1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
4 *
5 * Interrupt architecture for the GIC:
6 *
7 * o There is one Interrupt Distributor, which receives interrupts
8 * from system devices and sends them to the Interrupt Controllers.
9 *
10 * o There is one CPU Interface per CPU, which sends interrupts sent
11 * by the Distributor, and interrupts generated locally, to the
12 * associated CPU. The base address of the CPU interface is usually
13 * aliased so that the same address points to different chips depending
14 * on the CPU it is accessed from.
15 *
16 * Note that IRQs 0-31 are special - they are local to each CPU.
17 * As such, the enable set/clear, pending set/clear and active bit
18 * registers are banked per-cpu for these sources.
19 */
20 #include <linux/init.h>
21 #include <linux/kernel.h>
22 #include <linux/err.h>
23 #include <linux/module.h>
24 #include <linux/list.h>
25 #include <linux/smp.h>
26 #include <linux/cpu.h>
27 #include <linux/cpu_pm.h>
28 #include <linux/cpumask.h>
29 #include <linux/io.h>
30 #include <linux/of.h>
31 #include <linux/of_address.h>
32 #include <linux/of_irq.h>
33 #include <linux/acpi.h>
34 #include <linux/irqdomain.h>
35 #include <linux/interrupt.h>
36 #include <linux/percpu.h>
37 #include <linux/slab.h>
38 #include <linux/irqchip.h>
39 #include <linux/irqchip/chained_irq.h>
40 #include <linux/irqchip/arm-gic.h>
41
42 #include <asm/cputype.h>
43 #include <asm/irq.h>
44 #include <asm/exception.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47
48 #include "irq-gic-common.h"
49
50 #ifdef CONFIG_ARM64
51 #include <asm/cpufeature.h>
52
gic_check_cpu_features(void)53 static void gic_check_cpu_features(void)
54 {
55 WARN_TAINT_ONCE(this_cpu_has_cap(ARM64_HAS_SYSREG_GIC_CPUIF),
56 TAINT_CPU_OUT_OF_SPEC,
57 "GICv3 system registers enabled, broken firmware!\n");
58 }
59 #else
60 #define gic_check_cpu_features() do { } while(0)
61 #endif
62
63 union gic_base {
64 void __iomem *common_base;
65 void __percpu * __iomem *percpu_base;
66 };
67
68 struct gic_chip_data {
69 struct irq_chip chip;
70 union gic_base dist_base;
71 union gic_base cpu_base;
72 void __iomem *raw_dist_base;
73 void __iomem *raw_cpu_base;
74 u32 percpu_offset;
75 #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM)
76 u32 saved_spi_enable[DIV_ROUND_UP(1020, 32)];
77 u32 saved_spi_active[DIV_ROUND_UP(1020, 32)];
78 u32 saved_spi_conf[DIV_ROUND_UP(1020, 16)];
79 u32 saved_spi_target[DIV_ROUND_UP(1020, 4)];
80 u32 __percpu *saved_ppi_enable;
81 u32 __percpu *saved_ppi_active;
82 u32 __percpu *saved_ppi_conf;
83 #endif
84 struct irq_domain *domain;
85 unsigned int gic_irqs;
86 };
87
88 #ifdef CONFIG_BL_SWITCHER
89
90 static DEFINE_RAW_SPINLOCK(cpu_map_lock);
91
92 #define gic_lock_irqsave(f) \
93 raw_spin_lock_irqsave(&cpu_map_lock, (f))
94 #define gic_unlock_irqrestore(f) \
95 raw_spin_unlock_irqrestore(&cpu_map_lock, (f))
96
97 #define gic_lock() raw_spin_lock(&cpu_map_lock)
98 #define gic_unlock() raw_spin_unlock(&cpu_map_lock)
99
100 #else
101
102 #define gic_lock_irqsave(f) do { (void)(f); } while(0)
103 #define gic_unlock_irqrestore(f) do { (void)(f); } while(0)
104
105 #define gic_lock() do { } while(0)
106 #define gic_unlock() do { } while(0)
107
108 #endif
109
110 static DEFINE_STATIC_KEY_FALSE(needs_rmw_access);
111
112 /*
113 * The GIC mapping of CPU interfaces does not necessarily match
114 * the logical CPU numbering. Let's use a mapping as returned
115 * by the GIC itself.
116 */
117 #define NR_GIC_CPU_IF 8
118 static u8 gic_cpu_map[NR_GIC_CPU_IF] __read_mostly;
119
120 static DEFINE_STATIC_KEY_TRUE(supports_deactivate_key);
121
122 static struct gic_chip_data gic_data[CONFIG_ARM_GIC_MAX_NR] __read_mostly;
123
124 static struct gic_kvm_info gic_v2_kvm_info;
125
126 static DEFINE_PER_CPU(u32, sgi_intid);
127
128 #ifdef CONFIG_GIC_NON_BANKED
129 static DEFINE_STATIC_KEY_FALSE(frankengic_key);
130
enable_frankengic(void)131 static void enable_frankengic(void)
132 {
133 static_branch_enable(&frankengic_key);
134 }
135
__get_base(union gic_base * base)136 static inline void __iomem *__get_base(union gic_base *base)
137 {
138 if (static_branch_unlikely(&frankengic_key))
139 return raw_cpu_read(*base->percpu_base);
140
141 return base->common_base;
142 }
143
144 #define gic_data_dist_base(d) __get_base(&(d)->dist_base)
145 #define gic_data_cpu_base(d) __get_base(&(d)->cpu_base)
146 #else
147 #define gic_data_dist_base(d) ((d)->dist_base.common_base)
148 #define gic_data_cpu_base(d) ((d)->cpu_base.common_base)
149 #define enable_frankengic() do { } while(0)
150 #endif
151
gic_dist_base(struct irq_data * d)152 static inline void __iomem *gic_dist_base(struct irq_data *d)
153 {
154 struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
155 return gic_data_dist_base(gic_data);
156 }
157
gic_cpu_base(struct irq_data * d)158 static inline void __iomem *gic_cpu_base(struct irq_data *d)
159 {
160 struct gic_chip_data *gic_data = irq_data_get_irq_chip_data(d);
161 return gic_data_cpu_base(gic_data);
162 }
163
gic_irq(struct irq_data * d)164 static inline unsigned int gic_irq(struct irq_data *d)
165 {
166 return d->hwirq;
167 }
168
cascading_gic_irq(struct irq_data * d)169 static inline bool cascading_gic_irq(struct irq_data *d)
170 {
171 void *data = irq_data_get_irq_handler_data(d);
172
173 /*
174 * If handler_data is set, this is a cascading interrupt, and
175 * it cannot possibly be forwarded.
176 */
177 return data != NULL;
178 }
179
180 /*
181 * Routines to acknowledge, disable and enable interrupts
182 */
gic_poke_irq(struct irq_data * d,u32 offset)183 static void gic_poke_irq(struct irq_data *d, u32 offset)
184 {
185 u32 mask = 1 << (gic_irq(d) % 32);
186 writel_relaxed(mask, gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4);
187 }
188
gic_peek_irq(struct irq_data * d,u32 offset)189 static int gic_peek_irq(struct irq_data *d, u32 offset)
190 {
191 u32 mask = 1 << (gic_irq(d) % 32);
192 return !!(readl_relaxed(gic_dist_base(d) + offset + (gic_irq(d) / 32) * 4) & mask);
193 }
194
gic_mask_irq(struct irq_data * d)195 static void gic_mask_irq(struct irq_data *d)
196 {
197 gic_poke_irq(d, GIC_DIST_ENABLE_CLEAR);
198 }
199
gic_eoimode1_mask_irq(struct irq_data * d)200 static void gic_eoimode1_mask_irq(struct irq_data *d)
201 {
202 gic_mask_irq(d);
203 /*
204 * When masking a forwarded interrupt, make sure it is
205 * deactivated as well.
206 *
207 * This ensures that an interrupt that is getting
208 * disabled/masked will not get "stuck", because there is
209 * noone to deactivate it (guest is being terminated).
210 */
211 if (irqd_is_forwarded_to_vcpu(d))
212 gic_poke_irq(d, GIC_DIST_ACTIVE_CLEAR);
213 }
214
gic_unmask_irq(struct irq_data * d)215 static void gic_unmask_irq(struct irq_data *d)
216 {
217 gic_poke_irq(d, GIC_DIST_ENABLE_SET);
218 }
219
gic_eoi_irq(struct irq_data * d)220 static void gic_eoi_irq(struct irq_data *d)
221 {
222 u32 hwirq = gic_irq(d);
223
224 if (hwirq < 16)
225 hwirq = this_cpu_read(sgi_intid);
226
227 writel_relaxed(hwirq, gic_cpu_base(d) + GIC_CPU_EOI);
228 }
229
gic_eoimode1_eoi_irq(struct irq_data * d)230 static void gic_eoimode1_eoi_irq(struct irq_data *d)
231 {
232 u32 hwirq = gic_irq(d);
233
234 /* Do not deactivate an IRQ forwarded to a vcpu. */
235 if (irqd_is_forwarded_to_vcpu(d))
236 return;
237
238 if (hwirq < 16)
239 hwirq = this_cpu_read(sgi_intid);
240
241 writel_relaxed(hwirq, gic_cpu_base(d) + GIC_CPU_DEACTIVATE);
242 }
243
gic_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool val)244 static int gic_irq_set_irqchip_state(struct irq_data *d,
245 enum irqchip_irq_state which, bool val)
246 {
247 u32 reg;
248
249 switch (which) {
250 case IRQCHIP_STATE_PENDING:
251 reg = val ? GIC_DIST_PENDING_SET : GIC_DIST_PENDING_CLEAR;
252 break;
253
254 case IRQCHIP_STATE_ACTIVE:
255 reg = val ? GIC_DIST_ACTIVE_SET : GIC_DIST_ACTIVE_CLEAR;
256 break;
257
258 case IRQCHIP_STATE_MASKED:
259 reg = val ? GIC_DIST_ENABLE_CLEAR : GIC_DIST_ENABLE_SET;
260 break;
261
262 default:
263 return -EINVAL;
264 }
265
266 gic_poke_irq(d, reg);
267 return 0;
268 }
269
gic_irq_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)270 static int gic_irq_get_irqchip_state(struct irq_data *d,
271 enum irqchip_irq_state which, bool *val)
272 {
273 switch (which) {
274 case IRQCHIP_STATE_PENDING:
275 *val = gic_peek_irq(d, GIC_DIST_PENDING_SET);
276 break;
277
278 case IRQCHIP_STATE_ACTIVE:
279 *val = gic_peek_irq(d, GIC_DIST_ACTIVE_SET);
280 break;
281
282 case IRQCHIP_STATE_MASKED:
283 *val = !gic_peek_irq(d, GIC_DIST_ENABLE_SET);
284 break;
285
286 default:
287 return -EINVAL;
288 }
289
290 return 0;
291 }
292
gic_set_type(struct irq_data * d,unsigned int type)293 static int gic_set_type(struct irq_data *d, unsigned int type)
294 {
295 void __iomem *base = gic_dist_base(d);
296 unsigned int gicirq = gic_irq(d);
297 int ret;
298
299 /* Interrupt configuration for SGIs can't be changed */
300 if (gicirq < 16)
301 return type != IRQ_TYPE_EDGE_RISING ? -EINVAL : 0;
302
303 /* SPIs have restrictions on the supported types */
304 if (gicirq >= 32 && type != IRQ_TYPE_LEVEL_HIGH &&
305 type != IRQ_TYPE_EDGE_RISING)
306 return -EINVAL;
307
308 ret = gic_configure_irq(gicirq, type, base + GIC_DIST_CONFIG, NULL);
309 if (ret && gicirq < 32) {
310 /* Misconfigured PPIs are usually not fatal */
311 pr_warn("GIC: PPI%d is secure or misconfigured\n", gicirq - 16);
312 ret = 0;
313 }
314
315 return ret;
316 }
317
gic_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu)318 static int gic_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu)
319 {
320 /* Only interrupts on the primary GIC can be forwarded to a vcpu. */
321 if (cascading_gic_irq(d) || gic_irq(d) < 16)
322 return -EINVAL;
323
324 if (vcpu)
325 irqd_set_forwarded_to_vcpu(d);
326 else
327 irqd_clr_forwarded_to_vcpu(d);
328 return 0;
329 }
330
gic_retrigger(struct irq_data * data)331 static int gic_retrigger(struct irq_data *data)
332 {
333 return !gic_irq_set_irqchip_state(data, IRQCHIP_STATE_PENDING, true);
334 }
335
gic_handle_irq(struct pt_regs * regs)336 static void __exception_irq_entry gic_handle_irq(struct pt_regs *regs)
337 {
338 u32 irqstat, irqnr;
339 struct gic_chip_data *gic = &gic_data[0];
340 void __iomem *cpu_base = gic_data_cpu_base(gic);
341
342 do {
343 #ifdef CONFIG_FIQ_GLUE
344 irqstat = readl_relaxed(cpu_base + GIC_CPU_ALIAS_INTACK);
345 #else
346 irqstat = readl_relaxed(cpu_base + GIC_CPU_INTACK);
347 #endif
348 irqnr = irqstat & GICC_IAR_INT_ID_MASK;
349
350 if (unlikely(irqnr >= 1020))
351 break;
352
353 if (static_branch_likely(&supports_deactivate_key))
354 writel_relaxed(irqstat, cpu_base + GIC_CPU_EOI);
355 isb();
356
357 /*
358 * Ensure any shared data written by the CPU sending the IPI
359 * is read after we've read the ACK register on the GIC.
360 *
361 * Pairs with the write barrier in gic_ipi_send_mask
362 */
363 if (irqnr <= 15) {
364 smp_rmb();
365
366 /*
367 * The GIC encodes the source CPU in GICC_IAR,
368 * leading to the deactivation to fail if not
369 * written back as is to GICC_EOI. Stash the INTID
370 * away for gic_eoi_irq() to write back. This only
371 * works because we don't nest SGIs...
372 */
373 this_cpu_write(sgi_intid, irqstat);
374 }
375
376 handle_domain_irq(gic->domain, irqnr, regs);
377 } while (1);
378 }
379
gic_handle_cascade_irq(struct irq_desc * desc)380 static void gic_handle_cascade_irq(struct irq_desc *desc)
381 {
382 struct gic_chip_data *chip_data = irq_desc_get_handler_data(desc);
383 struct irq_chip *chip = irq_desc_get_chip(desc);
384 unsigned int cascade_irq, gic_irq;
385 unsigned long status;
386
387 chained_irq_enter(chip, desc);
388 #ifdef CONFIG_FIQ_GLUE
389 status = readl_relaxed(gic_data_cpu_base(chip_data) + GIC_CPU_ALIAS_INTACK);
390 #else
391 status = readl_relaxed(gic_data_cpu_base(chip_data) + GIC_CPU_INTACK);
392 #endif
393 gic_irq = (status & GICC_IAR_INT_ID_MASK);
394 if (gic_irq == GICC_INT_SPURIOUS)
395 goto out;
396
397 cascade_irq = irq_find_mapping(chip_data->domain, gic_irq);
398 if (unlikely(gic_irq < 32 || gic_irq > 1020)) {
399 handle_bad_irq(desc);
400 } else {
401 isb();
402 generic_handle_irq(cascade_irq);
403 }
404
405 out:
406 chained_irq_exit(chip, desc);
407 }
408
409 static const struct irq_chip gic_chip = {
410 .irq_mask = gic_mask_irq,
411 .irq_unmask = gic_unmask_irq,
412 .irq_eoi = gic_eoi_irq,
413 .irq_set_type = gic_set_type,
414 .irq_retrigger = gic_retrigger,
415 .irq_get_irqchip_state = gic_irq_get_irqchip_state,
416 .irq_set_irqchip_state = gic_irq_set_irqchip_state,
417 .flags = IRQCHIP_SET_TYPE_MASKED |
418 IRQCHIP_SKIP_SET_WAKE |
419 IRQCHIP_MASK_ON_SUSPEND,
420 };
421
gic_cascade_irq(unsigned int gic_nr,unsigned int irq)422 void __init gic_cascade_irq(unsigned int gic_nr, unsigned int irq)
423 {
424 BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR);
425 irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq,
426 &gic_data[gic_nr]);
427 }
428
gic_get_cpumask(struct gic_chip_data * gic)429 static u8 gic_get_cpumask(struct gic_chip_data *gic)
430 {
431 void __iomem *base = gic_data_dist_base(gic);
432 u32 mask, i;
433
434 for (i = mask = 0; i < 32; i += 4) {
435 mask = readl_relaxed(base + GIC_DIST_TARGET + i);
436 mask |= mask >> 16;
437 mask |= mask >> 8;
438 if (mask)
439 break;
440 }
441
442 if (!mask && num_possible_cpus() > 1)
443 pr_crit("GIC CPU mask not found - kernel will fail to boot.\n");
444
445 return mask;
446 }
447
gic_check_gicv2(void __iomem * base)448 static bool gic_check_gicv2(void __iomem *base)
449 {
450 u32 val = readl_relaxed(base + GIC_CPU_IDENT);
451 return (val & 0xff0fff) == 0x02043B;
452 }
453
gic_cpu_if_up(struct gic_chip_data * gic)454 static void gic_cpu_if_up(struct gic_chip_data *gic)
455 {
456 void __iomem *cpu_base = gic_data_cpu_base(gic);
457 u32 bypass = 0;
458 u32 mode = 0;
459 int i;
460
461 if (gic == &gic_data[0] && static_branch_likely(&supports_deactivate_key))
462 mode = GIC_CPU_CTRL_EOImodeNS;
463
464 if (gic_check_gicv2(cpu_base))
465 for (i = 0; i < 4; i++)
466 writel_relaxed(0, cpu_base + GIC_CPU_ACTIVEPRIO + i * 4);
467
468 /*
469 * Preserve bypass disable bits to be written back later
470 */
471 bypass = readl(cpu_base + GIC_CPU_CTRL);
472 bypass &= GICC_DIS_BYPASS_MASK;
473
474 #ifdef CONFIG_FIQ_GLUE
475 writel_relaxed(0x0f, cpu_base + GIC_CPU_CTRL);
476 #else
477 writel_relaxed(bypass | mode | GICC_ENABLE, cpu_base + GIC_CPU_CTRL);
478 #endif
479 }
480
481
gic_dist_init(struct gic_chip_data * gic)482 static void gic_dist_init(struct gic_chip_data *gic)
483 {
484 unsigned int i;
485 u32 cpumask;
486 unsigned int gic_irqs = gic->gic_irqs;
487 void __iomem *base = gic_data_dist_base(gic);
488
489 writel_relaxed(GICD_DISABLE, base + GIC_DIST_CTRL);
490
491 /*
492 * Set all global interrupts to this CPU only.
493 */
494 cpumask = gic_get_cpumask(gic);
495 cpumask |= cpumask << 8;
496 cpumask |= cpumask << 16;
497 for (i = 32; i < gic_irqs; i += 4)
498 writel_relaxed(cpumask, base + GIC_DIST_TARGET + i * 4 / 4);
499
500 gic_dist_config(base, gic_irqs, NULL);
501
502 #ifdef CONFIG_FIQ_GLUE
503 /* set all the interrupt to non-secure state */
504 for (i = 0; i < gic_irqs; i += 32)
505 writel_relaxed(0xffffffff, base + GIC_DIST_IGROUP + i * 4 / 32);
506 dsb(sy);
507 writel_relaxed(3, base + GIC_DIST_CTRL);
508 #else
509 writel_relaxed(GICD_ENABLE, base + GIC_DIST_CTRL);
510 #endif
511 }
512
gic_cpu_init(struct gic_chip_data * gic)513 static int gic_cpu_init(struct gic_chip_data *gic)
514 {
515 void __iomem *dist_base = gic_data_dist_base(gic);
516 void __iomem *base = gic_data_cpu_base(gic);
517 unsigned int cpu_mask, cpu = smp_processor_id();
518 int i;
519
520 /*
521 * Setting up the CPU map is only relevant for the primary GIC
522 * because any nested/secondary GICs do not directly interface
523 * with the CPU(s).
524 */
525 if (gic == &gic_data[0]) {
526 /*
527 * Get what the GIC says our CPU mask is.
528 */
529 if (WARN_ON(cpu >= NR_GIC_CPU_IF))
530 return -EINVAL;
531
532 gic_check_cpu_features();
533 cpu_mask = gic_get_cpumask(gic);
534 gic_cpu_map[cpu] = cpu_mask;
535
536 /*
537 * Clear our mask from the other map entries in case they're
538 * still undefined.
539 */
540 for (i = 0; i < NR_GIC_CPU_IF; i++)
541 if (i != cpu)
542 gic_cpu_map[i] &= ~cpu_mask;
543 }
544
545 gic_cpu_config(dist_base, 32, NULL);
546
547 writel_relaxed(GICC_INT_PRI_THRESHOLD, base + GIC_CPU_PRIMASK);
548 gic_cpu_if_up(gic);
549
550 return 0;
551 }
552
gic_cpu_if_down(unsigned int gic_nr)553 int gic_cpu_if_down(unsigned int gic_nr)
554 {
555 void __iomem *cpu_base;
556 u32 val = 0;
557
558 if (gic_nr >= CONFIG_ARM_GIC_MAX_NR)
559 return -EINVAL;
560
561 cpu_base = gic_data_cpu_base(&gic_data[gic_nr]);
562 val = readl(cpu_base + GIC_CPU_CTRL);
563 val &= ~GICC_ENABLE;
564 writel_relaxed(val, cpu_base + GIC_CPU_CTRL);
565
566 return 0;
567 }
568
569 #if defined(CONFIG_CPU_PM) || defined(CONFIG_ARM_GIC_PM)
570 /*
571 * Saves the GIC distributor registers during suspend or idle. Must be called
572 * with interrupts disabled but before powering down the GIC. After calling
573 * this function, no interrupts will be delivered by the GIC, and another
574 * platform-specific wakeup source must be enabled.
575 */
gic_dist_save(struct gic_chip_data * gic)576 void gic_dist_save(struct gic_chip_data *gic)
577 {
578 unsigned int gic_irqs;
579 void __iomem *dist_base;
580 int i;
581
582 if (WARN_ON(!gic))
583 return;
584
585 gic_irqs = gic->gic_irqs;
586 dist_base = gic_data_dist_base(gic);
587
588 if (!dist_base)
589 return;
590
591 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
592 gic->saved_spi_conf[i] =
593 readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
594
595 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
596 gic->saved_spi_target[i] =
597 readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
598
599 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
600 gic->saved_spi_enable[i] =
601 readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
602
603 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++)
604 gic->saved_spi_active[i] =
605 readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4);
606 }
607
608 /*
609 * Restores the GIC distributor registers during resume or when coming out of
610 * idle. Must be called before enabling interrupts. If a level interrupt
611 * that occurred while the GIC was suspended is still present, it will be
612 * handled normally, but any edge interrupts that occurred will not be seen by
613 * the GIC and need to be handled by the platform-specific wakeup source.
614 */
gic_dist_restore(struct gic_chip_data * gic)615 void gic_dist_restore(struct gic_chip_data *gic)
616 {
617 unsigned int gic_irqs;
618 unsigned int i;
619 void __iomem *dist_base;
620
621 if (WARN_ON(!gic))
622 return;
623
624 gic_irqs = gic->gic_irqs;
625 dist_base = gic_data_dist_base(gic);
626
627 if (!dist_base)
628 return;
629
630 writel_relaxed(GICD_DISABLE, dist_base + GIC_DIST_CTRL);
631
632 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 16); i++)
633 writel_relaxed(gic->saved_spi_conf[i],
634 dist_base + GIC_DIST_CONFIG + i * 4);
635
636 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
637 writel_relaxed(GICD_INT_DEF_PRI_X4,
638 dist_base + GIC_DIST_PRI + i * 4);
639
640 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 4); i++)
641 writel_relaxed(gic->saved_spi_target[i],
642 dist_base + GIC_DIST_TARGET + i * 4);
643
644 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) {
645 writel_relaxed(GICD_INT_EN_CLR_X32,
646 dist_base + GIC_DIST_ENABLE_CLEAR + i * 4);
647 writel_relaxed(gic->saved_spi_enable[i],
648 dist_base + GIC_DIST_ENABLE_SET + i * 4);
649 }
650
651 for (i = 0; i < DIV_ROUND_UP(gic_irqs, 32); i++) {
652 writel_relaxed(GICD_INT_EN_CLR_X32,
653 dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4);
654 writel_relaxed(gic->saved_spi_active[i],
655 dist_base + GIC_DIST_ACTIVE_SET + i * 4);
656 }
657
658 #ifdef CONFIG_FIQ_GLUE
659 writel_relaxed(3, dist_base + GIC_DIST_CTRL);
660 #else
661 writel_relaxed(GICD_ENABLE, dist_base + GIC_DIST_CTRL);
662 #endif
663 }
664
gic_cpu_save(struct gic_chip_data * gic)665 void gic_cpu_save(struct gic_chip_data *gic)
666 {
667 int i;
668 u32 *ptr;
669 void __iomem *dist_base;
670 void __iomem *cpu_base;
671
672 if (WARN_ON(!gic))
673 return;
674
675 dist_base = gic_data_dist_base(gic);
676 cpu_base = gic_data_cpu_base(gic);
677
678 if (!dist_base || !cpu_base)
679 return;
680
681 ptr = raw_cpu_ptr(gic->saved_ppi_enable);
682 for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
683 ptr[i] = readl_relaxed(dist_base + GIC_DIST_ENABLE_SET + i * 4);
684
685 ptr = raw_cpu_ptr(gic->saved_ppi_active);
686 for (i = 0; i < DIV_ROUND_UP(32, 32); i++)
687 ptr[i] = readl_relaxed(dist_base + GIC_DIST_ACTIVE_SET + i * 4);
688
689 ptr = raw_cpu_ptr(gic->saved_ppi_conf);
690 for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
691 ptr[i] = readl_relaxed(dist_base + GIC_DIST_CONFIG + i * 4);
692
693 }
694
gic_cpu_restore(struct gic_chip_data * gic)695 void gic_cpu_restore(struct gic_chip_data *gic)
696 {
697 int i;
698 u32 *ptr;
699 void __iomem *dist_base;
700 void __iomem *cpu_base;
701
702 if (WARN_ON(!gic))
703 return;
704
705 dist_base = gic_data_dist_base(gic);
706 cpu_base = gic_data_cpu_base(gic);
707
708 if (!dist_base || !cpu_base)
709 return;
710
711 ptr = raw_cpu_ptr(gic->saved_ppi_enable);
712 for (i = 0; i < DIV_ROUND_UP(32, 32); i++) {
713 writel_relaxed(GICD_INT_EN_CLR_X32,
714 dist_base + GIC_DIST_ENABLE_CLEAR + i * 4);
715 writel_relaxed(ptr[i], dist_base + GIC_DIST_ENABLE_SET + i * 4);
716 }
717
718 ptr = raw_cpu_ptr(gic->saved_ppi_active);
719 for (i = 0; i < DIV_ROUND_UP(32, 32); i++) {
720 writel_relaxed(GICD_INT_EN_CLR_X32,
721 dist_base + GIC_DIST_ACTIVE_CLEAR + i * 4);
722 writel_relaxed(ptr[i], dist_base + GIC_DIST_ACTIVE_SET + i * 4);
723 }
724
725 ptr = raw_cpu_ptr(gic->saved_ppi_conf);
726 for (i = 0; i < DIV_ROUND_UP(32, 16); i++)
727 writel_relaxed(ptr[i], dist_base + GIC_DIST_CONFIG + i * 4);
728
729 for (i = 0; i < DIV_ROUND_UP(32, 4); i++)
730 writel_relaxed(GICD_INT_DEF_PRI_X4,
731 dist_base + GIC_DIST_PRI + i * 4);
732
733 writel_relaxed(GICC_INT_PRI_THRESHOLD, cpu_base + GIC_CPU_PRIMASK);
734 gic_cpu_if_up(gic);
735 }
736
gic_notifier(struct notifier_block * self,unsigned long cmd,void * v)737 static int gic_notifier(struct notifier_block *self, unsigned long cmd, void *v)
738 {
739 int i;
740
741 for (i = 0; i < CONFIG_ARM_GIC_MAX_NR; i++) {
742 switch (cmd) {
743 case CPU_PM_ENTER:
744 gic_cpu_save(&gic_data[i]);
745 break;
746 case CPU_PM_ENTER_FAILED:
747 case CPU_PM_EXIT:
748 gic_cpu_restore(&gic_data[i]);
749 break;
750 case CPU_CLUSTER_PM_ENTER:
751 gic_dist_save(&gic_data[i]);
752 break;
753 case CPU_CLUSTER_PM_ENTER_FAILED:
754 case CPU_CLUSTER_PM_EXIT:
755 gic_dist_restore(&gic_data[i]);
756 break;
757 }
758 }
759
760 return NOTIFY_OK;
761 }
762
763 static struct notifier_block gic_notifier_block = {
764 .notifier_call = gic_notifier,
765 };
766
gic_pm_init(struct gic_chip_data * gic)767 static int gic_pm_init(struct gic_chip_data *gic)
768 {
769 gic->saved_ppi_enable = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
770 sizeof(u32));
771 if (WARN_ON(!gic->saved_ppi_enable))
772 return -ENOMEM;
773
774 gic->saved_ppi_active = __alloc_percpu(DIV_ROUND_UP(32, 32) * 4,
775 sizeof(u32));
776 if (WARN_ON(!gic->saved_ppi_active))
777 goto free_ppi_enable;
778
779 gic->saved_ppi_conf = __alloc_percpu(DIV_ROUND_UP(32, 16) * 4,
780 sizeof(u32));
781 if (WARN_ON(!gic->saved_ppi_conf))
782 goto free_ppi_active;
783
784 if (gic == &gic_data[0])
785 cpu_pm_register_notifier(&gic_notifier_block);
786
787 return 0;
788
789 free_ppi_active:
790 free_percpu(gic->saved_ppi_active);
791 free_ppi_enable:
792 free_percpu(gic->saved_ppi_enable);
793
794 return -ENOMEM;
795 }
796 #else
gic_pm_init(struct gic_chip_data * gic)797 static int gic_pm_init(struct gic_chip_data *gic)
798 {
799 return 0;
800 }
801 #endif
802
803 #ifdef CONFIG_FIQ_GLUE
804 /*
805 * ICDISR each bit 0 -- Secure 1--Non-Secure
806 */
gic_set_irq_secure(struct irq_data * d)807 void gic_set_irq_secure(struct irq_data *d)
808 {
809 u32 mask = 0;
810 void __iomem *base = gic_dist_base(d);
811
812 base += GIC_DIST_IGROUP + ((gic_irq(d) / 32) * 4);
813 mask = readl_relaxed(base);
814 mask &= ~(1 << (gic_irq(d) % 32));
815 writel_relaxed(mask, base);
816 }
817
gic_set_irq_priority(struct irq_data * d,u8 pri)818 void gic_set_irq_priority(struct irq_data *d, u8 pri)
819 {
820 writeb_relaxed(pri, gic_dist_base(d) + GIC_DIST_PRI + gic_irq(d));
821 }
822 #endif
823
824 #ifdef CONFIG_SMP
rmw_writeb(u8 bval,void __iomem * addr)825 static void rmw_writeb(u8 bval, void __iomem *addr)
826 {
827 static DEFINE_RAW_SPINLOCK(rmw_lock);
828 unsigned long offset = (unsigned long)addr & 3UL;
829 unsigned long shift = offset * 8;
830 unsigned long flags;
831 u32 val;
832
833 raw_spin_lock_irqsave(&rmw_lock, flags);
834
835 addr -= offset;
836 val = readl_relaxed(addr);
837 val &= ~GENMASK(shift + 7, shift);
838 val |= bval << shift;
839 writel_relaxed(val, addr);
840
841 raw_spin_unlock_irqrestore(&rmw_lock, flags);
842 }
843
gic_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)844 static int gic_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
845 bool force)
846 {
847 void __iomem *reg = gic_dist_base(d) + GIC_DIST_TARGET + gic_irq(d);
848 unsigned int cpu;
849
850 if (!force)
851 cpu = cpumask_any_and(mask_val, cpu_online_mask);
852 else
853 cpu = cpumask_first(mask_val);
854
855 if (cpu >= NR_GIC_CPU_IF || cpu >= nr_cpu_ids)
856 return -EINVAL;
857
858 if (static_branch_unlikely(&needs_rmw_access))
859 rmw_writeb(gic_cpu_map[cpu], reg);
860 else
861 writeb_relaxed(gic_cpu_map[cpu], reg);
862 irq_data_update_effective_affinity(d, cpumask_of(cpu));
863
864 return IRQ_SET_MASK_OK_DONE;
865 }
866
gic_ipi_send_mask(struct irq_data * d,const struct cpumask * mask)867 static void gic_ipi_send_mask(struct irq_data *d, const struct cpumask *mask)
868 {
869 int cpu;
870 unsigned long flags, map = 0;
871
872 if (unlikely(nr_cpu_ids == 1)) {
873 /* Only one CPU? let's do a self-IPI... */
874 writel_relaxed(2 << 24 | d->hwirq,
875 gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
876 return;
877 }
878
879 gic_lock_irqsave(flags);
880
881 /* Convert our logical CPU mask into a physical one. */
882 for_each_cpu(cpu, mask)
883 map |= gic_cpu_map[cpu];
884
885 /*
886 * Ensure that stores to Normal memory are visible to the
887 * other CPUs before they observe us issuing the IPI.
888 */
889 dmb(ishst);
890
891 /* this always happens on GIC0 */
892 #ifdef CONFIG_FIQ_GLUE
893 /* enable non-secure SGI for GIC with security extensions */
894 writel_relaxed(map << 16 | d->hwirq | 0x8000,
895 gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
896 #else
897 writel_relaxed(map << 16 | d->hwirq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
898 #endif
899 gic_unlock_irqrestore(flags);
900 }
901
gic_starting_cpu(unsigned int cpu)902 static int gic_starting_cpu(unsigned int cpu)
903 {
904 gic_cpu_init(&gic_data[0]);
905 if (IS_ENABLED(CONFIG_FIQ_GLUE)) {
906 /* set SGI to none secure state */
907 writel_relaxed(0xffffffff, gic_data_dist_base(&gic_data[0]) + GIC_DIST_IGROUP);
908 writel_relaxed(0xf, gic_data_cpu_base(&gic_data[0]) + GIC_CPU_CTRL);
909 }
910 return 0;
911 }
912
gic_smp_init(void)913 static __init void gic_smp_init(void)
914 {
915 struct irq_fwspec sgi_fwspec = {
916 .fwnode = gic_data[0].domain->fwnode,
917 .param_count = 1,
918 };
919 int base_sgi;
920
921 cpuhp_setup_state_nocalls(CPUHP_AP_IRQ_GIC_STARTING,
922 "irqchip/arm/gic:starting",
923 gic_starting_cpu, NULL);
924
925 base_sgi = __irq_domain_alloc_irqs(gic_data[0].domain, -1, 8,
926 NUMA_NO_NODE, &sgi_fwspec,
927 false, NULL);
928 if (WARN_ON(base_sgi <= 0))
929 return;
930
931 set_smp_ipi_range(base_sgi, 8);
932 }
933 #else
934 #define gic_smp_init() do { } while(0)
935 #define gic_set_affinity NULL
936 #define gic_ipi_send_mask NULL
937 #endif
938
939 #ifdef CONFIG_BL_SWITCHER
940 /*
941 * gic_send_sgi - send a SGI directly to given CPU interface number
942 *
943 * cpu_id: the ID for the destination CPU interface
944 * irq: the IPI number to send a SGI for
945 */
gic_send_sgi(unsigned int cpu_id,unsigned int irq)946 void gic_send_sgi(unsigned int cpu_id, unsigned int irq)
947 {
948 BUG_ON(cpu_id >= NR_GIC_CPU_IF);
949 cpu_id = 1 << cpu_id;
950 /* this always happens on GIC0 */
951 writel_relaxed((cpu_id << 16) | irq, gic_data_dist_base(&gic_data[0]) + GIC_DIST_SOFTINT);
952 }
953
954 /*
955 * gic_get_cpu_id - get the CPU interface ID for the specified CPU
956 *
957 * @cpu: the logical CPU number to get the GIC ID for.
958 *
959 * Return the CPU interface ID for the given logical CPU number,
960 * or -1 if the CPU number is too large or the interface ID is
961 * unknown (more than one bit set).
962 */
gic_get_cpu_id(unsigned int cpu)963 int gic_get_cpu_id(unsigned int cpu)
964 {
965 unsigned int cpu_bit;
966
967 if (cpu >= NR_GIC_CPU_IF)
968 return -1;
969 cpu_bit = gic_cpu_map[cpu];
970 if (cpu_bit & (cpu_bit - 1))
971 return -1;
972 return __ffs(cpu_bit);
973 }
974
975 /*
976 * gic_migrate_target - migrate IRQs to another CPU interface
977 *
978 * @new_cpu_id: the CPU target ID to migrate IRQs to
979 *
980 * Migrate all peripheral interrupts with a target matching the current CPU
981 * to the interface corresponding to @new_cpu_id. The CPU interface mapping
982 * is also updated. Targets to other CPU interfaces are unchanged.
983 * This must be called with IRQs locally disabled.
984 */
gic_migrate_target(unsigned int new_cpu_id)985 void gic_migrate_target(unsigned int new_cpu_id)
986 {
987 unsigned int cur_cpu_id, gic_irqs, gic_nr = 0;
988 void __iomem *dist_base;
989 int i, ror_val, cpu = smp_processor_id();
990 u32 val, cur_target_mask, active_mask;
991
992 BUG_ON(gic_nr >= CONFIG_ARM_GIC_MAX_NR);
993
994 dist_base = gic_data_dist_base(&gic_data[gic_nr]);
995 if (!dist_base)
996 return;
997 gic_irqs = gic_data[gic_nr].gic_irqs;
998
999 cur_cpu_id = __ffs(gic_cpu_map[cpu]);
1000 cur_target_mask = 0x01010101 << cur_cpu_id;
1001 ror_val = (cur_cpu_id - new_cpu_id) & 31;
1002
1003 gic_lock();
1004
1005 /* Update the target interface for this logical CPU */
1006 gic_cpu_map[cpu] = 1 << new_cpu_id;
1007
1008 /*
1009 * Find all the peripheral interrupts targeting the current
1010 * CPU interface and migrate them to the new CPU interface.
1011 * We skip DIST_TARGET 0 to 7 as they are read-only.
1012 */
1013 for (i = 8; i < DIV_ROUND_UP(gic_irqs, 4); i++) {
1014 val = readl_relaxed(dist_base + GIC_DIST_TARGET + i * 4);
1015 active_mask = val & cur_target_mask;
1016 if (active_mask) {
1017 val &= ~active_mask;
1018 val |= ror32(active_mask, ror_val);
1019 writel_relaxed(val, dist_base + GIC_DIST_TARGET + i*4);
1020 }
1021 }
1022
1023 gic_unlock();
1024
1025 /*
1026 * Now let's migrate and clear any potential SGIs that might be
1027 * pending for us (cur_cpu_id). Since GIC_DIST_SGI_PENDING_SET
1028 * is a banked register, we can only forward the SGI using
1029 * GIC_DIST_SOFTINT. The original SGI source is lost but Linux
1030 * doesn't use that information anyway.
1031 *
1032 * For the same reason we do not adjust SGI source information
1033 * for previously sent SGIs by us to other CPUs either.
1034 */
1035 for (i = 0; i < 16; i += 4) {
1036 int j;
1037 val = readl_relaxed(dist_base + GIC_DIST_SGI_PENDING_SET + i);
1038 if (!val)
1039 continue;
1040 writel_relaxed(val, dist_base + GIC_DIST_SGI_PENDING_CLEAR + i);
1041 for (j = i; j < i + 4; j++) {
1042 if (val & 0xff)
1043 writel_relaxed((1 << (new_cpu_id + 16)) | j,
1044 dist_base + GIC_DIST_SOFTINT);
1045 val >>= 8;
1046 }
1047 }
1048 }
1049
1050 /*
1051 * gic_get_sgir_physaddr - get the physical address for the SGI register
1052 *
1053 * REturn the physical address of the SGI register to be used
1054 * by some early assembly code when the kernel is not yet available.
1055 */
1056 static unsigned long gic_dist_physaddr;
1057
gic_get_sgir_physaddr(void)1058 unsigned long gic_get_sgir_physaddr(void)
1059 {
1060 if (!gic_dist_physaddr)
1061 return 0;
1062 return gic_dist_physaddr + GIC_DIST_SOFTINT;
1063 }
1064
gic_init_physaddr(struct device_node * node)1065 static void __init gic_init_physaddr(struct device_node *node)
1066 {
1067 struct resource res;
1068 if (of_address_to_resource(node, 0, &res) == 0) {
1069 gic_dist_physaddr = res.start;
1070 pr_info("GIC physical location is %#lx\n", gic_dist_physaddr);
1071 }
1072 }
1073
1074 #else
1075 #define gic_init_physaddr(node) do { } while (0)
1076 #endif
1077
gic_irq_domain_map(struct irq_domain * d,unsigned int irq,irq_hw_number_t hw)1078 static int gic_irq_domain_map(struct irq_domain *d, unsigned int irq,
1079 irq_hw_number_t hw)
1080 {
1081 struct gic_chip_data *gic = d->host_data;
1082 struct irq_data *irqd = irq_desc_get_irq_data(irq_to_desc(irq));
1083
1084 switch (hw) {
1085 case 0 ... 15:
1086 irq_set_percpu_devid(irq);
1087 irq_domain_set_info(d, irq, hw, &gic->chip, d->host_data,
1088 handle_percpu_devid_fasteoi_ipi,
1089 NULL, NULL);
1090 break;
1091 case 16 ... 31:
1092 irq_set_percpu_devid(irq);
1093 irq_domain_set_info(d, irq, hw, &gic->chip, d->host_data,
1094 handle_percpu_devid_irq, NULL, NULL);
1095 break;
1096 default:
1097 irq_domain_set_info(d, irq, hw, &gic->chip, d->host_data,
1098 handle_fasteoi_irq, NULL, NULL);
1099 irq_set_probe(irq);
1100 irqd_set_single_target(irqd);
1101 break;
1102 }
1103
1104 /* Prevents SW retriggers which mess up the ACK/EOI ordering */
1105 irqd_set_handle_enforce_irqctx(irqd);
1106 return 0;
1107 }
1108
gic_irq_domain_unmap(struct irq_domain * d,unsigned int irq)1109 static void gic_irq_domain_unmap(struct irq_domain *d, unsigned int irq)
1110 {
1111 }
1112
gic_irq_domain_translate(struct irq_domain * d,struct irq_fwspec * fwspec,unsigned long * hwirq,unsigned int * type)1113 static int gic_irq_domain_translate(struct irq_domain *d,
1114 struct irq_fwspec *fwspec,
1115 unsigned long *hwirq,
1116 unsigned int *type)
1117 {
1118 if (fwspec->param_count == 1 && fwspec->param[0] < 16) {
1119 *hwirq = fwspec->param[0];
1120 *type = IRQ_TYPE_EDGE_RISING;
1121 return 0;
1122 }
1123
1124 if (is_of_node(fwspec->fwnode)) {
1125 if (fwspec->param_count < 3)
1126 return -EINVAL;
1127
1128 switch (fwspec->param[0]) {
1129 case 0: /* SPI */
1130 *hwirq = fwspec->param[1] + 32;
1131 break;
1132 case 1: /* PPI */
1133 *hwirq = fwspec->param[1] + 16;
1134 break;
1135 default:
1136 return -EINVAL;
1137 }
1138
1139 *type = fwspec->param[2] & IRQ_TYPE_SENSE_MASK;
1140
1141 /* Make it clear that broken DTs are... broken */
1142 WARN_ON(*type == IRQ_TYPE_NONE);
1143 return 0;
1144 }
1145
1146 if (is_fwnode_irqchip(fwspec->fwnode)) {
1147 if(fwspec->param_count != 2)
1148 return -EINVAL;
1149
1150 if (fwspec->param[0] < 16) {
1151 pr_err(FW_BUG "Illegal GSI%d translation request\n",
1152 fwspec->param[0]);
1153 return -EINVAL;
1154 }
1155
1156 *hwirq = fwspec->param[0];
1157 *type = fwspec->param[1];
1158
1159 WARN_ON(*type == IRQ_TYPE_NONE);
1160 return 0;
1161 }
1162
1163 return -EINVAL;
1164 }
1165
gic_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)1166 static int gic_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1167 unsigned int nr_irqs, void *arg)
1168 {
1169 int i, ret;
1170 irq_hw_number_t hwirq;
1171 unsigned int type = IRQ_TYPE_NONE;
1172 struct irq_fwspec *fwspec = arg;
1173
1174 ret = gic_irq_domain_translate(domain, fwspec, &hwirq, &type);
1175 if (ret)
1176 return ret;
1177
1178 for (i = 0; i < nr_irqs; i++) {
1179 ret = gic_irq_domain_map(domain, virq + i, hwirq + i);
1180 if (ret)
1181 return ret;
1182 }
1183
1184 return 0;
1185 }
1186
1187 static const struct irq_domain_ops gic_irq_domain_hierarchy_ops = {
1188 .translate = gic_irq_domain_translate,
1189 .alloc = gic_irq_domain_alloc,
1190 .free = irq_domain_free_irqs_top,
1191 };
1192
1193 static const struct irq_domain_ops gic_irq_domain_ops = {
1194 .map = gic_irq_domain_map,
1195 .unmap = gic_irq_domain_unmap,
1196 };
1197
gic_init_chip(struct gic_chip_data * gic,struct device * dev,const char * name,bool use_eoimode1)1198 static void gic_init_chip(struct gic_chip_data *gic, struct device *dev,
1199 const char *name, bool use_eoimode1)
1200 {
1201 /* Initialize irq_chip */
1202 gic->chip = gic_chip;
1203 gic->chip.name = name;
1204 gic->chip.parent_device = dev;
1205
1206 if (use_eoimode1) {
1207 gic->chip.irq_mask = gic_eoimode1_mask_irq;
1208 gic->chip.irq_eoi = gic_eoimode1_eoi_irq;
1209 gic->chip.irq_set_vcpu_affinity = gic_irq_set_vcpu_affinity;
1210 }
1211
1212 if (gic == &gic_data[0]) {
1213 gic->chip.irq_set_affinity = gic_set_affinity;
1214 gic->chip.ipi_send_mask = gic_ipi_send_mask;
1215 }
1216 }
1217
gic_init_bases(struct gic_chip_data * gic,struct fwnode_handle * handle)1218 static int gic_init_bases(struct gic_chip_data *gic,
1219 struct fwnode_handle *handle)
1220 {
1221 int gic_irqs, ret;
1222
1223 if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) {
1224 /* Frankein-GIC without banked registers... */
1225 unsigned int cpu;
1226
1227 gic->dist_base.percpu_base = alloc_percpu(void __iomem *);
1228 gic->cpu_base.percpu_base = alloc_percpu(void __iomem *);
1229 if (WARN_ON(!gic->dist_base.percpu_base ||
1230 !gic->cpu_base.percpu_base)) {
1231 ret = -ENOMEM;
1232 goto error;
1233 }
1234
1235 for_each_possible_cpu(cpu) {
1236 u32 mpidr = cpu_logical_map(cpu);
1237 u32 core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
1238 unsigned long offset = gic->percpu_offset * core_id;
1239 *per_cpu_ptr(gic->dist_base.percpu_base, cpu) =
1240 gic->raw_dist_base + offset;
1241 *per_cpu_ptr(gic->cpu_base.percpu_base, cpu) =
1242 gic->raw_cpu_base + offset;
1243 }
1244
1245 enable_frankengic();
1246 } else {
1247 /* Normal, sane GIC... */
1248 WARN(gic->percpu_offset,
1249 "GIC_NON_BANKED not enabled, ignoring %08x offset!",
1250 gic->percpu_offset);
1251 gic->dist_base.common_base = gic->raw_dist_base;
1252 gic->cpu_base.common_base = gic->raw_cpu_base;
1253 }
1254
1255 /*
1256 * Find out how many interrupts are supported.
1257 * The GIC only supports up to 1020 interrupt sources.
1258 */
1259 gic_irqs = readl_relaxed(gic_data_dist_base(gic) + GIC_DIST_CTR) & 0x1f;
1260 gic_irqs = (gic_irqs + 1) * 32;
1261 if (gic_irqs > 1020)
1262 gic_irqs = 1020;
1263 gic->gic_irqs = gic_irqs;
1264
1265 if (handle) { /* DT/ACPI */
1266 gic->domain = irq_domain_create_linear(handle, gic_irqs,
1267 &gic_irq_domain_hierarchy_ops,
1268 gic);
1269 } else { /* Legacy support */
1270 /*
1271 * For primary GICs, skip over SGIs.
1272 * No secondary GIC support whatsoever.
1273 */
1274 int irq_base;
1275
1276 gic_irqs -= 16; /* calculate # of irqs to allocate */
1277
1278 irq_base = irq_alloc_descs(16, 16, gic_irqs,
1279 numa_node_id());
1280 if (irq_base < 0) {
1281 WARN(1, "Cannot allocate irq_descs @ IRQ16, assuming pre-allocated\n");
1282 irq_base = 16;
1283 }
1284
1285 gic->domain = irq_domain_add_legacy(NULL, gic_irqs, irq_base,
1286 16, &gic_irq_domain_ops, gic);
1287 }
1288
1289 if (WARN_ON(!gic->domain)) {
1290 ret = -ENODEV;
1291 goto error;
1292 }
1293
1294 gic_dist_init(gic);
1295 ret = gic_cpu_init(gic);
1296 if (ret)
1297 goto error;
1298
1299 ret = gic_pm_init(gic);
1300 if (ret)
1301 goto error;
1302
1303 return 0;
1304
1305 error:
1306 if (IS_ENABLED(CONFIG_GIC_NON_BANKED) && gic->percpu_offset) {
1307 free_percpu(gic->dist_base.percpu_base);
1308 free_percpu(gic->cpu_base.percpu_base);
1309 }
1310
1311 return ret;
1312 }
1313
__gic_init_bases(struct gic_chip_data * gic,struct fwnode_handle * handle)1314 static int __init __gic_init_bases(struct gic_chip_data *gic,
1315 struct fwnode_handle *handle)
1316 {
1317 char *name;
1318 int i, ret;
1319
1320 if (WARN_ON(!gic || gic->domain))
1321 return -EINVAL;
1322
1323 if (gic == &gic_data[0]) {
1324 /*
1325 * Initialize the CPU interface map to all CPUs.
1326 * It will be refined as each CPU probes its ID.
1327 * This is only necessary for the primary GIC.
1328 */
1329 for (i = 0; i < NR_GIC_CPU_IF; i++)
1330 gic_cpu_map[i] = 0xff;
1331
1332 set_handle_irq(gic_handle_irq);
1333 if (static_branch_likely(&supports_deactivate_key))
1334 pr_info("GIC: Using split EOI/Deactivate mode\n");
1335 }
1336
1337 if (static_branch_likely(&supports_deactivate_key) && gic == &gic_data[0]) {
1338 name = kasprintf(GFP_KERNEL, "GICv2");
1339 gic_init_chip(gic, NULL, name, true);
1340 } else {
1341 name = kasprintf(GFP_KERNEL, "GIC-%d", (int)(gic-&gic_data[0]));
1342 gic_init_chip(gic, NULL, name, false);
1343 }
1344
1345 ret = gic_init_bases(gic, handle);
1346 if (ret)
1347 kfree(name);
1348 else if (gic == &gic_data[0])
1349 gic_smp_init();
1350
1351 return ret;
1352 }
1353
gic_init(void __iomem * dist_base,void __iomem * cpu_base)1354 void __init gic_init(void __iomem *dist_base, void __iomem *cpu_base)
1355 {
1356 struct gic_chip_data *gic;
1357
1358 /*
1359 * Non-DT/ACPI systems won't run a hypervisor, so let's not
1360 * bother with these...
1361 */
1362 static_branch_disable(&supports_deactivate_key);
1363
1364 gic = &gic_data[0];
1365 gic->raw_dist_base = dist_base;
1366 gic->raw_cpu_base = cpu_base;
1367
1368 __gic_init_bases(gic, NULL);
1369 }
1370
gic_teardown(struct gic_chip_data * gic)1371 static void gic_teardown(struct gic_chip_data *gic)
1372 {
1373 if (WARN_ON(!gic))
1374 return;
1375
1376 if (gic->raw_dist_base)
1377 iounmap(gic->raw_dist_base);
1378 if (gic->raw_cpu_base)
1379 iounmap(gic->raw_cpu_base);
1380 }
1381
1382 #ifdef CONFIG_OF
1383 static int gic_cnt __initdata;
1384 static bool gicv2_force_probe;
1385
gicv2_force_probe_cfg(char * buf)1386 static int __init gicv2_force_probe_cfg(char *buf)
1387 {
1388 return strtobool(buf, &gicv2_force_probe);
1389 }
1390 early_param("irqchip.gicv2_force_probe", gicv2_force_probe_cfg);
1391
gic_check_eoimode(struct device_node * node,void __iomem ** base)1392 static bool gic_check_eoimode(struct device_node *node, void __iomem **base)
1393 {
1394 struct resource cpuif_res;
1395
1396 of_address_to_resource(node, 1, &cpuif_res);
1397
1398 if (!is_hyp_mode_available())
1399 return false;
1400 if (resource_size(&cpuif_res) < SZ_8K) {
1401 void __iomem *alt;
1402 /*
1403 * Check for a stupid firmware that only exposes the
1404 * first page of a GICv2.
1405 */
1406 if (!gic_check_gicv2(*base))
1407 return false;
1408
1409 if (!gicv2_force_probe) {
1410 pr_warn("GIC: GICv2 detected, but range too small and irqchip.gicv2_force_probe not set\n");
1411 return false;
1412 }
1413
1414 alt = ioremap(cpuif_res.start, SZ_8K);
1415 if (!alt)
1416 return false;
1417 if (!gic_check_gicv2(alt + SZ_4K)) {
1418 /*
1419 * The first page was that of a GICv2, and
1420 * the second was *something*. Let's trust it
1421 * to be a GICv2, and update the mapping.
1422 */
1423 pr_warn("GIC: GICv2 at %pa, but range is too small (broken DT?), assuming 8kB\n",
1424 &cpuif_res.start);
1425 iounmap(*base);
1426 *base = alt;
1427 return true;
1428 }
1429
1430 /*
1431 * We detected *two* initial GICv2 pages in a
1432 * row. Could be a GICv2 aliased over two 64kB
1433 * pages. Update the resource, map the iospace, and
1434 * pray.
1435 */
1436 iounmap(alt);
1437 alt = ioremap(cpuif_res.start, SZ_128K);
1438 if (!alt)
1439 return false;
1440 pr_warn("GIC: Aliased GICv2 at %pa, trying to find the canonical range over 128kB\n",
1441 &cpuif_res.start);
1442 cpuif_res.end = cpuif_res.start + SZ_128K -1;
1443 iounmap(*base);
1444 *base = alt;
1445 }
1446 if (resource_size(&cpuif_res) == SZ_128K) {
1447 /*
1448 * Verify that we have the first 4kB of a GICv2
1449 * aliased over the first 64kB by checking the
1450 * GICC_IIDR register on both ends.
1451 */
1452 if (!gic_check_gicv2(*base) ||
1453 !gic_check_gicv2(*base + 0xf000))
1454 return false;
1455
1456 /*
1457 * Move the base up by 60kB, so that we have a 8kB
1458 * contiguous region, which allows us to use GICC_DIR
1459 * at its normal offset. Please pass me that bucket.
1460 */
1461 *base += 0xf000;
1462 cpuif_res.start += 0xf000;
1463 pr_warn("GIC: Adjusting CPU interface base to %pa\n",
1464 &cpuif_res.start);
1465 }
1466
1467 return true;
1468 }
1469
gic_enable_rmw_access(void * data)1470 static bool gic_enable_rmw_access(void *data)
1471 {
1472 /*
1473 * The EMEV2 class of machines has a broken interconnect, and
1474 * locks up on accesses that are less than 32bit. So far, only
1475 * the affinity setting requires it.
1476 */
1477 if (of_machine_is_compatible("renesas,emev2")) {
1478 static_branch_enable(&needs_rmw_access);
1479 return true;
1480 }
1481
1482 return false;
1483 }
1484
1485 static const struct gic_quirk gic_quirks[] = {
1486 {
1487 .desc = "broken byte access",
1488 .compatible = "arm,pl390",
1489 .init = gic_enable_rmw_access,
1490 },
1491 { },
1492 };
1493
gic_of_setup(struct gic_chip_data * gic,struct device_node * node)1494 static int gic_of_setup(struct gic_chip_data *gic, struct device_node *node)
1495 {
1496 if (!gic || !node)
1497 return -EINVAL;
1498
1499 gic->raw_dist_base = of_iomap(node, 0);
1500 if (WARN(!gic->raw_dist_base, "unable to map gic dist registers\n"))
1501 goto error;
1502
1503 gic->raw_cpu_base = of_iomap(node, 1);
1504 if (WARN(!gic->raw_cpu_base, "unable to map gic cpu registers\n"))
1505 goto error;
1506
1507 if (of_property_read_u32(node, "cpu-offset", &gic->percpu_offset))
1508 gic->percpu_offset = 0;
1509
1510 gic_enable_of_quirks(node, gic_quirks, gic);
1511
1512 return 0;
1513
1514 error:
1515 gic_teardown(gic);
1516
1517 return -ENOMEM;
1518 }
1519
gic_of_init_child(struct device * dev,struct gic_chip_data ** gic,int irq)1520 int gic_of_init_child(struct device *dev, struct gic_chip_data **gic, int irq)
1521 {
1522 int ret;
1523
1524 if (!dev || !dev->of_node || !gic || !irq)
1525 return -EINVAL;
1526
1527 *gic = devm_kzalloc(dev, sizeof(**gic), GFP_KERNEL);
1528 if (!*gic)
1529 return -ENOMEM;
1530
1531 gic_init_chip(*gic, dev, dev->of_node->name, false);
1532
1533 ret = gic_of_setup(*gic, dev->of_node);
1534 if (ret)
1535 return ret;
1536
1537 ret = gic_init_bases(*gic, &dev->of_node->fwnode);
1538 if (ret) {
1539 gic_teardown(*gic);
1540 return ret;
1541 }
1542
1543 irq_set_chained_handler_and_data(irq, gic_handle_cascade_irq, *gic);
1544
1545 return 0;
1546 }
1547
gic_of_setup_kvm_info(struct device_node * node)1548 static void __init gic_of_setup_kvm_info(struct device_node *node)
1549 {
1550 int ret;
1551 struct resource *vctrl_res = &gic_v2_kvm_info.vctrl;
1552 struct resource *vcpu_res = &gic_v2_kvm_info.vcpu;
1553
1554 gic_v2_kvm_info.type = GIC_V2;
1555
1556 gic_v2_kvm_info.maint_irq = irq_of_parse_and_map(node, 0);
1557 if (!gic_v2_kvm_info.maint_irq)
1558 return;
1559
1560 ret = of_address_to_resource(node, 2, vctrl_res);
1561 if (ret)
1562 return;
1563
1564 ret = of_address_to_resource(node, 3, vcpu_res);
1565 if (ret)
1566 return;
1567
1568 if (static_branch_likely(&supports_deactivate_key))
1569 gic_set_kvm_info(&gic_v2_kvm_info);
1570 }
1571
1572 int __init
gic_of_init(struct device_node * node,struct device_node * parent)1573 gic_of_init(struct device_node *node, struct device_node *parent)
1574 {
1575 struct gic_chip_data *gic;
1576 int irq, ret;
1577
1578 if (WARN_ON(!node))
1579 return -ENODEV;
1580
1581 if (WARN_ON(gic_cnt >= CONFIG_ARM_GIC_MAX_NR))
1582 return -EINVAL;
1583
1584 gic = &gic_data[gic_cnt];
1585
1586 ret = gic_of_setup(gic, node);
1587 if (ret)
1588 return ret;
1589
1590 /*
1591 * Disable split EOI/Deactivate if either HYP is not available
1592 * or the CPU interface is too small.
1593 */
1594 if (gic_cnt == 0 && !gic_check_eoimode(node, &gic->raw_cpu_base))
1595 static_branch_disable(&supports_deactivate_key);
1596
1597 ret = __gic_init_bases(gic, &node->fwnode);
1598 if (ret) {
1599 gic_teardown(gic);
1600 return ret;
1601 }
1602
1603 if (!gic_cnt) {
1604 gic_init_physaddr(node);
1605 gic_of_setup_kvm_info(node);
1606 }
1607
1608 if (parent) {
1609 irq = irq_of_parse_and_map(node, 0);
1610 gic_cascade_irq(gic_cnt, irq);
1611 }
1612
1613 if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1614 gicv2m_init(&node->fwnode, gic_data[gic_cnt].domain);
1615
1616 gic_cnt++;
1617 return 0;
1618 }
1619 IRQCHIP_DECLARE(gic_400, "arm,gic-400", gic_of_init);
1620 IRQCHIP_DECLARE(arm11mp_gic, "arm,arm11mp-gic", gic_of_init);
1621 IRQCHIP_DECLARE(arm1176jzf_dc_gic, "arm,arm1176jzf-devchip-gic", gic_of_init);
1622 IRQCHIP_DECLARE(cortex_a15_gic, "arm,cortex-a15-gic", gic_of_init);
1623 IRQCHIP_DECLARE(cortex_a9_gic, "arm,cortex-a9-gic", gic_of_init);
1624 IRQCHIP_DECLARE(cortex_a7_gic, "arm,cortex-a7-gic", gic_of_init);
1625 IRQCHIP_DECLARE(msm_8660_qgic, "qcom,msm-8660-qgic", gic_of_init);
1626 IRQCHIP_DECLARE(msm_qgic2, "qcom,msm-qgic2", gic_of_init);
1627 IRQCHIP_DECLARE(pl390, "arm,pl390", gic_of_init);
1628 #else
gic_of_init_child(struct device * dev,struct gic_chip_data ** gic,int irq)1629 int gic_of_init_child(struct device *dev, struct gic_chip_data **gic, int irq)
1630 {
1631 return -ENOTSUPP;
1632 }
1633 #endif
1634
1635 #ifdef CONFIG_ACPI
1636 static struct
1637 {
1638 phys_addr_t cpu_phys_base;
1639 u32 maint_irq;
1640 int maint_irq_mode;
1641 phys_addr_t vctrl_base;
1642 phys_addr_t vcpu_base;
1643 } acpi_data __initdata;
1644
1645 static int __init
gic_acpi_parse_madt_cpu(union acpi_subtable_headers * header,const unsigned long end)1646 gic_acpi_parse_madt_cpu(union acpi_subtable_headers *header,
1647 const unsigned long end)
1648 {
1649 struct acpi_madt_generic_interrupt *processor;
1650 phys_addr_t gic_cpu_base;
1651 static int cpu_base_assigned;
1652
1653 processor = (struct acpi_madt_generic_interrupt *)header;
1654
1655 if (BAD_MADT_GICC_ENTRY(processor, end))
1656 return -EINVAL;
1657
1658 /*
1659 * There is no support for non-banked GICv1/2 register in ACPI spec.
1660 * All CPU interface addresses have to be the same.
1661 */
1662 gic_cpu_base = processor->base_address;
1663 if (cpu_base_assigned && gic_cpu_base != acpi_data.cpu_phys_base)
1664 return -EINVAL;
1665
1666 acpi_data.cpu_phys_base = gic_cpu_base;
1667 acpi_data.maint_irq = processor->vgic_interrupt;
1668 acpi_data.maint_irq_mode = (processor->flags & ACPI_MADT_VGIC_IRQ_MODE) ?
1669 ACPI_EDGE_SENSITIVE : ACPI_LEVEL_SENSITIVE;
1670 acpi_data.vctrl_base = processor->gich_base_address;
1671 acpi_data.vcpu_base = processor->gicv_base_address;
1672
1673 cpu_base_assigned = 1;
1674 return 0;
1675 }
1676
1677 /* The things you have to do to just *count* something... */
acpi_dummy_func(union acpi_subtable_headers * header,const unsigned long end)1678 static int __init acpi_dummy_func(union acpi_subtable_headers *header,
1679 const unsigned long end)
1680 {
1681 return 0;
1682 }
1683
acpi_gic_redist_is_present(void)1684 static bool __init acpi_gic_redist_is_present(void)
1685 {
1686 return acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_REDISTRIBUTOR,
1687 acpi_dummy_func, 0) > 0;
1688 }
1689
gic_validate_dist(struct acpi_subtable_header * header,struct acpi_probe_entry * ape)1690 static bool __init gic_validate_dist(struct acpi_subtable_header *header,
1691 struct acpi_probe_entry *ape)
1692 {
1693 struct acpi_madt_generic_distributor *dist;
1694 dist = (struct acpi_madt_generic_distributor *)header;
1695
1696 return (dist->version == ape->driver_data &&
1697 (dist->version != ACPI_MADT_GIC_VERSION_NONE ||
1698 !acpi_gic_redist_is_present()));
1699 }
1700
1701 #define ACPI_GICV2_DIST_MEM_SIZE (SZ_4K)
1702 #define ACPI_GIC_CPU_IF_MEM_SIZE (SZ_8K)
1703 #define ACPI_GICV2_VCTRL_MEM_SIZE (SZ_4K)
1704 #define ACPI_GICV2_VCPU_MEM_SIZE (SZ_8K)
1705
gic_acpi_setup_kvm_info(void)1706 static void __init gic_acpi_setup_kvm_info(void)
1707 {
1708 int irq;
1709 struct resource *vctrl_res = &gic_v2_kvm_info.vctrl;
1710 struct resource *vcpu_res = &gic_v2_kvm_info.vcpu;
1711
1712 gic_v2_kvm_info.type = GIC_V2;
1713
1714 if (!acpi_data.vctrl_base)
1715 return;
1716
1717 vctrl_res->flags = IORESOURCE_MEM;
1718 vctrl_res->start = acpi_data.vctrl_base;
1719 vctrl_res->end = vctrl_res->start + ACPI_GICV2_VCTRL_MEM_SIZE - 1;
1720
1721 if (!acpi_data.vcpu_base)
1722 return;
1723
1724 vcpu_res->flags = IORESOURCE_MEM;
1725 vcpu_res->start = acpi_data.vcpu_base;
1726 vcpu_res->end = vcpu_res->start + ACPI_GICV2_VCPU_MEM_SIZE - 1;
1727
1728 irq = acpi_register_gsi(NULL, acpi_data.maint_irq,
1729 acpi_data.maint_irq_mode,
1730 ACPI_ACTIVE_HIGH);
1731 if (irq <= 0)
1732 return;
1733
1734 gic_v2_kvm_info.maint_irq = irq;
1735
1736 gic_set_kvm_info(&gic_v2_kvm_info);
1737 }
1738
gic_v2_acpi_init(union acpi_subtable_headers * header,const unsigned long end)1739 static int __init gic_v2_acpi_init(union acpi_subtable_headers *header,
1740 const unsigned long end)
1741 {
1742 struct acpi_madt_generic_distributor *dist;
1743 struct fwnode_handle *domain_handle;
1744 struct gic_chip_data *gic = &gic_data[0];
1745 int count, ret;
1746
1747 /* Collect CPU base addresses */
1748 count = acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_INTERRUPT,
1749 gic_acpi_parse_madt_cpu, 0);
1750 if (count <= 0) {
1751 pr_err("No valid GICC entries exist\n");
1752 return -EINVAL;
1753 }
1754
1755 gic->raw_cpu_base = ioremap(acpi_data.cpu_phys_base, ACPI_GIC_CPU_IF_MEM_SIZE);
1756 if (!gic->raw_cpu_base) {
1757 pr_err("Unable to map GICC registers\n");
1758 return -ENOMEM;
1759 }
1760
1761 dist = (struct acpi_madt_generic_distributor *)header;
1762 gic->raw_dist_base = ioremap(dist->base_address,
1763 ACPI_GICV2_DIST_MEM_SIZE);
1764 if (!gic->raw_dist_base) {
1765 pr_err("Unable to map GICD registers\n");
1766 gic_teardown(gic);
1767 return -ENOMEM;
1768 }
1769
1770 /*
1771 * Disable split EOI/Deactivate if HYP is not available. ACPI
1772 * guarantees that we'll always have a GICv2, so the CPU
1773 * interface will always be the right size.
1774 */
1775 if (!is_hyp_mode_available())
1776 static_branch_disable(&supports_deactivate_key);
1777
1778 /*
1779 * Initialize GIC instance zero (no multi-GIC support).
1780 */
1781 domain_handle = irq_domain_alloc_fwnode(&dist->base_address);
1782 if (!domain_handle) {
1783 pr_err("Unable to allocate domain handle\n");
1784 gic_teardown(gic);
1785 return -ENOMEM;
1786 }
1787
1788 ret = __gic_init_bases(gic, domain_handle);
1789 if (ret) {
1790 pr_err("Failed to initialise GIC\n");
1791 irq_domain_free_fwnode(domain_handle);
1792 gic_teardown(gic);
1793 return ret;
1794 }
1795
1796 acpi_set_irq_model(ACPI_IRQ_MODEL_GIC, domain_handle);
1797
1798 if (IS_ENABLED(CONFIG_ARM_GIC_V2M))
1799 gicv2m_init(NULL, gic_data[0].domain);
1800
1801 if (static_branch_likely(&supports_deactivate_key))
1802 gic_acpi_setup_kvm_info();
1803
1804 return 0;
1805 }
1806 IRQCHIP_ACPI_DECLARE(gic_v2, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
1807 gic_validate_dist, ACPI_MADT_GIC_VERSION_V2,
1808 gic_v2_acpi_init);
1809 IRQCHIP_ACPI_DECLARE(gic_v2_maybe, ACPI_MADT_TYPE_GENERIC_DISTRIBUTOR,
1810 gic_validate_dist, ACPI_MADT_GIC_VERSION_NONE,
1811 gic_v2_acpi_init);
1812 #endif
1813