xref: /OK3568_Linux_fs/kernel/drivers/irqchip/irq-gic-v3-its.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4  * Author: Marc Zyngier <marc.zyngier@arm.com>
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/efi.h>
16 #include <linux/interrupt.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32 
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36 
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39 
40 #include "irq-gic-common.h"
41 
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
45 
46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
47 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED	(1 << 1)
48 
49 static u32 lpi_id_bits;
50 
51 /*
52  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
53  * deal with (one configuration byte per interrupt). PENDBASE has to
54  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
55  */
56 #define LPI_NRBITS		lpi_id_bits
57 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
58 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
59 
60 #define LPI_PROP_DEFAULT_PRIO	GICD_INT_DEF_PRI
61 
62 /*
63  * Collection structure - just an ID, and a redistributor address to
64  * ping. We use one per CPU as a bag of interrupts assigned to this
65  * CPU.
66  */
67 struct its_collection {
68 	u64			target_address;
69 	u16			col_id;
70 };
71 
72 /*
73  * The ITS_BASER structure - contains memory information, cached
74  * value of BASER register configuration and ITS page size.
75  */
76 struct its_baser {
77 	void		*base;
78 	u64		val;
79 	u32		order;
80 	u32		psz;
81 };
82 
83 struct its_device;
84 
85 /*
86  * The ITS structure - contains most of the infrastructure, with the
87  * top-level MSI domain, the command queue, the collections, and the
88  * list of devices writing to it.
89  *
90  * dev_alloc_lock has to be taken for device allocations, while the
91  * spinlock must be taken to parse data structures such as the device
92  * list.
93  */
94 struct its_node {
95 	raw_spinlock_t		lock;
96 	struct mutex		dev_alloc_lock;
97 	struct list_head	entry;
98 	void __iomem		*base;
99 	void __iomem		*sgir_base;
100 	phys_addr_t		phys_base;
101 	struct its_cmd_block	*cmd_base;
102 	struct its_cmd_block	*cmd_write;
103 	struct its_baser	tables[GITS_BASER_NR_REGS];
104 	struct its_collection	*collections;
105 	struct fwnode_handle	*fwnode_handle;
106 	u64			(*get_msi_base)(struct its_device *its_dev);
107 	u64			typer;
108 	u64			cbaser_save;
109 	u32			ctlr_save;
110 	u32			mpidr;
111 	struct list_head	its_device_list;
112 	u64			flags;
113 	unsigned long		list_nr;
114 	int			numa_node;
115 	unsigned int		msi_domain_flags;
116 	u32			pre_its_base; /* for Socionext Synquacer */
117 	int			vlpi_redist_offset;
118 };
119 
120 #define is_v4(its)		(!!((its)->typer & GITS_TYPER_VLPIS))
121 #define is_v4_1(its)		(!!((its)->typer & GITS_TYPER_VMAPP))
122 #define device_ids(its)		(FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
123 
124 #define ITS_ITT_ALIGN		SZ_256
125 
126 /* The maximum number of VPEID bits supported by VLPI commands */
127 #define ITS_MAX_VPEID_BITS						\
128 	({								\
129 		int nvpeid = 16;					\
130 		if (gic_rdists->has_rvpeid &&				\
131 		    gic_rdists->gicd_typer2 & GICD_TYPER2_VIL)		\
132 			nvpeid = 1 + (gic_rdists->gicd_typer2 &		\
133 				      GICD_TYPER2_VID);			\
134 									\
135 		nvpeid;							\
136 	})
137 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
138 
139 /* Convert page order to size in bytes */
140 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
141 
142 struct event_lpi_map {
143 	unsigned long		*lpi_map;
144 	u16			*col_map;
145 	irq_hw_number_t		lpi_base;
146 	int			nr_lpis;
147 	raw_spinlock_t		vlpi_lock;
148 	struct its_vm		*vm;
149 	struct its_vlpi_map	*vlpi_maps;
150 	int			nr_vlpis;
151 };
152 
153 /*
154  * The ITS view of a device - belongs to an ITS, owns an interrupt
155  * translation table, and a list of interrupts.  If it some of its
156  * LPIs are injected into a guest (GICv4), the event_map.vm field
157  * indicates which one.
158  */
159 struct its_device {
160 	struct list_head	entry;
161 	struct its_node		*its;
162 	struct event_lpi_map	event_map;
163 	void			*itt;
164 	u32			itt_sz;
165 	u32			nr_ites;
166 	u32			device_id;
167 	bool			shared;
168 };
169 
170 static struct {
171 	raw_spinlock_t		lock;
172 	struct its_device	*dev;
173 	struct its_vpe		**vpes;
174 	int			next_victim;
175 } vpe_proxy;
176 
177 struct cpu_lpi_count {
178 	atomic_t	managed;
179 	atomic_t	unmanaged;
180 };
181 
182 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
183 
184 static LIST_HEAD(its_nodes);
185 static DEFINE_RAW_SPINLOCK(its_lock);
186 static struct rdists *gic_rdists;
187 static struct irq_domain *its_parent;
188 
189 static unsigned long its_list_map;
190 static u16 vmovp_seq_num;
191 static DEFINE_RAW_SPINLOCK(vmovp_lock);
192 
193 static DEFINE_IDA(its_vpeid_ida);
194 
195 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
196 #define gic_data_rdist_cpu(cpu)		(per_cpu_ptr(gic_rdists->rdist, cpu))
197 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
198 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
199 
200 /*
201  * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
202  * always have vSGIs mapped.
203  */
require_its_list_vmovp(struct its_vm * vm,struct its_node * its)204 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
205 {
206 	return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
207 }
208 
get_its_list(struct its_vm * vm)209 static u16 get_its_list(struct its_vm *vm)
210 {
211 	struct its_node *its;
212 	unsigned long its_list = 0;
213 
214 	list_for_each_entry(its, &its_nodes, entry) {
215 		if (!is_v4(its))
216 			continue;
217 
218 		if (require_its_list_vmovp(vm, its))
219 			__set_bit(its->list_nr, &its_list);
220 	}
221 
222 	return (u16)its_list;
223 }
224 
its_get_event_id(struct irq_data * d)225 static inline u32 its_get_event_id(struct irq_data *d)
226 {
227 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
228 	return d->hwirq - its_dev->event_map.lpi_base;
229 }
230 
dev_event_to_col(struct its_device * its_dev,u32 event)231 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
232 					       u32 event)
233 {
234 	struct its_node *its = its_dev->its;
235 
236 	return its->collections + its_dev->event_map.col_map[event];
237 }
238 
dev_event_to_vlpi_map(struct its_device * its_dev,u32 event)239 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
240 					       u32 event)
241 {
242 	if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
243 		return NULL;
244 
245 	return &its_dev->event_map.vlpi_maps[event];
246 }
247 
get_vlpi_map(struct irq_data * d)248 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
249 {
250 	if (irqd_is_forwarded_to_vcpu(d)) {
251 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
252 		u32 event = its_get_event_id(d);
253 
254 		return dev_event_to_vlpi_map(its_dev, event);
255 	}
256 
257 	return NULL;
258 }
259 
vpe_to_cpuid_lock(struct its_vpe * vpe,unsigned long * flags)260 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
261 {
262 	raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
263 	return vpe->col_idx;
264 }
265 
vpe_to_cpuid_unlock(struct its_vpe * vpe,unsigned long flags)266 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
267 {
268 	raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
269 }
270 
irq_to_cpuid_lock(struct irq_data * d,unsigned long * flags)271 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
272 {
273 	struct its_vlpi_map *map = get_vlpi_map(d);
274 	int cpu;
275 
276 	if (map) {
277 		cpu = vpe_to_cpuid_lock(map->vpe, flags);
278 	} else {
279 		/* Physical LPIs are already locked via the irq_desc lock */
280 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
281 		cpu = its_dev->event_map.col_map[its_get_event_id(d)];
282 		/* Keep GCC quiet... */
283 		*flags = 0;
284 	}
285 
286 	return cpu;
287 }
288 
irq_to_cpuid_unlock(struct irq_data * d,unsigned long flags)289 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
290 {
291 	struct its_vlpi_map *map = get_vlpi_map(d);
292 
293 	if (map)
294 		vpe_to_cpuid_unlock(map->vpe, flags);
295 }
296 
valid_col(struct its_collection * col)297 static struct its_collection *valid_col(struct its_collection *col)
298 {
299 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
300 		return NULL;
301 
302 	return col;
303 }
304 
valid_vpe(struct its_node * its,struct its_vpe * vpe)305 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
306 {
307 	if (valid_col(its->collections + vpe->col_idx))
308 		return vpe;
309 
310 	return NULL;
311 }
312 
313 /*
314  * ITS command descriptors - parameters to be encoded in a command
315  * block.
316  */
317 struct its_cmd_desc {
318 	union {
319 		struct {
320 			struct its_device *dev;
321 			u32 event_id;
322 		} its_inv_cmd;
323 
324 		struct {
325 			struct its_device *dev;
326 			u32 event_id;
327 		} its_clear_cmd;
328 
329 		struct {
330 			struct its_device *dev;
331 			u32 event_id;
332 		} its_int_cmd;
333 
334 		struct {
335 			struct its_device *dev;
336 			int valid;
337 		} its_mapd_cmd;
338 
339 		struct {
340 			struct its_collection *col;
341 			int valid;
342 		} its_mapc_cmd;
343 
344 		struct {
345 			struct its_device *dev;
346 			u32 phys_id;
347 			u32 event_id;
348 		} its_mapti_cmd;
349 
350 		struct {
351 			struct its_device *dev;
352 			struct its_collection *col;
353 			u32 event_id;
354 		} its_movi_cmd;
355 
356 		struct {
357 			struct its_device *dev;
358 			u32 event_id;
359 		} its_discard_cmd;
360 
361 		struct {
362 			struct its_collection *col;
363 		} its_invall_cmd;
364 
365 		struct {
366 			struct its_vpe *vpe;
367 		} its_vinvall_cmd;
368 
369 		struct {
370 			struct its_vpe *vpe;
371 			struct its_collection *col;
372 			bool valid;
373 		} its_vmapp_cmd;
374 
375 		struct {
376 			struct its_vpe *vpe;
377 			struct its_device *dev;
378 			u32 virt_id;
379 			u32 event_id;
380 			bool db_enabled;
381 		} its_vmapti_cmd;
382 
383 		struct {
384 			struct its_vpe *vpe;
385 			struct its_device *dev;
386 			u32 event_id;
387 			bool db_enabled;
388 		} its_vmovi_cmd;
389 
390 		struct {
391 			struct its_vpe *vpe;
392 			struct its_collection *col;
393 			u16 seq_num;
394 			u16 its_list;
395 		} its_vmovp_cmd;
396 
397 		struct {
398 			struct its_vpe *vpe;
399 		} its_invdb_cmd;
400 
401 		struct {
402 			struct its_vpe *vpe;
403 			u8 sgi;
404 			u8 priority;
405 			bool enable;
406 			bool group;
407 			bool clear;
408 		} its_vsgi_cmd;
409 	};
410 };
411 
412 /*
413  * The ITS command block, which is what the ITS actually parses.
414  */
415 struct its_cmd_block {
416 	union {
417 		u64	raw_cmd[4];
418 		__le64	raw_cmd_le[4];
419 	};
420 };
421 
422 #define ITS_CMD_QUEUE_SZ		SZ_64K
423 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
424 
425 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
426 						    struct its_cmd_block *,
427 						    struct its_cmd_desc *);
428 
429 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
430 					      struct its_cmd_block *,
431 					      struct its_cmd_desc *);
432 
its_mask_encode(u64 * raw_cmd,u64 val,int h,int l)433 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
434 {
435 	u64 mask = GENMASK_ULL(h, l);
436 	*raw_cmd &= ~mask;
437 	*raw_cmd |= (val << l) & mask;
438 }
439 
its_encode_cmd(struct its_cmd_block * cmd,u8 cmd_nr)440 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
441 {
442 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
443 }
444 
its_encode_devid(struct its_cmd_block * cmd,u32 devid)445 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
446 {
447 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
448 }
449 
its_encode_event_id(struct its_cmd_block * cmd,u32 id)450 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
451 {
452 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
453 }
454 
its_encode_phys_id(struct its_cmd_block * cmd,u32 phys_id)455 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
456 {
457 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
458 }
459 
its_encode_size(struct its_cmd_block * cmd,u8 size)460 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
461 {
462 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
463 }
464 
its_encode_itt(struct its_cmd_block * cmd,u64 itt_addr)465 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
466 {
467 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
468 }
469 
its_encode_valid(struct its_cmd_block * cmd,int valid)470 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
471 {
472 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
473 }
474 
its_encode_target(struct its_cmd_block * cmd,u64 target_addr)475 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
476 {
477 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
478 }
479 
its_encode_collection(struct its_cmd_block * cmd,u16 col)480 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
481 {
482 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
483 }
484 
its_encode_vpeid(struct its_cmd_block * cmd,u16 vpeid)485 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
486 {
487 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
488 }
489 
its_encode_virt_id(struct its_cmd_block * cmd,u32 virt_id)490 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
491 {
492 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
493 }
494 
its_encode_db_phys_id(struct its_cmd_block * cmd,u32 db_phys_id)495 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
496 {
497 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
498 }
499 
its_encode_db_valid(struct its_cmd_block * cmd,bool db_valid)500 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
501 {
502 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
503 }
504 
its_encode_seq_num(struct its_cmd_block * cmd,u16 seq_num)505 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
506 {
507 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
508 }
509 
its_encode_its_list(struct its_cmd_block * cmd,u16 its_list)510 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
511 {
512 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
513 }
514 
its_encode_vpt_addr(struct its_cmd_block * cmd,u64 vpt_pa)515 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
516 {
517 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
518 }
519 
its_encode_vpt_size(struct its_cmd_block * cmd,u8 vpt_size)520 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
521 {
522 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
523 }
524 
its_encode_vconf_addr(struct its_cmd_block * cmd,u64 vconf_pa)525 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
526 {
527 	its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
528 }
529 
its_encode_alloc(struct its_cmd_block * cmd,bool alloc)530 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
531 {
532 	its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
533 }
534 
its_encode_ptz(struct its_cmd_block * cmd,bool ptz)535 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
536 {
537 	its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
538 }
539 
its_encode_vmapp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)540 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
541 					u32 vpe_db_lpi)
542 {
543 	its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
544 }
545 
its_encode_vmovp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)546 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
547 					u32 vpe_db_lpi)
548 {
549 	its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
550 }
551 
its_encode_db(struct its_cmd_block * cmd,bool db)552 static void its_encode_db(struct its_cmd_block *cmd, bool db)
553 {
554 	its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
555 }
556 
its_encode_sgi_intid(struct its_cmd_block * cmd,u8 sgi)557 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
558 {
559 	its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
560 }
561 
its_encode_sgi_priority(struct its_cmd_block * cmd,u8 prio)562 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
563 {
564 	its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
565 }
566 
its_encode_sgi_group(struct its_cmd_block * cmd,bool grp)567 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
568 {
569 	its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
570 }
571 
its_encode_sgi_clear(struct its_cmd_block * cmd,bool clr)572 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
573 {
574 	its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
575 }
576 
its_encode_sgi_enable(struct its_cmd_block * cmd,bool en)577 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
578 {
579 	its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
580 }
581 
its_fixup_cmd(struct its_cmd_block * cmd)582 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
583 {
584 	/* Let's fixup BE commands */
585 	cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
586 	cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
587 	cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
588 	cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
589 }
590 
its_build_mapd_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)591 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
592 						 struct its_cmd_block *cmd,
593 						 struct its_cmd_desc *desc)
594 {
595 	unsigned long itt_addr;
596 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
597 
598 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
599 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
600 
601 	its_encode_cmd(cmd, GITS_CMD_MAPD);
602 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
603 	its_encode_size(cmd, size - 1);
604 	its_encode_itt(cmd, itt_addr);
605 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
606 
607 	its_fixup_cmd(cmd);
608 
609 	return NULL;
610 }
611 
its_build_mapc_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)612 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
613 						 struct its_cmd_block *cmd,
614 						 struct its_cmd_desc *desc)
615 {
616 	its_encode_cmd(cmd, GITS_CMD_MAPC);
617 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
618 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
619 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
620 
621 	its_fixup_cmd(cmd);
622 
623 	return desc->its_mapc_cmd.col;
624 }
625 
its_build_mapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)626 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
627 						  struct its_cmd_block *cmd,
628 						  struct its_cmd_desc *desc)
629 {
630 	struct its_collection *col;
631 
632 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
633 			       desc->its_mapti_cmd.event_id);
634 
635 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
636 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
637 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
638 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
639 	its_encode_collection(cmd, col->col_id);
640 
641 	its_fixup_cmd(cmd);
642 
643 	return valid_col(col);
644 }
645 
its_build_movi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)646 static struct its_collection *its_build_movi_cmd(struct its_node *its,
647 						 struct its_cmd_block *cmd,
648 						 struct its_cmd_desc *desc)
649 {
650 	struct its_collection *col;
651 
652 	col = dev_event_to_col(desc->its_movi_cmd.dev,
653 			       desc->its_movi_cmd.event_id);
654 
655 	its_encode_cmd(cmd, GITS_CMD_MOVI);
656 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
657 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
658 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
659 
660 	its_fixup_cmd(cmd);
661 
662 	return valid_col(col);
663 }
664 
its_build_discard_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)665 static struct its_collection *its_build_discard_cmd(struct its_node *its,
666 						    struct its_cmd_block *cmd,
667 						    struct its_cmd_desc *desc)
668 {
669 	struct its_collection *col;
670 
671 	col = dev_event_to_col(desc->its_discard_cmd.dev,
672 			       desc->its_discard_cmd.event_id);
673 
674 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
675 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
676 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
677 
678 	its_fixup_cmd(cmd);
679 
680 	return valid_col(col);
681 }
682 
its_build_inv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)683 static struct its_collection *its_build_inv_cmd(struct its_node *its,
684 						struct its_cmd_block *cmd,
685 						struct its_cmd_desc *desc)
686 {
687 	struct its_collection *col;
688 
689 	col = dev_event_to_col(desc->its_inv_cmd.dev,
690 			       desc->its_inv_cmd.event_id);
691 
692 	its_encode_cmd(cmd, GITS_CMD_INV);
693 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
694 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
695 
696 	its_fixup_cmd(cmd);
697 
698 	return valid_col(col);
699 }
700 
its_build_int_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)701 static struct its_collection *its_build_int_cmd(struct its_node *its,
702 						struct its_cmd_block *cmd,
703 						struct its_cmd_desc *desc)
704 {
705 	struct its_collection *col;
706 
707 	col = dev_event_to_col(desc->its_int_cmd.dev,
708 			       desc->its_int_cmd.event_id);
709 
710 	its_encode_cmd(cmd, GITS_CMD_INT);
711 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
712 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
713 
714 	its_fixup_cmd(cmd);
715 
716 	return valid_col(col);
717 }
718 
its_build_clear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)719 static struct its_collection *its_build_clear_cmd(struct its_node *its,
720 						  struct its_cmd_block *cmd,
721 						  struct its_cmd_desc *desc)
722 {
723 	struct its_collection *col;
724 
725 	col = dev_event_to_col(desc->its_clear_cmd.dev,
726 			       desc->its_clear_cmd.event_id);
727 
728 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
729 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
730 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
731 
732 	its_fixup_cmd(cmd);
733 
734 	return valid_col(col);
735 }
736 
its_build_invall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)737 static struct its_collection *its_build_invall_cmd(struct its_node *its,
738 						   struct its_cmd_block *cmd,
739 						   struct its_cmd_desc *desc)
740 {
741 	its_encode_cmd(cmd, GITS_CMD_INVALL);
742 	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
743 
744 	its_fixup_cmd(cmd);
745 
746 	return desc->its_invall_cmd.col;
747 }
748 
its_build_vinvall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)749 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
750 					     struct its_cmd_block *cmd,
751 					     struct its_cmd_desc *desc)
752 {
753 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
754 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
755 
756 	its_fixup_cmd(cmd);
757 
758 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
759 }
760 
its_build_vmapp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)761 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
762 					   struct its_cmd_block *cmd,
763 					   struct its_cmd_desc *desc)
764 {
765 	unsigned long vpt_addr, vconf_addr;
766 	u64 target;
767 	bool alloc;
768 
769 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
770 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
771 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
772 
773 	if (!desc->its_vmapp_cmd.valid) {
774 		if (is_v4_1(its)) {
775 			alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
776 			its_encode_alloc(cmd, alloc);
777 		}
778 
779 		goto out;
780 	}
781 
782 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
783 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
784 
785 	its_encode_target(cmd, target);
786 	its_encode_vpt_addr(cmd, vpt_addr);
787 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
788 
789 	if (!is_v4_1(its))
790 		goto out;
791 
792 	vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
793 
794 	alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
795 
796 	its_encode_alloc(cmd, alloc);
797 
798 	/* We can only signal PTZ when alloc==1. Why do we have two bits? */
799 	its_encode_ptz(cmd, alloc);
800 	its_encode_vconf_addr(cmd, vconf_addr);
801 	its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
802 
803 out:
804 	its_fixup_cmd(cmd);
805 
806 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
807 }
808 
its_build_vmapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)809 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
810 					    struct its_cmd_block *cmd,
811 					    struct its_cmd_desc *desc)
812 {
813 	u32 db;
814 
815 	if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
816 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
817 	else
818 		db = 1023;
819 
820 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
821 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
822 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
823 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
824 	its_encode_db_phys_id(cmd, db);
825 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
826 
827 	its_fixup_cmd(cmd);
828 
829 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
830 }
831 
its_build_vmovi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)832 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
833 					   struct its_cmd_block *cmd,
834 					   struct its_cmd_desc *desc)
835 {
836 	u32 db;
837 
838 	if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
839 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
840 	else
841 		db = 1023;
842 
843 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
844 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
845 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
846 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
847 	its_encode_db_phys_id(cmd, db);
848 	its_encode_db_valid(cmd, true);
849 
850 	its_fixup_cmd(cmd);
851 
852 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
853 }
854 
its_build_vmovp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)855 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
856 					   struct its_cmd_block *cmd,
857 					   struct its_cmd_desc *desc)
858 {
859 	u64 target;
860 
861 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
862 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
863 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
864 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
865 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
866 	its_encode_target(cmd, target);
867 
868 	if (is_v4_1(its)) {
869 		its_encode_db(cmd, true);
870 		its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
871 	}
872 
873 	its_fixup_cmd(cmd);
874 
875 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
876 }
877 
its_build_vinv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)878 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
879 					  struct its_cmd_block *cmd,
880 					  struct its_cmd_desc *desc)
881 {
882 	struct its_vlpi_map *map;
883 
884 	map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
885 				    desc->its_inv_cmd.event_id);
886 
887 	its_encode_cmd(cmd, GITS_CMD_INV);
888 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
889 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
890 
891 	its_fixup_cmd(cmd);
892 
893 	return valid_vpe(its, map->vpe);
894 }
895 
its_build_vint_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)896 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
897 					  struct its_cmd_block *cmd,
898 					  struct its_cmd_desc *desc)
899 {
900 	struct its_vlpi_map *map;
901 
902 	map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
903 				    desc->its_int_cmd.event_id);
904 
905 	its_encode_cmd(cmd, GITS_CMD_INT);
906 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
907 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
908 
909 	its_fixup_cmd(cmd);
910 
911 	return valid_vpe(its, map->vpe);
912 }
913 
its_build_vclear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)914 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
915 					    struct its_cmd_block *cmd,
916 					    struct its_cmd_desc *desc)
917 {
918 	struct its_vlpi_map *map;
919 
920 	map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
921 				    desc->its_clear_cmd.event_id);
922 
923 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
924 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
925 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
926 
927 	its_fixup_cmd(cmd);
928 
929 	return valid_vpe(its, map->vpe);
930 }
931 
its_build_invdb_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)932 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
933 					   struct its_cmd_block *cmd,
934 					   struct its_cmd_desc *desc)
935 {
936 	if (WARN_ON(!is_v4_1(its)))
937 		return NULL;
938 
939 	its_encode_cmd(cmd, GITS_CMD_INVDB);
940 	its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
941 
942 	its_fixup_cmd(cmd);
943 
944 	return valid_vpe(its, desc->its_invdb_cmd.vpe);
945 }
946 
its_build_vsgi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)947 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
948 					  struct its_cmd_block *cmd,
949 					  struct its_cmd_desc *desc)
950 {
951 	if (WARN_ON(!is_v4_1(its)))
952 		return NULL;
953 
954 	its_encode_cmd(cmd, GITS_CMD_VSGI);
955 	its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
956 	its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
957 	its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
958 	its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
959 	its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
960 	its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
961 
962 	its_fixup_cmd(cmd);
963 
964 	return valid_vpe(its, desc->its_vsgi_cmd.vpe);
965 }
966 
its_cmd_ptr_to_offset(struct its_node * its,struct its_cmd_block * ptr)967 static u64 its_cmd_ptr_to_offset(struct its_node *its,
968 				 struct its_cmd_block *ptr)
969 {
970 	return (ptr - its->cmd_base) * sizeof(*ptr);
971 }
972 
its_queue_full(struct its_node * its)973 static int its_queue_full(struct its_node *its)
974 {
975 	int widx;
976 	int ridx;
977 
978 	widx = its->cmd_write - its->cmd_base;
979 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
980 
981 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
982 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
983 		return 1;
984 
985 	return 0;
986 }
987 
its_allocate_entry(struct its_node * its)988 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
989 {
990 	struct its_cmd_block *cmd;
991 	u32 count = 1000000;	/* 1s! */
992 
993 	while (its_queue_full(its)) {
994 		count--;
995 		if (!count) {
996 			pr_err_ratelimited("ITS queue not draining\n");
997 			return NULL;
998 		}
999 		cpu_relax();
1000 		udelay(1);
1001 	}
1002 
1003 	cmd = its->cmd_write++;
1004 
1005 	/* Handle queue wrapping */
1006 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1007 		its->cmd_write = its->cmd_base;
1008 
1009 	/* Clear command  */
1010 	cmd->raw_cmd[0] = 0;
1011 	cmd->raw_cmd[1] = 0;
1012 	cmd->raw_cmd[2] = 0;
1013 	cmd->raw_cmd[3] = 0;
1014 
1015 	return cmd;
1016 }
1017 
its_post_commands(struct its_node * its)1018 static struct its_cmd_block *its_post_commands(struct its_node *its)
1019 {
1020 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1021 
1022 	writel_relaxed(wr, its->base + GITS_CWRITER);
1023 
1024 	return its->cmd_write;
1025 }
1026 
its_flush_cmd(struct its_node * its,struct its_cmd_block * cmd)1027 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1028 {
1029 	/*
1030 	 * Make sure the commands written to memory are observable by
1031 	 * the ITS.
1032 	 */
1033 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1034 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1035 	else
1036 		dsb(ishst);
1037 }
1038 
its_wait_for_range_completion(struct its_node * its,u64 prev_idx,struct its_cmd_block * to)1039 static int its_wait_for_range_completion(struct its_node *its,
1040 					 u64	prev_idx,
1041 					 struct its_cmd_block *to)
1042 {
1043 	u64 rd_idx, to_idx, linear_idx;
1044 	u32 count = 1000000;	/* 1s! */
1045 
1046 	/* Linearize to_idx if the command set has wrapped around */
1047 	to_idx = its_cmd_ptr_to_offset(its, to);
1048 	if (to_idx < prev_idx)
1049 		to_idx += ITS_CMD_QUEUE_SZ;
1050 
1051 	linear_idx = prev_idx;
1052 
1053 	while (1) {
1054 		s64 delta;
1055 
1056 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
1057 
1058 		/*
1059 		 * Compute the read pointer progress, taking the
1060 		 * potential wrap-around into account.
1061 		 */
1062 		delta = rd_idx - prev_idx;
1063 		if (rd_idx < prev_idx)
1064 			delta += ITS_CMD_QUEUE_SZ;
1065 
1066 		linear_idx += delta;
1067 		if (linear_idx >= to_idx)
1068 			break;
1069 
1070 		count--;
1071 		if (!count) {
1072 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1073 					   to_idx, linear_idx);
1074 			return -1;
1075 		}
1076 		prev_idx = rd_idx;
1077 		cpu_relax();
1078 		udelay(1);
1079 	}
1080 
1081 	return 0;
1082 }
1083 
1084 /* Warning, macro hell follows */
1085 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
1086 void name(struct its_node *its,						\
1087 	  buildtype builder,						\
1088 	  struct its_cmd_desc *desc)					\
1089 {									\
1090 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
1091 	synctype *sync_obj;						\
1092 	unsigned long flags;						\
1093 	u64 rd_idx;							\
1094 									\
1095 	raw_spin_lock_irqsave(&its->lock, flags);			\
1096 									\
1097 	cmd = its_allocate_entry(its);					\
1098 	if (!cmd) {		/* We're soooooo screewed... */		\
1099 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
1100 		return;							\
1101 	}								\
1102 	sync_obj = builder(its, cmd, desc);				\
1103 	its_flush_cmd(its, cmd);					\
1104 									\
1105 	if (sync_obj) {							\
1106 		sync_cmd = its_allocate_entry(its);			\
1107 		if (!sync_cmd)						\
1108 			goto post;					\
1109 									\
1110 		buildfn(its, sync_cmd, sync_obj);			\
1111 		its_flush_cmd(its, sync_cmd);				\
1112 	}								\
1113 									\
1114 post:									\
1115 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
1116 	next_cmd = its_post_commands(its);				\
1117 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
1118 									\
1119 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
1120 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
1121 }
1122 
its_build_sync_cmd(struct its_node * its,struct its_cmd_block * sync_cmd,struct its_collection * sync_col)1123 static void its_build_sync_cmd(struct its_node *its,
1124 			       struct its_cmd_block *sync_cmd,
1125 			       struct its_collection *sync_col)
1126 {
1127 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1128 	its_encode_target(sync_cmd, sync_col->target_address);
1129 
1130 	its_fixup_cmd(sync_cmd);
1131 }
1132 
BUILD_SINGLE_CMD_FUNC(its_send_single_command,its_cmd_builder_t,struct its_collection,its_build_sync_cmd)1133 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1134 			     struct its_collection, its_build_sync_cmd)
1135 
1136 static void its_build_vsync_cmd(struct its_node *its,
1137 				struct its_cmd_block *sync_cmd,
1138 				struct its_vpe *sync_vpe)
1139 {
1140 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1141 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1142 
1143 	its_fixup_cmd(sync_cmd);
1144 }
1145 
BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand,its_cmd_vbuilder_t,struct its_vpe,its_build_vsync_cmd)1146 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1147 			     struct its_vpe, its_build_vsync_cmd)
1148 
1149 static void its_send_int(struct its_device *dev, u32 event_id)
1150 {
1151 	struct its_cmd_desc desc;
1152 
1153 	desc.its_int_cmd.dev = dev;
1154 	desc.its_int_cmd.event_id = event_id;
1155 
1156 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
1157 }
1158 
its_send_clear(struct its_device * dev,u32 event_id)1159 static void its_send_clear(struct its_device *dev, u32 event_id)
1160 {
1161 	struct its_cmd_desc desc;
1162 
1163 	desc.its_clear_cmd.dev = dev;
1164 	desc.its_clear_cmd.event_id = event_id;
1165 
1166 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1167 }
1168 
its_send_inv(struct its_device * dev,u32 event_id)1169 static void its_send_inv(struct its_device *dev, u32 event_id)
1170 {
1171 	struct its_cmd_desc desc;
1172 
1173 	desc.its_inv_cmd.dev = dev;
1174 	desc.its_inv_cmd.event_id = event_id;
1175 
1176 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1177 }
1178 
its_send_mapd(struct its_device * dev,int valid)1179 static void its_send_mapd(struct its_device *dev, int valid)
1180 {
1181 	struct its_cmd_desc desc;
1182 
1183 	desc.its_mapd_cmd.dev = dev;
1184 	desc.its_mapd_cmd.valid = !!valid;
1185 
1186 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1187 }
1188 
its_send_mapc(struct its_node * its,struct its_collection * col,int valid)1189 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1190 			  int valid)
1191 {
1192 	struct its_cmd_desc desc;
1193 
1194 	desc.its_mapc_cmd.col = col;
1195 	desc.its_mapc_cmd.valid = !!valid;
1196 
1197 	its_send_single_command(its, its_build_mapc_cmd, &desc);
1198 }
1199 
its_send_mapti(struct its_device * dev,u32 irq_id,u32 id)1200 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1201 {
1202 	struct its_cmd_desc desc;
1203 
1204 	desc.its_mapti_cmd.dev = dev;
1205 	desc.its_mapti_cmd.phys_id = irq_id;
1206 	desc.its_mapti_cmd.event_id = id;
1207 
1208 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1209 }
1210 
its_send_movi(struct its_device * dev,struct its_collection * col,u32 id)1211 static void its_send_movi(struct its_device *dev,
1212 			  struct its_collection *col, u32 id)
1213 {
1214 	struct its_cmd_desc desc;
1215 
1216 	desc.its_movi_cmd.dev = dev;
1217 	desc.its_movi_cmd.col = col;
1218 	desc.its_movi_cmd.event_id = id;
1219 
1220 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1221 }
1222 
its_send_discard(struct its_device * dev,u32 id)1223 static void its_send_discard(struct its_device *dev, u32 id)
1224 {
1225 	struct its_cmd_desc desc;
1226 
1227 	desc.its_discard_cmd.dev = dev;
1228 	desc.its_discard_cmd.event_id = id;
1229 
1230 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1231 }
1232 
its_send_invall(struct its_node * its,struct its_collection * col)1233 static void its_send_invall(struct its_node *its, struct its_collection *col)
1234 {
1235 	struct its_cmd_desc desc;
1236 
1237 	desc.its_invall_cmd.col = col;
1238 
1239 	its_send_single_command(its, its_build_invall_cmd, &desc);
1240 }
1241 
its_send_vmapti(struct its_device * dev,u32 id)1242 static void its_send_vmapti(struct its_device *dev, u32 id)
1243 {
1244 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1245 	struct its_cmd_desc desc;
1246 
1247 	desc.its_vmapti_cmd.vpe = map->vpe;
1248 	desc.its_vmapti_cmd.dev = dev;
1249 	desc.its_vmapti_cmd.virt_id = map->vintid;
1250 	desc.its_vmapti_cmd.event_id = id;
1251 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1252 
1253 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1254 }
1255 
its_send_vmovi(struct its_device * dev,u32 id)1256 static void its_send_vmovi(struct its_device *dev, u32 id)
1257 {
1258 	struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1259 	struct its_cmd_desc desc;
1260 
1261 	desc.its_vmovi_cmd.vpe = map->vpe;
1262 	desc.its_vmovi_cmd.dev = dev;
1263 	desc.its_vmovi_cmd.event_id = id;
1264 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1265 
1266 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1267 }
1268 
its_send_vmapp(struct its_node * its,struct its_vpe * vpe,bool valid)1269 static void its_send_vmapp(struct its_node *its,
1270 			   struct its_vpe *vpe, bool valid)
1271 {
1272 	struct its_cmd_desc desc;
1273 
1274 	desc.its_vmapp_cmd.vpe = vpe;
1275 	desc.its_vmapp_cmd.valid = valid;
1276 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1277 
1278 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1279 }
1280 
its_send_vmovp(struct its_vpe * vpe)1281 static void its_send_vmovp(struct its_vpe *vpe)
1282 {
1283 	struct its_cmd_desc desc = {};
1284 	struct its_node *its;
1285 	unsigned long flags;
1286 	int col_id = vpe->col_idx;
1287 
1288 	desc.its_vmovp_cmd.vpe = vpe;
1289 
1290 	if (!its_list_map) {
1291 		its = list_first_entry(&its_nodes, struct its_node, entry);
1292 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1293 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1294 		return;
1295 	}
1296 
1297 	/*
1298 	 * Yet another marvel of the architecture. If using the
1299 	 * its_list "feature", we need to make sure that all ITSs
1300 	 * receive all VMOVP commands in the same order. The only way
1301 	 * to guarantee this is to make vmovp a serialization point.
1302 	 *
1303 	 * Wall <-- Head.
1304 	 */
1305 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1306 
1307 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1308 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1309 
1310 	/* Emit VMOVPs */
1311 	list_for_each_entry(its, &its_nodes, entry) {
1312 		if (!is_v4(its))
1313 			continue;
1314 
1315 		if (!require_its_list_vmovp(vpe->its_vm, its))
1316 			continue;
1317 
1318 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1319 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1320 	}
1321 
1322 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1323 }
1324 
its_send_vinvall(struct its_node * its,struct its_vpe * vpe)1325 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1326 {
1327 	struct its_cmd_desc desc;
1328 
1329 	desc.its_vinvall_cmd.vpe = vpe;
1330 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1331 }
1332 
its_send_vinv(struct its_device * dev,u32 event_id)1333 static void its_send_vinv(struct its_device *dev, u32 event_id)
1334 {
1335 	struct its_cmd_desc desc;
1336 
1337 	/*
1338 	 * There is no real VINV command. This is just a normal INV,
1339 	 * with a VSYNC instead of a SYNC.
1340 	 */
1341 	desc.its_inv_cmd.dev = dev;
1342 	desc.its_inv_cmd.event_id = event_id;
1343 
1344 	its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1345 }
1346 
its_send_vint(struct its_device * dev,u32 event_id)1347 static void its_send_vint(struct its_device *dev, u32 event_id)
1348 {
1349 	struct its_cmd_desc desc;
1350 
1351 	/*
1352 	 * There is no real VINT command. This is just a normal INT,
1353 	 * with a VSYNC instead of a SYNC.
1354 	 */
1355 	desc.its_int_cmd.dev = dev;
1356 	desc.its_int_cmd.event_id = event_id;
1357 
1358 	its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1359 }
1360 
its_send_vclear(struct its_device * dev,u32 event_id)1361 static void its_send_vclear(struct its_device *dev, u32 event_id)
1362 {
1363 	struct its_cmd_desc desc;
1364 
1365 	/*
1366 	 * There is no real VCLEAR command. This is just a normal CLEAR,
1367 	 * with a VSYNC instead of a SYNC.
1368 	 */
1369 	desc.its_clear_cmd.dev = dev;
1370 	desc.its_clear_cmd.event_id = event_id;
1371 
1372 	its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1373 }
1374 
its_send_invdb(struct its_node * its,struct its_vpe * vpe)1375 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1376 {
1377 	struct its_cmd_desc desc;
1378 
1379 	desc.its_invdb_cmd.vpe = vpe;
1380 	its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1381 }
1382 
1383 /*
1384  * irqchip functions - assumes MSI, mostly.
1385  */
lpi_write_config(struct irq_data * d,u8 clr,u8 set)1386 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1387 {
1388 	struct its_vlpi_map *map = get_vlpi_map(d);
1389 	irq_hw_number_t hwirq;
1390 	void *va;
1391 	u8 *cfg;
1392 
1393 	if (map) {
1394 		va = page_address(map->vm->vprop_page);
1395 		hwirq = map->vintid;
1396 
1397 		/* Remember the updated property */
1398 		map->properties &= ~clr;
1399 		map->properties |= set | LPI_PROP_GROUP1;
1400 	} else {
1401 		va = gic_rdists->prop_table_va;
1402 		hwirq = d->hwirq;
1403 	}
1404 
1405 	cfg = va + hwirq - 8192;
1406 	*cfg &= ~clr;
1407 	*cfg |= set | LPI_PROP_GROUP1;
1408 
1409 	/*
1410 	 * Make the above write visible to the redistributors.
1411 	 * And yes, we're flushing exactly: One. Single. Byte.
1412 	 * Humpf...
1413 	 */
1414 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1415 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1416 	else
1417 		dsb(ishst);
1418 }
1419 
wait_for_syncr(void __iomem * rdbase)1420 static void wait_for_syncr(void __iomem *rdbase)
1421 {
1422 	while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1423 		cpu_relax();
1424 }
1425 
direct_lpi_inv(struct irq_data * d)1426 static void direct_lpi_inv(struct irq_data *d)
1427 {
1428 	struct its_vlpi_map *map = get_vlpi_map(d);
1429 	void __iomem *rdbase;
1430 	unsigned long flags;
1431 	u64 val;
1432 	int cpu;
1433 
1434 	if (map) {
1435 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1436 
1437 		WARN_ON(!is_v4_1(its_dev->its));
1438 
1439 		val  = GICR_INVLPIR_V;
1440 		val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1441 		val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1442 	} else {
1443 		val = d->hwirq;
1444 	}
1445 
1446 	/* Target the redistributor this LPI is currently routed to */
1447 	cpu = irq_to_cpuid_lock(d, &flags);
1448 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1449 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1450 	gic_write_lpir(val, rdbase + GICR_INVLPIR);
1451 
1452 	wait_for_syncr(rdbase);
1453 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1454 	irq_to_cpuid_unlock(d, flags);
1455 }
1456 
lpi_update_config(struct irq_data * d,u8 clr,u8 set)1457 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1458 {
1459 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1460 
1461 	lpi_write_config(d, clr, set);
1462 	if (gic_rdists->has_direct_lpi &&
1463 	    (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1464 		direct_lpi_inv(d);
1465 	else if (!irqd_is_forwarded_to_vcpu(d))
1466 		its_send_inv(its_dev, its_get_event_id(d));
1467 	else
1468 		its_send_vinv(its_dev, its_get_event_id(d));
1469 }
1470 
its_vlpi_set_doorbell(struct irq_data * d,bool enable)1471 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1472 {
1473 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1474 	u32 event = its_get_event_id(d);
1475 	struct its_vlpi_map *map;
1476 
1477 	/*
1478 	 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1479 	 * here.
1480 	 */
1481 	if (is_v4_1(its_dev->its))
1482 		return;
1483 
1484 	map = dev_event_to_vlpi_map(its_dev, event);
1485 
1486 	if (map->db_enabled == enable)
1487 		return;
1488 
1489 	map->db_enabled = enable;
1490 
1491 	/*
1492 	 * More fun with the architecture:
1493 	 *
1494 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1495 	 * value or to 1023, depending on the enable bit. But that
1496 	 * would be issueing a mapping for an /existing/ DevID+EventID
1497 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1498 	 * to the /same/ vPE, using this opportunity to adjust the
1499 	 * doorbell. Mouahahahaha. We loves it, Precious.
1500 	 */
1501 	its_send_vmovi(its_dev, event);
1502 }
1503 
its_mask_irq(struct irq_data * d)1504 static void its_mask_irq(struct irq_data *d)
1505 {
1506 	if (irqd_is_forwarded_to_vcpu(d))
1507 		its_vlpi_set_doorbell(d, false);
1508 
1509 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1510 }
1511 
its_unmask_irq(struct irq_data * d)1512 static void its_unmask_irq(struct irq_data *d)
1513 {
1514 	if (irqd_is_forwarded_to_vcpu(d))
1515 		its_vlpi_set_doorbell(d, true);
1516 
1517 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1518 }
1519 
its_read_lpi_count(struct irq_data * d,int cpu)1520 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1521 {
1522 	if (irqd_affinity_is_managed(d))
1523 		return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1524 
1525 	return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1526 }
1527 
its_inc_lpi_count(struct irq_data * d,int cpu)1528 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1529 {
1530 	if (irqd_affinity_is_managed(d))
1531 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1532 	else
1533 		atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1534 }
1535 
its_dec_lpi_count(struct irq_data * d,int cpu)1536 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1537 {
1538 	if (irqd_affinity_is_managed(d))
1539 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1540 	else
1541 		atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1542 }
1543 
cpumask_pick_least_loaded(struct irq_data * d,const struct cpumask * cpu_mask)1544 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1545 					      const struct cpumask *cpu_mask)
1546 {
1547 	unsigned int cpu = nr_cpu_ids, tmp;
1548 	int count = S32_MAX;
1549 
1550 	for_each_cpu(tmp, cpu_mask) {
1551 		int this_count = its_read_lpi_count(d, tmp);
1552 		if (this_count < count) {
1553 			cpu = tmp;
1554 		        count = this_count;
1555 		}
1556 	}
1557 
1558 	return cpu;
1559 }
1560 
1561 /*
1562  * As suggested by Thomas Gleixner in:
1563  * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1564  */
its_select_cpu(struct irq_data * d,const struct cpumask * aff_mask)1565 static int its_select_cpu(struct irq_data *d,
1566 			  const struct cpumask *aff_mask)
1567 {
1568 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1569 	cpumask_var_t tmpmask;
1570 	int cpu, node;
1571 
1572 	if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
1573 		return -ENOMEM;
1574 
1575 	node = its_dev->its->numa_node;
1576 
1577 	if (!irqd_affinity_is_managed(d)) {
1578 		/* First try the NUMA node */
1579 		if (node != NUMA_NO_NODE) {
1580 			/*
1581 			 * Try the intersection of the affinity mask and the
1582 			 * node mask (and the online mask, just to be safe).
1583 			 */
1584 			cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1585 			cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1586 
1587 			/*
1588 			 * Ideally, we would check if the mask is empty, and
1589 			 * try again on the full node here.
1590 			 *
1591 			 * But it turns out that the way ACPI describes the
1592 			 * affinity for ITSs only deals about memory, and
1593 			 * not target CPUs, so it cannot describe a single
1594 			 * ITS placed next to two NUMA nodes.
1595 			 *
1596 			 * Instead, just fallback on the online mask. This
1597 			 * diverges from Thomas' suggestion above.
1598 			 */
1599 			cpu = cpumask_pick_least_loaded(d, tmpmask);
1600 			if (cpu < nr_cpu_ids)
1601 				goto out;
1602 
1603 			/* If we can't cross sockets, give up */
1604 			if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1605 				goto out;
1606 
1607 			/* If the above failed, expand the search */
1608 		}
1609 
1610 		/* Try the intersection of the affinity and online masks */
1611 		cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1612 
1613 		/* If that doesn't fly, the online mask is the last resort */
1614 		if (cpumask_empty(tmpmask))
1615 			cpumask_copy(tmpmask, cpu_online_mask);
1616 
1617 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1618 	} else {
1619 		cpumask_copy(tmpmask, aff_mask);
1620 
1621 		/* If we cannot cross sockets, limit the search to that node */
1622 		if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1623 		    node != NUMA_NO_NODE)
1624 			cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1625 
1626 		cpu = cpumask_pick_least_loaded(d, tmpmask);
1627 	}
1628 out:
1629 	free_cpumask_var(tmpmask);
1630 
1631 	pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1632 	return cpu;
1633 }
1634 
its_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1635 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1636 			    bool force)
1637 {
1638 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1639 	struct its_collection *target_col;
1640 	u32 id = its_get_event_id(d);
1641 	int cpu, prev_cpu;
1642 
1643 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1644 	if (irqd_is_forwarded_to_vcpu(d))
1645 		return -EINVAL;
1646 
1647 	prev_cpu = its_dev->event_map.col_map[id];
1648 	its_dec_lpi_count(d, prev_cpu);
1649 
1650 	if (!force)
1651 		cpu = its_select_cpu(d, mask_val);
1652 	else
1653 		cpu = cpumask_pick_least_loaded(d, mask_val);
1654 
1655 	if (cpu < 0 || cpu >= nr_cpu_ids)
1656 		goto err;
1657 
1658 	/* don't set the affinity when the target cpu is same as current one */
1659 	if (cpu != prev_cpu) {
1660 		target_col = &its_dev->its->collections[cpu];
1661 		its_send_movi(its_dev, target_col, id);
1662 		its_dev->event_map.col_map[id] = cpu;
1663 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1664 	}
1665 
1666 	its_inc_lpi_count(d, cpu);
1667 
1668 	return IRQ_SET_MASK_OK_DONE;
1669 
1670 err:
1671 	its_inc_lpi_count(d, prev_cpu);
1672 	return -EINVAL;
1673 }
1674 
its_irq_get_msi_base(struct its_device * its_dev)1675 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1676 {
1677 	struct its_node *its = its_dev->its;
1678 
1679 	return its->phys_base + GITS_TRANSLATER;
1680 }
1681 
its_irq_compose_msi_msg(struct irq_data * d,struct msi_msg * msg)1682 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1683 {
1684 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1685 	struct its_node *its;
1686 	u64 addr;
1687 
1688 	its = its_dev->its;
1689 	addr = its->get_msi_base(its_dev);
1690 
1691 	msg->address_lo		= lower_32_bits(addr);
1692 	msg->address_hi		= upper_32_bits(addr);
1693 	msg->data		= its_get_event_id(d);
1694 
1695 	iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1696 }
1697 
its_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)1698 static int its_irq_set_irqchip_state(struct irq_data *d,
1699 				     enum irqchip_irq_state which,
1700 				     bool state)
1701 {
1702 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1703 	u32 event = its_get_event_id(d);
1704 
1705 	if (which != IRQCHIP_STATE_PENDING)
1706 		return -EINVAL;
1707 
1708 	if (irqd_is_forwarded_to_vcpu(d)) {
1709 		if (state)
1710 			its_send_vint(its_dev, event);
1711 		else
1712 			its_send_vclear(its_dev, event);
1713 	} else {
1714 		if (state)
1715 			its_send_int(its_dev, event);
1716 		else
1717 			its_send_clear(its_dev, event);
1718 	}
1719 
1720 	return 0;
1721 }
1722 
its_irq_retrigger(struct irq_data * d)1723 static int its_irq_retrigger(struct irq_data *d)
1724 {
1725 	return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1726 }
1727 
1728 /*
1729  * Two favourable cases:
1730  *
1731  * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1732  *     for vSGI delivery
1733  *
1734  * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1735  *     and we're better off mapping all VPEs always
1736  *
1737  * If neither (a) nor (b) is true, then we map vPEs on demand.
1738  *
1739  */
gic_requires_eager_mapping(void)1740 static bool gic_requires_eager_mapping(void)
1741 {
1742 	if (!its_list_map || gic_rdists->has_rvpeid)
1743 		return true;
1744 
1745 	return false;
1746 }
1747 
its_map_vm(struct its_node * its,struct its_vm * vm)1748 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1749 {
1750 	unsigned long flags;
1751 
1752 	if (gic_requires_eager_mapping())
1753 		return;
1754 
1755 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1756 
1757 	/*
1758 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1759 	 * them mapped now.
1760 	 */
1761 	vm->vlpi_count[its->list_nr]++;
1762 
1763 	if (vm->vlpi_count[its->list_nr] == 1) {
1764 		int i;
1765 
1766 		for (i = 0; i < vm->nr_vpes; i++) {
1767 			struct its_vpe *vpe = vm->vpes[i];
1768 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1769 
1770 			/* Map the VPE to the first possible CPU */
1771 			vpe->col_idx = cpumask_first(cpu_online_mask);
1772 			its_send_vmapp(its, vpe, true);
1773 			its_send_vinvall(its, vpe);
1774 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1775 		}
1776 	}
1777 
1778 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1779 }
1780 
its_unmap_vm(struct its_node * its,struct its_vm * vm)1781 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1782 {
1783 	unsigned long flags;
1784 
1785 	/* Not using the ITS list? Everything is always mapped. */
1786 	if (gic_requires_eager_mapping())
1787 		return;
1788 
1789 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1790 
1791 	if (!--vm->vlpi_count[its->list_nr]) {
1792 		int i;
1793 
1794 		for (i = 0; i < vm->nr_vpes; i++)
1795 			its_send_vmapp(its, vm->vpes[i], false);
1796 	}
1797 
1798 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1799 }
1800 
its_vlpi_map(struct irq_data * d,struct its_cmd_info * info)1801 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1802 {
1803 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1804 	u32 event = its_get_event_id(d);
1805 	int ret = 0;
1806 
1807 	if (!info->map)
1808 		return -EINVAL;
1809 
1810 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1811 
1812 	if (!its_dev->event_map.vm) {
1813 		struct its_vlpi_map *maps;
1814 
1815 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1816 			       GFP_ATOMIC);
1817 		if (!maps) {
1818 			ret = -ENOMEM;
1819 			goto out;
1820 		}
1821 
1822 		its_dev->event_map.vm = info->map->vm;
1823 		its_dev->event_map.vlpi_maps = maps;
1824 	} else if (its_dev->event_map.vm != info->map->vm) {
1825 		ret = -EINVAL;
1826 		goto out;
1827 	}
1828 
1829 	/* Get our private copy of the mapping information */
1830 	its_dev->event_map.vlpi_maps[event] = *info->map;
1831 
1832 	if (irqd_is_forwarded_to_vcpu(d)) {
1833 		/* Already mapped, move it around */
1834 		its_send_vmovi(its_dev, event);
1835 	} else {
1836 		/* Ensure all the VPEs are mapped on this ITS */
1837 		its_map_vm(its_dev->its, info->map->vm);
1838 
1839 		/*
1840 		 * Flag the interrupt as forwarded so that we can
1841 		 * start poking the virtual property table.
1842 		 */
1843 		irqd_set_forwarded_to_vcpu(d);
1844 
1845 		/* Write out the property to the prop table */
1846 		lpi_write_config(d, 0xff, info->map->properties);
1847 
1848 		/* Drop the physical mapping */
1849 		its_send_discard(its_dev, event);
1850 
1851 		/* and install the virtual one */
1852 		its_send_vmapti(its_dev, event);
1853 
1854 		/* Increment the number of VLPIs */
1855 		its_dev->event_map.nr_vlpis++;
1856 	}
1857 
1858 out:
1859 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1860 	return ret;
1861 }
1862 
its_vlpi_get(struct irq_data * d,struct its_cmd_info * info)1863 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1864 {
1865 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1866 	struct its_vlpi_map *map;
1867 	int ret = 0;
1868 
1869 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1870 
1871 	map = get_vlpi_map(d);
1872 
1873 	if (!its_dev->event_map.vm || !map) {
1874 		ret = -EINVAL;
1875 		goto out;
1876 	}
1877 
1878 	/* Copy our mapping information to the incoming request */
1879 	*info->map = *map;
1880 
1881 out:
1882 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1883 	return ret;
1884 }
1885 
its_vlpi_unmap(struct irq_data * d)1886 static int its_vlpi_unmap(struct irq_data *d)
1887 {
1888 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1889 	u32 event = its_get_event_id(d);
1890 	int ret = 0;
1891 
1892 	raw_spin_lock(&its_dev->event_map.vlpi_lock);
1893 
1894 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1895 		ret = -EINVAL;
1896 		goto out;
1897 	}
1898 
1899 	/* Drop the virtual mapping */
1900 	its_send_discard(its_dev, event);
1901 
1902 	/* and restore the physical one */
1903 	irqd_clr_forwarded_to_vcpu(d);
1904 	its_send_mapti(its_dev, d->hwirq, event);
1905 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1906 				    LPI_PROP_ENABLED |
1907 				    LPI_PROP_GROUP1));
1908 
1909 	/* Potentially unmap the VM from this ITS */
1910 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1911 
1912 	/*
1913 	 * Drop the refcount and make the device available again if
1914 	 * this was the last VLPI.
1915 	 */
1916 	if (!--its_dev->event_map.nr_vlpis) {
1917 		its_dev->event_map.vm = NULL;
1918 		kfree(its_dev->event_map.vlpi_maps);
1919 	}
1920 
1921 out:
1922 	raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1923 	return ret;
1924 }
1925 
its_vlpi_prop_update(struct irq_data * d,struct its_cmd_info * info)1926 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1927 {
1928 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1929 
1930 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1931 		return -EINVAL;
1932 
1933 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1934 		lpi_update_config(d, 0xff, info->config);
1935 	else
1936 		lpi_write_config(d, 0xff, info->config);
1937 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1938 
1939 	return 0;
1940 }
1941 
its_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)1942 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1943 {
1944 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1945 	struct its_cmd_info *info = vcpu_info;
1946 
1947 	/* Need a v4 ITS */
1948 	if (!is_v4(its_dev->its))
1949 		return -EINVAL;
1950 
1951 	/* Unmap request? */
1952 	if (!info)
1953 		return its_vlpi_unmap(d);
1954 
1955 	switch (info->cmd_type) {
1956 	case MAP_VLPI:
1957 		return its_vlpi_map(d, info);
1958 
1959 	case GET_VLPI:
1960 		return its_vlpi_get(d, info);
1961 
1962 	case PROP_UPDATE_VLPI:
1963 	case PROP_UPDATE_AND_INV_VLPI:
1964 		return its_vlpi_prop_update(d, info);
1965 
1966 	default:
1967 		return -EINVAL;
1968 	}
1969 }
1970 
1971 static struct irq_chip its_irq_chip = {
1972 	.name			= "ITS",
1973 	.irq_mask		= its_mask_irq,
1974 	.irq_unmask		= its_unmask_irq,
1975 	.irq_eoi		= irq_chip_eoi_parent,
1976 	.irq_set_affinity	= its_set_affinity,
1977 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1978 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1979 	.irq_retrigger		= its_irq_retrigger,
1980 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1981 };
1982 
1983 
1984 /*
1985  * How we allocate LPIs:
1986  *
1987  * lpi_range_list contains ranges of LPIs that are to available to
1988  * allocate from. To allocate LPIs, just pick the first range that
1989  * fits the required allocation, and reduce it by the required
1990  * amount. Once empty, remove the range from the list.
1991  *
1992  * To free a range of LPIs, add a free range to the list, sort it and
1993  * merge the result if the new range happens to be adjacent to an
1994  * already free block.
1995  *
1996  * The consequence of the above is that allocation is cost is low, but
1997  * freeing is expensive. We assumes that freeing rarely occurs.
1998  */
1999 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
2000 
2001 static DEFINE_MUTEX(lpi_range_lock);
2002 static LIST_HEAD(lpi_range_list);
2003 
2004 struct lpi_range {
2005 	struct list_head	entry;
2006 	u32			base_id;
2007 	u32			span;
2008 };
2009 
mk_lpi_range(u32 base,u32 span)2010 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2011 {
2012 	struct lpi_range *range;
2013 
2014 	range = kmalloc(sizeof(*range), GFP_KERNEL);
2015 	if (range) {
2016 		range->base_id = base;
2017 		range->span = span;
2018 	}
2019 
2020 	return range;
2021 }
2022 
alloc_lpi_range(u32 nr_lpis,u32 * base)2023 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2024 {
2025 	struct lpi_range *range, *tmp;
2026 	int err = -ENOSPC;
2027 
2028 	mutex_lock(&lpi_range_lock);
2029 
2030 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2031 		if (range->span >= nr_lpis) {
2032 			*base = range->base_id;
2033 			range->base_id += nr_lpis;
2034 			range->span -= nr_lpis;
2035 
2036 			if (range->span == 0) {
2037 				list_del(&range->entry);
2038 				kfree(range);
2039 			}
2040 
2041 			err = 0;
2042 			break;
2043 		}
2044 	}
2045 
2046 	mutex_unlock(&lpi_range_lock);
2047 
2048 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2049 	return err;
2050 }
2051 
merge_lpi_ranges(struct lpi_range * a,struct lpi_range * b)2052 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2053 {
2054 	if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2055 		return;
2056 	if (a->base_id + a->span != b->base_id)
2057 		return;
2058 	b->base_id = a->base_id;
2059 	b->span += a->span;
2060 	list_del(&a->entry);
2061 	kfree(a);
2062 }
2063 
free_lpi_range(u32 base,u32 nr_lpis)2064 static int free_lpi_range(u32 base, u32 nr_lpis)
2065 {
2066 	struct lpi_range *new, *old;
2067 
2068 	new = mk_lpi_range(base, nr_lpis);
2069 	if (!new)
2070 		return -ENOMEM;
2071 
2072 	mutex_lock(&lpi_range_lock);
2073 
2074 	list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2075 		if (old->base_id < base)
2076 			break;
2077 	}
2078 	/*
2079 	 * old is the last element with ->base_id smaller than base,
2080 	 * so new goes right after it. If there are no elements with
2081 	 * ->base_id smaller than base, &old->entry ends up pointing
2082 	 * at the head of the list, and inserting new it the start of
2083 	 * the list is the right thing to do in that case as well.
2084 	 */
2085 	list_add(&new->entry, &old->entry);
2086 	/*
2087 	 * Now check if we can merge with the preceding and/or
2088 	 * following ranges.
2089 	 */
2090 	merge_lpi_ranges(old, new);
2091 	merge_lpi_ranges(new, list_next_entry(new, entry));
2092 
2093 	mutex_unlock(&lpi_range_lock);
2094 	return 0;
2095 }
2096 
its_lpi_init(u32 id_bits)2097 static int __init its_lpi_init(u32 id_bits)
2098 {
2099 	u32 lpis = (1UL << id_bits) - 8192;
2100 	u32 numlpis;
2101 	int err;
2102 
2103 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2104 
2105 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2106 		lpis = numlpis;
2107 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2108 			lpis);
2109 	}
2110 
2111 	/*
2112 	 * Initializing the allocator is just the same as freeing the
2113 	 * full range of LPIs.
2114 	 */
2115 	err = free_lpi_range(8192, lpis);
2116 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2117 	return err;
2118 }
2119 
its_lpi_alloc(int nr_irqs,u32 * base,int * nr_ids)2120 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2121 {
2122 	unsigned long *bitmap = NULL;
2123 	int err = 0;
2124 
2125 	do {
2126 		err = alloc_lpi_range(nr_irqs, base);
2127 		if (!err)
2128 			break;
2129 
2130 		nr_irqs /= 2;
2131 	} while (nr_irqs > 0);
2132 
2133 	if (!nr_irqs)
2134 		err = -ENOSPC;
2135 
2136 	if (err)
2137 		goto out;
2138 
2139 	bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
2140 	if (!bitmap)
2141 		goto out;
2142 
2143 	*nr_ids = nr_irqs;
2144 
2145 out:
2146 	if (!bitmap)
2147 		*base = *nr_ids = 0;
2148 
2149 	return bitmap;
2150 }
2151 
its_lpi_free(unsigned long * bitmap,u32 base,u32 nr_ids)2152 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2153 {
2154 	WARN_ON(free_lpi_range(base, nr_ids));
2155 	kfree(bitmap);
2156 }
2157 
gic_reset_prop_table(void * va)2158 static void gic_reset_prop_table(void *va)
2159 {
2160 	/* Priority 0xa0, Group-1, disabled */
2161 	memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2162 
2163 	/* Make sure the GIC will observe the written configuration */
2164 	gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2165 }
2166 
its_allocate_prop_table(gfp_t gfp_flags)2167 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2168 {
2169 	struct page *prop_page;
2170 
2171 	if (of_machine_is_compatible("rockchip,rk3568") || of_machine_is_compatible("rockchip,rk3566"))
2172 		gfp_flags |= GFP_DMA32;
2173 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2174 	if (!prop_page)
2175 		return NULL;
2176 
2177 	gic_reset_prop_table(page_address(prop_page));
2178 
2179 	return prop_page;
2180 }
2181 
its_free_prop_table(struct page * prop_page)2182 static void its_free_prop_table(struct page *prop_page)
2183 {
2184 	free_pages((unsigned long)page_address(prop_page),
2185 		   get_order(LPI_PROPBASE_SZ));
2186 }
2187 
gic_check_reserved_range(phys_addr_t addr,unsigned long size)2188 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2189 {
2190 	phys_addr_t start, end, addr_end;
2191 	u64 i;
2192 
2193 	/*
2194 	 * We don't bother checking for a kdump kernel as by
2195 	 * construction, the LPI tables are out of this kernel's
2196 	 * memory map.
2197 	 */
2198 	if (is_kdump_kernel())
2199 		return true;
2200 
2201 	addr_end = addr + size - 1;
2202 
2203 	for_each_reserved_mem_range(i, &start, &end) {
2204 		if (addr >= start && addr_end <= end)
2205 			return true;
2206 	}
2207 
2208 	/* Not found, not a good sign... */
2209 	pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2210 		&addr, &addr_end);
2211 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2212 	return false;
2213 }
2214 
gic_reserve_range(phys_addr_t addr,unsigned long size)2215 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2216 {
2217 	if (efi_enabled(EFI_CONFIG_TABLES))
2218 		return efi_mem_reserve_persistent(addr, size);
2219 
2220 	return 0;
2221 }
2222 
its_setup_lpi_prop_table(void)2223 static int __init its_setup_lpi_prop_table(void)
2224 {
2225 	if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2226 		u64 val;
2227 
2228 		val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2229 		lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2230 
2231 		gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2232 		gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2233 						     LPI_PROPBASE_SZ,
2234 						     MEMREMAP_WB);
2235 		gic_reset_prop_table(gic_rdists->prop_table_va);
2236 	} else {
2237 		struct page *page;
2238 
2239 		lpi_id_bits = min_t(u32,
2240 				    GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2241 				    ITS_MAX_LPI_NRBITS);
2242 		page = its_allocate_prop_table(GFP_NOWAIT);
2243 		if (!page) {
2244 			pr_err("Failed to allocate PROPBASE\n");
2245 			return -ENOMEM;
2246 		}
2247 
2248 		gic_rdists->prop_table_pa = page_to_phys(page);
2249 		gic_rdists->prop_table_va = page_address(page);
2250 		WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2251 					  LPI_PROPBASE_SZ));
2252 	}
2253 
2254 	pr_info("GICv3: using LPI property table @%pa\n",
2255 		&gic_rdists->prop_table_pa);
2256 
2257 	return its_lpi_init(lpi_id_bits);
2258 }
2259 
2260 static const char *its_base_type_string[] = {
2261 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
2262 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
2263 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
2264 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
2265 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
2266 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
2267 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
2268 };
2269 
its_read_baser(struct its_node * its,struct its_baser * baser)2270 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2271 {
2272 	u32 idx = baser - its->tables;
2273 
2274 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2275 }
2276 
its_write_baser(struct its_node * its,struct its_baser * baser,u64 val)2277 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2278 			    u64 val)
2279 {
2280 	u32 idx = baser - its->tables;
2281 
2282 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2283 	baser->val = its_read_baser(its, baser);
2284 }
2285 
its_setup_baser(struct its_node * its,struct its_baser * baser,u64 cache,u64 shr,u32 order,bool indirect)2286 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2287 			   u64 cache, u64 shr, u32 order, bool indirect)
2288 {
2289 	u64 val = its_read_baser(its, baser);
2290 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
2291 	u64 type = GITS_BASER_TYPE(val);
2292 	u64 baser_phys, tmp;
2293 	u32 alloc_pages, psz;
2294 	struct page *page;
2295 	void *base;
2296 	gfp_t gfp_flags;
2297 
2298 	psz = baser->psz;
2299 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2300 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
2301 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2302 			&its->phys_base, its_base_type_string[type],
2303 			alloc_pages, GITS_BASER_PAGES_MAX);
2304 		alloc_pages = GITS_BASER_PAGES_MAX;
2305 		order = get_order(GITS_BASER_PAGES_MAX * psz);
2306 	}
2307 
2308 	gfp_flags = GFP_KERNEL | __GFP_ZERO;
2309 	if (of_machine_is_compatible("rockchip,rk3568") || of_machine_is_compatible("rockchip,rk3566"))
2310 		gfp_flags |= GFP_DMA32;
2311 	page = alloc_pages_node(its->numa_node, gfp_flags, order);
2312 	if (!page)
2313 		return -ENOMEM;
2314 
2315 	base = (void *)page_address(page);
2316 	baser_phys = virt_to_phys(base);
2317 
2318 	/* Check if the physical address of the memory is above 48bits */
2319 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2320 
2321 		/* 52bit PA is supported only when PageSize=64K */
2322 		if (psz != SZ_64K) {
2323 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2324 			free_pages((unsigned long)base, order);
2325 			return -ENXIO;
2326 		}
2327 
2328 		/* Convert 52bit PA to 48bit field */
2329 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2330 	}
2331 
2332 retry_baser:
2333 	val = (baser_phys					 |
2334 		(type << GITS_BASER_TYPE_SHIFT)			 |
2335 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
2336 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
2337 		cache						 |
2338 		shr						 |
2339 		GITS_BASER_VALID);
2340 
2341 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
2342 
2343 	switch (psz) {
2344 	case SZ_4K:
2345 		val |= GITS_BASER_PAGE_SIZE_4K;
2346 		break;
2347 	case SZ_16K:
2348 		val |= GITS_BASER_PAGE_SIZE_16K;
2349 		break;
2350 	case SZ_64K:
2351 		val |= GITS_BASER_PAGE_SIZE_64K;
2352 		break;
2353 	}
2354 
2355 	its_write_baser(its, baser, val);
2356 	tmp = baser->val;
2357 
2358 	if (IS_ENABLED(CONFIG_NO_GKI) &&
2359 	    (of_machine_is_compatible("rockchip,rk3568") ||
2360 	     of_machine_is_compatible("rockchip,rk3566") ||
2361 	     of_machine_is_compatible("rockchip,rk3588"))) {
2362 		if (tmp & GITS_BASER_SHAREABILITY_MASK)
2363 			tmp &= ~GITS_BASER_SHAREABILITY_MASK;
2364 		else
2365 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2366 	}
2367 
2368 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2369 		/*
2370 		 * Shareability didn't stick. Just use
2371 		 * whatever the read reported, which is likely
2372 		 * to be the only thing this redistributor
2373 		 * supports. If that's zero, make it
2374 		 * non-cacheable as well.
2375 		 */
2376 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2377 		if (!shr) {
2378 			cache = GITS_BASER_nC;
2379 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2380 		}
2381 		goto retry_baser;
2382 	}
2383 
2384 	if (val != tmp) {
2385 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2386 		       &its->phys_base, its_base_type_string[type],
2387 		       val, tmp);
2388 		free_pages((unsigned long)base, order);
2389 		return -ENXIO;
2390 	}
2391 
2392 	baser->order = order;
2393 	baser->base = base;
2394 	baser->psz = psz;
2395 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2396 
2397 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2398 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2399 		its_base_type_string[type],
2400 		(unsigned long)virt_to_phys(base),
2401 		indirect ? "indirect" : "flat", (int)esz,
2402 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2403 
2404 	return 0;
2405 }
2406 
its_parse_indirect_baser(struct its_node * its,struct its_baser * baser,u32 * order,u32 ids)2407 static bool its_parse_indirect_baser(struct its_node *its,
2408 				     struct its_baser *baser,
2409 				     u32 *order, u32 ids)
2410 {
2411 	u64 tmp = its_read_baser(its, baser);
2412 	u64 type = GITS_BASER_TYPE(tmp);
2413 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2414 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2415 	u32 new_order = *order;
2416 	u32 psz = baser->psz;
2417 	bool indirect = false;
2418 
2419 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
2420 	if ((esz << ids) > (psz * 2)) {
2421 		/*
2422 		 * Find out whether hw supports a single or two-level table by
2423 		 * table by reading bit at offset '62' after writing '1' to it.
2424 		 */
2425 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2426 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
2427 
2428 		if (indirect) {
2429 			/*
2430 			 * The size of the lvl2 table is equal to ITS page size
2431 			 * which is 'psz'. For computing lvl1 table size,
2432 			 * subtract ID bits that sparse lvl2 table from 'ids'
2433 			 * which is reported by ITS hardware times lvl1 table
2434 			 * entry size.
2435 			 */
2436 			ids -= ilog2(psz / (int)esz);
2437 			esz = GITS_LVL1_ENTRY_SIZE;
2438 		}
2439 	}
2440 
2441 	/*
2442 	 * Allocate as many entries as required to fit the
2443 	 * range of device IDs that the ITS can grok... The ID
2444 	 * space being incredibly sparse, this results in a
2445 	 * massive waste of memory if two-level device table
2446 	 * feature is not supported by hardware.
2447 	 */
2448 	new_order = max_t(u32, get_order(esz << ids), new_order);
2449 	if (new_order >= MAX_ORDER) {
2450 		new_order = MAX_ORDER - 1;
2451 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2452 		pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2453 			&its->phys_base, its_base_type_string[type],
2454 			device_ids(its), ids);
2455 	}
2456 
2457 	*order = new_order;
2458 
2459 	return indirect;
2460 }
2461 
compute_common_aff(u64 val)2462 static u32 compute_common_aff(u64 val)
2463 {
2464 	u32 aff, clpiaff;
2465 
2466 	aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2467 	clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2468 
2469 	return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2470 }
2471 
compute_its_aff(struct its_node * its)2472 static u32 compute_its_aff(struct its_node *its)
2473 {
2474 	u64 val;
2475 	u32 svpet;
2476 
2477 	/*
2478 	 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2479 	 * the resulting affinity. We then use that to see if this match
2480 	 * our own affinity.
2481 	 */
2482 	svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2483 	val  = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2484 	val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2485 	return compute_common_aff(val);
2486 }
2487 
find_sibling_its(struct its_node * cur_its)2488 static struct its_node *find_sibling_its(struct its_node *cur_its)
2489 {
2490 	struct its_node *its;
2491 	u32 aff;
2492 
2493 	if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2494 		return NULL;
2495 
2496 	aff = compute_its_aff(cur_its);
2497 
2498 	list_for_each_entry(its, &its_nodes, entry) {
2499 		u64 baser;
2500 
2501 		if (!is_v4_1(its) || its == cur_its)
2502 			continue;
2503 
2504 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2505 			continue;
2506 
2507 		if (aff != compute_its_aff(its))
2508 			continue;
2509 
2510 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2511 		baser = its->tables[2].val;
2512 		if (!(baser & GITS_BASER_VALID))
2513 			continue;
2514 
2515 		return its;
2516 	}
2517 
2518 	return NULL;
2519 }
2520 
its_free_tables(struct its_node * its)2521 static void its_free_tables(struct its_node *its)
2522 {
2523 	int i;
2524 
2525 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2526 		if (its->tables[i].base) {
2527 			free_pages((unsigned long)its->tables[i].base,
2528 				   its->tables[i].order);
2529 			its->tables[i].base = NULL;
2530 		}
2531 	}
2532 }
2533 
its_probe_baser_psz(struct its_node * its,struct its_baser * baser)2534 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2535 {
2536 	u64 psz = SZ_64K;
2537 
2538 	while (psz) {
2539 		u64 val, gpsz;
2540 
2541 		val = its_read_baser(its, baser);
2542 		val &= ~GITS_BASER_PAGE_SIZE_MASK;
2543 
2544 		switch (psz) {
2545 		case SZ_64K:
2546 			gpsz = GITS_BASER_PAGE_SIZE_64K;
2547 			break;
2548 		case SZ_16K:
2549 			gpsz = GITS_BASER_PAGE_SIZE_16K;
2550 			break;
2551 		case SZ_4K:
2552 		default:
2553 			gpsz = GITS_BASER_PAGE_SIZE_4K;
2554 			break;
2555 		}
2556 
2557 		gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2558 
2559 		val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2560 		its_write_baser(its, baser, val);
2561 
2562 		if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2563 			break;
2564 
2565 		switch (psz) {
2566 		case SZ_64K:
2567 			psz = SZ_16K;
2568 			break;
2569 		case SZ_16K:
2570 			psz = SZ_4K;
2571 			break;
2572 		case SZ_4K:
2573 		default:
2574 			return -1;
2575 		}
2576 	}
2577 
2578 	baser->psz = psz;
2579 	return 0;
2580 }
2581 
its_alloc_tables(struct its_node * its)2582 static int its_alloc_tables(struct its_node *its)
2583 {
2584 	u64 shr = GITS_BASER_InnerShareable;
2585 	u64 cache = GITS_BASER_RaWaWb;
2586 	int err, i;
2587 
2588 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2589 		/* erratum 24313: ignore memory access type */
2590 		cache = GITS_BASER_nCnB;
2591 
2592 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2593 		struct its_baser *baser = its->tables + i;
2594 		u64 val = its_read_baser(its, baser);
2595 		u64 type = GITS_BASER_TYPE(val);
2596 		bool indirect = false;
2597 		u32 order;
2598 
2599 		if (type == GITS_BASER_TYPE_NONE)
2600 			continue;
2601 
2602 		if (its_probe_baser_psz(its, baser)) {
2603 			its_free_tables(its);
2604 			return -ENXIO;
2605 		}
2606 
2607 		order = get_order(baser->psz);
2608 
2609 		switch (type) {
2610 		case GITS_BASER_TYPE_DEVICE:
2611 			indirect = its_parse_indirect_baser(its, baser, &order,
2612 							    device_ids(its));
2613 			break;
2614 
2615 		case GITS_BASER_TYPE_VCPU:
2616 			if (is_v4_1(its)) {
2617 				struct its_node *sibling;
2618 
2619 				WARN_ON(i != 2);
2620 				if ((sibling = find_sibling_its(its))) {
2621 					*baser = sibling->tables[2];
2622 					its_write_baser(its, baser, baser->val);
2623 					continue;
2624 				}
2625 			}
2626 
2627 			indirect = its_parse_indirect_baser(its, baser, &order,
2628 							    ITS_MAX_VPEID_BITS);
2629 			break;
2630 		}
2631 
2632 		err = its_setup_baser(its, baser, cache, shr, order, indirect);
2633 		if (err < 0) {
2634 			its_free_tables(its);
2635 			return err;
2636 		}
2637 
2638 		/* Update settings which will be used for next BASERn */
2639 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2640 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2641 	}
2642 
2643 	return 0;
2644 }
2645 
inherit_vpe_l1_table_from_its(void)2646 static u64 inherit_vpe_l1_table_from_its(void)
2647 {
2648 	struct its_node *its;
2649 	u64 val;
2650 	u32 aff;
2651 
2652 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2653 	aff = compute_common_aff(val);
2654 
2655 	list_for_each_entry(its, &its_nodes, entry) {
2656 		u64 baser, addr;
2657 
2658 		if (!is_v4_1(its))
2659 			continue;
2660 
2661 		if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2662 			continue;
2663 
2664 		if (aff != compute_its_aff(its))
2665 			continue;
2666 
2667 		/* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2668 		baser = its->tables[2].val;
2669 		if (!(baser & GITS_BASER_VALID))
2670 			continue;
2671 
2672 		/* We have a winner! */
2673 		gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2674 
2675 		val  = GICR_VPROPBASER_4_1_VALID;
2676 		if (baser & GITS_BASER_INDIRECT)
2677 			val |= GICR_VPROPBASER_4_1_INDIRECT;
2678 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2679 				  FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2680 		switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2681 		case GIC_PAGE_SIZE_64K:
2682 			addr = GITS_BASER_ADDR_48_to_52(baser);
2683 			break;
2684 		default:
2685 			addr = baser & GENMASK_ULL(47, 12);
2686 			break;
2687 		}
2688 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2689 		val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2690 				  FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2691 		val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2692 				  FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2693 		val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2694 
2695 		return val;
2696 	}
2697 
2698 	return 0;
2699 }
2700 
inherit_vpe_l1_table_from_rd(cpumask_t ** mask)2701 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2702 {
2703 	u32 aff;
2704 	u64 val;
2705 	int cpu;
2706 
2707 	val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2708 	aff = compute_common_aff(val);
2709 
2710 	for_each_possible_cpu(cpu) {
2711 		void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2712 
2713 		if (!base || cpu == smp_processor_id())
2714 			continue;
2715 
2716 		val = gic_read_typer(base + GICR_TYPER);
2717 		if (aff != compute_common_aff(val))
2718 			continue;
2719 
2720 		/*
2721 		 * At this point, we have a victim. This particular CPU
2722 		 * has already booted, and has an affinity that matches
2723 		 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2724 		 * Make sure we don't write the Z bit in that case.
2725 		 */
2726 		val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2727 		val &= ~GICR_VPROPBASER_4_1_Z;
2728 
2729 		gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2730 		*mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2731 
2732 		return val;
2733 	}
2734 
2735 	return 0;
2736 }
2737 
allocate_vpe_l2_table(int cpu,u32 id)2738 static bool allocate_vpe_l2_table(int cpu, u32 id)
2739 {
2740 	void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2741 	unsigned int psz, esz, idx, npg, gpsz;
2742 	u64 val;
2743 	struct page *page;
2744 	__le64 *table;
2745 
2746 	if (!gic_rdists->has_rvpeid)
2747 		return true;
2748 
2749 	/* Skip non-present CPUs */
2750 	if (!base)
2751 		return true;
2752 
2753 	val  = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2754 
2755 	esz  = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2756 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2757 	npg  = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2758 
2759 	switch (gpsz) {
2760 	default:
2761 		WARN_ON(1);
2762 		fallthrough;
2763 	case GIC_PAGE_SIZE_4K:
2764 		psz = SZ_4K;
2765 		break;
2766 	case GIC_PAGE_SIZE_16K:
2767 		psz = SZ_16K;
2768 		break;
2769 	case GIC_PAGE_SIZE_64K:
2770 		psz = SZ_64K;
2771 		break;
2772 	}
2773 
2774 	/* Don't allow vpe_id that exceeds single, flat table limit */
2775 	if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2776 		return (id < (npg * psz / (esz * SZ_8)));
2777 
2778 	/* Compute 1st level table index & check if that exceeds table limit */
2779 	idx = id >> ilog2(psz / (esz * SZ_8));
2780 	if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2781 		return false;
2782 
2783 	table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2784 
2785 	/* Allocate memory for 2nd level table */
2786 	if (!table[idx]) {
2787 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2788 		if (!page)
2789 			return false;
2790 
2791 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2792 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2793 			gic_flush_dcache_to_poc(page_address(page), psz);
2794 
2795 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2796 
2797 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2798 		if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2799 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2800 
2801 		/* Ensure updated table contents are visible to RD hardware */
2802 		dsb(sy);
2803 	}
2804 
2805 	return true;
2806 }
2807 
allocate_vpe_l1_table(void)2808 static int allocate_vpe_l1_table(void)
2809 {
2810 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2811 	u64 val, gpsz, npg, pa;
2812 	unsigned int psz = SZ_64K;
2813 	unsigned int np, epp, esz;
2814 	struct page *page;
2815 
2816 	if (!gic_rdists->has_rvpeid)
2817 		return 0;
2818 
2819 	/*
2820 	 * if VPENDBASER.Valid is set, disable any previously programmed
2821 	 * VPE by setting PendingLast while clearing Valid. This has the
2822 	 * effect of making sure no doorbell will be generated and we can
2823 	 * then safely clear VPROPBASER.Valid.
2824 	 */
2825 	if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2826 		gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2827 				      vlpi_base + GICR_VPENDBASER);
2828 
2829 	/*
2830 	 * If we can inherit the configuration from another RD, let's do
2831 	 * so. Otherwise, we have to go through the allocation process. We
2832 	 * assume that all RDs have the exact same requirements, as
2833 	 * nothing will work otherwise.
2834 	 */
2835 	val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2836 	if (val & GICR_VPROPBASER_4_1_VALID)
2837 		goto out;
2838 
2839 	gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2840 	if (!gic_data_rdist()->vpe_table_mask)
2841 		return -ENOMEM;
2842 
2843 	val = inherit_vpe_l1_table_from_its();
2844 	if (val & GICR_VPROPBASER_4_1_VALID)
2845 		goto out;
2846 
2847 	/* First probe the page size */
2848 	val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2849 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2850 	val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2851 	gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2852 	esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2853 
2854 	switch (gpsz) {
2855 	default:
2856 		gpsz = GIC_PAGE_SIZE_4K;
2857 		fallthrough;
2858 	case GIC_PAGE_SIZE_4K:
2859 		psz = SZ_4K;
2860 		break;
2861 	case GIC_PAGE_SIZE_16K:
2862 		psz = SZ_16K;
2863 		break;
2864 	case GIC_PAGE_SIZE_64K:
2865 		psz = SZ_64K;
2866 		break;
2867 	}
2868 
2869 	/*
2870 	 * Start populating the register from scratch, including RO fields
2871 	 * (which we want to print in debug cases...)
2872 	 */
2873 	val = 0;
2874 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2875 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2876 
2877 	/* How many entries per GIC page? */
2878 	esz++;
2879 	epp = psz / (esz * SZ_8);
2880 
2881 	/*
2882 	 * If we need more than just a single L1 page, flag the table
2883 	 * as indirect and compute the number of required L1 pages.
2884 	 */
2885 	if (epp < ITS_MAX_VPEID) {
2886 		int nl2;
2887 
2888 		val |= GICR_VPROPBASER_4_1_INDIRECT;
2889 
2890 		/* Number of L2 pages required to cover the VPEID space */
2891 		nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2892 
2893 		/* Number of L1 pages to point to the L2 pages */
2894 		npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2895 	} else {
2896 		npg = 1;
2897 	}
2898 
2899 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2900 
2901 	/* Right, that's the number of CPU pages we need for L1 */
2902 	np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2903 
2904 	pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2905 		 np, npg, psz, epp, esz);
2906 	page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2907 	if (!page)
2908 		return -ENOMEM;
2909 
2910 	gic_data_rdist()->vpe_l1_base = page_address(page);
2911 	pa = virt_to_phys(page_address(page));
2912 	WARN_ON(!IS_ALIGNED(pa, psz));
2913 
2914 	val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2915 	val |= GICR_VPROPBASER_RaWb;
2916 	val |= GICR_VPROPBASER_InnerShareable;
2917 	val |= GICR_VPROPBASER_4_1_Z;
2918 	val |= GICR_VPROPBASER_4_1_VALID;
2919 
2920 out:
2921 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2922 	cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2923 
2924 	pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2925 		 smp_processor_id(), val,
2926 		 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2927 
2928 	return 0;
2929 }
2930 
its_alloc_collections(struct its_node * its)2931 static int its_alloc_collections(struct its_node *its)
2932 {
2933 	int i;
2934 
2935 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2936 				   GFP_KERNEL);
2937 	if (!its->collections)
2938 		return -ENOMEM;
2939 
2940 	for (i = 0; i < nr_cpu_ids; i++)
2941 		its->collections[i].target_address = ~0ULL;
2942 
2943 	return 0;
2944 }
2945 
its_allocate_pending_table(gfp_t gfp_flags)2946 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2947 {
2948 	struct page *pend_page;
2949 
2950 	if (of_machine_is_compatible("rockchip,rk3568") || of_machine_is_compatible("rockchip,rk3566"))
2951 		gfp_flags |= GFP_DMA32;
2952 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2953 				get_order(LPI_PENDBASE_SZ));
2954 	if (!pend_page)
2955 		return NULL;
2956 
2957 	/* Make sure the GIC will observe the zero-ed page */
2958 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2959 
2960 	return pend_page;
2961 }
2962 
its_free_pending_table(struct page * pt)2963 static void its_free_pending_table(struct page *pt)
2964 {
2965 	free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2966 }
2967 
2968 /*
2969  * Booting with kdump and LPIs enabled is generally fine. Any other
2970  * case is wrong in the absence of firmware/EFI support.
2971  */
enabled_lpis_allowed(void)2972 static bool enabled_lpis_allowed(void)
2973 {
2974 	phys_addr_t addr;
2975 	u64 val;
2976 
2977 	/* Check whether the property table is in a reserved region */
2978 	val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2979 	addr = val & GENMASK_ULL(51, 12);
2980 
2981 	return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2982 }
2983 
allocate_lpi_tables(void)2984 static int __init allocate_lpi_tables(void)
2985 {
2986 	u64 val;
2987 	int err, cpu;
2988 
2989 	/*
2990 	 * If LPIs are enabled while we run this from the boot CPU,
2991 	 * flag the RD tables as pre-allocated if the stars do align.
2992 	 */
2993 	val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2994 	if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2995 		gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2996 				      RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2997 		pr_info("GICv3: Using preallocated redistributor tables\n");
2998 	}
2999 
3000 	err = its_setup_lpi_prop_table();
3001 	if (err)
3002 		return err;
3003 
3004 	/*
3005 	 * We allocate all the pending tables anyway, as we may have a
3006 	 * mix of RDs that have had LPIs enabled, and some that
3007 	 * don't. We'll free the unused ones as each CPU comes online.
3008 	 */
3009 	for_each_possible_cpu(cpu) {
3010 		struct page *pend_page;
3011 
3012 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
3013 		if (!pend_page) {
3014 			pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3015 			return -ENOMEM;
3016 		}
3017 
3018 		gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3019 	}
3020 
3021 	return 0;
3022 }
3023 
read_vpend_dirty_clear(void __iomem * vlpi_base)3024 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3025 {
3026 	u32 count = 1000000;	/* 1s! */
3027 	bool clean;
3028 	u64 val;
3029 
3030 	do {
3031 		val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3032 		clean = !(val & GICR_VPENDBASER_Dirty);
3033 		if (!clean) {
3034 			count--;
3035 			cpu_relax();
3036 			udelay(1);
3037 		}
3038 	} while (!clean && count);
3039 
3040 	if (unlikely(!clean))
3041 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3042 
3043 	return val;
3044 }
3045 
its_clear_vpend_valid(void __iomem * vlpi_base,u64 clr,u64 set)3046 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3047 {
3048 	u64 val;
3049 
3050 	/* Make sure we wait until the RD is done with the initial scan */
3051 	val = read_vpend_dirty_clear(vlpi_base);
3052 	val &= ~GICR_VPENDBASER_Valid;
3053 	val &= ~clr;
3054 	val |= set;
3055 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3056 
3057 	val = read_vpend_dirty_clear(vlpi_base);
3058 	if (unlikely(val & GICR_VPENDBASER_Dirty))
3059 		val |= GICR_VPENDBASER_PendingLast;
3060 
3061 	return val;
3062 }
3063 
its_cpu_init_lpis(void)3064 static void its_cpu_init_lpis(void)
3065 {
3066 	void __iomem *rbase = gic_data_rdist_rd_base();
3067 	struct page *pend_page;
3068 	phys_addr_t paddr;
3069 	u64 val, tmp;
3070 
3071 	if (gic_data_rdist()->lpi_enabled)
3072 		return;
3073 
3074 	val = readl_relaxed(rbase + GICR_CTLR);
3075 	if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3076 	    (val & GICR_CTLR_ENABLE_LPIS)) {
3077 		/*
3078 		 * Check that we get the same property table on all
3079 		 * RDs. If we don't, this is hopeless.
3080 		 */
3081 		paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3082 		paddr &= GENMASK_ULL(51, 12);
3083 		if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3084 			add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3085 
3086 		paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3087 		paddr &= GENMASK_ULL(51, 16);
3088 
3089 		WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3090 		its_free_pending_table(gic_data_rdist()->pend_page);
3091 		gic_data_rdist()->pend_page = NULL;
3092 
3093 		goto out;
3094 	}
3095 
3096 	pend_page = gic_data_rdist()->pend_page;
3097 	paddr = page_to_phys(pend_page);
3098 	WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
3099 
3100 	/* set PROPBASE */
3101 	val = (gic_rdists->prop_table_pa |
3102 	       GICR_PROPBASER_InnerShareable |
3103 	       GICR_PROPBASER_RaWaWb |
3104 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3105 
3106 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3107 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3108 
3109 	if (IS_ENABLED(CONFIG_NO_GKI) &&
3110 	    (of_machine_is_compatible("rockchip,rk3568") ||
3111 	     of_machine_is_compatible("rockchip,rk3566") ||
3112 	     of_machine_is_compatible("rockchip,rk3588")))
3113 		tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3114 
3115 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3116 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3117 			/*
3118 			 * The HW reports non-shareable, we must
3119 			 * remove the cacheability attributes as
3120 			 * well.
3121 			 */
3122 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3123 				 GICR_PROPBASER_CACHEABILITY_MASK);
3124 			val |= GICR_PROPBASER_nC;
3125 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3126 		}
3127 		pr_info_once("GIC: using cache flushing for LPI property table\n");
3128 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3129 	}
3130 
3131 	/* set PENDBASE */
3132 	val = (page_to_phys(pend_page) |
3133 	       GICR_PENDBASER_InnerShareable |
3134 	       GICR_PENDBASER_RaWaWb);
3135 
3136 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3137 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3138 
3139 	if (IS_ENABLED(CONFIG_NO_GKI) &&
3140 	    (of_machine_is_compatible("rockchip,rk3568") ||
3141 	     of_machine_is_compatible("rockchip,rk3566") ||
3142 	     of_machine_is_compatible("rockchip,rk3588")))
3143 		tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3144 
3145 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3146 		/*
3147 		 * The HW reports non-shareable, we must remove the
3148 		 * cacheability attributes as well.
3149 		 */
3150 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3151 			 GICR_PENDBASER_CACHEABILITY_MASK);
3152 		val |= GICR_PENDBASER_nC;
3153 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3154 	}
3155 
3156 	/* Enable LPIs */
3157 	val = readl_relaxed(rbase + GICR_CTLR);
3158 	val |= GICR_CTLR_ENABLE_LPIS;
3159 	writel_relaxed(val, rbase + GICR_CTLR);
3160 
3161 	if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3162 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3163 
3164 		/*
3165 		 * It's possible for CPU to receive VLPIs before it is
3166 		 * sheduled as a vPE, especially for the first CPU, and the
3167 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3168 		 * as out of range and dropped by GIC.
3169 		 * So we initialize IDbits to known value to avoid VLPI drop.
3170 		 */
3171 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3172 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3173 			smp_processor_id(), val);
3174 		gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3175 
3176 		/*
3177 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
3178 		 * ancient programming gets left in and has possibility of
3179 		 * corrupting memory.
3180 		 */
3181 		val = its_clear_vpend_valid(vlpi_base, 0, 0);
3182 	}
3183 
3184 	if (allocate_vpe_l1_table()) {
3185 		/*
3186 		 * If the allocation has failed, we're in massive trouble.
3187 		 * Disable direct injection, and pray that no VM was
3188 		 * already running...
3189 		 */
3190 		gic_rdists->has_rvpeid = false;
3191 		gic_rdists->has_vlpis = false;
3192 	}
3193 
3194 	/* Make sure the GIC has seen the above */
3195 	dsb(sy);
3196 out:
3197 	gic_data_rdist()->lpi_enabled = true;
3198 	pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3199 		smp_processor_id(),
3200 		gic_data_rdist()->pend_page ? "allocated" : "reserved",
3201 		&paddr);
3202 }
3203 
its_cpu_init_collection(struct its_node * its)3204 static void its_cpu_init_collection(struct its_node *its)
3205 {
3206 	int cpu = smp_processor_id();
3207 	u64 target;
3208 
3209 	/* avoid cross node collections and its mapping */
3210 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3211 		struct device_node *cpu_node;
3212 
3213 		cpu_node = of_get_cpu_node(cpu, NULL);
3214 		if (its->numa_node != NUMA_NO_NODE &&
3215 			its->numa_node != of_node_to_nid(cpu_node))
3216 			return;
3217 	}
3218 
3219 	/*
3220 	 * We now have to bind each collection to its target
3221 	 * redistributor.
3222 	 */
3223 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3224 		/*
3225 		 * This ITS wants the physical address of the
3226 		 * redistributor.
3227 		 */
3228 		target = gic_data_rdist()->phys_base;
3229 	} else {
3230 		/* This ITS wants a linear CPU number. */
3231 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3232 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
3233 	}
3234 
3235 	/* Perform collection mapping */
3236 	its->collections[cpu].target_address = target;
3237 	its->collections[cpu].col_id = cpu;
3238 
3239 	its_send_mapc(its, &its->collections[cpu], 1);
3240 	its_send_invall(its, &its->collections[cpu]);
3241 }
3242 
its_cpu_init_collections(void)3243 static void its_cpu_init_collections(void)
3244 {
3245 	struct its_node *its;
3246 
3247 	raw_spin_lock(&its_lock);
3248 
3249 	list_for_each_entry(its, &its_nodes, entry)
3250 		its_cpu_init_collection(its);
3251 
3252 	raw_spin_unlock(&its_lock);
3253 }
3254 
its_find_device(struct its_node * its,u32 dev_id)3255 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3256 {
3257 	struct its_device *its_dev = NULL, *tmp;
3258 	unsigned long flags;
3259 
3260 	raw_spin_lock_irqsave(&its->lock, flags);
3261 
3262 	list_for_each_entry(tmp, &its->its_device_list, entry) {
3263 		if (tmp->device_id == dev_id) {
3264 			its_dev = tmp;
3265 			break;
3266 		}
3267 	}
3268 
3269 	raw_spin_unlock_irqrestore(&its->lock, flags);
3270 
3271 	return its_dev;
3272 }
3273 
its_get_baser(struct its_node * its,u32 type)3274 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3275 {
3276 	int i;
3277 
3278 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3279 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
3280 			return &its->tables[i];
3281 	}
3282 
3283 	return NULL;
3284 }
3285 
its_alloc_table_entry(struct its_node * its,struct its_baser * baser,u32 id)3286 static bool its_alloc_table_entry(struct its_node *its,
3287 				  struct its_baser *baser, u32 id)
3288 {
3289 	struct page *page;
3290 	u32 esz, idx;
3291 	__le64 *table;
3292 
3293 	/* Don't allow device id that exceeds single, flat table limit */
3294 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
3295 	if (!(baser->val & GITS_BASER_INDIRECT))
3296 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3297 
3298 	/* Compute 1st level table index & check if that exceeds table limit */
3299 	idx = id >> ilog2(baser->psz / esz);
3300 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3301 		return false;
3302 
3303 	table = baser->base;
3304 
3305 	/* Allocate memory for 2nd level table */
3306 	if (!table[idx]) {
3307 		gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO;
3308 
3309 		if (of_machine_is_compatible("rockchip,rk3568") || of_machine_is_compatible("rockchip,rk3566"))
3310 			gfp_flags |= GFP_DMA32;
3311 		page = alloc_pages_node(its->numa_node, gfp_flags,
3312 					get_order(baser->psz));
3313 		if (!page)
3314 			return false;
3315 
3316 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
3317 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3318 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
3319 
3320 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3321 
3322 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3323 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3324 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3325 
3326 		/* Ensure updated table contents are visible to ITS hardware */
3327 		dsb(sy);
3328 	}
3329 
3330 	return true;
3331 }
3332 
its_alloc_device_table(struct its_node * its,u32 dev_id)3333 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3334 {
3335 	struct its_baser *baser;
3336 
3337 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3338 
3339 	/* Don't allow device id that exceeds ITS hardware limit */
3340 	if (!baser)
3341 		return (ilog2(dev_id) < device_ids(its));
3342 
3343 	return its_alloc_table_entry(its, baser, dev_id);
3344 }
3345 
its_alloc_vpe_table(u32 vpe_id)3346 static bool its_alloc_vpe_table(u32 vpe_id)
3347 {
3348 	struct its_node *its;
3349 	int cpu;
3350 
3351 	/*
3352 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3353 	 * could try and only do it on ITSs corresponding to devices
3354 	 * that have interrupts targeted at this VPE, but the
3355 	 * complexity becomes crazy (and you have tons of memory
3356 	 * anyway, right?).
3357 	 */
3358 	list_for_each_entry(its, &its_nodes, entry) {
3359 		struct its_baser *baser;
3360 
3361 		if (!is_v4(its))
3362 			continue;
3363 
3364 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3365 		if (!baser)
3366 			return false;
3367 
3368 		if (!its_alloc_table_entry(its, baser, vpe_id))
3369 			return false;
3370 	}
3371 
3372 	/* Non v4.1? No need to iterate RDs and go back early. */
3373 	if (!gic_rdists->has_rvpeid)
3374 		return true;
3375 
3376 	/*
3377 	 * Make sure the L2 tables are allocated for all copies of
3378 	 * the L1 table on *all* v4.1 RDs.
3379 	 */
3380 	for_each_possible_cpu(cpu) {
3381 		if (!allocate_vpe_l2_table(cpu, vpe_id))
3382 			return false;
3383 	}
3384 
3385 	return true;
3386 }
3387 
its_create_device(struct its_node * its,u32 dev_id,int nvecs,bool alloc_lpis)3388 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3389 					    int nvecs, bool alloc_lpis)
3390 {
3391 	struct its_device *dev;
3392 	unsigned long *lpi_map = NULL;
3393 	unsigned long flags;
3394 	u16 *col_map = NULL;
3395 	void *itt;
3396 	int lpi_base;
3397 	int nr_lpis;
3398 	int nr_ites;
3399 	int sz;
3400 	gfp_t gfp_flags;
3401 
3402 	if (!its_alloc_device_table(its, dev_id))
3403 		return NULL;
3404 
3405 	if (WARN_ON(!is_power_of_2(nvecs)))
3406 		nvecs = roundup_pow_of_two(nvecs);
3407 
3408 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3409 	/*
3410 	 * Even if the device wants a single LPI, the ITT must be
3411 	 * sized as a power of two (and you need at least one bit...).
3412 	 */
3413 	nr_ites = max(2, nvecs);
3414 	sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3415 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3416 	gfp_flags = GFP_KERNEL;
3417 	if (of_machine_is_compatible("rockchip,rk3568") || of_machine_is_compatible("rockchip,rk3566")) {
3418 		gfp_flags |= GFP_DMA32;
3419 		itt = (void *)__get_free_pages(gfp_flags, get_order(sz));
3420 	} else {
3421 		itt = kzalloc_node(sz, gfp_flags, its->numa_node);
3422 	}
3423 
3424 	if (alloc_lpis) {
3425 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3426 		if (lpi_map)
3427 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
3428 					  GFP_KERNEL);
3429 	} else {
3430 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3431 		nr_lpis = 0;
3432 		lpi_base = 0;
3433 	}
3434 
3435 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
3436 		kfree(dev);
3437 
3438 		if (of_machine_is_compatible("rockchip,rk3568") ||
3439 		    of_machine_is_compatible("rockchip,rk3566"))
3440 			free_pages((unsigned long)itt, get_order(sz));
3441 		else
3442 			kfree(itt);
3443 
3444 		kfree(lpi_map);
3445 		kfree(col_map);
3446 		return NULL;
3447 	}
3448 
3449 	gic_flush_dcache_to_poc(itt, sz);
3450 
3451 	dev->its = its;
3452 	dev->itt = itt;
3453 	dev->itt_sz = sz;
3454 	dev->nr_ites = nr_ites;
3455 	dev->event_map.lpi_map = lpi_map;
3456 	dev->event_map.col_map = col_map;
3457 	dev->event_map.lpi_base = lpi_base;
3458 	dev->event_map.nr_lpis = nr_lpis;
3459 	raw_spin_lock_init(&dev->event_map.vlpi_lock);
3460 	dev->device_id = dev_id;
3461 	INIT_LIST_HEAD(&dev->entry);
3462 
3463 	raw_spin_lock_irqsave(&its->lock, flags);
3464 	list_add(&dev->entry, &its->its_device_list);
3465 	raw_spin_unlock_irqrestore(&its->lock, flags);
3466 
3467 	/* Map device to its ITT */
3468 	its_send_mapd(dev, 1);
3469 
3470 	return dev;
3471 }
3472 
its_free_device(struct its_device * its_dev)3473 static void its_free_device(struct its_device *its_dev)
3474 {
3475 	unsigned long flags;
3476 
3477 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3478 	list_del(&its_dev->entry);
3479 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3480 	kfree(its_dev->event_map.col_map);
3481 
3482 	if (of_machine_is_compatible("rockchip,rk3568") ||
3483 	    of_machine_is_compatible("rockchip,rk3566"))
3484 		free_pages((unsigned long)its_dev->itt, get_order(its_dev->itt_sz));
3485 	else
3486 		kfree(its_dev->itt);
3487 
3488 	kfree(its_dev);
3489 }
3490 
its_alloc_device_irq(struct its_device * dev,int nvecs,irq_hw_number_t * hwirq)3491 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3492 {
3493 	int idx;
3494 
3495 	/* Find a free LPI region in lpi_map and allocate them. */
3496 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
3497 				      dev->event_map.nr_lpis,
3498 				      get_count_order(nvecs));
3499 	if (idx < 0)
3500 		return -ENOSPC;
3501 
3502 	*hwirq = dev->event_map.lpi_base + idx;
3503 
3504 	return 0;
3505 }
3506 
its_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * info)3507 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3508 			   int nvec, msi_alloc_info_t *info)
3509 {
3510 	struct its_node *its;
3511 	struct its_device *its_dev;
3512 	struct msi_domain_info *msi_info;
3513 	u32 dev_id;
3514 	int err = 0;
3515 
3516 	/*
3517 	 * We ignore "dev" entirely, and rely on the dev_id that has
3518 	 * been passed via the scratchpad. This limits this domain's
3519 	 * usefulness to upper layers that definitely know that they
3520 	 * are built on top of the ITS.
3521 	 */
3522 	dev_id = info->scratchpad[0].ul;
3523 
3524 	msi_info = msi_get_domain_info(domain);
3525 	its = msi_info->data;
3526 
3527 	if (!gic_rdists->has_direct_lpi &&
3528 	    vpe_proxy.dev &&
3529 	    vpe_proxy.dev->its == its &&
3530 	    dev_id == vpe_proxy.dev->device_id) {
3531 		/* Bad luck. Get yourself a better implementation */
3532 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3533 			  dev_id);
3534 		return -EINVAL;
3535 	}
3536 
3537 	mutex_lock(&its->dev_alloc_lock);
3538 	its_dev = its_find_device(its, dev_id);
3539 	if (its_dev) {
3540 		/*
3541 		 * We already have seen this ID, probably through
3542 		 * another alias (PCI bridge of some sort). No need to
3543 		 * create the device.
3544 		 */
3545 		its_dev->shared = true;
3546 		pr_debug("Reusing ITT for devID %x\n", dev_id);
3547 		goto out;
3548 	}
3549 
3550 	its_dev = its_create_device(its, dev_id, nvec, true);
3551 	if (!its_dev) {
3552 		err = -ENOMEM;
3553 		goto out;
3554 	}
3555 
3556 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3557 out:
3558 	mutex_unlock(&its->dev_alloc_lock);
3559 	info->scratchpad[0].ptr = its_dev;
3560 	return err;
3561 }
3562 
3563 static struct msi_domain_ops its_msi_domain_ops = {
3564 	.msi_prepare	= its_msi_prepare,
3565 };
3566 
its_irq_gic_domain_alloc(struct irq_domain * domain,unsigned int virq,irq_hw_number_t hwirq)3567 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3568 				    unsigned int virq,
3569 				    irq_hw_number_t hwirq)
3570 {
3571 	struct irq_fwspec fwspec;
3572 
3573 	if (irq_domain_get_of_node(domain->parent)) {
3574 		fwspec.fwnode = domain->parent->fwnode;
3575 		fwspec.param_count = 3;
3576 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3577 		fwspec.param[1] = hwirq;
3578 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3579 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3580 		fwspec.fwnode = domain->parent->fwnode;
3581 		fwspec.param_count = 2;
3582 		fwspec.param[0] = hwirq;
3583 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3584 	} else {
3585 		return -EINVAL;
3586 	}
3587 
3588 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3589 }
3590 
its_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)3591 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3592 				unsigned int nr_irqs, void *args)
3593 {
3594 	msi_alloc_info_t *info = args;
3595 	struct its_device *its_dev = info->scratchpad[0].ptr;
3596 	struct its_node *its = its_dev->its;
3597 	struct irq_data *irqd;
3598 	irq_hw_number_t hwirq;
3599 	int err;
3600 	int i;
3601 
3602 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3603 	if (err)
3604 		return err;
3605 
3606 	err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3607 	if (err)
3608 		return err;
3609 
3610 	for (i = 0; i < nr_irqs; i++) {
3611 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3612 		if (err)
3613 			return err;
3614 
3615 		irq_domain_set_hwirq_and_chip(domain, virq + i,
3616 					      hwirq + i, &its_irq_chip, its_dev);
3617 		irqd = irq_get_irq_data(virq + i);
3618 		irqd_set_single_target(irqd);
3619 		irqd_set_affinity_on_activate(irqd);
3620 		pr_debug("ID:%d pID:%d vID:%d\n",
3621 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
3622 			 (int)(hwirq + i), virq + i);
3623 	}
3624 
3625 	return 0;
3626 }
3627 
its_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)3628 static int its_irq_domain_activate(struct irq_domain *domain,
3629 				   struct irq_data *d, bool reserve)
3630 {
3631 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3632 	u32 event = its_get_event_id(d);
3633 	int cpu;
3634 
3635 	cpu = its_select_cpu(d, cpu_online_mask);
3636 	if (cpu < 0 || cpu >= nr_cpu_ids)
3637 		return -EINVAL;
3638 
3639 	its_inc_lpi_count(d, cpu);
3640 	its_dev->event_map.col_map[event] = cpu;
3641 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3642 
3643 	/* Map the GIC IRQ and event to the device */
3644 	its_send_mapti(its_dev, d->hwirq, event);
3645 	return 0;
3646 }
3647 
its_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)3648 static void its_irq_domain_deactivate(struct irq_domain *domain,
3649 				      struct irq_data *d)
3650 {
3651 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3652 	u32 event = its_get_event_id(d);
3653 
3654 	its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3655 	/* Stop the delivery of interrupts */
3656 	its_send_discard(its_dev, event);
3657 }
3658 
its_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3659 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3660 				unsigned int nr_irqs)
3661 {
3662 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3663 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3664 	struct its_node *its = its_dev->its;
3665 	int i;
3666 
3667 	bitmap_release_region(its_dev->event_map.lpi_map,
3668 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3669 			      get_count_order(nr_irqs));
3670 
3671 	for (i = 0; i < nr_irqs; i++) {
3672 		struct irq_data *data = irq_domain_get_irq_data(domain,
3673 								virq + i);
3674 		/* Nuke the entry in the domain */
3675 		irq_domain_reset_irq_data(data);
3676 	}
3677 
3678 	mutex_lock(&its->dev_alloc_lock);
3679 
3680 	/*
3681 	 * If all interrupts have been freed, start mopping the
3682 	 * floor. This is conditionned on the device not being shared.
3683 	 */
3684 	if (!its_dev->shared &&
3685 	    bitmap_empty(its_dev->event_map.lpi_map,
3686 			 its_dev->event_map.nr_lpis)) {
3687 		its_lpi_free(its_dev->event_map.lpi_map,
3688 			     its_dev->event_map.lpi_base,
3689 			     its_dev->event_map.nr_lpis);
3690 
3691 		/* Unmap device/itt */
3692 		its_send_mapd(its_dev, 0);
3693 		its_free_device(its_dev);
3694 	}
3695 
3696 	mutex_unlock(&its->dev_alloc_lock);
3697 
3698 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3699 }
3700 
3701 static const struct irq_domain_ops its_domain_ops = {
3702 	.alloc			= its_irq_domain_alloc,
3703 	.free			= its_irq_domain_free,
3704 	.activate		= its_irq_domain_activate,
3705 	.deactivate		= its_irq_domain_deactivate,
3706 };
3707 
3708 /*
3709  * This is insane.
3710  *
3711  * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3712  * likely), the only way to perform an invalidate is to use a fake
3713  * device to issue an INV command, implying that the LPI has first
3714  * been mapped to some event on that device. Since this is not exactly
3715  * cheap, we try to keep that mapping around as long as possible, and
3716  * only issue an UNMAP if we're short on available slots.
3717  *
3718  * Broken by design(tm).
3719  *
3720  * GICv4.1, on the other hand, mandates that we're able to invalidate
3721  * by writing to a MMIO register. It doesn't implement the whole of
3722  * DirectLPI, but that's good enough. And most of the time, we don't
3723  * even have to invalidate anything, as the redistributor can be told
3724  * whether to generate a doorbell or not (we thus leave it enabled,
3725  * always).
3726  */
its_vpe_db_proxy_unmap_locked(struct its_vpe * vpe)3727 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3728 {
3729 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3730 	if (gic_rdists->has_rvpeid)
3731 		return;
3732 
3733 	/* Already unmapped? */
3734 	if (vpe->vpe_proxy_event == -1)
3735 		return;
3736 
3737 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3738 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3739 
3740 	/*
3741 	 * We don't track empty slots at all, so let's move the
3742 	 * next_victim pointer if we can quickly reuse that slot
3743 	 * instead of nuking an existing entry. Not clear that this is
3744 	 * always a win though, and this might just generate a ripple
3745 	 * effect... Let's just hope VPEs don't migrate too often.
3746 	 */
3747 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3748 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
3749 
3750 	vpe->vpe_proxy_event = -1;
3751 }
3752 
its_vpe_db_proxy_unmap(struct its_vpe * vpe)3753 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3754 {
3755 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3756 	if (gic_rdists->has_rvpeid)
3757 		return;
3758 
3759 	if (!gic_rdists->has_direct_lpi) {
3760 		unsigned long flags;
3761 
3762 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3763 		its_vpe_db_proxy_unmap_locked(vpe);
3764 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3765 	}
3766 }
3767 
its_vpe_db_proxy_map_locked(struct its_vpe * vpe)3768 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3769 {
3770 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3771 	if (gic_rdists->has_rvpeid)
3772 		return;
3773 
3774 	/* Already mapped? */
3775 	if (vpe->vpe_proxy_event != -1)
3776 		return;
3777 
3778 	/* This slot was already allocated. Kick the other VPE out. */
3779 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
3780 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3781 
3782 	/* Map the new VPE instead */
3783 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3784 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
3785 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3786 
3787 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3788 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3789 }
3790 
its_vpe_db_proxy_move(struct its_vpe * vpe,int from,int to)3791 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3792 {
3793 	unsigned long flags;
3794 	struct its_collection *target_col;
3795 
3796 	/* GICv4.1 doesn't use a proxy, so nothing to do here */
3797 	if (gic_rdists->has_rvpeid)
3798 		return;
3799 
3800 	if (gic_rdists->has_direct_lpi) {
3801 		void __iomem *rdbase;
3802 
3803 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3804 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3805 		wait_for_syncr(rdbase);
3806 
3807 		return;
3808 	}
3809 
3810 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3811 
3812 	its_vpe_db_proxy_map_locked(vpe);
3813 
3814 	target_col = &vpe_proxy.dev->its->collections[to];
3815 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3816 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3817 
3818 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3819 }
3820 
its_vpe_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)3821 static int its_vpe_set_affinity(struct irq_data *d,
3822 				const struct cpumask *mask_val,
3823 				bool force)
3824 {
3825 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3826 	int from, cpu = cpumask_first(mask_val);
3827 	unsigned long flags;
3828 
3829 	/*
3830 	 * Changing affinity is mega expensive, so let's be as lazy as
3831 	 * we can and only do it if we really have to. Also, if mapped
3832 	 * into the proxy device, we need to move the doorbell
3833 	 * interrupt to its new location.
3834 	 *
3835 	 * Another thing is that changing the affinity of a vPE affects
3836 	 * *other interrupts* such as all the vLPIs that are routed to
3837 	 * this vPE. This means that the irq_desc lock is not enough to
3838 	 * protect us, and that we must ensure nobody samples vpe->col_idx
3839 	 * during the update, hence the lock below which must also be
3840 	 * taken on any vLPI handling path that evaluates vpe->col_idx.
3841 	 */
3842 	from = vpe_to_cpuid_lock(vpe, &flags);
3843 	if (from == cpu)
3844 		goto out;
3845 
3846 	vpe->col_idx = cpu;
3847 
3848 	/*
3849 	 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3850 	 * is sharing its VPE table with the current one.
3851 	 */
3852 	if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3853 	    cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3854 		goto out;
3855 
3856 	its_send_vmovp(vpe);
3857 	its_vpe_db_proxy_move(vpe, from, cpu);
3858 
3859 out:
3860 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
3861 	vpe_to_cpuid_unlock(vpe, flags);
3862 
3863 	return IRQ_SET_MASK_OK_DONE;
3864 }
3865 
its_wait_vpt_parse_complete(void)3866 static void its_wait_vpt_parse_complete(void)
3867 {
3868 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3869 	u64 val;
3870 
3871 	if (!gic_rdists->has_vpend_valid_dirty)
3872 		return;
3873 
3874 	WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3875 						       val,
3876 						       !(val & GICR_VPENDBASER_Dirty),
3877 						       10, 500));
3878 }
3879 
its_vpe_schedule(struct its_vpe * vpe)3880 static void its_vpe_schedule(struct its_vpe *vpe)
3881 {
3882 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3883 	u64 val;
3884 
3885 	/* Schedule the VPE */
3886 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3887 		GENMASK_ULL(51, 12);
3888 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3889 	val |= GICR_VPROPBASER_RaWb;
3890 	val |= GICR_VPROPBASER_InnerShareable;
3891 	gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3892 
3893 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
3894 		GENMASK_ULL(51, 16);
3895 	val |= GICR_VPENDBASER_RaWaWb;
3896 	val |= GICR_VPENDBASER_InnerShareable;
3897 	/*
3898 	 * There is no good way of finding out if the pending table is
3899 	 * empty as we can race against the doorbell interrupt very
3900 	 * easily. So in the end, vpe->pending_last is only an
3901 	 * indication that the vcpu has something pending, not one
3902 	 * that the pending table is empty. A good implementation
3903 	 * would be able to read its coarse map pretty quickly anyway,
3904 	 * making this a tolerable issue.
3905 	 */
3906 	val |= GICR_VPENDBASER_PendingLast;
3907 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3908 	val |= GICR_VPENDBASER_Valid;
3909 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3910 }
3911 
its_vpe_deschedule(struct its_vpe * vpe)3912 static void its_vpe_deschedule(struct its_vpe *vpe)
3913 {
3914 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3915 	u64 val;
3916 
3917 	val = its_clear_vpend_valid(vlpi_base, 0, 0);
3918 
3919 	vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3920 	vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3921 }
3922 
its_vpe_invall(struct its_vpe * vpe)3923 static void its_vpe_invall(struct its_vpe *vpe)
3924 {
3925 	struct its_node *its;
3926 
3927 	list_for_each_entry(its, &its_nodes, entry) {
3928 		if (!is_v4(its))
3929 			continue;
3930 
3931 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3932 			continue;
3933 
3934 		/*
3935 		 * Sending a VINVALL to a single ITS is enough, as all
3936 		 * we need is to reach the redistributors.
3937 		 */
3938 		its_send_vinvall(its, vpe);
3939 		return;
3940 	}
3941 }
3942 
its_vpe_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)3943 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3944 {
3945 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3946 	struct its_cmd_info *info = vcpu_info;
3947 
3948 	switch (info->cmd_type) {
3949 	case SCHEDULE_VPE:
3950 		its_vpe_schedule(vpe);
3951 		return 0;
3952 
3953 	case DESCHEDULE_VPE:
3954 		its_vpe_deschedule(vpe);
3955 		return 0;
3956 
3957 	case COMMIT_VPE:
3958 		its_wait_vpt_parse_complete();
3959 		return 0;
3960 
3961 	case INVALL_VPE:
3962 		its_vpe_invall(vpe);
3963 		return 0;
3964 
3965 	default:
3966 		return -EINVAL;
3967 	}
3968 }
3969 
its_vpe_send_cmd(struct its_vpe * vpe,void (* cmd)(struct its_device *,u32))3970 static void its_vpe_send_cmd(struct its_vpe *vpe,
3971 			     void (*cmd)(struct its_device *, u32))
3972 {
3973 	unsigned long flags;
3974 
3975 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3976 
3977 	its_vpe_db_proxy_map_locked(vpe);
3978 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3979 
3980 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3981 }
3982 
its_vpe_send_inv(struct irq_data * d)3983 static void its_vpe_send_inv(struct irq_data *d)
3984 {
3985 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3986 
3987 	if (gic_rdists->has_direct_lpi) {
3988 		void __iomem *rdbase;
3989 
3990 		/* Target the redistributor this VPE is currently known on */
3991 		raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3992 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3993 		gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3994 		wait_for_syncr(rdbase);
3995 		raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3996 	} else {
3997 		its_vpe_send_cmd(vpe, its_send_inv);
3998 	}
3999 }
4000 
its_vpe_mask_irq(struct irq_data * d)4001 static void its_vpe_mask_irq(struct irq_data *d)
4002 {
4003 	/*
4004 	 * We need to unmask the LPI, which is described by the parent
4005 	 * irq_data. Instead of calling into the parent (which won't
4006 	 * exactly do the right thing, let's simply use the
4007 	 * parent_data pointer. Yes, I'm naughty.
4008 	 */
4009 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4010 	its_vpe_send_inv(d);
4011 }
4012 
its_vpe_unmask_irq(struct irq_data * d)4013 static void its_vpe_unmask_irq(struct irq_data *d)
4014 {
4015 	/* Same hack as above... */
4016 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4017 	its_vpe_send_inv(d);
4018 }
4019 
its_vpe_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)4020 static int its_vpe_set_irqchip_state(struct irq_data *d,
4021 				     enum irqchip_irq_state which,
4022 				     bool state)
4023 {
4024 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4025 
4026 	if (which != IRQCHIP_STATE_PENDING)
4027 		return -EINVAL;
4028 
4029 	if (gic_rdists->has_direct_lpi) {
4030 		void __iomem *rdbase;
4031 
4032 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4033 		if (state) {
4034 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4035 		} else {
4036 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4037 			wait_for_syncr(rdbase);
4038 		}
4039 	} else {
4040 		if (state)
4041 			its_vpe_send_cmd(vpe, its_send_int);
4042 		else
4043 			its_vpe_send_cmd(vpe, its_send_clear);
4044 	}
4045 
4046 	return 0;
4047 }
4048 
its_vpe_retrigger(struct irq_data * d)4049 static int its_vpe_retrigger(struct irq_data *d)
4050 {
4051 	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4052 }
4053 
4054 static struct irq_chip its_vpe_irq_chip = {
4055 	.name			= "GICv4-vpe",
4056 	.irq_mask		= its_vpe_mask_irq,
4057 	.irq_unmask		= its_vpe_unmask_irq,
4058 	.irq_eoi		= irq_chip_eoi_parent,
4059 	.irq_set_affinity	= its_vpe_set_affinity,
4060 	.irq_retrigger		= its_vpe_retrigger,
4061 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
4062 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
4063 };
4064 
find_4_1_its(void)4065 static struct its_node *find_4_1_its(void)
4066 {
4067 	static struct its_node *its = NULL;
4068 
4069 	if (!its) {
4070 		list_for_each_entry(its, &its_nodes, entry) {
4071 			if (is_v4_1(its))
4072 				return its;
4073 		}
4074 
4075 		/* Oops? */
4076 		its = NULL;
4077 	}
4078 
4079 	return its;
4080 }
4081 
its_vpe_4_1_send_inv(struct irq_data * d)4082 static void its_vpe_4_1_send_inv(struct irq_data *d)
4083 {
4084 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4085 	struct its_node *its;
4086 
4087 	/*
4088 	 * GICv4.1 wants doorbells to be invalidated using the
4089 	 * INVDB command in order to be broadcast to all RDs. Send
4090 	 * it to the first valid ITS, and let the HW do its magic.
4091 	 */
4092 	its = find_4_1_its();
4093 	if (its)
4094 		its_send_invdb(its, vpe);
4095 }
4096 
its_vpe_4_1_mask_irq(struct irq_data * d)4097 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4098 {
4099 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4100 	its_vpe_4_1_send_inv(d);
4101 }
4102 
its_vpe_4_1_unmask_irq(struct irq_data * d)4103 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4104 {
4105 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4106 	its_vpe_4_1_send_inv(d);
4107 }
4108 
its_vpe_4_1_schedule(struct its_vpe * vpe,struct its_cmd_info * info)4109 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4110 				 struct its_cmd_info *info)
4111 {
4112 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4113 	u64 val = 0;
4114 
4115 	/* Schedule the VPE */
4116 	val |= GICR_VPENDBASER_Valid;
4117 	val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4118 	val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4119 	val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4120 
4121 	gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4122 }
4123 
its_vpe_4_1_deschedule(struct its_vpe * vpe,struct its_cmd_info * info)4124 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4125 				   struct its_cmd_info *info)
4126 {
4127 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4128 	u64 val;
4129 
4130 	if (info->req_db) {
4131 		unsigned long flags;
4132 
4133 		/*
4134 		 * vPE is going to block: make the vPE non-resident with
4135 		 * PendingLast clear and DB set. The GIC guarantees that if
4136 		 * we read-back PendingLast clear, then a doorbell will be
4137 		 * delivered when an interrupt comes.
4138 		 *
4139 		 * Note the locking to deal with the concurrent update of
4140 		 * pending_last from the doorbell interrupt handler that can
4141 		 * run concurrently.
4142 		 */
4143 		raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4144 		val = its_clear_vpend_valid(vlpi_base,
4145 					    GICR_VPENDBASER_PendingLast,
4146 					    GICR_VPENDBASER_4_1_DB);
4147 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4148 		raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4149 	} else {
4150 		/*
4151 		 * We're not blocking, so just make the vPE non-resident
4152 		 * with PendingLast set, indicating that we'll be back.
4153 		 */
4154 		val = its_clear_vpend_valid(vlpi_base,
4155 					    0,
4156 					    GICR_VPENDBASER_PendingLast);
4157 		vpe->pending_last = true;
4158 	}
4159 }
4160 
its_vpe_4_1_invall(struct its_vpe * vpe)4161 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4162 {
4163 	void __iomem *rdbase;
4164 	unsigned long flags;
4165 	u64 val;
4166 	int cpu;
4167 
4168 	val  = GICR_INVALLR_V;
4169 	val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4170 
4171 	/* Target the redistributor this vPE is currently known on */
4172 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4173 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4174 	rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4175 	gic_write_lpir(val, rdbase + GICR_INVALLR);
4176 
4177 	wait_for_syncr(rdbase);
4178 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4179 	vpe_to_cpuid_unlock(vpe, flags);
4180 }
4181 
its_vpe_4_1_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4182 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4183 {
4184 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4185 	struct its_cmd_info *info = vcpu_info;
4186 
4187 	switch (info->cmd_type) {
4188 	case SCHEDULE_VPE:
4189 		its_vpe_4_1_schedule(vpe, info);
4190 		return 0;
4191 
4192 	case DESCHEDULE_VPE:
4193 		its_vpe_4_1_deschedule(vpe, info);
4194 		return 0;
4195 
4196 	case COMMIT_VPE:
4197 		its_wait_vpt_parse_complete();
4198 		return 0;
4199 
4200 	case INVALL_VPE:
4201 		its_vpe_4_1_invall(vpe);
4202 		return 0;
4203 
4204 	default:
4205 		return -EINVAL;
4206 	}
4207 }
4208 
4209 static struct irq_chip its_vpe_4_1_irq_chip = {
4210 	.name			= "GICv4.1-vpe",
4211 	.irq_mask		= its_vpe_4_1_mask_irq,
4212 	.irq_unmask		= its_vpe_4_1_unmask_irq,
4213 	.irq_eoi		= irq_chip_eoi_parent,
4214 	.irq_set_affinity	= its_vpe_set_affinity,
4215 	.irq_set_vcpu_affinity	= its_vpe_4_1_set_vcpu_affinity,
4216 };
4217 
its_configure_sgi(struct irq_data * d,bool clear)4218 static void its_configure_sgi(struct irq_data *d, bool clear)
4219 {
4220 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4221 	struct its_cmd_desc desc;
4222 
4223 	desc.its_vsgi_cmd.vpe = vpe;
4224 	desc.its_vsgi_cmd.sgi = d->hwirq;
4225 	desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4226 	desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4227 	desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4228 	desc.its_vsgi_cmd.clear = clear;
4229 
4230 	/*
4231 	 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4232 	 * destination VPE is mapped there. Since we map them eagerly at
4233 	 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4234 	 */
4235 	its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4236 }
4237 
its_sgi_mask_irq(struct irq_data * d)4238 static void its_sgi_mask_irq(struct irq_data *d)
4239 {
4240 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4241 
4242 	vpe->sgi_config[d->hwirq].enabled = false;
4243 	its_configure_sgi(d, false);
4244 }
4245 
its_sgi_unmask_irq(struct irq_data * d)4246 static void its_sgi_unmask_irq(struct irq_data *d)
4247 {
4248 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4249 
4250 	vpe->sgi_config[d->hwirq].enabled = true;
4251 	its_configure_sgi(d, false);
4252 }
4253 
its_sgi_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)4254 static int its_sgi_set_affinity(struct irq_data *d,
4255 				const struct cpumask *mask_val,
4256 				bool force)
4257 {
4258 	/*
4259 	 * There is no notion of affinity for virtual SGIs, at least
4260 	 * not on the host (since they can only be targetting a vPE).
4261 	 * Tell the kernel we've done whatever it asked for.
4262 	 */
4263 	irq_data_update_effective_affinity(d, mask_val);
4264 	return IRQ_SET_MASK_OK;
4265 }
4266 
its_sgi_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)4267 static int its_sgi_set_irqchip_state(struct irq_data *d,
4268 				     enum irqchip_irq_state which,
4269 				     bool state)
4270 {
4271 	if (which != IRQCHIP_STATE_PENDING)
4272 		return -EINVAL;
4273 
4274 	if (state) {
4275 		struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4276 		struct its_node *its = find_4_1_its();
4277 		u64 val;
4278 
4279 		val  = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4280 		val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4281 		writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4282 	} else {
4283 		its_configure_sgi(d, true);
4284 	}
4285 
4286 	return 0;
4287 }
4288 
its_sgi_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)4289 static int its_sgi_get_irqchip_state(struct irq_data *d,
4290 				     enum irqchip_irq_state which, bool *val)
4291 {
4292 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4293 	void __iomem *base;
4294 	unsigned long flags;
4295 	u32 count = 1000000;	/* 1s! */
4296 	u32 status;
4297 	int cpu;
4298 
4299 	if (which != IRQCHIP_STATE_PENDING)
4300 		return -EINVAL;
4301 
4302 	/*
4303 	 * Locking galore! We can race against two different events:
4304 	 *
4305 	 * - Concurent vPE affinity change: we must make sure it cannot
4306 	 *   happen, or we'll talk to the wrong redistributor. This is
4307 	 *   identical to what happens with vLPIs.
4308 	 *
4309 	 * - Concurrent VSGIPENDR access: As it involves accessing two
4310 	 *   MMIO registers, this must be made atomic one way or another.
4311 	 */
4312 	cpu = vpe_to_cpuid_lock(vpe, &flags);
4313 	raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4314 	base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4315 	writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4316 	do {
4317 		status = readl_relaxed(base + GICR_VSGIPENDR);
4318 		if (!(status & GICR_VSGIPENDR_BUSY))
4319 			goto out;
4320 
4321 		count--;
4322 		if (!count) {
4323 			pr_err_ratelimited("Unable to get SGI status\n");
4324 			goto out;
4325 		}
4326 		cpu_relax();
4327 		udelay(1);
4328 	} while (count);
4329 
4330 out:
4331 	raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4332 	vpe_to_cpuid_unlock(vpe, flags);
4333 
4334 	if (!count)
4335 		return -ENXIO;
4336 
4337 	*val = !!(status & (1 << d->hwirq));
4338 
4339 	return 0;
4340 }
4341 
its_sgi_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4342 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4343 {
4344 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4345 	struct its_cmd_info *info = vcpu_info;
4346 
4347 	switch (info->cmd_type) {
4348 	case PROP_UPDATE_VSGI:
4349 		vpe->sgi_config[d->hwirq].priority = info->priority;
4350 		vpe->sgi_config[d->hwirq].group = info->group;
4351 		its_configure_sgi(d, false);
4352 		return 0;
4353 
4354 	default:
4355 		return -EINVAL;
4356 	}
4357 }
4358 
4359 static struct irq_chip its_sgi_irq_chip = {
4360 	.name			= "GICv4.1-sgi",
4361 	.irq_mask		= its_sgi_mask_irq,
4362 	.irq_unmask		= its_sgi_unmask_irq,
4363 	.irq_set_affinity	= its_sgi_set_affinity,
4364 	.irq_set_irqchip_state	= its_sgi_set_irqchip_state,
4365 	.irq_get_irqchip_state	= its_sgi_get_irqchip_state,
4366 	.irq_set_vcpu_affinity	= its_sgi_set_vcpu_affinity,
4367 };
4368 
its_sgi_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4369 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4370 				    unsigned int virq, unsigned int nr_irqs,
4371 				    void *args)
4372 {
4373 	struct its_vpe *vpe = args;
4374 	int i;
4375 
4376 	/* Yes, we do want 16 SGIs */
4377 	WARN_ON(nr_irqs != 16);
4378 
4379 	for (i = 0; i < 16; i++) {
4380 		vpe->sgi_config[i].priority = 0;
4381 		vpe->sgi_config[i].enabled = false;
4382 		vpe->sgi_config[i].group = false;
4383 
4384 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4385 					      &its_sgi_irq_chip, vpe);
4386 		irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4387 	}
4388 
4389 	return 0;
4390 }
4391 
its_sgi_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4392 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4393 				    unsigned int virq,
4394 				    unsigned int nr_irqs)
4395 {
4396 	/* Nothing to do */
4397 }
4398 
its_sgi_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4399 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4400 				       struct irq_data *d, bool reserve)
4401 {
4402 	/* Write out the initial SGI configuration */
4403 	its_configure_sgi(d, false);
4404 	return 0;
4405 }
4406 
its_sgi_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4407 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4408 					  struct irq_data *d)
4409 {
4410 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4411 
4412 	/*
4413 	 * The VSGI command is awkward:
4414 	 *
4415 	 * - To change the configuration, CLEAR must be set to false,
4416 	 *   leaving the pending bit unchanged.
4417 	 * - To clear the pending bit, CLEAR must be set to true, leaving
4418 	 *   the configuration unchanged.
4419 	 *
4420 	 * You just can't do both at once, hence the two commands below.
4421 	 */
4422 	vpe->sgi_config[d->hwirq].enabled = false;
4423 	its_configure_sgi(d, false);
4424 	its_configure_sgi(d, true);
4425 }
4426 
4427 static const struct irq_domain_ops its_sgi_domain_ops = {
4428 	.alloc		= its_sgi_irq_domain_alloc,
4429 	.free		= its_sgi_irq_domain_free,
4430 	.activate	= its_sgi_irq_domain_activate,
4431 	.deactivate	= its_sgi_irq_domain_deactivate,
4432 };
4433 
its_vpe_id_alloc(void)4434 static int its_vpe_id_alloc(void)
4435 {
4436 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4437 }
4438 
its_vpe_id_free(u16 id)4439 static void its_vpe_id_free(u16 id)
4440 {
4441 	ida_simple_remove(&its_vpeid_ida, id);
4442 }
4443 
its_vpe_init(struct its_vpe * vpe)4444 static int its_vpe_init(struct its_vpe *vpe)
4445 {
4446 	struct page *vpt_page;
4447 	int vpe_id;
4448 
4449 	/* Allocate vpe_id */
4450 	vpe_id = its_vpe_id_alloc();
4451 	if (vpe_id < 0)
4452 		return vpe_id;
4453 
4454 	/* Allocate VPT */
4455 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
4456 	if (!vpt_page) {
4457 		its_vpe_id_free(vpe_id);
4458 		return -ENOMEM;
4459 	}
4460 
4461 	if (!its_alloc_vpe_table(vpe_id)) {
4462 		its_vpe_id_free(vpe_id);
4463 		its_free_pending_table(vpt_page);
4464 		return -ENOMEM;
4465 	}
4466 
4467 	raw_spin_lock_init(&vpe->vpe_lock);
4468 	vpe->vpe_id = vpe_id;
4469 	vpe->vpt_page = vpt_page;
4470 	if (gic_rdists->has_rvpeid)
4471 		atomic_set(&vpe->vmapp_count, 0);
4472 	else
4473 		vpe->vpe_proxy_event = -1;
4474 
4475 	return 0;
4476 }
4477 
its_vpe_teardown(struct its_vpe * vpe)4478 static void its_vpe_teardown(struct its_vpe *vpe)
4479 {
4480 	its_vpe_db_proxy_unmap(vpe);
4481 	its_vpe_id_free(vpe->vpe_id);
4482 	its_free_pending_table(vpe->vpt_page);
4483 }
4484 
its_vpe_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4485 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4486 				    unsigned int virq,
4487 				    unsigned int nr_irqs)
4488 {
4489 	struct its_vm *vm = domain->host_data;
4490 	int i;
4491 
4492 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4493 
4494 	for (i = 0; i < nr_irqs; i++) {
4495 		struct irq_data *data = irq_domain_get_irq_data(domain,
4496 								virq + i);
4497 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4498 
4499 		BUG_ON(vm != vpe->its_vm);
4500 
4501 		clear_bit(data->hwirq, vm->db_bitmap);
4502 		its_vpe_teardown(vpe);
4503 		irq_domain_reset_irq_data(data);
4504 	}
4505 
4506 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4507 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4508 		its_free_prop_table(vm->vprop_page);
4509 	}
4510 }
4511 
its_vpe_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4512 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4513 				    unsigned int nr_irqs, void *args)
4514 {
4515 	struct irq_chip *irqchip = &its_vpe_irq_chip;
4516 	struct its_vm *vm = args;
4517 	unsigned long *bitmap;
4518 	struct page *vprop_page;
4519 	int base, nr_ids, i, err = 0;
4520 
4521 	BUG_ON(!vm);
4522 
4523 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4524 	if (!bitmap)
4525 		return -ENOMEM;
4526 
4527 	if (nr_ids < nr_irqs) {
4528 		its_lpi_free(bitmap, base, nr_ids);
4529 		return -ENOMEM;
4530 	}
4531 
4532 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
4533 	if (!vprop_page) {
4534 		its_lpi_free(bitmap, base, nr_ids);
4535 		return -ENOMEM;
4536 	}
4537 
4538 	vm->db_bitmap = bitmap;
4539 	vm->db_lpi_base = base;
4540 	vm->nr_db_lpis = nr_ids;
4541 	vm->vprop_page = vprop_page;
4542 
4543 	if (gic_rdists->has_rvpeid)
4544 		irqchip = &its_vpe_4_1_irq_chip;
4545 
4546 	for (i = 0; i < nr_irqs; i++) {
4547 		vm->vpes[i]->vpe_db_lpi = base + i;
4548 		err = its_vpe_init(vm->vpes[i]);
4549 		if (err)
4550 			break;
4551 		err = its_irq_gic_domain_alloc(domain, virq + i,
4552 					       vm->vpes[i]->vpe_db_lpi);
4553 		if (err)
4554 			break;
4555 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4556 					      irqchip, vm->vpes[i]);
4557 		set_bit(i, bitmap);
4558 	}
4559 
4560 	if (err) {
4561 		if (i > 0)
4562 			its_vpe_irq_domain_free(domain, virq, i);
4563 
4564 		its_lpi_free(bitmap, base, nr_ids);
4565 		its_free_prop_table(vprop_page);
4566 	}
4567 
4568 	return err;
4569 }
4570 
its_vpe_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4571 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4572 				       struct irq_data *d, bool reserve)
4573 {
4574 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4575 	struct its_node *its;
4576 
4577 	/*
4578 	 * If we use the list map, we issue VMAPP on demand... Unless
4579 	 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4580 	 * so that VSGIs can work.
4581 	 */
4582 	if (!gic_requires_eager_mapping())
4583 		return 0;
4584 
4585 	/* Map the VPE to the first possible CPU */
4586 	vpe->col_idx = cpumask_first(cpu_online_mask);
4587 
4588 	list_for_each_entry(its, &its_nodes, entry) {
4589 		if (!is_v4(its))
4590 			continue;
4591 
4592 		its_send_vmapp(its, vpe, true);
4593 		its_send_vinvall(its, vpe);
4594 	}
4595 
4596 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4597 
4598 	return 0;
4599 }
4600 
its_vpe_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4601 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4602 					  struct irq_data *d)
4603 {
4604 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4605 	struct its_node *its;
4606 
4607 	/*
4608 	 * If we use the list map on GICv4.0, we unmap the VPE once no
4609 	 * VLPIs are associated with the VM.
4610 	 */
4611 	if (!gic_requires_eager_mapping())
4612 		return;
4613 
4614 	list_for_each_entry(its, &its_nodes, entry) {
4615 		if (!is_v4(its))
4616 			continue;
4617 
4618 		its_send_vmapp(its, vpe, false);
4619 	}
4620 }
4621 
4622 static const struct irq_domain_ops its_vpe_domain_ops = {
4623 	.alloc			= its_vpe_irq_domain_alloc,
4624 	.free			= its_vpe_irq_domain_free,
4625 	.activate		= its_vpe_irq_domain_activate,
4626 	.deactivate		= its_vpe_irq_domain_deactivate,
4627 };
4628 
its_force_quiescent(void __iomem * base)4629 static int its_force_quiescent(void __iomem *base)
4630 {
4631 	u32 count = 1000000;	/* 1s */
4632 	u32 val;
4633 
4634 	val = readl_relaxed(base + GITS_CTLR);
4635 	/*
4636 	 * GIC architecture specification requires the ITS to be both
4637 	 * disabled and quiescent for writes to GITS_BASER<n> or
4638 	 * GITS_CBASER to not have UNPREDICTABLE results.
4639 	 */
4640 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4641 		return 0;
4642 
4643 	/* Disable the generation of all interrupts to this ITS */
4644 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4645 	writel_relaxed(val, base + GITS_CTLR);
4646 
4647 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
4648 	while (1) {
4649 		val = readl_relaxed(base + GITS_CTLR);
4650 		if (val & GITS_CTLR_QUIESCENT)
4651 			return 0;
4652 
4653 		count--;
4654 		if (!count)
4655 			return -EBUSY;
4656 
4657 		cpu_relax();
4658 		udelay(1);
4659 	}
4660 }
4661 
its_enable_quirk_cavium_22375(void * data)4662 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4663 {
4664 	struct its_node *its = data;
4665 
4666 	/* erratum 22375: only alloc 8MB table size (20 bits) */
4667 	its->typer &= ~GITS_TYPER_DEVBITS;
4668 	its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4669 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4670 
4671 	return true;
4672 }
4673 
its_enable_quirk_cavium_23144(void * data)4674 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4675 {
4676 	struct its_node *its = data;
4677 
4678 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4679 
4680 	return true;
4681 }
4682 
its_enable_quirk_qdf2400_e0065(void * data)4683 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4684 {
4685 	struct its_node *its = data;
4686 
4687 	/* On QDF2400, the size of the ITE is 16Bytes */
4688 	its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4689 	its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4690 
4691 	return true;
4692 }
4693 
its_irq_get_msi_base_pre_its(struct its_device * its_dev)4694 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4695 {
4696 	struct its_node *its = its_dev->its;
4697 
4698 	/*
4699 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4700 	 * which maps 32-bit writes targeted at a separate window of
4701 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4702 	 * with device ID taken from bits [device_id_bits + 1:2] of
4703 	 * the window offset.
4704 	 */
4705 	return its->pre_its_base + (its_dev->device_id << 2);
4706 }
4707 
its_enable_quirk_socionext_synquacer(void * data)4708 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4709 {
4710 	struct its_node *its = data;
4711 	u32 pre_its_window[2];
4712 	u32 ids;
4713 
4714 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
4715 					   "socionext,synquacer-pre-its",
4716 					   pre_its_window,
4717 					   ARRAY_SIZE(pre_its_window))) {
4718 
4719 		its->pre_its_base = pre_its_window[0];
4720 		its->get_msi_base = its_irq_get_msi_base_pre_its;
4721 
4722 		ids = ilog2(pre_its_window[1]) - 2;
4723 		if (device_ids(its) > ids) {
4724 			its->typer &= ~GITS_TYPER_DEVBITS;
4725 			its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4726 		}
4727 
4728 		/* the pre-ITS breaks isolation, so disable MSI remapping */
4729 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4730 		return true;
4731 	}
4732 	return false;
4733 }
4734 
its_enable_quirk_hip07_161600802(void * data)4735 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4736 {
4737 	struct its_node *its = data;
4738 
4739 	/*
4740 	 * Hip07 insists on using the wrong address for the VLPI
4741 	 * page. Trick it into doing the right thing...
4742 	 */
4743 	its->vlpi_redist_offset = SZ_128K;
4744 	return true;
4745 }
4746 
4747 static const struct gic_quirk its_quirks[] = {
4748 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4749 	{
4750 		.desc	= "ITS: Cavium errata 22375, 24313",
4751 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4752 		.mask	= 0xffff0fff,
4753 		.init	= its_enable_quirk_cavium_22375,
4754 	},
4755 #endif
4756 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4757 	{
4758 		.desc	= "ITS: Cavium erratum 23144",
4759 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
4760 		.mask	= 0xffff0fff,
4761 		.init	= its_enable_quirk_cavium_23144,
4762 	},
4763 #endif
4764 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4765 	{
4766 		.desc	= "ITS: QDF2400 erratum 0065",
4767 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
4768 		.mask	= 0xffffffff,
4769 		.init	= its_enable_quirk_qdf2400_e0065,
4770 	},
4771 #endif
4772 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4773 	{
4774 		/*
4775 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4776 		 * implementation, but with a 'pre-ITS' added that requires
4777 		 * special handling in software.
4778 		 */
4779 		.desc	= "ITS: Socionext Synquacer pre-ITS",
4780 		.iidr	= 0x0001143b,
4781 		.mask	= 0xffffffff,
4782 		.init	= its_enable_quirk_socionext_synquacer,
4783 	},
4784 #endif
4785 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4786 	{
4787 		.desc	= "ITS: Hip07 erratum 161600802",
4788 		.iidr	= 0x00000004,
4789 		.mask	= 0xffffffff,
4790 		.init	= its_enable_quirk_hip07_161600802,
4791 	},
4792 #endif
4793 	{
4794 	}
4795 };
4796 
its_enable_quirks(struct its_node * its)4797 static void its_enable_quirks(struct its_node *its)
4798 {
4799 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4800 
4801 	gic_enable_quirks(iidr, its_quirks, its);
4802 }
4803 
its_save_disable(void)4804 static int its_save_disable(void)
4805 {
4806 	struct its_node *its;
4807 	int err = 0;
4808 
4809 	raw_spin_lock(&its_lock);
4810 	list_for_each_entry(its, &its_nodes, entry) {
4811 		void __iomem *base;
4812 
4813 		base = its->base;
4814 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4815 		err = its_force_quiescent(base);
4816 		if (err) {
4817 			pr_err("ITS@%pa: failed to quiesce: %d\n",
4818 			       &its->phys_base, err);
4819 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4820 			goto err;
4821 		}
4822 
4823 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4824 	}
4825 
4826 err:
4827 	if (err) {
4828 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4829 			void __iomem *base;
4830 
4831 			base = its->base;
4832 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4833 		}
4834 	}
4835 	raw_spin_unlock(&its_lock);
4836 
4837 	return err;
4838 }
4839 
its_restore_enable(void)4840 static void its_restore_enable(void)
4841 {
4842 	struct its_node *its;
4843 	int ret;
4844 
4845 	raw_spin_lock(&its_lock);
4846 	list_for_each_entry(its, &its_nodes, entry) {
4847 		void __iomem *base;
4848 		int i;
4849 
4850 		base = its->base;
4851 
4852 		/*
4853 		 * Make sure that the ITS is disabled. If it fails to quiesce,
4854 		 * don't restore it since writing to CBASER or BASER<n>
4855 		 * registers is undefined according to the GIC v3 ITS
4856 		 * Specification.
4857 		 *
4858 		 * Firmware resuming with the ITS enabled is terminally broken.
4859 		 */
4860 		WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4861 		ret = its_force_quiescent(base);
4862 		if (ret) {
4863 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4864 			       &its->phys_base, ret);
4865 			continue;
4866 		}
4867 
4868 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4869 
4870 		/*
4871 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
4872 		 * cmd_write line up with it.
4873 		 */
4874 		its->cmd_write = its->cmd_base;
4875 		gits_write_cwriter(0, base + GITS_CWRITER);
4876 
4877 		/* Restore GITS_BASER from the value cache. */
4878 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4879 			struct its_baser *baser = &its->tables[i];
4880 
4881 			if (!(baser->val & GITS_BASER_VALID))
4882 				continue;
4883 
4884 			its_write_baser(its, baser, baser->val);
4885 		}
4886 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4887 
4888 		/*
4889 		 * Reinit the collection if it's stored in the ITS. This is
4890 		 * indicated by the col_id being less than the HCC field.
4891 		 * CID < HCC as specified in the GIC v3 Documentation.
4892 		 */
4893 		if (its->collections[smp_processor_id()].col_id <
4894 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4895 			its_cpu_init_collection(its);
4896 	}
4897 	raw_spin_unlock(&its_lock);
4898 }
4899 
4900 static struct syscore_ops its_syscore_ops = {
4901 	.suspend = its_save_disable,
4902 	.resume = its_restore_enable,
4903 };
4904 
its_init_domain(struct fwnode_handle * handle,struct its_node * its)4905 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4906 {
4907 	struct irq_domain *inner_domain;
4908 	struct msi_domain_info *info;
4909 
4910 	info = kzalloc(sizeof(*info), GFP_KERNEL);
4911 	if (!info)
4912 		return -ENOMEM;
4913 
4914 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
4915 	if (!inner_domain) {
4916 		kfree(info);
4917 		return -ENOMEM;
4918 	}
4919 
4920 	inner_domain->parent = its_parent;
4921 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4922 	inner_domain->flags |= its->msi_domain_flags;
4923 	info->ops = &its_msi_domain_ops;
4924 	info->data = its;
4925 	inner_domain->host_data = info;
4926 
4927 	return 0;
4928 }
4929 
its_init_vpe_domain(void)4930 static int its_init_vpe_domain(void)
4931 {
4932 	struct its_node *its;
4933 	u32 devid;
4934 	int entries;
4935 
4936 	if (gic_rdists->has_direct_lpi) {
4937 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4938 		return 0;
4939 	}
4940 
4941 	/* Any ITS will do, even if not v4 */
4942 	its = list_first_entry(&its_nodes, struct its_node, entry);
4943 
4944 	entries = roundup_pow_of_two(nr_cpu_ids);
4945 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4946 				 GFP_KERNEL);
4947 	if (!vpe_proxy.vpes) {
4948 		pr_err("ITS: Can't allocate GICv4 proxy device array\n");
4949 		return -ENOMEM;
4950 	}
4951 
4952 	/* Use the last possible DevID */
4953 	devid = GENMASK(device_ids(its) - 1, 0);
4954 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
4955 	if (!vpe_proxy.dev) {
4956 		kfree(vpe_proxy.vpes);
4957 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
4958 		return -ENOMEM;
4959 	}
4960 
4961 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
4962 
4963 	raw_spin_lock_init(&vpe_proxy.lock);
4964 	vpe_proxy.next_victim = 0;
4965 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4966 		devid, vpe_proxy.dev->nr_ites);
4967 
4968 	return 0;
4969 }
4970 
its_compute_its_list_map(struct resource * res,void __iomem * its_base)4971 static int __init its_compute_its_list_map(struct resource *res,
4972 					   void __iomem *its_base)
4973 {
4974 	int its_number;
4975 	u32 ctlr;
4976 
4977 	/*
4978 	 * This is assumed to be done early enough that we're
4979 	 * guaranteed to be single-threaded, hence no
4980 	 * locking. Should this change, we should address
4981 	 * this.
4982 	 */
4983 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4984 	if (its_number >= GICv4_ITS_LIST_MAX) {
4985 		pr_err("ITS@%pa: No ITSList entry available!\n",
4986 		       &res->start);
4987 		return -EINVAL;
4988 	}
4989 
4990 	ctlr = readl_relaxed(its_base + GITS_CTLR);
4991 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
4992 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4993 	writel_relaxed(ctlr, its_base + GITS_CTLR);
4994 	ctlr = readl_relaxed(its_base + GITS_CTLR);
4995 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4996 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4997 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4998 	}
4999 
5000 	if (test_and_set_bit(its_number, &its_list_map)) {
5001 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5002 		       &res->start, its_number);
5003 		return -EINVAL;
5004 	}
5005 
5006 	return its_number;
5007 }
5008 
its_probe_one(struct resource * res,struct fwnode_handle * handle,int numa_node)5009 static int __init its_probe_one(struct resource *res,
5010 				struct fwnode_handle *handle, int numa_node)
5011 {
5012 	struct its_node *its;
5013 	void __iomem *its_base;
5014 	u32 val, ctlr;
5015 	u64 baser, tmp, typer;
5016 	struct page *page;
5017 	int err;
5018 	gfp_t gfp_flags;
5019 
5020 	its_base = ioremap(res->start, SZ_64K);
5021 	if (!its_base) {
5022 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
5023 		return -ENOMEM;
5024 	}
5025 
5026 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
5027 	if (val != 0x30 && val != 0x40) {
5028 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
5029 		err = -ENODEV;
5030 		goto out_unmap;
5031 	}
5032 
5033 	err = its_force_quiescent(its_base);
5034 	if (err) {
5035 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
5036 		goto out_unmap;
5037 	}
5038 
5039 	pr_info("ITS %pR\n", res);
5040 
5041 	its = kzalloc(sizeof(*its), GFP_KERNEL);
5042 	if (!its) {
5043 		err = -ENOMEM;
5044 		goto out_unmap;
5045 	}
5046 
5047 	raw_spin_lock_init(&its->lock);
5048 	mutex_init(&its->dev_alloc_lock);
5049 	INIT_LIST_HEAD(&its->entry);
5050 	INIT_LIST_HEAD(&its->its_device_list);
5051 	typer = gic_read_typer(its_base + GITS_TYPER);
5052 	its->typer = typer;
5053 	its->base = its_base;
5054 	its->phys_base = res->start;
5055 	if (is_v4(its)) {
5056 		if (!(typer & GITS_TYPER_VMOVP)) {
5057 			err = its_compute_its_list_map(res, its_base);
5058 			if (err < 0)
5059 				goto out_free_its;
5060 
5061 			its->list_nr = err;
5062 
5063 			pr_info("ITS@%pa: Using ITS number %d\n",
5064 				&res->start, err);
5065 		} else {
5066 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5067 		}
5068 
5069 		if (is_v4_1(its)) {
5070 			u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5071 
5072 			its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5073 			if (!its->sgir_base) {
5074 				err = -ENOMEM;
5075 				goto out_free_its;
5076 			}
5077 
5078 			its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5079 
5080 			pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5081 				&res->start, its->mpidr, svpet);
5082 		}
5083 	}
5084 
5085 	its->numa_node = numa_node;
5086 
5087 	gfp_flags = GFP_KERNEL | __GFP_ZERO;
5088 	if (of_machine_is_compatible("rockchip,rk3568") || of_machine_is_compatible("rockchip,rk3566"))
5089 		gfp_flags |= GFP_DMA32;
5090 	page = alloc_pages_node(its->numa_node, gfp_flags,
5091 				get_order(ITS_CMD_QUEUE_SZ));
5092 	if (!page) {
5093 		err = -ENOMEM;
5094 		goto out_unmap_sgir;
5095 	}
5096 	its->cmd_base = (void *)page_address(page);
5097 	its->cmd_write = its->cmd_base;
5098 	its->fwnode_handle = handle;
5099 	its->get_msi_base = its_irq_get_msi_base;
5100 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
5101 
5102 	its_enable_quirks(its);
5103 
5104 	err = its_alloc_tables(its);
5105 	if (err)
5106 		goto out_free_cmd;
5107 
5108 	err = its_alloc_collections(its);
5109 	if (err)
5110 		goto out_free_tables;
5111 
5112 	baser = (virt_to_phys(its->cmd_base)	|
5113 		 GITS_CBASER_RaWaWb		|
5114 		 GITS_CBASER_InnerShareable	|
5115 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
5116 		 GITS_CBASER_VALID);
5117 
5118 	gits_write_cbaser(baser, its->base + GITS_CBASER);
5119 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
5120 
5121 	if (IS_ENABLED(CONFIG_NO_GKI) &&
5122 	    (of_machine_is_compatible("rockchip,rk3568") ||
5123 	     of_machine_is_compatible("rockchip,rk3566") ||
5124 	     of_machine_is_compatible("rockchip,rk3588")))
5125 		tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5126 
5127 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5128 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5129 			/*
5130 			 * The HW reports non-shareable, we must
5131 			 * remove the cacheability attributes as
5132 			 * well.
5133 			 */
5134 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5135 				   GITS_CBASER_CACHEABILITY_MASK);
5136 			baser |= GITS_CBASER_nC;
5137 			gits_write_cbaser(baser, its->base + GITS_CBASER);
5138 		}
5139 		pr_info("ITS: using cache flushing for cmd queue\n");
5140 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5141 	}
5142 
5143 	gits_write_cwriter(0, its->base + GITS_CWRITER);
5144 	ctlr = readl_relaxed(its->base + GITS_CTLR);
5145 	ctlr |= GITS_CTLR_ENABLE;
5146 	if (is_v4(its))
5147 		ctlr |= GITS_CTLR_ImDe;
5148 	writel_relaxed(ctlr, its->base + GITS_CTLR);
5149 
5150 	err = its_init_domain(handle, its);
5151 	if (err)
5152 		goto out_free_tables;
5153 
5154 	raw_spin_lock(&its_lock);
5155 	list_add(&its->entry, &its_nodes);
5156 	raw_spin_unlock(&its_lock);
5157 
5158 	return 0;
5159 
5160 out_free_tables:
5161 	its_free_tables(its);
5162 out_free_cmd:
5163 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5164 out_unmap_sgir:
5165 	if (its->sgir_base)
5166 		iounmap(its->sgir_base);
5167 out_free_its:
5168 	kfree(its);
5169 out_unmap:
5170 	iounmap(its_base);
5171 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5172 	return err;
5173 }
5174 
gic_rdists_supports_plpis(void)5175 static bool gic_rdists_supports_plpis(void)
5176 {
5177 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5178 }
5179 
redist_disable_lpis(void)5180 static int redist_disable_lpis(void)
5181 {
5182 	void __iomem *rbase = gic_data_rdist_rd_base();
5183 	u64 timeout = USEC_PER_SEC;
5184 	u64 val;
5185 
5186 	if (!gic_rdists_supports_plpis()) {
5187 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5188 		return -ENXIO;
5189 	}
5190 
5191 	val = readl_relaxed(rbase + GICR_CTLR);
5192 	if (!(val & GICR_CTLR_ENABLE_LPIS))
5193 		return 0;
5194 
5195 	/*
5196 	 * If coming via a CPU hotplug event, we don't need to disable
5197 	 * LPIs before trying to re-enable them. They are already
5198 	 * configured and all is well in the world.
5199 	 *
5200 	 * If running with preallocated tables, there is nothing to do.
5201 	 */
5202 	if (gic_data_rdist()->lpi_enabled ||
5203 	    (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5204 		return 0;
5205 
5206 	/*
5207 	 * From that point on, we only try to do some damage control.
5208 	 */
5209 	pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5210 		smp_processor_id());
5211 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5212 
5213 	/* Disable LPIs */
5214 	val &= ~GICR_CTLR_ENABLE_LPIS;
5215 	writel_relaxed(val, rbase + GICR_CTLR);
5216 
5217 	/* Make sure any change to GICR_CTLR is observable by the GIC */
5218 	dsb(sy);
5219 
5220 	/*
5221 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5222 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5223 	 * Error out if we time out waiting for RWP to clear.
5224 	 */
5225 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5226 		if (!timeout) {
5227 			pr_err("CPU%d: Timeout while disabling LPIs\n",
5228 			       smp_processor_id());
5229 			return -ETIMEDOUT;
5230 		}
5231 		udelay(1);
5232 		timeout--;
5233 	}
5234 
5235 	/*
5236 	 * After it has been written to 1, it is IMPLEMENTATION
5237 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5238 	 * cleared to 0. Error out if clearing the bit failed.
5239 	 */
5240 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5241 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5242 		return -EBUSY;
5243 	}
5244 
5245 	return 0;
5246 }
5247 
its_cpu_init(void)5248 int its_cpu_init(void)
5249 {
5250 	if (!list_empty(&its_nodes)) {
5251 		int ret;
5252 
5253 		ret = redist_disable_lpis();
5254 		if (ret)
5255 			return ret;
5256 
5257 		its_cpu_init_lpis();
5258 		its_cpu_init_collections();
5259 	}
5260 
5261 	return 0;
5262 }
5263 
5264 static const struct of_device_id its_device_id[] = {
5265 	{	.compatible	= "arm,gic-v3-its",	},
5266 	{},
5267 };
5268 
its_of_probe(struct device_node * node)5269 static int __init its_of_probe(struct device_node *node)
5270 {
5271 	struct device_node *np;
5272 	struct resource res;
5273 
5274 	for (np = of_find_matching_node(node, its_device_id); np;
5275 	     np = of_find_matching_node(np, its_device_id)) {
5276 		if (!of_device_is_available(np))
5277 			continue;
5278 		if (!of_property_read_bool(np, "msi-controller")) {
5279 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5280 				np);
5281 			continue;
5282 		}
5283 
5284 		if (of_address_to_resource(np, 0, &res)) {
5285 			pr_warn("%pOF: no regs?\n", np);
5286 			continue;
5287 		}
5288 
5289 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5290 	}
5291 	return 0;
5292 }
5293 
5294 #ifdef CONFIG_ACPI
5295 
5296 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5297 
5298 #ifdef CONFIG_ACPI_NUMA
5299 struct its_srat_map {
5300 	/* numa node id */
5301 	u32	numa_node;
5302 	/* GIC ITS ID */
5303 	u32	its_id;
5304 };
5305 
5306 static struct its_srat_map *its_srat_maps __initdata;
5307 static int its_in_srat __initdata;
5308 
acpi_get_its_numa_node(u32 its_id)5309 static int __init acpi_get_its_numa_node(u32 its_id)
5310 {
5311 	int i;
5312 
5313 	for (i = 0; i < its_in_srat; i++) {
5314 		if (its_id == its_srat_maps[i].its_id)
5315 			return its_srat_maps[i].numa_node;
5316 	}
5317 	return NUMA_NO_NODE;
5318 }
5319 
gic_acpi_match_srat_its(union acpi_subtable_headers * header,const unsigned long end)5320 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5321 					  const unsigned long end)
5322 {
5323 	return 0;
5324 }
5325 
gic_acpi_parse_srat_its(union acpi_subtable_headers * header,const unsigned long end)5326 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5327 			 const unsigned long end)
5328 {
5329 	int node;
5330 	struct acpi_srat_gic_its_affinity *its_affinity;
5331 
5332 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5333 	if (!its_affinity)
5334 		return -EINVAL;
5335 
5336 	if (its_affinity->header.length < sizeof(*its_affinity)) {
5337 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5338 			its_affinity->header.length);
5339 		return -EINVAL;
5340 	}
5341 
5342 	/*
5343 	 * Note that in theory a new proximity node could be created by this
5344 	 * entry as it is an SRAT resource allocation structure.
5345 	 * We do not currently support doing so.
5346 	 */
5347 	node = pxm_to_node(its_affinity->proximity_domain);
5348 
5349 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5350 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5351 		return 0;
5352 	}
5353 
5354 	its_srat_maps[its_in_srat].numa_node = node;
5355 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5356 	its_in_srat++;
5357 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5358 		its_affinity->proximity_domain, its_affinity->its_id, node);
5359 
5360 	return 0;
5361 }
5362 
acpi_table_parse_srat_its(void)5363 static void __init acpi_table_parse_srat_its(void)
5364 {
5365 	int count;
5366 
5367 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5368 			sizeof(struct acpi_table_srat),
5369 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5370 			gic_acpi_match_srat_its, 0);
5371 	if (count <= 0)
5372 		return;
5373 
5374 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5375 				      GFP_KERNEL);
5376 	if (!its_srat_maps) {
5377 		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
5378 		return;
5379 	}
5380 
5381 	acpi_table_parse_entries(ACPI_SIG_SRAT,
5382 			sizeof(struct acpi_table_srat),
5383 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5384 			gic_acpi_parse_srat_its, 0);
5385 }
5386 
5387 /* free the its_srat_maps after ITS probing */
acpi_its_srat_maps_free(void)5388 static void __init acpi_its_srat_maps_free(void)
5389 {
5390 	kfree(its_srat_maps);
5391 }
5392 #else
acpi_table_parse_srat_its(void)5393 static void __init acpi_table_parse_srat_its(void)	{ }
acpi_get_its_numa_node(u32 its_id)5394 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
acpi_its_srat_maps_free(void)5395 static void __init acpi_its_srat_maps_free(void) { }
5396 #endif
5397 
gic_acpi_parse_madt_its(union acpi_subtable_headers * header,const unsigned long end)5398 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5399 					  const unsigned long end)
5400 {
5401 	struct acpi_madt_generic_translator *its_entry;
5402 	struct fwnode_handle *dom_handle;
5403 	struct resource res;
5404 	int err;
5405 
5406 	its_entry = (struct acpi_madt_generic_translator *)header;
5407 	memset(&res, 0, sizeof(res));
5408 	res.start = its_entry->base_address;
5409 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5410 	res.flags = IORESOURCE_MEM;
5411 
5412 	dom_handle = irq_domain_alloc_fwnode(&res.start);
5413 	if (!dom_handle) {
5414 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5415 		       &res.start);
5416 		return -ENOMEM;
5417 	}
5418 
5419 	err = iort_register_domain_token(its_entry->translation_id, res.start,
5420 					 dom_handle);
5421 	if (err) {
5422 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5423 		       &res.start, its_entry->translation_id);
5424 		goto dom_err;
5425 	}
5426 
5427 	err = its_probe_one(&res, dom_handle,
5428 			acpi_get_its_numa_node(its_entry->translation_id));
5429 	if (!err)
5430 		return 0;
5431 
5432 	iort_deregister_domain_token(its_entry->translation_id);
5433 dom_err:
5434 	irq_domain_free_fwnode(dom_handle);
5435 	return err;
5436 }
5437 
its_acpi_probe(void)5438 static void __init its_acpi_probe(void)
5439 {
5440 	acpi_table_parse_srat_its();
5441 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5442 			      gic_acpi_parse_madt_its, 0);
5443 	acpi_its_srat_maps_free();
5444 }
5445 #else
its_acpi_probe(void)5446 static void __init its_acpi_probe(void) { }
5447 #endif
5448 
its_init(struct fwnode_handle * handle,struct rdists * rdists,struct irq_domain * parent_domain)5449 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5450 		    struct irq_domain *parent_domain)
5451 {
5452 	struct device_node *of_node;
5453 	struct its_node *its;
5454 	bool has_v4 = false;
5455 	bool has_v4_1 = false;
5456 	int err;
5457 
5458 	gic_rdists = rdists;
5459 
5460 	its_parent = parent_domain;
5461 	of_node = to_of_node(handle);
5462 	if (of_node)
5463 		its_of_probe(of_node);
5464 	else
5465 		its_acpi_probe();
5466 
5467 	if (list_empty(&its_nodes)) {
5468 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
5469 		return -ENXIO;
5470 	}
5471 
5472 	err = allocate_lpi_tables();
5473 	if (err)
5474 		return err;
5475 
5476 	list_for_each_entry(its, &its_nodes, entry) {
5477 		has_v4 |= is_v4(its);
5478 		has_v4_1 |= is_v4_1(its);
5479 	}
5480 
5481 	/* Don't bother with inconsistent systems */
5482 	if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5483 		rdists->has_rvpeid = false;
5484 
5485 	if (has_v4 & rdists->has_vlpis) {
5486 		const struct irq_domain_ops *sgi_ops;
5487 
5488 		if (has_v4_1)
5489 			sgi_ops = &its_sgi_domain_ops;
5490 		else
5491 			sgi_ops = NULL;
5492 
5493 		if (its_init_vpe_domain() ||
5494 		    its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5495 			rdists->has_vlpis = false;
5496 			pr_err("ITS: Disabling GICv4 support\n");
5497 		}
5498 	}
5499 
5500 	register_syscore_ops(&its_syscore_ops);
5501 
5502 	return 0;
5503 }
5504