1 /*
2 * Copyright (C) 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2006 Red Hat GmbH
4 *
5 * This file is released under the GPL.
6 *
7 * Kcopyd provides a simple interface for copying an area of one
8 * block-device to one or more other block-devices, with an asynchronous
9 * completion notification.
10 */
11
12 #include <linux/types.h>
13 #include <linux/atomic.h>
14 #include <linux/blkdev.h>
15 #include <linux/fs.h>
16 #include <linux/init.h>
17 #include <linux/list.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/of_platform.h>
21 #include <linux/of_reserved_mem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/workqueue.h>
26 #include <linux/mutex.h>
27 #include <linux/delay.h>
28 #include <linux/device-mapper.h>
29 #include <linux/dm-kcopyd.h>
30
31 #include "dm-core.h"
32
33 #define SPLIT_COUNT 8
34 #define MIN_JOBS 8
35
36 #define DEFAULT_SUB_JOB_SIZE_KB 512
37 #define MAX_SUB_JOB_SIZE_KB 1024
38
39 static unsigned kcopyd_subjob_size_kb = DEFAULT_SUB_JOB_SIZE_KB;
40
41 module_param(kcopyd_subjob_size_kb, uint, S_IRUGO | S_IWUSR);
42 MODULE_PARM_DESC(kcopyd_subjob_size_kb, "Sub-job size for dm-kcopyd clients");
43
44 static bool rsm_enabled;
45 static phys_addr_t rsm_mem_base, rsm_mem_size;
46
47 #ifndef MODULE
48 static DEFINE_SPINLOCK(rsm_lock);
49 static int *rsm_mem;
50 static int rsm_page_cnt;
51 static int rsm_tbl_idx;
52 static struct reserved_mem *rmem;
53
kcopyd_rsm_init(void)54 static void __init kcopyd_rsm_init(void)
55 {
56 static struct device_node *rsm_node;
57 int ret = 0;
58
59 if (!rsm_enabled)
60 return;
61
62 rsm_node = of_find_compatible_node(NULL, NULL, "mediatek,dm_ota");
63 if (!rsm_node) {
64 ret = -ENODEV;
65 goto out;
66 }
67
68 rmem = of_reserved_mem_lookup(rsm_node);
69 if (!rmem) {
70 ret = -EINVAL;
71 goto out_put_node;
72 }
73
74 rsm_mem_base = rmem->base;
75 rsm_mem_size = rmem->size;
76 rsm_page_cnt = rsm_mem_size / PAGE_SIZE;
77 rsm_mem = kcalloc(rsm_page_cnt, sizeof(int), GFP_KERNEL);
78 if (!rsm_mem)
79 ret = -ENOMEM;
80
81 out_put_node:
82 of_node_put(rsm_node);
83 out:
84 if (ret)
85 pr_warn("kcopyd: failed to init rsm: %d", ret);
86 }
87
kcopyd_rsm_enable(char * str)88 static int __init kcopyd_rsm_enable(char *str)
89 {
90 rsm_enabled = true;
91
92 return 0;
93 }
94 early_param("mtk_kcopyd_quirk", kcopyd_rsm_enable);
95
kcopyd_rsm_get_page(struct page ** p)96 static void kcopyd_rsm_get_page(struct page **p)
97 {
98 int i;
99 unsigned long flags;
100
101 *p = NULL;
102 spin_lock_irqsave(&rsm_lock, flags);
103 for (i = 0 ; i < rsm_page_cnt ; i++) {
104 rsm_tbl_idx = (rsm_tbl_idx + 1 == rsm_page_cnt) ? 0 : rsm_tbl_idx + 1;
105
106 if (rsm_mem[rsm_tbl_idx] == 0) {
107 rsm_mem[rsm_tbl_idx] = 1;
108 *p = virt_to_page(phys_to_virt(rsm_mem_base + PAGE_SIZE
109 * rsm_tbl_idx));
110 break;
111 }
112 }
113 spin_unlock_irqrestore(&rsm_lock, flags);
114 }
115
kcopyd_rsm_drop_page(struct page ** p)116 static void kcopyd_rsm_drop_page(struct page **p)
117 {
118 u64 off;
119 unsigned long flags;
120
121 if (*p) {
122 off = page_to_phys(*p) - rsm_mem_base;
123 spin_lock_irqsave(&rsm_lock, flags);
124 rsm_mem[off >> PAGE_SHIFT] = 0;
125 spin_unlock_irqrestore(&rsm_lock, flags);
126 *p = NULL;
127 }
128 }
129
kcopyd_rsm_destroy(void)130 static void kcopyd_rsm_destroy(void)
131 {
132 if (rsm_enabled)
133 kfree(rsm_mem);
134 }
135
136 #else
137 #define kcopyd_rsm_destroy(...)
138 #define kcopyd_rsm_drop_page(...)
139 #define kcopyd_rsm_get_page(...)
140 #define kcopyd_rsm_init(...)
141 #endif
142
dm_get_kcopyd_subjob_size(void)143 static unsigned dm_get_kcopyd_subjob_size(void)
144 {
145 unsigned sub_job_size_kb;
146
147 sub_job_size_kb = __dm_get_module_param(&kcopyd_subjob_size_kb,
148 DEFAULT_SUB_JOB_SIZE_KB,
149 MAX_SUB_JOB_SIZE_KB);
150
151 return sub_job_size_kb << 1;
152 }
153
154 /*-----------------------------------------------------------------
155 * Each kcopyd client has its own little pool of preallocated
156 * pages for kcopyd io.
157 *---------------------------------------------------------------*/
158 struct dm_kcopyd_client {
159 struct page_list *pages;
160 unsigned nr_reserved_pages;
161 unsigned nr_free_pages;
162 unsigned sub_job_size;
163
164 struct dm_io_client *io_client;
165
166 wait_queue_head_t destroyq;
167
168 mempool_t job_pool;
169
170 struct workqueue_struct *kcopyd_wq;
171 struct work_struct kcopyd_work;
172
173 struct dm_kcopyd_throttle *throttle;
174
175 atomic_t nr_jobs;
176
177 /*
178 * We maintain four lists of jobs:
179 *
180 * i) jobs waiting for pages
181 * ii) jobs that have pages, and are waiting for the io to be issued.
182 * iii) jobs that don't need to do any IO and just run a callback
183 * iv) jobs that have completed.
184 *
185 * All four of these are protected by job_lock.
186 */
187 spinlock_t job_lock;
188 struct list_head callback_jobs;
189 struct list_head complete_jobs;
190 struct list_head io_jobs;
191 struct list_head pages_jobs;
192 };
193
194 static struct page_list zero_page_list;
195
196 static DEFINE_SPINLOCK(throttle_spinlock);
197
198 /*
199 * IO/IDLE accounting slowly decays after (1 << ACCOUNT_INTERVAL_SHIFT) period.
200 * When total_period >= (1 << ACCOUNT_INTERVAL_SHIFT) the counters are divided
201 * by 2.
202 */
203 #define ACCOUNT_INTERVAL_SHIFT SHIFT_HZ
204
205 /*
206 * Sleep this number of milliseconds.
207 *
208 * The value was decided experimentally.
209 * Smaller values seem to cause an increased copy rate above the limit.
210 * The reason for this is unknown but possibly due to jiffies rounding errors
211 * or read/write cache inside the disk.
212 */
213 #define SLEEP_MSEC 100
214
215 /*
216 * Maximum number of sleep events. There is a theoretical livelock if more
217 * kcopyd clients do work simultaneously which this limit avoids.
218 */
219 #define MAX_SLEEPS 10
220
io_job_start(struct dm_kcopyd_throttle * t)221 static void io_job_start(struct dm_kcopyd_throttle *t)
222 {
223 unsigned throttle, now, difference;
224 int slept = 0, skew;
225
226 if (unlikely(!t))
227 return;
228
229 try_again:
230 spin_lock_irq(&throttle_spinlock);
231
232 throttle = READ_ONCE(t->throttle);
233
234 if (likely(throttle >= 100))
235 goto skip_limit;
236
237 now = jiffies;
238 difference = now - t->last_jiffies;
239 t->last_jiffies = now;
240 if (t->num_io_jobs)
241 t->io_period += difference;
242 t->total_period += difference;
243
244 /*
245 * Maintain sane values if we got a temporary overflow.
246 */
247 if (unlikely(t->io_period > t->total_period))
248 t->io_period = t->total_period;
249
250 if (unlikely(t->total_period >= (1 << ACCOUNT_INTERVAL_SHIFT))) {
251 int shift = fls(t->total_period >> ACCOUNT_INTERVAL_SHIFT);
252 t->total_period >>= shift;
253 t->io_period >>= shift;
254 }
255
256 skew = t->io_period - throttle * t->total_period / 100;
257
258 if (unlikely(skew > 0) && slept < MAX_SLEEPS) {
259 slept++;
260 spin_unlock_irq(&throttle_spinlock);
261 msleep(SLEEP_MSEC);
262 goto try_again;
263 }
264
265 skip_limit:
266 t->num_io_jobs++;
267
268 spin_unlock_irq(&throttle_spinlock);
269 }
270
io_job_finish(struct dm_kcopyd_throttle * t)271 static void io_job_finish(struct dm_kcopyd_throttle *t)
272 {
273 unsigned long flags;
274
275 if (unlikely(!t))
276 return;
277
278 spin_lock_irqsave(&throttle_spinlock, flags);
279
280 t->num_io_jobs--;
281
282 if (likely(READ_ONCE(t->throttle) >= 100))
283 goto skip_limit;
284
285 if (!t->num_io_jobs) {
286 unsigned now, difference;
287
288 now = jiffies;
289 difference = now - t->last_jiffies;
290 t->last_jiffies = now;
291
292 t->io_period += difference;
293 t->total_period += difference;
294
295 /*
296 * Maintain sane values if we got a temporary overflow.
297 */
298 if (unlikely(t->io_period > t->total_period))
299 t->io_period = t->total_period;
300 }
301
302 skip_limit:
303 spin_unlock_irqrestore(&throttle_spinlock, flags);
304 }
305
306
wake(struct dm_kcopyd_client * kc)307 static void wake(struct dm_kcopyd_client *kc)
308 {
309 queue_work(kc->kcopyd_wq, &kc->kcopyd_work);
310 }
311
312 /*
313 * Obtain one page for the use of kcopyd.
314 */
alloc_pl(gfp_t gfp,unsigned long job_flags)315 static struct page_list *alloc_pl(gfp_t gfp, unsigned long job_flags)
316 {
317 struct page_list *pl;
318
319 pl = kmalloc(sizeof(*pl), gfp);
320 if (!pl)
321 return NULL;
322
323 if (rsm_enabled && test_bit(DM_KCOPYD_SNAP_MERGE, &job_flags)) {
324 kcopyd_rsm_get_page(&pl->page);
325 } else {
326 pl->page = alloc_page(gfp);
327 }
328
329 if (!pl->page) {
330 kfree(pl);
331 return NULL;
332 }
333
334 return pl;
335 }
336
free_pl(struct page_list * pl)337 static void free_pl(struct page_list *pl)
338 {
339 struct page *p = pl->page;
340 phys_addr_t pa = page_to_phys(p);
341
342 if (rsm_enabled && pa >= rsm_mem_base && pa < rsm_mem_base + rsm_mem_size)
343 kcopyd_rsm_drop_page(&pl->page);
344 else
345 __free_page(pl->page);
346
347 kfree(pl);
348 }
349
350 /*
351 * Add the provided pages to a client's free page list, releasing
352 * back to the system any beyond the reserved_pages limit.
353 */
kcopyd_put_pages(struct dm_kcopyd_client * kc,struct page_list * pl)354 static void kcopyd_put_pages(struct dm_kcopyd_client *kc, struct page_list *pl)
355 {
356 struct page_list *next;
357
358 do {
359 next = pl->next;
360
361 if (kc->nr_free_pages >= kc->nr_reserved_pages)
362 free_pl(pl);
363 else {
364 pl->next = kc->pages;
365 kc->pages = pl;
366 kc->nr_free_pages++;
367 }
368
369 pl = next;
370 } while (pl);
371 }
372
kcopyd_get_pages(struct dm_kcopyd_client * kc,unsigned int nr,struct page_list ** pages,unsigned long job_flags)373 static int kcopyd_get_pages(struct dm_kcopyd_client *kc,
374 unsigned int nr, struct page_list **pages,
375 unsigned long job_flags)
376 {
377 struct page_list *pl;
378
379 *pages = NULL;
380
381 do {
382 pl = alloc_pl(__GFP_NOWARN | __GFP_NORETRY | __GFP_KSWAPD_RECLAIM, job_flags);
383 if (unlikely(!pl)) {
384 /* Use reserved pages */
385 pl = kc->pages;
386 if (unlikely(!pl))
387 goto out_of_memory;
388 kc->pages = pl->next;
389 kc->nr_free_pages--;
390 }
391 pl->next = *pages;
392 *pages = pl;
393 } while (--nr);
394
395 return 0;
396
397 out_of_memory:
398 if (*pages)
399 kcopyd_put_pages(kc, *pages);
400 return -ENOMEM;
401 }
402
403 /*
404 * These three functions resize the page pool.
405 */
drop_pages(struct page_list * pl)406 static void drop_pages(struct page_list *pl)
407 {
408 struct page_list *next;
409
410 while (pl) {
411 next = pl->next;
412 free_pl(pl);
413 pl = next;
414 }
415 }
416
417 /*
418 * Allocate and reserve nr_pages for the use of a specific client.
419 */
client_reserve_pages(struct dm_kcopyd_client * kc,unsigned nr_pages)420 static int client_reserve_pages(struct dm_kcopyd_client *kc, unsigned nr_pages)
421 {
422 unsigned i;
423 struct page_list *pl = NULL, *next;
424
425 for (i = 0; i < nr_pages; i++) {
426 next = alloc_pl(GFP_KERNEL, 0);
427 if (!next) {
428 if (pl)
429 drop_pages(pl);
430 return -ENOMEM;
431 }
432 next->next = pl;
433 pl = next;
434 }
435
436 kc->nr_reserved_pages += nr_pages;
437 kcopyd_put_pages(kc, pl);
438
439 return 0;
440 }
441
client_free_pages(struct dm_kcopyd_client * kc)442 static void client_free_pages(struct dm_kcopyd_client *kc)
443 {
444 BUG_ON(kc->nr_free_pages != kc->nr_reserved_pages);
445 drop_pages(kc->pages);
446 kc->pages = NULL;
447 kc->nr_free_pages = kc->nr_reserved_pages = 0;
448 }
449
450 /*-----------------------------------------------------------------
451 * kcopyd_jobs need to be allocated by the *clients* of kcopyd,
452 * for this reason we use a mempool to prevent the client from
453 * ever having to do io (which could cause a deadlock).
454 *---------------------------------------------------------------*/
455 struct kcopyd_job {
456 struct dm_kcopyd_client *kc;
457 struct list_head list;
458 unsigned long flags;
459
460 /*
461 * Error state of the job.
462 */
463 int read_err;
464 unsigned long write_err;
465
466 /*
467 * Either READ or WRITE
468 */
469 int rw;
470 struct dm_io_region source;
471
472 /*
473 * The destinations for the transfer.
474 */
475 unsigned int num_dests;
476 struct dm_io_region dests[DM_KCOPYD_MAX_REGIONS];
477
478 struct page_list *pages;
479
480 /*
481 * Set this to ensure you are notified when the job has
482 * completed. 'context' is for callback to use.
483 */
484 dm_kcopyd_notify_fn fn;
485 void *context;
486
487 /*
488 * These fields are only used if the job has been split
489 * into more manageable parts.
490 */
491 struct mutex lock;
492 atomic_t sub_jobs;
493 sector_t progress;
494 sector_t write_offset;
495
496 struct kcopyd_job *master_job;
497 };
498
499 static struct kmem_cache *_job_cache;
500
dm_kcopyd_init(void)501 int __init dm_kcopyd_init(void)
502 {
503 _job_cache = kmem_cache_create("kcopyd_job",
504 sizeof(struct kcopyd_job) * (SPLIT_COUNT + 1),
505 __alignof__(struct kcopyd_job), 0, NULL);
506 if (!_job_cache)
507 return -ENOMEM;
508
509 zero_page_list.next = &zero_page_list;
510 zero_page_list.page = ZERO_PAGE(0);
511
512 kcopyd_rsm_init();
513
514 return 0;
515 }
516
dm_kcopyd_exit(void)517 void dm_kcopyd_exit(void)
518 {
519 kmem_cache_destroy(_job_cache);
520 _job_cache = NULL;
521 kcopyd_rsm_destroy();
522 }
523
524 /*
525 * Functions to push and pop a job onto the head of a given job
526 * list.
527 */
pop_io_job(struct list_head * jobs,struct dm_kcopyd_client * kc)528 static struct kcopyd_job *pop_io_job(struct list_head *jobs,
529 struct dm_kcopyd_client *kc)
530 {
531 struct kcopyd_job *job;
532
533 /*
534 * For I/O jobs, pop any read, any write without sequential write
535 * constraint and sequential writes that are at the right position.
536 */
537 list_for_each_entry(job, jobs, list) {
538 if (job->rw == READ || !test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags)) {
539 list_del(&job->list);
540 return job;
541 }
542
543 if (job->write_offset == job->master_job->write_offset) {
544 job->master_job->write_offset += job->source.count;
545 list_del(&job->list);
546 return job;
547 }
548 }
549
550 return NULL;
551 }
552
pop(struct list_head * jobs,struct dm_kcopyd_client * kc)553 static struct kcopyd_job *pop(struct list_head *jobs,
554 struct dm_kcopyd_client *kc)
555 {
556 struct kcopyd_job *job = NULL;
557 unsigned long flags;
558
559 spin_lock_irqsave(&kc->job_lock, flags);
560
561 if (!list_empty(jobs)) {
562 if (jobs == &kc->io_jobs)
563 job = pop_io_job(jobs, kc);
564 else {
565 job = list_entry(jobs->next, struct kcopyd_job, list);
566 list_del(&job->list);
567 }
568 }
569 spin_unlock_irqrestore(&kc->job_lock, flags);
570
571 return job;
572 }
573
push(struct list_head * jobs,struct kcopyd_job * job)574 static void push(struct list_head *jobs, struct kcopyd_job *job)
575 {
576 unsigned long flags;
577 struct dm_kcopyd_client *kc = job->kc;
578
579 spin_lock_irqsave(&kc->job_lock, flags);
580 list_add_tail(&job->list, jobs);
581 spin_unlock_irqrestore(&kc->job_lock, flags);
582 }
583
584
push_head(struct list_head * jobs,struct kcopyd_job * job)585 static void push_head(struct list_head *jobs, struct kcopyd_job *job)
586 {
587 unsigned long flags;
588 struct dm_kcopyd_client *kc = job->kc;
589
590 spin_lock_irqsave(&kc->job_lock, flags);
591 list_add(&job->list, jobs);
592 spin_unlock_irqrestore(&kc->job_lock, flags);
593 }
594
595 /*
596 * These three functions process 1 item from the corresponding
597 * job list.
598 *
599 * They return:
600 * < 0: error
601 * 0: success
602 * > 0: can't process yet.
603 */
run_complete_job(struct kcopyd_job * job)604 static int run_complete_job(struct kcopyd_job *job)
605 {
606 void *context = job->context;
607 int read_err = job->read_err;
608 unsigned long write_err = job->write_err;
609 dm_kcopyd_notify_fn fn = job->fn;
610 struct dm_kcopyd_client *kc = job->kc;
611
612 if (job->pages && job->pages != &zero_page_list)
613 kcopyd_put_pages(kc, job->pages);
614 /*
615 * If this is the master job, the sub jobs have already
616 * completed so we can free everything.
617 */
618 if (job->master_job == job) {
619 mutex_destroy(&job->lock);
620 mempool_free(job, &kc->job_pool);
621 }
622 fn(read_err, write_err, context);
623
624 if (atomic_dec_and_test(&kc->nr_jobs))
625 wake_up(&kc->destroyq);
626
627 cond_resched();
628
629 return 0;
630 }
631
complete_io(unsigned long error,void * context)632 static void complete_io(unsigned long error, void *context)
633 {
634 struct kcopyd_job *job = (struct kcopyd_job *) context;
635 struct dm_kcopyd_client *kc = job->kc;
636
637 io_job_finish(kc->throttle);
638
639 if (error) {
640 if (op_is_write(job->rw))
641 job->write_err |= error;
642 else
643 job->read_err = 1;
644
645 if (!test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
646 push(&kc->complete_jobs, job);
647 wake(kc);
648 return;
649 }
650 }
651
652 if (op_is_write(job->rw))
653 push(&kc->complete_jobs, job);
654
655 else {
656 job->rw = WRITE;
657 push(&kc->io_jobs, job);
658 }
659
660 wake(kc);
661 }
662
663 /*
664 * Request io on as many buffer heads as we can currently get for
665 * a particular job.
666 */
run_io_job(struct kcopyd_job * job)667 static int run_io_job(struct kcopyd_job *job)
668 {
669 int r;
670 struct dm_io_request io_req = {
671 .bi_op = job->rw,
672 .bi_op_flags = 0,
673 .mem.type = DM_IO_PAGE_LIST,
674 .mem.ptr.pl = job->pages,
675 .mem.offset = 0,
676 .notify.fn = complete_io,
677 .notify.context = job,
678 .client = job->kc->io_client,
679 };
680
681 /*
682 * If we need to write sequentially and some reads or writes failed,
683 * no point in continuing.
684 */
685 if (test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags) &&
686 job->master_job->write_err) {
687 job->write_err = job->master_job->write_err;
688 return -EIO;
689 }
690
691 io_job_start(job->kc->throttle);
692
693 if (job->rw == READ)
694 r = dm_io(&io_req, 1, &job->source, NULL);
695 else
696 r = dm_io(&io_req, job->num_dests, job->dests, NULL);
697
698 return r;
699 }
700
run_pages_job(struct kcopyd_job * job)701 static int run_pages_job(struct kcopyd_job *job)
702 {
703 int r;
704 unsigned nr_pages = dm_div_up(job->dests[0].count, PAGE_SIZE >> 9);
705
706 r = kcopyd_get_pages(job->kc, nr_pages, &job->pages, job->flags);
707 if (!r) {
708 /* this job is ready for io */
709 push(&job->kc->io_jobs, job);
710 return 0;
711 }
712
713 if (r == -ENOMEM)
714 /* can't complete now */
715 return 1;
716
717 return r;
718 }
719
720 /*
721 * Run through a list for as long as possible. Returns the count
722 * of successful jobs.
723 */
process_jobs(struct list_head * jobs,struct dm_kcopyd_client * kc,int (* fn)(struct kcopyd_job *))724 static int process_jobs(struct list_head *jobs, struct dm_kcopyd_client *kc,
725 int (*fn) (struct kcopyd_job *))
726 {
727 struct kcopyd_job *job;
728 int r, count = 0;
729
730 while ((job = pop(jobs, kc))) {
731
732 r = fn(job);
733
734 if (r < 0) {
735 /* error this rogue job */
736 if (op_is_write(job->rw))
737 job->write_err = (unsigned long) -1L;
738 else
739 job->read_err = 1;
740 push(&kc->complete_jobs, job);
741 wake(kc);
742 break;
743 }
744
745 if (r > 0) {
746 /*
747 * We couldn't service this job ATM, so
748 * push this job back onto the list.
749 */
750 push_head(jobs, job);
751 break;
752 }
753
754 count++;
755 }
756
757 return count;
758 }
759
760 /*
761 * kcopyd does this every time it's woken up.
762 */
do_work(struct work_struct * work)763 static void do_work(struct work_struct *work)
764 {
765 struct dm_kcopyd_client *kc = container_of(work,
766 struct dm_kcopyd_client, kcopyd_work);
767 struct blk_plug plug;
768 unsigned long flags;
769
770 /*
771 * The order that these are called is *very* important.
772 * complete jobs can free some pages for pages jobs.
773 * Pages jobs when successful will jump onto the io jobs
774 * list. io jobs call wake when they complete and it all
775 * starts again.
776 */
777 spin_lock_irqsave(&kc->job_lock, flags);
778 list_splice_tail_init(&kc->callback_jobs, &kc->complete_jobs);
779 spin_unlock_irqrestore(&kc->job_lock, flags);
780
781 blk_start_plug(&plug);
782 process_jobs(&kc->complete_jobs, kc, run_complete_job);
783 process_jobs(&kc->pages_jobs, kc, run_pages_job);
784 process_jobs(&kc->io_jobs, kc, run_io_job);
785 blk_finish_plug(&plug);
786 }
787
788 /*
789 * If we are copying a small region we just dispatch a single job
790 * to do the copy, otherwise the io has to be split up into many
791 * jobs.
792 */
dispatch_job(struct kcopyd_job * job)793 static void dispatch_job(struct kcopyd_job *job)
794 {
795 struct dm_kcopyd_client *kc = job->kc;
796 atomic_inc(&kc->nr_jobs);
797 if (unlikely(!job->source.count))
798 push(&kc->callback_jobs, job);
799 else if (job->pages == &zero_page_list)
800 push(&kc->io_jobs, job);
801 else
802 push(&kc->pages_jobs, job);
803 wake(kc);
804 }
805
segment_complete(int read_err,unsigned long write_err,void * context)806 static void segment_complete(int read_err, unsigned long write_err,
807 void *context)
808 {
809 /* FIXME: tidy this function */
810 sector_t progress = 0;
811 sector_t count = 0;
812 struct kcopyd_job *sub_job = (struct kcopyd_job *) context;
813 struct kcopyd_job *job = sub_job->master_job;
814 struct dm_kcopyd_client *kc = job->kc;
815
816 mutex_lock(&job->lock);
817
818 /* update the error */
819 if (read_err)
820 job->read_err = 1;
821
822 if (write_err)
823 job->write_err |= write_err;
824
825 /*
826 * Only dispatch more work if there hasn't been an error.
827 */
828 if ((!job->read_err && !job->write_err) ||
829 test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
830 /* get the next chunk of work */
831 progress = job->progress;
832 count = job->source.count - progress;
833 if (count) {
834 if (count > kc->sub_job_size)
835 count = kc->sub_job_size;
836
837 job->progress += count;
838 }
839 }
840 mutex_unlock(&job->lock);
841
842 if (count) {
843 int i;
844
845 *sub_job = *job;
846 sub_job->write_offset = progress;
847 sub_job->source.sector += progress;
848 sub_job->source.count = count;
849
850 for (i = 0; i < job->num_dests; i++) {
851 sub_job->dests[i].sector += progress;
852 sub_job->dests[i].count = count;
853 }
854
855 sub_job->fn = segment_complete;
856 sub_job->context = sub_job;
857 dispatch_job(sub_job);
858
859 } else if (atomic_dec_and_test(&job->sub_jobs)) {
860
861 /*
862 * Queue the completion callback to the kcopyd thread.
863 *
864 * Some callers assume that all the completions are called
865 * from a single thread and don't race with each other.
866 *
867 * We must not call the callback directly here because this
868 * code may not be executing in the thread.
869 */
870 push(&kc->complete_jobs, job);
871 wake(kc);
872 }
873 }
874
875 /*
876 * Create some sub jobs to share the work between them.
877 */
split_job(struct kcopyd_job * master_job)878 static void split_job(struct kcopyd_job *master_job)
879 {
880 int i;
881
882 atomic_inc(&master_job->kc->nr_jobs);
883
884 atomic_set(&master_job->sub_jobs, SPLIT_COUNT);
885 for (i = 0; i < SPLIT_COUNT; i++) {
886 master_job[i + 1].master_job = master_job;
887 segment_complete(0, 0u, &master_job[i + 1]);
888 }
889 }
890
dm_kcopyd_copy(struct dm_kcopyd_client * kc,struct dm_io_region * from,unsigned int num_dests,struct dm_io_region * dests,unsigned int flags,dm_kcopyd_notify_fn fn,void * context)891 void dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from,
892 unsigned int num_dests, struct dm_io_region *dests,
893 unsigned int flags, dm_kcopyd_notify_fn fn, void *context)
894 {
895 struct kcopyd_job *job;
896 int i;
897
898 /*
899 * Allocate an array of jobs consisting of one master job
900 * followed by SPLIT_COUNT sub jobs.
901 */
902 job = mempool_alloc(&kc->job_pool, GFP_NOIO);
903 mutex_init(&job->lock);
904
905 /*
906 * set up for the read.
907 */
908 job->kc = kc;
909 job->flags = flags;
910 job->read_err = 0;
911 job->write_err = 0;
912
913 job->num_dests = num_dests;
914 memcpy(&job->dests, dests, sizeof(*dests) * num_dests);
915
916 /*
917 * If one of the destination is a host-managed zoned block device,
918 * we need to write sequentially. If one of the destination is a
919 * host-aware device, then leave it to the caller to choose what to do.
920 */
921 if (!test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags)) {
922 for (i = 0; i < job->num_dests; i++) {
923 if (bdev_zoned_model(dests[i].bdev) == BLK_ZONED_HM) {
924 set_bit(DM_KCOPYD_WRITE_SEQ, &job->flags);
925 break;
926 }
927 }
928 }
929
930 /*
931 * If we need to write sequentially, errors cannot be ignored.
932 */
933 if (test_bit(DM_KCOPYD_WRITE_SEQ, &job->flags) &&
934 test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags))
935 clear_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags);
936
937 if (from) {
938 job->source = *from;
939 job->pages = NULL;
940 job->rw = READ;
941 } else {
942 memset(&job->source, 0, sizeof job->source);
943 job->source.count = job->dests[0].count;
944 job->pages = &zero_page_list;
945
946 /*
947 * Use WRITE ZEROES to optimize zeroing if all dests support it.
948 */
949 job->rw = REQ_OP_WRITE_ZEROES;
950 for (i = 0; i < job->num_dests; i++)
951 if (!bdev_write_zeroes_sectors(job->dests[i].bdev)) {
952 job->rw = WRITE;
953 break;
954 }
955 }
956
957 job->fn = fn;
958 job->context = context;
959 job->master_job = job;
960 job->write_offset = 0;
961
962 if (job->source.count <= kc->sub_job_size)
963 dispatch_job(job);
964 else {
965 job->progress = 0;
966 split_job(job);
967 }
968 }
969 EXPORT_SYMBOL(dm_kcopyd_copy);
970
dm_kcopyd_zero(struct dm_kcopyd_client * kc,unsigned num_dests,struct dm_io_region * dests,unsigned flags,dm_kcopyd_notify_fn fn,void * context)971 void dm_kcopyd_zero(struct dm_kcopyd_client *kc,
972 unsigned num_dests, struct dm_io_region *dests,
973 unsigned flags, dm_kcopyd_notify_fn fn, void *context)
974 {
975 dm_kcopyd_copy(kc, NULL, num_dests, dests, flags, fn, context);
976 }
977 EXPORT_SYMBOL(dm_kcopyd_zero);
978
dm_kcopyd_prepare_callback(struct dm_kcopyd_client * kc,dm_kcopyd_notify_fn fn,void * context)979 void *dm_kcopyd_prepare_callback(struct dm_kcopyd_client *kc,
980 dm_kcopyd_notify_fn fn, void *context)
981 {
982 struct kcopyd_job *job;
983
984 job = mempool_alloc(&kc->job_pool, GFP_NOIO);
985
986 memset(job, 0, sizeof(struct kcopyd_job));
987 job->kc = kc;
988 job->fn = fn;
989 job->context = context;
990 job->master_job = job;
991
992 atomic_inc(&kc->nr_jobs);
993
994 return job;
995 }
996 EXPORT_SYMBOL(dm_kcopyd_prepare_callback);
997
dm_kcopyd_do_callback(void * j,int read_err,unsigned long write_err)998 void dm_kcopyd_do_callback(void *j, int read_err, unsigned long write_err)
999 {
1000 struct kcopyd_job *job = j;
1001 struct dm_kcopyd_client *kc = job->kc;
1002
1003 job->read_err = read_err;
1004 job->write_err = write_err;
1005
1006 push(&kc->callback_jobs, job);
1007 wake(kc);
1008 }
1009 EXPORT_SYMBOL(dm_kcopyd_do_callback);
1010
1011 /*
1012 * Cancels a kcopyd job, eg. someone might be deactivating a
1013 * mirror.
1014 */
1015 #if 0
1016 int kcopyd_cancel(struct kcopyd_job *job, int block)
1017 {
1018 /* FIXME: finish */
1019 return -1;
1020 }
1021 #endif /* 0 */
1022
1023 /*-----------------------------------------------------------------
1024 * Client setup
1025 *---------------------------------------------------------------*/
dm_kcopyd_client_create(struct dm_kcopyd_throttle * throttle)1026 struct dm_kcopyd_client *dm_kcopyd_client_create(struct dm_kcopyd_throttle *throttle)
1027 {
1028 int r;
1029 unsigned reserve_pages;
1030 struct dm_kcopyd_client *kc;
1031
1032 kc = kzalloc(sizeof(*kc), GFP_KERNEL);
1033 if (!kc)
1034 return ERR_PTR(-ENOMEM);
1035
1036 spin_lock_init(&kc->job_lock);
1037 INIT_LIST_HEAD(&kc->callback_jobs);
1038 INIT_LIST_HEAD(&kc->complete_jobs);
1039 INIT_LIST_HEAD(&kc->io_jobs);
1040 INIT_LIST_HEAD(&kc->pages_jobs);
1041 kc->throttle = throttle;
1042
1043 r = mempool_init_slab_pool(&kc->job_pool, MIN_JOBS, _job_cache);
1044 if (r)
1045 goto bad_slab;
1046
1047 INIT_WORK(&kc->kcopyd_work, do_work);
1048 kc->kcopyd_wq = alloc_workqueue("kcopyd", WQ_MEM_RECLAIM, 0);
1049 if (!kc->kcopyd_wq) {
1050 r = -ENOMEM;
1051 goto bad_workqueue;
1052 }
1053
1054 kc->sub_job_size = dm_get_kcopyd_subjob_size();
1055 reserve_pages = DIV_ROUND_UP(kc->sub_job_size << SECTOR_SHIFT, PAGE_SIZE);
1056
1057 kc->pages = NULL;
1058 kc->nr_reserved_pages = kc->nr_free_pages = 0;
1059 r = client_reserve_pages(kc, reserve_pages);
1060 if (r)
1061 goto bad_client_pages;
1062
1063 kc->io_client = dm_io_client_create();
1064 if (IS_ERR(kc->io_client)) {
1065 r = PTR_ERR(kc->io_client);
1066 goto bad_io_client;
1067 }
1068
1069 init_waitqueue_head(&kc->destroyq);
1070 atomic_set(&kc->nr_jobs, 0);
1071
1072 return kc;
1073
1074 bad_io_client:
1075 client_free_pages(kc);
1076 bad_client_pages:
1077 destroy_workqueue(kc->kcopyd_wq);
1078 bad_workqueue:
1079 mempool_exit(&kc->job_pool);
1080 bad_slab:
1081 kfree(kc);
1082
1083 return ERR_PTR(r);
1084 }
1085 EXPORT_SYMBOL(dm_kcopyd_client_create);
1086
dm_kcopyd_client_destroy(struct dm_kcopyd_client * kc)1087 void dm_kcopyd_client_destroy(struct dm_kcopyd_client *kc)
1088 {
1089 /* Wait for completion of all jobs submitted by this client. */
1090 wait_event(kc->destroyq, !atomic_read(&kc->nr_jobs));
1091
1092 BUG_ON(!list_empty(&kc->callback_jobs));
1093 BUG_ON(!list_empty(&kc->complete_jobs));
1094 BUG_ON(!list_empty(&kc->io_jobs));
1095 BUG_ON(!list_empty(&kc->pages_jobs));
1096 destroy_workqueue(kc->kcopyd_wq);
1097 dm_io_client_destroy(kc->io_client);
1098 client_free_pages(kc);
1099 mempool_exit(&kc->job_pool);
1100 kfree(kc);
1101 }
1102 EXPORT_SYMBOL(dm_kcopyd_client_destroy);
1103