1 // SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
2 /*
3 *
4 * (C) COPYRIGHT 2018-2023 ARM Limited. All rights reserved.
5 *
6 * This program is free software and is provided to you under the terms of the
7 * GNU General Public License version 2 as published by the Free Software
8 * Foundation, and any use by you of this program is subject to the terms
9 * of such GNU license.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
19 *
20 */
21
22 #include "mali_kbase.h"
23 #include "mali_kbase_csf_firmware_cfg.h"
24 #include "mali_kbase_csf_firmware_log.h"
25 #include "mali_kbase_csf_firmware_core_dump.h"
26 #include "mali_kbase_csf_trace_buffer.h"
27 #include "mali_kbase_csf_timeout.h"
28 #include "mali_kbase_mem.h"
29 #include "mali_kbase_mem_pool_group.h"
30 #include "mali_kbase_reset_gpu.h"
31 #include "mali_kbase_ctx_sched.h"
32 #include "mali_kbase_csf_scheduler.h"
33 #include <mali_kbase_hwaccess_time.h>
34 #include "device/mali_kbase_device.h"
35 #include "backend/gpu/mali_kbase_pm_internal.h"
36 #include "tl/mali_kbase_timeline_priv.h"
37 #include "tl/mali_kbase_tracepoints.h"
38 #include "mali_kbase_csf_tl_reader.h"
39 #include "backend/gpu/mali_kbase_clk_rate_trace_mgr.h"
40 #include <csf/ipa_control/mali_kbase_csf_ipa_control.h>
41 #include <csf/mali_kbase_csf_registers.h>
42 #include <linux/list.h>
43 #include <linux/slab.h>
44 #include <linux/firmware.h>
45 #include <linux/mman.h>
46 #include <linux/string.h>
47 #include <linux/mutex.h>
48 #include <linux/ctype.h>
49 #if (KERNEL_VERSION(4, 13, 0) <= LINUX_VERSION_CODE)
50 #include <linux/set_memory.h>
51 #endif
52 #include <mmu/mali_kbase_mmu.h>
53 #include <asm/arch_timer.h>
54 #include <linux/delay.h>
55
56 #define MALI_MAX_FIRMWARE_NAME_LEN ((size_t)20)
57
58 static char fw_name[MALI_MAX_FIRMWARE_NAME_LEN] = "mali_csffw.bin";
59 module_param_string(fw_name, fw_name, sizeof(fw_name), 0644);
60 MODULE_PARM_DESC(fw_name, "firmware image");
61
62 /* The waiting time for firmware to boot */
63 static unsigned int csf_firmware_boot_timeout_ms;
64 module_param(csf_firmware_boot_timeout_ms, uint, 0444);
65 MODULE_PARM_DESC(csf_firmware_boot_timeout_ms,
66 "Maximum time to wait for firmware to boot.");
67
68 #ifdef CONFIG_MALI_BIFROST_DEBUG
69 /* Makes Driver wait indefinitely for an acknowledgment for the different
70 * requests it sends to firmware. Otherwise the timeouts interfere with the
71 * use of debugger for source-level debugging of firmware as Driver initiates
72 * a GPU reset when a request times out, which always happen when a debugger
73 * is connected.
74 */
75 bool fw_debug; /* Default value of 0/false */
76 module_param(fw_debug, bool, 0444);
77 MODULE_PARM_DESC(fw_debug,
78 "Enables effective use of a debugger for debugging firmware code.");
79 #endif
80
81
82 #define FIRMWARE_HEADER_MAGIC (0xC3F13A6Eul)
83 #define FIRMWARE_HEADER_VERSION_MAJOR (0ul)
84 #define FIRMWARE_HEADER_VERSION_MINOR (3ul)
85 #define FIRMWARE_HEADER_LENGTH (0x14ul)
86
87 #define CSF_FIRMWARE_ENTRY_SUPPORTED_FLAGS \
88 (CSF_FIRMWARE_ENTRY_READ | \
89 CSF_FIRMWARE_ENTRY_WRITE | \
90 CSF_FIRMWARE_ENTRY_EXECUTE | \
91 CSF_FIRMWARE_ENTRY_PROTECTED | \
92 CSF_FIRMWARE_ENTRY_SHARED | \
93 CSF_FIRMWARE_ENTRY_ZERO | \
94 CSF_FIRMWARE_ENTRY_CACHE_MODE)
95
96 #define CSF_FIRMWARE_ENTRY_TYPE_INTERFACE (0)
97 #define CSF_FIRMWARE_ENTRY_TYPE_CONFIGURATION (1)
98 #define CSF_FIRMWARE_ENTRY_TYPE_TRACE_BUFFER (3)
99 #define CSF_FIRMWARE_ENTRY_TYPE_TIMELINE_METADATA (4)
100 #define CSF_FIRMWARE_ENTRY_TYPE_BUILD_INFO_METADATA (6)
101 #define CSF_FIRMWARE_ENTRY_TYPE_FUNC_CALL_LIST (7)
102 #define CSF_FIRMWARE_ENTRY_TYPE_CORE_DUMP (9)
103
104 #define CSF_FIRMWARE_CACHE_MODE_NONE (0ul << 3)
105 #define CSF_FIRMWARE_CACHE_MODE_CACHED (1ul << 3)
106 #define CSF_FIRMWARE_CACHE_MODE_UNCACHED_COHERENT (2ul << 3)
107 #define CSF_FIRMWARE_CACHE_MODE_CACHED_COHERENT (3ul << 3)
108
109 #define INTERFACE_ENTRY_NAME_OFFSET (0x14)
110
111 #define TL_METADATA_ENTRY_NAME_OFFSET (0x8)
112
113 #define BUILD_INFO_METADATA_SIZE_OFFSET (0x4)
114 #define BUILD_INFO_GIT_SHA_LEN (40U)
115 #define BUILD_INFO_GIT_DIRTY_LEN (1U)
116 #define BUILD_INFO_GIT_SHA_PATTERN "git_sha: "
117
118 #define CSF_MAX_FW_STOP_LOOPS (100000)
119
120 #define CSF_GLB_REQ_CFG_MASK \
121 (GLB_REQ_CFG_ALLOC_EN_MASK | GLB_REQ_CFG_PROGRESS_TIMER_MASK | \
122 GLB_REQ_CFG_PWROFF_TIMER_MASK | GLB_REQ_IDLE_ENABLE_MASK)
123
input_page_read(const u32 * const input,const u32 offset)124 static inline u32 input_page_read(const u32 *const input, const u32 offset)
125 {
126 WARN_ON(offset % sizeof(u32));
127
128 return input[offset / sizeof(u32)];
129 }
130
input_page_write(u32 * const input,const u32 offset,const u32 value)131 static inline void input_page_write(u32 *const input, const u32 offset,
132 const u32 value)
133 {
134 WARN_ON(offset % sizeof(u32));
135
136 input[offset / sizeof(u32)] = value;
137 }
138
input_page_partial_write(u32 * const input,const u32 offset,u32 value,u32 mask)139 static inline void input_page_partial_write(u32 *const input, const u32 offset,
140 u32 value, u32 mask)
141 {
142 WARN_ON(offset % sizeof(u32));
143
144 input[offset / sizeof(u32)] =
145 (input_page_read(input, offset) & ~mask) | (value & mask);
146 }
147
output_page_read(const u32 * const output,const u32 offset)148 static inline u32 output_page_read(const u32 *const output, const u32 offset)
149 {
150 WARN_ON(offset % sizeof(u32));
151
152 return output[offset / sizeof(u32)];
153 }
154
entry_type(u32 header)155 static unsigned int entry_type(u32 header)
156 {
157 return header & 0xFF;
158 }
entry_size(u32 header)159 static unsigned int entry_size(u32 header)
160 {
161 return (header >> 8) & 0xFF;
162 }
entry_update(u32 header)163 static bool entry_update(u32 header)
164 {
165 return (header >> 30) & 0x1;
166 }
entry_optional(u32 header)167 static bool entry_optional(u32 header)
168 {
169 return (header >> 31) & 0x1;
170 }
171
172 /**
173 * struct firmware_timeline_metadata - Timeline metadata item within the MCU firmware
174 *
175 * @node: List head linking all timeline metadata to
176 * kbase_device:csf.firmware_timeline_metadata.
177 * @name: NUL-terminated string naming the metadata.
178 * @data: Metadata content.
179 * @size: Metadata size.
180 */
181 struct firmware_timeline_metadata {
182 struct list_head node;
183 char *name;
184 char *data;
185 size_t size;
186 };
187
188 /* The shared interface area, used for communicating with firmware, is managed
189 * like a virtual memory zone. Reserve the virtual space from that zone
190 * corresponding to shared interface entry parsed from the firmware image.
191 * The shared_reg_rbtree should have been initialized before calling this
192 * function.
193 */
setup_shared_iface_static_region(struct kbase_device * kbdev)194 static int setup_shared_iface_static_region(struct kbase_device *kbdev)
195 {
196 struct kbase_csf_firmware_interface *interface =
197 kbdev->csf.shared_interface;
198 struct kbase_va_region *reg;
199 int ret = -ENOMEM;
200
201 if (!interface)
202 return -EINVAL;
203
204 reg = kbase_alloc_free_region(kbdev, &kbdev->csf.shared_reg_rbtree, 0,
205 interface->num_pages_aligned, KBASE_REG_ZONE_MCU_SHARED);
206 if (reg) {
207 mutex_lock(&kbdev->csf.reg_lock);
208 ret = kbase_add_va_region_rbtree(kbdev, reg,
209 interface->virtual, interface->num_pages_aligned, 1);
210 mutex_unlock(&kbdev->csf.reg_lock);
211 if (ret)
212 kfree(reg);
213 else
214 reg->flags &= ~KBASE_REG_FREE;
215 }
216
217 return ret;
218 }
219
wait_mcu_status_value(struct kbase_device * kbdev,u32 val)220 static int wait_mcu_status_value(struct kbase_device *kbdev, u32 val)
221 {
222 u32 max_loops = CSF_MAX_FW_STOP_LOOPS;
223
224 /* wait for the MCU_STATUS register to reach the given status value */
225 while (--max_loops &&
226 (kbase_reg_read(kbdev, GPU_CONTROL_REG(MCU_STATUS)) != val)) {
227 }
228
229 return (max_loops == 0) ? -1 : 0;
230 }
231
kbase_csf_firmware_disable_mcu(struct kbase_device * kbdev)232 void kbase_csf_firmware_disable_mcu(struct kbase_device *kbdev)
233 {
234 KBASE_TLSTREAM_TL_KBASE_CSFFW_FW_DISABLING(kbdev, kbase_backend_get_cycle_cnt(kbdev));
235
236 kbase_reg_write(kbdev, GPU_CONTROL_REG(MCU_CONTROL), MCU_CNTRL_DISABLE);
237 }
238
wait_for_firmware_stop(struct kbase_device * kbdev)239 static void wait_for_firmware_stop(struct kbase_device *kbdev)
240 {
241 if (wait_mcu_status_value(kbdev, MCU_CNTRL_DISABLE) < 0) {
242 /* This error shall go away once MIDJM-2371 is closed */
243 dev_err(kbdev->dev, "Firmware failed to stop");
244 }
245
246 KBASE_TLSTREAM_TL_KBASE_CSFFW_FW_OFF(kbdev, kbase_backend_get_cycle_cnt(kbdev));
247 }
248
kbase_csf_firmware_disable_mcu_wait(struct kbase_device * kbdev)249 void kbase_csf_firmware_disable_mcu_wait(struct kbase_device *kbdev)
250 {
251 wait_for_firmware_stop(kbdev);
252 }
253
stop_csf_firmware(struct kbase_device * kbdev)254 static void stop_csf_firmware(struct kbase_device *kbdev)
255 {
256 /* Stop the MCU firmware */
257 kbase_csf_firmware_disable_mcu(kbdev);
258
259 wait_for_firmware_stop(kbdev);
260 }
261
wait_for_firmware_boot(struct kbase_device * kbdev)262 static void wait_for_firmware_boot(struct kbase_device *kbdev)
263 {
264 long wait_timeout;
265 long remaining;
266
267 if (!csf_firmware_boot_timeout_ms)
268 csf_firmware_boot_timeout_ms =
269 kbase_get_timeout_ms(kbdev, CSF_FIRMWARE_BOOT_TIMEOUT);
270
271 wait_timeout = kbase_csf_timeout_in_jiffies(csf_firmware_boot_timeout_ms);
272
273 /* Firmware will generate a global interface interrupt once booting
274 * is complete
275 */
276 remaining = wait_event_timeout(kbdev->csf.event_wait,
277 kbdev->csf.interrupt_received == true, wait_timeout);
278
279 if (!remaining)
280 dev_err(kbdev->dev, "Timed out waiting for fw boot completion");
281
282 kbdev->csf.interrupt_received = false;
283 }
284
boot_csf_firmware(struct kbase_device * kbdev)285 static void boot_csf_firmware(struct kbase_device *kbdev)
286 {
287 kbase_csf_firmware_enable_mcu(kbdev);
288
289 #if IS_ENABLED(CONFIG_MALI_CORESIGHT)
290 kbase_debug_coresight_csf_state_request(kbdev, KBASE_DEBUG_CORESIGHT_CSF_ENABLED);
291
292 if (!kbase_debug_coresight_csf_state_wait(kbdev, KBASE_DEBUG_CORESIGHT_CSF_ENABLED))
293 dev_err(kbdev->dev, "Timeout waiting for CoreSight to be enabled");
294 #endif /* IS_ENABLED(CONFIG_MALI_CORESIGHT) */
295
296 wait_for_firmware_boot(kbdev);
297 }
298
299 /**
300 * wait_ready() - Wait for previously issued MMU command to complete.
301 *
302 * @kbdev: Kbase device to wait for a MMU command to complete.
303 *
304 * Reset GPU if the wait for previously issued command times out.
305 *
306 * Return: 0 on success, error code otherwise.
307 */
wait_ready(struct kbase_device * kbdev)308 static int wait_ready(struct kbase_device *kbdev)
309 {
310 const ktime_t wait_loop_start = ktime_get_raw();
311 const u32 mmu_as_inactive_wait_time_ms = kbdev->mmu_as_inactive_wait_time_ms;
312 s64 diff;
313
314 do {
315 unsigned int i;
316
317 for (i = 0; i < 1000; i++) {
318 /* Wait for the MMU status to indicate there is no active command */
319 if (!(kbase_reg_read(kbdev, MMU_AS_REG(MCU_AS_NR, AS_STATUS)) &
320 AS_STATUS_AS_ACTIVE))
321 return 0;
322 }
323
324 diff = ktime_to_ms(ktime_sub(ktime_get_raw(), wait_loop_start));
325 } while (diff < mmu_as_inactive_wait_time_ms);
326
327 dev_err(kbdev->dev,
328 "AS_ACTIVE bit stuck for MCU AS. Might be caused by unstable GPU clk/pwr or faulty system");
329
330 if (kbase_prepare_to_reset_gpu_locked(kbdev, RESET_FLAGS_HWC_UNRECOVERABLE_ERROR))
331 kbase_reset_gpu_locked(kbdev);
332
333 return -ETIMEDOUT;
334 }
335
unload_mmu_tables(struct kbase_device * kbdev)336 static void unload_mmu_tables(struct kbase_device *kbdev)
337 {
338 unsigned long irq_flags;
339
340 mutex_lock(&kbdev->mmu_hw_mutex);
341 spin_lock_irqsave(&kbdev->hwaccess_lock, irq_flags);
342 if (kbdev->pm.backend.gpu_powered)
343 kbase_mmu_disable_as(kbdev, MCU_AS_NR);
344 spin_unlock_irqrestore(&kbdev->hwaccess_lock, irq_flags);
345 mutex_unlock(&kbdev->mmu_hw_mutex);
346 }
347
load_mmu_tables(struct kbase_device * kbdev)348 static int load_mmu_tables(struct kbase_device *kbdev)
349 {
350 unsigned long irq_flags;
351
352 mutex_lock(&kbdev->mmu_hw_mutex);
353 spin_lock_irqsave(&kbdev->hwaccess_lock, irq_flags);
354 kbase_mmu_update(kbdev, &kbdev->csf.mcu_mmu, MCU_AS_NR);
355 spin_unlock_irqrestore(&kbdev->hwaccess_lock, irq_flags);
356 mutex_unlock(&kbdev->mmu_hw_mutex);
357
358 /* Wait for a while for the update command to take effect */
359 return wait_ready(kbdev);
360 }
361
362 /**
363 * convert_mem_flags() - Convert firmware memory flags to GPU region flags
364 *
365 * Return: GPU memory region flags
366 *
367 * @kbdev: Instance of GPU platform device (used to determine system coherency)
368 * @flags: Flags of an "interface memory setup" section in a firmware image
369 * @cm: appropriate cache mode chosen for the "interface memory setup"
370 * section, which could be different from the cache mode requested by
371 * firmware.
372 */
convert_mem_flags(const struct kbase_device * const kbdev,const u32 flags,u32 * cm)373 static unsigned long convert_mem_flags(const struct kbase_device * const kbdev,
374 const u32 flags, u32 *cm)
375 {
376 unsigned long mem_flags = 0;
377 u32 cache_mode = flags & CSF_FIRMWARE_ENTRY_CACHE_MODE;
378 bool is_shared = (flags & CSF_FIRMWARE_ENTRY_SHARED) ? true : false;
379
380 /* The memory flags control the access permissions for the MCU, the
381 * shader cores/tiler are not expected to access this memory
382 */
383 if (flags & CSF_FIRMWARE_ENTRY_READ)
384 mem_flags |= KBASE_REG_GPU_RD;
385
386 if (flags & CSF_FIRMWARE_ENTRY_WRITE)
387 mem_flags |= KBASE_REG_GPU_WR;
388
389 if ((flags & CSF_FIRMWARE_ENTRY_EXECUTE) == 0)
390 mem_flags |= KBASE_REG_GPU_NX;
391
392 if (flags & CSF_FIRMWARE_ENTRY_PROTECTED)
393 mem_flags |= KBASE_REG_PROTECTED;
394
395 /* Substitute uncached coherent memory for cached coherent memory if
396 * the system does not support ACE coherency.
397 */
398 if ((cache_mode == CSF_FIRMWARE_CACHE_MODE_CACHED_COHERENT) &&
399 (kbdev->system_coherency != COHERENCY_ACE))
400 cache_mode = CSF_FIRMWARE_CACHE_MODE_UNCACHED_COHERENT;
401
402 /* Substitute uncached incoherent memory for uncached coherent memory
403 * if the system does not support ACE-Lite coherency.
404 */
405 if ((cache_mode == CSF_FIRMWARE_CACHE_MODE_UNCACHED_COHERENT) &&
406 (kbdev->system_coherency == COHERENCY_NONE))
407 cache_mode = CSF_FIRMWARE_CACHE_MODE_NONE;
408
409 *cm = cache_mode;
410
411 switch (cache_mode) {
412 case CSF_FIRMWARE_CACHE_MODE_NONE:
413 mem_flags |=
414 KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_NON_CACHEABLE);
415 break;
416 case CSF_FIRMWARE_CACHE_MODE_CACHED:
417 mem_flags |=
418 KBASE_REG_MEMATTR_INDEX(
419 AS_MEMATTR_INDEX_IMPL_DEF_CACHE_POLICY);
420 break;
421 case CSF_FIRMWARE_CACHE_MODE_UNCACHED_COHERENT:
422 case CSF_FIRMWARE_CACHE_MODE_CACHED_COHERENT:
423 WARN_ON(!is_shared);
424 mem_flags |= KBASE_REG_SHARE_BOTH |
425 KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_SHARED);
426 break;
427 default:
428 dev_err(kbdev->dev,
429 "Firmware contains interface with unsupported cache mode\n");
430 break;
431 }
432 return mem_flags;
433 }
434
load_fw_image_section(struct kbase_device * kbdev,const u8 * data,struct tagged_addr * phys,u32 num_pages,u32 flags,u32 data_start,u32 data_end)435 static void load_fw_image_section(struct kbase_device *kbdev, const u8 *data,
436 struct tagged_addr *phys, u32 num_pages, u32 flags,
437 u32 data_start, u32 data_end)
438 {
439 u32 data_pos = data_start;
440 u32 data_len = data_end - data_start;
441 u32 page_num;
442 u32 page_limit;
443
444 if (flags & CSF_FIRMWARE_ENTRY_ZERO)
445 page_limit = num_pages;
446 else
447 page_limit = (data_len + PAGE_SIZE - 1) / PAGE_SIZE;
448
449 for (page_num = 0; page_num < page_limit; ++page_num) {
450 struct page *const page = as_page(phys[page_num]);
451 char *const p = kmap_atomic(page);
452 u32 const copy_len = min_t(u32, PAGE_SIZE, data_len);
453
454 if (copy_len > 0) {
455 memcpy(p, data + data_pos, copy_len);
456 data_pos += copy_len;
457 data_len -= copy_len;
458 }
459
460 if (flags & CSF_FIRMWARE_ENTRY_ZERO) {
461 u32 const zi_len = PAGE_SIZE - copy_len;
462
463 memset(p + copy_len, 0, zi_len);
464 }
465
466 kbase_sync_single_for_device(kbdev, kbase_dma_addr_from_tagged(phys[page_num]),
467 PAGE_SIZE, DMA_TO_DEVICE);
468 kunmap_atomic(p);
469 }
470 }
471
reload_fw_image(struct kbase_device * kbdev)472 static int reload_fw_image(struct kbase_device *kbdev)
473 {
474 const u32 magic = FIRMWARE_HEADER_MAGIC;
475 struct kbase_csf_firmware_interface *interface;
476 struct kbase_csf_mcu_fw *const mcu_fw = &kbdev->csf.fw;
477 int ret = 0;
478
479 if (WARN_ON(mcu_fw->data == NULL)) {
480 dev_err(kbdev->dev, "Firmware image copy not loaded\n");
481 ret = -EINVAL;
482 goto out;
483 }
484
485 /* Do a basic sanity check on MAGIC signature */
486 if (memcmp(mcu_fw->data, &magic, sizeof(magic)) != 0) {
487 dev_err(kbdev->dev, "Incorrect magic value, firmware image could have been corrupted\n");
488 ret = -EINVAL;
489 goto out;
490 }
491
492 list_for_each_entry(interface, &kbdev->csf.firmware_interfaces, node) {
493 /* Dont skip re-loading any section if full reload was requested */
494 if (!kbdev->csf.firmware_full_reload_needed) {
495 /* Skip reload of text & read only data sections */
496 if ((interface->flags & CSF_FIRMWARE_ENTRY_EXECUTE) ||
497 !(interface->flags & CSF_FIRMWARE_ENTRY_WRITE))
498 continue;
499 }
500
501 load_fw_image_section(kbdev, mcu_fw->data, interface->phys, interface->num_pages,
502 interface->flags, interface->data_start, interface->data_end);
503 }
504
505 kbdev->csf.firmware_full_reload_needed = false;
506
507 kbase_csf_firmware_reload_trace_buffers_data(kbdev);
508 out:
509 return ret;
510 }
511
512 /**
513 * entry_find_large_page_to_reuse() - Find if the large page of previously parsed
514 * FW interface entry can be reused to store
515 * the contents of new FW interface entry.
516 *
517 * @kbdev: Kbase device structure
518 * @virtual_start: Start of the virtual address range required for an entry allocation
519 * @virtual_end: End of the virtual address range required for an entry allocation
520 * @flags: Firmware entry flags for comparison with the reusable pages found
521 * @phys: Pointer to the array of physical (tagged) addresses making up the new
522 * FW interface entry. It is an output parameter which would be made to
523 * point to an already existing array allocated for the previously parsed
524 * FW interface entry using large page(s). If no appropriate entry is
525 * found it is set to NULL.
526 * @pma: Pointer to a protected memory allocation. It is an output parameter
527 * which would be made to the protected memory allocation of a previously
528 * parsed FW interface entry using large page(s) from protected memory.
529 * If no appropriate entry is found it is set to NULL.
530 * @num_pages: Number of pages requested.
531 * @num_pages_aligned: This is an output parameter used to carry the number of 4KB pages
532 * within the 2MB pages aligned allocation.
533 * @is_small_page: This is an output flag used to select between the small and large page
534 * to be used for the FW entry allocation.
535 *
536 * Go through all the already initialized interfaces and find if a previously
537 * allocated large page can be used to store contents of new FW interface entry.
538 *
539 * Return: true if a large page can be reused, false otherwise.
540 */
entry_find_large_page_to_reuse(struct kbase_device * kbdev,const u32 virtual_start,const u32 virtual_end,const u32 flags,struct tagged_addr ** phys,struct protected_memory_allocation *** pma,u32 num_pages,u32 * num_pages_aligned,bool * is_small_page)541 static inline bool entry_find_large_page_to_reuse(struct kbase_device *kbdev,
542 const u32 virtual_start, const u32 virtual_end,
543 const u32 flags, struct tagged_addr **phys,
544 struct protected_memory_allocation ***pma,
545 u32 num_pages, u32 *num_pages_aligned,
546 bool *is_small_page)
547 {
548 struct kbase_csf_firmware_interface *interface = NULL;
549 struct kbase_csf_firmware_interface *target_interface = NULL;
550 u32 virtual_diff_min = U32_MAX;
551 bool reuse_large_page = false;
552
553 CSTD_UNUSED(interface);
554 CSTD_UNUSED(target_interface);
555 CSTD_UNUSED(virtual_diff_min);
556
557 *num_pages_aligned = num_pages;
558 *is_small_page = true;
559 *phys = NULL;
560 *pma = NULL;
561
562
563 /* If the section starts at 2MB aligned boundary,
564 * then use 2MB page(s) for it.
565 */
566 if (!(virtual_start & (SZ_2M - 1))) {
567 *num_pages_aligned =
568 round_up(*num_pages_aligned, NUM_4K_PAGES_IN_2MB_PAGE);
569 *is_small_page = false;
570 goto out;
571 }
572
573 /* If the section doesn't lie within the same 2MB aligned boundary,
574 * then use 4KB pages as it would be complicated to use a 2MB page
575 * for such section.
576 */
577 if ((virtual_start & ~(SZ_2M - 1)) != (virtual_end & ~(SZ_2M - 1)))
578 goto out;
579
580 /* Find the nearest 2MB aligned section which comes before the current
581 * section.
582 */
583 list_for_each_entry(interface, &kbdev->csf.firmware_interfaces, node) {
584 const u32 virtual_diff = virtual_start - interface->virtual;
585
586 if (interface->virtual > virtual_end)
587 continue;
588
589 if (interface->virtual & (SZ_2M - 1))
590 continue;
591
592 if ((virtual_diff < virtual_diff_min) && (interface->flags == flags)) {
593 target_interface = interface;
594 virtual_diff_min = virtual_diff;
595 }
596 }
597
598 if (target_interface) {
599 const u32 page_index = virtual_diff_min >> PAGE_SHIFT;
600
601 if (page_index >= target_interface->num_pages_aligned)
602 goto out;
603
604 if (target_interface->phys)
605 *phys = &target_interface->phys[page_index];
606
607 if (target_interface->pma)
608 *pma = &target_interface->pma[page_index / NUM_4K_PAGES_IN_2MB_PAGE];
609
610 *is_small_page = false;
611 reuse_large_page = true;
612 }
613
614 out:
615 return reuse_large_page;
616 }
617
618 /**
619 * parse_memory_setup_entry() - Process an "interface memory setup" section
620 *
621 * @kbdev: Kbase device structure
622 * @fw: The firmware image containing the section
623 * @entry: Pointer to the start of the section
624 * @size: Size (in bytes) of the section
625 *
626 * Read an "interface memory setup" section from the firmware image and create
627 * the necessary memory region including the MMU page tables. If successful
628 * the interface will be added to the kbase_device:csf.firmware_interfaces list.
629 *
630 * Return: 0 if successful, negative error code on failure
631 */
parse_memory_setup_entry(struct kbase_device * kbdev,const struct kbase_csf_mcu_fw * const fw,const u32 * entry,unsigned int size)632 static int parse_memory_setup_entry(struct kbase_device *kbdev,
633 const struct kbase_csf_mcu_fw *const fw, const u32 *entry,
634 unsigned int size)
635 {
636 int ret = 0;
637 const u32 flags = entry[0];
638 const u32 virtual_start = entry[1];
639 const u32 virtual_end = entry[2];
640 const u32 data_start = entry[3];
641 const u32 data_end = entry[4];
642 u32 num_pages;
643 u32 num_pages_aligned;
644 char *name;
645 void *name_entry;
646 unsigned int name_len;
647 struct tagged_addr *phys = NULL;
648 struct kbase_csf_firmware_interface *interface = NULL;
649 bool allocated_pages = false, protected_mode = false;
650 unsigned long mem_flags = 0;
651 u32 cache_mode = 0;
652 struct protected_memory_allocation **pma = NULL;
653 bool reuse_pages = false;
654 bool is_small_page = true;
655 bool ignore_page_migration = true;
656
657 if (data_end < data_start) {
658 dev_err(kbdev->dev, "Firmware corrupt, data_end < data_start (0x%x<0x%x)\n",
659 data_end, data_start);
660 return -EINVAL;
661 }
662 if (virtual_end < virtual_start) {
663 dev_err(kbdev->dev, "Firmware corrupt, virtual_end < virtual_start (0x%x<0x%x)\n",
664 virtual_end, virtual_start);
665 return -EINVAL;
666 }
667 if (data_end > fw->size) {
668 dev_err(kbdev->dev, "Firmware corrupt, file truncated? data_end=0x%x > fw->size=0x%zx\n",
669 data_end, fw->size);
670 return -EINVAL;
671 }
672
673 if ((virtual_start & ~PAGE_MASK) != 0 ||
674 (virtual_end & ~PAGE_MASK) != 0) {
675 dev_err(kbdev->dev, "Firmware corrupt: virtual addresses not page aligned: 0x%x-0x%x\n",
676 virtual_start, virtual_end);
677 return -EINVAL;
678 }
679
680 if ((flags & CSF_FIRMWARE_ENTRY_SUPPORTED_FLAGS) != flags) {
681 dev_err(kbdev->dev, "Firmware contains interface with unsupported flags (0x%x)\n",
682 flags);
683 return -EINVAL;
684 }
685
686 if (flags & CSF_FIRMWARE_ENTRY_PROTECTED)
687 protected_mode = true;
688
689 if (protected_mode && kbdev->csf.pma_dev == NULL) {
690 dev_dbg(kbdev->dev,
691 "Protected memory allocator not found, Firmware protected mode entry will not be supported");
692 return 0;
693 }
694
695 num_pages = (virtual_end - virtual_start)
696 >> PAGE_SHIFT;
697
698 reuse_pages =
699 entry_find_large_page_to_reuse(kbdev, virtual_start, virtual_end, flags, &phys,
700 &pma, num_pages, &num_pages_aligned, &is_small_page);
701 if (!reuse_pages)
702 phys = kmalloc_array(num_pages_aligned, sizeof(*phys), GFP_KERNEL);
703
704 if (!phys)
705 return -ENOMEM;
706
707 if (protected_mode) {
708 if (!reuse_pages) {
709 pma = kbase_csf_protected_memory_alloc(
710 kbdev, phys, num_pages_aligned, is_small_page);
711 }
712
713 if (!pma)
714 ret = -ENOMEM;
715 } else {
716 if (!reuse_pages) {
717 ret = kbase_mem_pool_alloc_pages(
718 kbase_mem_pool_group_select(kbdev, KBASE_MEM_GROUP_CSF_FW,
719 is_small_page),
720 num_pages_aligned, phys, false, NULL);
721 ignore_page_migration = false;
722 }
723 }
724
725 if (ret < 0) {
726 dev_err(kbdev->dev,
727 "Failed to allocate %u physical pages for the firmware interface entry at VA 0x%x\n",
728 num_pages_aligned, virtual_start);
729 goto out;
730 }
731
732 allocated_pages = true;
733 load_fw_image_section(kbdev, fw->data, phys, num_pages, flags,
734 data_start, data_end);
735
736 /* Allocate enough memory for the struct kbase_csf_firmware_interface and
737 * the name of the interface.
738 */
739 name_entry = (void *)entry + INTERFACE_ENTRY_NAME_OFFSET;
740 name_len = strnlen(name_entry, size - INTERFACE_ENTRY_NAME_OFFSET);
741 if (size < (INTERFACE_ENTRY_NAME_OFFSET + name_len + 1 + sizeof(u32))) {
742 dev_err(kbdev->dev, "Memory setup entry too short to contain virtual_exe_start");
743 ret = -EINVAL;
744 goto out;
745 }
746
747 interface = kmalloc(sizeof(*interface) + name_len + 1, GFP_KERNEL);
748 if (!interface) {
749 ret = -ENOMEM;
750 goto out;
751 }
752 name = (void *)(interface + 1);
753 memcpy(name, name_entry, name_len);
754 name[name_len] = 0;
755
756 interface->name = name;
757 interface->phys = phys;
758 interface->reuse_pages = reuse_pages;
759 interface->is_small_page = is_small_page;
760 interface->num_pages = num_pages;
761 interface->num_pages_aligned = num_pages_aligned;
762 interface->virtual = virtual_start;
763 interface->kernel_map = NULL;
764 interface->flags = flags;
765 interface->data_start = data_start;
766 interface->data_end = data_end;
767 interface->pma = pma;
768
769 /* Discover the virtual execution address field after the end of the name
770 * field taking into account the NULL-termination character.
771 */
772 interface->virtual_exe_start = *((u32 *)(name_entry + name_len + 1));
773
774 mem_flags = convert_mem_flags(kbdev, flags, &cache_mode);
775
776 if (flags & CSF_FIRMWARE_ENTRY_SHARED) {
777 struct page **page_list;
778 u32 i;
779 pgprot_t cpu_map_prot;
780 u32 mem_attr_index = KBASE_REG_MEMATTR_VALUE(mem_flags);
781
782 /* Since SHARED memory type was used for mapping shared memory
783 * on GPU side, it can be mapped as cached on CPU side on both
784 * types of coherent platforms.
785 */
786 if ((cache_mode == CSF_FIRMWARE_CACHE_MODE_CACHED_COHERENT) ||
787 (cache_mode == CSF_FIRMWARE_CACHE_MODE_UNCACHED_COHERENT)) {
788 WARN_ON(mem_attr_index !=
789 AS_MEMATTR_INDEX_SHARED);
790 cpu_map_prot = PAGE_KERNEL;
791 } else {
792 WARN_ON(mem_attr_index !=
793 AS_MEMATTR_INDEX_NON_CACHEABLE);
794 cpu_map_prot = pgprot_writecombine(PAGE_KERNEL);
795 }
796
797 page_list = kmalloc_array(num_pages, sizeof(*page_list),
798 GFP_KERNEL);
799 if (!page_list) {
800 ret = -ENOMEM;
801 goto out;
802 }
803
804 for (i = 0; i < num_pages; i++)
805 page_list[i] = as_page(phys[i]);
806
807 interface->kernel_map = vmap(page_list, num_pages, VM_MAP,
808 cpu_map_prot);
809
810 kfree(page_list);
811
812 if (!interface->kernel_map) {
813 ret = -ENOMEM;
814 goto out;
815 }
816 }
817
818 /* Start location of the shared interface area is fixed and is
819 * specified in firmware spec, and so there shall only be a
820 * single entry with that start address.
821 */
822 if (virtual_start == (KBASE_REG_ZONE_MCU_SHARED_BASE << PAGE_SHIFT))
823 kbdev->csf.shared_interface = interface;
824
825 list_add(&interface->node, &kbdev->csf.firmware_interfaces);
826
827 if (!reuse_pages) {
828 ret = kbase_mmu_insert_pages_no_flush(kbdev, &kbdev->csf.mcu_mmu,
829 virtual_start >> PAGE_SHIFT, phys,
830 num_pages_aligned, mem_flags,
831 KBASE_MEM_GROUP_CSF_FW, NULL, NULL,
832 ignore_page_migration);
833
834 if (ret != 0) {
835 dev_err(kbdev->dev, "Failed to insert firmware pages\n");
836 /* The interface has been added to the list, so cleanup will
837 * be handled by firmware unloading
838 */
839 }
840 }
841
842 dev_dbg(kbdev->dev, "Processed section '%s'", name);
843
844 return ret;
845
846 out:
847 if (allocated_pages) {
848 if (!reuse_pages) {
849 if (protected_mode) {
850 kbase_csf_protected_memory_free(
851 kbdev, pma, num_pages_aligned, is_small_page);
852 } else {
853 kbase_mem_pool_free_pages(
854 kbase_mem_pool_group_select(
855 kbdev, KBASE_MEM_GROUP_CSF_FW, is_small_page),
856 num_pages_aligned, phys, false, false);
857 }
858 }
859 }
860
861 if (!reuse_pages)
862 kfree(phys);
863
864 kfree(interface);
865 return ret;
866 }
867
868 /**
869 * parse_timeline_metadata_entry() - Process a "timeline metadata" section
870 *
871 * Return: 0 if successful, negative error code on failure
872 *
873 * @kbdev: Kbase device structure
874 * @fw: Firmware image containing the section
875 * @entry: Pointer to the section
876 * @size: Size (in bytes) of the section
877 */
parse_timeline_metadata_entry(struct kbase_device * kbdev,const struct kbase_csf_mcu_fw * const fw,const u32 * entry,unsigned int size)878 static int parse_timeline_metadata_entry(struct kbase_device *kbdev,
879 const struct kbase_csf_mcu_fw *const fw, const u32 *entry,
880 unsigned int size)
881 {
882 const u32 data_start = entry[0];
883 const u32 data_size = entry[1];
884 const u32 data_end = data_start + data_size;
885 const char *name = (char *)&entry[2];
886 struct firmware_timeline_metadata *metadata;
887 const unsigned int name_len =
888 size - TL_METADATA_ENTRY_NAME_OFFSET;
889 size_t allocation_size = sizeof(*metadata) + name_len + 1 + data_size;
890
891 if (data_end > fw->size) {
892 dev_err(kbdev->dev,
893 "Firmware corrupt, file truncated? data_end=0x%x > fw->size=0x%zx",
894 data_end, fw->size);
895 return -EINVAL;
896 }
897
898 /* Allocate enough space for firmware_timeline_metadata,
899 * its name and the content.
900 */
901 metadata = kmalloc(allocation_size, GFP_KERNEL);
902 if (!metadata)
903 return -ENOMEM;
904
905 metadata->name = (char *)(metadata + 1);
906 metadata->data = (char *)(metadata + 1) + name_len + 1;
907 metadata->size = data_size;
908
909 memcpy(metadata->name, name, name_len);
910 metadata->name[name_len] = 0;
911
912 /* Copy metadata's content. */
913 memcpy(metadata->data, fw->data + data_start, data_size);
914
915 list_add(&metadata->node, &kbdev->csf.firmware_timeline_metadata);
916
917 dev_dbg(kbdev->dev, "Timeline metadata '%s'", metadata->name);
918
919 return 0;
920 }
921
922 /**
923 * parse_build_info_metadata_entry() - Process a "build info metadata" section
924 * @kbdev: Kbase device structure
925 * @fw: Firmware image containing the section
926 * @entry: Pointer to the section
927 * @size: Size (in bytes) of the section
928 *
929 * This prints the git SHA of the firmware on frimware load.
930 *
931 * Return: 0 if successful, negative error code on failure
932 */
parse_build_info_metadata_entry(struct kbase_device * kbdev,const struct kbase_csf_mcu_fw * const fw,const u32 * entry,unsigned int size)933 static int parse_build_info_metadata_entry(struct kbase_device *kbdev,
934 const struct kbase_csf_mcu_fw *const fw,
935 const u32 *entry, unsigned int size)
936 {
937 const u32 meta_start_addr = entry[0];
938 char *ptr = NULL;
939 size_t sha_pattern_len = strlen(BUILD_INFO_GIT_SHA_PATTERN);
940
941 /* Only print git SHA to avoid releasing sensitive information */
942 ptr = strstr(fw->data + meta_start_addr, BUILD_INFO_GIT_SHA_PATTERN);
943 /* Check that we won't overrun the found string */
944 if (ptr &&
945 strlen(ptr) >= BUILD_INFO_GIT_SHA_LEN + BUILD_INFO_GIT_DIRTY_LEN + sha_pattern_len) {
946 char git_sha[BUILD_INFO_GIT_SHA_LEN + BUILD_INFO_GIT_DIRTY_LEN + 1];
947 int i = 0;
948
949 /* Move ptr to start of SHA */
950 ptr += sha_pattern_len;
951 for (i = 0; i < BUILD_INFO_GIT_SHA_LEN; i++) {
952 /* Ensure that the SHA is made up of hex digits */
953 if (!isxdigit(ptr[i]))
954 break;
955
956 git_sha[i] = ptr[i];
957 }
958
959 /* Check if the next char indicates git SHA is dirty */
960 if (ptr[i] == ' ' || ptr[i] == '+') {
961 git_sha[i] = ptr[i];
962 i++;
963 }
964 git_sha[i] = '\0';
965
966 dev_info(kbdev->dev, "Mali firmware git_sha: %s\n", git_sha);
967 } else
968 dev_info(kbdev->dev, "Mali firmware git_sha not found or invalid\n");
969
970 return 0;
971 }
972
973 /**
974 * load_firmware_entry() - Process an entry from a firmware image
975 *
976 * @kbdev: Kbase device
977 * @fw: Firmware image containing the entry
978 * @offset: Byte offset within the image of the entry to load
979 * @header: Header word of the entry
980 *
981 * Read an entry from a firmware image and do any necessary work (e.g. loading
982 * the data into page accessible to the MCU).
983 *
984 * Unknown entries are ignored if the 'optional' flag is set within the entry,
985 * otherwise the function will fail with -EINVAL
986 *
987 * Return: 0 if successful, negative error code on failure
988 */
load_firmware_entry(struct kbase_device * kbdev,const struct kbase_csf_mcu_fw * const fw,u32 offset,u32 header)989 static int load_firmware_entry(struct kbase_device *kbdev, const struct kbase_csf_mcu_fw *const fw,
990 u32 offset, u32 header)
991 {
992 const unsigned int type = entry_type(header);
993 unsigned int size = entry_size(header);
994 const bool optional = entry_optional(header);
995 /* Update is used with configuration and tracebuffer entries to
996 * initiate a FIRMWARE_CONFIG_UPDATE, instead of triggering a
997 * silent reset.
998 */
999 const bool updatable = entry_update(header);
1000 const u32 *entry = (void *)(fw->data + offset);
1001
1002 if ((offset % sizeof(*entry)) || (size % sizeof(*entry))) {
1003 dev_err(kbdev->dev, "Firmware entry isn't 32 bit aligned, offset=0x%x size=0x%x\n",
1004 offset, size);
1005 return -EINVAL;
1006 }
1007
1008 if (size < sizeof(*entry)) {
1009 dev_err(kbdev->dev, "Size field too small: %u\n", size);
1010 return -EINVAL;
1011 }
1012
1013 /* Remove the header */
1014 entry++;
1015 size -= sizeof(*entry);
1016
1017 switch (type) {
1018 case CSF_FIRMWARE_ENTRY_TYPE_INTERFACE:
1019 /* Interface memory setup */
1020 if (size < INTERFACE_ENTRY_NAME_OFFSET + sizeof(*entry)) {
1021 dev_err(kbdev->dev, "Interface memory setup entry too short (size=%u)\n",
1022 size);
1023 return -EINVAL;
1024 }
1025 return parse_memory_setup_entry(kbdev, fw, entry, size);
1026 case CSF_FIRMWARE_ENTRY_TYPE_CONFIGURATION:
1027 /* Configuration option */
1028 if (size < CONFIGURATION_ENTRY_NAME_OFFSET + sizeof(*entry)) {
1029 dev_err(kbdev->dev, "Configuration option entry too short (size=%u)\n",
1030 size);
1031 return -EINVAL;
1032 }
1033 return kbase_csf_firmware_cfg_option_entry_parse(
1034 kbdev, fw, entry, size, updatable);
1035 case CSF_FIRMWARE_ENTRY_TYPE_TRACE_BUFFER:
1036 /* Trace buffer */
1037 if (size < TRACE_BUFFER_ENTRY_NAME_OFFSET + sizeof(*entry)) {
1038 dev_err(kbdev->dev, "Trace Buffer entry too short (size=%u)\n",
1039 size);
1040 return -EINVAL;
1041 }
1042 return kbase_csf_firmware_parse_trace_buffer_entry(
1043 kbdev, entry, size, updatable);
1044 case CSF_FIRMWARE_ENTRY_TYPE_TIMELINE_METADATA:
1045 /* Meta data section */
1046 if (size < TL_METADATA_ENTRY_NAME_OFFSET + sizeof(*entry)) {
1047 dev_err(kbdev->dev, "Timeline metadata entry too short (size=%u)\n",
1048 size);
1049 return -EINVAL;
1050 }
1051 return parse_timeline_metadata_entry(kbdev, fw, entry, size);
1052 case CSF_FIRMWARE_ENTRY_TYPE_BUILD_INFO_METADATA:
1053 if (size < BUILD_INFO_METADATA_SIZE_OFFSET + sizeof(*entry)) {
1054 dev_err(kbdev->dev, "Build info metadata entry too short (size=%u)\n",
1055 size);
1056 return -EINVAL;
1057 }
1058 return parse_build_info_metadata_entry(kbdev, fw, entry, size);
1059 case CSF_FIRMWARE_ENTRY_TYPE_FUNC_CALL_LIST:
1060 /* Function call list section */
1061 if (size < FUNC_CALL_LIST_ENTRY_NAME_OFFSET + sizeof(*entry)) {
1062 dev_err(kbdev->dev, "Function call list entry too short (size=%u)\n",
1063 size);
1064 return -EINVAL;
1065 }
1066 kbase_csf_firmware_log_parse_logging_call_list_entry(kbdev, entry);
1067 return 0;
1068 case CSF_FIRMWARE_ENTRY_TYPE_CORE_DUMP:
1069 /* Core Dump section */
1070 if (size < CORE_DUMP_ENTRY_START_ADDR_OFFSET + sizeof(*entry)) {
1071 dev_err(kbdev->dev, "FW Core dump entry too short (size=%u)\n", size);
1072 return -EINVAL;
1073 }
1074 return kbase_csf_firmware_core_dump_entry_parse(kbdev, entry);
1075 default:
1076 if (!optional) {
1077 dev_err(kbdev->dev, "Unsupported non-optional entry type %u in firmware\n",
1078 type);
1079 return -EINVAL;
1080 }
1081 }
1082
1083 return 0;
1084 }
1085
free_global_iface(struct kbase_device * kbdev)1086 static void free_global_iface(struct kbase_device *kbdev)
1087 {
1088 struct kbase_csf_global_iface *iface = &kbdev->csf.global_iface;
1089
1090 if (iface->groups) {
1091 unsigned int gid;
1092
1093 for (gid = 0; gid < iface->group_num; ++gid)
1094 kfree(iface->groups[gid].streams);
1095
1096 kfree(iface->groups);
1097 iface->groups = NULL;
1098 }
1099 }
1100
1101 /**
1102 * iface_gpu_va_to_cpu - Convert a GPU VA address within the shared interface
1103 * region to a CPU address, using the existing mapping.
1104 * @kbdev: Device pointer
1105 * @gpu_va: GPU VA to convert
1106 *
1107 * Return: A CPU pointer to the location within the shared interface region, or
1108 * NULL on failure.
1109 */
iface_gpu_va_to_cpu(struct kbase_device * kbdev,u32 gpu_va)1110 static inline void *iface_gpu_va_to_cpu(struct kbase_device *kbdev, u32 gpu_va)
1111 {
1112 struct kbase_csf_firmware_interface *interface =
1113 kbdev->csf.shared_interface;
1114 u8 *kernel_base = interface->kernel_map;
1115
1116 if (gpu_va < interface->virtual ||
1117 gpu_va >= interface->virtual + interface->num_pages * PAGE_SIZE) {
1118 dev_err(kbdev->dev,
1119 "Interface address 0x%x not within %u-page region at 0x%x",
1120 gpu_va, interface->num_pages,
1121 interface->virtual);
1122 return NULL;
1123 }
1124
1125 return (void *)(kernel_base + (gpu_va - interface->virtual));
1126 }
1127
parse_cmd_stream_info(struct kbase_device * kbdev,struct kbase_csf_cmd_stream_info * sinfo,u32 * stream_base)1128 static int parse_cmd_stream_info(struct kbase_device *kbdev,
1129 struct kbase_csf_cmd_stream_info *sinfo,
1130 u32 *stream_base)
1131 {
1132 sinfo->kbdev = kbdev;
1133 sinfo->features = stream_base[STREAM_FEATURES/4];
1134 sinfo->input = iface_gpu_va_to_cpu(kbdev,
1135 stream_base[STREAM_INPUT_VA/4]);
1136 sinfo->output = iface_gpu_va_to_cpu(kbdev,
1137 stream_base[STREAM_OUTPUT_VA/4]);
1138
1139 if (sinfo->input == NULL || sinfo->output == NULL)
1140 return -EINVAL;
1141
1142 return 0;
1143 }
1144
parse_cmd_stream_group_info(struct kbase_device * kbdev,struct kbase_csf_cmd_stream_group_info * ginfo,u32 * group_base,u32 group_stride)1145 static int parse_cmd_stream_group_info(struct kbase_device *kbdev,
1146 struct kbase_csf_cmd_stream_group_info *ginfo,
1147 u32 *group_base, u32 group_stride)
1148 {
1149 unsigned int sid;
1150
1151 ginfo->kbdev = kbdev;
1152 ginfo->features = group_base[GROUP_FEATURES/4];
1153 ginfo->input = iface_gpu_va_to_cpu(kbdev,
1154 group_base[GROUP_INPUT_VA/4]);
1155 ginfo->output = iface_gpu_va_to_cpu(kbdev,
1156 group_base[GROUP_OUTPUT_VA/4]);
1157
1158 if (ginfo->input == NULL || ginfo->output == NULL)
1159 return -ENOMEM;
1160
1161 ginfo->suspend_size = group_base[GROUP_SUSPEND_SIZE/4];
1162 ginfo->protm_suspend_size = group_base[GROUP_PROTM_SUSPEND_SIZE/4];
1163 ginfo->stream_num = group_base[GROUP_STREAM_NUM/4];
1164
1165 if (ginfo->stream_num < MIN_SUPPORTED_STREAMS_PER_GROUP ||
1166 ginfo->stream_num > MAX_SUPPORTED_STREAMS_PER_GROUP) {
1167 dev_err(kbdev->dev, "CSG with %u CSs out of range %u-%u",
1168 ginfo->stream_num,
1169 MIN_SUPPORTED_STREAMS_PER_GROUP,
1170 MAX_SUPPORTED_STREAMS_PER_GROUP);
1171 return -EINVAL;
1172 }
1173
1174 ginfo->stream_stride = group_base[GROUP_STREAM_STRIDE/4];
1175
1176 if (ginfo->stream_num * ginfo->stream_stride > group_stride) {
1177 dev_err(kbdev->dev,
1178 "group stride of 0x%x exceeded by %u CSs with stride 0x%x",
1179 group_stride, ginfo->stream_num,
1180 ginfo->stream_stride);
1181 return -EINVAL;
1182 }
1183
1184 ginfo->streams = kmalloc_array(ginfo->stream_num,
1185 sizeof(*ginfo->streams), GFP_KERNEL);
1186
1187 if (!ginfo->streams)
1188 return -ENOMEM;
1189
1190 for (sid = 0; sid < ginfo->stream_num; sid++) {
1191 int err;
1192 u32 *stream_base = group_base + (STREAM_CONTROL_0 +
1193 ginfo->stream_stride * sid) / 4;
1194
1195 err = parse_cmd_stream_info(kbdev, &ginfo->streams[sid],
1196 stream_base);
1197 if (err < 0) {
1198 /* caller will free the memory for CSs array */
1199 return err;
1200 }
1201 }
1202
1203 return 0;
1204 }
1205
get_firmware_version(struct kbase_device * kbdev)1206 static u32 get_firmware_version(struct kbase_device *kbdev)
1207 {
1208 struct kbase_csf_firmware_interface *interface =
1209 kbdev->csf.shared_interface;
1210 u32 *shared_info = interface->kernel_map;
1211
1212 return shared_info[GLB_VERSION/4];
1213 }
1214
parse_capabilities(struct kbase_device * kbdev)1215 static int parse_capabilities(struct kbase_device *kbdev)
1216 {
1217 struct kbase_csf_firmware_interface *interface =
1218 kbdev->csf.shared_interface;
1219 u32 *shared_info = interface->kernel_map;
1220 struct kbase_csf_global_iface *iface = &kbdev->csf.global_iface;
1221 unsigned int gid;
1222
1223 /* All offsets are in bytes, so divide by 4 for access via a u32 pointer
1224 */
1225
1226 /* The version number of the global interface is expected to be a
1227 * non-zero value. If it's not, the firmware may not have booted.
1228 */
1229 iface->version = get_firmware_version(kbdev);
1230 if (!iface->version) {
1231 dev_err(kbdev->dev, "Version check failed. Firmware may have failed to boot.");
1232 return -EINVAL;
1233 }
1234
1235
1236 iface->kbdev = kbdev;
1237 iface->features = shared_info[GLB_FEATURES/4];
1238 iface->input = iface_gpu_va_to_cpu(kbdev, shared_info[GLB_INPUT_VA/4]);
1239 iface->output = iface_gpu_va_to_cpu(kbdev,
1240 shared_info[GLB_OUTPUT_VA/4]);
1241
1242 if (iface->input == NULL || iface->output == NULL)
1243 return -ENOMEM;
1244
1245 iface->group_num = shared_info[GLB_GROUP_NUM/4];
1246
1247 if (iface->group_num < MIN_SUPPORTED_CSGS ||
1248 iface->group_num > MAX_SUPPORTED_CSGS) {
1249 dev_err(kbdev->dev,
1250 "Interface containing %u CSGs outside of range %u-%u",
1251 iface->group_num, MIN_SUPPORTED_CSGS,
1252 MAX_SUPPORTED_CSGS);
1253 return -EINVAL;
1254 }
1255
1256 iface->group_stride = shared_info[GLB_GROUP_STRIDE/4];
1257 iface->prfcnt_size = shared_info[GLB_PRFCNT_SIZE/4];
1258
1259 if (iface->version >= kbase_csf_interface_version(1, 1, 0))
1260 iface->instr_features = shared_info[GLB_INSTR_FEATURES / 4];
1261 else
1262 iface->instr_features = 0;
1263
1264 if ((GROUP_CONTROL_0 +
1265 (unsigned long)iface->group_num * iface->group_stride) >
1266 (interface->num_pages * PAGE_SIZE)) {
1267 dev_err(kbdev->dev,
1268 "interface size of %u pages exceeded by %u CSGs with stride 0x%x",
1269 interface->num_pages, iface->group_num,
1270 iface->group_stride);
1271 return -EINVAL;
1272 }
1273
1274 WARN_ON(iface->groups);
1275
1276 iface->groups = kcalloc(iface->group_num, sizeof(*iface->groups),
1277 GFP_KERNEL);
1278 if (!iface->groups)
1279 return -ENOMEM;
1280
1281 for (gid = 0; gid < iface->group_num; gid++) {
1282 int err;
1283 u32 *group_base = shared_info + (GROUP_CONTROL_0 +
1284 iface->group_stride * gid) / 4;
1285
1286 err = parse_cmd_stream_group_info(kbdev, &iface->groups[gid],
1287 group_base, iface->group_stride);
1288 if (err < 0) {
1289 free_global_iface(kbdev);
1290 return err;
1291 }
1292 }
1293
1294 return 0;
1295 }
1296
access_firmware_memory_common(struct kbase_device * kbdev,struct kbase_csf_firmware_interface * interface,u32 offset_bytes,u32 * value,const bool read)1297 static inline void access_firmware_memory_common(struct kbase_device *kbdev,
1298 struct kbase_csf_firmware_interface *interface, u32 offset_bytes,
1299 u32 *value, const bool read)
1300 {
1301 u32 page_num = offset_bytes >> PAGE_SHIFT;
1302 u32 offset_in_page = offset_bytes & ~PAGE_MASK;
1303 struct page *target_page = as_page(interface->phys[page_num]);
1304 uintptr_t cpu_addr = (uintptr_t)kmap_atomic(target_page);
1305 u32 *addr = (u32 *)(cpu_addr + offset_in_page);
1306
1307 if (read) {
1308 kbase_sync_single_for_device(kbdev,
1309 kbase_dma_addr_from_tagged(interface->phys[page_num]) + offset_in_page,
1310 sizeof(u32), DMA_BIDIRECTIONAL);
1311 *value = *addr;
1312 } else {
1313 *addr = *value;
1314 kbase_sync_single_for_device(kbdev,
1315 kbase_dma_addr_from_tagged(interface->phys[page_num]) + offset_in_page,
1316 sizeof(u32), DMA_BIDIRECTIONAL);
1317 }
1318
1319 kunmap_atomic((u32 *)cpu_addr);
1320 }
1321
access_firmware_memory(struct kbase_device * kbdev,u32 gpu_addr,u32 * value,const bool read)1322 static inline void access_firmware_memory(struct kbase_device *kbdev,
1323 u32 gpu_addr, u32 *value, const bool read)
1324 {
1325 struct kbase_csf_firmware_interface *interface, *access_interface = NULL;
1326 u32 offset_bytes = 0;
1327
1328 list_for_each_entry(interface, &kbdev->csf.firmware_interfaces, node) {
1329 if ((gpu_addr >= interface->virtual) &&
1330 (gpu_addr < interface->virtual + (interface->num_pages << PAGE_SHIFT))) {
1331 offset_bytes = gpu_addr - interface->virtual;
1332 access_interface = interface;
1333 break;
1334 }
1335 }
1336
1337 if (access_interface)
1338 access_firmware_memory_common(kbdev, access_interface, offset_bytes, value, read);
1339 else
1340 dev_warn(kbdev->dev, "Invalid GPU VA %x passed", gpu_addr);
1341 }
1342
access_firmware_memory_exe(struct kbase_device * kbdev,u32 gpu_addr,u32 * value,const bool read)1343 static inline void access_firmware_memory_exe(struct kbase_device *kbdev,
1344 u32 gpu_addr, u32 *value, const bool read)
1345 {
1346 struct kbase_csf_firmware_interface *interface, *access_interface = NULL;
1347 u32 offset_bytes = 0;
1348
1349 list_for_each_entry(interface, &kbdev->csf.firmware_interfaces, node) {
1350 if ((gpu_addr >= interface->virtual_exe_start) &&
1351 (gpu_addr < interface->virtual_exe_start +
1352 (interface->num_pages << PAGE_SHIFT))) {
1353 offset_bytes = gpu_addr - interface->virtual_exe_start;
1354 access_interface = interface;
1355
1356 /* If there's an overlap in execution address range between a moved and a
1357 * non-moved areas, always prefer the moved one. The idea is that FW may
1358 * move sections around during init time, but after the layout is settled,
1359 * any moved sections are going to override non-moved areas at the same
1360 * location.
1361 */
1362 if (interface->virtual_exe_start != interface->virtual)
1363 break;
1364 }
1365 }
1366
1367 if (access_interface)
1368 access_firmware_memory_common(kbdev, access_interface, offset_bytes, value, read);
1369 else
1370 dev_warn(kbdev->dev, "Invalid GPU VA %x passed", gpu_addr);
1371 }
1372
kbase_csf_read_firmware_memory(struct kbase_device * kbdev,u32 gpu_addr,u32 * value)1373 void kbase_csf_read_firmware_memory(struct kbase_device *kbdev,
1374 u32 gpu_addr, u32 *value)
1375 {
1376 access_firmware_memory(kbdev, gpu_addr, value, true);
1377 }
1378
kbase_csf_update_firmware_memory(struct kbase_device * kbdev,u32 gpu_addr,u32 value)1379 void kbase_csf_update_firmware_memory(struct kbase_device *kbdev,
1380 u32 gpu_addr, u32 value)
1381 {
1382 access_firmware_memory(kbdev, gpu_addr, &value, false);
1383 }
1384
kbase_csf_read_firmware_memory_exe(struct kbase_device * kbdev,u32 gpu_addr,u32 * value)1385 void kbase_csf_read_firmware_memory_exe(struct kbase_device *kbdev,
1386 u32 gpu_addr, u32 *value)
1387 {
1388 access_firmware_memory_exe(kbdev, gpu_addr, value, true);
1389 }
1390
kbase_csf_update_firmware_memory_exe(struct kbase_device * kbdev,u32 gpu_addr,u32 value)1391 void kbase_csf_update_firmware_memory_exe(struct kbase_device *kbdev,
1392 u32 gpu_addr, u32 value)
1393 {
1394 access_firmware_memory_exe(kbdev, gpu_addr, &value, false);
1395 }
1396
kbase_csf_firmware_cs_input(const struct kbase_csf_cmd_stream_info * const info,const u32 offset,const u32 value)1397 void kbase_csf_firmware_cs_input(
1398 const struct kbase_csf_cmd_stream_info *const info, const u32 offset,
1399 const u32 value)
1400 {
1401 const struct kbase_device * const kbdev = info->kbdev;
1402
1403 dev_dbg(kbdev->dev, "cs input w: reg %08x val %08x\n", offset, value);
1404 input_page_write(info->input, offset, value);
1405 }
1406
kbase_csf_firmware_cs_input_read(const struct kbase_csf_cmd_stream_info * const info,const u32 offset)1407 u32 kbase_csf_firmware_cs_input_read(
1408 const struct kbase_csf_cmd_stream_info *const info,
1409 const u32 offset)
1410 {
1411 const struct kbase_device * const kbdev = info->kbdev;
1412 u32 const val = input_page_read(info->input, offset);
1413
1414 dev_dbg(kbdev->dev, "cs input r: reg %08x val %08x\n", offset, val);
1415 return val;
1416 }
1417
kbase_csf_firmware_cs_input_mask(const struct kbase_csf_cmd_stream_info * const info,const u32 offset,const u32 value,const u32 mask)1418 void kbase_csf_firmware_cs_input_mask(
1419 const struct kbase_csf_cmd_stream_info *const info, const u32 offset,
1420 const u32 value, const u32 mask)
1421 {
1422 const struct kbase_device * const kbdev = info->kbdev;
1423
1424 dev_dbg(kbdev->dev, "cs input w: reg %08x val %08x mask %08x\n",
1425 offset, value, mask);
1426 input_page_partial_write(info->input, offset, value, mask);
1427 }
1428
kbase_csf_firmware_cs_output(const struct kbase_csf_cmd_stream_info * const info,const u32 offset)1429 u32 kbase_csf_firmware_cs_output(
1430 const struct kbase_csf_cmd_stream_info *const info, const u32 offset)
1431 {
1432 const struct kbase_device * const kbdev = info->kbdev;
1433 u32 const val = output_page_read(info->output, offset);
1434
1435 dev_dbg(kbdev->dev, "cs output r: reg %08x val %08x\n", offset, val);
1436 return val;
1437 }
1438
kbase_csf_firmware_csg_input(const struct kbase_csf_cmd_stream_group_info * const info,const u32 offset,const u32 value)1439 void kbase_csf_firmware_csg_input(
1440 const struct kbase_csf_cmd_stream_group_info *const info,
1441 const u32 offset, const u32 value)
1442 {
1443 const struct kbase_device * const kbdev = info->kbdev;
1444
1445 dev_dbg(kbdev->dev, "csg input w: reg %08x val %08x\n",
1446 offset, value);
1447 input_page_write(info->input, offset, value);
1448 }
1449
kbase_csf_firmware_csg_input_read(const struct kbase_csf_cmd_stream_group_info * const info,const u32 offset)1450 u32 kbase_csf_firmware_csg_input_read(
1451 const struct kbase_csf_cmd_stream_group_info *const info,
1452 const u32 offset)
1453 {
1454 const struct kbase_device * const kbdev = info->kbdev;
1455 u32 const val = input_page_read(info->input, offset);
1456
1457 dev_dbg(kbdev->dev, "csg input r: reg %08x val %08x\n", offset, val);
1458 return val;
1459 }
1460
kbase_csf_firmware_csg_input_mask(const struct kbase_csf_cmd_stream_group_info * const info,const u32 offset,const u32 value,const u32 mask)1461 void kbase_csf_firmware_csg_input_mask(
1462 const struct kbase_csf_cmd_stream_group_info *const info,
1463 const u32 offset, const u32 value, const u32 mask)
1464 {
1465 const struct kbase_device * const kbdev = info->kbdev;
1466
1467 dev_dbg(kbdev->dev, "csg input w: reg %08x val %08x mask %08x\n",
1468 offset, value, mask);
1469 input_page_partial_write(info->input, offset, value, mask);
1470 }
1471
kbase_csf_firmware_csg_output(const struct kbase_csf_cmd_stream_group_info * const info,const u32 offset)1472 u32 kbase_csf_firmware_csg_output(
1473 const struct kbase_csf_cmd_stream_group_info *const info,
1474 const u32 offset)
1475 {
1476 const struct kbase_device * const kbdev = info->kbdev;
1477 u32 const val = output_page_read(info->output, offset);
1478
1479 dev_dbg(kbdev->dev, "csg output r: reg %08x val %08x\n", offset, val);
1480 return val;
1481 }
1482 KBASE_EXPORT_TEST_API(kbase_csf_firmware_csg_output);
1483
kbase_csf_firmware_global_input(const struct kbase_csf_global_iface * const iface,const u32 offset,const u32 value)1484 void kbase_csf_firmware_global_input(
1485 const struct kbase_csf_global_iface *const iface, const u32 offset,
1486 const u32 value)
1487 {
1488 const struct kbase_device * const kbdev = iface->kbdev;
1489
1490 dev_dbg(kbdev->dev, "glob input w: reg %08x val %08x\n", offset, value);
1491 input_page_write(iface->input, offset, value);
1492 }
1493 KBASE_EXPORT_TEST_API(kbase_csf_firmware_global_input);
1494
kbase_csf_firmware_global_input_mask(const struct kbase_csf_global_iface * const iface,const u32 offset,const u32 value,const u32 mask)1495 void kbase_csf_firmware_global_input_mask(
1496 const struct kbase_csf_global_iface *const iface, const u32 offset,
1497 const u32 value, const u32 mask)
1498 {
1499 const struct kbase_device * const kbdev = iface->kbdev;
1500
1501 dev_dbg(kbdev->dev, "glob input w: reg %08x val %08x mask %08x\n",
1502 offset, value, mask);
1503 input_page_partial_write(iface->input, offset, value, mask);
1504 }
1505 KBASE_EXPORT_TEST_API(kbase_csf_firmware_global_input_mask);
1506
kbase_csf_firmware_global_input_read(const struct kbase_csf_global_iface * const iface,const u32 offset)1507 u32 kbase_csf_firmware_global_input_read(
1508 const struct kbase_csf_global_iface *const iface, const u32 offset)
1509 {
1510 const struct kbase_device * const kbdev = iface->kbdev;
1511 u32 const val = input_page_read(iface->input, offset);
1512
1513 dev_dbg(kbdev->dev, "glob input r: reg %08x val %08x\n", offset, val);
1514 return val;
1515 }
1516
kbase_csf_firmware_global_output(const struct kbase_csf_global_iface * const iface,const u32 offset)1517 u32 kbase_csf_firmware_global_output(
1518 const struct kbase_csf_global_iface *const iface, const u32 offset)
1519 {
1520 const struct kbase_device * const kbdev = iface->kbdev;
1521 u32 const val = output_page_read(iface->output, offset);
1522
1523 dev_dbg(kbdev->dev, "glob output r: reg %08x val %08x\n", offset, val);
1524 return val;
1525 }
1526 KBASE_EXPORT_TEST_API(kbase_csf_firmware_global_output);
1527
1528 /**
1529 * csf_doorbell_offset() - Calculate the offset to the CSF host doorbell
1530 * @doorbell_nr: Doorbell number
1531 *
1532 * Return: CSF host register offset for the specified doorbell number.
1533 */
csf_doorbell_offset(int doorbell_nr)1534 static u32 csf_doorbell_offset(int doorbell_nr)
1535 {
1536 WARN_ON(doorbell_nr < 0);
1537 WARN_ON(doorbell_nr >= CSF_NUM_DOORBELL);
1538
1539 return CSF_HW_DOORBELL_PAGE_OFFSET + (doorbell_nr * CSF_HW_DOORBELL_PAGE_SIZE);
1540 }
1541
kbase_csf_ring_doorbell(struct kbase_device * kbdev,int doorbell_nr)1542 void kbase_csf_ring_doorbell(struct kbase_device *kbdev, int doorbell_nr)
1543 {
1544 kbase_reg_write(kbdev, csf_doorbell_offset(doorbell_nr), (u32)1);
1545 }
1546 EXPORT_SYMBOL(kbase_csf_ring_doorbell);
1547
1548 /**
1549 * handle_internal_firmware_fatal - Handler for CS internal firmware fault.
1550 *
1551 * @kbdev: Pointer to kbase device
1552 *
1553 * Report group fatal error to user space for all GPU command queue groups
1554 * in the device, terminate them and reset GPU.
1555 */
handle_internal_firmware_fatal(struct kbase_device * const kbdev)1556 static void handle_internal_firmware_fatal(struct kbase_device *const kbdev)
1557 {
1558 int as;
1559
1560 for (as = 0; as < kbdev->nr_hw_address_spaces; as++) {
1561 unsigned long flags;
1562 struct kbase_context *kctx;
1563 struct kbase_fault fault;
1564
1565 if (as == MCU_AS_NR)
1566 continue;
1567
1568 /* Only handle the fault for an active address space. Lock is
1569 * taken here to atomically get reference to context in an
1570 * active address space and retain its refcount.
1571 */
1572 spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
1573 kctx = kbase_ctx_sched_as_to_ctx_nolock(kbdev, as);
1574
1575 if (kctx) {
1576 kbase_ctx_sched_retain_ctx_refcount(kctx);
1577 spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
1578 } else {
1579 spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
1580 continue;
1581 }
1582
1583 fault = (struct kbase_fault) {
1584 .status = GPU_EXCEPTION_TYPE_SW_FAULT_1,
1585 };
1586
1587 kbase_csf_ctx_handle_fault(kctx, &fault);
1588 kbase_ctx_sched_release_ctx_lock(kctx);
1589 }
1590
1591 if (kbase_prepare_to_reset_gpu(kbdev,
1592 RESET_FLAGS_HWC_UNRECOVERABLE_ERROR))
1593 kbase_reset_gpu(kbdev);
1594 }
1595
1596 /**
1597 * firmware_error_worker - Worker function for handling firmware internal error
1598 *
1599 * @data: Pointer to a work_struct embedded in kbase device.
1600 *
1601 * Handle the CS internal firmware error
1602 */
firmware_error_worker(struct work_struct * const data)1603 static void firmware_error_worker(struct work_struct *const data)
1604 {
1605 struct kbase_device *const kbdev =
1606 container_of(data, struct kbase_device, csf.fw_error_work);
1607
1608 handle_internal_firmware_fatal(kbdev);
1609 }
1610
global_request_complete(struct kbase_device * const kbdev,u32 const req_mask)1611 static bool global_request_complete(struct kbase_device *const kbdev,
1612 u32 const req_mask)
1613 {
1614 struct kbase_csf_global_iface *global_iface =
1615 &kbdev->csf.global_iface;
1616 bool complete = false;
1617 unsigned long flags;
1618
1619 kbase_csf_scheduler_spin_lock(kbdev, &flags);
1620
1621 if ((kbase_csf_firmware_global_output(global_iface, GLB_ACK) &
1622 req_mask) ==
1623 (kbase_csf_firmware_global_input_read(global_iface, GLB_REQ) &
1624 req_mask))
1625 complete = true;
1626
1627 kbase_csf_scheduler_spin_unlock(kbdev, flags);
1628
1629 return complete;
1630 }
1631
wait_for_global_request_with_timeout(struct kbase_device * const kbdev,u32 const req_mask,unsigned int timeout_ms)1632 static int wait_for_global_request_with_timeout(struct kbase_device *const kbdev,
1633 u32 const req_mask, unsigned int timeout_ms)
1634 {
1635 const long wait_timeout = kbase_csf_timeout_in_jiffies(timeout_ms);
1636 long remaining;
1637 int err = 0;
1638
1639 remaining = wait_event_timeout(kbdev->csf.event_wait,
1640 global_request_complete(kbdev, req_mask),
1641 wait_timeout);
1642
1643 if (!remaining) {
1644 dev_warn(kbdev->dev,
1645 "[%llu] Timeout (%d ms) waiting for global request %x to complete",
1646 kbase_backend_get_cycle_cnt(kbdev), timeout_ms, req_mask);
1647 err = -ETIMEDOUT;
1648
1649 }
1650
1651 return err;
1652 }
1653
wait_for_global_request(struct kbase_device * const kbdev,u32 const req_mask)1654 static int wait_for_global_request(struct kbase_device *const kbdev, u32 const req_mask)
1655 {
1656 return wait_for_global_request_with_timeout(kbdev, req_mask, kbdev->csf.fw_timeout_ms);
1657 }
1658
set_global_request(const struct kbase_csf_global_iface * const global_iface,u32 const req_mask)1659 static void set_global_request(
1660 const struct kbase_csf_global_iface *const global_iface,
1661 u32 const req_mask)
1662 {
1663 u32 glb_req;
1664
1665 kbase_csf_scheduler_spin_lock_assert_held(global_iface->kbdev);
1666
1667 glb_req = kbase_csf_firmware_global_output(global_iface, GLB_ACK);
1668 glb_req ^= req_mask;
1669 kbase_csf_firmware_global_input_mask(global_iface, GLB_REQ, glb_req,
1670 req_mask);
1671 }
1672
enable_endpoints_global(const struct kbase_csf_global_iface * const global_iface,u64 const shader_core_mask)1673 static void enable_endpoints_global(
1674 const struct kbase_csf_global_iface *const global_iface,
1675 u64 const shader_core_mask)
1676 {
1677 kbase_csf_firmware_global_input(global_iface, GLB_ALLOC_EN_LO,
1678 shader_core_mask & U32_MAX);
1679 kbase_csf_firmware_global_input(global_iface, GLB_ALLOC_EN_HI,
1680 shader_core_mask >> 32);
1681
1682 set_global_request(global_iface, GLB_REQ_CFG_ALLOC_EN_MASK);
1683 }
1684
enable_shader_poweroff_timer(struct kbase_device * const kbdev,const struct kbase_csf_global_iface * const global_iface)1685 static void enable_shader_poweroff_timer(struct kbase_device *const kbdev,
1686 const struct kbase_csf_global_iface *const global_iface)
1687 {
1688 u32 pwroff_reg;
1689
1690 if (kbdev->csf.firmware_hctl_core_pwr)
1691 pwroff_reg =
1692 GLB_PWROFF_TIMER_TIMER_SOURCE_SET(DISABLE_GLB_PWROFF_TIMER,
1693 GLB_PWROFF_TIMER_TIMER_SOURCE_SYSTEM_TIMESTAMP);
1694 else
1695 pwroff_reg = kbdev->csf.mcu_core_pwroff_dur_count;
1696
1697 kbase_csf_firmware_global_input(global_iface, GLB_PWROFF_TIMER,
1698 pwroff_reg);
1699 set_global_request(global_iface, GLB_REQ_CFG_PWROFF_TIMER_MASK);
1700
1701 /* Save the programed reg value in its shadow field */
1702 kbdev->csf.mcu_core_pwroff_reg_shadow = pwroff_reg;
1703
1704 dev_dbg(kbdev->dev, "GLB_PWROFF_TIMER set to 0x%.8x\n", pwroff_reg);
1705 }
1706
set_timeout_global(const struct kbase_csf_global_iface * const global_iface,u64 const timeout)1707 static void set_timeout_global(
1708 const struct kbase_csf_global_iface *const global_iface,
1709 u64 const timeout)
1710 {
1711 kbase_csf_firmware_global_input(global_iface, GLB_PROGRESS_TIMER,
1712 timeout / GLB_PROGRESS_TIMER_TIMEOUT_SCALE);
1713
1714 set_global_request(global_iface, GLB_REQ_CFG_PROGRESS_TIMER_MASK);
1715 }
1716
enable_gpu_idle_timer(struct kbase_device * const kbdev)1717 static void enable_gpu_idle_timer(struct kbase_device *const kbdev)
1718 {
1719 struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
1720
1721 kbase_csf_scheduler_spin_lock_assert_held(kbdev);
1722
1723 kbase_csf_firmware_global_input(global_iface, GLB_IDLE_TIMER,
1724 kbdev->csf.gpu_idle_dur_count);
1725 kbase_csf_firmware_global_input_mask(global_iface, GLB_REQ, GLB_REQ_REQ_IDLE_ENABLE,
1726 GLB_REQ_IDLE_ENABLE_MASK);
1727 dev_dbg(kbdev->dev, "Enabling GPU idle timer with count-value: 0x%.8x",
1728 kbdev->csf.gpu_idle_dur_count);
1729 }
1730
global_debug_request_complete(struct kbase_device * const kbdev,u32 const req_mask)1731 static bool global_debug_request_complete(struct kbase_device *const kbdev, u32 const req_mask)
1732 {
1733 struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
1734 bool complete = false;
1735 unsigned long flags;
1736
1737 kbase_csf_scheduler_spin_lock(kbdev, &flags);
1738
1739 if ((kbase_csf_firmware_global_output(global_iface, GLB_DEBUG_ACK) & req_mask) ==
1740 (kbase_csf_firmware_global_input_read(global_iface, GLB_DEBUG_REQ) & req_mask))
1741 complete = true;
1742
1743 kbase_csf_scheduler_spin_unlock(kbdev, flags);
1744
1745 return complete;
1746 }
1747
set_global_debug_request(const struct kbase_csf_global_iface * const global_iface,u32 const req_mask)1748 static void set_global_debug_request(const struct kbase_csf_global_iface *const global_iface,
1749 u32 const req_mask)
1750 {
1751 u32 glb_debug_req;
1752
1753 kbase_csf_scheduler_spin_lock_assert_held(global_iface->kbdev);
1754
1755 glb_debug_req = kbase_csf_firmware_global_output(global_iface, GLB_DEBUG_ACK);
1756 glb_debug_req ^= req_mask;
1757
1758 kbase_csf_firmware_global_input_mask(global_iface, GLB_DEBUG_REQ, glb_debug_req, req_mask);
1759 }
1760
request_fw_core_dump(const struct kbase_csf_global_iface * const global_iface)1761 static void request_fw_core_dump(
1762 const struct kbase_csf_global_iface *const global_iface)
1763 {
1764 uint32_t run_mode = GLB_DEBUG_REQ_RUN_MODE_SET(0, GLB_DEBUG_RUN_MODE_TYPE_CORE_DUMP);
1765
1766 set_global_debug_request(global_iface, GLB_DEBUG_REQ_DEBUG_RUN_MASK | run_mode);
1767
1768 set_global_request(global_iface, GLB_REQ_DEBUG_CSF_REQ_MASK);
1769 }
1770
kbase_csf_firmware_req_core_dump(struct kbase_device * const kbdev)1771 int kbase_csf_firmware_req_core_dump(struct kbase_device *const kbdev)
1772 {
1773 const struct kbase_csf_global_iface *const global_iface =
1774 &kbdev->csf.global_iface;
1775 unsigned long flags;
1776 int ret;
1777
1778 /* Serialize CORE_DUMP requests. */
1779 mutex_lock(&kbdev->csf.reg_lock);
1780
1781 /* Update GLB_REQ with CORE_DUMP request and make firmware act on it. */
1782 kbase_csf_scheduler_spin_lock(kbdev, &flags);
1783 request_fw_core_dump(global_iface);
1784 kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
1785 kbase_csf_scheduler_spin_unlock(kbdev, flags);
1786
1787 /* Wait for firmware to acknowledge completion of the CORE_DUMP request. */
1788 ret = wait_for_global_request(kbdev, GLB_REQ_DEBUG_CSF_REQ_MASK);
1789 if (!ret)
1790 WARN_ON(!global_debug_request_complete(kbdev, GLB_DEBUG_REQ_DEBUG_RUN_MASK));
1791
1792 mutex_unlock(&kbdev->csf.reg_lock);
1793
1794 return ret;
1795 }
1796
1797 /**
1798 * kbasep_enable_rtu - Enable Ray Tracing Unit on powering up shader core
1799 *
1800 * @kbdev: The kbase device structure of the device
1801 *
1802 * This function needs to be called to enable the Ray Tracing Unit
1803 * by writing SHADER_PWRFEATURES only when host controls shader cores power.
1804 */
kbasep_enable_rtu(struct kbase_device * kbdev)1805 static void kbasep_enable_rtu(struct kbase_device *kbdev)
1806 {
1807 const u32 gpu_id = kbdev->gpu_props.props.raw_props.gpu_id;
1808
1809 if (gpu_id < GPU_ID2_PRODUCT_MAKE(12, 8, 3, 0))
1810 return;
1811
1812 if (kbdev->csf.firmware_hctl_core_pwr)
1813 kbase_reg_write(kbdev, GPU_CONTROL_REG(SHADER_PWRFEATURES), 1);
1814 }
1815
global_init(struct kbase_device * const kbdev,u64 core_mask)1816 static void global_init(struct kbase_device *const kbdev, u64 core_mask)
1817 {
1818 u32 const ack_irq_mask =
1819 GLB_ACK_IRQ_MASK_CFG_ALLOC_EN_MASK | GLB_ACK_IRQ_MASK_PING_MASK |
1820 GLB_ACK_IRQ_MASK_CFG_PROGRESS_TIMER_MASK | GLB_ACK_IRQ_MASK_PROTM_ENTER_MASK |
1821 GLB_ACK_IRQ_MASK_PROTM_EXIT_MASK | GLB_ACK_IRQ_MASK_FIRMWARE_CONFIG_UPDATE_MASK |
1822 GLB_ACK_IRQ_MASK_CFG_PWROFF_TIMER_MASK | GLB_ACK_IRQ_MASK_IDLE_EVENT_MASK |
1823 GLB_REQ_DEBUG_CSF_REQ_MASK | GLB_ACK_IRQ_MASK_IDLE_ENABLE_MASK;
1824
1825 const struct kbase_csf_global_iface *const global_iface =
1826 &kbdev->csf.global_iface;
1827 unsigned long flags;
1828
1829 kbase_csf_scheduler_spin_lock(kbdev, &flags);
1830
1831 kbasep_enable_rtu(kbdev);
1832
1833 /* Update shader core allocation enable mask */
1834 enable_endpoints_global(global_iface, core_mask);
1835 enable_shader_poweroff_timer(kbdev, global_iface);
1836
1837 set_timeout_global(global_iface, kbase_csf_timeout_get(kbdev));
1838
1839 /* The GPU idle timer is always enabled for simplicity. Checks will be
1840 * done before scheduling the GPU idle worker to see if it is
1841 * appropriate for the current power policy.
1842 */
1843 enable_gpu_idle_timer(kbdev);
1844
1845 /* Unmask the interrupts */
1846 kbase_csf_firmware_global_input(global_iface,
1847 GLB_ACK_IRQ_MASK, ack_irq_mask);
1848
1849 #if IS_ENABLED(CONFIG_MALI_CORESIGHT)
1850 /* Enable FW MCU read/write debug interfaces */
1851 kbase_csf_firmware_global_input_mask(
1852 global_iface, GLB_DEBUG_ACK_IRQ_MASK,
1853 GLB_DEBUG_REQ_FW_AS_READ_MASK | GLB_DEBUG_REQ_FW_AS_WRITE_MASK,
1854 GLB_DEBUG_REQ_FW_AS_READ_MASK | GLB_DEBUG_REQ_FW_AS_WRITE_MASK);
1855 #endif /* IS_ENABLED(CONFIG_MALI_CORESIGHT) */
1856
1857 kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
1858
1859 kbase_csf_scheduler_spin_unlock(kbdev, flags);
1860 }
1861
1862 /**
1863 * global_init_on_boot - Sends a global request to control various features.
1864 *
1865 * @kbdev: Instance of a GPU platform device that implements a CSF interface
1866 *
1867 * Currently only the request to enable endpoints and timeout for GPU progress
1868 * timer is sent.
1869 *
1870 * Return: 0 on success, or negative on failure.
1871 */
global_init_on_boot(struct kbase_device * const kbdev)1872 static int global_init_on_boot(struct kbase_device *const kbdev)
1873 {
1874 unsigned long flags;
1875 u64 core_mask;
1876
1877 spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
1878 core_mask = kbase_pm_ca_get_core_mask(kbdev);
1879 kbdev->csf.firmware_hctl_core_pwr =
1880 kbase_pm_no_mcu_core_pwroff(kbdev);
1881 spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
1882
1883 global_init(kbdev, core_mask);
1884
1885 return wait_for_global_request(kbdev, CSF_GLB_REQ_CFG_MASK);
1886 }
1887
kbase_csf_firmware_global_reinit(struct kbase_device * kbdev,u64 core_mask)1888 void kbase_csf_firmware_global_reinit(struct kbase_device *kbdev,
1889 u64 core_mask)
1890 {
1891 lockdep_assert_held(&kbdev->hwaccess_lock);
1892
1893 kbdev->csf.glb_init_request_pending = true;
1894 kbdev->csf.firmware_hctl_core_pwr =
1895 kbase_pm_no_mcu_core_pwroff(kbdev);
1896 global_init(kbdev, core_mask);
1897 }
1898
kbase_csf_firmware_global_reinit_complete(struct kbase_device * kbdev)1899 bool kbase_csf_firmware_global_reinit_complete(struct kbase_device *kbdev)
1900 {
1901 lockdep_assert_held(&kbdev->hwaccess_lock);
1902 WARN_ON(!kbdev->csf.glb_init_request_pending);
1903
1904 if (global_request_complete(kbdev, CSF_GLB_REQ_CFG_MASK))
1905 kbdev->csf.glb_init_request_pending = false;
1906
1907 return !kbdev->csf.glb_init_request_pending;
1908 }
1909
kbase_csf_firmware_update_core_attr(struct kbase_device * kbdev,bool update_core_pwroff_timer,bool update_core_mask,u64 core_mask)1910 void kbase_csf_firmware_update_core_attr(struct kbase_device *kbdev,
1911 bool update_core_pwroff_timer, bool update_core_mask, u64 core_mask)
1912 {
1913 unsigned long flags;
1914
1915 lockdep_assert_held(&kbdev->hwaccess_lock);
1916
1917 kbase_csf_scheduler_spin_lock(kbdev, &flags);
1918 if (update_core_mask)
1919 enable_endpoints_global(&kbdev->csf.global_iface, core_mask);
1920 if (update_core_pwroff_timer)
1921 enable_shader_poweroff_timer(kbdev, &kbdev->csf.global_iface);
1922
1923 kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
1924 kbase_csf_scheduler_spin_unlock(kbdev, flags);
1925 }
1926
kbase_csf_firmware_core_attr_updated(struct kbase_device * kbdev)1927 bool kbase_csf_firmware_core_attr_updated(struct kbase_device *kbdev)
1928 {
1929 lockdep_assert_held(&kbdev->hwaccess_lock);
1930
1931 return global_request_complete(kbdev, GLB_REQ_CFG_ALLOC_EN_MASK |
1932 GLB_REQ_CFG_PWROFF_TIMER_MASK);
1933 }
1934
1935 /**
1936 * kbase_csf_firmware_reload_worker() - reload the fw image and re-enable the MCU
1937 * @work: CSF Work item for reloading the firmware.
1938 *
1939 * This helper function will reload the firmware image and re-enable the MCU.
1940 * It is supposed to be called after MCU(GPU) has been reset.
1941 * Unlike the initial boot the firmware binary image is not parsed completely.
1942 * Only the data sections, which were loaded in memory during the initial boot,
1943 * are re-initialized either by zeroing them or copying their data from the
1944 * firmware binary image. The memory allocation for the firmware pages and
1945 * MMU programming is not needed for the reboot, presuming the firmware binary
1946 * file on the filesystem would not change.
1947 */
kbase_csf_firmware_reload_worker(struct work_struct * work)1948 static void kbase_csf_firmware_reload_worker(struct work_struct *work)
1949 {
1950 struct kbase_device *kbdev = container_of(work, struct kbase_device,
1951 csf.firmware_reload_work);
1952 int err;
1953
1954 dev_info(kbdev->dev, "reloading firmware");
1955
1956 KBASE_TLSTREAM_TL_KBASE_CSFFW_FW_RELOADING(kbdev, kbase_backend_get_cycle_cnt(kbdev));
1957
1958 /* Reload just the data sections from firmware binary image */
1959 err = reload_fw_image(kbdev);
1960 if (err)
1961 return;
1962
1963 kbase_csf_tl_reader_reset(&kbdev->timeline->csf_tl_reader);
1964
1965 /* Reboot the firmware */
1966 kbase_csf_firmware_enable_mcu(kbdev);
1967 }
1968
kbase_csf_firmware_trigger_reload(struct kbase_device * kbdev)1969 void kbase_csf_firmware_trigger_reload(struct kbase_device *kbdev)
1970 {
1971 lockdep_assert_held(&kbdev->hwaccess_lock);
1972
1973 kbdev->csf.firmware_reloaded = false;
1974
1975 if (kbdev->csf.firmware_reload_needed) {
1976 kbdev->csf.firmware_reload_needed = false;
1977 queue_work(system_wq, &kbdev->csf.firmware_reload_work);
1978 } else {
1979 kbase_csf_firmware_enable_mcu(kbdev);
1980 }
1981 }
1982
kbase_csf_firmware_reload_completed(struct kbase_device * kbdev)1983 void kbase_csf_firmware_reload_completed(struct kbase_device *kbdev)
1984 {
1985 u32 version;
1986
1987 lockdep_assert_held(&kbdev->hwaccess_lock);
1988
1989 if (unlikely(!kbdev->csf.firmware_inited))
1990 return;
1991
1992 /* Check firmware rebooted properly: we do not expect
1993 * the version number to change with a running reboot.
1994 */
1995 version = get_firmware_version(kbdev);
1996
1997 if (version != kbdev->csf.global_iface.version)
1998 dev_err(kbdev->dev, "Version check failed in firmware reboot.");
1999
2000 KBASE_KTRACE_ADD(kbdev, CSF_FIRMWARE_REBOOT, NULL, 0u);
2001
2002 /* Tell MCU state machine to transit to next state */
2003 kbdev->csf.firmware_reloaded = true;
2004 kbase_pm_update_state(kbdev);
2005 }
2006
convert_dur_to_idle_count(struct kbase_device * kbdev,const u32 dur_us)2007 static u32 convert_dur_to_idle_count(struct kbase_device *kbdev, const u32 dur_us)
2008 {
2009 #define HYSTERESIS_VAL_UNIT_SHIFT (10)
2010 /* Get the cntfreq_el0 value, which drives the SYSTEM_TIMESTAMP */
2011 u64 freq = arch_timer_get_cntfrq();
2012 u64 dur_val = dur_us;
2013 u32 cnt_val_u32, reg_val_u32;
2014 bool src_system_timestamp = freq > 0;
2015
2016 if (!src_system_timestamp) {
2017 /* Get the cycle_counter source alternative */
2018 spin_lock(&kbdev->pm.clk_rtm.lock);
2019 if (kbdev->pm.clk_rtm.clks[0])
2020 freq = kbdev->pm.clk_rtm.clks[0]->clock_val;
2021 else
2022 dev_warn(kbdev->dev, "No GPU clock, unexpected intregration issue!");
2023 spin_unlock(&kbdev->pm.clk_rtm.lock);
2024
2025 dev_info(
2026 kbdev->dev,
2027 "Can't get the timestamp frequency, use cycle counter format with firmware idle hysteresis!");
2028 }
2029
2030 /* Formula for dur_val = ((dur_us/1000000) * freq_HZ) >> 10) */
2031 dur_val = (dur_val * freq) >> HYSTERESIS_VAL_UNIT_SHIFT;
2032 dur_val = div_u64(dur_val, 1000000);
2033
2034 /* Interface limits the value field to S32_MAX */
2035 cnt_val_u32 = (dur_val > S32_MAX) ? S32_MAX : (u32)dur_val;
2036
2037 reg_val_u32 = GLB_IDLE_TIMER_TIMEOUT_SET(0, cnt_val_u32);
2038 /* add the source flag */
2039 if (src_system_timestamp)
2040 reg_val_u32 = GLB_IDLE_TIMER_TIMER_SOURCE_SET(reg_val_u32,
2041 GLB_IDLE_TIMER_TIMER_SOURCE_SYSTEM_TIMESTAMP);
2042 else
2043 reg_val_u32 = GLB_IDLE_TIMER_TIMER_SOURCE_SET(reg_val_u32,
2044 GLB_IDLE_TIMER_TIMER_SOURCE_GPU_COUNTER);
2045
2046 return reg_val_u32;
2047 }
2048
kbase_csf_firmware_get_gpu_idle_hysteresis_time(struct kbase_device * kbdev)2049 u32 kbase_csf_firmware_get_gpu_idle_hysteresis_time(struct kbase_device *kbdev)
2050 {
2051 unsigned long flags;
2052 u32 dur;
2053
2054 kbase_csf_scheduler_spin_lock(kbdev, &flags);
2055 dur = kbdev->csf.gpu_idle_hysteresis_us;
2056 kbase_csf_scheduler_spin_unlock(kbdev, flags);
2057
2058 return dur;
2059 }
2060
kbase_csf_firmware_set_gpu_idle_hysteresis_time(struct kbase_device * kbdev,u32 dur)2061 u32 kbase_csf_firmware_set_gpu_idle_hysteresis_time(struct kbase_device *kbdev, u32 dur)
2062 {
2063 unsigned long flags;
2064 const u32 hysteresis_val = convert_dur_to_idle_count(kbdev, dur);
2065
2066 /* The 'fw_load_lock' is taken to synchronize against the deferred
2067 * loading of FW, where the idle timer will be enabled.
2068 */
2069 mutex_lock(&kbdev->fw_load_lock);
2070 if (unlikely(!kbdev->csf.firmware_inited)) {
2071 kbase_csf_scheduler_spin_lock(kbdev, &flags);
2072 kbdev->csf.gpu_idle_hysteresis_us = dur;
2073 kbdev->csf.gpu_idle_dur_count = hysteresis_val;
2074 kbase_csf_scheduler_spin_unlock(kbdev, flags);
2075 mutex_unlock(&kbdev->fw_load_lock);
2076 goto end;
2077 }
2078 mutex_unlock(&kbdev->fw_load_lock);
2079
2080 kbase_csf_scheduler_pm_active(kbdev);
2081 if (kbase_csf_scheduler_wait_mcu_active(kbdev)) {
2082 dev_err(kbdev->dev,
2083 "Unable to activate the MCU, the idle hysteresis value shall remain unchanged");
2084 kbase_csf_scheduler_pm_idle(kbdev);
2085 return kbdev->csf.gpu_idle_dur_count;
2086 }
2087
2088 /* The 'reg_lock' is also taken and is held till the update is not
2089 * complete, to ensure the update of idle timer value by multiple Users
2090 * gets serialized.
2091 */
2092 mutex_lock(&kbdev->csf.reg_lock);
2093 /* The firmware only reads the new idle timer value when the timer is
2094 * disabled.
2095 */
2096 kbase_csf_scheduler_spin_lock(kbdev, &flags);
2097 kbase_csf_firmware_disable_gpu_idle_timer(kbdev);
2098 kbase_csf_scheduler_spin_unlock(kbdev, flags);
2099 /* Ensure that the request has taken effect */
2100 wait_for_global_request(kbdev, GLB_REQ_IDLE_DISABLE_MASK);
2101
2102 kbase_csf_scheduler_spin_lock(kbdev, &flags);
2103 kbdev->csf.gpu_idle_hysteresis_us = dur;
2104 kbdev->csf.gpu_idle_dur_count = hysteresis_val;
2105 kbase_csf_firmware_enable_gpu_idle_timer(kbdev);
2106 kbase_csf_scheduler_spin_unlock(kbdev, flags);
2107 wait_for_global_request(kbdev, GLB_REQ_IDLE_ENABLE_MASK);
2108 mutex_unlock(&kbdev->csf.reg_lock);
2109
2110 kbase_csf_scheduler_pm_idle(kbdev);
2111
2112 end:
2113 dev_dbg(kbdev->dev, "CSF set firmware idle hysteresis count-value: 0x%.8x",
2114 hysteresis_val);
2115
2116 return hysteresis_val;
2117 }
2118
convert_dur_to_core_pwroff_count(struct kbase_device * kbdev,const u32 dur_us)2119 static u32 convert_dur_to_core_pwroff_count(struct kbase_device *kbdev, const u32 dur_us)
2120 {
2121 /* Get the cntfreq_el0 value, which drives the SYSTEM_TIMESTAMP */
2122 u64 freq = arch_timer_get_cntfrq();
2123 u64 dur_val = dur_us;
2124 u32 cnt_val_u32, reg_val_u32;
2125 bool src_system_timestamp = freq > 0;
2126
2127 if (!src_system_timestamp) {
2128 /* Get the cycle_counter source alternative */
2129 spin_lock(&kbdev->pm.clk_rtm.lock);
2130 if (kbdev->pm.clk_rtm.clks[0])
2131 freq = kbdev->pm.clk_rtm.clks[0]->clock_val;
2132 else
2133 dev_warn(kbdev->dev, "No GPU clock, unexpected integration issue!");
2134 spin_unlock(&kbdev->pm.clk_rtm.lock);
2135
2136 dev_info(
2137 kbdev->dev,
2138 "Can't get the timestamp frequency, use cycle counter with MCU shader Core Poweroff timer!");
2139 }
2140
2141 /* Formula for dur_val = ((dur_us/1e6) * freq_HZ) >> 10) */
2142 dur_val = (dur_val * freq) >> HYSTERESIS_VAL_UNIT_SHIFT;
2143 dur_val = div_u64(dur_val, 1000000);
2144
2145 /* Interface limits the value field to S32_MAX */
2146 cnt_val_u32 = (dur_val > S32_MAX) ? S32_MAX : (u32)dur_val;
2147
2148 reg_val_u32 = GLB_PWROFF_TIMER_TIMEOUT_SET(0, cnt_val_u32);
2149 /* add the source flag */
2150 if (src_system_timestamp)
2151 reg_val_u32 = GLB_PWROFF_TIMER_TIMER_SOURCE_SET(reg_val_u32,
2152 GLB_PWROFF_TIMER_TIMER_SOURCE_SYSTEM_TIMESTAMP);
2153 else
2154 reg_val_u32 = GLB_PWROFF_TIMER_TIMER_SOURCE_SET(reg_val_u32,
2155 GLB_PWROFF_TIMER_TIMER_SOURCE_GPU_COUNTER);
2156
2157 return reg_val_u32;
2158 }
2159
kbase_csf_firmware_get_mcu_core_pwroff_time(struct kbase_device * kbdev)2160 u32 kbase_csf_firmware_get_mcu_core_pwroff_time(struct kbase_device *kbdev)
2161 {
2162 u32 pwroff;
2163 unsigned long flags;
2164
2165 spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
2166 pwroff = kbdev->csf.mcu_core_pwroff_dur_us;
2167 spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
2168
2169 return pwroff;
2170 }
2171
kbase_csf_firmware_set_mcu_core_pwroff_time(struct kbase_device * kbdev,u32 dur)2172 u32 kbase_csf_firmware_set_mcu_core_pwroff_time(struct kbase_device *kbdev, u32 dur)
2173 {
2174 unsigned long flags;
2175 const u32 pwroff = convert_dur_to_core_pwroff_count(kbdev, dur);
2176
2177 spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
2178 kbdev->csf.mcu_core_pwroff_dur_us = dur;
2179 kbdev->csf.mcu_core_pwroff_dur_count = pwroff;
2180 spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
2181
2182 dev_dbg(kbdev->dev, "MCU shader Core Poweroff input update: 0x%.8x", pwroff);
2183
2184 return pwroff;
2185 }
2186
2187 /**
2188 * kbase_device_csf_iterator_trace_init - Send request to enable iterator
2189 * trace port.
2190 * @kbdev: Kernel base device pointer
2191 *
2192 * Return: 0 on success (or if enable request is not sent), or error
2193 * code -EINVAL on failure of GPU to acknowledge enable request.
2194 */
kbase_device_csf_iterator_trace_init(struct kbase_device * kbdev)2195 static int kbase_device_csf_iterator_trace_init(struct kbase_device *kbdev)
2196 {
2197 /* Enable the iterator trace port if supported by the GPU.
2198 * It requires the GPU to have a nonzero "iter_trace_enable"
2199 * property in the device tree, and the FW must advertise
2200 * this feature in GLB_FEATURES.
2201 */
2202 if (kbdev->pm.backend.gpu_powered) {
2203 /* check device tree for iterator trace enable property */
2204 const void *iter_trace_param = of_get_property(
2205 kbdev->dev->of_node,
2206 "iter_trace_enable", NULL);
2207
2208 const struct kbase_csf_global_iface *iface =
2209 &kbdev->csf.global_iface;
2210
2211 if (iter_trace_param) {
2212 u32 iter_trace_value = be32_to_cpup(iter_trace_param);
2213
2214 if ((iface->features &
2215 GLB_FEATURES_ITER_TRACE_SUPPORTED_MASK) &&
2216 iter_trace_value) {
2217 long ack_timeout;
2218
2219 ack_timeout = kbase_csf_timeout_in_jiffies(
2220 kbase_get_timeout_ms(kbdev, CSF_FIRMWARE_TIMEOUT));
2221
2222 /* write enable request to global input */
2223 kbase_csf_firmware_global_input_mask(
2224 iface, GLB_REQ,
2225 GLB_REQ_ITER_TRACE_ENABLE_MASK,
2226 GLB_REQ_ITER_TRACE_ENABLE_MASK);
2227 /* Ring global doorbell */
2228 kbase_csf_ring_doorbell(kbdev,
2229 CSF_KERNEL_DOORBELL_NR);
2230
2231 ack_timeout = wait_event_timeout(
2232 kbdev->csf.event_wait,
2233 !((kbase_csf_firmware_global_input_read(
2234 iface, GLB_REQ) ^
2235 kbase_csf_firmware_global_output(
2236 iface, GLB_ACK)) &
2237 GLB_REQ_ITER_TRACE_ENABLE_MASK),
2238 ack_timeout);
2239
2240 return ack_timeout ? 0 : -EINVAL;
2241
2242 }
2243 }
2244
2245 }
2246 return 0;
2247 }
2248
kbase_csf_firmware_early_init(struct kbase_device * kbdev)2249 int kbase_csf_firmware_early_init(struct kbase_device *kbdev)
2250 {
2251 init_waitqueue_head(&kbdev->csf.event_wait);
2252 kbdev->csf.interrupt_received = false;
2253
2254 kbdev->csf.fw_timeout_ms =
2255 kbase_get_timeout_ms(kbdev, CSF_FIRMWARE_TIMEOUT);
2256
2257 kbdev->csf.mcu_core_pwroff_dur_us = DEFAULT_GLB_PWROFF_TIMEOUT_US;
2258 kbdev->csf.mcu_core_pwroff_dur_count = convert_dur_to_core_pwroff_count(
2259 kbdev, DEFAULT_GLB_PWROFF_TIMEOUT_US);
2260
2261 INIT_LIST_HEAD(&kbdev->csf.firmware_interfaces);
2262 INIT_LIST_HEAD(&kbdev->csf.firmware_config);
2263 INIT_LIST_HEAD(&kbdev->csf.firmware_timeline_metadata);
2264 INIT_LIST_HEAD(&kbdev->csf.firmware_trace_buffers.list);
2265 INIT_LIST_HEAD(&kbdev->csf.user_reg.list);
2266 INIT_WORK(&kbdev->csf.firmware_reload_work,
2267 kbase_csf_firmware_reload_worker);
2268 INIT_WORK(&kbdev->csf.fw_error_work, firmware_error_worker);
2269
2270 mutex_init(&kbdev->csf.reg_lock);
2271
2272 kbdev->csf.fw = (struct kbase_csf_mcu_fw){ .data = NULL };
2273
2274 return 0;
2275 }
2276
kbase_csf_firmware_early_term(struct kbase_device * kbdev)2277 void kbase_csf_firmware_early_term(struct kbase_device *kbdev)
2278 {
2279 mutex_destroy(&kbdev->csf.reg_lock);
2280 }
2281
kbase_csf_firmware_late_init(struct kbase_device * kbdev)2282 int kbase_csf_firmware_late_init(struct kbase_device *kbdev)
2283 {
2284 kbdev->csf.gpu_idle_hysteresis_us = FIRMWARE_IDLE_HYSTERESIS_TIME_USEC;
2285 #ifdef KBASE_PM_RUNTIME
2286 if (kbase_pm_gpu_sleep_allowed(kbdev))
2287 kbdev->csf.gpu_idle_hysteresis_us /= FIRMWARE_IDLE_HYSTERESIS_GPU_SLEEP_SCALER;
2288 #endif
2289 WARN_ON(!kbdev->csf.gpu_idle_hysteresis_us);
2290 kbdev->csf.gpu_idle_dur_count =
2291 convert_dur_to_idle_count(kbdev, kbdev->csf.gpu_idle_hysteresis_us);
2292
2293 return 0;
2294 }
2295
kbase_csf_firmware_load_init(struct kbase_device * kbdev)2296 int kbase_csf_firmware_load_init(struct kbase_device *kbdev)
2297 {
2298 const struct firmware *firmware = NULL;
2299 struct kbase_csf_mcu_fw *const mcu_fw = &kbdev->csf.fw;
2300 const u32 magic = FIRMWARE_HEADER_MAGIC;
2301 u8 version_major, version_minor;
2302 u32 version_hash;
2303 u32 entry_end_offset;
2304 u32 entry_offset;
2305 int ret;
2306
2307 lockdep_assert_held(&kbdev->fw_load_lock);
2308
2309 if (WARN_ON((kbdev->as_free & MCU_AS_BITMASK) == 0))
2310 return -EINVAL;
2311 kbdev->as_free &= ~MCU_AS_BITMASK;
2312
2313 ret = kbase_mmu_init(kbdev, &kbdev->csf.mcu_mmu, NULL,
2314 BASE_MEM_GROUP_DEFAULT);
2315
2316 if (ret != 0) {
2317 /* Release the address space */
2318 kbdev->as_free |= MCU_AS_BITMASK;
2319 return ret;
2320 }
2321
2322 ret = kbase_mcu_shared_interface_region_tracker_init(kbdev);
2323 if (ret != 0) {
2324 dev_err(kbdev->dev,
2325 "Failed to setup the rb tree for managing shared interface segment\n");
2326 goto err_out;
2327 }
2328
2329 if (request_firmware(&firmware, fw_name, kbdev->dev) != 0) {
2330 dev_err(kbdev->dev,
2331 "Failed to load firmware image '%s'\n",
2332 fw_name);
2333 ret = -ENOENT;
2334 } else {
2335 /* Try to save a copy and then release the loaded firmware image */
2336 mcu_fw->size = firmware->size;
2337 mcu_fw->data = vmalloc((unsigned long)mcu_fw->size);
2338
2339 if (mcu_fw->data == NULL) {
2340 ret = -ENOMEM;
2341 } else {
2342 memcpy(mcu_fw->data, firmware->data, mcu_fw->size);
2343 dev_dbg(kbdev->dev, "Firmware image (%zu-bytes) retained in csf.fw\n",
2344 mcu_fw->size);
2345 }
2346
2347 release_firmware(firmware);
2348 }
2349
2350 /* If error in loading or saving the image, branches to error out */
2351 if (ret)
2352 goto err_out;
2353
2354 if (mcu_fw->size < FIRMWARE_HEADER_LENGTH) {
2355 dev_err(kbdev->dev, "Firmware too small\n");
2356 ret = -EINVAL;
2357 goto err_out;
2358 }
2359
2360 if (memcmp(mcu_fw->data, &magic, sizeof(magic)) != 0) {
2361 dev_err(kbdev->dev, "Incorrect firmware magic\n");
2362 ret = -EINVAL;
2363 goto err_out;
2364 }
2365
2366 version_minor = mcu_fw->data[4];
2367 version_major = mcu_fw->data[5];
2368
2369 if (version_major != FIRMWARE_HEADER_VERSION_MAJOR ||
2370 version_minor != FIRMWARE_HEADER_VERSION_MINOR) {
2371 dev_err(kbdev->dev,
2372 "Firmware header version %d.%d not understood\n",
2373 version_major, version_minor);
2374 ret = -EINVAL;
2375 goto err_out;
2376 }
2377
2378 memcpy(&version_hash, &mcu_fw->data[8], sizeof(version_hash));
2379
2380 dev_notice(kbdev->dev, "Loading Mali firmware 0x%x", version_hash);
2381
2382 memcpy(&entry_end_offset, &mcu_fw->data[0x10], sizeof(entry_end_offset));
2383
2384 if (entry_end_offset > mcu_fw->size) {
2385 dev_err(kbdev->dev, "Firmware image is truncated\n");
2386 ret = -EINVAL;
2387 goto err_out;
2388 }
2389
2390 entry_offset = FIRMWARE_HEADER_LENGTH;
2391 while (entry_offset < entry_end_offset) {
2392 u32 header;
2393 unsigned int size;
2394
2395 memcpy(&header, &mcu_fw->data[entry_offset], sizeof(header));
2396
2397 size = entry_size(header);
2398
2399 ret = load_firmware_entry(kbdev, mcu_fw, entry_offset, header);
2400 if (ret != 0) {
2401 dev_err(kbdev->dev, "Failed to load firmware image\n");
2402 goto err_out;
2403 }
2404 entry_offset += size;
2405 }
2406
2407 if (!kbdev->csf.shared_interface) {
2408 dev_err(kbdev->dev, "Shared interface region not found\n");
2409 ret = -EINVAL;
2410 goto err_out;
2411 } else {
2412 ret = setup_shared_iface_static_region(kbdev);
2413 if (ret != 0) {
2414 dev_err(kbdev->dev, "Failed to insert a region for shared iface entry parsed from fw image\n");
2415 goto err_out;
2416 }
2417 }
2418
2419 ret = kbase_csf_firmware_trace_buffers_init(kbdev);
2420 if (ret != 0) {
2421 dev_err(kbdev->dev, "Failed to initialize trace buffers\n");
2422 goto err_out;
2423 }
2424
2425 /* Make sure L2 cache is powered up */
2426 kbase_pm_wait_for_l2_powered(kbdev);
2427
2428 /* Load the MMU tables into the selected address space */
2429 ret = load_mmu_tables(kbdev);
2430 if (ret != 0)
2431 goto err_out;
2432
2433 boot_csf_firmware(kbdev);
2434
2435 ret = parse_capabilities(kbdev);
2436 if (ret != 0)
2437 goto err_out;
2438
2439 ret = kbase_csf_doorbell_mapping_init(kbdev);
2440 if (ret != 0)
2441 goto err_out;
2442
2443 ret = kbase_csf_scheduler_init(kbdev);
2444 if (ret != 0)
2445 goto err_out;
2446
2447 ret = kbase_csf_setup_dummy_user_reg_page(kbdev);
2448 if (ret != 0)
2449 goto err_out;
2450
2451 ret = kbase_csf_timeout_init(kbdev);
2452 if (ret != 0)
2453 goto err_out;
2454
2455 ret = global_init_on_boot(kbdev);
2456 if (ret != 0)
2457 goto err_out;
2458
2459 ret = kbase_csf_firmware_cfg_init(kbdev);
2460 if (ret != 0)
2461 goto err_out;
2462
2463 ret = kbase_device_csf_iterator_trace_init(kbdev);
2464 if (ret != 0)
2465 goto err_out;
2466
2467 ret = kbase_csf_firmware_log_init(kbdev);
2468 if (ret != 0) {
2469 dev_err(kbdev->dev, "Failed to initialize FW trace (err %d)", ret);
2470 goto err_out;
2471 }
2472
2473 if (kbdev->csf.fw_core_dump.available)
2474 kbase_csf_firmware_core_dump_init(kbdev);
2475
2476 /* Firmware loaded successfully, ret = 0 */
2477 KBASE_KTRACE_ADD(kbdev, CSF_FIRMWARE_BOOT, NULL,
2478 (((u64)version_hash) << 32) |
2479 (((u64)version_major) << 8) | version_minor);
2480 return 0;
2481
2482 err_out:
2483 kbase_csf_firmware_unload_term(kbdev);
2484 return ret;
2485 }
2486
kbase_csf_firmware_unload_term(struct kbase_device * kbdev)2487 void kbase_csf_firmware_unload_term(struct kbase_device *kbdev)
2488 {
2489 unsigned long flags;
2490 int ret = 0;
2491
2492 cancel_work_sync(&kbdev->csf.fw_error_work);
2493
2494 ret = kbase_reset_gpu_wait(kbdev);
2495
2496 WARN(ret, "failed to wait for GPU reset");
2497
2498 kbase_csf_firmware_log_term(kbdev);
2499
2500 kbase_csf_firmware_cfg_term(kbdev);
2501
2502 kbase_csf_timeout_term(kbdev);
2503
2504 kbase_csf_free_dummy_user_reg_page(kbdev);
2505
2506 kbase_csf_scheduler_term(kbdev);
2507
2508 kbase_csf_doorbell_mapping_term(kbdev);
2509
2510 /* Explicitly trigger the disabling of MCU through the state machine and
2511 * wait for its completion. It may not have been disabled yet due to the
2512 * power policy.
2513 */
2514 kbdev->pm.backend.mcu_desired = false;
2515 kbase_pm_wait_for_desired_state(kbdev);
2516
2517 free_global_iface(kbdev);
2518
2519 spin_lock_irqsave(&kbdev->hwaccess_lock, flags);
2520 kbdev->csf.firmware_inited = false;
2521 if (WARN_ON(kbdev->pm.backend.mcu_state != KBASE_MCU_OFF)) {
2522 kbdev->pm.backend.mcu_state = KBASE_MCU_OFF;
2523 stop_csf_firmware(kbdev);
2524 }
2525 spin_unlock_irqrestore(&kbdev->hwaccess_lock, flags);
2526
2527 unload_mmu_tables(kbdev);
2528
2529 kbase_csf_firmware_trace_buffers_term(kbdev);
2530
2531 while (!list_empty(&kbdev->csf.firmware_interfaces)) {
2532 struct kbase_csf_firmware_interface *interface;
2533
2534 interface =
2535 list_first_entry(&kbdev->csf.firmware_interfaces,
2536 struct kbase_csf_firmware_interface,
2537 node);
2538 list_del(&interface->node);
2539
2540 vunmap(interface->kernel_map);
2541
2542 if (!interface->reuse_pages) {
2543 if (interface->flags & CSF_FIRMWARE_ENTRY_PROTECTED) {
2544 kbase_csf_protected_memory_free(
2545 kbdev, interface->pma, interface->num_pages_aligned,
2546 interface->is_small_page);
2547 } else {
2548 kbase_mem_pool_free_pages(
2549 kbase_mem_pool_group_select(
2550 kbdev, KBASE_MEM_GROUP_CSF_FW,
2551 interface->is_small_page),
2552 interface->num_pages_aligned,
2553 interface->phys,
2554 true, false);
2555 }
2556
2557 kfree(interface->phys);
2558 }
2559
2560 kfree(interface);
2561 }
2562
2563 while (!list_empty(&kbdev->csf.firmware_timeline_metadata)) {
2564 struct firmware_timeline_metadata *metadata;
2565
2566 metadata = list_first_entry(
2567 &kbdev->csf.firmware_timeline_metadata,
2568 struct firmware_timeline_metadata,
2569 node);
2570 list_del(&metadata->node);
2571
2572 kfree(metadata);
2573 }
2574
2575 if (kbdev->csf.fw.data) {
2576 /* Free the copy of the firmware image */
2577 vfree(kbdev->csf.fw.data);
2578 kbdev->csf.fw.data = NULL;
2579 dev_dbg(kbdev->dev, "Free retained image csf.fw (%zu-bytes)\n", kbdev->csf.fw.size);
2580 }
2581
2582 /* This will also free up the region allocated for the shared interface
2583 * entry parsed from the firmware image.
2584 */
2585 kbase_mcu_shared_interface_region_tracker_term(kbdev);
2586
2587 kbase_mmu_term(kbdev, &kbdev->csf.mcu_mmu);
2588
2589 /* Release the address space */
2590 kbdev->as_free |= MCU_AS_BITMASK;
2591 }
2592
2593 #if IS_ENABLED(CONFIG_MALI_CORESIGHT)
kbase_csf_firmware_mcu_register_write(struct kbase_device * const kbdev,u32 const reg_addr,u32 const reg_val)2594 int kbase_csf_firmware_mcu_register_write(struct kbase_device *const kbdev, u32 const reg_addr,
2595 u32 const reg_val)
2596 {
2597 struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
2598 unsigned long flags;
2599 int err;
2600 u32 glb_req;
2601
2602 mutex_lock(&kbdev->csf.reg_lock);
2603 kbase_csf_scheduler_spin_lock(kbdev, &flags);
2604
2605 /* Set the address and value to write */
2606 kbase_csf_firmware_global_input(global_iface, GLB_DEBUG_ARG_IN0, reg_addr);
2607 kbase_csf_firmware_global_input(global_iface, GLB_DEBUG_ARG_IN1, reg_val);
2608
2609 /* Set the Global Debug request for FW MCU write */
2610 glb_req = kbase_csf_firmware_global_output(global_iface, GLB_DEBUG_ACK);
2611 glb_req ^= GLB_DEBUG_REQ_FW_AS_WRITE_MASK;
2612 kbase_csf_firmware_global_input_mask(global_iface, GLB_DEBUG_REQ, glb_req,
2613 GLB_DEBUG_REQ_FW_AS_WRITE_MASK);
2614
2615 set_global_request(global_iface, GLB_REQ_DEBUG_CSF_REQ_MASK);
2616
2617 /* Notify FW about the Global Debug request */
2618 kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
2619
2620 kbase_csf_scheduler_spin_unlock(kbdev, flags);
2621
2622 err = wait_for_global_request(kbdev, GLB_REQ_DEBUG_CSF_REQ_MASK);
2623
2624 mutex_unlock(&kbdev->csf.reg_lock);
2625
2626 dev_dbg(kbdev->dev, "w: reg %08x val %08x", reg_addr, reg_val);
2627
2628 return err;
2629 }
2630
kbase_csf_firmware_mcu_register_read(struct kbase_device * const kbdev,u32 const reg_addr,u32 * reg_val)2631 int kbase_csf_firmware_mcu_register_read(struct kbase_device *const kbdev, u32 const reg_addr,
2632 u32 *reg_val)
2633 {
2634 struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
2635 unsigned long flags;
2636 int err;
2637 u32 glb_req;
2638
2639 if (WARN_ON(reg_val == NULL))
2640 return -EINVAL;
2641
2642 mutex_lock(&kbdev->csf.reg_lock);
2643 kbase_csf_scheduler_spin_lock(kbdev, &flags);
2644
2645 /* Set the address to read */
2646 kbase_csf_firmware_global_input(global_iface, GLB_DEBUG_ARG_IN0, reg_addr);
2647
2648 /* Set the Global Debug request for FW MCU read */
2649 glb_req = kbase_csf_firmware_global_output(global_iface, GLB_DEBUG_ACK);
2650 glb_req ^= GLB_DEBUG_REQ_FW_AS_READ_MASK;
2651 kbase_csf_firmware_global_input_mask(global_iface, GLB_DEBUG_REQ, glb_req,
2652 GLB_DEBUG_REQ_FW_AS_READ_MASK);
2653
2654 set_global_request(global_iface, GLB_REQ_DEBUG_CSF_REQ_MASK);
2655
2656 /* Notify FW about the Global Debug request */
2657 kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
2658
2659 kbase_csf_scheduler_spin_unlock(kbdev, flags);
2660
2661 err = wait_for_global_request(kbdev, GLB_REQ_DEBUG_CSF_REQ_MASK);
2662
2663 if (!err) {
2664 kbase_csf_scheduler_spin_lock(kbdev, &flags);
2665 *reg_val = kbase_csf_firmware_global_output(global_iface, GLB_DEBUG_ARG_OUT0);
2666 kbase_csf_scheduler_spin_unlock(kbdev, flags);
2667 }
2668
2669 mutex_unlock(&kbdev->csf.reg_lock);
2670
2671 dev_dbg(kbdev->dev, "r: reg %08x val %08x", reg_addr, *reg_val);
2672
2673 return err;
2674 }
2675
kbase_csf_firmware_mcu_register_poll(struct kbase_device * const kbdev,u32 const reg_addr,u32 const val_mask,u32 const reg_val)2676 int kbase_csf_firmware_mcu_register_poll(struct kbase_device *const kbdev, u32 const reg_addr,
2677 u32 const val_mask, u32 const reg_val)
2678 {
2679 unsigned long remaining = kbase_csf_timeout_in_jiffies(kbdev->csf.fw_timeout_ms) + jiffies;
2680 u32 read_val;
2681
2682 dev_dbg(kbdev->dev, "p: reg %08x val %08x mask %08x", reg_addr, reg_val, val_mask);
2683
2684 while (time_before(jiffies, remaining)) {
2685 int err = kbase_csf_firmware_mcu_register_read(kbdev, reg_addr, &read_val);
2686
2687 if (err) {
2688 dev_err(kbdev->dev,
2689 "Error reading MCU register value (read_val = %u, expect = %u)\n",
2690 read_val, reg_val);
2691 return err;
2692 }
2693
2694 if ((read_val & val_mask) == reg_val)
2695 return 0;
2696 }
2697
2698 dev_err(kbdev->dev,
2699 "Timeout waiting for MCU register value to be set (read_val = %u, expect = %u)\n",
2700 read_val, reg_val);
2701
2702 return -ETIMEDOUT;
2703 }
2704 #endif /* IS_ENABLED(CONFIG_MALI_CORESIGHT) */
2705
kbase_csf_firmware_enable_gpu_idle_timer(struct kbase_device * kbdev)2706 void kbase_csf_firmware_enable_gpu_idle_timer(struct kbase_device *kbdev)
2707 {
2708 struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
2709 const u32 glb_req = kbase_csf_firmware_global_input_read(global_iface, GLB_REQ);
2710
2711 kbase_csf_scheduler_spin_lock_assert_held(kbdev);
2712 /* The scheduler is assumed to only call the enable when its internal
2713 * state indicates that the idle timer has previously been disabled. So
2714 * on entry the expected field values are:
2715 * 1. GLOBAL_INPUT_BLOCK.GLB_REQ.IDLE_ENABLE: 0
2716 * 2. GLOBAL_OUTPUT_BLOCK.GLB_ACK.IDLE_ENABLE: 0, or, on 1 -> 0
2717 */
2718 if (glb_req & GLB_REQ_IDLE_ENABLE_MASK)
2719 dev_err(kbdev->dev, "Incoherent scheduler state on REQ_IDLE_ENABLE!");
2720
2721 enable_gpu_idle_timer(kbdev);
2722 kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
2723 }
2724
kbase_csf_firmware_disable_gpu_idle_timer(struct kbase_device * kbdev)2725 void kbase_csf_firmware_disable_gpu_idle_timer(struct kbase_device *kbdev)
2726 {
2727 struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
2728
2729 kbase_csf_scheduler_spin_lock_assert_held(kbdev);
2730
2731 kbase_csf_firmware_global_input_mask(global_iface, GLB_REQ,
2732 GLB_REQ_REQ_IDLE_DISABLE,
2733 GLB_REQ_IDLE_DISABLE_MASK);
2734 dev_dbg(kbdev->dev, "Sending request to disable gpu idle timer");
2735
2736 kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
2737 }
2738
kbase_csf_firmware_ping(struct kbase_device * const kbdev)2739 void kbase_csf_firmware_ping(struct kbase_device *const kbdev)
2740 {
2741 const struct kbase_csf_global_iface *const global_iface =
2742 &kbdev->csf.global_iface;
2743 unsigned long flags;
2744
2745 kbase_csf_scheduler_spin_lock(kbdev, &flags);
2746 set_global_request(global_iface, GLB_REQ_PING_MASK);
2747 kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
2748 kbase_csf_scheduler_spin_unlock(kbdev, flags);
2749 }
2750
kbase_csf_firmware_ping_wait(struct kbase_device * const kbdev,unsigned int wait_timeout_ms)2751 int kbase_csf_firmware_ping_wait(struct kbase_device *const kbdev, unsigned int wait_timeout_ms)
2752 {
2753 kbase_csf_firmware_ping(kbdev);
2754
2755 return wait_for_global_request_with_timeout(kbdev, GLB_REQ_PING_MASK, wait_timeout_ms);
2756 }
2757
kbase_csf_firmware_set_timeout(struct kbase_device * const kbdev,u64 const timeout)2758 int kbase_csf_firmware_set_timeout(struct kbase_device *const kbdev,
2759 u64 const timeout)
2760 {
2761 const struct kbase_csf_global_iface *const global_iface =
2762 &kbdev->csf.global_iface;
2763 unsigned long flags;
2764 int err;
2765
2766 /* The 'reg_lock' is also taken and is held till the update is not
2767 * complete, to ensure the update of timeout value by multiple Users
2768 * gets serialized.
2769 */
2770 mutex_lock(&kbdev->csf.reg_lock);
2771 kbase_csf_scheduler_spin_lock(kbdev, &flags);
2772 set_timeout_global(global_iface, timeout);
2773 kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
2774 kbase_csf_scheduler_spin_unlock(kbdev, flags);
2775
2776 err = wait_for_global_request(kbdev, GLB_REQ_CFG_PROGRESS_TIMER_MASK);
2777 mutex_unlock(&kbdev->csf.reg_lock);
2778
2779 return err;
2780 }
2781
kbase_csf_enter_protected_mode(struct kbase_device * kbdev)2782 void kbase_csf_enter_protected_mode(struct kbase_device *kbdev)
2783 {
2784 struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
2785
2786 KBASE_TLSTREAM_AUX_PROTECTED_ENTER_START(kbdev, kbdev);
2787
2788 kbase_csf_scheduler_spin_lock_assert_held(kbdev);
2789 set_global_request(global_iface, GLB_REQ_PROTM_ENTER_MASK);
2790 dev_dbg(kbdev->dev, "Sending request to enter protected mode");
2791 kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
2792 }
2793
kbase_csf_wait_protected_mode_enter(struct kbase_device * kbdev)2794 int kbase_csf_wait_protected_mode_enter(struct kbase_device *kbdev)
2795 {
2796 int err;
2797
2798 lockdep_assert_held(&kbdev->mmu_hw_mutex);
2799
2800 err = wait_for_global_request(kbdev, GLB_REQ_PROTM_ENTER_MASK);
2801
2802 if (!err) {
2803 #define WAIT_TIMEOUT 5000 /* 50ms timeout */
2804 #define DELAY_TIME_IN_US 10
2805 const int max_iterations = WAIT_TIMEOUT;
2806 int loop;
2807
2808 /* Wait for the GPU to actually enter protected mode */
2809 for (loop = 0; loop < max_iterations; loop++) {
2810 unsigned long flags;
2811 bool pmode_exited;
2812
2813 if (kbase_reg_read(kbdev, GPU_CONTROL_REG(GPU_STATUS)) &
2814 GPU_STATUS_PROTECTED_MODE_ACTIVE)
2815 break;
2816
2817 /* Check if GPU already exited the protected mode */
2818 kbase_csf_scheduler_spin_lock(kbdev, &flags);
2819 pmode_exited =
2820 !kbase_csf_scheduler_protected_mode_in_use(kbdev);
2821 kbase_csf_scheduler_spin_unlock(kbdev, flags);
2822 if (pmode_exited)
2823 break;
2824
2825 udelay(DELAY_TIME_IN_US);
2826 }
2827
2828 if (loop == max_iterations) {
2829 dev_err(kbdev->dev, "Timeout for actual pmode entry after PROTM_ENTER ack");
2830 err = -ETIMEDOUT;
2831 }
2832 }
2833
2834 if (unlikely(err)) {
2835 if (kbase_prepare_to_reset_gpu(kbdev, RESET_FLAGS_HWC_UNRECOVERABLE_ERROR))
2836 kbase_reset_gpu(kbdev);
2837 }
2838
2839 KBASE_TLSTREAM_AUX_PROTECTED_ENTER_END(kbdev, kbdev);
2840
2841 return err;
2842 }
2843
kbase_csf_firmware_trigger_mcu_halt(struct kbase_device * kbdev)2844 void kbase_csf_firmware_trigger_mcu_halt(struct kbase_device *kbdev)
2845 {
2846 struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
2847 unsigned long flags;
2848
2849 KBASE_TLSTREAM_TL_KBASE_CSFFW_FW_REQUEST_HALT(kbdev, kbase_backend_get_cycle_cnt(kbdev));
2850
2851 kbase_csf_scheduler_spin_lock(kbdev, &flags);
2852 /* Validate there are no on-slot groups when sending the
2853 * halt request to firmware.
2854 */
2855 WARN_ON(kbase_csf_scheduler_get_nr_active_csgs_locked(kbdev));
2856 set_global_request(global_iface, GLB_REQ_HALT_MASK);
2857 dev_dbg(kbdev->dev, "Sending request to HALT MCU");
2858 kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
2859 kbase_csf_scheduler_spin_unlock(kbdev, flags);
2860 }
2861
kbase_csf_firmware_enable_mcu(struct kbase_device * kbdev)2862 void kbase_csf_firmware_enable_mcu(struct kbase_device *kbdev)
2863 {
2864 KBASE_TLSTREAM_TL_KBASE_CSFFW_FW_ENABLING(kbdev, kbase_backend_get_cycle_cnt(kbdev));
2865
2866 /* Trigger the boot of MCU firmware, Use the AUTO mode as
2867 * otherwise on fast reset, to exit protected mode, MCU will
2868 * not reboot by itself to enter normal mode.
2869 */
2870 kbase_reg_write(kbdev, GPU_CONTROL_REG(MCU_CONTROL), MCU_CNTRL_AUTO);
2871 }
2872
2873 #ifdef KBASE_PM_RUNTIME
kbase_csf_firmware_trigger_mcu_sleep(struct kbase_device * kbdev)2874 void kbase_csf_firmware_trigger_mcu_sleep(struct kbase_device *kbdev)
2875 {
2876 struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
2877 unsigned long flags;
2878
2879 KBASE_TLSTREAM_TL_KBASE_CSFFW_FW_REQUEST_SLEEP(kbdev, kbase_backend_get_cycle_cnt(kbdev));
2880
2881 kbase_csf_scheduler_spin_lock(kbdev, &flags);
2882 set_global_request(global_iface, GLB_REQ_SLEEP_MASK);
2883 dev_dbg(kbdev->dev, "Sending sleep request to MCU");
2884 kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
2885 kbase_csf_scheduler_spin_unlock(kbdev, flags);
2886 }
2887
kbase_csf_firmware_is_mcu_in_sleep(struct kbase_device * kbdev)2888 bool kbase_csf_firmware_is_mcu_in_sleep(struct kbase_device *kbdev)
2889 {
2890 lockdep_assert_held(&kbdev->hwaccess_lock);
2891
2892 return (global_request_complete(kbdev, GLB_REQ_SLEEP_MASK) &&
2893 kbase_csf_firmware_mcu_halted(kbdev));
2894 }
2895 #endif
2896
kbase_csf_trigger_firmware_config_update(struct kbase_device * kbdev)2897 int kbase_csf_trigger_firmware_config_update(struct kbase_device *kbdev)
2898 {
2899 struct kbase_csf_global_iface *global_iface = &kbdev->csf.global_iface;
2900 unsigned long flags;
2901 int err = 0;
2902
2903 /* Ensure GPU is powered-up until we complete config update.*/
2904 kbase_csf_scheduler_pm_active(kbdev);
2905 kbase_csf_scheduler_wait_mcu_active(kbdev);
2906
2907 /* The 'reg_lock' is also taken and is held till the update is
2908 * complete, to ensure the config update gets serialized.
2909 */
2910 mutex_lock(&kbdev->csf.reg_lock);
2911 kbase_csf_scheduler_spin_lock(kbdev, &flags);
2912
2913 set_global_request(global_iface, GLB_REQ_FIRMWARE_CONFIG_UPDATE_MASK);
2914 dev_dbg(kbdev->dev, "Sending request for FIRMWARE_CONFIG_UPDATE");
2915 kbase_csf_ring_doorbell(kbdev, CSF_KERNEL_DOORBELL_NR);
2916 kbase_csf_scheduler_spin_unlock(kbdev, flags);
2917
2918 err = wait_for_global_request(kbdev,
2919 GLB_REQ_FIRMWARE_CONFIG_UPDATE_MASK);
2920 mutex_unlock(&kbdev->csf.reg_lock);
2921
2922 kbase_csf_scheduler_pm_idle(kbdev);
2923 return err;
2924 }
2925
2926 /**
2927 * copy_grp_and_stm - Copy CS and/or group data
2928 *
2929 * @iface: Global CSF interface provided by the firmware.
2930 * @group_data: Pointer where to store all the group data
2931 * (sequentially).
2932 * @max_group_num: The maximum number of groups to be read. Can be 0, in
2933 * which case group_data is unused.
2934 * @stream_data: Pointer where to store all the CS data
2935 * (sequentially).
2936 * @max_total_stream_num: The maximum number of CSs to be read.
2937 * Can be 0, in which case stream_data is unused.
2938 *
2939 * Return: Total number of CSs, summed across all groups.
2940 */
copy_grp_and_stm(const struct kbase_csf_global_iface * const iface,struct basep_cs_group_control * const group_data,u32 max_group_num,struct basep_cs_stream_control * const stream_data,u32 max_total_stream_num)2941 static u32 copy_grp_and_stm(
2942 const struct kbase_csf_global_iface * const iface,
2943 struct basep_cs_group_control * const group_data,
2944 u32 max_group_num,
2945 struct basep_cs_stream_control * const stream_data,
2946 u32 max_total_stream_num)
2947 {
2948 u32 i, total_stream_num = 0;
2949
2950 if (WARN_ON((max_group_num > 0) && !group_data))
2951 max_group_num = 0;
2952
2953 if (WARN_ON((max_total_stream_num > 0) && !stream_data))
2954 max_total_stream_num = 0;
2955
2956 for (i = 0; i < iface->group_num; i++) {
2957 u32 j;
2958
2959 if (i < max_group_num) {
2960 group_data[i].features = iface->groups[i].features;
2961 group_data[i].stream_num = iface->groups[i].stream_num;
2962 group_data[i].suspend_size =
2963 iface->groups[i].suspend_size;
2964 }
2965 for (j = 0; j < iface->groups[i].stream_num; j++) {
2966 if (total_stream_num < max_total_stream_num)
2967 stream_data[total_stream_num].features =
2968 iface->groups[i].streams[j].features;
2969 total_stream_num++;
2970 }
2971 }
2972
2973 return total_stream_num;
2974 }
2975
kbase_csf_firmware_get_glb_iface(struct kbase_device * kbdev,struct basep_cs_group_control * const group_data,u32 const max_group_num,struct basep_cs_stream_control * const stream_data,u32 const max_total_stream_num,u32 * const glb_version,u32 * const features,u32 * const group_num,u32 * const prfcnt_size,u32 * instr_features)2976 u32 kbase_csf_firmware_get_glb_iface(
2977 struct kbase_device *kbdev,
2978 struct basep_cs_group_control *const group_data,
2979 u32 const max_group_num,
2980 struct basep_cs_stream_control *const stream_data,
2981 u32 const max_total_stream_num, u32 *const glb_version,
2982 u32 *const features, u32 *const group_num, u32 *const prfcnt_size,
2983 u32 *instr_features)
2984 {
2985 const struct kbase_csf_global_iface * const iface =
2986 &kbdev->csf.global_iface;
2987
2988 if (WARN_ON(!glb_version) || WARN_ON(!features) ||
2989 WARN_ON(!group_num) || WARN_ON(!prfcnt_size) ||
2990 WARN_ON(!instr_features))
2991 return 0;
2992
2993 *glb_version = iface->version;
2994 *features = iface->features;
2995 *group_num = iface->group_num;
2996 *prfcnt_size = iface->prfcnt_size;
2997 *instr_features = iface->instr_features;
2998
2999 return copy_grp_and_stm(iface, group_data, max_group_num,
3000 stream_data, max_total_stream_num);
3001 }
3002
kbase_csf_firmware_get_timeline_metadata(struct kbase_device * kbdev,const char * name,size_t * size)3003 const char *kbase_csf_firmware_get_timeline_metadata(
3004 struct kbase_device *kbdev, const char *name, size_t *size)
3005 {
3006 struct firmware_timeline_metadata *metadata;
3007
3008 list_for_each_entry(
3009 metadata, &kbdev->csf.firmware_timeline_metadata, node) {
3010 if (!strcmp(metadata->name, name)) {
3011 *size = metadata->size;
3012 return metadata->data;
3013 }
3014 }
3015
3016 *size = 0;
3017 return NULL;
3018 }
3019
kbase_csf_firmware_mcu_shared_mapping_init(struct kbase_device * kbdev,unsigned int num_pages,unsigned long cpu_map_properties,unsigned long gpu_map_properties,struct kbase_csf_mapping * csf_mapping)3020 int kbase_csf_firmware_mcu_shared_mapping_init(
3021 struct kbase_device *kbdev,
3022 unsigned int num_pages,
3023 unsigned long cpu_map_properties,
3024 unsigned long gpu_map_properties,
3025 struct kbase_csf_mapping *csf_mapping)
3026 {
3027 struct tagged_addr *phys;
3028 struct kbase_va_region *va_reg;
3029 struct page **page_list;
3030 void *cpu_addr;
3031 int i, ret = 0;
3032 pgprot_t cpu_map_prot = PAGE_KERNEL;
3033 unsigned long gpu_map_prot;
3034
3035 if (cpu_map_properties & PROT_READ)
3036 cpu_map_prot = PAGE_KERNEL_RO;
3037
3038 if (kbdev->system_coherency == COHERENCY_ACE) {
3039 gpu_map_prot =
3040 KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_DEFAULT_ACE);
3041 } else {
3042 gpu_map_prot =
3043 KBASE_REG_MEMATTR_INDEX(AS_MEMATTR_INDEX_NON_CACHEABLE);
3044 cpu_map_prot = pgprot_writecombine(cpu_map_prot);
3045 }
3046
3047 phys = kmalloc_array(num_pages, sizeof(*phys), GFP_KERNEL);
3048 if (!phys)
3049 goto out;
3050
3051 page_list = kmalloc_array(num_pages, sizeof(*page_list), GFP_KERNEL);
3052 if (!page_list)
3053 goto page_list_alloc_error;
3054
3055 ret = kbase_mem_pool_alloc_pages(&kbdev->mem_pools.small[KBASE_MEM_GROUP_CSF_FW], num_pages,
3056 phys, false, NULL);
3057 if (ret <= 0)
3058 goto phys_mem_pool_alloc_error;
3059
3060 for (i = 0; i < num_pages; i++)
3061 page_list[i] = as_page(phys[i]);
3062
3063 cpu_addr = vmap(page_list, num_pages, VM_MAP, cpu_map_prot);
3064 if (!cpu_addr)
3065 goto vmap_error;
3066
3067 va_reg = kbase_alloc_free_region(kbdev, &kbdev->csf.shared_reg_rbtree, 0, num_pages,
3068 KBASE_REG_ZONE_MCU_SHARED);
3069 if (!va_reg)
3070 goto va_region_alloc_error;
3071
3072 mutex_lock(&kbdev->csf.reg_lock);
3073 ret = kbase_add_va_region_rbtree(kbdev, va_reg, 0, num_pages, 1);
3074 va_reg->flags &= ~KBASE_REG_FREE;
3075 if (ret)
3076 goto va_region_add_error;
3077 mutex_unlock(&kbdev->csf.reg_lock);
3078
3079 gpu_map_properties &= (KBASE_REG_GPU_RD | KBASE_REG_GPU_WR);
3080 gpu_map_properties |= gpu_map_prot;
3081
3082 ret = kbase_mmu_insert_pages_no_flush(kbdev, &kbdev->csf.mcu_mmu, va_reg->start_pfn,
3083 &phys[0], num_pages, gpu_map_properties,
3084 KBASE_MEM_GROUP_CSF_FW, NULL, NULL, false);
3085 if (ret)
3086 goto mmu_insert_pages_error;
3087
3088 kfree(page_list);
3089 csf_mapping->phys = phys;
3090 csf_mapping->cpu_addr = cpu_addr;
3091 csf_mapping->va_reg = va_reg;
3092 csf_mapping->num_pages = num_pages;
3093
3094 return 0;
3095
3096 mmu_insert_pages_error:
3097 mutex_lock(&kbdev->csf.reg_lock);
3098 kbase_remove_va_region(kbdev, va_reg);
3099 va_region_add_error:
3100 kbase_free_alloced_region(va_reg);
3101 mutex_unlock(&kbdev->csf.reg_lock);
3102 va_region_alloc_error:
3103 vunmap(cpu_addr);
3104 vmap_error:
3105 kbase_mem_pool_free_pages(
3106 &kbdev->mem_pools.small[KBASE_MEM_GROUP_CSF_FW],
3107 num_pages, phys, false, false);
3108
3109 phys_mem_pool_alloc_error:
3110 kfree(page_list);
3111 page_list_alloc_error:
3112 kfree(phys);
3113 out:
3114 /* Zero-initialize the mapping to make sure that the termination
3115 * function doesn't try to unmap or free random addresses.
3116 */
3117 csf_mapping->phys = NULL;
3118 csf_mapping->cpu_addr = NULL;
3119 csf_mapping->va_reg = NULL;
3120 csf_mapping->num_pages = 0;
3121
3122 return -ENOMEM;
3123 }
3124
kbase_csf_firmware_mcu_shared_mapping_term(struct kbase_device * kbdev,struct kbase_csf_mapping * csf_mapping)3125 void kbase_csf_firmware_mcu_shared_mapping_term(
3126 struct kbase_device *kbdev, struct kbase_csf_mapping *csf_mapping)
3127 {
3128 if (csf_mapping->va_reg) {
3129 mutex_lock(&kbdev->csf.reg_lock);
3130 kbase_remove_va_region(kbdev, csf_mapping->va_reg);
3131 kbase_free_alloced_region(csf_mapping->va_reg);
3132 mutex_unlock(&kbdev->csf.reg_lock);
3133 }
3134
3135 if (csf_mapping->phys) {
3136 kbase_mem_pool_free_pages(
3137 &kbdev->mem_pools.small[KBASE_MEM_GROUP_CSF_FW],
3138 csf_mapping->num_pages, csf_mapping->phys, false,
3139 false);
3140 }
3141
3142 vunmap(csf_mapping->cpu_addr);
3143 kfree(csf_mapping->phys);
3144 }
3145