1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * DMABUF System heap exporter
4 *
5 * Copyright (C) 2011 Google, Inc.
6 * Copyright (C) 2019, 2020 Linaro Ltd.
7 *
8 * Portions based off of Andrew Davis' SRAM heap:
9 * Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/
10 * Andrew F. Davis <afd@ti.com>
11 */
12
13 #include <linux/dma-buf.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/dma-heap.h>
16 #include <linux/err.h>
17 #include <linux/highmem.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/scatterlist.h>
21 #include <linux/slab.h>
22 #include <linux/vmalloc.h>
23
24 #include "page_pool.h"
25 #include "deferred-free-helper.h"
26
27 static struct dma_heap *sys_heap;
28 static struct dma_heap *sys_uncached_heap;
29
30 struct system_heap_buffer {
31 struct dma_heap *heap;
32 struct list_head attachments;
33 struct mutex lock;
34 unsigned long len;
35 struct sg_table sg_table;
36 int vmap_cnt;
37 void *vaddr;
38 struct deferred_freelist_item deferred_free;
39
40 bool uncached;
41 };
42
43 struct dma_heap_attachment {
44 struct device *dev;
45 struct sg_table *table;
46 struct list_head list;
47 bool mapped;
48
49 bool uncached;
50 };
51
52 #define LOW_ORDER_GFP (GFP_HIGHUSER | __GFP_ZERO)
53 #define HIGH_ORDER_GFP (((GFP_HIGHUSER | __GFP_ZERO | __GFP_NOWARN \
54 | __GFP_NORETRY) & ~__GFP_RECLAIM) \
55 | __GFP_COMP)
56 static gfp_t order_flags[] = {HIGH_ORDER_GFP, HIGH_ORDER_GFP, LOW_ORDER_GFP};
57 /*
58 * The selection of the orders used for allocation (1MB, 64K, 4K) is designed
59 * to match with the sizes often found in IOMMUs. Using order 4 pages instead
60 * of order 0 pages can significantly improve the performance of many IOMMUs
61 * by reducing TLB pressure and time spent updating page tables.
62 */
63 static const unsigned int orders[] = {8, 4, 0};
64 #define NUM_ORDERS ARRAY_SIZE(orders)
65 struct dmabuf_page_pool *pools[NUM_ORDERS];
66
dup_sg_table(struct sg_table * table)67 static struct sg_table *dup_sg_table(struct sg_table *table)
68 {
69 struct sg_table *new_table;
70 int ret, i;
71 struct scatterlist *sg, *new_sg;
72
73 new_table = kzalloc(sizeof(*new_table), GFP_KERNEL);
74 if (!new_table)
75 return ERR_PTR(-ENOMEM);
76
77 ret = sg_alloc_table(new_table, table->orig_nents, GFP_KERNEL);
78 if (ret) {
79 kfree(new_table);
80 return ERR_PTR(-ENOMEM);
81 }
82
83 new_sg = new_table->sgl;
84 for_each_sgtable_sg(table, sg, i) {
85 sg_set_page(new_sg, sg_page(sg), sg->length, sg->offset);
86 new_sg = sg_next(new_sg);
87 }
88
89 return new_table;
90 }
91
system_heap_attach(struct dma_buf * dmabuf,struct dma_buf_attachment * attachment)92 static int system_heap_attach(struct dma_buf *dmabuf,
93 struct dma_buf_attachment *attachment)
94 {
95 struct system_heap_buffer *buffer = dmabuf->priv;
96 struct dma_heap_attachment *a;
97 struct sg_table *table;
98
99 a = kzalloc(sizeof(*a), GFP_KERNEL);
100 if (!a)
101 return -ENOMEM;
102
103 table = dup_sg_table(&buffer->sg_table);
104 if (IS_ERR(table)) {
105 kfree(a);
106 return -ENOMEM;
107 }
108
109 a->table = table;
110 a->dev = attachment->dev;
111 INIT_LIST_HEAD(&a->list);
112 a->mapped = false;
113 a->uncached = buffer->uncached;
114 attachment->priv = a;
115
116 mutex_lock(&buffer->lock);
117 list_add(&a->list, &buffer->attachments);
118 mutex_unlock(&buffer->lock);
119
120 return 0;
121 }
122
system_heap_detach(struct dma_buf * dmabuf,struct dma_buf_attachment * attachment)123 static void system_heap_detach(struct dma_buf *dmabuf,
124 struct dma_buf_attachment *attachment)
125 {
126 struct system_heap_buffer *buffer = dmabuf->priv;
127 struct dma_heap_attachment *a = attachment->priv;
128
129 mutex_lock(&buffer->lock);
130 list_del(&a->list);
131 mutex_unlock(&buffer->lock);
132
133 sg_free_table(a->table);
134 kfree(a->table);
135 kfree(a);
136 }
137
system_heap_map_dma_buf(struct dma_buf_attachment * attachment,enum dma_data_direction direction)138 static struct sg_table *system_heap_map_dma_buf(struct dma_buf_attachment *attachment,
139 enum dma_data_direction direction)
140 {
141 struct dma_heap_attachment *a = attachment->priv;
142 struct sg_table *table = a->table;
143 int attr = attachment->dma_map_attrs;
144 int ret;
145
146 if (a->uncached)
147 attr |= DMA_ATTR_SKIP_CPU_SYNC;
148
149 ret = dma_map_sgtable(attachment->dev, table, direction, attr);
150 if (ret)
151 return ERR_PTR(ret);
152
153 a->mapped = true;
154 return table;
155 }
156
system_heap_unmap_dma_buf(struct dma_buf_attachment * attachment,struct sg_table * table,enum dma_data_direction direction)157 static void system_heap_unmap_dma_buf(struct dma_buf_attachment *attachment,
158 struct sg_table *table,
159 enum dma_data_direction direction)
160 {
161 struct dma_heap_attachment *a = attachment->priv;
162 int attr = attachment->dma_map_attrs;
163
164 if (a->uncached)
165 attr |= DMA_ATTR_SKIP_CPU_SYNC;
166 a->mapped = false;
167 dma_unmap_sgtable(attachment->dev, table, direction, attr);
168 }
169
system_heap_dma_buf_begin_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)170 static int system_heap_dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
171 enum dma_data_direction direction)
172 {
173 struct system_heap_buffer *buffer = dmabuf->priv;
174 struct dma_heap_attachment *a;
175
176 mutex_lock(&buffer->lock);
177
178 if (buffer->vmap_cnt)
179 invalidate_kernel_vmap_range(buffer->vaddr, buffer->len);
180
181 if (!buffer->uncached) {
182 list_for_each_entry(a, &buffer->attachments, list) {
183 if (!a->mapped)
184 continue;
185 dma_sync_sgtable_for_cpu(a->dev, a->table, direction);
186 }
187 }
188 mutex_unlock(&buffer->lock);
189
190 return 0;
191 }
192
system_heap_dma_buf_end_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)193 static int system_heap_dma_buf_end_cpu_access(struct dma_buf *dmabuf,
194 enum dma_data_direction direction)
195 {
196 struct system_heap_buffer *buffer = dmabuf->priv;
197 struct dma_heap_attachment *a;
198
199 mutex_lock(&buffer->lock);
200
201 if (buffer->vmap_cnt)
202 flush_kernel_vmap_range(buffer->vaddr, buffer->len);
203
204 if (!buffer->uncached) {
205 list_for_each_entry(a, &buffer->attachments, list) {
206 if (!a->mapped)
207 continue;
208 dma_sync_sgtable_for_device(a->dev, a->table, direction);
209 }
210 }
211 mutex_unlock(&buffer->lock);
212
213 return 0;
214 }
215
system_heap_mmap(struct dma_buf * dmabuf,struct vm_area_struct * vma)216 static int system_heap_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
217 {
218 struct system_heap_buffer *buffer = dmabuf->priv;
219 struct sg_table *table = &buffer->sg_table;
220 unsigned long addr = vma->vm_start;
221 struct sg_page_iter piter;
222 int ret;
223
224 if (buffer->uncached)
225 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
226
227 for_each_sgtable_page(table, &piter, vma->vm_pgoff) {
228 struct page *page = sg_page_iter_page(&piter);
229
230 ret = remap_pfn_range(vma, addr, page_to_pfn(page), PAGE_SIZE,
231 vma->vm_page_prot);
232 if (ret)
233 return ret;
234 addr += PAGE_SIZE;
235 if (addr >= vma->vm_end)
236 return 0;
237 }
238 return 0;
239 }
240
system_heap_do_vmap(struct system_heap_buffer * buffer)241 static void *system_heap_do_vmap(struct system_heap_buffer *buffer)
242 {
243 struct sg_table *table = &buffer->sg_table;
244 int npages = PAGE_ALIGN(buffer->len) / PAGE_SIZE;
245 struct page **pages = vmalloc(sizeof(struct page *) * npages);
246 struct page **tmp = pages;
247 struct sg_page_iter piter;
248 pgprot_t pgprot = PAGE_KERNEL;
249 void *vaddr;
250
251 if (!pages)
252 return ERR_PTR(-ENOMEM);
253
254 if (buffer->uncached)
255 pgprot = pgprot_writecombine(PAGE_KERNEL);
256
257 for_each_sgtable_page(table, &piter, 0) {
258 WARN_ON(tmp - pages >= npages);
259 *tmp++ = sg_page_iter_page(&piter);
260 }
261
262 vaddr = vmap(pages, npages, VM_MAP, pgprot);
263 vfree(pages);
264
265 if (!vaddr)
266 return ERR_PTR(-ENOMEM);
267
268 return vaddr;
269 }
270
system_heap_vmap(struct dma_buf * dmabuf)271 static void *system_heap_vmap(struct dma_buf *dmabuf)
272 {
273 struct system_heap_buffer *buffer = dmabuf->priv;
274 void *vaddr;
275
276 mutex_lock(&buffer->lock);
277 if (buffer->vmap_cnt) {
278 buffer->vmap_cnt++;
279 vaddr = buffer->vaddr;
280 goto out;
281 }
282
283 vaddr = system_heap_do_vmap(buffer);
284 if (IS_ERR(vaddr))
285 goto out;
286
287 buffer->vaddr = vaddr;
288 buffer->vmap_cnt++;
289 out:
290 mutex_unlock(&buffer->lock);
291
292 return vaddr;
293 }
294
system_heap_vunmap(struct dma_buf * dmabuf,void * vaddr)295 static void system_heap_vunmap(struct dma_buf *dmabuf, void *vaddr)
296 {
297 struct system_heap_buffer *buffer = dmabuf->priv;
298
299 mutex_lock(&buffer->lock);
300 if (!--buffer->vmap_cnt) {
301 vunmap(buffer->vaddr);
302 buffer->vaddr = NULL;
303 }
304 mutex_unlock(&buffer->lock);
305 }
306
system_heap_zero_buffer(struct system_heap_buffer * buffer)307 static int system_heap_zero_buffer(struct system_heap_buffer *buffer)
308 {
309 struct sg_table *sgt = &buffer->sg_table;
310 struct sg_page_iter piter;
311 struct page *p;
312 void *vaddr;
313 int ret = 0;
314
315 for_each_sgtable_page(sgt, &piter, 0) {
316 p = sg_page_iter_page(&piter);
317 vaddr = kmap_atomic(p);
318 memset(vaddr, 0, PAGE_SIZE);
319 kunmap_atomic(vaddr);
320 }
321
322 return ret;
323 }
324
system_heap_buf_free(struct deferred_freelist_item * item,enum df_reason reason)325 static void system_heap_buf_free(struct deferred_freelist_item *item,
326 enum df_reason reason)
327 {
328 struct system_heap_buffer *buffer;
329 struct sg_table *table;
330 struct scatterlist *sg;
331 int i, j;
332
333 buffer = container_of(item, struct system_heap_buffer, deferred_free);
334 /* Zero the buffer pages before adding back to the pool */
335 if (reason == DF_NORMAL)
336 if (system_heap_zero_buffer(buffer))
337 reason = DF_UNDER_PRESSURE; // On failure, just free
338
339 table = &buffer->sg_table;
340 for_each_sgtable_sg(table, sg, i) {
341 struct page *page = sg_page(sg);
342
343 if (reason == DF_UNDER_PRESSURE) {
344 __free_pages(page, compound_order(page));
345 } else {
346 for (j = 0; j < NUM_ORDERS; j++) {
347 if (compound_order(page) == orders[j])
348 break;
349 }
350 dmabuf_page_pool_free(pools[j], page);
351 }
352 }
353 sg_free_table(table);
354 kfree(buffer);
355 }
356
system_heap_dma_buf_release(struct dma_buf * dmabuf)357 static void system_heap_dma_buf_release(struct dma_buf *dmabuf)
358 {
359 struct system_heap_buffer *buffer = dmabuf->priv;
360 int npages = PAGE_ALIGN(buffer->len) / PAGE_SIZE;
361
362 deferred_free(&buffer->deferred_free, system_heap_buf_free, npages);
363 }
364
365 static const struct dma_buf_ops system_heap_buf_ops = {
366 .attach = system_heap_attach,
367 .detach = system_heap_detach,
368 .map_dma_buf = system_heap_map_dma_buf,
369 .unmap_dma_buf = system_heap_unmap_dma_buf,
370 .begin_cpu_access = system_heap_dma_buf_begin_cpu_access,
371 .end_cpu_access = system_heap_dma_buf_end_cpu_access,
372 .mmap = system_heap_mmap,
373 .vmap = system_heap_vmap,
374 .vunmap = system_heap_vunmap,
375 .release = system_heap_dma_buf_release,
376 };
377
alloc_largest_available(unsigned long size,unsigned int max_order)378 static struct page *alloc_largest_available(unsigned long size,
379 unsigned int max_order)
380 {
381 struct page *page;
382 int i;
383
384 for (i = 0; i < NUM_ORDERS; i++) {
385 if (size < (PAGE_SIZE << orders[i]))
386 continue;
387 if (max_order < orders[i])
388 continue;
389 page = dmabuf_page_pool_alloc(pools[i]);
390 if (!page)
391 continue;
392 return page;
393 }
394 return NULL;
395 }
396
system_heap_do_allocate(struct dma_heap * heap,unsigned long len,unsigned long fd_flags,unsigned long heap_flags,bool uncached)397 static struct dma_buf *system_heap_do_allocate(struct dma_heap *heap,
398 unsigned long len,
399 unsigned long fd_flags,
400 unsigned long heap_flags,
401 bool uncached)
402 {
403 struct system_heap_buffer *buffer;
404 DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
405 unsigned long size_remaining = len;
406 unsigned int max_order = orders[0];
407 struct dma_buf *dmabuf;
408 struct sg_table *table;
409 struct scatterlist *sg;
410 struct list_head pages;
411 struct page *page, *tmp_page;
412 int i, ret = -ENOMEM;
413
414 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
415 if (!buffer)
416 return ERR_PTR(-ENOMEM);
417
418 INIT_LIST_HEAD(&buffer->attachments);
419 mutex_init(&buffer->lock);
420 buffer->heap = heap;
421 buffer->len = len;
422 buffer->uncached = uncached;
423
424 INIT_LIST_HEAD(&pages);
425 i = 0;
426 while (size_remaining > 0) {
427 /*
428 * Avoid trying to allocate memory if the process
429 * has been killed by SIGKILL
430 */
431 if (fatal_signal_pending(current))
432 goto free_buffer;
433
434 page = alloc_largest_available(size_remaining, max_order);
435 if (!page)
436 goto free_buffer;
437
438 list_add_tail(&page->lru, &pages);
439 size_remaining -= page_size(page);
440 max_order = compound_order(page);
441 i++;
442 }
443
444 table = &buffer->sg_table;
445 if (sg_alloc_table(table, i, GFP_KERNEL))
446 goto free_buffer;
447
448 sg = table->sgl;
449 list_for_each_entry_safe(page, tmp_page, &pages, lru) {
450 sg_set_page(sg, page, page_size(page), 0);
451 sg = sg_next(sg);
452 list_del(&page->lru);
453 }
454
455 /* create the dmabuf */
456 exp_info.exp_name = dma_heap_get_name(heap);
457 exp_info.ops = &system_heap_buf_ops;
458 exp_info.size = buffer->len;
459 exp_info.flags = fd_flags;
460 exp_info.priv = buffer;
461 dmabuf = dma_buf_export(&exp_info);
462 if (IS_ERR(dmabuf)) {
463 ret = PTR_ERR(dmabuf);
464 goto free_pages;
465 }
466
467 /*
468 * For uncached buffers, we need to initially flush cpu cache, since
469 * the __GFP_ZERO on the allocation means the zeroing was done by the
470 * cpu and thus it is likely cached. Map (and implicitly flush) and
471 * unmap it now so we don't get corruption later on.
472 */
473 if (buffer->uncached) {
474 dma_map_sgtable(dma_heap_get_dev(heap), table, DMA_BIDIRECTIONAL, 0);
475 dma_unmap_sgtable(dma_heap_get_dev(heap), table, DMA_BIDIRECTIONAL, 0);
476 }
477
478 return dmabuf;
479
480 free_pages:
481 for_each_sgtable_sg(table, sg, i) {
482 struct page *p = sg_page(sg);
483
484 __free_pages(p, compound_order(p));
485 }
486 sg_free_table(table);
487 free_buffer:
488 list_for_each_entry_safe(page, tmp_page, &pages, lru)
489 __free_pages(page, compound_order(page));
490 kfree(buffer);
491
492 return ERR_PTR(ret);
493 }
494
system_heap_allocate(struct dma_heap * heap,unsigned long len,unsigned long fd_flags,unsigned long heap_flags)495 static struct dma_buf *system_heap_allocate(struct dma_heap *heap,
496 unsigned long len,
497 unsigned long fd_flags,
498 unsigned long heap_flags)
499 {
500 return system_heap_do_allocate(heap, len, fd_flags, heap_flags, false);
501 }
502
system_get_pool_size(struct dma_heap * heap)503 static long system_get_pool_size(struct dma_heap *heap)
504 {
505 int i;
506 long num_pages = 0;
507 struct dmabuf_page_pool **pool;
508
509 pool = pools;
510 for (i = 0; i < NUM_ORDERS; i++, pool++) {
511 num_pages += ((*pool)->count[POOL_LOWPAGE] +
512 (*pool)->count[POOL_HIGHPAGE]) << (*pool)->order;
513 }
514
515 return num_pages << PAGE_SHIFT;
516 }
517
518 static const struct dma_heap_ops system_heap_ops = {
519 .allocate = system_heap_allocate,
520 .get_pool_size = system_get_pool_size,
521 };
522
system_uncached_heap_allocate(struct dma_heap * heap,unsigned long len,unsigned long fd_flags,unsigned long heap_flags)523 static struct dma_buf *system_uncached_heap_allocate(struct dma_heap *heap,
524 unsigned long len,
525 unsigned long fd_flags,
526 unsigned long heap_flags)
527 {
528 return system_heap_do_allocate(heap, len, fd_flags, heap_flags, true);
529 }
530
531 /* Dummy function to be used until we can call coerce_mask_and_coherent */
system_uncached_heap_not_initialized(struct dma_heap * heap,unsigned long len,unsigned long fd_flags,unsigned long heap_flags)532 static struct dma_buf *system_uncached_heap_not_initialized(struct dma_heap *heap,
533 unsigned long len,
534 unsigned long fd_flags,
535 unsigned long heap_flags)
536 {
537 return ERR_PTR(-EBUSY);
538 }
539
540 static struct dma_heap_ops system_uncached_heap_ops = {
541 /* After system_heap_create is complete, we will swap this */
542 .allocate = system_uncached_heap_not_initialized,
543 };
544
set_heap_dev_dma(struct device * heap_dev)545 static int set_heap_dev_dma(struct device *heap_dev)
546 {
547 int err = 0;
548
549 if (!heap_dev)
550 return -EINVAL;
551
552 dma_coerce_mask_and_coherent(heap_dev, DMA_BIT_MASK(64));
553
554 if (!heap_dev->dma_parms) {
555 heap_dev->dma_parms = devm_kzalloc(heap_dev,
556 sizeof(*heap_dev->dma_parms),
557 GFP_KERNEL);
558 if (!heap_dev->dma_parms)
559 return -ENOMEM;
560
561 err = dma_set_max_seg_size(heap_dev, (unsigned int)DMA_BIT_MASK(64));
562 if (err) {
563 devm_kfree(heap_dev, heap_dev->dma_parms);
564 dev_err(heap_dev, "Failed to set DMA segment size, err:%d\n", err);
565 return err;
566 }
567 }
568
569 return 0;
570 }
571
system_heap_create(void)572 static int system_heap_create(void)
573 {
574 struct dma_heap_export_info exp_info;
575 int i, err = 0;
576
577 for (i = 0; i < NUM_ORDERS; i++) {
578 pools[i] = dmabuf_page_pool_create(order_flags[i], orders[i]);
579
580 if (!pools[i]) {
581 int j;
582
583 pr_err("%s: page pool creation failed!\n", __func__);
584 for (j = 0; j < i; j++)
585 dmabuf_page_pool_destroy(pools[j]);
586 return -ENOMEM;
587 }
588 }
589
590 exp_info.name = "system";
591 exp_info.ops = &system_heap_ops;
592 exp_info.priv = NULL;
593
594 sys_heap = dma_heap_add(&exp_info);
595 if (IS_ERR(sys_heap))
596 return PTR_ERR(sys_heap);
597
598 exp_info.name = "system-uncached";
599 exp_info.ops = &system_uncached_heap_ops;
600 exp_info.priv = NULL;
601
602 sys_uncached_heap = dma_heap_add(&exp_info);
603 if (IS_ERR(sys_uncached_heap))
604 return PTR_ERR(sys_uncached_heap);
605
606 err = set_heap_dev_dma(dma_heap_get_dev(sys_uncached_heap));
607 if (err)
608 return err;
609
610 mb(); /* make sure we only set allocate after dma_mask is set */
611 system_uncached_heap_ops.allocate = system_uncached_heap_allocate;
612
613 return 0;
614 }
615 module_init(system_heap_create);
616 MODULE_LICENSE("GPL v2");
617