1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * DMABUF CMA heap exporter
4 *
5 * Copyright (C) 2012, 2019, 2020 Linaro Ltd.
6 * Author: <benjamin.gaignard@linaro.org> for ST-Ericsson.
7 *
8 * Also utilizing parts of Andrew Davis' SRAM heap:
9 * Copyright (C) 2019 Texas Instruments Incorporated - http://www.ti.com/
10 * Andrew F. Davis <afd@ti.com>
11 */
12 #include <linux/cma.h>
13 #include <linux/dma-buf.h>
14 #include <linux/dma-heap.h>
15 #include <linux/dma-map-ops.h>
16 #include <linux/err.h>
17 #include <linux/highmem.h>
18 #include <linux/io.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/scatterlist.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24
25
26 struct cma_heap {
27 struct dma_heap *heap;
28 struct cma *cma;
29 };
30
31 struct cma_heap_buffer {
32 struct cma_heap *heap;
33 struct list_head attachments;
34 struct mutex lock;
35 unsigned long len;
36 struct page *cma_pages;
37 struct page **pages;
38 pgoff_t pagecount;
39 int vmap_cnt;
40 void *vaddr;
41 };
42
43 struct dma_heap_attachment {
44 struct device *dev;
45 struct sg_table table;
46 struct list_head list;
47 bool mapped;
48 };
49
cma_heap_attach(struct dma_buf * dmabuf,struct dma_buf_attachment * attachment)50 static int cma_heap_attach(struct dma_buf *dmabuf,
51 struct dma_buf_attachment *attachment)
52 {
53 struct cma_heap_buffer *buffer = dmabuf->priv;
54 struct dma_heap_attachment *a;
55 int ret;
56
57 a = kzalloc(sizeof(*a), GFP_KERNEL);
58 if (!a)
59 return -ENOMEM;
60
61 ret = sg_alloc_table_from_pages(&a->table, buffer->pages,
62 buffer->pagecount, 0,
63 buffer->pagecount << PAGE_SHIFT,
64 GFP_KERNEL);
65 if (ret) {
66 kfree(a);
67 return ret;
68 }
69
70 a->dev = attachment->dev;
71 INIT_LIST_HEAD(&a->list);
72 a->mapped = false;
73
74 attachment->priv = a;
75
76 mutex_lock(&buffer->lock);
77 list_add(&a->list, &buffer->attachments);
78 mutex_unlock(&buffer->lock);
79
80 return 0;
81 }
82
cma_heap_detach(struct dma_buf * dmabuf,struct dma_buf_attachment * attachment)83 static void cma_heap_detach(struct dma_buf *dmabuf,
84 struct dma_buf_attachment *attachment)
85 {
86 struct cma_heap_buffer *buffer = dmabuf->priv;
87 struct dma_heap_attachment *a = attachment->priv;
88
89 mutex_lock(&buffer->lock);
90 list_del(&a->list);
91 mutex_unlock(&buffer->lock);
92
93 sg_free_table(&a->table);
94 kfree(a);
95 }
96
cma_heap_map_dma_buf(struct dma_buf_attachment * attachment,enum dma_data_direction direction)97 static struct sg_table *cma_heap_map_dma_buf(struct dma_buf_attachment *attachment,
98 enum dma_data_direction direction)
99 {
100 struct dma_heap_attachment *a = attachment->priv;
101 struct sg_table *table = &a->table;
102 int attrs = attachment->dma_map_attrs;
103 int ret;
104
105 ret = dma_map_sgtable(attachment->dev, table, direction, attrs);
106 if (ret)
107 return ERR_PTR(-ENOMEM);
108 a->mapped = true;
109 return table;
110 }
111
cma_heap_unmap_dma_buf(struct dma_buf_attachment * attachment,struct sg_table * table,enum dma_data_direction direction)112 static void cma_heap_unmap_dma_buf(struct dma_buf_attachment *attachment,
113 struct sg_table *table,
114 enum dma_data_direction direction)
115 {
116 struct dma_heap_attachment *a = attachment->priv;
117 int attrs = attachment->dma_map_attrs;
118
119 a->mapped = false;
120 dma_unmap_sgtable(attachment->dev, table, direction, attrs);
121 }
122
cma_heap_dma_buf_begin_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)123 static int cma_heap_dma_buf_begin_cpu_access(struct dma_buf *dmabuf,
124 enum dma_data_direction direction)
125 {
126 struct cma_heap_buffer *buffer = dmabuf->priv;
127 struct dma_heap_attachment *a;
128
129 mutex_lock(&buffer->lock);
130
131 if (buffer->vmap_cnt)
132 invalidate_kernel_vmap_range(buffer->vaddr, buffer->len);
133
134 list_for_each_entry(a, &buffer->attachments, list) {
135 if (!a->mapped)
136 continue;
137 dma_sync_sgtable_for_cpu(a->dev, &a->table, direction);
138 }
139 mutex_unlock(&buffer->lock);
140
141 return 0;
142 }
143
cma_heap_dma_buf_end_cpu_access(struct dma_buf * dmabuf,enum dma_data_direction direction)144 static int cma_heap_dma_buf_end_cpu_access(struct dma_buf *dmabuf,
145 enum dma_data_direction direction)
146 {
147 struct cma_heap_buffer *buffer = dmabuf->priv;
148 struct dma_heap_attachment *a;
149
150 mutex_lock(&buffer->lock);
151
152 if (buffer->vmap_cnt)
153 flush_kernel_vmap_range(buffer->vaddr, buffer->len);
154
155 list_for_each_entry(a, &buffer->attachments, list) {
156 if (!a->mapped)
157 continue;
158 dma_sync_sgtable_for_device(a->dev, &a->table, direction);
159 }
160 mutex_unlock(&buffer->lock);
161
162 return 0;
163 }
164
cma_heap_vm_fault(struct vm_fault * vmf)165 static vm_fault_t cma_heap_vm_fault(struct vm_fault *vmf)
166 {
167 struct vm_area_struct *vma = vmf->vma;
168 struct cma_heap_buffer *buffer = vma->vm_private_data;
169
170 if (vmf->pgoff > buffer->pagecount)
171 return VM_FAULT_SIGBUS;
172
173 vmf->page = buffer->pages[vmf->pgoff];
174 get_page(vmf->page);
175
176 return 0;
177 }
178
179 static const struct vm_operations_struct dma_heap_vm_ops = {
180 .fault = cma_heap_vm_fault,
181 };
182
cma_heap_mmap(struct dma_buf * dmabuf,struct vm_area_struct * vma)183 static int cma_heap_mmap(struct dma_buf *dmabuf, struct vm_area_struct *vma)
184 {
185 struct cma_heap_buffer *buffer = dmabuf->priv;
186
187 if ((vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) == 0)
188 return -EINVAL;
189
190 vma->vm_ops = &dma_heap_vm_ops;
191 vma->vm_private_data = buffer;
192
193 return 0;
194 }
195
cma_heap_do_vmap(struct cma_heap_buffer * buffer)196 static void *cma_heap_do_vmap(struct cma_heap_buffer *buffer)
197 {
198 void *vaddr;
199
200 vaddr = vmap(buffer->pages, buffer->pagecount, VM_MAP, PAGE_KERNEL);
201 if (!vaddr)
202 return ERR_PTR(-ENOMEM);
203
204 return vaddr;
205 }
206
cma_heap_vmap(struct dma_buf * dmabuf)207 static void *cma_heap_vmap(struct dma_buf *dmabuf)
208 {
209 struct cma_heap_buffer *buffer = dmabuf->priv;
210 void *vaddr;
211
212 mutex_lock(&buffer->lock);
213 if (buffer->vmap_cnt) {
214 buffer->vmap_cnt++;
215 vaddr = buffer->vaddr;
216 goto out;
217 }
218
219 vaddr = cma_heap_do_vmap(buffer);
220 if (IS_ERR(vaddr))
221 goto out;
222
223 buffer->vaddr = vaddr;
224 buffer->vmap_cnt++;
225 out:
226 mutex_unlock(&buffer->lock);
227
228 return vaddr;
229 }
230
cma_heap_vunmap(struct dma_buf * dmabuf,void * vaddr)231 static void cma_heap_vunmap(struct dma_buf *dmabuf, void *vaddr)
232 {
233 struct cma_heap_buffer *buffer = dmabuf->priv;
234
235 mutex_lock(&buffer->lock);
236 if (!--buffer->vmap_cnt) {
237 vunmap(buffer->vaddr);
238 buffer->vaddr = NULL;
239 }
240 mutex_unlock(&buffer->lock);
241 }
242
cma_heap_dma_buf_release(struct dma_buf * dmabuf)243 static void cma_heap_dma_buf_release(struct dma_buf *dmabuf)
244 {
245 struct cma_heap_buffer *buffer = dmabuf->priv;
246 struct cma_heap *cma_heap = buffer->heap;
247
248 if (buffer->vmap_cnt > 0) {
249 WARN(1, "%s: buffer still mapped in the kernel\n", __func__);
250 vunmap(buffer->vaddr);
251 }
252
253 /* free page list */
254 kfree(buffer->pages);
255 /* release memory */
256 cma_release(cma_heap->cma, buffer->cma_pages, buffer->pagecount);
257 kfree(buffer);
258 }
259
260 static const struct dma_buf_ops cma_heap_buf_ops = {
261 .attach = cma_heap_attach,
262 .detach = cma_heap_detach,
263 .map_dma_buf = cma_heap_map_dma_buf,
264 .unmap_dma_buf = cma_heap_unmap_dma_buf,
265 .begin_cpu_access = cma_heap_dma_buf_begin_cpu_access,
266 .end_cpu_access = cma_heap_dma_buf_end_cpu_access,
267 .mmap = cma_heap_mmap,
268 .vmap = cma_heap_vmap,
269 .vunmap = cma_heap_vunmap,
270 .release = cma_heap_dma_buf_release,
271 };
272
cma_heap_allocate(struct dma_heap * heap,unsigned long len,unsigned long fd_flags,unsigned long heap_flags)273 static struct dma_buf *cma_heap_allocate(struct dma_heap *heap,
274 unsigned long len,
275 unsigned long fd_flags,
276 unsigned long heap_flags)
277 {
278 struct cma_heap *cma_heap = dma_heap_get_drvdata(heap);
279 struct cma_heap_buffer *buffer;
280 DEFINE_DMA_BUF_EXPORT_INFO(exp_info);
281 size_t size = PAGE_ALIGN(len);
282 pgoff_t pagecount = size >> PAGE_SHIFT;
283 unsigned long align = get_order(size);
284 struct page *cma_pages;
285 struct dma_buf *dmabuf;
286 int ret = -ENOMEM;
287 pgoff_t pg;
288
289 buffer = kzalloc(sizeof(*buffer), GFP_KERNEL);
290 if (!buffer)
291 return ERR_PTR(-ENOMEM);
292
293 INIT_LIST_HEAD(&buffer->attachments);
294 mutex_init(&buffer->lock);
295 buffer->len = size;
296
297 if (align > CONFIG_CMA_ALIGNMENT)
298 align = CONFIG_CMA_ALIGNMENT;
299
300 cma_pages = cma_alloc(cma_heap->cma, pagecount, align, GFP_KERNEL);
301 if (!cma_pages)
302 goto free_buffer;
303
304 /* Clear the cma pages */
305 if (PageHighMem(cma_pages)) {
306 unsigned long nr_clear_pages = pagecount;
307 struct page *page = cma_pages;
308
309 while (nr_clear_pages > 0) {
310 void *vaddr = kmap_atomic(page);
311
312 memset(vaddr, 0, PAGE_SIZE);
313 kunmap_atomic(vaddr);
314 /*
315 * Avoid wasting time zeroing memory if the process
316 * has been killed by by SIGKILL
317 */
318 if (fatal_signal_pending(current))
319 goto free_cma;
320 page++;
321 nr_clear_pages--;
322 }
323 } else {
324 memset(page_address(cma_pages), 0, size);
325 }
326
327 buffer->pages = kmalloc_array(pagecount, sizeof(*buffer->pages), GFP_KERNEL);
328 if (!buffer->pages) {
329 ret = -ENOMEM;
330 goto free_cma;
331 }
332
333 for (pg = 0; pg < pagecount; pg++)
334 buffer->pages[pg] = &cma_pages[pg];
335
336 buffer->cma_pages = cma_pages;
337 buffer->heap = cma_heap;
338 buffer->pagecount = pagecount;
339
340 /* create the dmabuf */
341 exp_info.exp_name = dma_heap_get_name(heap);
342 exp_info.ops = &cma_heap_buf_ops;
343 exp_info.size = buffer->len;
344 exp_info.flags = fd_flags;
345 exp_info.priv = buffer;
346 dmabuf = dma_buf_export(&exp_info);
347 if (IS_ERR(dmabuf)) {
348 ret = PTR_ERR(dmabuf);
349 goto free_pages;
350 }
351
352 return dmabuf;
353
354 free_pages:
355 kfree(buffer->pages);
356 free_cma:
357 cma_release(cma_heap->cma, cma_pages, pagecount);
358 free_buffer:
359 kfree(buffer);
360
361 return ERR_PTR(ret);
362 }
363
364 static const struct dma_heap_ops cma_heap_ops = {
365 .allocate = cma_heap_allocate,
366 };
367
__add_cma_heap(struct cma * cma,void * data)368 static int __add_cma_heap(struct cma *cma, void *data)
369 {
370 struct cma_heap *cma_heap;
371 struct dma_heap_export_info exp_info;
372
373 cma_heap = kzalloc(sizeof(*cma_heap), GFP_KERNEL);
374 if (!cma_heap)
375 return -ENOMEM;
376 cma_heap->cma = cma;
377
378 exp_info.name = cma_get_name(cma);
379 exp_info.ops = &cma_heap_ops;
380 exp_info.priv = cma_heap;
381
382 cma_heap->heap = dma_heap_add(&exp_info);
383 if (IS_ERR(cma_heap->heap)) {
384 int ret = PTR_ERR(cma_heap->heap);
385
386 kfree(cma_heap);
387 return ret;
388 }
389
390 return 0;
391 }
392
add_default_cma_heap(void)393 static int add_default_cma_heap(void)
394 {
395 struct cma *default_cma = dev_get_cma_area(NULL);
396 int ret = 0;
397
398 if (default_cma)
399 ret = __add_cma_heap(default_cma, NULL);
400
401 return ret;
402 }
403 module_init(add_default_cma_heap);
404 MODULE_DESCRIPTION("DMA-BUF CMA Heap");
405 MODULE_LICENSE("GPL v2");
406