xref: /OK3568_Linux_fs/kernel/drivers/md/dm-table.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /*
2  * Copyright (C) 2001 Sistina Software (UK) Limited.
3  * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include "dm-core.h"
9 
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24 
25 #define DM_MSG_PREFIX "table"
26 
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30 
31 /*
32  * Similar to ceiling(log_size(n))
33  */
int_log(unsigned int n,unsigned int base)34 static unsigned int int_log(unsigned int n, unsigned int base)
35 {
36 	int result = 0;
37 
38 	while (n > 1) {
39 		n = dm_div_up(n, base);
40 		result++;
41 	}
42 
43 	return result;
44 }
45 
46 /*
47  * Calculate the index of the child node of the n'th node k'th key.
48  */
get_child(unsigned int n,unsigned int k)49 static inline unsigned int get_child(unsigned int n, unsigned int k)
50 {
51 	return (n * CHILDREN_PER_NODE) + k;
52 }
53 
54 /*
55  * Return the n'th node of level l from table t.
56  */
get_node(struct dm_table * t,unsigned int l,unsigned int n)57 static inline sector_t *get_node(struct dm_table *t,
58 				 unsigned int l, unsigned int n)
59 {
60 	return t->index[l] + (n * KEYS_PER_NODE);
61 }
62 
63 /*
64  * Return the highest key that you could lookup from the n'th
65  * node on level l of the btree.
66  */
high(struct dm_table * t,unsigned int l,unsigned int n)67 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
68 {
69 	for (; l < t->depth - 1; l++)
70 		n = get_child(n, CHILDREN_PER_NODE - 1);
71 
72 	if (n >= t->counts[l])
73 		return (sector_t) - 1;
74 
75 	return get_node(t, l, n)[KEYS_PER_NODE - 1];
76 }
77 
78 /*
79  * Fills in a level of the btree based on the highs of the level
80  * below it.
81  */
setup_btree_index(unsigned int l,struct dm_table * t)82 static int setup_btree_index(unsigned int l, struct dm_table *t)
83 {
84 	unsigned int n, k;
85 	sector_t *node;
86 
87 	for (n = 0U; n < t->counts[l]; n++) {
88 		node = get_node(t, l, n);
89 
90 		for (k = 0U; k < KEYS_PER_NODE; k++)
91 			node[k] = high(t, l + 1, get_child(n, k));
92 	}
93 
94 	return 0;
95 }
96 
dm_vcalloc(unsigned long nmemb,unsigned long elem_size)97 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
98 {
99 	unsigned long size;
100 	void *addr;
101 
102 	/*
103 	 * Check that we're not going to overflow.
104 	 */
105 	if (nmemb > (ULONG_MAX / elem_size))
106 		return NULL;
107 
108 	size = nmemb * elem_size;
109 	addr = vzalloc(size);
110 
111 	return addr;
112 }
113 EXPORT_SYMBOL(dm_vcalloc);
114 
115 /*
116  * highs, and targets are managed as dynamic arrays during a
117  * table load.
118  */
alloc_targets(struct dm_table * t,unsigned int num)119 static int alloc_targets(struct dm_table *t, unsigned int num)
120 {
121 	sector_t *n_highs;
122 	struct dm_target *n_targets;
123 
124 	/*
125 	 * Allocate both the target array and offset array at once.
126 	 */
127 	n_highs = (sector_t *) dm_vcalloc(num, sizeof(struct dm_target) +
128 					  sizeof(sector_t));
129 	if (!n_highs)
130 		return -ENOMEM;
131 
132 	n_targets = (struct dm_target *) (n_highs + num);
133 
134 	memset(n_highs, -1, sizeof(*n_highs) * num);
135 	vfree(t->highs);
136 
137 	t->num_allocated = num;
138 	t->highs = n_highs;
139 	t->targets = n_targets;
140 
141 	return 0;
142 }
143 
dm_table_create(struct dm_table ** result,fmode_t mode,unsigned num_targets,struct mapped_device * md)144 int dm_table_create(struct dm_table **result, fmode_t mode,
145 		    unsigned num_targets, struct mapped_device *md)
146 {
147 	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
148 
149 	if (!t)
150 		return -ENOMEM;
151 
152 	INIT_LIST_HEAD(&t->devices);
153 
154 	if (!num_targets)
155 		num_targets = KEYS_PER_NODE;
156 
157 	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
158 
159 	if (!num_targets) {
160 		kfree(t);
161 		return -ENOMEM;
162 	}
163 
164 	if (alloc_targets(t, num_targets)) {
165 		kfree(t);
166 		return -ENOMEM;
167 	}
168 
169 	t->type = DM_TYPE_NONE;
170 	t->mode = mode;
171 	t->md = md;
172 	*result = t;
173 	return 0;
174 }
175 
free_devices(struct list_head * devices,struct mapped_device * md)176 static void free_devices(struct list_head *devices, struct mapped_device *md)
177 {
178 	struct list_head *tmp, *next;
179 
180 	list_for_each_safe(tmp, next, devices) {
181 		struct dm_dev_internal *dd =
182 		    list_entry(tmp, struct dm_dev_internal, list);
183 		DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
184 		       dm_device_name(md), dd->dm_dev->name);
185 		dm_put_table_device(md, dd->dm_dev);
186 		kfree(dd);
187 	}
188 }
189 
190 static void dm_table_destroy_keyslot_manager(struct dm_table *t);
191 
dm_table_destroy(struct dm_table * t)192 void dm_table_destroy(struct dm_table *t)
193 {
194 	unsigned int i;
195 
196 	if (!t)
197 		return;
198 
199 	/* free the indexes */
200 	if (t->depth >= 2)
201 		vfree(t->index[t->depth - 2]);
202 
203 	/* free the targets */
204 	for (i = 0; i < t->num_targets; i++) {
205 		struct dm_target *tgt = t->targets + i;
206 
207 		if (tgt->type->dtr)
208 			tgt->type->dtr(tgt);
209 
210 		dm_put_target_type(tgt->type);
211 	}
212 
213 	vfree(t->highs);
214 
215 	/* free the device list */
216 	free_devices(&t->devices, t->md);
217 
218 	dm_free_md_mempools(t->mempools);
219 
220 	dm_table_destroy_keyslot_manager(t);
221 
222 	kfree(t);
223 }
224 
225 /*
226  * See if we've already got a device in the list.
227  */
find_device(struct list_head * l,dev_t dev)228 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
229 {
230 	struct dm_dev_internal *dd;
231 
232 	list_for_each_entry (dd, l, list)
233 		if (dd->dm_dev->bdev->bd_dev == dev)
234 			return dd;
235 
236 	return NULL;
237 }
238 
239 /*
240  * If possible, this checks an area of a destination device is invalid.
241  */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)242 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
243 				  sector_t start, sector_t len, void *data)
244 {
245 	struct queue_limits *limits = data;
246 	struct block_device *bdev = dev->bdev;
247 	sector_t dev_size =
248 		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
249 	unsigned short logical_block_size_sectors =
250 		limits->logical_block_size >> SECTOR_SHIFT;
251 	char b[BDEVNAME_SIZE];
252 
253 	if (!dev_size)
254 		return 0;
255 
256 	if ((start >= dev_size) || (start + len > dev_size)) {
257 		DMWARN("%s: %s too small for target: "
258 		       "start=%llu, len=%llu, dev_size=%llu",
259 		       dm_device_name(ti->table->md), bdevname(bdev, b),
260 		       (unsigned long long)start,
261 		       (unsigned long long)len,
262 		       (unsigned long long)dev_size);
263 		return 1;
264 	}
265 
266 	/*
267 	 * If the target is mapped to zoned block device(s), check
268 	 * that the zones are not partially mapped.
269 	 */
270 	if (bdev_zoned_model(bdev) != BLK_ZONED_NONE) {
271 		unsigned int zone_sectors = bdev_zone_sectors(bdev);
272 
273 		if (start & (zone_sectors - 1)) {
274 			DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
275 			       dm_device_name(ti->table->md),
276 			       (unsigned long long)start,
277 			       zone_sectors, bdevname(bdev, b));
278 			return 1;
279 		}
280 
281 		/*
282 		 * Note: The last zone of a zoned block device may be smaller
283 		 * than other zones. So for a target mapping the end of a
284 		 * zoned block device with such a zone, len would not be zone
285 		 * aligned. We do not allow such last smaller zone to be part
286 		 * of the mapping here to ensure that mappings with multiple
287 		 * devices do not end up with a smaller zone in the middle of
288 		 * the sector range.
289 		 */
290 		if (len & (zone_sectors - 1)) {
291 			DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
292 			       dm_device_name(ti->table->md),
293 			       (unsigned long long)len,
294 			       zone_sectors, bdevname(bdev, b));
295 			return 1;
296 		}
297 	}
298 
299 	if (logical_block_size_sectors <= 1)
300 		return 0;
301 
302 	if (start & (logical_block_size_sectors - 1)) {
303 		DMWARN("%s: start=%llu not aligned to h/w "
304 		       "logical block size %u of %s",
305 		       dm_device_name(ti->table->md),
306 		       (unsigned long long)start,
307 		       limits->logical_block_size, bdevname(bdev, b));
308 		return 1;
309 	}
310 
311 	if (len & (logical_block_size_sectors - 1)) {
312 		DMWARN("%s: len=%llu not aligned to h/w "
313 		       "logical block size %u of %s",
314 		       dm_device_name(ti->table->md),
315 		       (unsigned long long)len,
316 		       limits->logical_block_size, bdevname(bdev, b));
317 		return 1;
318 	}
319 
320 	return 0;
321 }
322 
323 /*
324  * This upgrades the mode on an already open dm_dev, being
325  * careful to leave things as they were if we fail to reopen the
326  * device and not to touch the existing bdev field in case
327  * it is accessed concurrently.
328  */
upgrade_mode(struct dm_dev_internal * dd,fmode_t new_mode,struct mapped_device * md)329 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
330 			struct mapped_device *md)
331 {
332 	int r;
333 	struct dm_dev *old_dev, *new_dev;
334 
335 	old_dev = dd->dm_dev;
336 
337 	r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
338 				dd->dm_dev->mode | new_mode, &new_dev);
339 	if (r)
340 		return r;
341 
342 	dd->dm_dev = new_dev;
343 	dm_put_table_device(md, old_dev);
344 
345 	return 0;
346 }
347 
348 /*
349  * Convert the path to a device
350  */
dm_get_dev_t(const char * path)351 dev_t dm_get_dev_t(const char *path)
352 {
353 	dev_t dev;
354 	struct block_device *bdev;
355 
356 	bdev = lookup_bdev(path);
357 	if (IS_ERR(bdev))
358 		dev = name_to_dev_t(path);
359 	else {
360 		dev = bdev->bd_dev;
361 		bdput(bdev);
362 	}
363 
364 	return dev;
365 }
366 EXPORT_SYMBOL_GPL(dm_get_dev_t);
367 
368 /*
369  * Add a device to the list, or just increment the usage count if
370  * it's already present.
371  */
dm_get_device(struct dm_target * ti,const char * path,fmode_t mode,struct dm_dev ** result)372 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
373 		  struct dm_dev **result)
374 {
375 	int r;
376 	dev_t dev;
377 	unsigned int major, minor;
378 	char dummy;
379 	struct dm_dev_internal *dd;
380 	struct dm_table *t = ti->table;
381 
382 	BUG_ON(!t);
383 
384 	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
385 		/* Extract the major/minor numbers */
386 		dev = MKDEV(major, minor);
387 		if (MAJOR(dev) != major || MINOR(dev) != minor)
388 			return -EOVERFLOW;
389 	} else {
390 		dev = dm_get_dev_t(path);
391 		if (!dev)
392 			return -ENODEV;
393 	}
394 
395 	dd = find_device(&t->devices, dev);
396 	if (!dd) {
397 		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
398 		if (!dd)
399 			return -ENOMEM;
400 
401 		if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
402 			kfree(dd);
403 			return r;
404 		}
405 
406 		refcount_set(&dd->count, 1);
407 		list_add(&dd->list, &t->devices);
408 		goto out;
409 
410 	} else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
411 		r = upgrade_mode(dd, mode, t->md);
412 		if (r)
413 			return r;
414 	}
415 	refcount_inc(&dd->count);
416 out:
417 	*result = dd->dm_dev;
418 	return 0;
419 }
420 EXPORT_SYMBOL(dm_get_device);
421 
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)422 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
423 				sector_t start, sector_t len, void *data)
424 {
425 	struct queue_limits *limits = data;
426 	struct block_device *bdev = dev->bdev;
427 	struct request_queue *q = bdev_get_queue(bdev);
428 	char b[BDEVNAME_SIZE];
429 
430 	if (unlikely(!q)) {
431 		DMWARN("%s: Cannot set limits for nonexistent device %s",
432 		       dm_device_name(ti->table->md), bdevname(bdev, b));
433 		return 0;
434 	}
435 
436 	if (blk_stack_limits(limits, &q->limits,
437 			get_start_sect(bdev) + start) < 0)
438 		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
439 		       "physical_block_size=%u, logical_block_size=%u, "
440 		       "alignment_offset=%u, start=%llu",
441 		       dm_device_name(ti->table->md), bdevname(bdev, b),
442 		       q->limits.physical_block_size,
443 		       q->limits.logical_block_size,
444 		       q->limits.alignment_offset,
445 		       (unsigned long long) start << SECTOR_SHIFT);
446 	return 0;
447 }
448 
449 /*
450  * Decrement a device's use count and remove it if necessary.
451  */
dm_put_device(struct dm_target * ti,struct dm_dev * d)452 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
453 {
454 	int found = 0;
455 	struct list_head *devices = &ti->table->devices;
456 	struct dm_dev_internal *dd;
457 
458 	list_for_each_entry(dd, devices, list) {
459 		if (dd->dm_dev == d) {
460 			found = 1;
461 			break;
462 		}
463 	}
464 	if (!found) {
465 		DMWARN("%s: device %s not in table devices list",
466 		       dm_device_name(ti->table->md), d->name);
467 		return;
468 	}
469 	if (refcount_dec_and_test(&dd->count)) {
470 		dm_put_table_device(ti->table->md, d);
471 		list_del(&dd->list);
472 		kfree(dd);
473 	}
474 }
475 EXPORT_SYMBOL(dm_put_device);
476 
477 /*
478  * Checks to see if the target joins onto the end of the table.
479  */
adjoin(struct dm_table * table,struct dm_target * ti)480 static int adjoin(struct dm_table *table, struct dm_target *ti)
481 {
482 	struct dm_target *prev;
483 
484 	if (!table->num_targets)
485 		return !ti->begin;
486 
487 	prev = &table->targets[table->num_targets - 1];
488 	return (ti->begin == (prev->begin + prev->len));
489 }
490 
491 /*
492  * Used to dynamically allocate the arg array.
493  *
494  * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
495  * process messages even if some device is suspended. These messages have a
496  * small fixed number of arguments.
497  *
498  * On the other hand, dm-switch needs to process bulk data using messages and
499  * excessive use of GFP_NOIO could cause trouble.
500  */
realloc_argv(unsigned * size,char ** old_argv)501 static char **realloc_argv(unsigned *size, char **old_argv)
502 {
503 	char **argv;
504 	unsigned new_size;
505 	gfp_t gfp;
506 
507 	if (*size) {
508 		new_size = *size * 2;
509 		gfp = GFP_KERNEL;
510 	} else {
511 		new_size = 8;
512 		gfp = GFP_NOIO;
513 	}
514 	argv = kmalloc_array(new_size, sizeof(*argv), gfp);
515 	if (argv && old_argv) {
516 		memcpy(argv, old_argv, *size * sizeof(*argv));
517 		*size = new_size;
518 	}
519 
520 	kfree(old_argv);
521 	return argv;
522 }
523 
524 /*
525  * Destructively splits up the argument list to pass to ctr.
526  */
dm_split_args(int * argc,char *** argvp,char * input)527 int dm_split_args(int *argc, char ***argvp, char *input)
528 {
529 	char *start, *end = input, *out, **argv = NULL;
530 	unsigned array_size = 0;
531 
532 	*argc = 0;
533 
534 	if (!input) {
535 		*argvp = NULL;
536 		return 0;
537 	}
538 
539 	argv = realloc_argv(&array_size, argv);
540 	if (!argv)
541 		return -ENOMEM;
542 
543 	while (1) {
544 		/* Skip whitespace */
545 		start = skip_spaces(end);
546 
547 		if (!*start)
548 			break;	/* success, we hit the end */
549 
550 		/* 'out' is used to remove any back-quotes */
551 		end = out = start;
552 		while (*end) {
553 			/* Everything apart from '\0' can be quoted */
554 			if (*end == '\\' && *(end + 1)) {
555 				*out++ = *(end + 1);
556 				end += 2;
557 				continue;
558 			}
559 
560 			if (isspace(*end))
561 				break;	/* end of token */
562 
563 			*out++ = *end++;
564 		}
565 
566 		/* have we already filled the array ? */
567 		if ((*argc + 1) > array_size) {
568 			argv = realloc_argv(&array_size, argv);
569 			if (!argv)
570 				return -ENOMEM;
571 		}
572 
573 		/* we know this is whitespace */
574 		if (*end)
575 			end++;
576 
577 		/* terminate the string and put it in the array */
578 		*out = '\0';
579 		argv[*argc] = start;
580 		(*argc)++;
581 	}
582 
583 	*argvp = argv;
584 	return 0;
585 }
586 
587 /*
588  * Impose necessary and sufficient conditions on a devices's table such
589  * that any incoming bio which respects its logical_block_size can be
590  * processed successfully.  If it falls across the boundary between
591  * two or more targets, the size of each piece it gets split into must
592  * be compatible with the logical_block_size of the target processing it.
593  */
validate_hardware_logical_block_alignment(struct dm_table * table,struct queue_limits * limits)594 static int validate_hardware_logical_block_alignment(struct dm_table *table,
595 						 struct queue_limits *limits)
596 {
597 	/*
598 	 * This function uses arithmetic modulo the logical_block_size
599 	 * (in units of 512-byte sectors).
600 	 */
601 	unsigned short device_logical_block_size_sects =
602 		limits->logical_block_size >> SECTOR_SHIFT;
603 
604 	/*
605 	 * Offset of the start of the next table entry, mod logical_block_size.
606 	 */
607 	unsigned short next_target_start = 0;
608 
609 	/*
610 	 * Given an aligned bio that extends beyond the end of a
611 	 * target, how many sectors must the next target handle?
612 	 */
613 	unsigned short remaining = 0;
614 
615 	struct dm_target *ti;
616 	struct queue_limits ti_limits;
617 	unsigned i;
618 
619 	/*
620 	 * Check each entry in the table in turn.
621 	 */
622 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
623 		ti = dm_table_get_target(table, i);
624 
625 		blk_set_stacking_limits(&ti_limits);
626 
627 		/* combine all target devices' limits */
628 		if (ti->type->iterate_devices)
629 			ti->type->iterate_devices(ti, dm_set_device_limits,
630 						  &ti_limits);
631 
632 		/*
633 		 * If the remaining sectors fall entirely within this
634 		 * table entry are they compatible with its logical_block_size?
635 		 */
636 		if (remaining < ti->len &&
637 		    remaining & ((ti_limits.logical_block_size >>
638 				  SECTOR_SHIFT) - 1))
639 			break;	/* Error */
640 
641 		next_target_start =
642 		    (unsigned short) ((next_target_start + ti->len) &
643 				      (device_logical_block_size_sects - 1));
644 		remaining = next_target_start ?
645 		    device_logical_block_size_sects - next_target_start : 0;
646 	}
647 
648 	if (remaining) {
649 		DMWARN("%s: table line %u (start sect %llu len %llu) "
650 		       "not aligned to h/w logical block size %u",
651 		       dm_device_name(table->md), i,
652 		       (unsigned long long) ti->begin,
653 		       (unsigned long long) ti->len,
654 		       limits->logical_block_size);
655 		return -EINVAL;
656 	}
657 
658 	return 0;
659 }
660 
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)661 int dm_table_add_target(struct dm_table *t, const char *type,
662 			sector_t start, sector_t len, char *params)
663 {
664 	int r = -EINVAL, argc;
665 	char **argv;
666 	struct dm_target *tgt;
667 
668 	if (t->singleton) {
669 		DMERR("%s: target type %s must appear alone in table",
670 		      dm_device_name(t->md), t->targets->type->name);
671 		return -EINVAL;
672 	}
673 
674 	BUG_ON(t->num_targets >= t->num_allocated);
675 
676 	tgt = t->targets + t->num_targets;
677 	memset(tgt, 0, sizeof(*tgt));
678 
679 	if (!len) {
680 		DMERR("%s: zero-length target", dm_device_name(t->md));
681 		return -EINVAL;
682 	}
683 
684 	tgt->type = dm_get_target_type(type);
685 	if (!tgt->type) {
686 		DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
687 		return -EINVAL;
688 	}
689 
690 	if (dm_target_needs_singleton(tgt->type)) {
691 		if (t->num_targets) {
692 			tgt->error = "singleton target type must appear alone in table";
693 			goto bad;
694 		}
695 		t->singleton = true;
696 	}
697 
698 	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
699 		tgt->error = "target type may not be included in a read-only table";
700 		goto bad;
701 	}
702 
703 	if (t->immutable_target_type) {
704 		if (t->immutable_target_type != tgt->type) {
705 			tgt->error = "immutable target type cannot be mixed with other target types";
706 			goto bad;
707 		}
708 	} else if (dm_target_is_immutable(tgt->type)) {
709 		if (t->num_targets) {
710 			tgt->error = "immutable target type cannot be mixed with other target types";
711 			goto bad;
712 		}
713 		t->immutable_target_type = tgt->type;
714 	}
715 
716 	if (dm_target_has_integrity(tgt->type))
717 		t->integrity_added = 1;
718 
719 	tgt->table = t;
720 	tgt->begin = start;
721 	tgt->len = len;
722 	tgt->error = "Unknown error";
723 
724 	/*
725 	 * Does this target adjoin the previous one ?
726 	 */
727 	if (!adjoin(t, tgt)) {
728 		tgt->error = "Gap in table";
729 		goto bad;
730 	}
731 
732 	r = dm_split_args(&argc, &argv, params);
733 	if (r) {
734 		tgt->error = "couldn't split parameters (insufficient memory)";
735 		goto bad;
736 	}
737 
738 	r = tgt->type->ctr(tgt, argc, argv);
739 	kfree(argv);
740 	if (r)
741 		goto bad;
742 
743 	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
744 
745 	if (!tgt->num_discard_bios && tgt->discards_supported)
746 		DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
747 		       dm_device_name(t->md), type);
748 
749 	return 0;
750 
751  bad:
752 	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
753 	dm_put_target_type(tgt->type);
754 	return r;
755 }
756 
757 /*
758  * Target argument parsing helpers.
759  */
validate_next_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error,unsigned grouped)760 static int validate_next_arg(const struct dm_arg *arg,
761 			     struct dm_arg_set *arg_set,
762 			     unsigned *value, char **error, unsigned grouped)
763 {
764 	const char *arg_str = dm_shift_arg(arg_set);
765 	char dummy;
766 
767 	if (!arg_str ||
768 	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
769 	    (*value < arg->min) ||
770 	    (*value > arg->max) ||
771 	    (grouped && arg_set->argc < *value)) {
772 		*error = arg->error;
773 		return -EINVAL;
774 	}
775 
776 	return 0;
777 }
778 
dm_read_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)779 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
780 		unsigned *value, char **error)
781 {
782 	return validate_next_arg(arg, arg_set, value, error, 0);
783 }
784 EXPORT_SYMBOL(dm_read_arg);
785 
dm_read_arg_group(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)786 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
787 		      unsigned *value, char **error)
788 {
789 	return validate_next_arg(arg, arg_set, value, error, 1);
790 }
791 EXPORT_SYMBOL(dm_read_arg_group);
792 
dm_shift_arg(struct dm_arg_set * as)793 const char *dm_shift_arg(struct dm_arg_set *as)
794 {
795 	char *r;
796 
797 	if (as->argc) {
798 		as->argc--;
799 		r = *as->argv;
800 		as->argv++;
801 		return r;
802 	}
803 
804 	return NULL;
805 }
806 EXPORT_SYMBOL(dm_shift_arg);
807 
dm_consume_args(struct dm_arg_set * as,unsigned num_args)808 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
809 {
810 	BUG_ON(as->argc < num_args);
811 	as->argc -= num_args;
812 	as->argv += num_args;
813 }
814 EXPORT_SYMBOL(dm_consume_args);
815 
__table_type_bio_based(enum dm_queue_mode table_type)816 static bool __table_type_bio_based(enum dm_queue_mode table_type)
817 {
818 	return (table_type == DM_TYPE_BIO_BASED ||
819 		table_type == DM_TYPE_DAX_BIO_BASED);
820 }
821 
__table_type_request_based(enum dm_queue_mode table_type)822 static bool __table_type_request_based(enum dm_queue_mode table_type)
823 {
824 	return table_type == DM_TYPE_REQUEST_BASED;
825 }
826 
dm_table_set_type(struct dm_table * t,enum dm_queue_mode type)827 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
828 {
829 	t->type = type;
830 }
831 EXPORT_SYMBOL_GPL(dm_table_set_type);
832 
833 /* validate the dax capability of the target device span */
device_not_dax_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)834 int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
835 			sector_t start, sector_t len, void *data)
836 {
837 	int blocksize = *(int *) data, id;
838 	bool rc;
839 
840 	id = dax_read_lock();
841 	rc = !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
842 	dax_read_unlock(id);
843 
844 	return rc;
845 }
846 
847 /* Check devices support synchronous DAX */
device_not_dax_synchronous_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)848 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
849 					      sector_t start, sector_t len, void *data)
850 {
851 	return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
852 }
853 
dm_table_supports_dax(struct dm_table * t,iterate_devices_callout_fn iterate_fn,int * blocksize)854 bool dm_table_supports_dax(struct dm_table *t,
855 			   iterate_devices_callout_fn iterate_fn, int *blocksize)
856 {
857 	struct dm_target *ti;
858 	unsigned i;
859 
860 	/* Ensure that all targets support DAX. */
861 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
862 		ti = dm_table_get_target(t, i);
863 
864 		if (!ti->type->direct_access)
865 			return false;
866 
867 		if (!ti->type->iterate_devices ||
868 		    ti->type->iterate_devices(ti, iterate_fn, blocksize))
869 			return false;
870 	}
871 
872 	return true;
873 }
874 
device_is_rq_stackable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)875 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
876 				  sector_t start, sector_t len, void *data)
877 {
878 	struct block_device *bdev = dev->bdev;
879 	struct request_queue *q = bdev_get_queue(bdev);
880 
881 	/* request-based cannot stack on partitions! */
882 	if (bdev_is_partition(bdev))
883 		return false;
884 
885 	return queue_is_mq(q);
886 }
887 
dm_table_determine_type(struct dm_table * t)888 static int dm_table_determine_type(struct dm_table *t)
889 {
890 	unsigned i;
891 	unsigned bio_based = 0, request_based = 0, hybrid = 0;
892 	struct dm_target *tgt;
893 	struct list_head *devices = dm_table_get_devices(t);
894 	enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
895 	int page_size = PAGE_SIZE;
896 
897 	if (t->type != DM_TYPE_NONE) {
898 		/* target already set the table's type */
899 		if (t->type == DM_TYPE_BIO_BASED) {
900 			/* possibly upgrade to a variant of bio-based */
901 			goto verify_bio_based;
902 		}
903 		BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
904 		goto verify_rq_based;
905 	}
906 
907 	for (i = 0; i < t->num_targets; i++) {
908 		tgt = t->targets + i;
909 		if (dm_target_hybrid(tgt))
910 			hybrid = 1;
911 		else if (dm_target_request_based(tgt))
912 			request_based = 1;
913 		else
914 			bio_based = 1;
915 
916 		if (bio_based && request_based) {
917 			DMERR("Inconsistent table: different target types"
918 			      " can't be mixed up");
919 			return -EINVAL;
920 		}
921 	}
922 
923 	if (hybrid && !bio_based && !request_based) {
924 		/*
925 		 * The targets can work either way.
926 		 * Determine the type from the live device.
927 		 * Default to bio-based if device is new.
928 		 */
929 		if (__table_type_request_based(live_md_type))
930 			request_based = 1;
931 		else
932 			bio_based = 1;
933 	}
934 
935 	if (bio_based) {
936 verify_bio_based:
937 		/* We must use this table as bio-based */
938 		t->type = DM_TYPE_BIO_BASED;
939 		if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) ||
940 		    (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
941 			t->type = DM_TYPE_DAX_BIO_BASED;
942 		}
943 		return 0;
944 	}
945 
946 	BUG_ON(!request_based); /* No targets in this table */
947 
948 	t->type = DM_TYPE_REQUEST_BASED;
949 
950 verify_rq_based:
951 	/*
952 	 * Request-based dm supports only tables that have a single target now.
953 	 * To support multiple targets, request splitting support is needed,
954 	 * and that needs lots of changes in the block-layer.
955 	 * (e.g. request completion process for partial completion.)
956 	 */
957 	if (t->num_targets > 1) {
958 		DMERR("request-based DM doesn't support multiple targets");
959 		return -EINVAL;
960 	}
961 
962 	if (list_empty(devices)) {
963 		int srcu_idx;
964 		struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
965 
966 		/* inherit live table's type */
967 		if (live_table)
968 			t->type = live_table->type;
969 		dm_put_live_table(t->md, srcu_idx);
970 		return 0;
971 	}
972 
973 	tgt = dm_table_get_immutable_target(t);
974 	if (!tgt) {
975 		DMERR("table load rejected: immutable target is required");
976 		return -EINVAL;
977 	} else if (tgt->max_io_len) {
978 		DMERR("table load rejected: immutable target that splits IO is not supported");
979 		return -EINVAL;
980 	}
981 
982 	/* Non-request-stackable devices can't be used for request-based dm */
983 	if (!tgt->type->iterate_devices ||
984 	    !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
985 		DMERR("table load rejected: including non-request-stackable devices");
986 		return -EINVAL;
987 	}
988 
989 	return 0;
990 }
991 
dm_table_get_type(struct dm_table * t)992 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
993 {
994 	return t->type;
995 }
996 
dm_table_get_immutable_target_type(struct dm_table * t)997 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
998 {
999 	return t->immutable_target_type;
1000 }
1001 
dm_table_get_immutable_target(struct dm_table * t)1002 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1003 {
1004 	/* Immutable target is implicitly a singleton */
1005 	if (t->num_targets > 1 ||
1006 	    !dm_target_is_immutable(t->targets[0].type))
1007 		return NULL;
1008 
1009 	return t->targets;
1010 }
1011 
dm_table_get_wildcard_target(struct dm_table * t)1012 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1013 {
1014 	struct dm_target *ti;
1015 	unsigned i;
1016 
1017 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1018 		ti = dm_table_get_target(t, i);
1019 		if (dm_target_is_wildcard(ti->type))
1020 			return ti;
1021 	}
1022 
1023 	return NULL;
1024 }
1025 
dm_table_bio_based(struct dm_table * t)1026 bool dm_table_bio_based(struct dm_table *t)
1027 {
1028 	return __table_type_bio_based(dm_table_get_type(t));
1029 }
1030 
dm_table_request_based(struct dm_table * t)1031 bool dm_table_request_based(struct dm_table *t)
1032 {
1033 	return __table_type_request_based(dm_table_get_type(t));
1034 }
1035 
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)1036 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1037 {
1038 	enum dm_queue_mode type = dm_table_get_type(t);
1039 	unsigned per_io_data_size = 0;
1040 	unsigned min_pool_size = 0;
1041 	struct dm_target *ti;
1042 	unsigned i;
1043 
1044 	if (unlikely(type == DM_TYPE_NONE)) {
1045 		DMWARN("no table type is set, can't allocate mempools");
1046 		return -EINVAL;
1047 	}
1048 
1049 	if (__table_type_bio_based(type))
1050 		for (i = 0; i < t->num_targets; i++) {
1051 			ti = t->targets + i;
1052 			per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1053 			min_pool_size = max(min_pool_size, ti->num_flush_bios);
1054 		}
1055 
1056 	t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1057 					   per_io_data_size, min_pool_size);
1058 	if (!t->mempools)
1059 		return -ENOMEM;
1060 
1061 	return 0;
1062 }
1063 
dm_table_free_md_mempools(struct dm_table * t)1064 void dm_table_free_md_mempools(struct dm_table *t)
1065 {
1066 	dm_free_md_mempools(t->mempools);
1067 	t->mempools = NULL;
1068 }
1069 
dm_table_get_md_mempools(struct dm_table * t)1070 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1071 {
1072 	return t->mempools;
1073 }
1074 
setup_indexes(struct dm_table * t)1075 static int setup_indexes(struct dm_table *t)
1076 {
1077 	int i;
1078 	unsigned int total = 0;
1079 	sector_t *indexes;
1080 
1081 	/* allocate the space for *all* the indexes */
1082 	for (i = t->depth - 2; i >= 0; i--) {
1083 		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1084 		total += t->counts[i];
1085 	}
1086 
1087 	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
1088 	if (!indexes)
1089 		return -ENOMEM;
1090 
1091 	/* set up internal nodes, bottom-up */
1092 	for (i = t->depth - 2; i >= 0; i--) {
1093 		t->index[i] = indexes;
1094 		indexes += (KEYS_PER_NODE * t->counts[i]);
1095 		setup_btree_index(i, t);
1096 	}
1097 
1098 	return 0;
1099 }
1100 
1101 /*
1102  * Builds the btree to index the map.
1103  */
dm_table_build_index(struct dm_table * t)1104 static int dm_table_build_index(struct dm_table *t)
1105 {
1106 	int r = 0;
1107 	unsigned int leaf_nodes;
1108 
1109 	/* how many indexes will the btree have ? */
1110 	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1111 	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1112 
1113 	/* leaf layer has already been set up */
1114 	t->counts[t->depth - 1] = leaf_nodes;
1115 	t->index[t->depth - 1] = t->highs;
1116 
1117 	if (t->depth >= 2)
1118 		r = setup_indexes(t);
1119 
1120 	return r;
1121 }
1122 
integrity_profile_exists(struct gendisk * disk)1123 static bool integrity_profile_exists(struct gendisk *disk)
1124 {
1125 	return !!blk_get_integrity(disk);
1126 }
1127 
1128 /*
1129  * Get a disk whose integrity profile reflects the table's profile.
1130  * Returns NULL if integrity support was inconsistent or unavailable.
1131  */
dm_table_get_integrity_disk(struct dm_table * t)1132 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1133 {
1134 	struct list_head *devices = dm_table_get_devices(t);
1135 	struct dm_dev_internal *dd = NULL;
1136 	struct gendisk *prev_disk = NULL, *template_disk = NULL;
1137 	unsigned i;
1138 
1139 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1140 		struct dm_target *ti = dm_table_get_target(t, i);
1141 		if (!dm_target_passes_integrity(ti->type))
1142 			goto no_integrity;
1143 	}
1144 
1145 	list_for_each_entry(dd, devices, list) {
1146 		template_disk = dd->dm_dev->bdev->bd_disk;
1147 		if (!integrity_profile_exists(template_disk))
1148 			goto no_integrity;
1149 		else if (prev_disk &&
1150 			 blk_integrity_compare(prev_disk, template_disk) < 0)
1151 			goto no_integrity;
1152 		prev_disk = template_disk;
1153 	}
1154 
1155 	return template_disk;
1156 
1157 no_integrity:
1158 	if (prev_disk)
1159 		DMWARN("%s: integrity not set: %s and %s profile mismatch",
1160 		       dm_device_name(t->md),
1161 		       prev_disk->disk_name,
1162 		       template_disk->disk_name);
1163 	return NULL;
1164 }
1165 
1166 /*
1167  * Register the mapped device for blk_integrity support if the
1168  * underlying devices have an integrity profile.  But all devices may
1169  * not have matching profiles (checking all devices isn't reliable
1170  * during table load because this table may use other DM device(s) which
1171  * must be resumed before they will have an initialized integity
1172  * profile).  Consequently, stacked DM devices force a 2 stage integrity
1173  * profile validation: First pass during table load, final pass during
1174  * resume.
1175  */
dm_table_register_integrity(struct dm_table * t)1176 static int dm_table_register_integrity(struct dm_table *t)
1177 {
1178 	struct mapped_device *md = t->md;
1179 	struct gendisk *template_disk = NULL;
1180 
1181 	/* If target handles integrity itself do not register it here. */
1182 	if (t->integrity_added)
1183 		return 0;
1184 
1185 	template_disk = dm_table_get_integrity_disk(t);
1186 	if (!template_disk)
1187 		return 0;
1188 
1189 	if (!integrity_profile_exists(dm_disk(md))) {
1190 		t->integrity_supported = true;
1191 		/*
1192 		 * Register integrity profile during table load; we can do
1193 		 * this because the final profile must match during resume.
1194 		 */
1195 		blk_integrity_register(dm_disk(md),
1196 				       blk_get_integrity(template_disk));
1197 		return 0;
1198 	}
1199 
1200 	/*
1201 	 * If DM device already has an initialized integrity
1202 	 * profile the new profile should not conflict.
1203 	 */
1204 	if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1205 		DMWARN("%s: conflict with existing integrity profile: "
1206 		       "%s profile mismatch",
1207 		       dm_device_name(t->md),
1208 		       template_disk->disk_name);
1209 		return 1;
1210 	}
1211 
1212 	/* Preserve existing integrity profile */
1213 	t->integrity_supported = true;
1214 	return 0;
1215 }
1216 
1217 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1218 
1219 struct dm_keyslot_manager {
1220 	struct blk_keyslot_manager ksm;
1221 	struct mapped_device *md;
1222 };
1223 
1224 struct dm_keyslot_evict_args {
1225 	const struct blk_crypto_key *key;
1226 	int err;
1227 };
1228 
dm_keyslot_evict_callback(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1229 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1230 				     sector_t start, sector_t len, void *data)
1231 {
1232 	struct dm_keyslot_evict_args *args = data;
1233 	int err;
1234 
1235 	err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key);
1236 	if (!args->err)
1237 		args->err = err;
1238 	/* Always try to evict the key from all devices. */
1239 	return 0;
1240 }
1241 
1242 /*
1243  * When an inline encryption key is evicted from a device-mapper device, evict
1244  * it from all the underlying devices.
1245  */
dm_keyslot_evict(struct blk_keyslot_manager * ksm,const struct blk_crypto_key * key,unsigned int slot)1246 static int dm_keyslot_evict(struct blk_keyslot_manager *ksm,
1247 			    const struct blk_crypto_key *key, unsigned int slot)
1248 {
1249 	struct dm_keyslot_manager *dksm = container_of(ksm,
1250 						       struct dm_keyslot_manager,
1251 						       ksm);
1252 	struct mapped_device *md = dksm->md;
1253 	struct dm_keyslot_evict_args args = { key };
1254 	struct dm_table *t;
1255 	int srcu_idx;
1256 	int i;
1257 	struct dm_target *ti;
1258 
1259 	t = dm_get_live_table(md, &srcu_idx);
1260 	if (!t)
1261 		return 0;
1262 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1263 		ti = dm_table_get_target(t, i);
1264 		if (!ti->type->iterate_devices)
1265 			continue;
1266 		ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args);
1267 	}
1268 	dm_put_live_table(md, srcu_idx);
1269 	return args.err;
1270 }
1271 
1272 struct dm_derive_raw_secret_args {
1273 	const u8 *wrapped_key;
1274 	unsigned int wrapped_key_size;
1275 	u8 *secret;
1276 	unsigned int secret_size;
1277 	int err;
1278 };
1279 
dm_derive_raw_secret_callback(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1280 static int dm_derive_raw_secret_callback(struct dm_target *ti,
1281 					 struct dm_dev *dev, sector_t start,
1282 					 sector_t len, void *data)
1283 {
1284 	struct dm_derive_raw_secret_args *args = data;
1285 	struct request_queue *q = bdev_get_queue(dev->bdev);
1286 
1287 	if (!args->err)
1288 		return 0;
1289 
1290 	if (!q->ksm) {
1291 		args->err = -EOPNOTSUPP;
1292 		return 0;
1293 	}
1294 
1295 	args->err = blk_ksm_derive_raw_secret(q->ksm, args->wrapped_key,
1296 					      args->wrapped_key_size,
1297 					      args->secret,
1298 					      args->secret_size);
1299 	/* Try another device in case this fails. */
1300 	return 0;
1301 }
1302 
1303 /*
1304  * Retrieve the raw_secret from the underlying device.  Given that only one
1305  * raw_secret can exist for a particular wrappedkey, retrieve it only from the
1306  * first device that supports derive_raw_secret().
1307  */
dm_derive_raw_secret(struct blk_keyslot_manager * ksm,const u8 * wrapped_key,unsigned int wrapped_key_size,u8 * secret,unsigned int secret_size)1308 static int dm_derive_raw_secret(struct blk_keyslot_manager *ksm,
1309 				const u8 *wrapped_key,
1310 				unsigned int wrapped_key_size,
1311 				u8 *secret, unsigned int secret_size)
1312 {
1313 	struct dm_keyslot_manager *dksm = container_of(ksm,
1314 						       struct dm_keyslot_manager,
1315 						       ksm);
1316 	struct mapped_device *md = dksm->md;
1317 	struct dm_derive_raw_secret_args args = {
1318 		.wrapped_key = wrapped_key,
1319 		.wrapped_key_size = wrapped_key_size,
1320 		.secret = secret,
1321 		.secret_size = secret_size,
1322 		.err = -EOPNOTSUPP,
1323 	};
1324 	struct dm_table *t;
1325 	int srcu_idx;
1326 	int i;
1327 	struct dm_target *ti;
1328 
1329 	t = dm_get_live_table(md, &srcu_idx);
1330 	if (!t)
1331 		return -EOPNOTSUPP;
1332 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1333 		ti = dm_table_get_target(t, i);
1334 		if (!ti->type->iterate_devices)
1335 			continue;
1336 		ti->type->iterate_devices(ti, dm_derive_raw_secret_callback,
1337 					  &args);
1338 		if (!args.err)
1339 			break;
1340 	}
1341 	dm_put_live_table(md, srcu_idx);
1342 	return args.err;
1343 }
1344 
1345 
1346 static struct blk_ksm_ll_ops dm_ksm_ll_ops = {
1347 	.keyslot_evict = dm_keyslot_evict,
1348 	.derive_raw_secret = dm_derive_raw_secret,
1349 };
1350 
device_intersect_crypto_modes(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1351 static int device_intersect_crypto_modes(struct dm_target *ti,
1352 					 struct dm_dev *dev, sector_t start,
1353 					 sector_t len, void *data)
1354 {
1355 	struct blk_keyslot_manager *parent = data;
1356 	struct blk_keyslot_manager *child = bdev_get_queue(dev->bdev)->ksm;
1357 
1358 	blk_ksm_intersect_modes(parent, child);
1359 	return 0;
1360 }
1361 
dm_destroy_keyslot_manager(struct blk_keyslot_manager * ksm)1362 void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
1363 {
1364 	struct dm_keyslot_manager *dksm = container_of(ksm,
1365 						       struct dm_keyslot_manager,
1366 						       ksm);
1367 
1368 	if (!ksm)
1369 		return;
1370 
1371 	blk_ksm_destroy(ksm);
1372 	kfree(dksm);
1373 }
1374 
dm_table_destroy_keyslot_manager(struct dm_table * t)1375 static void dm_table_destroy_keyslot_manager(struct dm_table *t)
1376 {
1377 	dm_destroy_keyslot_manager(t->ksm);
1378 	t->ksm = NULL;
1379 }
1380 
1381 /*
1382  * Constructs and initializes t->ksm with a keyslot manager that
1383  * represents the common set of crypto capabilities of the devices
1384  * described by the dm_table. However, if the constructed keyslot
1385  * manager does not support a superset of the crypto capabilities
1386  * supported by the current keyslot manager of the mapped_device,
1387  * it returns an error instead, since we don't support restricting
1388  * crypto capabilities on table changes. Finally, if the constructed
1389  * keyslot manager doesn't actually support any crypto modes at all,
1390  * it just returns NULL.
1391  */
dm_table_construct_keyslot_manager(struct dm_table * t)1392 static int dm_table_construct_keyslot_manager(struct dm_table *t)
1393 {
1394 	struct dm_keyslot_manager *dksm;
1395 	struct blk_keyslot_manager *ksm;
1396 	struct dm_target *ti;
1397 	unsigned int i;
1398 	bool ksm_is_empty = true;
1399 
1400 	dksm = kmalloc(sizeof(*dksm), GFP_KERNEL);
1401 	if (!dksm)
1402 		return -ENOMEM;
1403 	dksm->md = t->md;
1404 
1405 	ksm = &dksm->ksm;
1406 	blk_ksm_init_passthrough(ksm);
1407 	ksm->ksm_ll_ops = dm_ksm_ll_ops;
1408 	ksm->max_dun_bytes_supported = UINT_MAX;
1409 	memset(ksm->crypto_modes_supported, 0xFF,
1410 	       sizeof(ksm->crypto_modes_supported));
1411 	ksm->features = BLK_CRYPTO_FEATURE_STANDARD_KEYS |
1412 			BLK_CRYPTO_FEATURE_WRAPPED_KEYS;
1413 
1414 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1415 		ti = dm_table_get_target(t, i);
1416 
1417 		if (!dm_target_passes_crypto(ti->type)) {
1418 			blk_ksm_intersect_modes(ksm, NULL);
1419 			break;
1420 		}
1421 		if (!ti->type->iterate_devices)
1422 			continue;
1423 		ti->type->iterate_devices(ti, device_intersect_crypto_modes,
1424 					  ksm);
1425 	}
1426 
1427 	if (t->md->queue && !blk_ksm_is_superset(ksm, t->md->queue->ksm)) {
1428 		DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1429 		dm_destroy_keyslot_manager(ksm);
1430 		return -EINVAL;
1431 	}
1432 
1433 	/*
1434 	 * If the new KSM doesn't actually support any crypto modes, we may as
1435 	 * well represent it with a NULL ksm.
1436 	 */
1437 	ksm_is_empty = true;
1438 	for (i = 0; i < ARRAY_SIZE(ksm->crypto_modes_supported); i++) {
1439 		if (ksm->crypto_modes_supported[i]) {
1440 			ksm_is_empty = false;
1441 			break;
1442 		}
1443 	}
1444 
1445 	if (ksm_is_empty) {
1446 		dm_destroy_keyslot_manager(ksm);
1447 		ksm = NULL;
1448 	}
1449 
1450 	/*
1451 	 * t->ksm is only set temporarily while the table is being set
1452 	 * up, and it gets set to NULL after the capabilities have
1453 	 * been transferred to the request_queue.
1454 	 */
1455 	t->ksm = ksm;
1456 
1457 	return 0;
1458 }
1459 
dm_update_keyslot_manager(struct request_queue * q,struct dm_table * t)1460 static void dm_update_keyslot_manager(struct request_queue *q,
1461 				      struct dm_table *t)
1462 {
1463 	if (!t->ksm)
1464 		return;
1465 
1466 	/* Make the ksm less restrictive */
1467 	if (!q->ksm) {
1468 		blk_ksm_register(t->ksm, q);
1469 	} else {
1470 		blk_ksm_update_capabilities(q->ksm, t->ksm);
1471 		dm_destroy_keyslot_manager(t->ksm);
1472 	}
1473 	t->ksm = NULL;
1474 }
1475 
1476 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1477 
dm_table_construct_keyslot_manager(struct dm_table * t)1478 static int dm_table_construct_keyslot_manager(struct dm_table *t)
1479 {
1480 	return 0;
1481 }
1482 
dm_destroy_keyslot_manager(struct blk_keyslot_manager * ksm)1483 void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
1484 {
1485 }
1486 
dm_table_destroy_keyslot_manager(struct dm_table * t)1487 static void dm_table_destroy_keyslot_manager(struct dm_table *t)
1488 {
1489 }
1490 
dm_update_keyslot_manager(struct request_queue * q,struct dm_table * t)1491 static void dm_update_keyslot_manager(struct request_queue *q,
1492 				      struct dm_table *t)
1493 {
1494 }
1495 
1496 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1497 
1498 /*
1499  * Prepares the table for use by building the indices,
1500  * setting the type, and allocating mempools.
1501  */
dm_table_complete(struct dm_table * t)1502 int dm_table_complete(struct dm_table *t)
1503 {
1504 	int r;
1505 
1506 	r = dm_table_determine_type(t);
1507 	if (r) {
1508 		DMERR("unable to determine table type");
1509 		return r;
1510 	}
1511 
1512 	r = dm_table_build_index(t);
1513 	if (r) {
1514 		DMERR("unable to build btrees");
1515 		return r;
1516 	}
1517 
1518 	r = dm_table_register_integrity(t);
1519 	if (r) {
1520 		DMERR("could not register integrity profile.");
1521 		return r;
1522 	}
1523 
1524 	r = dm_table_construct_keyslot_manager(t);
1525 	if (r) {
1526 		DMERR("could not construct keyslot manager.");
1527 		return r;
1528 	}
1529 
1530 	r = dm_table_alloc_md_mempools(t, t->md);
1531 	if (r)
1532 		DMERR("unable to allocate mempools");
1533 
1534 	return r;
1535 }
1536 
1537 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1538 void dm_table_event_callback(struct dm_table *t,
1539 			     void (*fn)(void *), void *context)
1540 {
1541 	mutex_lock(&_event_lock);
1542 	t->event_fn = fn;
1543 	t->event_context = context;
1544 	mutex_unlock(&_event_lock);
1545 }
1546 
dm_table_event(struct dm_table * t)1547 void dm_table_event(struct dm_table *t)
1548 {
1549 	mutex_lock(&_event_lock);
1550 	if (t->event_fn)
1551 		t->event_fn(t->event_context);
1552 	mutex_unlock(&_event_lock);
1553 }
1554 EXPORT_SYMBOL(dm_table_event);
1555 
dm_table_get_size(struct dm_table * t)1556 inline sector_t dm_table_get_size(struct dm_table *t)
1557 {
1558 	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1559 }
1560 EXPORT_SYMBOL(dm_table_get_size);
1561 
dm_table_get_target(struct dm_table * t,unsigned int index)1562 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1563 {
1564 	if (index >= t->num_targets)
1565 		return NULL;
1566 
1567 	return t->targets + index;
1568 }
1569 
1570 /*
1571  * Search the btree for the correct target.
1572  *
1573  * Caller should check returned pointer for NULL
1574  * to trap I/O beyond end of device.
1575  */
dm_table_find_target(struct dm_table * t,sector_t sector)1576 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1577 {
1578 	unsigned int l, n = 0, k = 0;
1579 	sector_t *node;
1580 
1581 	if (unlikely(sector >= dm_table_get_size(t)))
1582 		return NULL;
1583 
1584 	for (l = 0; l < t->depth; l++) {
1585 		n = get_child(n, k);
1586 		node = get_node(t, l, n);
1587 
1588 		for (k = 0; k < KEYS_PER_NODE; k++)
1589 			if (node[k] >= sector)
1590 				break;
1591 	}
1592 
1593 	return &t->targets[(KEYS_PER_NODE * n) + k];
1594 }
1595 
1596 /*
1597  * type->iterate_devices() should be called when the sanity check needs to
1598  * iterate and check all underlying data devices. iterate_devices() will
1599  * iterate all underlying data devices until it encounters a non-zero return
1600  * code, returned by whether the input iterate_devices_callout_fn, or
1601  * iterate_devices() itself internally.
1602  *
1603  * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1604  * iterate multiple underlying devices internally, in which case a non-zero
1605  * return code returned by iterate_devices_callout_fn will stop the iteration
1606  * in advance.
1607  *
1608  * Cases requiring _any_ underlying device supporting some kind of attribute,
1609  * should use the iteration structure like dm_table_any_dev_attr(), or call
1610  * it directly. @func should handle semantics of positive examples, e.g.
1611  * capable of something.
1612  *
1613  * Cases requiring _all_ underlying devices supporting some kind of attribute,
1614  * should use the iteration structure like dm_table_supports_nowait() or
1615  * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1616  * uses an @anti_func that handle semantics of counter examples, e.g. not
1617  * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1618  */
dm_table_any_dev_attr(struct dm_table * t,iterate_devices_callout_fn func,void * data)1619 static bool dm_table_any_dev_attr(struct dm_table *t,
1620 				  iterate_devices_callout_fn func, void *data)
1621 {
1622 	struct dm_target *ti;
1623 	unsigned int i;
1624 
1625 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1626 		ti = dm_table_get_target(t, i);
1627 
1628 		if (ti->type->iterate_devices &&
1629 		    ti->type->iterate_devices(ti, func, data))
1630 			return true;
1631         }
1632 
1633 	return false;
1634 }
1635 
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1636 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1637 			sector_t start, sector_t len, void *data)
1638 {
1639 	unsigned *num_devices = data;
1640 
1641 	(*num_devices)++;
1642 
1643 	return 0;
1644 }
1645 
1646 /*
1647  * Check whether a table has no data devices attached using each
1648  * target's iterate_devices method.
1649  * Returns false if the result is unknown because a target doesn't
1650  * support iterate_devices.
1651  */
dm_table_has_no_data_devices(struct dm_table * table)1652 bool dm_table_has_no_data_devices(struct dm_table *table)
1653 {
1654 	struct dm_target *ti;
1655 	unsigned i, num_devices;
1656 
1657 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1658 		ti = dm_table_get_target(table, i);
1659 
1660 		if (!ti->type->iterate_devices)
1661 			return false;
1662 
1663 		num_devices = 0;
1664 		ti->type->iterate_devices(ti, count_device, &num_devices);
1665 		if (num_devices)
1666 			return false;
1667 	}
1668 
1669 	return true;
1670 }
1671 
device_not_zoned_model(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1672 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1673 				  sector_t start, sector_t len, void *data)
1674 {
1675 	struct request_queue *q = bdev_get_queue(dev->bdev);
1676 	enum blk_zoned_model *zoned_model = data;
1677 
1678 	return !q || blk_queue_zoned_model(q) != *zoned_model;
1679 }
1680 
1681 /*
1682  * Check the device zoned model based on the target feature flag. If the target
1683  * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1684  * also accepted but all devices must have the same zoned model. If the target
1685  * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1686  * zoned model with all zoned devices having the same zone size.
1687  */
dm_table_supports_zoned_model(struct dm_table * t,enum blk_zoned_model zoned_model)1688 static bool dm_table_supports_zoned_model(struct dm_table *t,
1689 					  enum blk_zoned_model zoned_model)
1690 {
1691 	struct dm_target *ti;
1692 	unsigned i;
1693 
1694 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1695 		ti = dm_table_get_target(t, i);
1696 
1697 		if (dm_target_supports_zoned_hm(ti->type)) {
1698 			if (!ti->type->iterate_devices ||
1699 			    ti->type->iterate_devices(ti, device_not_zoned_model,
1700 						      &zoned_model))
1701 				return false;
1702 		} else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1703 			if (zoned_model == BLK_ZONED_HM)
1704 				return false;
1705 		}
1706 	}
1707 
1708 	return true;
1709 }
1710 
device_not_matches_zone_sectors(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1711 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1712 					   sector_t start, sector_t len, void *data)
1713 {
1714 	struct request_queue *q = bdev_get_queue(dev->bdev);
1715 	unsigned int *zone_sectors = data;
1716 
1717 	if (!blk_queue_is_zoned(q))
1718 		return 0;
1719 
1720 	return !q || blk_queue_zone_sectors(q) != *zone_sectors;
1721 }
1722 
1723 /*
1724  * Check consistency of zoned model and zone sectors across all targets. For
1725  * zone sectors, if the destination device is a zoned block device, it shall
1726  * have the specified zone_sectors.
1727  */
validate_hardware_zoned_model(struct dm_table * table,enum blk_zoned_model zoned_model,unsigned int zone_sectors)1728 static int validate_hardware_zoned_model(struct dm_table *table,
1729 					 enum blk_zoned_model zoned_model,
1730 					 unsigned int zone_sectors)
1731 {
1732 	if (zoned_model == BLK_ZONED_NONE)
1733 		return 0;
1734 
1735 	if (!dm_table_supports_zoned_model(table, zoned_model)) {
1736 		DMERR("%s: zoned model is not consistent across all devices",
1737 		      dm_device_name(table->md));
1738 		return -EINVAL;
1739 	}
1740 
1741 	/* Check zone size validity and compatibility */
1742 	if (!zone_sectors || !is_power_of_2(zone_sectors))
1743 		return -EINVAL;
1744 
1745 	if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
1746 		DMERR("%s: zone sectors is not consistent across all zoned devices",
1747 		      dm_device_name(table->md));
1748 		return -EINVAL;
1749 	}
1750 
1751 	return 0;
1752 }
1753 
1754 /*
1755  * Establish the new table's queue_limits and validate them.
1756  */
dm_calculate_queue_limits(struct dm_table * table,struct queue_limits * limits)1757 int dm_calculate_queue_limits(struct dm_table *table,
1758 			      struct queue_limits *limits)
1759 {
1760 	struct dm_target *ti;
1761 	struct queue_limits ti_limits;
1762 	unsigned i;
1763 	enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1764 	unsigned int zone_sectors = 0;
1765 
1766 	blk_set_stacking_limits(limits);
1767 
1768 	for (i = 0; i < dm_table_get_num_targets(table); i++) {
1769 		blk_set_stacking_limits(&ti_limits);
1770 
1771 		ti = dm_table_get_target(table, i);
1772 
1773 		if (!ti->type->iterate_devices)
1774 			goto combine_limits;
1775 
1776 		/*
1777 		 * Combine queue limits of all the devices this target uses.
1778 		 */
1779 		ti->type->iterate_devices(ti, dm_set_device_limits,
1780 					  &ti_limits);
1781 
1782 		if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1783 			/*
1784 			 * After stacking all limits, validate all devices
1785 			 * in table support this zoned model and zone sectors.
1786 			 */
1787 			zoned_model = ti_limits.zoned;
1788 			zone_sectors = ti_limits.chunk_sectors;
1789 		}
1790 
1791 		/* Set I/O hints portion of queue limits */
1792 		if (ti->type->io_hints)
1793 			ti->type->io_hints(ti, &ti_limits);
1794 
1795 		/*
1796 		 * Check each device area is consistent with the target's
1797 		 * overall queue limits.
1798 		 */
1799 		if (ti->type->iterate_devices(ti, device_area_is_invalid,
1800 					      &ti_limits))
1801 			return -EINVAL;
1802 
1803 combine_limits:
1804 		/*
1805 		 * Merge this target's queue limits into the overall limits
1806 		 * for the table.
1807 		 */
1808 		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1809 			DMWARN("%s: adding target device "
1810 			       "(start sect %llu len %llu) "
1811 			       "caused an alignment inconsistency",
1812 			       dm_device_name(table->md),
1813 			       (unsigned long long) ti->begin,
1814 			       (unsigned long long) ti->len);
1815 	}
1816 
1817 	/*
1818 	 * Verify that the zoned model and zone sectors, as determined before
1819 	 * any .io_hints override, are the same across all devices in the table.
1820 	 * - this is especially relevant if .io_hints is emulating a disk-managed
1821 	 *   zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1822 	 * BUT...
1823 	 */
1824 	if (limits->zoned != BLK_ZONED_NONE) {
1825 		/*
1826 		 * ...IF the above limits stacking determined a zoned model
1827 		 * validate that all of the table's devices conform to it.
1828 		 */
1829 		zoned_model = limits->zoned;
1830 		zone_sectors = limits->chunk_sectors;
1831 	}
1832 	if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1833 		return -EINVAL;
1834 
1835 	return validate_hardware_logical_block_alignment(table, limits);
1836 }
1837 
1838 /*
1839  * Verify that all devices have an integrity profile that matches the
1840  * DM device's registered integrity profile.  If the profiles don't
1841  * match then unregister the DM device's integrity profile.
1842  */
dm_table_verify_integrity(struct dm_table * t)1843 static void dm_table_verify_integrity(struct dm_table *t)
1844 {
1845 	struct gendisk *template_disk = NULL;
1846 
1847 	if (t->integrity_added)
1848 		return;
1849 
1850 	if (t->integrity_supported) {
1851 		/*
1852 		 * Verify that the original integrity profile
1853 		 * matches all the devices in this table.
1854 		 */
1855 		template_disk = dm_table_get_integrity_disk(t);
1856 		if (template_disk &&
1857 		    blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1858 			return;
1859 	}
1860 
1861 	if (integrity_profile_exists(dm_disk(t->md))) {
1862 		DMWARN("%s: unable to establish an integrity profile",
1863 		       dm_device_name(t->md));
1864 		blk_integrity_unregister(dm_disk(t->md));
1865 	}
1866 }
1867 
device_flush_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1868 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1869 				sector_t start, sector_t len, void *data)
1870 {
1871 	unsigned long flush = (unsigned long) data;
1872 	struct request_queue *q = bdev_get_queue(dev->bdev);
1873 
1874 	return q && (q->queue_flags & flush);
1875 }
1876 
dm_table_supports_flush(struct dm_table * t,unsigned long flush)1877 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1878 {
1879 	struct dm_target *ti;
1880 	unsigned i;
1881 
1882 	/*
1883 	 * Require at least one underlying device to support flushes.
1884 	 * t->devices includes internal dm devices such as mirror logs
1885 	 * so we need to use iterate_devices here, which targets
1886 	 * supporting flushes must provide.
1887 	 */
1888 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1889 		ti = dm_table_get_target(t, i);
1890 
1891 		if (!ti->num_flush_bios)
1892 			continue;
1893 
1894 		if (ti->flush_supported)
1895 			return true;
1896 
1897 		if (ti->type->iterate_devices &&
1898 		    ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1899 			return true;
1900 	}
1901 
1902 	return false;
1903 }
1904 
device_dax_write_cache_enabled(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1905 static int device_dax_write_cache_enabled(struct dm_target *ti,
1906 					  struct dm_dev *dev, sector_t start,
1907 					  sector_t len, void *data)
1908 {
1909 	struct dax_device *dax_dev = dev->dax_dev;
1910 
1911 	if (!dax_dev)
1912 		return false;
1913 
1914 	if (dax_write_cache_enabled(dax_dev))
1915 		return true;
1916 	return false;
1917 }
1918 
device_is_rotational(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1919 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1920 				sector_t start, sector_t len, void *data)
1921 {
1922 	struct request_queue *q = bdev_get_queue(dev->bdev);
1923 
1924 	return q && !blk_queue_nonrot(q);
1925 }
1926 
device_is_not_random(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1927 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1928 			     sector_t start, sector_t len, void *data)
1929 {
1930 	struct request_queue *q = bdev_get_queue(dev->bdev);
1931 
1932 	return q && !blk_queue_add_random(q);
1933 }
1934 
device_not_write_same_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1935 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1936 					 sector_t start, sector_t len, void *data)
1937 {
1938 	struct request_queue *q = bdev_get_queue(dev->bdev);
1939 
1940 	return q && !q->limits.max_write_same_sectors;
1941 }
1942 
dm_table_supports_write_same(struct dm_table * t)1943 static bool dm_table_supports_write_same(struct dm_table *t)
1944 {
1945 	struct dm_target *ti;
1946 	unsigned i;
1947 
1948 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
1949 		ti = dm_table_get_target(t, i);
1950 
1951 		if (!ti->num_write_same_bios)
1952 			return false;
1953 
1954 		if (!ti->type->iterate_devices ||
1955 		    ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1956 			return false;
1957 	}
1958 
1959 	return true;
1960 }
1961 
device_not_write_zeroes_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1962 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1963 					   sector_t start, sector_t len, void *data)
1964 {
1965 	struct request_queue *q = bdev_get_queue(dev->bdev);
1966 
1967 	return q && !q->limits.max_write_zeroes_sectors;
1968 }
1969 
dm_table_supports_write_zeroes(struct dm_table * t)1970 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1971 {
1972 	struct dm_target *ti;
1973 	unsigned i = 0;
1974 
1975 	while (i < dm_table_get_num_targets(t)) {
1976 		ti = dm_table_get_target(t, i++);
1977 
1978 		if (!ti->num_write_zeroes_bios)
1979 			return false;
1980 
1981 		if (!ti->type->iterate_devices ||
1982 		    ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1983 			return false;
1984 	}
1985 
1986 	return true;
1987 }
1988 
device_not_nowait_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1989 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1990 				     sector_t start, sector_t len, void *data)
1991 {
1992 	struct request_queue *q = bdev_get_queue(dev->bdev);
1993 
1994 	return q && !blk_queue_nowait(q);
1995 }
1996 
dm_table_supports_nowait(struct dm_table * t)1997 static bool dm_table_supports_nowait(struct dm_table *t)
1998 {
1999 	struct dm_target *ti;
2000 	unsigned i = 0;
2001 
2002 	while (i < dm_table_get_num_targets(t)) {
2003 		ti = dm_table_get_target(t, i++);
2004 
2005 		if (!dm_target_supports_nowait(ti->type))
2006 			return false;
2007 
2008 		if (!ti->type->iterate_devices ||
2009 		    ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
2010 			return false;
2011 	}
2012 
2013 	return true;
2014 }
2015 
device_not_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)2016 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
2017 				      sector_t start, sector_t len, void *data)
2018 {
2019 	struct request_queue *q = bdev_get_queue(dev->bdev);
2020 
2021 	return q && !blk_queue_discard(q);
2022 }
2023 
dm_table_supports_discards(struct dm_table * t)2024 static bool dm_table_supports_discards(struct dm_table *t)
2025 {
2026 	struct dm_target *ti;
2027 	unsigned i;
2028 
2029 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
2030 		ti = dm_table_get_target(t, i);
2031 
2032 		if (!ti->num_discard_bios)
2033 			return false;
2034 
2035 		/*
2036 		 * Either the target provides discard support (as implied by setting
2037 		 * 'discards_supported') or it relies on _all_ data devices having
2038 		 * discard support.
2039 		 */
2040 		if (!ti->discards_supported &&
2041 		    (!ti->type->iterate_devices ||
2042 		     ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
2043 			return false;
2044 	}
2045 
2046 	return true;
2047 }
2048 
device_not_secure_erase_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)2049 static int device_not_secure_erase_capable(struct dm_target *ti,
2050 					   struct dm_dev *dev, sector_t start,
2051 					   sector_t len, void *data)
2052 {
2053 	struct request_queue *q = bdev_get_queue(dev->bdev);
2054 
2055 	return q && !blk_queue_secure_erase(q);
2056 }
2057 
dm_table_supports_secure_erase(struct dm_table * t)2058 static bool dm_table_supports_secure_erase(struct dm_table *t)
2059 {
2060 	struct dm_target *ti;
2061 	unsigned int i;
2062 
2063 	for (i = 0; i < dm_table_get_num_targets(t); i++) {
2064 		ti = dm_table_get_target(t, i);
2065 
2066 		if (!ti->num_secure_erase_bios)
2067 			return false;
2068 
2069 		if (!ti->type->iterate_devices ||
2070 		    ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
2071 			return false;
2072 	}
2073 
2074 	return true;
2075 }
2076 
device_requires_stable_pages(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)2077 static int device_requires_stable_pages(struct dm_target *ti,
2078 					struct dm_dev *dev, sector_t start,
2079 					sector_t len, void *data)
2080 {
2081 	struct request_queue *q = bdev_get_queue(dev->bdev);
2082 
2083 	return q && blk_queue_stable_writes(q);
2084 }
2085 
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)2086 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
2087 			       struct queue_limits *limits)
2088 {
2089 	bool wc = false, fua = false;
2090 	int page_size = PAGE_SIZE;
2091 
2092 	/*
2093 	 * Copy table's limits to the DM device's request_queue
2094 	 */
2095 	q->limits = *limits;
2096 
2097 	if (dm_table_supports_nowait(t))
2098 		blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
2099 	else
2100 		blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
2101 
2102 	if (!dm_table_supports_discards(t)) {
2103 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
2104 		/* Must also clear discard limits... */
2105 		q->limits.max_discard_sectors = 0;
2106 		q->limits.max_hw_discard_sectors = 0;
2107 		q->limits.discard_granularity = 0;
2108 		q->limits.discard_alignment = 0;
2109 		q->limits.discard_misaligned = 0;
2110 	} else
2111 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
2112 
2113 	if (dm_table_supports_secure_erase(t))
2114 		blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
2115 
2116 	if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
2117 		wc = true;
2118 		if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
2119 			fua = true;
2120 	}
2121 	blk_queue_write_cache(q, wc, fua);
2122 
2123 	if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) {
2124 		blk_queue_flag_set(QUEUE_FLAG_DAX, q);
2125 		if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL))
2126 			set_dax_synchronous(t->md->dax_dev);
2127 	}
2128 	else
2129 		blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2130 
2131 	if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2132 		dax_write_cache(t->md->dax_dev, true);
2133 
2134 	/* Ensure that all underlying devices are non-rotational. */
2135 	if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2136 		blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2137 	else
2138 		blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2139 
2140 	if (!dm_table_supports_write_same(t))
2141 		q->limits.max_write_same_sectors = 0;
2142 	if (!dm_table_supports_write_zeroes(t))
2143 		q->limits.max_write_zeroes_sectors = 0;
2144 
2145 	dm_table_verify_integrity(t);
2146 
2147 	/*
2148 	 * Some devices don't use blk_integrity but still want stable pages
2149 	 * because they do their own checksumming.
2150 	 * If any underlying device requires stable pages, a table must require
2151 	 * them as well.  Only targets that support iterate_devices are considered:
2152 	 * don't want error, zero, etc to require stable pages.
2153 	 */
2154 	if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2155 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2156 	else
2157 		blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2158 
2159 	/*
2160 	 * Determine whether or not this queue's I/O timings contribute
2161 	 * to the entropy pool, Only request-based targets use this.
2162 	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2163 	 * have it set.
2164 	 */
2165 	if (blk_queue_add_random(q) &&
2166 	    dm_table_any_dev_attr(t, device_is_not_random, NULL))
2167 		blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2168 
2169 	/*
2170 	 * For a zoned target, the number of zones should be updated for the
2171 	 * correct value to be exposed in sysfs queue/nr_zones. For a BIO based
2172 	 * target, this is all that is needed.
2173 	 */
2174 #ifdef CONFIG_BLK_DEV_ZONED
2175 	if (blk_queue_is_zoned(q)) {
2176 		WARN_ON_ONCE(queue_is_mq(q));
2177 		q->nr_zones = blkdev_nr_zones(t->md->disk);
2178 	}
2179 #endif
2180 
2181 	dm_update_keyslot_manager(q, t);
2182 	blk_queue_update_readahead(q);
2183 }
2184 
dm_table_get_num_targets(struct dm_table * t)2185 unsigned int dm_table_get_num_targets(struct dm_table *t)
2186 {
2187 	return t->num_targets;
2188 }
2189 
dm_table_get_devices(struct dm_table * t)2190 struct list_head *dm_table_get_devices(struct dm_table *t)
2191 {
2192 	return &t->devices;
2193 }
2194 
dm_table_get_mode(struct dm_table * t)2195 fmode_t dm_table_get_mode(struct dm_table *t)
2196 {
2197 	return t->mode;
2198 }
2199 EXPORT_SYMBOL(dm_table_get_mode);
2200 
2201 enum suspend_mode {
2202 	PRESUSPEND,
2203 	PRESUSPEND_UNDO,
2204 	POSTSUSPEND,
2205 };
2206 
suspend_targets(struct dm_table * t,enum suspend_mode mode)2207 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2208 {
2209 	int i = t->num_targets;
2210 	struct dm_target *ti = t->targets;
2211 
2212 	lockdep_assert_held(&t->md->suspend_lock);
2213 
2214 	while (i--) {
2215 		switch (mode) {
2216 		case PRESUSPEND:
2217 			if (ti->type->presuspend)
2218 				ti->type->presuspend(ti);
2219 			break;
2220 		case PRESUSPEND_UNDO:
2221 			if (ti->type->presuspend_undo)
2222 				ti->type->presuspend_undo(ti);
2223 			break;
2224 		case POSTSUSPEND:
2225 			if (ti->type->postsuspend)
2226 				ti->type->postsuspend(ti);
2227 			break;
2228 		}
2229 		ti++;
2230 	}
2231 }
2232 
dm_table_presuspend_targets(struct dm_table * t)2233 void dm_table_presuspend_targets(struct dm_table *t)
2234 {
2235 	if (!t)
2236 		return;
2237 
2238 	suspend_targets(t, PRESUSPEND);
2239 }
2240 
dm_table_presuspend_undo_targets(struct dm_table * t)2241 void dm_table_presuspend_undo_targets(struct dm_table *t)
2242 {
2243 	if (!t)
2244 		return;
2245 
2246 	suspend_targets(t, PRESUSPEND_UNDO);
2247 }
2248 
dm_table_postsuspend_targets(struct dm_table * t)2249 void dm_table_postsuspend_targets(struct dm_table *t)
2250 {
2251 	if (!t)
2252 		return;
2253 
2254 	suspend_targets(t, POSTSUSPEND);
2255 }
2256 
dm_table_resume_targets(struct dm_table * t)2257 int dm_table_resume_targets(struct dm_table *t)
2258 {
2259 	int i, r = 0;
2260 
2261 	lockdep_assert_held(&t->md->suspend_lock);
2262 
2263 	for (i = 0; i < t->num_targets; i++) {
2264 		struct dm_target *ti = t->targets + i;
2265 
2266 		if (!ti->type->preresume)
2267 			continue;
2268 
2269 		r = ti->type->preresume(ti);
2270 		if (r) {
2271 			DMERR("%s: %s: preresume failed, error = %d",
2272 			      dm_device_name(t->md), ti->type->name, r);
2273 			return r;
2274 		}
2275 	}
2276 
2277 	for (i = 0; i < t->num_targets; i++) {
2278 		struct dm_target *ti = t->targets + i;
2279 
2280 		if (ti->type->resume)
2281 			ti->type->resume(ti);
2282 	}
2283 
2284 	return 0;
2285 }
2286 
dm_table_get_md(struct dm_table * t)2287 struct mapped_device *dm_table_get_md(struct dm_table *t)
2288 {
2289 	return t->md;
2290 }
2291 EXPORT_SYMBOL(dm_table_get_md);
2292 
dm_table_device_name(struct dm_table * t)2293 const char *dm_table_device_name(struct dm_table *t)
2294 {
2295 	return dm_device_name(t->md);
2296 }
2297 EXPORT_SYMBOL_GPL(dm_table_device_name);
2298 
dm_table_run_md_queue_async(struct dm_table * t)2299 void dm_table_run_md_queue_async(struct dm_table *t)
2300 {
2301 	if (!dm_table_request_based(t))
2302 		return;
2303 
2304 	if (t->md->queue)
2305 		blk_mq_run_hw_queues(t->md->queue, true);
2306 }
2307 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2308 
2309