtd->erasesize;
634 	}
635 
636 	if (is_power_of_2(mtd->erasesize))
637 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
638 	else
639 		mtd->erasesize_shift = 0;
640 
641 	if (is_power_of_2(mtd->writesize))
642 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
643 	else
644 		mtd->writesize_shift = 0;
645 
646 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
647 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
648 
649 	/* Some chips always power up locked. Unlock them now */
650 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
651 		error = mtd_unlock(mtd, 0, mtd->size);
652 		if (error && error != -EOPNOTSUPP)
653 			printk(KERN_WARNING
654 			       "%s: unlock failed, writes may not work\n",
655 			       mtd->name);
656 		/* Ignore unlock failures? */
657 		error = 0;
658 	}
659 
660 	/* Caller should have set dev.parent to match the
661 	 * physical device, if appropriate.
662 	 */
663 	mtd->dev.type = &mtd_devtype;
664 	mtd->dev.class = &mtd_class;
665 	mtd->dev.devt = MTD_DEVT(i);
666 	dev_set_name(&mtd->dev, "mtd%d", i);
667 	dev_set_drvdata(&mtd->dev, mtd);
668 	of_node_get(mtd_get_of_node(mtd));
669 	error = device_register(&mtd->dev);
670 	if (error)
671 		goto fail_added;
672 
673 	/* Add the nvmem provider */
674 	error = mtd_nvmem_add(mtd);
675 	if (error)
676 		goto fail_nvmem_add;
677 
678 	mtd_debugfs_populate(mtd);
679 
680 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
681 		      "mtd%dro", i);
682 
683 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
684 	/* No need to get a refcount on the module containing
685 	   the notifier, since we hold the mtd_table_mutex */
686 	list_for_each_entry(not, &mtd_notifiers, list)
687 		not->add(mtd);
688 
689 	mutex_unlock(&mtd_table_mutex);
690 	/* We _know_ we aren't being removed, because
691 	   our caller is still holding us here. So none
692 	   of this try_ nonsense, and no bitching about it
693 	   either. :) */
694 	__module_get(THIS_MODULE);
695 	return 0;
696 
697 fail_nvmem_add:
698 	device_unregister(&mtd->dev);
699 fail_added:
700 	of_node_put(mtd_get_of_node(mtd));
701 	idr_remove(&mtd_idr, i);
702 fail_locked:
703 	mutex_unlock(&mtd_table_mutex);
704 	return error;
705 }
706 
707 /**
708  *	del_mtd_device - unregister an MTD device
709  *	@mtd: pointer to MTD device info structure
710  *
711  *	Remove a device from the list of MTD devices present in the system,
712  *	and notify each currently active MTD 'user' of its departure.
713  *	Returns zero on success or 1 on failure, which currently will happen
714  *	if the requested device does not appear to be present in the list.
715  */
716 
del_mtd_device(struct mtd_info * mtd)717 int del_mtd_device(struct mtd_info *mtd)
718 {
719 	int ret;
720 	struct mtd_notifier *not;
721 
722 	mutex_lock(&mtd_table_mutex);
723 
724 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
725 		ret = -ENODEV;
726 		goto out_error;
727 	}
728 
729 	/* No need to get a refcount on the module containing
730 		the notifier, since we hold the mtd_table_mutex */
731 	list_for_each_entry(not, &mtd_notifiers, list)
732 		not->remove(mtd);
733 
734 	if (mtd->usecount) {
735 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
736 		       mtd->index, mtd->name, mtd->usecount);
737 		ret = -EBUSY;
738 	} else {
739 		debugfs_remove_recursive(mtd->dbg.dfs_dir);
740 
741 		/* Try to remove the NVMEM provider */
742 		if (mtd->nvmem)
743 			nvmem_unregister(mtd->nvmem);
744 
745 		device_unregister(&mtd->dev);
746 
747 		idr_remove(&mtd_idr, mtd->index);
748 		of_node_put(mtd_get_of_node(mtd));
749 
750 		module_put(THIS_MODULE);
751 		ret = 0;
752 	}
753 
754 out_error:
755 	mutex_unlock(&mtd_table_mutex);
756 	return ret;
757 }
758 
759 /*
760  * Set a few defaults based on the parent devices, if not provided by the
761  * driver
762  */
mtd_set_dev_defaults(struct mtd_info * mtd)763 static void mtd_set_dev_defaults(struct mtd_info *mtd)
764 {
765 	if (mtd->dev.parent) {
766 		if (!mtd->owner && mtd->dev.parent->driver)
767 			mtd->owner = mtd->dev.parent->driver->owner;
768 		if (!mtd->name)
769 			mtd->name = dev_name(mtd->dev.parent);
770 	} else {
771 		pr_debug("mtd device won't show a device symlink in sysfs\n");
772 	}
773 
774 	INIT_LIST_HEAD(&mtd->partitions);
775 	mutex_init(&mtd->master.partitions_lock);
776 }
777 
778 /**
779  * mtd_device_parse_register - parse partitions and register an MTD device.
780  *
781  * @mtd: the MTD device to register
782  * @types: the list of MTD partition probes to try, see
783  *         'parse_mtd_partitions()' for more information
784  * @parser_data: MTD partition parser-specific data
785  * @parts: fallback partition information to register, if parsing fails;
786  *         only valid if %nr_parts > %0
787  * @nr_parts: the number of partitions in parts, if zero then the full
788  *            MTD device is registered if no partition info is found
789  *
790  * This function aggregates MTD partitions parsing (done by
791  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
792  * basically follows the most common pattern found in many MTD drivers:
793  *
794  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
795  *   registered first.
796  * * Then It tries to probe partitions on MTD device @mtd using parsers
797  *   specified in @types (if @types is %NULL, then the default list of parsers
798  *   is used, see 'parse_mtd_partitions()' for more information). If none are
799  *   found this functions tries to fallback to information specified in
800  *   @parts/@nr_parts.
801  * * If no partitions were found this function just registers the MTD device
802  *   @mtd and exits.
803  *
804  * Returns zero in case of success and a negative error code in case of failure.
805  */
mtd_device_parse_register(struct mtd_info * mtd,const char * const * types,struct mtd_part_parser_data * parser_data,const struct mtd_partition * parts,int nr_parts)806 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
807 			      struct mtd_part_parser_data *parser_data,
808 			      const struct mtd_partition *parts,
809 			      int nr_parts)
810 {
811 	int ret;
812 
813 	mtd_set_dev_defaults(mtd);
814 
815 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
816 		ret = add_mtd_device(mtd);
817 		if (ret)
818 			return ret;
819 	}
820 
821 	/* Prefer parsed partitions over driver-provided fallback */
822 	ret = parse_mtd_partitions(mtd, types, parser_data);
823 	if (ret == -EPROBE_DEFER)
824 		goto out;
825 
826 	if (ret > 0)
827 		ret = 0;
828 	else if (nr_parts)
829 		ret = add_mtd_partitions(mtd, parts, nr_parts);
830 	else if (!device_is_registered(&mtd->dev))
831 		ret = add_mtd_device(mtd);
832 	else
833 		ret = 0;
834 
835 	if (ret)
836 		goto out;
837 
838 	/*
839 	 * FIXME: some drivers unfortunately call this function more than once.
840 	 * So we have to check if we've already assigned the reboot notifier.
841 	 *
842 	 * Generally, we can make multiple calls work for most cases, but it
843 	 * does cause problems with parse_mtd_partitions() above (e.g.,
844 	 * cmdlineparts will register partitions more than once).
845 	 */
846 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
847 		  "MTD already registered\n");
848 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
849 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
850 		register_reboot_notifier(&mtd->reboot_notifier);
851 	}
852 
853 out:
854 	if (ret && device_is_registered(&mtd->dev))
855 		del_mtd_device(mtd);
856 
857 	return ret;
858 }
859 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
860 
861 /**
862  * mtd_device_unregister - unregister an existing MTD device.
863  *
864  * @master: the MTD device to unregister.  This will unregister both the master
865  *          and any partitions if registered.
866  */
mtd_device_unregister(struct mtd_info * master)867 int mtd_device_unregister(struct mtd_info *master)
868 {
869 	int err;
870 
871 	if (master->_reboot)
872 		unregister_reboot_notifier(&master->reboot_notifier);
873 
874 	err = del_mtd_partitions(master);
875 	if (err)
876 		return err;
877 
878 	if (!device_is_registered(&master->dev))
879 		return 0;
880 
881 	return del_mtd_device(master);
882 }
883 EXPORT_SYMBOL_GPL(mtd_device_unregister);
884 
885 /**
886  *	register_mtd_user - register a 'user' of MTD devices.
887  *	@new: pointer to notifier info structure
888  *
889  *	Registers a pair of callbacks function to be called upon addition
890  *	or removal of MTD devices. Causes the 'add' callback to be immediately
891  *	invoked for each MTD device currently present in the system.
892  */
register_mtd_user(struct mtd_notifier * new)893 void register_mtd_user (struct mtd_notifier *new)
894 {
895 	struct mtd_info *mtd;
896 
897 	mutex_lock(&mtd_table_mutex);
898 
899 	list_add(&new->list, &mtd_notifiers);
900 
901 	__module_get(THIS_MODULE);
902 
903 	mtd_for_each_device(mtd)
904 		new->add(mtd);
905 
906 	mutex_unlock(&mtd_table_mutex);
907 }
908 EXPORT_SYMBOL_GPL(register_mtd_user);
909 
910 /**
911  *	unregister_mtd_user - unregister a 'user' of MTD devices.
912  *	@old: pointer to notifier info structure
913  *
914  *	Removes a callback function pair from the list of 'users' to be
915  *	notified upon addition or removal of MTD devices. Causes the
916  *	'remove' callback to be immediately invoked for each MTD device
917  *	currently present in the system.
918  */
unregister_mtd_user(struct mtd_notifier * old)919 int unregister_mtd_user (struct mtd_notifier *old)
920 {
921 	struct mtd_info *mtd;
922 
923 	mutex_lock(&mtd_table_mutex);
924 
925 	module_put(THIS_MODULE);
926 
927 	mtd_for_each_device(mtd)
928 		old->remove(mtd);
929 
930 	list_del(&old->list);
931 	mutex_unlock(&mtd_table_mutex);
932 	return 0;
933 }
934 EXPORT_SYMBOL_GPL(unregister_mtd_user);
935 
936 /**
937  *	get_mtd_device - obtain a validated handle for an MTD device
938  *	@mtd: last known address of the required MTD device
939  *	@num: internal device number of the required MTD device
940  *
941  *	Given a number and NULL address, return the num'th entry in the device
942  *	table, if any.	Given an address and num == -1, search the device table
943  *	for a device with that address and return if it's still present. Given
944  *	both, return the num'th driver only if its address matches. Return
945  *	error code if not.
946  */
get_mtd_device(struct mtd_info * mtd,int num)947 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
948 {
949 	struct mtd_info *ret = NULL, *other;
950 	int err = -ENODEV;
951 
952 	mutex_lock(&mtd_table_mutex);
953 
954 	if (num == -1) {
955 		mtd_for_each_device(other) {
956 			if (other == mtd) {
957 				ret = mtd;
958 				break;
959 			}
960 		}
961 	} else if (num >= 0) {
962 		ret = idr_find(&mtd_idr, num);
963 		if (mtd && mtd != ret)
964 			ret = NULL;
965 	}
966 
967 	if (!ret) {
968 		ret = ERR_PTR(err);
969 		goto out;
970 	}
971 
972 	err = __get_mtd_device(ret);
973 	if (err)
974 		ret = ERR_PTR(err);
975 out:
976 	mutex_unlock(&mtd_table_mutex);
977 	return ret;
978 }
979 EXPORT_SYMBOL_GPL(get_mtd_device);
980 
981 
__get_mtd_device(struct mtd_info * mtd)982 int __get_mtd_device(struct mtd_info *mtd)
983 {
984 	struct mtd_info *master = mtd_get_master(mtd);
985 	int err;
986 
987 	if (!try_module_get(master->owner))
988 		return -ENODEV;
989 
990 	if (master->_get_device) {
991 		err = master->_get_device(mtd);
992 
993 		if (err) {
994 			module_put(master->owner);
995 			return err;
996 		}
997 	}
998 
999 	master->usecount++;
1000 
1001 	while (mtd->parent) {
1002 		mtd->usecount++;
1003 		mtd = mtd->parent;
1004 	}
1005 
1006 	return 0;
1007 }
1008 EXPORT_SYMBOL_GPL(__get_mtd_device);
1009 
1010 /**
1011  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1012  *	device name
1013  *	@name: MTD device name to open
1014  *
1015  * 	This function returns MTD device description structure in case of
1016  * 	success and an error code in case of failure.
1017  */
get_mtd_device_nm(const char * name)1018 struct mtd_info *get_mtd_device_nm(const char *name)
1019 {
1020 	int err = -ENODEV;
1021 	struct mtd_info *mtd = NULL, *other;
1022 
1023 	mutex_lock(&mtd_table_mutex);
1024 
1025 	mtd_for_each_device(other) {
1026 		if (!strcmp(name, other->name)) {
1027 			mtd = other;
1028 			break;
1029 		}
1030 	}
1031 
1032 	if (!mtd)
1033 		goto out_unlock;
1034 
1035 	err = __get_mtd_device(mtd);
1036 	if (err)
1037 		goto out_unlock;
1038 
1039 	mutex_unlock(&mtd_table_mutex);
1040 	return mtd;
1041 
1042 out_unlock:
1043 	mutex_unlock(&mtd_table_mutex);
1044 	return ERR_PTR(err);
1045 }
1046 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1047 
put_mtd_device(struct mtd_info * mtd)1048 void put_mtd_device(struct mtd_info *mtd)
1049 {
1050 	mutex_lock(&mtd_table_mutex);
1051 	__put_mtd_device(mtd);
1052 	mutex_unlock(&mtd_table_mutex);
1053 
1054 }
1055 EXPORT_SYMBOL_GPL(put_mtd_device);
1056 
__put_mtd_device(struct mtd_info * mtd)1057 void __put_mtd_device(struct mtd_info *mtd)
1058 {
1059 	struct mtd_info *master = mtd_get_master(mtd);
1060 
1061 	while (mtd->parent) {
1062 		--mtd->usecount;
1063 		BUG_ON(mtd->usecount < 0);
1064 		mtd = mtd->parent;
1065 	}
1066 
1067 	master->usecount--;
1068 
1069 	if (master->_put_device)
1070 		master->_put_device(master);
1071 
1072 	module_put(master->owner);
1073 }
1074 EXPORT_SYMBOL_GPL(__put_mtd_device);
1075 
1076 /*
1077  * Erase is an synchronous operation. Device drivers are epected to return a
1078  * negative error code if the operation failed and update instr->fail_addr
1079  * to point the portion that was not properly erased.
1080  */
mtd_erase(struct mtd_info * mtd,struct erase_info * instr)1081 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1082 {
1083 	struct mtd_info *master = mtd_get_master(mtd);
1084 	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1085 	struct erase_info adjinstr;
1086 	int ret;
1087 
1088 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1089 	adjinstr = *instr;
1090 
1091 	if (!mtd->erasesize || !master->_erase)
1092 		return -ENOTSUPP;
1093 
1094 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1095 		return -EINVAL;
1096 	if (!(mtd->flags & MTD_WRITEABLE))
1097 		return -EROFS;
1098 
1099 	if (!instr->len)
1100 		return 0;
1101 
1102 	ledtrig_mtd_activity();
1103 
1104 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1105 		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1106 				master->erasesize;
1107 		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1108 				master->erasesize) -
1109 			       adjinstr.addr;
1110 	}
1111 
1112 	adjinstr.addr += mst_ofs;
1113 
1114 	ret = master->_erase(master, &adjinstr);
1115 
1116 	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1117 		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1118 		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1119 			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1120 							 master);
1121 			instr->fail_addr *= mtd->erasesize;
1122 		}
1123 	}
1124 
1125 	return ret;
1126 }
1127 EXPORT_SYMBOL_GPL(mtd_erase);
1128 
1129 /*
1130  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1131  */
mtd_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)1132 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1133 	      void **virt, resource_size_t *phys)
1134 {
1135 	struct mtd_info *master = mtd_get_master(mtd);
1136 
1137 	*retlen = 0;
1138 	*virt = NULL;
1139 	if (phys)
1140 		*phys = 0;
1141 	if (!master->_point)
1142 		return -EOPNOTSUPP;
1143 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1144 		return -EINVAL;
1145 	if (!len)
1146 		return 0;
1147 
1148 	from = mtd_get_master_ofs(mtd, from);
1149 	return master->_point(master, from, len, retlen, virt, phys);
1150 }
1151 EXPORT_SYMBOL_GPL(mtd_point);
1152 
1153 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
mtd_unpoint(struct mtd_info * mtd,loff_t from,size_t len)1154 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1155 {
1156 	struct mtd_info *master = mtd_get_master(mtd);
1157 
1158 	if (!master->_unpoint)
1159 		return -EOPNOTSUPP;
1160 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1161 		return -EINVAL;
1162 	if (!len)
1163 		return 0;
1164 	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1165 }
1166 EXPORT_SYMBOL_GPL(mtd_unpoint);
1167 
1168 /*
1169  * Allow NOMMU mmap() to directly map the device (if not NULL)
1170  * - return the address to which the offset maps
1171  * - return -ENOSYS to indicate refusal to do the mapping
1172  */
mtd_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)1173 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1174 				    unsigned long offset, unsigned long flags)
1175 {
1176 	size_t retlen;
1177 	void *virt;
1178 	int ret;
1179 
1180 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1181 	if (ret)
1182 		return ret;
1183 	if (retlen != len) {
1184 		mtd_unpoint(mtd, offset, retlen);
1185 		return -ENOSYS;
1186 	}
1187 	return (unsigned long)virt;
1188 }
1189 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1190 
mtd_update_ecc_stats(struct mtd_info * mtd,struct mtd_info * master,const struct mtd_ecc_stats * old_stats)1191 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1192 				 const struct mtd_ecc_stats *old_stats)
1193 {
1194 	struct mtd_ecc_stats diff;
1195 
1196 	if (master == mtd)
1197 		return;
1198 
1199 	diff = master->ecc_stats;
1200 	diff.failed -= old_stats->failed;
1201 	diff.corrected -= old_stats->corrected;
1202 
1203 	while (mtd->parent) {
1204 		mtd->ecc_stats.failed += diff.failed;
1205 		mtd->ecc_stats.corrected += diff.corrected;
1206 		mtd = mtd->parent;
1207 	}
1208 }
1209 
mtd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1210 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1211 	     u_char *buf)
1212 {
1213 	struct mtd_oob_ops ops = {
1214 		.len = len,
1215 		.datbuf = buf,
1216 	};
1217 	int ret;
1218 
1219 	ret = mtd_read_oob(mtd, from, &ops);
1220 	*retlen = ops.retlen;
1221 
1222 	return ret;
1223 }
1224 EXPORT_SYMBOL_GPL(mtd_read);
1225 
mtd_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1226 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1227 	      const u_char *buf)
1228 {
1229 	struct mtd_oob_ops ops = {
1230 		.len = len,
1231 		.datbuf = (u8 *)buf,
1232 	};
1233 	int ret;
1234 
1235 	ret = mtd_write_oob(mtd, to, &ops);
1236 	*retlen = ops.retlen;
1237 
1238 	return ret;
1239 }
1240 EXPORT_SYMBOL_GPL(mtd_write);
1241 
1242 /*
1243  * In blackbox flight recorder like scenarios we want to make successful writes
1244  * in interrupt context. panic_write() is only intended to be called when its
1245  * known the kernel is about to panic and we need the write to succeed. Since
1246  * the kernel is not going to be running for much longer, this function can
1247  * break locks and delay to ensure the write succeeds (but not sleep).
1248  */
mtd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1249 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1250 		    const u_char *buf)
1251 {
1252 	struct mtd_info *master = mtd_get_master(mtd);
1253 
1254 	*retlen = 0;
1255 	if (!master->_panic_write)
1256 		return -EOPNOTSUPP;
1257 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1258 		return -EINVAL;
1259 	if (!(mtd->flags & MTD_WRITEABLE))
1260 		return -EROFS;
1261 	if (!len)
1262 		return 0;
1263 	if (!master->oops_panic_write)
1264 		master->oops_panic_write = true;
1265 
1266 	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1267 				    retlen, buf);
1268 }
1269 EXPORT_SYMBOL_GPL(mtd_panic_write);
1270 
mtd_check_oob_ops(struct mtd_info * mtd,loff_t offs,struct mtd_oob_ops * ops)1271 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1272 			     struct mtd_oob_ops *ops)
1273 {
1274 	/*
1275 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1276 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1277 	 *  this case.
1278 	 */
1279 	if (!ops->datbuf)
1280 		ops->len = 0;
1281 
1282 	if (!ops->oobbuf)
1283 		ops->ooblen = 0;
1284 
1285 	if (offs < 0 || offs + ops->len > mtd->size)
1286 		return -EINVAL;
1287 
1288 	if (ops->ooblen) {
1289 		size_t maxooblen;
1290 
1291 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1292 			return -EINVAL;
1293 
1294 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1295 				      mtd_div_by_ws(offs, mtd)) *
1296 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1297 		if (ops->ooblen > maxooblen)
1298 			return -EINVAL;
1299 	}
1300 
1301 	return 0;
1302 }
1303 
mtd_read_oob_std(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1304 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1305 			    struct mtd_oob_ops *ops)
1306 {
1307 	struct mtd_info *master = mtd_get_master(mtd);
1308 	int ret;
1309 
1310 	from = mtd_get_master_ofs(mtd, from);
1311 	if (master->_read_oob)
1312 		ret = master->_read_oob(master, from, ops);
1313 	else
1314 		ret = master->_read(master, from, ops->len, &ops->retlen,
1315 				    ops->datbuf);
1316 
1317 	return ret;
1318 }
1319 
mtd_write_oob_std(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1320 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1321 			     struct mtd_oob_ops *ops)
1322 {
1323 	struct mtd_info *master = mtd_get_master(mtd);
1324 	int ret;
1325 
1326 	to = mtd_get_master_ofs(mtd, to);
1327 	if (master->_write_oob)
1328 		ret = master->_write_oob(master, to, ops);
1329 	else
1330 		ret = master->_write(master, to, ops->len, &ops->retlen,
1331 				     ops->datbuf);
1332 
1333 	return ret;
1334 }
1335 
mtd_io_emulated_slc(struct mtd_info * mtd,loff_t start,bool read,struct mtd_oob_ops * ops)1336 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1337 			       struct mtd_oob_ops *ops)
1338 {
1339 	struct mtd_info *master = mtd_get_master(mtd);
1340 	int ngroups = mtd_pairing_groups(master);
1341 	int npairs = mtd_wunit_per_eb(master) / ngroups;
1342 	struct mtd_oob_ops adjops = *ops;
1343 	unsigned int wunit, oobavail;
1344 	struct mtd_pairing_info info;
1345 	int max_bitflips = 0;
1346 	u32 ebofs, pageofs;
1347 	loff_t base, pos;
1348 
1349 	ebofs = mtd_mod_by_eb(start, mtd);
1350 	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1351 	info.group = 0;
1352 	info.pair = mtd_div_by_ws(ebofs, mtd);
1353 	pageofs = mtd_mod_by_ws(ebofs, mtd);
1354 	oobavail = mtd_oobavail(mtd, ops);
1355 
1356 	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1357 		int ret;
1358 
1359 		if (info.pair >= npairs) {
1360 			info.pair = 0;
1361 			base += master->erasesize;
1362 		}
1363 
1364 		wunit = mtd_pairing_info_to_wunit(master, &info);
1365 		pos = mtd_wunit_to_offset(mtd, base, wunit);
1366 
1367 		adjops.len = ops->len - ops->retlen;
1368 		if (adjops.len > mtd->writesize - pageofs)
1369 			adjops.len = mtd->writesize - pageofs;
1370 
1371 		adjops.ooblen = ops->ooblen - ops->oobretlen;
1372 		if (adjops.ooblen > oobavail - adjops.ooboffs)
1373 			adjops.ooblen = oobavail - adjops.ooboffs;
1374 
1375 		if (read) {
1376 			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1377 			if (ret > 0)
1378 				max_bitflips = max(max_bitflips, ret);
1379 		} else {
1380 			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1381 		}
1382 
1383 		if (ret < 0)
1384 			return ret;
1385 
1386 		max_bitflips = max(max_bitflips, ret);
1387 		ops->retlen += adjops.retlen;
1388 		ops->oobretlen += adjops.oobretlen;
1389 		adjops.datbuf += adjops.retlen;
1390 		adjops.oobbuf += adjops.oobretlen;
1391 		adjops.ooboffs = 0;
1392 		pageofs = 0;
1393 		info.pair++;
1394 	}
1395 
1396 	return max_bitflips;
1397 }
1398 
mtd_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1399 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1400 {
1401 	struct mtd_info *master = mtd_get_master(mtd);
1402 	struct mtd_ecc_stats old_stats = master->ecc_stats;
1403 	int ret_code;
1404 
1405 	ops->retlen = ops->oobretlen = 0;
1406 
1407 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1408 	if (ret_code)
1409 		return ret_code;
1410 
1411 	ledtrig_mtd_activity();
1412 
1413 	/* Check the validity of a potential fallback on mtd->_read */
1414 	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1415 		return -EOPNOTSUPP;
1416 
1417 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1418 		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1419 	else
1420 		ret_code = mtd_read_oob_std(mtd, from, ops);
1421 
1422 	mtd_update_ecc_stats(mtd, master, &old_stats);
1423 
1424 	/*
1425 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1426 	 * similar to mtd->_read(), returning a non-negative integer
1427 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1428 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1429 	 */
1430 	if (unlikely(ret_code < 0))
1431 		return ret_code;
1432 	if (mtd->ecc_strength == 0)
1433 		return 0;	/* device lacks ecc */
1434 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1435 }
1436 EXPORT_SYMBOL_GPL(mtd_read_oob);
1437 
mtd_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1438 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1439 				struct mtd_oob_ops *ops)
1440 {
1441 	struct mtd_info *master = mtd_get_master(mtd);
1442 	int ret;
1443 
1444 	ops->retlen = ops->oobretlen = 0;
1445 
1446 	if (!(mtd->flags & MTD_WRITEABLE))
1447 		return -EROFS;
1448 
1449 	ret = mtd_check_oob_ops(mtd, to, ops);
1450 	if (ret)
1451 		return ret;
1452 
1453 	ledtrig_mtd_activity();
1454 
1455 	/* Check the validity of a potential fallback on mtd->_write */
1456 	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1457 		return -EOPNOTSUPP;
1458 
1459 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1460 		return mtd_io_emulated_slc(mtd, to, false, ops);
1461 
1462 	return mtd_write_oob_std(mtd, to, ops);
1463 }
1464 EXPORT_SYMBOL_GPL(mtd_write_oob);
1465 
1466 /**
1467  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1468  * @mtd: MTD device structure
1469  * @section: ECC section. Depending on the layout you may have all the ECC
1470  *	     bytes stored in a single contiguous section, or one section
1471  *	     per ECC chunk (and sometime several sections for a single ECC
1472  *	     ECC chunk)
1473  * @oobecc: OOB region struct filled with the appropriate ECC position
1474  *	    information
1475  *
1476  * This function returns ECC section information in the OOB area. If you want
1477  * to get all the ECC bytes information, then you should call
1478  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1479  *
1480  * Returns zero on success, a negative error code otherwise.
1481  */
mtd_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobecc)1482 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1483 		      struct mtd_oob_region *oobecc)
1484 {
1485 	struct mtd_info *master = mtd_get_master(mtd);
1486 
1487 	memset(oobecc, 0, sizeof(*oobecc));
1488 
1489 	if (!master || section < 0)
1490 		return -EINVAL;
1491 
1492 	if (!master->ooblayout || !master->ooblayout->ecc)
1493 		return -ENOTSUPP;
1494 
1495 	return master->ooblayout->ecc(master, section, oobecc);
1496 }
1497 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1498 
1499 /**
1500  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1501  *			section
1502  * @mtd: MTD device structure
1503  * @section: Free section you are interested in. Depending on the layout
1504  *	     you may have all the free bytes stored in a single contiguous
1505  *	     section, or one section per ECC chunk plus an extra section
1506  *	     for the remaining bytes (or other funky layout).
1507  * @oobfree: OOB region struct filled with the appropriate free position
1508  *	     information
1509  *
1510  * This function returns free bytes position in the OOB area. If you want
1511  * to get all the free bytes information, then you should call
1512  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1513  *
1514  * Returns zero on success, a negative error code otherwise.
1515  */
mtd_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobfree)1516 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1517 		       struct mtd_oob_region *oobfree)
1518 {
1519 	struct mtd_info *master = mtd_get_master(mtd);
1520 
1521 	memset(oobfree, 0, sizeof(*oobfree));
1522 
1523 	if (!master || section < 0)
1524 		return -EINVAL;
1525 
1526 	if (!master->ooblayout || !master->ooblayout->free)
1527 		return -ENOTSUPP;
1528 
1529 	return master->ooblayout->free(master, section, oobfree);
1530 }
1531 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1532 
1533 /**
1534  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1535  * @mtd: mtd info structure
1536  * @byte: the byte we are searching for
1537  * @sectionp: pointer where the section id will be stored
1538  * @oobregion: used to retrieve the ECC position
1539  * @iter: iterator function. Should be either mtd_ooblayout_free or
1540  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1541  *
1542  * This function returns the section id and oobregion information of a
1543  * specific byte. For example, say you want to know where the 4th ECC byte is
1544  * stored, you'll use:
1545  *
1546  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1547  *
1548  * Returns zero on success, a negative error code otherwise.
1549  */
mtd_ooblayout_find_region(struct mtd_info * mtd,int byte,int * sectionp,struct mtd_oob_region * oobregion,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1550 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1551 				int *sectionp, struct mtd_oob_region *oobregion,
1552 				int (*iter)(struct mtd_info *,
1553 					    int section,
1554 					    struct mtd_oob_region *oobregion))
1555 {
1556 	int pos = 0, ret, section = 0;
1557 
1558 	memset(oobregion, 0, sizeof(*oobregion));
1559 
1560 	while (1) {
1561 		ret = iter(mtd, section, oobregion);
1562 		if (ret)
1563 			return ret;
1564 
1565 		if (pos + oobregion->length > byte)
1566 			break;
1567 
1568 		pos += oobregion->length;
1569 		section++;
1570 	}
1571 
1572 	/*
1573 	 * Adjust region info to make it start at the beginning at the
1574 	 * 'start' ECC byte.
1575 	 */
1576 	oobregion->offset += byte - pos;
1577 	oobregion->length -= byte - pos;
1578 	*sectionp = section;
1579 
1580 	return 0;
1581 }
1582 
1583 /**
1584  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1585  *				  ECC byte
1586  * @mtd: mtd info structure
1587  * @eccbyte: the byte we are searching for
1588  * @sectionp: pointer where the section id will be stored
1589  * @oobregion: OOB region information
1590  *
1591  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1592  * byte.
1593  *
1594  * Returns zero on success, a negative error code otherwise.
1595  */
mtd_ooblayout_find_eccregion(struct mtd_info * mtd,int eccbyte,int * section,struct mtd_oob_region * oobregion)1596 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1597 				 int *section,
1598 				 struct mtd_oob_region *oobregion)
1599 {
1600 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1601 					 mtd_ooblayout_ecc);
1602 }
1603 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1604 
1605 /**
1606  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1607  * @mtd: mtd info structure
1608  * @buf: destination buffer to store OOB bytes
1609  * @oobbuf: OOB buffer
1610  * @start: first byte to retrieve
1611  * @nbytes: number of bytes to retrieve
1612  * @iter: section iterator
1613  *
1614  * Extract bytes attached to a specific category (ECC or free)
1615  * from the OOB buffer and copy them into buf.
1616  *
1617  * Returns zero on success, a negative error code otherwise.
1618  */
mtd_ooblayout_get_bytes(struct mtd_info * mtd,u8 * buf,const u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1619 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1620 				const u8 *oobbuf, int start, int nbytes,
1621 				int (*iter)(struct mtd_info *,
1622 					    int section,
1623 					    struct mtd_oob_region *oobregion))
1624 {
1625 	struct mtd_oob_region oobregion;
1626 	int section, ret;
1627 
1628 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1629 					&oobregion, iter);
1630 
1631 	while (!ret) {
1632 		int cnt;
1633 
1634 		cnt = min_t(int, nbytes, oobregion.length);
1635 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1636 		buf += cnt;
1637 		nbytes -= cnt;
1638 
1639 		if (!nbytes)
1640 			break;
1641 
1642 		ret = iter(mtd, ++section, &oobregion);
1643 	}
1644 
1645 	return ret;
1646 }
1647 
1648 /**
1649  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1650  * @mtd: mtd info structure
1651  * @buf: source buffer to get OOB bytes from
1652  * @oobbuf: OOB buffer
1653  * @start: first OOB byte to set
1654  * @nbytes: number of OOB bytes to set
1655  * @iter: section iterator
1656  *
1657  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1658  * is selected by passing the appropriate iterator.
1659  *
1660  * Returns zero on success, a negative error code otherwise.
1661  */
mtd_ooblayout_set_bytes(struct mtd_info * mtd,const u8 * buf,u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1662 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1663 				u8 *oobbuf, int start, int nbytes,
1664 				int (*iter)(struct mtd_info *,
1665 					    int section,
1666 					    struct mtd_oob_region *oobregion))
1667 {
1668 	struct mtd_oob_region oobregion;
1669 	int section, ret;
1670 
1671 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1672 					&oobregion, iter);
1673 
1674 	while (!ret) {
1675 		int cnt;
1676 
1677 		cnt = min_t(int, nbytes, oobregion.length);
1678 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1679 		buf += cnt;
1680 		nbytes -= cnt;
1681 
1682 		if (!nbytes)
1683 			break;
1684 
1685 		ret = iter(mtd, ++section, &oobregion);
1686 	}
1687 
1688 	return ret;
1689 }
1690 
1691 /**
1692  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1693  * @mtd: mtd info structure
1694  * @iter: category iterator
1695  *
1696  * Count the number of bytes in a given category.
1697  *
1698  * Returns a positive value on success, a negative error code otherwise.
1699  */
mtd_ooblayout_count_bytes(struct mtd_info * mtd,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1700 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1701 				int (*iter)(struct mtd_info *,
1702 					    int section,
1703 					    struct mtd_oob_region *oobregion))
1704 {
1705 	struct mtd_oob_region oobregion;
1706 	int section = 0, ret, nbytes = 0;
1707 
1708 	while (1) {
1709 		ret = iter(mtd, section++, &oobregion);
1710 		if (ret) {
1711 			if (ret == -ERANGE)
1712 				ret = nbytes;
1713 			break;
1714 		}
1715 
1716 		nbytes += oobregion.length;
1717 	}
1718 
1719 	return ret;
1720 }
1721 
1722 /**
1723  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1724  * @mtd: mtd info structure
1725  * @eccbuf: destination buffer to store ECC bytes
1726  * @oobbuf: OOB buffer
1727  * @start: first ECC byte to retrieve
1728  * @nbytes: number of ECC bytes to retrieve
1729  *
1730  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1731  *
1732  * Returns zero on success, a negative error code otherwise.
1733  */
mtd_ooblayout_get_eccbytes(struct mtd_info * mtd,u8 * eccbuf,const u8 * oobbuf,int start,int nbytes)1734 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1735 			       const u8 *oobbuf, int start, int nbytes)
1736 {
1737 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1738 				       mtd_ooblayout_ecc);
1739 }
1740 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1741 
1742 /**
1743  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1744  * @mtd: mtd info structure
1745  * @eccbuf: source buffer to get ECC bytes from
1746  * @oobbuf: OOB buffer
1747  * @start: first ECC byte to set
1748  * @nbytes: number of ECC bytes to set
1749  *
1750  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1751  *
1752  * Returns zero on success, a negative error code otherwise.
1753  */
mtd_ooblayout_set_eccbytes(struct mtd_info * mtd,const u8 * eccbuf,u8 * oobbuf,int start,int nbytes)1754 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1755 			       u8 *oobbuf, int start, int nbytes)
1756 {
1757 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1758 				       mtd_ooblayout_ecc);
1759 }
1760 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1761 
1762 /**
1763  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1764  * @mtd: mtd info structure
1765  * @databuf: destination buffer to store ECC bytes
1766  * @oobbuf: OOB buffer
1767  * @start: first ECC byte to retrieve
1768  * @nbytes: number of ECC bytes to retrieve
1769  *
1770  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1771  *
1772  * Returns zero on success, a negative error code otherwise.
1773  */
mtd_ooblayout_get_databytes(struct mtd_info * mtd,u8 * databuf,const u8 * oobbuf,int start,int nbytes)1774 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1775 				const u8 *oobbuf, int start, int nbytes)
1776 {
1777 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1778 				       mtd_ooblayout_free);
1779 }
1780 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1781 
1782 /**
1783  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1784  * @mtd: mtd info structure
1785  * @databuf: source buffer to get data bytes from
1786  * @oobbuf: OOB buffer
1787  * @start: first ECC byte to set
1788  * @nbytes: number of ECC bytes to set
1789  *
1790  * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
1791  *
1792  * Returns zero on success, a negative error code otherwise.
1793  */
mtd_ooblayout_set_databytes(struct mtd_info * mtd,const u8 * databuf,u8 * oobbuf,int start,int nbytes)1794 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1795 				u8 *oobbuf, int start, int nbytes)
1796 {
1797 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1798 				       mtd_ooblayout_free);
1799 }
1800 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1801 
1802 /**
1803  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1804  * @mtd: mtd info structure
1805  *
1806  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1807  *
1808  * Returns zero on success, a negative error code otherwise.
1809  */
mtd_ooblayout_count_freebytes(struct mtd_info * mtd)1810 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1811 {
1812 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1813 }
1814 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1815 
1816 /**
1817  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1818  * @mtd: mtd info structure
1819  *
1820  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1821  *
1822  * Returns zero on success, a negative error code otherwise.
1823  */
mtd_ooblayout_count_eccbytes(struct mtd_info * mtd)1824 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1825 {
1826 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1827 }
1828 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1829 
1830 /*
1831  * Method to access the protection register area, present in some flash
1832  * devices. The user data is one time programmable but the factory data is read
1833  * only.
1834  */
mtd_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1835 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1836 			   struct otp_info *buf)
1837 {
1838 	struct mtd_info *master = mtd_get_master(mtd);
1839 
1840 	if (!master->_get_fact_prot_info)
1841 		return -EOPNOTSUPP;
1842 	if (!len)
1843 		return 0;
1844 	return master->_get_fact_prot_info(master, len, retlen, buf);
1845 }
1846 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1847 
mtd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1848 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1849 			   size_t *retlen, u_char *buf)
1850 {
1851 	struct mtd_info *master = mtd_get_master(mtd);
1852 
1853 	*retlen = 0;
1854 	if (!master->_read_fact_prot_reg)
1855 		return -EOPNOTSUPP;
1856 	if (!len)
1857 		return 0;
1858 	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
1859 }
1860 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1861 
mtd_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1862 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1863 			   struct otp_info *buf)
1864 {
1865 	struct mtd_info *master = mtd_get_master(mtd);
1866 
1867 	if (!master->_get_user_prot_info)
1868 		return -EOPNOTSUPP;
1869 	if (!len)
1870 		return 0;
1871 	return master->_get_user_prot_info(master, len, retlen, buf);
1872 }
1873 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1874 
mtd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1875 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1876 			   size_t *retlen, u_char *buf)
1877 {
1878 	struct mtd_info *master = mtd_get_master(mtd);
1879 
1880 	*retlen = 0;
1881 	if (!master->_read_user_prot_reg)
1882 		return -EOPNOTSUPP;
1883 	if (!len)
1884 		return 0;
1885 	return master->_read_user_prot_reg(master, from, len, retlen, buf);
1886 }
1887 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1888 
mtd_write_user_prot_reg(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,u_char * buf)1889 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1890 			    size_t *retlen, u_char *buf)
1891 {
1892 	struct mtd_info *master = mtd_get_master(mtd);
1893 	int ret;
1894 
1895 	*retlen = 0;
1896 	if (!master->_write_user_prot_reg)
1897 		return -EOPNOTSUPP;
1898 	if (!len)
1899 		return 0;
1900 	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
1901 	if (ret)
1902 		return ret;
1903 
1904 	/*
1905 	 * If no data could be written at all, we are out of memory and
1906 	 * must return -ENOSPC.
1907 	 */
1908 	return (*retlen) ? 0 : -ENOSPC;
1909 }
1910 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1911 
mtd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)1912 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1913 {
1914 	struct mtd_info *master = mtd_get_master(mtd);
1915 
1916 	if (!master->_lock_user_prot_reg)
1917 		return -EOPNOTSUPP;
1918 	if (!len)
1919 		return 0;
1920 	return master->_lock_user_prot_reg(master, from, len);
1921 }
1922 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1923 
1924 /* Chip-supported device locking */
mtd_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1925 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1926 {
1927 	struct mtd_info *master = mtd_get_master(mtd);
1928 
1929 	if (!master->_lock)
1930 		return -EOPNOTSUPP;
1931 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1932 		return -EINVAL;
1933 	if (!len)
1934 		return 0;
1935 
1936 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1937 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1938 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1939 	}
1940 
1941 	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
1942 }
1943 EXPORT_SYMBOL_GPL(mtd_lock);
1944 
mtd_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1945 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1946 {
1947 	struct mtd_info *master = mtd_get_master(mtd);
1948 
1949 	if (!master->_unlock)
1950 		return -EOPNOTSUPP;
1951 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1952 		return -EINVAL;
1953 	if (!len)
1954 		return 0;
1955 
1956 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1957 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1958 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1959 	}
1960 
1961 	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
1962 }
1963 EXPORT_SYMBOL_GPL(mtd_unlock);
1964 
mtd_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)1965 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1966 {
1967 	struct mtd_info *master = mtd_get_master(mtd);
1968 
1969 	if (!master->_is_locked)
1970 		return -EOPNOTSUPP;
1971 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1972 		return -EINVAL;
1973 	if (!len)
1974 		return 0;
1975 
1976 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1977 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1978 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1979 	}
1980 
1981 	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
1982 }
1983 EXPORT_SYMBOL_GPL(mtd_is_locked);
1984 
mtd_block_isreserved(struct mtd_info * mtd,loff_t ofs)1985 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1986 {
1987 	struct mtd_info *master = mtd_get_master(mtd);
1988 
1989 	if (ofs < 0 || ofs >= mtd->size)
1990 		return -EINVAL;
1991 	if (!master->_block_isreserved)
1992 		return 0;
1993 
1994 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1995 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1996 
1997 	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
1998 }
1999 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2000 
mtd_block_isbad(struct mtd_info * mtd,loff_t ofs)2001 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2002 {
2003 	struct mtd_info *master = mtd_get_master(mtd);
2004 
2005 	if (ofs < 0 || ofs >= mtd->size)
2006 		return -EINVAL;
2007 	if (!master->_block_isbad)
2008 		return 0;
2009 
2010 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2011 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2012 
2013 	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2014 }
2015 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2016 
mtd_block_markbad(struct mtd_info * mtd,loff_t ofs)2017 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2018 {
2019 	struct mtd_info *master = mtd_get_master(mtd);
2020 	int ret;
2021 
2022 	if (!master->_block_markbad)
2023 		return -EOPNOTSUPP;
2024 	if (ofs < 0 || ofs >= mtd->size)
2025 		return -EINVAL;
2026 	if (!(mtd->flags & MTD_WRITEABLE))
2027 		return -EROFS;
2028 
2029 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2030 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2031 
2032 	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2033 	if (ret)
2034 		return ret;
2035 
2036 	while (mtd->parent) {
2037 		mtd->ecc_stats.badblocks++;
2038 		mtd = mtd->parent;
2039 	}
2040 
2041 	return 0;
2042 }
2043 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2044 
2045 /*
2046  * default_mtd_writev - the default writev method
2047  * @mtd: mtd device description object pointer
2048  * @vecs: the vectors to write
2049  * @count: count of vectors in @vecs
2050  * @to: the MTD device offset to write to
2051  * @retlen: on exit contains the count of bytes written to the MTD device.
2052  *
2053  * This function returns zero in case of success and a negative error code in
2054  * case of failure.
2055  */
default_mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)2056 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2057 			      unsigned long count, loff_t to, size_t *retlen)
2058 {
2059 	unsigned long i;
2060 	size_t totlen = 0, thislen;
2061 	int ret = 0;
2062 
2063 	for (i = 0; i < count; i++) {
2064 		if (!vecs[i].iov_len)
2065 			continue;
2066 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2067 				vecs[i].iov_base);
2068 		totlen += thislen;
2069 		if (ret || thislen != vecs[i].iov_len)
2070 			break;
2071 		to += vecs[i].iov_len;
2072 	}
2073 	*retlen = totlen;
2074 	return ret;
2075 }
2076 
2077 /*
2078  * mtd_writev - the vector-based MTD write method
2079  * @mtd: mtd device description object pointer
2080  * @vecs: the vectors to write
2081  * @count: count of vectors in @vecs
2082  * @to: the MTD device offset to write to
2083  * @retlen: on exit contains the count of bytes written to the MTD device.
2084  *
2085  * This function returns zero in case of success and a negative error code in
2086  * case of failure.
2087  */
mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)2088 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2089 	       unsigned long count, loff_t to, size_t *retlen)
2090 {
2091 	struct mtd_info *master = mtd_get_master(mtd);
2092 
2093 	*retlen = 0;
2094 	if (!(mtd->flags & MTD_WRITEABLE))
2095 		return -EROFS;
2096 
2097 	if (!master->_writev)
2098 		return default_mtd_writev(mtd, vecs, count, to, retlen);
2099 
2100 	return master->_writev(master, vecs, count,
2101 			       mtd_get_master_ofs(mtd, to), retlen);
2102 }
2103 EXPORT_SYMBOL_GPL(mtd_writev);
2104 
2105 /**
2106  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2107  * @mtd: mtd device description object pointer
2108  * @size: a pointer to the ideal or maximum size of the allocation, points
2109  *        to the actual allocation size on success.
2110  *
2111  * This routine attempts to allocate a contiguous kernel buffer up to
2112  * the specified size, backing off the size of the request exponentially
2113  * until the request succeeds or until the allocation size falls below
2114  * the system page size. This attempts to make sure it does not adversely
2115  * impact system performance, so when allocating more than one page, we
2116  * ask the memory allocator to avoid re-trying, swapping, writing back
2117  * or performing I/O.
2118  *
2119  * Note, this function also makes sure that the allocated buffer is aligned to
2120  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2121  *
2122  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2123  * to handle smaller (i.e. degraded) buffer allocations under low- or
2124  * fragmented-memory situations where such reduced allocations, from a
2125  * requested ideal, are allowed.
2126  *
2127  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2128  */
mtd_kmalloc_up_to(const struct mtd_info * mtd,size_t * size)2129 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2130 {
2131 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2132 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2133 	void *kbuf;
2134 
2135 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2136 
2137 	while (*size > min_alloc) {
2138 		kbuf = kmalloc(*size, flags);
2139 		if (kbuf)
2140 			return kbuf;
2141 
2142 		*size >>= 1;
2143 		*size = ALIGN(*size, mtd->writesize);
2144 	}
2145 
2146 	/*
2147 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2148 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2149 	 */
2150 	return kmalloc(*size, GFP_KERNEL);
2151 }
2152 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2153 
2154 #ifdef CONFIG_PROC_FS
2155 
2156 /*====================================================================*/
2157 /* Support for /proc/mtd */
2158 
mtd_proc_show(struct seq_file * m,void * v)2159 static int mtd_proc_show(struct seq_file *m, void *v)
2160 {
2161 	struct mtd_info *mtd;
2162 
2163 	seq_puts(m, "dev:    size   erasesize  name\n");
2164 	mutex_lock(&mtd_table_mutex);
2165 	mtd_for_each_device(mtd) {
2166 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2167 			   mtd->index, (unsigned long long)mtd->size,
2168 			   mtd->erasesize, mtd->name);
2169 	}
2170 	mutex_unlock(&mtd_table_mutex);
2171 	return 0;
2172 }
2173 #endif /* CONFIG_PROC_FS */
2174 
2175 /*====================================================================*/
2176 /* Init code */
2177 
mtd_bdi_init(char * name)2178 static struct backing_dev_info * __init mtd_bdi_init(char *name)
2179 {
2180 	struct backing_dev_info *bdi;
2181 	int ret;
2182 
2183 	bdi = bdi_alloc(NUMA_NO_NODE);
2184 	if (!bdi)
2185 		return ERR_PTR(-ENOMEM);
2186 	bdi->ra_pages = 0;
2187 	bdi->io_pages = 0;
2188 
2189 	/*
2190 	 * We put '-0' suffix to the name to get the same name format as we
2191 	 * used to get. Since this is called only once, we get a unique name.
2192 	 */
2193 	ret = bdi_register(bdi, "%.28s-0", name);
2194 	if (ret)
2195 		bdi_put(bdi);
2196 
2197 	return ret ? ERR_PTR(ret) : bdi;
2198 }
2199 
2200 static struct proc_dir_entry *proc_mtd;
2201 
init_mtd(void)2202 static int __init init_mtd(void)
2203 {
2204 	int ret;
2205 
2206 	ret = class_register(&mtd_class);
2207 	if (ret)
2208 		goto err_reg;
2209 
2210 	mtd_bdi = mtd_bdi_init("mtd");
2211 	if (IS_ERR(mtd_bdi)) {
2212 		ret = PTR_ERR(mtd_bdi);
2213 		goto err_bdi;
2214 	}
2215 
2216 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2217 
2218 	ret = init_mtdchar();
2219 	if (ret)
2220 		goto out_procfs;
2221 
2222 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2223 
2224 	return 0;
2225 
2226 out_procfs:
2227 	if (proc_mtd)
2228 		remove_proc_entry("mtd", NULL);
2229 	bdi_put(mtd_bdi);
2230 err_bdi:
2231 	class_unregister(&mtd_class);
2232 err_reg:
2233 	pr_err("Error registering mtd class or bdi: %d\n", ret);
2234 	return ret;
2235 }
2236 
cleanup_mtd(void)2237 static void __exit cleanup_mtd(void)
2238 {
2239 	debugfs_remove_recursive(dfs_dir_mtd);
2240 	cleanup_mtdchar();
2241 	if (proc_mtd)
2242 		remove_proc_entry("mtd", NULL);
2243 	class_unregister(&mtd_class);
2244 	bdi_put(mtd_bdi);
2245 	idr_destroy(&mtd_idr);
2246 }
2247 
2248 module_init(init_mtd);
2249 module_exit(cleanup_mtd);
2250 
2251 MODULE_LICENSE("GPL");
2252 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2253 MODULE_DESCRIPTION("Core MTD registration and access routines");
2254