xref: /OK3568_Linux_fs/kernel/drivers/media/platform/rockchip/isp1/capture.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /*
2  * Rockchip isp1 driver
3  *
4  * Copyright (C) 2017 Rockchip Electronics Co., Ltd.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/delay.h>
36 #include <linux/pm_runtime.h>
37 #include <media/v4l2-common.h>
38 #include <media/v4l2-event.h>
39 #include <media/v4l2-fh.h>
40 #include <media/v4l2-ioctl.h>
41 #include <media/v4l2-subdev.h>
42 #include <media/videobuf2-dma-contig.h>
43 #include "dev.h"
44 #include "regs.h"
45 
46 /*
47  * NOTE:
48  * 1. There are two capture video devices in rkisp1, selfpath and mainpath
49  * 2. Two capture device have separated memory-interface/crop/scale units.
50  * 3. Besides describing stream hardware, this file also contain entries
51  *    for pipeline operations.
52  * 4. The register read/write operations in this file are put into regs.c.
53  */
54 
55 /*
56  * differences between selfpatch and mainpath
57  * available mp sink input: isp
58  * available sp sink input : isp, dma(TODO)
59  * available mp sink pad fmts: yuv422, raw
60  * available sp sink pad fmts: yuv422, yuv420......
61  * available mp source fmts: yuv, raw, jpeg(TODO)
62  * available sp source fmts: yuv, rgb
63  */
64 
65 #define CIF_ISP_REQ_BUFS_MIN			0
66 #define CIF_ISP_REQ_BUFS_MAX			8
67 
68 #define STREAM_PAD_SINK				0
69 #define STREAM_PAD_SOURCE			1
70 
71 #define STREAM_MAX_MP_RSZ_OUTPUT_WIDTH		4416
72 #define STREAM_MAX_MP_RSZ_OUTPUT_HEIGHT		3312
73 #define STREAM_MAX_SP_RSZ_OUTPUT_WIDTH		1920
74 #define STREAM_MAX_SP_RSZ_OUTPUT_HEIGHT		1920
75 #define STREAM_MIN_RSZ_OUTPUT_WIDTH		32
76 #define STREAM_MIN_RSZ_OUTPUT_HEIGHT		16
77 #define STREAM_OUTPUT_STEP_WISE			8
78 
79 #define STREAM_MAX_MP_SP_INPUT_WIDTH STREAM_MAX_MP_RSZ_OUTPUT_WIDTH
80 #define STREAM_MAX_MP_SP_INPUT_HEIGHT STREAM_MAX_MP_RSZ_OUTPUT_HEIGHT
81 #define STREAM_MIN_MP_SP_INPUT_WIDTH		32
82 #define STREAM_MIN_MP_SP_INPUT_HEIGHT		32
83 
84 /* Get xsubs and ysubs for fourcc formats
85  *
86  * @xsubs: horizontal color samples in a 4*4 matrix, for yuv
87  * @ysubs: vertical color samples in a 4*4 matrix, for yuv
88  */
fcc_xysubs(u32 fcc,u32 * xsubs,u32 * ysubs)89 int fcc_xysubs(u32 fcc, u32 *xsubs, u32 *ysubs)
90 {
91 	switch (fcc) {
92 	case V4L2_PIX_FMT_GREY:
93 	case V4L2_PIX_FMT_YUV444M:
94 		*xsubs = 1;
95 		*ysubs = 1;
96 		break;
97 	case V4L2_PIX_FMT_YUYV:
98 	case V4L2_PIX_FMT_YVYU:
99 	case V4L2_PIX_FMT_VYUY:
100 	case V4L2_PIX_FMT_YUV422P:
101 	case V4L2_PIX_FMT_NV16:
102 	case V4L2_PIX_FMT_NV61:
103 	case V4L2_PIX_FMT_YVU422M:
104 		*xsubs = 2;
105 		*ysubs = 1;
106 		break;
107 	case V4L2_PIX_FMT_NV21:
108 	case V4L2_PIX_FMT_NV12:
109 	case V4L2_PIX_FMT_NV21M:
110 	case V4L2_PIX_FMT_NV12M:
111 	case V4L2_PIX_FMT_YUV420:
112 	case V4L2_PIX_FMT_YVU420:
113 		*xsubs = 2;
114 		*ysubs = 2;
115 		break;
116 	default:
117 		return -EINVAL;
118 	}
119 
120 	return 0;
121 }
122 
mbus_code_xysubs(u32 code,u32 * xsubs,u32 * ysubs)123 static int mbus_code_xysubs(u32 code, u32 *xsubs, u32 *ysubs)
124 {
125 	switch (code) {
126 	case MEDIA_BUS_FMT_YUYV8_2X8:
127 	case MEDIA_BUS_FMT_YUYV8_1X16:
128 	case MEDIA_BUS_FMT_YVYU8_1X16:
129 	case MEDIA_BUS_FMT_UYVY8_1X16:
130 	case MEDIA_BUS_FMT_VYUY8_1X16:
131 		*xsubs = 2;
132 		*ysubs = 1;
133 		break;
134 	default:
135 		return -EINVAL;
136 	}
137 
138 	return 0;
139 }
140 
mbus_code_sp_in_fmt(u32 in_mbus_code,u32 out_fourcc,u32 * format)141 static int mbus_code_sp_in_fmt(u32 in_mbus_code, u32 out_fourcc,
142 			       u32 *format)
143 {
144 	switch (in_mbus_code) {
145 	case MEDIA_BUS_FMT_YUYV8_2X8:
146 		*format = MI_CTRL_SP_INPUT_YUV422;
147 		break;
148 	default:
149 		return -EINVAL;
150 	}
151 
152 	/*
153 	 * Only SP can support output format of YCbCr4:0:0,
154 	 * and the input format of SP must be YCbCr4:0:0
155 	 * when outputting YCbCr4:0:0.
156 	 * The output format of isp is YCbCr4:2:2,
157 	 * so the CbCr data is discarded here.
158 	 */
159 	if (out_fourcc == V4L2_PIX_FMT_GREY)
160 		*format = MI_CTRL_SP_INPUT_YUV400;
161 
162 	return 0;
163 }
164 
165 static const struct capture_fmt mp_fmts[] = {
166 	/* yuv422 */
167 	{
168 		.fourcc = V4L2_PIX_FMT_YUYV,
169 		.fmt_type = FMT_YUV,
170 		.bpp = { 16 },
171 		.cplanes = 1,
172 		.mplanes = 1,
173 		.uv_swap = 0,
174 		.write_format = MI_CTRL_MP_WRITE_YUVINT,
175 	}, {
176 		.fourcc = V4L2_PIX_FMT_YUV422P,
177 		.fmt_type = FMT_YUV,
178 		.bpp = { 8, 4, 4 },
179 		.cplanes = 3,
180 		.mplanes = 1,
181 		.uv_swap = 0,
182 		.write_format = MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
183 	}, {
184 		.fourcc = V4L2_PIX_FMT_NV16,
185 		.fmt_type = FMT_YUV,
186 		.bpp = { 8, 16 },
187 		.cplanes = 2,
188 		.mplanes = 1,
189 		.uv_swap = 0,
190 		.write_format = MI_CTRL_MP_WRITE_YUV_SPLA,
191 	}, {
192 		.fourcc = V4L2_PIX_FMT_NV61,
193 		.fmt_type = FMT_YUV,
194 		.bpp = { 8, 16 },
195 		.cplanes = 2,
196 		.mplanes = 1,
197 		.uv_swap = 1,
198 		.write_format = MI_CTRL_MP_WRITE_YUV_SPLA,
199 	}, {
200 		.fourcc = V4L2_PIX_FMT_YUV422M,
201 		.fmt_type = FMT_YUV,
202 		.bpp = { 8, 8, 8 },
203 		.cplanes = 3,
204 		.mplanes = 3,
205 		.uv_swap = 0,
206 		.write_format = MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
207 	},
208 	/* yuv420 */
209 	{
210 		.fourcc = V4L2_PIX_FMT_NV21,
211 		.fmt_type = FMT_YUV,
212 		.bpp = { 8, 16 },
213 		.cplanes = 2,
214 		.mplanes = 1,
215 		.uv_swap = 1,
216 		.write_format = MI_CTRL_MP_WRITE_YUV_SPLA,
217 	}, {
218 		.fourcc = V4L2_PIX_FMT_NV12,
219 		.fmt_type = FMT_YUV,
220 		.bpp = { 8, 16 },
221 		.cplanes = 2,
222 		.mplanes = 1,
223 		.uv_swap = 0,
224 		.write_format = MI_CTRL_MP_WRITE_YUV_SPLA,
225 	}, {
226 		.fourcc = V4L2_PIX_FMT_NV21M,
227 		.fmt_type = FMT_YUV,
228 		.bpp = { 8, 16 },
229 		.cplanes = 2,
230 		.mplanes = 2,
231 		.uv_swap = 1,
232 		.write_format = MI_CTRL_MP_WRITE_YUV_SPLA,
233 	}, {
234 		.fourcc = V4L2_PIX_FMT_NV12M,
235 		.fmt_type = FMT_YUV,
236 		.bpp = { 8, 16 },
237 		.cplanes = 2,
238 		.mplanes = 2,
239 		.uv_swap = 0,
240 		.write_format = MI_CTRL_MP_WRITE_YUV_SPLA,
241 	}, {
242 		.fourcc = V4L2_PIX_FMT_YUV420,
243 		.fmt_type = FMT_YUV,
244 		.bpp = { 8, 8, 8 },
245 		.cplanes = 3,
246 		.mplanes = 1,
247 		.uv_swap = 0,
248 		.write_format = MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
249 	},
250 	/* yuv444 */
251 	{
252 		.fourcc = V4L2_PIX_FMT_YUV444M,
253 		.fmt_type = FMT_YUV,
254 		.bpp = { 8, 8, 8 },
255 		.cplanes = 3,
256 		.mplanes = 3,
257 		.uv_swap = 0,
258 		.write_format = MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
259 	},
260 	/* raw */
261 	{
262 		.fourcc = V4L2_PIX_FMT_SRGGB8,
263 		.fmt_type = FMT_BAYER,
264 		.bpp = { 8 },
265 		.mplanes = 1,
266 		.write_format = MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
267 	}, {
268 		.fourcc = V4L2_PIX_FMT_SGRBG8,
269 		.fmt_type = FMT_BAYER,
270 		.bpp = { 8 },
271 		.mplanes = 1,
272 		.write_format = MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
273 	}, {
274 		.fourcc = V4L2_PIX_FMT_SGBRG8,
275 		.fmt_type = FMT_BAYER,
276 		.bpp = { 8 },
277 		.mplanes = 1,
278 		.write_format = MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
279 	}, {
280 		.fourcc = V4L2_PIX_FMT_SBGGR8,
281 		.fmt_type = FMT_BAYER,
282 		.bpp = { 8 },
283 		.mplanes = 1,
284 		.write_format = MI_CTRL_MP_WRITE_YUV_PLA_OR_RAW8,
285 	}, {
286 		.fourcc = V4L2_PIX_FMT_SRGGB10,
287 		.fmt_type = FMT_BAYER,
288 		.bpp = { 10 },
289 		.mplanes = 1,
290 		.write_format = MI_CTRL_MP_WRITE_RAW12,
291 	}, {
292 		.fourcc = V4L2_PIX_FMT_SGRBG10,
293 		.fmt_type = FMT_BAYER,
294 		.bpp = { 10 },
295 		.mplanes = 1,
296 		.write_format = MI_CTRL_MP_WRITE_RAW12,
297 	}, {
298 		.fourcc = V4L2_PIX_FMT_SGBRG10,
299 		.fmt_type = FMT_BAYER,
300 		.bpp = { 10 },
301 		.mplanes = 1,
302 		.write_format = MI_CTRL_MP_WRITE_RAW12,
303 	}, {
304 		.fourcc = V4L2_PIX_FMT_SBGGR10,
305 		.fmt_type = FMT_BAYER,
306 		.bpp = { 10 },
307 		.mplanes = 1,
308 		.write_format = MI_CTRL_MP_WRITE_RAW12,
309 	}, {
310 		.fourcc = V4L2_PIX_FMT_SRGGB12,
311 		.fmt_type = FMT_BAYER,
312 		.bpp = { 12 },
313 		.mplanes = 1,
314 		.write_format = MI_CTRL_MP_WRITE_RAW12,
315 	}, {
316 		.fourcc = V4L2_PIX_FMT_SGRBG12,
317 		.fmt_type = FMT_BAYER,
318 		.bpp = { 12 },
319 		.mplanes = 1,
320 		.write_format = MI_CTRL_MP_WRITE_RAW12,
321 	}, {
322 		.fourcc = V4L2_PIX_FMT_SGBRG12,
323 		.fmt_type = FMT_BAYER,
324 		.bpp = { 12 },
325 		.mplanes = 1,
326 		.write_format = MI_CTRL_MP_WRITE_RAW12,
327 	}, {
328 		.fourcc = V4L2_PIX_FMT_SBGGR12,
329 		.fmt_type = FMT_BAYER,
330 		.bpp = { 12 },
331 		.mplanes = 1,
332 		.write_format = MI_CTRL_MP_WRITE_RAW12,
333 	},
334 };
335 
336 static const struct capture_fmt sp_fmts[] = {
337 	/* yuv422 */
338 	{
339 		.fourcc = V4L2_PIX_FMT_YUYV,
340 		.fmt_type = FMT_YUV,
341 		.bpp = { 16 },
342 		.cplanes = 1,
343 		.mplanes = 1,
344 		.uv_swap = 0,
345 		.write_format = MI_CTRL_SP_WRITE_INT,
346 		.output_format = MI_CTRL_SP_OUTPUT_YUV422,
347 	}, {
348 		.fourcc = V4L2_PIX_FMT_YUV422P,
349 		.fmt_type = FMT_YUV,
350 		.bpp = { 8, 8, 8 },
351 		.cplanes = 3,
352 		.mplanes = 1,
353 		.uv_swap = 0,
354 		.write_format = MI_CTRL_SP_WRITE_PLA,
355 		.output_format = MI_CTRL_SP_OUTPUT_YUV422,
356 	}, {
357 		.fourcc = V4L2_PIX_FMT_NV16,
358 		.fmt_type = FMT_YUV,
359 		.bpp = { 8, 16 },
360 		.cplanes = 2,
361 		.mplanes = 1,
362 		.uv_swap = 0,
363 		.write_format = MI_CTRL_SP_WRITE_SPLA,
364 		.output_format = MI_CTRL_SP_OUTPUT_YUV422,
365 	}, {
366 		.fourcc = V4L2_PIX_FMT_NV61,
367 		.fmt_type = FMT_YUV,
368 		.bpp = { 8, 16 },
369 		.cplanes = 2,
370 		.mplanes = 1,
371 		.uv_swap = 1,
372 		.write_format = MI_CTRL_SP_WRITE_SPLA,
373 		.output_format = MI_CTRL_SP_OUTPUT_YUV422,
374 	}, {
375 		.fourcc = V4L2_PIX_FMT_YUV422M,
376 		.fmt_type = FMT_YUV,
377 		.bpp = { 8, 8, 8 },
378 		.cplanes = 3,
379 		.mplanes = 3,
380 		.uv_swap = 0,
381 		.write_format = MI_CTRL_SP_WRITE_PLA,
382 		.output_format = MI_CTRL_SP_OUTPUT_YUV422,
383 	},
384 	/* yuv420 */
385 	{
386 		.fourcc = V4L2_PIX_FMT_NV21,
387 		.fmt_type = FMT_YUV,
388 		.bpp = { 8, 16 },
389 		.cplanes = 2,
390 		.mplanes = 1,
391 		.uv_swap = 1,
392 		.write_format = MI_CTRL_SP_WRITE_SPLA,
393 		.output_format = MI_CTRL_SP_OUTPUT_YUV420,
394 	}, {
395 		.fourcc = V4L2_PIX_FMT_NV12,
396 		.fmt_type = FMT_YUV,
397 		.bpp = { 8, 16 },
398 		.cplanes = 2,
399 		.mplanes = 1,
400 		.uv_swap = 0,
401 		.write_format = MI_CTRL_SP_WRITE_SPLA,
402 		.output_format = MI_CTRL_SP_OUTPUT_YUV420,
403 	}, {
404 		.fourcc = V4L2_PIX_FMT_NV21M,
405 		.fmt_type = FMT_YUV,
406 		.bpp = { 8, 16 },
407 		.cplanes = 2,
408 		.mplanes = 2,
409 		.uv_swap = 1,
410 		.write_format = MI_CTRL_SP_WRITE_SPLA,
411 		.output_format = MI_CTRL_SP_OUTPUT_YUV420,
412 	}, {
413 		.fourcc = V4L2_PIX_FMT_NV12M,
414 		.fmt_type = FMT_YUV,
415 		.bpp = { 8, 16 },
416 		.cplanes = 2,
417 		.mplanes = 2,
418 		.uv_swap = 0,
419 		.write_format = MI_CTRL_SP_WRITE_SPLA,
420 		.output_format = MI_CTRL_SP_OUTPUT_YUV420,
421 	}, {
422 		.fourcc = V4L2_PIX_FMT_YUV420,
423 		.fmt_type = FMT_YUV,
424 		.bpp = { 8, 8, 8 },
425 		.cplanes = 3,
426 		.mplanes = 1,
427 		.uv_swap = 0,
428 		.write_format = MI_CTRL_SP_WRITE_PLA,
429 		.output_format = MI_CTRL_SP_OUTPUT_YUV420,
430 	},
431 	/* yuv444 */
432 	{
433 		.fourcc = V4L2_PIX_FMT_YUV444M,
434 		.fmt_type = FMT_YUV,
435 		.bpp = { 8, 8, 8 },
436 		.cplanes = 3,
437 		.mplanes = 3,
438 		.uv_swap = 0,
439 		.write_format = MI_CTRL_SP_WRITE_PLA,
440 		.output_format = MI_CTRL_SP_OUTPUT_YUV444,
441 	},
442 	/* yuv400 */
443 	{
444 		.fourcc = V4L2_PIX_FMT_GREY,
445 		.fmt_type = FMT_YUV,
446 		.bpp = { 8 },
447 		.cplanes = 1,
448 		.mplanes = 1,
449 		.uv_swap = 0,
450 		.write_format = MI_CTRL_SP_WRITE_PLA,
451 		.output_format = MI_CTRL_SP_OUTPUT_YUV400,
452 	},
453 	/* rgb */
454 	{
455 		.fourcc = V4L2_PIX_FMT_XBGR32,
456 		.fmt_type = FMT_RGB,
457 		.bpp = { 32 },
458 		.mplanes = 1,
459 		.write_format = MI_CTRL_SP_WRITE_PLA,
460 		.output_format = MI_CTRL_SP_OUTPUT_RGB888,
461 	}, {
462 		.fourcc = V4L2_PIX_FMT_RGB565,
463 		.fmt_type = FMT_RGB,
464 		.bpp = { 16 },
465 		.mplanes = 1,
466 		.write_format = MI_CTRL_SP_WRITE_PLA,
467 		.output_format = MI_CTRL_SP_OUTPUT_RGB565,
468 	}
469 };
470 
471 static const struct capture_fmt raw_fmts[] = {
472 	/* raw */
473 	{
474 		.fourcc = V4L2_PIX_FMT_SRGGB8,
475 		.fmt_type = FMT_BAYER,
476 		.bpp = { 8 },
477 		.mplanes = 1,
478 	}, {
479 		.fourcc = V4L2_PIX_FMT_SGRBG8,
480 		.fmt_type = FMT_BAYER,
481 		.bpp = { 8 },
482 		.mplanes = 1,
483 	}, {
484 		.fourcc = V4L2_PIX_FMT_SGBRG8,
485 		.fmt_type = FMT_BAYER,
486 		.bpp = { 8 },
487 		.mplanes = 1,
488 	}, {
489 		.fourcc = V4L2_PIX_FMT_SBGGR8,
490 		.fmt_type = FMT_BAYER,
491 		.bpp = { 8 },
492 		.mplanes = 1,
493 	}, {
494 		.fourcc = V4L2_PIX_FMT_SRGGB10,
495 		.fmt_type = FMT_BAYER,
496 		.bpp = { 10 },
497 		.mplanes = 1,
498 	}, {
499 		.fourcc = V4L2_PIX_FMT_SGRBG10,
500 		.fmt_type = FMT_BAYER,
501 		.bpp = { 10 },
502 		.mplanes = 1,
503 	}, {
504 		.fourcc = V4L2_PIX_FMT_SGBRG10,
505 		.fmt_type = FMT_BAYER,
506 		.bpp = { 10 },
507 		.mplanes = 1,
508 	}, {
509 		.fourcc = V4L2_PIX_FMT_SBGGR10,
510 		.fmt_type = FMT_BAYER,
511 		.bpp = { 10 },
512 		.mplanes = 1,
513 	}, {
514 		.fourcc = V4L2_PIX_FMT_SRGGB12,
515 		.fmt_type = FMT_BAYER,
516 		.bpp = { 12 },
517 		.mplanes = 1,
518 	}, {
519 		.fourcc = V4L2_PIX_FMT_SGRBG12,
520 		.fmt_type = FMT_BAYER,
521 		.bpp = { 12 },
522 		.mplanes = 1,
523 	}, {
524 		.fourcc = V4L2_PIX_FMT_SGBRG12,
525 		.fmt_type = FMT_BAYER,
526 		.bpp = { 12 },
527 		.mplanes = 1,
528 	}, {
529 		.fourcc = V4L2_PIX_FMT_SBGGR12,
530 		.fmt_type = FMT_BAYER,
531 		.bpp = { 12 },
532 		.mplanes = 1,
533 	},
534 };
535 
536 static struct stream_config rkisp1_mp_stream_config = {
537 	.fmts = mp_fmts,
538 	.fmt_size = ARRAY_SIZE(mp_fmts),
539 	/* constraints */
540 	.max_rsz_width = STREAM_MAX_MP_RSZ_OUTPUT_WIDTH,
541 	.max_rsz_height = STREAM_MAX_MP_RSZ_OUTPUT_HEIGHT,
542 	.min_rsz_width = STREAM_MIN_RSZ_OUTPUT_WIDTH,
543 	.min_rsz_height = STREAM_MIN_RSZ_OUTPUT_HEIGHT,
544 	/* registers */
545 	.rsz = {
546 		.ctrl = CIF_MRSZ_CTRL,
547 		.scale_hy = CIF_MRSZ_SCALE_HY,
548 		.scale_hcr = CIF_MRSZ_SCALE_HCR,
549 		.scale_hcb = CIF_MRSZ_SCALE_HCB,
550 		.scale_vy = CIF_MRSZ_SCALE_VY,
551 		.scale_vc = CIF_MRSZ_SCALE_VC,
552 		.scale_lut = CIF_MRSZ_SCALE_LUT,
553 		.scale_lut_addr = CIF_MRSZ_SCALE_LUT_ADDR,
554 		.scale_hy_shd = CIF_MRSZ_SCALE_HY_SHD,
555 		.scale_hcr_shd = CIF_MRSZ_SCALE_HCR_SHD,
556 		.scale_hcb_shd = CIF_MRSZ_SCALE_HCB_SHD,
557 		.scale_vy_shd = CIF_MRSZ_SCALE_VY_SHD,
558 		.scale_vc_shd = CIF_MRSZ_SCALE_VC_SHD,
559 		.phase_hy = CIF_MRSZ_PHASE_HY,
560 		.phase_hc = CIF_MRSZ_PHASE_HC,
561 		.phase_vy = CIF_MRSZ_PHASE_VY,
562 		.phase_vc = CIF_MRSZ_PHASE_VC,
563 		.ctrl_shd = CIF_MRSZ_CTRL_SHD,
564 		.phase_hy_shd = CIF_MRSZ_PHASE_HY_SHD,
565 		.phase_hc_shd = CIF_MRSZ_PHASE_HC_SHD,
566 		.phase_vy_shd = CIF_MRSZ_PHASE_VY_SHD,
567 		.phase_vc_shd = CIF_MRSZ_PHASE_VC_SHD,
568 	},
569 	.dual_crop = {
570 		.ctrl = CIF_DUAL_CROP_CTRL,
571 		.yuvmode_mask = CIF_DUAL_CROP_MP_MODE_YUV,
572 		.rawmode_mask = CIF_DUAL_CROP_MP_MODE_RAW,
573 		.h_offset = CIF_DUAL_CROP_M_H_OFFS,
574 		.v_offset = CIF_DUAL_CROP_M_V_OFFS,
575 		.h_size = CIF_DUAL_CROP_M_H_SIZE,
576 		.v_size = CIF_DUAL_CROP_M_V_SIZE,
577 	},
578 	.mi = {
579 		.y_size_init = CIF_MI_MP_Y_SIZE_INIT,
580 		.cb_size_init = CIF_MI_MP_CB_SIZE_INIT,
581 		.cr_size_init = CIF_MI_MP_CR_SIZE_INIT,
582 		.y_base_ad_init = CIF_MI_MP_Y_BASE_AD_INIT,
583 		.cb_base_ad_init = CIF_MI_MP_CB_BASE_AD_INIT,
584 		.cr_base_ad_init = CIF_MI_MP_CR_BASE_AD_INIT,
585 		.y_offs_cnt_init = CIF_MI_MP_Y_OFFS_CNT_INIT,
586 		.cb_offs_cnt_init = CIF_MI_MP_CB_OFFS_CNT_INIT,
587 		.cr_offs_cnt_init = CIF_MI_MP_CR_OFFS_CNT_INIT,
588 	},
589 };
590 
591 static struct stream_config rkisp1_sp_stream_config = {
592 	.fmts = sp_fmts,
593 	.fmt_size = ARRAY_SIZE(sp_fmts),
594 	/* constraints */
595 	.max_rsz_width = STREAM_MAX_SP_RSZ_OUTPUT_WIDTH,
596 	.max_rsz_height = STREAM_MAX_SP_RSZ_OUTPUT_HEIGHT,
597 	.min_rsz_width = STREAM_MIN_RSZ_OUTPUT_WIDTH,
598 	.min_rsz_height = STREAM_MIN_RSZ_OUTPUT_HEIGHT,
599 	/* registers */
600 	.rsz = {
601 		.ctrl = CIF_SRSZ_CTRL,
602 		.scale_hy = CIF_SRSZ_SCALE_HY,
603 		.scale_hcr = CIF_SRSZ_SCALE_HCR,
604 		.scale_hcb = CIF_SRSZ_SCALE_HCB,
605 		.scale_vy = CIF_SRSZ_SCALE_VY,
606 		.scale_vc = CIF_SRSZ_SCALE_VC,
607 		.scale_lut = CIF_SRSZ_SCALE_LUT,
608 		.scale_lut_addr = CIF_SRSZ_SCALE_LUT_ADDR,
609 		.scale_hy_shd = CIF_SRSZ_SCALE_HY_SHD,
610 		.scale_hcr_shd = CIF_SRSZ_SCALE_HCR_SHD,
611 		.scale_hcb_shd = CIF_SRSZ_SCALE_HCB_SHD,
612 		.scale_vy_shd = CIF_SRSZ_SCALE_VY_SHD,
613 		.scale_vc_shd = CIF_SRSZ_SCALE_VC_SHD,
614 		.phase_hy = CIF_SRSZ_PHASE_HY,
615 		.phase_hc = CIF_SRSZ_PHASE_HC,
616 		.phase_vy = CIF_SRSZ_PHASE_VY,
617 		.phase_vc = CIF_SRSZ_PHASE_VC,
618 		.ctrl_shd = CIF_SRSZ_CTRL_SHD,
619 		.phase_hy_shd = CIF_SRSZ_PHASE_HY_SHD,
620 		.phase_hc_shd = CIF_SRSZ_PHASE_HC_SHD,
621 		.phase_vy_shd = CIF_SRSZ_PHASE_VY_SHD,
622 		.phase_vc_shd = CIF_SRSZ_PHASE_VC_SHD,
623 	},
624 	.dual_crop = {
625 		.ctrl = CIF_DUAL_CROP_CTRL,
626 		.yuvmode_mask = CIF_DUAL_CROP_SP_MODE_YUV,
627 		.rawmode_mask = CIF_DUAL_CROP_SP_MODE_RAW,
628 		.h_offset = CIF_DUAL_CROP_S_H_OFFS,
629 		.v_offset = CIF_DUAL_CROP_S_V_OFFS,
630 		.h_size = CIF_DUAL_CROP_S_H_SIZE,
631 		.v_size = CIF_DUAL_CROP_S_V_SIZE,
632 	},
633 	.mi = {
634 		.y_size_init = CIF_MI_SP_Y_SIZE_INIT,
635 		.cb_size_init = CIF_MI_SP_CB_SIZE_INIT,
636 		.cr_size_init = CIF_MI_SP_CR_SIZE_INIT,
637 		.y_base_ad_init = CIF_MI_SP_Y_BASE_AD_INIT,
638 		.cb_base_ad_init = CIF_MI_SP_CB_BASE_AD_INIT,
639 		.cr_base_ad_init = CIF_MI_SP_CR_BASE_AD_INIT,
640 		.y_offs_cnt_init = CIF_MI_SP_Y_OFFS_CNT_INIT,
641 		.cb_offs_cnt_init = CIF_MI_SP_CB_OFFS_CNT_INIT,
642 		.cr_offs_cnt_init = CIF_MI_SP_CR_OFFS_CNT_INIT,
643 	},
644 };
645 
646 static struct stream_config rkisp1_raw_stream_config = {
647 	.fmts = raw_fmts,
648 	.fmt_size = ARRAY_SIZE(raw_fmts),
649 };
650 
651 static const
find_fmt(struct rkisp1_stream * stream,const u32 pixelfmt)652 struct capture_fmt *find_fmt(struct rkisp1_stream *stream, const u32 pixelfmt)
653 {
654 	const struct capture_fmt *fmt;
655 	int i;
656 
657 	for (i = 0; i < stream->config->fmt_size; i++) {
658 		fmt = &stream->config->fmts[i];
659 		if (fmt->fourcc == pixelfmt)
660 			return fmt;
661 	}
662 	return NULL;
663 }
664 
665 /* configure dual-crop unit */
rkisp1_config_dcrop(struct rkisp1_stream * stream,bool async)666 static int rkisp1_config_dcrop(struct rkisp1_stream *stream, bool async)
667 {
668 	struct rkisp1_device *dev = stream->ispdev;
669 	struct v4l2_rect *dcrop = &stream->dcrop;
670 	struct v4l2_rect *input_win;
671 
672 	/* dual-crop unit get data from isp */
673 	input_win = rkisp1_get_isp_sd_win(&dev->isp_sdev);
674 
675 	if (dcrop->width == input_win->width &&
676 	    dcrop->height == input_win->height &&
677 	    dcrop->left == 0 && dcrop->top == 0) {
678 		disable_dcrop(stream, async);
679 		v4l2_dbg(1, rkisp1_debug, &dev->v4l2_dev,
680 			 "stream %d crop disabled\n", stream->id);
681 		return 0;
682 	}
683 
684 	config_dcrop(stream, dcrop, async);
685 
686 	v4l2_dbg(1, rkisp1_debug, &dev->v4l2_dev,
687 		 "stream %d crop: %dx%d -> %dx%d\n", stream->id,
688 		 input_win->width, input_win->height,
689 		 dcrop->width, dcrop->height);
690 
691 	return 0;
692 }
693 
694 /* configure scale unit */
rkisp1_config_rsz(struct rkisp1_stream * stream,bool async)695 static int rkisp1_config_rsz(struct rkisp1_stream *stream, bool async)
696 {
697 	struct rkisp1_device *dev = stream->ispdev;
698 	struct v4l2_pix_format_mplane output_fmt = stream->out_fmt;
699 	struct capture_fmt *output_isp_fmt = &stream->out_isp_fmt;
700 	struct ispsd_out_fmt *input_isp_fmt =
701 			rkisp1_get_ispsd_out_fmt(&dev->isp_sdev);
702 	struct v4l2_rect in_y, in_c, out_y, out_c;
703 	u32 xsubs_in = 1, ysubs_in = 1;
704 	u32 xsubs_out = 1, ysubs_out = 1;
705 
706 	if (input_isp_fmt->fmt_type == FMT_BAYER)
707 		goto disable;
708 
709 	/* set input and output sizes for scale calculation */
710 	in_y.width = stream->dcrop.width;
711 	in_y.height = stream->dcrop.height;
712 	out_y.width = output_fmt.width;
713 	out_y.height = output_fmt.height;
714 
715 	/* The size of Cb,Cr are related to the format */
716 	if (mbus_code_xysubs(input_isp_fmt->mbus_code, &xsubs_in, &ysubs_in)) {
717 		v4l2_err(&dev->v4l2_dev, "Not xsubs/ysubs found\n");
718 		return -EINVAL;
719 	}
720 	in_c.width = in_y.width / xsubs_in;
721 	in_c.height = in_y.height / ysubs_in;
722 
723 	if (output_isp_fmt->fmt_type == FMT_YUV) {
724 		fcc_xysubs(output_isp_fmt->fourcc, &xsubs_out, &ysubs_out);
725 		out_c.width = out_y.width / xsubs_out;
726 		out_c.height = out_y.height / ysubs_out;
727 	} else {
728 		out_c.width = out_y.width / xsubs_in;
729 		out_c.height = out_y.height / ysubs_in;
730 	}
731 
732 	if (in_c.width == out_c.width && in_c.height == out_c.height)
733 		goto disable;
734 
735 	/* set RSZ input and output */
736 	v4l2_dbg(1, rkisp1_debug, &dev->v4l2_dev,
737 		 "stream %d rsz/scale: %dx%d -> %dx%d\n",
738 		 stream->id, stream->dcrop.width, stream->dcrop.height,
739 		 output_fmt.width, output_fmt.height);
740 	v4l2_dbg(1, rkisp1_debug, &dev->v4l2_dev,
741 		 "chroma scaling %dx%d -> %dx%d\n",
742 		 in_c.width, in_c.height, out_c.width, out_c.height);
743 
744 	/* calculate and set scale */
745 	config_rsz(stream, &in_y, &in_c, &out_y, &out_c, async);
746 
747 	if (rkisp1_debug)
748 		dump_rsz_regs(stream);
749 
750 	return 0;
751 
752 disable:
753 	disable_rsz(stream, async);
754 
755 	return 0;
756 }
757 
758 /***************************** stream operations*******************************/
759 
760 /*
761  * memory base addresses should be with respect
762  * to the burst alignment restriction for AXI.
763  */
calc_burst_len(struct rkisp1_stream * stream)764 static u32 calc_burst_len(struct rkisp1_stream *stream)
765 {
766 	struct rkisp1_device *dev = stream->ispdev;
767 	u32 y_size = stream->out_fmt.plane_fmt[0].bytesperline *
768 		stream->out_fmt.height;
769 	u32 cb_size = stream->out_fmt.plane_fmt[1].sizeimage;
770 	u32 cr_size = stream->out_fmt.plane_fmt[2].sizeimage;
771 	u32 cb_offs, cr_offs;
772 	u32 bus, burst;
773 	int i;
774 
775 	/* MI128bit and MI64bit */
776 	bus = 8;
777 	if (dev->isp_ver == ISP_V12 || dev->isp_ver == ISP_V13)
778 		bus = 16;
779 
780 	/* y/c base addr: burstN * bus alignment */
781 	cb_offs = y_size;
782 	cr_offs = cr_size ? (cb_size + cb_offs) : 0;
783 
784 	if (!(cb_offs % (bus * 16)) &&
785 		!(cr_offs % (bus * 16)))
786 		burst = CIF_MI_CTRL_BURST_LEN_LUM_16 |
787 			CIF_MI_CTRL_BURST_LEN_CHROM_16;
788 	else if (!(cb_offs % (bus * 8)) &&
789 		!(cr_offs % (bus * 8)))
790 		burst = CIF_MI_CTRL_BURST_LEN_LUM_8 |
791 			CIF_MI_CTRL_BURST_LEN_CHROM_8;
792 	else
793 		burst = CIF_MI_CTRL_BURST_LEN_LUM_4 |
794 			CIF_MI_CTRL_BURST_LEN_CHROM_4;
795 
796 	if (cb_offs % (bus * 4) ||
797 		cr_offs % (bus * 4))
798 		v4l2_warn(&dev->v4l2_dev,
799 			"%dx%d fmt:0x%x not support, should be %d aligned\n",
800 			stream->out_fmt.width,
801 			stream->out_fmt.height,
802 			stream->out_fmt.pixelformat,
803 			(cr_offs == 0) ? bus * 4 : bus * 16);
804 
805 	stream->burst = burst;
806 	for (i = 0; i < RKISP1_MAX_STREAM; i++)
807 		if (burst > dev->stream[i].burst)
808 			burst = dev->stream[i].burst;
809 
810 	if (stream->interlaced) {
811 		if (!stream->out_fmt.width % (bus * 16))
812 			stream->burst = CIF_MI_CTRL_BURST_LEN_LUM_16 |
813 				CIF_MI_CTRL_BURST_LEN_CHROM_16;
814 		else if (!stream->out_fmt.width % (bus * 8))
815 			stream->burst = CIF_MI_CTRL_BURST_LEN_LUM_8 |
816 				CIF_MI_CTRL_BURST_LEN_CHROM_8;
817 		else
818 			stream->burst = CIF_MI_CTRL_BURST_LEN_LUM_4 |
819 				CIF_MI_CTRL_BURST_LEN_CHROM_4;
820 		if (stream->out_fmt.width % (bus * 4))
821 			v4l2_warn(&dev->v4l2_dev,
822 				"interlaced: width should be %d aligned\n",
823 				bus * 4);
824 		burst = min(stream->burst, burst);
825 		stream->burst = burst;
826 	}
827 
828 	return burst;
829 }
830 
831 /*
832  * configure memory interface for mainpath
833  * This should only be called when stream-on
834  */
mp_config_mi(struct rkisp1_stream * stream)835 static int mp_config_mi(struct rkisp1_stream *stream)
836 {
837 	void __iomem *base = stream->ispdev->base_addr;
838 
839        /*
840 	* NOTE: plane_fmt[0].sizeimage is total size of all planes for single
841 	* memory plane formats, so calculate the size explicitly.
842 	*/
843 	mi_set_y_size(stream, stream->out_fmt.plane_fmt[0].bytesperline *
844 			 stream->out_fmt.height);
845 	mi_set_cb_size(stream, stream->out_fmt.plane_fmt[1].sizeimage);
846 	mi_set_cr_size(stream, stream->out_fmt.plane_fmt[2].sizeimage);
847 	mi_frame_end_int_enable(stream);
848 	if (stream->out_isp_fmt.uv_swap)
849 		mp_set_uv_swap(base);
850 
851 	config_mi_ctrl(stream, calc_burst_len(stream));
852 	mp_mi_ctrl_set_format(base, stream->out_isp_fmt.write_format);
853 	mp_mi_ctrl_autoupdate_en(base);
854 
855 	return 0;
856 }
857 
858 /*
859  * configure memory interface for selfpath
860  * This should only be called when stream-on
861  */
sp_config_mi(struct rkisp1_stream * stream)862 static int sp_config_mi(struct rkisp1_stream *stream)
863 {
864 	void __iomem *base = stream->ispdev->base_addr;
865 	struct rkisp1_device *dev = stream->ispdev;
866 	struct capture_fmt *output_isp_fmt = &stream->out_isp_fmt;
867 	struct ispsd_out_fmt *input_isp_fmt =
868 			rkisp1_get_ispsd_out_fmt(&dev->isp_sdev);
869 	u32 sp_in_fmt;
870 
871 	if (mbus_code_sp_in_fmt(input_isp_fmt->mbus_code,
872 				output_isp_fmt->fourcc, &sp_in_fmt)) {
873 		v4l2_err(&dev->v4l2_dev, "Can't find the input format\n");
874 		return -EINVAL;
875 	}
876 
877        /*
878 	* NOTE: plane_fmt[0].sizeimage is total size of all planes for single
879 	* memory plane formats, so calculate the size explicitly.
880 	*/
881 	mi_set_y_size(stream, stream->out_fmt.plane_fmt[0].bytesperline *
882 		      stream->out_fmt.height);
883 	mi_set_cb_size(stream, stream->out_fmt.plane_fmt[1].sizeimage);
884 	mi_set_cr_size(stream, stream->out_fmt.plane_fmt[2].sizeimage);
885 
886 	sp_set_y_width(base, stream->out_fmt.width);
887 	if (stream->interlaced) {
888 		stream->u.sp.vir_offs =
889 			stream->out_fmt.plane_fmt[0].bytesperline;
890 		sp_set_y_height(base, stream->out_fmt.height / 2);
891 		sp_set_y_line_length(base, stream->u.sp.y_stride * 2);
892 	} else {
893 		sp_set_y_height(base, stream->out_fmt.height);
894 		sp_set_y_line_length(base, stream->u.sp.y_stride);
895 	}
896 
897 	mi_frame_end_int_enable(stream);
898 	if (output_isp_fmt->uv_swap)
899 		sp_set_uv_swap(base);
900 
901 	config_mi_ctrl(stream, calc_burst_len(stream));
902 	sp_mi_ctrl_set_format(base, stream->out_isp_fmt.write_format |
903 			      sp_in_fmt | output_isp_fmt->output_format);
904 
905 	sp_mi_ctrl_autoupdate_en(base);
906 
907 	return 0;
908 }
909 
910 /*
911  * configure memory interface for rawpath
912  * This should only be called when stream-on
913  */
raw_config_mi(struct rkisp1_stream * stream)914 static int raw_config_mi(struct rkisp1_stream *stream)
915 {
916 	void __iomem *base = stream->ispdev->base_addr;
917 	struct rkisp1_device *dev = stream->ispdev;
918 	struct v4l2_mbus_framefmt *in_frm;
919 	u32 in_size;
920 
921 	if (!dev->active_sensor ||
922 	    (dev->active_sensor &&
923 	     dev->active_sensor->mbus.type != V4L2_MBUS_CSI2_DPHY)) {
924 		if (stream->id == RKISP1_STREAM_RAW)
925 			v4l2_err(&dev->v4l2_dev,
926 				 "only mipi sensor support raw path\n");
927 		return -EINVAL;
928 	}
929 
930 	if (dev->stream[RKISP1_STREAM_RAW].streaming)
931 		return 0;
932 
933 	in_frm = &dev->active_sensor->fmt.format;
934 
935 	v4l2_dbg(1, rkisp1_debug, &dev->v4l2_dev,
936 		"stream:%d input %dx%d\n",
937 		stream->id, in_frm->width, in_frm->height);
938 
939 	/* raw output size equal to sensor input size */
940 	if (stream->id == RKISP1_STREAM_RAW) {
941 		in_size = stream->out_fmt.plane_fmt[0].sizeimage;
942 	} else {
943 		struct rkisp1_stream *raw = &dev->stream[RKISP1_STREAM_RAW];
944 
945 		in_size = raw->out_fmt.plane_fmt[0].sizeimage;
946 	}
947 
948 	dmatx0_set_pic_size(base, in_frm->width, in_frm->height);
949 	dmatx0_set_pic_off(base, 0);
950 	dmatx0_ctrl(base,
951 		CIF_ISP_CSI0_DMATX0_VC(1) |
952 		CIF_ISP_CSI0_DMATX0_SIMG_SWP |
953 		CIF_ISP_CSI0_DMATX0_SIMG_MODE);
954 	mi_raw0_set_size(base, in_size);
955 	mi_raw0_set_offs(base, 0);
956 	mi_raw0_set_length(base, 0);
957 	mi_raw0_set_irq_offs(base, 0);
958 	/* dummy buf for raw first address shadow */
959 	mi_raw0_set_addr(base, stream->dummy_buf.dma_addr);
960 	mi_ctrl2(base, CIF_MI_CTRL2_MIPI_RAW0_AUTO_UPDATE);
961 	if (stream->id == RKISP1_STREAM_RAW)
962 		stream->u.raw.pre_stop = false;
963 
964 	return 0;
965 }
966 
mp_enable_mi(struct rkisp1_stream * stream)967 static void mp_enable_mi(struct rkisp1_stream *stream)
968 {
969 	void __iomem *base = stream->ispdev->base_addr;
970 	struct capture_fmt *isp_fmt = &stream->out_isp_fmt;
971 
972 	mi_ctrl_mp_disable(base);
973 	if (isp_fmt->fmt_type == FMT_BAYER)
974 		mi_ctrl_mpraw_enable(base);
975 	else if (isp_fmt->fmt_type == FMT_YUV)
976 		mi_ctrl_mpyuv_enable(base);
977 }
978 
sp_enable_mi(struct rkisp1_stream * stream)979 static void sp_enable_mi(struct rkisp1_stream *stream)
980 {
981 	void __iomem *base = stream->ispdev->base_addr;
982 
983 	mi_ctrl_spyuv_enable(base);
984 }
985 
raw_enable_mi(struct rkisp1_stream * stream)986 static void raw_enable_mi(struct rkisp1_stream *stream)
987 {
988 	void __iomem *base = stream->ispdev->base_addr;
989 
990 	mi_mipi_raw0_enable(base);
991 }
992 
mp_disable_mi(struct rkisp1_stream * stream)993 static void mp_disable_mi(struct rkisp1_stream *stream)
994 {
995 	void __iomem *base = stream->ispdev->base_addr;
996 
997 	mi_ctrl_mp_disable(base);
998 }
999 
sp_disable_mi(struct rkisp1_stream * stream)1000 static void sp_disable_mi(struct rkisp1_stream *stream)
1001 {
1002 	void __iomem *base = stream->ispdev->base_addr;
1003 
1004 	mi_ctrl_spyuv_disable(base);
1005 }
1006 
update_dmatx0(struct rkisp1_stream * stream)1007 static void update_dmatx0(struct rkisp1_stream *stream)
1008 {
1009 	void __iomem *base = stream->ispdev->base_addr;
1010 	struct rkisp1_dummy_buffer *dummy_buf = &stream->dummy_buf;
1011 
1012 	if (stream->next_buf)
1013 		mi_raw0_set_addr(base,
1014 			stream->next_buf->buff_addr[RKISP1_PLANE_Y]);
1015 	else
1016 		mi_raw0_set_addr(base, dummy_buf->dma_addr);
1017 }
1018 
1019 /* Update buffer info to memory interface, it's called in interrupt */
update_mi(struct rkisp1_stream * stream)1020 static void update_mi(struct rkisp1_stream *stream)
1021 {
1022 	struct rkisp1_dummy_buffer *dummy_buf = &stream->dummy_buf;
1023 
1024 	/* The dummy space allocated by dma_alloc_coherent is used, we can
1025 	 * throw data to it if there is no available buffer.
1026 	 */
1027 	if (stream->next_buf) {
1028 		mi_set_y_addr(stream,
1029 			stream->next_buf->buff_addr[RKISP1_PLANE_Y]);
1030 		mi_set_cb_addr(stream,
1031 			stream->next_buf->buff_addr[RKISP1_PLANE_CB]);
1032 		mi_set_cr_addr(stream,
1033 			stream->next_buf->buff_addr[RKISP1_PLANE_CR]);
1034 	} else {
1035 		v4l2_dbg(1, rkisp1_debug, &stream->ispdev->v4l2_dev,
1036 			 "stream %d: to dummy buf\n", stream->id);
1037 		mi_set_y_addr(stream, dummy_buf->dma_addr);
1038 		mi_set_cb_addr(stream, dummy_buf->dma_addr);
1039 		mi_set_cr_addr(stream, dummy_buf->dma_addr);
1040 	}
1041 
1042 	mi_set_y_offset(stream, 0);
1043 	mi_set_cb_offset(stream, 0);
1044 	mi_set_cr_offset(stream, 0);
1045 }
1046 
mp_stop_mi(struct rkisp1_stream * stream)1047 static void mp_stop_mi(struct rkisp1_stream *stream)
1048 {
1049 	if (!stream->streaming)
1050 		return;
1051 	mi_frame_end_int_clear(stream);
1052 	stream->ops->disable_mi(stream);
1053 }
1054 
sp_stop_mi(struct rkisp1_stream * stream)1055 static void sp_stop_mi(struct rkisp1_stream *stream)
1056 {
1057 	if (!stream->streaming)
1058 		return;
1059 	mi_frame_end_int_clear(stream);
1060 	stream->ops->disable_mi(stream);
1061 }
1062 
raw_stop_mi(struct rkisp1_stream * stream)1063 static void raw_stop_mi(struct rkisp1_stream *stream)
1064 {
1065 	void __iomem *base = stream->ispdev->base_addr;
1066 
1067 	if (!stream->streaming)
1068 		return;
1069 	mi_mipi_raw0_disable(base);
1070 }
1071 
1072 static struct streams_ops rkisp1_mp_streams_ops = {
1073 	.config_mi = mp_config_mi,
1074 	.enable_mi = mp_enable_mi,
1075 	.disable_mi = mp_disable_mi,
1076 	.stop_mi = mp_stop_mi,
1077 	.set_data_path = mp_set_data_path,
1078 	.is_stream_stopped = mp_is_stream_stopped,
1079 	.update_mi = update_mi,
1080 };
1081 
1082 static struct streams_ops rkisp1_sp_streams_ops = {
1083 	.config_mi = sp_config_mi,
1084 	.enable_mi = sp_enable_mi,
1085 	.disable_mi = sp_disable_mi,
1086 	.stop_mi = sp_stop_mi,
1087 	.set_data_path = sp_set_data_path,
1088 	.is_stream_stopped = sp_is_stream_stopped,
1089 	.update_mi = update_mi,
1090 };
1091 
1092 static struct streams_ops rkisp1_raw_streams_ops = {
1093 	.config_mi = raw_config_mi,
1094 	.enable_mi = raw_enable_mi,
1095 	.stop_mi = raw_stop_mi,
1096 	.update_mi = update_dmatx0,
1097 };
1098 
1099 /*
1100  * This function is called when a frame end come. The next frame
1101  * is processing and we should set up buffer for next-next frame,
1102  * otherwise it will overflow.
1103  */
mi_frame_end(struct rkisp1_stream * stream)1104 static int mi_frame_end(struct rkisp1_stream *stream)
1105 {
1106 	struct rkisp1_device *isp_dev = stream->ispdev;
1107 	struct rkisp1_isp_subdev *isp_sd = &isp_dev->isp_sdev;
1108 	struct capture_fmt *isp_fmt = &stream->out_isp_fmt;
1109 	bool interlaced = stream->interlaced;
1110 	unsigned long lock_flags = 0;
1111 	int i = 0;
1112 
1113 	if (stream->curr_buf &&
1114 		(!interlaced ||
1115 		(stream->u.sp.field_rec == RKISP_FIELD_ODD &&
1116 		stream->u.sp.field == RKISP_FIELD_EVEN))) {
1117 		u64 ns = ktime_get_ns();
1118 
1119 		/* Dequeue a filled buffer */
1120 		for (i = 0; i < isp_fmt->mplanes; i++) {
1121 			u32 payload_size =
1122 				stream->out_fmt.plane_fmt[i].sizeimage;
1123 			vb2_set_plane_payload(
1124 				&stream->curr_buf->vb.vb2_buf, i,
1125 				payload_size);
1126 		}
1127 		stream->curr_buf->vb.sequence =
1128 				atomic_read(&isp_sd->frm_sync_seq) - 1;
1129 		stream->curr_buf->vb.vb2_buf.timestamp = ns;
1130 		vb2_buffer_done(&stream->curr_buf->vb.vb2_buf,
1131 				VB2_BUF_STATE_DONE);
1132 		stream->curr_buf = NULL;
1133 	}
1134 
1135 	if (!interlaced ||
1136 		(stream->curr_buf == stream->next_buf &&
1137 		stream->u.sp.field == RKISP_FIELD_ODD)) {
1138 		/* Next frame is writing to it
1139 		 * Interlaced: odd field next buffer address
1140 		 */
1141 		stream->curr_buf = stream->next_buf;
1142 		stream->next_buf = NULL;
1143 
1144 		/* Set up an empty buffer for the next-next frame */
1145 		spin_lock_irqsave(&stream->vbq_lock, lock_flags);
1146 		if (!list_empty(&stream->buf_queue)) {
1147 			stream->next_buf =
1148 				list_first_entry(&stream->buf_queue,
1149 						 struct rkisp1_buffer,
1150 						 queue);
1151 			list_del(&stream->next_buf->queue);
1152 		}
1153 		spin_unlock_irqrestore(&stream->vbq_lock, lock_flags);
1154 	} else if (stream->u.sp.field_rec == RKISP_FIELD_ODD &&
1155 		stream->u.sp.field == RKISP_FIELD_EVEN) {
1156 		/* Interlaced: event field next buffer address */
1157 		if (stream->next_buf) {
1158 			stream->next_buf->buff_addr[RKISP1_PLANE_Y] +=
1159 				stream->u.sp.vir_offs;
1160 			stream->next_buf->buff_addr[RKISP1_PLANE_CB] +=
1161 				stream->u.sp.vir_offs;
1162 			stream->next_buf->buff_addr[RKISP1_PLANE_CR] +=
1163 				stream->u.sp.vir_offs;
1164 		}
1165 		stream->curr_buf = stream->next_buf;
1166 	}
1167 
1168 	stream->ops->update_mi(stream);
1169 
1170 	if (interlaced)
1171 		stream->u.sp.field_rec = stream->u.sp.field;
1172 
1173 	return 0;
1174 }
1175 
1176 /***************************** vb2 operations*******************************/
1177 
1178 /*
1179  * Set flags and wait, it should stop in interrupt.
1180  * If it didn't, stop it by force.
1181  */
rkisp1_stream_stop(struct rkisp1_stream * stream)1182 static void rkisp1_stream_stop(struct rkisp1_stream *stream)
1183 {
1184 	struct rkisp1_device *dev = stream->ispdev;
1185 	struct v4l2_device *v4l2_dev = &dev->v4l2_dev;
1186 	int ret = 0;
1187 
1188 	stream->stopping = true;
1189 	stream->ops->stop_mi(stream);
1190 	if (dev->isp_state == ISP_START &&
1191 	    dev->isp_inp != INP_DMARX_ISP) {
1192 		ret = wait_event_timeout(stream->done,
1193 					 !stream->streaming,
1194 					 msecs_to_jiffies(1000));
1195 		if (!ret) {
1196 			v4l2_warn(v4l2_dev, "waiting on event return error %d\n", ret);
1197 			stream->stopping = false;
1198 			stream->streaming = false;
1199 		}
1200 	} else {
1201 		stream->stopping = false;
1202 		stream->streaming = false;
1203 	}
1204 
1205 	if (stream->id != RKISP1_STREAM_RAW) {
1206 		disable_dcrop(stream, true);
1207 		disable_rsz(stream, true);
1208 	}
1209 
1210 	stream->burst =
1211 		CIF_MI_CTRL_BURST_LEN_LUM_16 |
1212 		CIF_MI_CTRL_BURST_LEN_CHROM_16;
1213 	stream->interlaced = false;
1214 }
1215 
1216 /*
1217  * Most of registers inside rockchip isp1 have shadow register since
1218  * they must be not changed during processing a frame.
1219  * Usually, each sub-module updates its shadow register after
1220  * processing the last pixel of a frame.
1221  */
rkisp1_start(struct rkisp1_stream * stream)1222 static int rkisp1_start(struct rkisp1_stream *stream)
1223 {
1224 	void __iomem *base = stream->ispdev->base_addr;
1225 	struct rkisp1_device *dev = stream->ispdev;
1226 	bool other_streaming = false;
1227 	int i, ret;
1228 
1229 	for (i = 0; i < RKISP1_MAX_STREAM; i++) {
1230 		if (i != stream->id &&
1231 			dev->stream[i].streaming) {
1232 			other_streaming = true;
1233 			break;
1234 		}
1235 	}
1236 
1237 	/* stream raw need mi_cfg_upd to update first base address shadow
1238 	 * config raw in first stream (sp/mp), and enable when raw stream open.
1239 	 */
1240 	if (!other_streaming &&
1241 		stream->id == RKISP1_STREAM_RAW) {
1242 		v4l2_err(&dev->v4l2_dev,
1243 			"stream raw only support to open after stream mp/sp");
1244 		return -EINVAL;
1245 	}
1246 
1247 #if RKISP1_RK3326_USE_OLDMIPI
1248 	if (dev->isp_ver == ISP_V13)
1249 #else
1250 	if (dev->isp_ver == ISP_V12 ||
1251 		dev->isp_ver == ISP_V13)
1252 #endif
1253 		raw_config_mi(stream);
1254 
1255 	if (stream->ops->set_data_path)
1256 		stream->ops->set_data_path(base);
1257 	ret = stream->ops->config_mi(stream);
1258 	if (ret)
1259 		return ret;
1260 
1261 	/* for mp/sp Set up an buffer for the next frame */
1262 	if (stream->id != RKISP1_STREAM_RAW)
1263 		mi_frame_end(stream);
1264 	stream->ops->enable_mi(stream);
1265 	/* It's safe to config ACTIVE and SHADOW regs for the
1266 	 * first stream. While when the second is starting, do NOT
1267 	 * force_cfg_update() because it also update the first one.
1268 	 *
1269 	 * The latter case would drop one more buf(that is 2) since
1270 	 * there's not buf in shadow when the second FE received. This's
1271 	 * also required because the sencond FE maybe corrupt especially
1272 	 * when run at 120fps.
1273 	 */
1274 	if (!other_streaming) {
1275 		force_cfg_update(base);
1276 		mi_frame_end(stream);
1277 	}
1278 	stream->streaming = true;
1279 
1280 	return 0;
1281 }
1282 
rkisp1_queue_setup(struct vb2_queue * queue,unsigned int * num_buffers,unsigned int * num_planes,unsigned int sizes[],struct device * alloc_ctxs[])1283 static int rkisp1_queue_setup(struct vb2_queue *queue,
1284 			      unsigned int *num_buffers,
1285 			      unsigned int *num_planes,
1286 			      unsigned int sizes[],
1287 			      struct device *alloc_ctxs[])
1288 {
1289 	struct rkisp1_stream *stream = queue->drv_priv;
1290 	struct rkisp1_device *dev = stream->ispdev;
1291 	const struct v4l2_pix_format_mplane *pixm = NULL;
1292 	const struct capture_fmt *isp_fmt = NULL;
1293 	u32 i;
1294 
1295 	pixm = &stream->out_fmt;
1296 	isp_fmt = &stream->out_isp_fmt;
1297 	*num_planes = isp_fmt->mplanes;
1298 
1299 	for (i = 0; i < isp_fmt->mplanes; i++) {
1300 		const struct v4l2_plane_pix_format *plane_fmt;
1301 
1302 		plane_fmt = &pixm->plane_fmt[i];
1303 		sizes[i] = plane_fmt->sizeimage;
1304 	}
1305 
1306 	v4l2_dbg(1, rkisp1_debug, &dev->v4l2_dev, "%s count %d, size %d\n",
1307 		 v4l2_type_names[queue->type], *num_buffers, sizes[0]);
1308 
1309 	return 0;
1310 }
1311 
1312 /*
1313  * The vb2_buffer are stored in rkisp1_buffer, in order to unify
1314  * mplane buffer and none-mplane buffer.
1315  */
rkisp1_buf_queue(struct vb2_buffer * vb)1316 static void rkisp1_buf_queue(struct vb2_buffer *vb)
1317 {
1318 	struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1319 	struct rkisp1_buffer *ispbuf = to_rkisp1_buffer(vbuf);
1320 	struct vb2_queue *queue = vb->vb2_queue;
1321 	struct rkisp1_stream *stream = queue->drv_priv;
1322 	unsigned long lock_flags = 0;
1323 	struct v4l2_pix_format_mplane *pixm = &stream->out_fmt;
1324 	struct capture_fmt *isp_fmt = &stream->out_isp_fmt;
1325 	int i;
1326 
1327 	memset(ispbuf->buff_addr, 0, sizeof(ispbuf->buff_addr));
1328 	for (i = 0; i < isp_fmt->mplanes; i++) {
1329 		ispbuf->buff_addr[i] = vb2_dma_contig_plane_dma_addr(vb, i);
1330 		if (stream->id ==  RKISP1_STREAM_RAW) {
1331 			/* for check dmatx to ddr complete */
1332 			u32 sizeimage = pixm->plane_fmt[0].sizeimage;
1333 			u32 *buf = vb2_plane_vaddr(vb, 0);
1334 
1335 			if (buf) {
1336 				*buf = RKISP1_DMATX_CHECK;
1337 				*(buf + sizeimage / 4 - 1) = RKISP1_DMATX_CHECK;
1338 			}
1339 		}
1340 	}
1341 
1342 	/*
1343 	 * NOTE: plane_fmt[0].sizeimage is total size of all planes for single
1344 	 * memory plane formats, so calculate the size explicitly.
1345 	 */
1346 	if (isp_fmt->mplanes == 1) {
1347 		for (i = 0; i < isp_fmt->cplanes - 1; i++) {
1348 			ispbuf->buff_addr[i + 1] = (i == 0) ?
1349 				ispbuf->buff_addr[i] +
1350 				pixm->plane_fmt[i].bytesperline *
1351 				pixm->height :
1352 				ispbuf->buff_addr[i] +
1353 				pixm->plane_fmt[i].sizeimage;
1354 		}
1355 	}
1356 
1357 	spin_lock_irqsave(&stream->vbq_lock, lock_flags);
1358 
1359 	/* XXX: replace dummy to speed up  */
1360 	if (stream->streaming &&
1361 	    !stream->next_buf &&
1362 	    !stream->interlaced &&
1363 	    stream->id != RKISP1_STREAM_RAW &&
1364 	    atomic_read(&stream->ispdev->isp_sdev.frm_sync_seq) == 0) {
1365 		stream->next_buf = ispbuf;
1366 		stream->ops->update_mi(stream);
1367 	} else {
1368 		list_add_tail(&ispbuf->queue, &stream->buf_queue);
1369 	}
1370 	spin_unlock_irqrestore(&stream->vbq_lock, lock_flags);
1371 }
1372 
rkisp1_create_dummy_buf(struct rkisp1_stream * stream)1373 static int rkisp1_create_dummy_buf(struct rkisp1_stream *stream)
1374 {
1375 	struct rkisp1_dummy_buffer *dummy_buf = &stream->dummy_buf;
1376 	struct rkisp1_device *dev = stream->ispdev;
1377 
1378 	/* get a maximum size */
1379 	dummy_buf->size = max3(stream->out_fmt.plane_fmt[0].bytesperline *
1380 		stream->out_fmt.height,
1381 		stream->out_fmt.plane_fmt[1].sizeimage,
1382 		stream->out_fmt.plane_fmt[2].sizeimage);
1383 	if (dev->active_sensor &&
1384 	    dev->active_sensor->mbus.type == V4L2_MBUS_CSI2_DPHY &&
1385 	    (dev->isp_ver == ISP_V12 ||
1386 	     dev->isp_ver == ISP_V13)) {
1387 		u32 in_size;
1388 		struct rkisp1_stream *raw = &dev->stream[RKISP1_STREAM_RAW];
1389 
1390 		in_size = raw->out_fmt.plane_fmt[0].sizeimage;
1391 		dummy_buf->size = max(dummy_buf->size, in_size);
1392 	}
1393 
1394 	dummy_buf->vaddr = dma_alloc_coherent(dev->dev, dummy_buf->size,
1395 					      &dummy_buf->dma_addr,
1396 					      GFP_KERNEL);
1397 	if (!dummy_buf->vaddr) {
1398 		v4l2_err(&dev->v4l2_dev,
1399 			 "Failed to allocate the memory for dummy buffer\n");
1400 		return -ENOMEM;
1401 	}
1402 
1403 	return 0;
1404 }
1405 
rkisp1_destroy_dummy_buf(struct rkisp1_stream * stream)1406 static void rkisp1_destroy_dummy_buf(struct rkisp1_stream *stream)
1407 {
1408 	struct rkisp1_dummy_buffer *dummy_buf = &stream->dummy_buf;
1409 	struct rkisp1_device *dev = stream->ispdev;
1410 
1411 	dma_free_coherent(dev->dev, dummy_buf->size,
1412 			  dummy_buf->vaddr, dummy_buf->dma_addr);
1413 }
1414 
rkisp1_stop_streaming(struct vb2_queue * queue)1415 static void rkisp1_stop_streaming(struct vb2_queue *queue)
1416 {
1417 	struct rkisp1_stream *stream = queue->drv_priv;
1418 	struct rkisp1_vdev_node *node = &stream->vnode;
1419 	struct rkisp1_device *dev = stream->ispdev;
1420 	struct v4l2_device *v4l2_dev = &dev->v4l2_dev;
1421 	struct rkisp1_buffer *buf;
1422 	unsigned long lock_flags = 0;
1423 	int ret;
1424 
1425 	rkisp1_stream_stop(stream);
1426 	/* call to the other devices */
1427 	media_pipeline_stop(&node->vdev.entity);
1428 	ret = dev->pipe.set_stream(&dev->pipe, false);
1429 	if (ret < 0)
1430 		v4l2_err(v4l2_dev, "pipeline stream-off failed error:%d\n",
1431 			 ret);
1432 
1433 	/* release buffers */
1434 	spin_lock_irqsave(&stream->vbq_lock, lock_flags);
1435 	if (stream->curr_buf) {
1436 		list_add_tail(&stream->curr_buf->queue, &stream->buf_queue);
1437 		if (stream->curr_buf == stream->next_buf)
1438 			stream->next_buf = NULL;
1439 		stream->curr_buf = NULL;
1440 	}
1441 	if (stream->next_buf) {
1442 		list_add_tail(&stream->next_buf->queue, &stream->buf_queue);
1443 		stream->next_buf = NULL;
1444 	}
1445 	while (!list_empty(&stream->buf_queue)) {
1446 		buf = list_first_entry(&stream->buf_queue,
1447 				       struct rkisp1_buffer, queue);
1448 		list_del(&buf->queue);
1449 		vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR);
1450 	}
1451 	spin_unlock_irqrestore(&stream->vbq_lock, lock_flags);
1452 
1453 	ret = dev->pipe.close(&dev->pipe);
1454 	if (ret < 0)
1455 		v4l2_err(v4l2_dev, "pipeline close failed error:%d\n", ret);
1456 	rkisp1_destroy_dummy_buf(stream);
1457 }
1458 
rkisp1_stream_start(struct rkisp1_stream * stream)1459 static int rkisp1_stream_start(struct rkisp1_stream *stream)
1460 {
1461 	struct v4l2_device *v4l2_dev = &stream->ispdev->v4l2_dev;
1462 	struct rkisp1_device *dev = stream->ispdev;
1463 	struct rkisp1_stream *other = &dev->stream[stream->id ^ 1];
1464 	bool async = false;
1465 	int ret;
1466 
1467 	/* STREAM RAW don't have rsz and dcrop */
1468 	if (stream->id == RKISP1_STREAM_RAW)
1469 		goto end;
1470 
1471 	if (other->streaming)
1472 		async = true;
1473 
1474 	ret = rkisp1_config_rsz(stream, async);
1475 	if (ret < 0) {
1476 		v4l2_err(v4l2_dev, "config rsz failed with error %d\n", ret);
1477 		return ret;
1478 	}
1479 
1480 	/*
1481 	 * can't be async now, otherwise the latter started stream fails to
1482 	 * produce mi interrupt.
1483 	 */
1484 	ret = rkisp1_config_dcrop(stream, false);
1485 	if (ret < 0) {
1486 		v4l2_err(v4l2_dev, "config dcrop failed with error %d\n", ret);
1487 		return ret;
1488 	}
1489 
1490 end:
1491 	return rkisp1_start(stream);
1492 }
1493 
1494 static int
rkisp1_start_streaming(struct vb2_queue * queue,unsigned int count)1495 rkisp1_start_streaming(struct vb2_queue *queue, unsigned int count)
1496 {
1497 	struct rkisp1_stream *stream = queue->drv_priv;
1498 	struct rkisp1_vdev_node *node = &stream->vnode;
1499 	struct rkisp1_device *dev = stream->ispdev;
1500 	struct v4l2_device *v4l2_dev = &dev->v4l2_dev;
1501 	int ret;
1502 	unsigned int i;
1503 
1504 	if (WARN_ON(stream->streaming))
1505 		return -EBUSY;
1506 
1507 	if (dev->isp_inp != INP_DMARX_ISP) {
1508 		/* Always update sensor info in case media topology changed */
1509 		ret = rkisp1_update_sensor_info(dev);
1510 		if (ret < 0) {
1511 			v4l2_err(v4l2_dev,
1512 				 "update sensor info failed %d\n",
1513 				 ret);
1514 			goto buffer_done;
1515 		}
1516 	}
1517 
1518 	if (dev->active_sensor &&
1519 		dev->active_sensor->fmt.format.field ==
1520 		V4L2_FIELD_INTERLACED) {
1521 		if (stream->id != RKISP1_STREAM_SP) {
1522 			v4l2_err(v4l2_dev,
1523 				"only selfpath support interlaced\n");
1524 			ret = -EINVAL;
1525 			goto buffer_done;
1526 		}
1527 		stream->interlaced = true;
1528 		stream->u.sp.field = RKISP_FIELD_INVAL;
1529 		stream->u.sp.field_rec = RKISP_FIELD_INVAL;
1530 	}
1531 
1532 	ret = rkisp1_create_dummy_buf(stream);
1533 	if (ret < 0)
1534 		goto buffer_done;
1535 
1536 	/* enable clocks/power-domains */
1537 	ret = dev->pipe.open(&dev->pipe, &node->vdev.entity, true);
1538 	if (ret < 0) {
1539 		v4l2_err(v4l2_dev, "open cif pipeline failed %d\n", ret);
1540 		goto destroy_dummy_buf;
1541 	}
1542 
1543 	/* configure stream hardware to start */
1544 	ret = rkisp1_stream_start(stream);
1545 	if (ret < 0) {
1546 		v4l2_err(v4l2_dev, "start streaming failed\n");
1547 		goto close_pipe;
1548 	}
1549 
1550 	/* start sub-devices */
1551 	ret = dev->pipe.set_stream(&dev->pipe, true);
1552 	if (ret < 0)
1553 		goto stop_stream;
1554 
1555 	ret = media_pipeline_start(&node->vdev.entity, &dev->pipe.pipe);
1556 	if (ret < 0) {
1557 		v4l2_err(&dev->v4l2_dev, "start pipeline failed %d\n", ret);
1558 		goto pipe_stream_off;
1559 	}
1560 
1561 	return 0;
1562 
1563 pipe_stream_off:
1564 	dev->pipe.set_stream(&dev->pipe, false);
1565 stop_stream:
1566 	rkisp1_stream_stop(stream);
1567 close_pipe:
1568 	dev->pipe.close(&dev->pipe);
1569 destroy_dummy_buf:
1570 	rkisp1_destroy_dummy_buf(stream);
1571 buffer_done:
1572 	for (i = 0; i < queue->num_buffers; ++i) {
1573 		struct vb2_buffer *vb;
1574 
1575 		vb = queue->bufs[i];
1576 		if (vb->state == VB2_BUF_STATE_ACTIVE)
1577 			vb2_buffer_done(vb, VB2_BUF_STATE_QUEUED);
1578 	}
1579 
1580 	return ret;
1581 }
1582 
1583 static struct vb2_ops rkisp1_vb2_ops = {
1584 	.queue_setup = rkisp1_queue_setup,
1585 	.buf_queue = rkisp1_buf_queue,
1586 	.wait_prepare = vb2_ops_wait_prepare,
1587 	.wait_finish = vb2_ops_wait_finish,
1588 	.stop_streaming = rkisp1_stop_streaming,
1589 	.start_streaming = rkisp1_start_streaming,
1590 };
1591 
rkisp_init_vb2_queue(struct vb2_queue * q,struct rkisp1_stream * stream,enum v4l2_buf_type buf_type)1592 static int rkisp_init_vb2_queue(struct vb2_queue *q,
1593 				struct rkisp1_stream *stream,
1594 				enum v4l2_buf_type buf_type)
1595 {
1596 	q->type = buf_type;
1597 	q->io_modes = VB2_MMAP | VB2_USERPTR | VB2_DMABUF;
1598 	q->drv_priv = stream;
1599 	q->ops = &rkisp1_vb2_ops;
1600 	q->mem_ops = &vb2_dma_contig_memops;
1601 	q->buf_struct_size = sizeof(struct rkisp1_buffer);
1602 	q->min_buffers_needed = CIF_ISP_REQ_BUFS_MIN;
1603 	q->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_MONOTONIC;
1604 	q->lock = &stream->ispdev->apilock;
1605 	q->dev = stream->ispdev->dev;
1606 
1607 	return vb2_queue_init(q);
1608 }
1609 
1610 /*
1611  * Make sure max resize/output resolution is smaller than
1612  * isp sub device output size. This assumes it's not
1613  * recommended to use ISP scale-up function to get output size
1614  * that exceeds sensor max resolution.
1615  */
restrict_rsz_resolution(struct rkisp1_device * dev,const struct stream_config * config,struct v4l2_rect * max_rsz)1616 static void restrict_rsz_resolution(struct rkisp1_device *dev,
1617 				    const struct stream_config *config,
1618 				    struct v4l2_rect *max_rsz)
1619 {
1620 	struct v4l2_rect *input_win;
1621 
1622 	input_win = rkisp1_get_isp_sd_win(&dev->isp_sdev);
1623 	max_rsz->width = min_t(int, input_win->width, config->max_rsz_width);
1624 	max_rsz->height = min_t(int, input_win->height, config->max_rsz_height);
1625 }
1626 
rkisp1_set_fmt(struct rkisp1_stream * stream,struct v4l2_pix_format_mplane * pixm,bool try)1627 static int rkisp1_set_fmt(struct rkisp1_stream *stream,
1628 			   struct v4l2_pix_format_mplane *pixm,
1629 			   bool try)
1630 {
1631 	const struct capture_fmt *fmt;
1632 	const struct stream_config *config = stream->config;
1633 	struct rkisp1_stream *other_stream;
1634 	unsigned int imagsize = 0;
1635 	unsigned int planes;
1636 	u32 xsubs = 1, ysubs = 1;
1637 	unsigned int i;
1638 
1639 	fmt = find_fmt(stream, pixm->pixelformat);
1640 	if (!fmt) {
1641 		v4l2_err(&stream->ispdev->v4l2_dev,
1642 			 "nonsupport pixelformat:%c%c%c%c\n",
1643 			 pixm->pixelformat,
1644 			 pixm->pixelformat >> 8,
1645 			 pixm->pixelformat >> 16,
1646 			 pixm->pixelformat >> 24);
1647 		return -EINVAL;
1648 	}
1649 
1650 	if (stream->id != RKISP1_STREAM_RAW) {
1651 		struct v4l2_rect max_rsz;
1652 
1653 		other_stream =
1654 			&stream->ispdev->stream[!stream->id ^ 1];
1655 		/* do checks on resolution */
1656 		restrict_rsz_resolution(stream->ispdev, config, &max_rsz);
1657 		pixm->width = clamp_t(u32, pixm->width,
1658 				      config->min_rsz_width, max_rsz.width);
1659 		pixm->height = clamp_t(u32, pixm->height,
1660 				       config->min_rsz_height, max_rsz.height);
1661 	} else {
1662 		other_stream =
1663 			&stream->ispdev->stream[RKISP1_STREAM_MP];
1664 	}
1665 	pixm->num_planes = fmt->mplanes;
1666 	pixm->field = V4L2_FIELD_NONE;
1667 	/* get quantization from ispsd */
1668 	pixm->quantization = stream->ispdev->isp_sdev.quantization;
1669 
1670 	/* output full range by default, take effect in isp_params */
1671 	if (!pixm->quantization)
1672 		pixm->quantization = V4L2_QUANTIZATION_FULL_RANGE;
1673 	/* can not change quantization when stream-on */
1674 	if (other_stream->streaming)
1675 		pixm->quantization = other_stream->out_fmt.quantization;
1676 
1677 	/* calculate size */
1678 	fcc_xysubs(fmt->fourcc, &xsubs, &ysubs);
1679 	planes = fmt->cplanes ? fmt->cplanes : fmt->mplanes;
1680 	for (i = 0; i < planes; i++) {
1681 		struct v4l2_plane_pix_format *plane_fmt;
1682 		unsigned int width, height, bytesperline;
1683 
1684 		plane_fmt = pixm->plane_fmt + i;
1685 
1686 		if (i == 0) {
1687 			width = pixm->width;
1688 			height = pixm->height;
1689 		} else {
1690 			width = pixm->width / xsubs;
1691 			height = pixm->height / ysubs;
1692 		}
1693 
1694 		bytesperline = width * DIV_ROUND_UP(fmt->bpp[i], 8);
1695 		/* stride is only available for sp stream and y plane */
1696 		if (stream->id != RKISP1_STREAM_SP || i != 0 ||
1697 		    plane_fmt->bytesperline < bytesperline)
1698 			plane_fmt->bytesperline = bytesperline;
1699 
1700 		plane_fmt->sizeimage = plane_fmt->bytesperline * height;
1701 
1702 		imagsize += plane_fmt->sizeimage;
1703 	}
1704 
1705 	/* convert to non-MPLANE format.
1706 	 * it's important since we want to unify none-MPLANE
1707 	 * and MPLANE.
1708 	 */
1709 	if (fmt->mplanes == 1)
1710 		pixm->plane_fmt[0].sizeimage = imagsize;
1711 
1712 	if (!try) {
1713 		stream->out_isp_fmt = *fmt;
1714 		stream->out_fmt = *pixm;
1715 
1716 		if (stream->id == RKISP1_STREAM_SP) {
1717 			stream->u.sp.y_stride =
1718 				pixm->plane_fmt[0].bytesperline /
1719 				DIV_ROUND_UP(fmt->bpp[0], 8);
1720 		} else if (stream->id == RKISP1_STREAM_MP) {
1721 			stream->u.mp.raw_enable = (fmt->fmt_type == FMT_BAYER);
1722 		}
1723 
1724 		v4l2_dbg(1, rkisp1_debug, &stream->ispdev->v4l2_dev,
1725 			 "%s: stream: %d req(%d, %d) out(%d, %d)\n", __func__,
1726 			 stream->id, pixm->width, pixm->height,
1727 			 stream->out_fmt.width, stream->out_fmt.height);
1728 	}
1729 
1730 	return 0;
1731 }
1732 
rkisp1_fh_open(struct file * filp)1733 int rkisp1_fh_open(struct file *filp)
1734 {
1735 	struct rkisp1_stream *stream = video_drvdata(filp);
1736 	struct rkisp1_device *dev = stream->ispdev;
1737 	int ret;
1738 
1739 	ret = v4l2_fh_open(filp);
1740 	if (!ret) {
1741 		atomic_inc(&dev->open_cnt);
1742 		ret = v4l2_pipeline_pm_get(&stream->vnode.vdev.entity);
1743 		if (ret < 0)
1744 			vb2_fop_release(filp);
1745 	}
1746 
1747 	return ret;
1748 }
1749 
rkisp1_fop_release(struct file * file)1750 int rkisp1_fop_release(struct file *file)
1751 {
1752 	struct rkisp1_stream *stream = video_drvdata(file);
1753 	struct rkisp1_device *dev = stream->ispdev;
1754 	int ret;
1755 
1756 	ret = vb2_fop_release(file);
1757 	if (!ret) {
1758 		ret = v4l2_pipeline_pm_get(&stream->vnode.vdev.entity);
1759 		if (ret < 0)
1760 			v4l2_err(&dev->v4l2_dev,
1761 				"set pipeline power failed %d\n", ret);
1762 		atomic_dec(&dev->open_cnt);
1763 	}
1764 	return ret;
1765 }
1766 
rkisp1_set_stream_def_fmt(struct rkisp1_device * dev,u32 id,u32 width,u32 height,u32 pixelformat)1767 void rkisp1_set_stream_def_fmt(struct rkisp1_device *dev, u32 id,
1768 	u32 width, u32 height, u32 pixelformat)
1769 {
1770 	struct rkisp1_stream *stream = &dev->stream[id];
1771 	struct v4l2_pix_format_mplane pixm;
1772 
1773 	memset(&pixm, 0, sizeof(pixm));
1774 	pixm.pixelformat = pixelformat;
1775 	pixm.width = width;
1776 	pixm.height = height;
1777 	rkisp1_set_fmt(stream, &pixm, false);
1778 
1779 	stream->dcrop.left = 0;
1780 	stream->dcrop.top = 0;
1781 	stream->dcrop.width = width;
1782 	stream->dcrop.height = height;
1783 }
1784 
1785 /************************* v4l2_file_operations***************************/
rkisp1_stream_init(struct rkisp1_device * dev,u32 id)1786 void rkisp1_stream_init(struct rkisp1_device *dev, u32 id)
1787 {
1788 	struct rkisp1_stream *stream = &dev->stream[id];
1789 
1790 	memset(stream, 0, sizeof(*stream));
1791 	stream->id = id;
1792 	stream->ispdev = dev;
1793 
1794 	INIT_LIST_HEAD(&stream->buf_queue);
1795 	init_waitqueue_head(&stream->done);
1796 	spin_lock_init(&stream->vbq_lock);
1797 	if (stream->id == RKISP1_STREAM_SP) {
1798 		stream->ops = &rkisp1_sp_streams_ops;
1799 		stream->config = &rkisp1_sp_stream_config;
1800 	} else if (stream->id == RKISP1_STREAM_RAW) {
1801 		stream->ops = &rkisp1_raw_streams_ops;
1802 		stream->config = &rkisp1_raw_stream_config;
1803 	} else {
1804 		stream->ops = &rkisp1_mp_streams_ops;
1805 		stream->config = &rkisp1_mp_stream_config;
1806 	}
1807 
1808 	stream->streaming = false;
1809 	stream->interlaced = false;
1810 
1811 	stream->burst =
1812 		CIF_MI_CTRL_BURST_LEN_LUM_16 |
1813 		CIF_MI_CTRL_BURST_LEN_CHROM_16;
1814 }
1815 
1816 static const struct v4l2_file_operations rkisp1_fops = {
1817 	.open = rkisp1_fh_open,
1818 	.release = rkisp1_fop_release,
1819 	.unlocked_ioctl = video_ioctl2,
1820 	.poll = vb2_fop_poll,
1821 	.mmap = vb2_fop_mmap,
1822 };
1823 
1824 /*
1825  * mp and sp v4l2_ioctl_ops
1826  */
1827 
rkisp1_enum_input(struct file * file,void * priv,struct v4l2_input * input)1828 static int rkisp1_enum_input(struct file *file, void *priv,
1829 			     struct v4l2_input *input)
1830 {
1831 	if (input->index > 0)
1832 		return -EINVAL;
1833 
1834 	input->type = V4L2_INPUT_TYPE_CAMERA;
1835 	strlcpy(input->name, "Camera", sizeof(input->name));
1836 
1837 	return 0;
1838 }
1839 
rkisp1_try_fmt_vid_cap_mplane(struct file * file,void * fh,struct v4l2_format * f)1840 static int rkisp1_try_fmt_vid_cap_mplane(struct file *file, void *fh,
1841 					 struct v4l2_format *f)
1842 {
1843 	struct rkisp1_stream *stream = video_drvdata(file);
1844 
1845 	return rkisp1_set_fmt(stream, &f->fmt.pix_mp, true);
1846 }
1847 
rkisp_enum_framesizes(struct file * file,void * prov,struct v4l2_frmsizeenum * fsize)1848 static int rkisp_enum_framesizes(struct file *file, void *prov,
1849 				 struct v4l2_frmsizeenum *fsize)
1850 {
1851 	struct rkisp1_stream *stream = video_drvdata(file);
1852 	const struct stream_config *config = stream->config;
1853 	struct v4l2_frmsize_stepwise *s = &fsize->stepwise;
1854 	struct v4l2_frmsize_discrete *d = &fsize->discrete;
1855 	const struct ispsd_out_fmt *input_isp_fmt;
1856 	struct v4l2_rect max_rsz;
1857 
1858 	if (fsize->index != 0)
1859 		return -EINVAL;
1860 
1861 	if (!find_fmt(stream, fsize->pixel_format))
1862 		return -EINVAL;
1863 
1864 	restrict_rsz_resolution(stream->ispdev, config, &max_rsz);
1865 
1866 	input_isp_fmt = rkisp1_get_ispsd_out_fmt(&stream->ispdev->isp_sdev);
1867 	if (input_isp_fmt->fmt_type == FMT_BAYER) {
1868 		fsize->type = V4L2_FRMSIZE_TYPE_DISCRETE;
1869 		d->width = max_rsz.width;
1870 		d->height = max_rsz.height;
1871 	} else {
1872 		fsize->type = V4L2_FRMSIZE_TYPE_STEPWISE;
1873 		s->min_width = STREAM_MIN_RSZ_OUTPUT_WIDTH;
1874 		s->min_height = STREAM_MIN_RSZ_OUTPUT_HEIGHT;
1875 		s->max_width = max_rsz.width;
1876 		s->max_height = max_rsz.height;
1877 		s->step_width = STREAM_OUTPUT_STEP_WISE;
1878 		s->step_height = STREAM_OUTPUT_STEP_WISE;
1879 	}
1880 
1881 	return 0;
1882 }
1883 
rkisp_enum_frameintervals(struct file * file,void * fh,struct v4l2_frmivalenum * fival)1884 static int rkisp_enum_frameintervals(struct file *file, void *fh,
1885 				     struct v4l2_frmivalenum *fival)
1886 {
1887 	const struct rkisp1_stream *stream = video_drvdata(file);
1888 	struct rkisp1_device *dev = stream->ispdev;
1889 	struct rkisp1_sensor_info *sensor = dev->active_sensor;
1890 	struct v4l2_subdev_frame_interval fi;
1891 	int ret;
1892 
1893 	if (fival->index != 0)
1894 		return -EINVAL;
1895 
1896 	if (!sensor) {
1897 		/* TODO: active_sensor is NULL if using DMARX path */
1898 		v4l2_err(&dev->v4l2_dev, "%s Not active sensor\n", __func__);
1899 		return -ENODEV;
1900 	}
1901 
1902 	ret = v4l2_subdev_call(sensor->sd, video, g_frame_interval, &fi);
1903 	if (ret && ret != -ENOIOCTLCMD) {
1904 		return ret;
1905 	} else if (ret == -ENOIOCTLCMD) {
1906 		/* Set a default value for sensors not implements ioctl */
1907 		fi.interval.numerator = 1;
1908 		fi.interval.denominator = 30;
1909 	}
1910 
1911 	fival->type = V4L2_FRMIVAL_TYPE_CONTINUOUS;
1912 	fival->stepwise.step.numerator = 1;
1913 	fival->stepwise.step.denominator = 1;
1914 	fival->stepwise.max.numerator = 1;
1915 	fival->stepwise.max.denominator = 1;
1916 	fival->stepwise.min.numerator = fi.interval.numerator;
1917 	fival->stepwise.min.denominator = fi.interval.denominator;
1918 
1919 	return 0;
1920 }
1921 
rkisp1_enum_fmt_vid_cap_mplane(struct file * file,void * priv,struct v4l2_fmtdesc * f)1922 static int rkisp1_enum_fmt_vid_cap_mplane(struct file *file, void *priv,
1923 					  struct v4l2_fmtdesc *f)
1924 {
1925 	struct rkisp1_stream *stream = video_drvdata(file);
1926 	const struct capture_fmt *fmt = NULL;
1927 
1928 	if (f->index >= stream->config->fmt_size)
1929 		return -EINVAL;
1930 
1931 	fmt = &stream->config->fmts[f->index];
1932 	f->pixelformat = fmt->fourcc;
1933 
1934 	return 0;
1935 }
1936 
rkisp1_s_fmt_vid_cap_mplane(struct file * file,void * priv,struct v4l2_format * f)1937 static int rkisp1_s_fmt_vid_cap_mplane(struct file *file,
1938 				       void *priv, struct v4l2_format *f)
1939 {
1940 	struct rkisp1_stream *stream = video_drvdata(file);
1941 	struct video_device *vdev = &stream->vnode.vdev;
1942 	struct rkisp1_vdev_node *node = vdev_to_node(vdev);
1943 	struct rkisp1_device *dev = stream->ispdev;
1944 
1945 	if (vb2_is_busy(&node->buf_queue)) {
1946 		v4l2_err(&dev->v4l2_dev, "%s queue busy\n", __func__);
1947 		return -EBUSY;
1948 	}
1949 
1950 	return rkisp1_set_fmt(stream, &f->fmt.pix_mp, false);
1951 }
1952 
rkisp1_g_fmt_vid_cap_mplane(struct file * file,void * fh,struct v4l2_format * f)1953 static int rkisp1_g_fmt_vid_cap_mplane(struct file *file, void *fh,
1954 				       struct v4l2_format *f)
1955 {
1956 	struct rkisp1_stream *stream = video_drvdata(file);
1957 
1958 	f->fmt.pix_mp = stream->out_fmt;
1959 
1960 	return 0;
1961 }
1962 
rkisp1_g_selection(struct file * file,void * prv,struct v4l2_selection * sel)1963 static int rkisp1_g_selection(struct file *file, void *prv,
1964 			      struct v4l2_selection *sel)
1965 {
1966 	struct rkisp1_stream *stream = video_drvdata(file);
1967 	struct rkisp1_device *dev = stream->ispdev;
1968 	struct v4l2_rect *dcrop = &stream->dcrop;
1969 	struct v4l2_rect *input_win;
1970 
1971 	input_win = rkisp1_get_isp_sd_win(&dev->isp_sdev);
1972 
1973 	switch (sel->target) {
1974 	case V4L2_SEL_TGT_CROP_BOUNDS:
1975 		sel->r.width = input_win->width;
1976 		sel->r.height = input_win->height;
1977 		sel->r.left = 0;
1978 		sel->r.top = 0;
1979 		break;
1980 	case V4L2_SEL_TGT_CROP:
1981 		sel->r = *dcrop;
1982 		break;
1983 	default:
1984 		return -EINVAL;
1985 	}
1986 
1987 	return 0;
1988 }
1989 
rkisp1_update_crop(struct rkisp1_stream * stream,struct v4l2_rect * sel,const struct v4l2_rect * in)1990 static struct v4l2_rect *rkisp1_update_crop(struct rkisp1_stream *stream,
1991 					    struct v4l2_rect *sel,
1992 					    const struct v4l2_rect *in)
1993 {
1994 	/* Not crop for MP bayer raw data and RAW path */
1995 	if ((stream->id == RKISP1_STREAM_MP &&
1996 		stream->out_isp_fmt.fmt_type == FMT_BAYER) ||
1997 		stream->id == RKISP1_STREAM_RAW) {
1998 		sel->left = 0;
1999 		sel->top = 0;
2000 		sel->width = in->width;
2001 		sel->height = in->height;
2002 		return sel;
2003 	}
2004 
2005 	sel->left = ALIGN(sel->left, 2);
2006 	sel->width = ALIGN(sel->width, 2);
2007 	sel->left = clamp_t(u32, sel->left, 0,
2008 			    in->width - STREAM_MIN_MP_SP_INPUT_WIDTH);
2009 	sel->top = clamp_t(u32, sel->top, 0,
2010 			   in->height - STREAM_MIN_MP_SP_INPUT_HEIGHT);
2011 	sel->width = clamp_t(u32, sel->width, STREAM_MIN_MP_SP_INPUT_WIDTH,
2012 			     in->width - sel->left);
2013 	sel->height = clamp_t(u32, sel->height, STREAM_MIN_MP_SP_INPUT_HEIGHT,
2014 			      in->height - sel->top);
2015 	return sel;
2016 }
2017 
rkisp1_s_selection(struct file * file,void * prv,struct v4l2_selection * sel)2018 static int rkisp1_s_selection(struct file *file, void *prv,
2019 			      struct v4l2_selection *sel)
2020 {
2021 	struct rkisp1_stream *stream = video_drvdata(file);
2022 	struct video_device *vdev = &stream->vnode.vdev;
2023 	struct rkisp1_vdev_node *node = vdev_to_node(vdev);
2024 	struct rkisp1_device *dev = stream->ispdev;
2025 	struct v4l2_rect *dcrop = &stream->dcrop;
2026 	const struct v4l2_rect *input_win;
2027 
2028 	if (vb2_is_busy(&node->buf_queue)) {
2029 		v4l2_err(&dev->v4l2_dev, "%s queue busy\n", __func__);
2030 		return -EBUSY;
2031 	}
2032 
2033 	input_win = rkisp1_get_isp_sd_win(&dev->isp_sdev);
2034 
2035 	if (sel->target != V4L2_SEL_TGT_CROP)
2036 		return -EINVAL;
2037 
2038 	if (sel->flags != 0)
2039 		return -EINVAL;
2040 
2041 	*dcrop = *rkisp1_update_crop(stream, &sel->r, input_win);
2042 	v4l2_dbg(1, rkisp1_debug, &dev->v4l2_dev,
2043 		 "stream %d crop(%d,%d)/%dx%d\n", stream->id,
2044 		 dcrop->left, dcrop->top, dcrop->width, dcrop->height);
2045 
2046 	return 0;
2047 }
2048 
rkisp1_querycap(struct file * file,void * priv,struct v4l2_capability * cap)2049 static int rkisp1_querycap(struct file *file, void *priv,
2050 			   struct v4l2_capability *cap)
2051 {
2052 	struct rkisp1_stream *stream = video_drvdata(file);
2053 	struct device *dev = stream->ispdev->dev;
2054 	struct video_device *vdev = video_devdata(file);
2055 
2056 	strlcpy(cap->card, vdev->name, sizeof(cap->card));
2057 	snprintf(cap->driver, sizeof(cap->driver),
2058 		 "%s_v%d", dev->driver->name,
2059 		 stream->ispdev->isp_ver >> 4);
2060 	snprintf(cap->bus_info, sizeof(cap->bus_info),
2061 		 "platform:%s", dev_name(dev));
2062 
2063 	return 0;
2064 }
2065 
2066 static const struct v4l2_ioctl_ops rkisp1_v4l2_ioctl_ops = {
2067 	.vidioc_reqbufs = vb2_ioctl_reqbufs,
2068 	.vidioc_querybuf = vb2_ioctl_querybuf,
2069 	.vidioc_create_bufs = vb2_ioctl_create_bufs,
2070 	.vidioc_qbuf = vb2_ioctl_qbuf,
2071 	.vidioc_expbuf = vb2_ioctl_expbuf,
2072 	.vidioc_dqbuf = vb2_ioctl_dqbuf,
2073 	.vidioc_prepare_buf = vb2_ioctl_prepare_buf,
2074 	.vidioc_streamon = vb2_ioctl_streamon,
2075 	.vidioc_streamoff = vb2_ioctl_streamoff,
2076 	.vidioc_enum_input = rkisp1_enum_input,
2077 	.vidioc_try_fmt_vid_cap_mplane = rkisp1_try_fmt_vid_cap_mplane,
2078 	.vidioc_enum_fmt_vid_cap = rkisp1_enum_fmt_vid_cap_mplane,
2079 	.vidioc_s_fmt_vid_cap_mplane = rkisp1_s_fmt_vid_cap_mplane,
2080 	.vidioc_g_fmt_vid_cap_mplane = rkisp1_g_fmt_vid_cap_mplane,
2081 	.vidioc_s_selection = rkisp1_s_selection,
2082 	.vidioc_g_selection = rkisp1_g_selection,
2083 	.vidioc_querycap = rkisp1_querycap,
2084 	.vidioc_enum_frameintervals = rkisp_enum_frameintervals,
2085 	.vidioc_enum_framesizes = rkisp_enum_framesizes,
2086 };
2087 
rkisp1_unregister_stream_vdev(struct rkisp1_stream * stream)2088 static void rkisp1_unregister_stream_vdev(struct rkisp1_stream *stream)
2089 {
2090 	media_entity_cleanup(&stream->vnode.vdev.entity);
2091 	video_unregister_device(&stream->vnode.vdev);
2092 }
2093 
rkisp1_unregister_stream_vdevs(struct rkisp1_device * dev)2094 void rkisp1_unregister_stream_vdevs(struct rkisp1_device *dev)
2095 {
2096 	struct rkisp1_stream *mp_stream = &dev->stream[RKISP1_STREAM_MP];
2097 	struct rkisp1_stream *sp_stream = &dev->stream[RKISP1_STREAM_SP];
2098 	struct rkisp1_stream *raw_stream = &dev->stream[RKISP1_STREAM_RAW];
2099 
2100 	rkisp1_unregister_stream_vdev(mp_stream);
2101 
2102 	if (dev->isp_ver != ISP_V10_1)
2103 		rkisp1_unregister_stream_vdev(sp_stream);
2104 
2105 #if RKISP1_RK3326_USE_OLDMIPI
2106 	if (dev->isp_ver == ISP_V13)
2107 #else
2108 	if (dev->isp_ver == ISP_V12 ||
2109 		dev->isp_ver == ISP_V13)
2110 #endif
2111 		rkisp1_unregister_stream_vdev(raw_stream);
2112 }
2113 
rkisp1_register_stream_vdev(struct rkisp1_stream * stream)2114 static int rkisp1_register_stream_vdev(struct rkisp1_stream *stream)
2115 {
2116 	struct rkisp1_device *dev = stream->ispdev;
2117 	struct v4l2_device *v4l2_dev = &dev->v4l2_dev;
2118 	struct video_device *vdev = &stream->vnode.vdev;
2119 	struct rkisp1_vdev_node *node;
2120 	int ret = 0;
2121 	char *vdev_name;
2122 
2123 	switch (stream->id) {
2124 	case RKISP1_STREAM_SP:
2125 		vdev_name = SP_VDEV_NAME;
2126 		if (dev->isp_ver == ISP_V10_1)
2127 			return 0;
2128 		break;
2129 	case RKISP1_STREAM_MP:
2130 		vdev_name = MP_VDEV_NAME;
2131 		break;
2132 	case RKISP1_STREAM_RAW:
2133 		vdev_name = RAW_VDEV_NAME;
2134 #if RKISP1_RK3326_USE_OLDMIPI
2135 		if (dev->isp_ver != ISP_V13)
2136 #else
2137 		if (dev->isp_ver != ISP_V12 &&
2138 			dev->isp_ver != ISP_V13)
2139 #endif
2140 			return 0;
2141 		break;
2142 	default:
2143 		v4l2_err(v4l2_dev, "Invalid stream\n");
2144 		goto unreg;
2145 	}
2146 	strlcpy(vdev->name, vdev_name, sizeof(vdev->name));
2147 	node = vdev_to_node(vdev);
2148 
2149 	vdev->ioctl_ops = &rkisp1_v4l2_ioctl_ops;
2150 	vdev->release = video_device_release_empty;
2151 	vdev->fops = &rkisp1_fops;
2152 	vdev->minor = -1;
2153 	vdev->v4l2_dev = v4l2_dev;
2154 	vdev->lock = &dev->apilock;
2155 	vdev->device_caps = V4L2_CAP_VIDEO_CAPTURE_MPLANE |
2156 				V4L2_CAP_STREAMING;
2157 	video_set_drvdata(vdev, stream);
2158 	vdev->vfl_dir = VFL_DIR_RX;
2159 	node->pad.flags = MEDIA_PAD_FL_SINK;
2160 
2161 	rkisp_init_vb2_queue(&node->buf_queue, stream,
2162 			     V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE);
2163 	vdev->queue = &node->buf_queue;
2164 
2165 	ret = video_register_device(vdev, VFL_TYPE_VIDEO, -1);
2166 	if (ret < 0) {
2167 		v4l2_err(v4l2_dev,
2168 			 "video_register_device failed with error %d\n", ret);
2169 		return ret;
2170 	}
2171 
2172 	ret = media_entity_pads_init(&vdev->entity, 1, &node->pad);
2173 	if (ret < 0)
2174 		goto unreg;
2175 
2176 	return 0;
2177 unreg:
2178 	video_unregister_device(vdev);
2179 	return ret;
2180 }
2181 
rkisp1_register_stream_vdevs(struct rkisp1_device * dev)2182 int rkisp1_register_stream_vdevs(struct rkisp1_device *dev)
2183 {
2184 	struct rkisp1_stream *stream;
2185 	int i, j, ret;
2186 
2187 	for (i = 0; i < RKISP1_MAX_STREAM; i++) {
2188 		stream = &dev->stream[i];
2189 		stream->ispdev = dev;
2190 		ret = rkisp1_register_stream_vdev(stream);
2191 		if (ret < 0)
2192 			goto err;
2193 	}
2194 
2195 	return 0;
2196 err:
2197 	for (j = 0; j < i; j++) {
2198 		stream = &dev->stream[j];
2199 		rkisp1_unregister_stream_vdev(stream);
2200 	}
2201 
2202 	return ret;
2203 }
2204 
2205 /****************  Interrupter Handler ****************/
2206 
rkisp1_mi_isr(u32 mis_val,struct rkisp1_device * dev)2207 void rkisp1_mi_isr(u32 mis_val, struct rkisp1_device *dev)
2208 {
2209 	unsigned int i;
2210 
2211 	if (mis_val & CIF_MI_DMA_READY)
2212 		rkisp1_dmarx_isr(mis_val, dev);
2213 
2214 	for (i = 0; i < ARRAY_SIZE(dev->stream); ++i) {
2215 		struct rkisp1_stream *stream = &dev->stream[i];
2216 
2217 		if (!(mis_val & CIF_MI_FRAME(stream)))
2218 			continue;
2219 
2220 		mi_frame_end_int_clear(stream);
2221 
2222 		if (stream->stopping) {
2223 			/*
2224 			 * Make sure stream is actually stopped, whose state
2225 			 * can be read from the shadow register, before
2226 			 * wake_up() thread which would immediately free all
2227 			 * frame buffers. stop_mi() takes effect at the next
2228 			 * frame end that sync the configurations to shadow
2229 			 * regs.
2230 			 */
2231 			if (stream->ops->is_stream_stopped(dev->base_addr)) {
2232 				stream->stopping = false;
2233 				stream->streaming = false;
2234 				wake_up(&stream->done);
2235 			}
2236 		} else {
2237 			mi_frame_end(stream);
2238 		}
2239 	}
2240 }
2241 
rkisp1_mipi_dmatx0_end(u32 status,struct rkisp1_device * dev)2242 void rkisp1_mipi_dmatx0_end(u32 status, struct rkisp1_device *dev)
2243 {
2244 	struct rkisp1_stream *stream = &dev->stream[RKISP1_STREAM_RAW];
2245 	u32 *buf, end, timeout = 100;
2246 
2247 	if (!(status & 0x1) || !stream->streaming)
2248 		return;
2249 
2250 	dmatx0_enable(dev->base_addr);
2251 	if (stream->stopping) {
2252 		/* update dmatx buf to other stream dummy buf if other
2253 		 * stream don't close, but dmatx is reopen.
2254 		 * dmatx first buf will write to this.
2255 		 */
2256 		if (!stream->u.raw.pre_stop) {
2257 			int i;
2258 			struct rkisp1_stream *other = NULL;
2259 
2260 			for (i = 0; i < RKISP1_MAX_STREAM; i++) {
2261 				if (i != stream->id &&
2262 					dev->stream[i].streaming) {
2263 					other = &dev->stream[i];
2264 					break;
2265 				}
2266 			}
2267 
2268 			stream->u.raw.pre_stop = true;
2269 			if (other) {
2270 				mi_raw0_set_addr(dev->base_addr,
2271 					other->dummy_buf.dma_addr);
2272 				return;
2273 			}
2274 		}
2275 
2276 		if (stream->u.raw.pre_stop) {
2277 			dmatx0_disable(dev->base_addr);
2278 			stream->u.raw.pre_stop = false;
2279 			stream->stopping = false;
2280 			stream->streaming = false;
2281 			wake_up(&stream->done);
2282 		}
2283 	} else {
2284 		if (stream->curr_buf) {
2285 			/* for check dmatx to ddr complete */
2286 			u32 sizeimage = stream->out_fmt.plane_fmt[0].sizeimage;
2287 
2288 			buf = (u32 *)vb2_plane_vaddr(&stream->curr_buf->vb.vb2_buf, 0);
2289 			if (!buf)
2290 				goto out;
2291 			end = *(buf + sizeimage / 4 - 1);
2292 			while (end == RKISP1_DMATX_CHECK) {
2293 				udelay(1);
2294 				end = *(buf + sizeimage / 4 - 1);
2295 				if (timeout-- == 0) {
2296 					/* if shd don't update
2297 					 * check aclk_isp >= clk_isp
2298 					 * input equal to sensor output, no crop
2299 					 */
2300 					v4l2_err(&dev->v4l2_dev,
2301 						"dmatx to ddr timeout!\n"
2302 						"base:0x%x shd:0x%x data:0x%x~0x%x\n",
2303 						readl(dev->base_addr + CIF_MI_RAW0_BASE_AD_INIT),
2304 						readl(dev->base_addr + CIF_MI_RAW0_BASE_AS_SHD),
2305 						*buf, end);
2306 					break;
2307 				}
2308 			}
2309 		}
2310 out:
2311 		mi_frame_end(stream);
2312 	}
2313 }
2314