xref: /OK3568_Linux_fs/kernel/drivers/crypto/rockchip/rk_crypto_v1_ahash.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Crypto acceleration support for Rockchip RK3288
4  *
5  * Copyright (c) 2015, Fuzhou Rockchip Electronics Co., Ltd
6  *
7  * Author: Zain Wang <zain.wang@rock-chips.com>
8  *
9  * Some ideas are from marvell/cesa.c and s5p-sss.c driver.
10  */
11 #include "rk_crypto_core.h"
12 #include "rk_crypto_v1.h"
13 #include "rk_crypto_v1_reg.h"
14 
15 /*
16  * IC can not process zero message hash,
17  * so we put the fixed hash out when met zero message.
18  */
19 
rk_alg_ctx_cast(struct rk_crypto_dev * rk_dev)20 static struct rk_alg_ctx *rk_alg_ctx_cast(
21 	struct rk_crypto_dev *rk_dev)
22 {
23 	struct ahash_request *req =
24 		ahash_request_cast(rk_dev->async_req);
25 
26 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
27 	struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
28 
29 	return &ctx->algs_ctx;
30 }
31 
rk_crypto_irq_handle(int irq,void * dev_id)32 static int rk_crypto_irq_handle(int irq, void *dev_id)
33 {
34 	struct rk_crypto_dev *rk_dev  = platform_get_drvdata(dev_id);
35 	u32 interrupt_status;
36 
37 	interrupt_status = CRYPTO_READ(rk_dev, RK_CRYPTO_INTSTS);
38 	CRYPTO_WRITE(rk_dev, RK_CRYPTO_INTSTS, interrupt_status);
39 
40 	if (interrupt_status & 0x0a) {
41 		dev_warn(rk_dev->dev, "DMA Error\n");
42 		rk_dev->err = -EFAULT;
43 	}
44 
45 	return 0;
46 }
47 
zero_message_process(struct ahash_request * req)48 static int zero_message_process(struct ahash_request *req)
49 {
50 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
51 	int rk_digest_size = crypto_ahash_digestsize(tfm);
52 
53 	const u8 sha256_zero_msg_hash[SHA256_DIGEST_SIZE] = {
54 		0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14,
55 		0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24,
56 		0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c,
57 		0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55
58 	};
59 
60 	const u8 sha1_zero_msg_hash[SHA1_DIGEST_SIZE] = {
61 		0xda, 0x39, 0xa3, 0xee, 0x5e, 0x6b, 0x4b, 0x0d,
62 		0x32, 0x55, 0xbf, 0xef, 0x95, 0x60, 0x18, 0x90,
63 		0xaf, 0xd8, 0x07, 0x09
64 	};
65 
66 	const u8 md5_zero_msg_hash[MD5_DIGEST_SIZE] = {
67 		0xd4, 0x1d, 0x8c, 0xd9, 0x8f, 0x00, 0xb2, 0x04,
68 		0xe9, 0x80, 0x09, 0x98, 0xec, 0xf8, 0x42, 0x7e,
69 	};
70 
71 	switch (rk_digest_size) {
72 	case SHA1_DIGEST_SIZE:
73 		memcpy(req->result, sha1_zero_msg_hash, rk_digest_size);
74 		break;
75 	case SHA256_DIGEST_SIZE:
76 		memcpy(req->result, sha256_zero_msg_hash, rk_digest_size);
77 		break;
78 	case MD5_DIGEST_SIZE:
79 		memcpy(req->result, md5_zero_msg_hash, rk_digest_size);
80 		break;
81 	default:
82 		return -EINVAL;
83 	}
84 
85 	return 0;
86 }
87 
rk_ahash_crypto_complete(struct crypto_async_request * base,int err)88 static void rk_ahash_crypto_complete(struct crypto_async_request *base, int err)
89 {
90 	if (base->complete)
91 		base->complete(base, err);
92 }
93 
rk_ahash_reg_init(struct rk_crypto_dev * rk_dev)94 static void rk_ahash_reg_init(struct rk_crypto_dev *rk_dev)
95 {
96 	struct ahash_request *req = ahash_request_cast(rk_dev->async_req);
97 	struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
98 	struct rk_alg_ctx *alg_ctx = rk_alg_ctx_cast(rk_dev);
99 	int reg_status = 0;
100 
101 	reg_status = CRYPTO_READ(rk_dev, RK_CRYPTO_CTRL) |
102 		     RK_CRYPTO_HASH_FLUSH | _SBF(0xffff, 16);
103 	CRYPTO_WRITE(rk_dev, RK_CRYPTO_CTRL, reg_status);
104 
105 	reg_status = CRYPTO_READ(rk_dev, RK_CRYPTO_CTRL);
106 	reg_status &= (~RK_CRYPTO_HASH_FLUSH);
107 	reg_status |= _SBF(0xffff, 16);
108 	CRYPTO_WRITE(rk_dev, RK_CRYPTO_CTRL, reg_status);
109 
110 	memset_io(rk_dev->reg + RK_CRYPTO_HASH_DOUT_0, 0, 32);
111 
112 	CRYPTO_WRITE(rk_dev, RK_CRYPTO_INTENA, RK_CRYPTO_HRDMA_ERR_ENA |
113 					    RK_CRYPTO_HRDMA_DONE_ENA);
114 
115 	CRYPTO_WRITE(rk_dev, RK_CRYPTO_INTSTS, RK_CRYPTO_HRDMA_ERR_INT |
116 					    RK_CRYPTO_HRDMA_DONE_INT);
117 
118 	CRYPTO_WRITE(rk_dev, RK_CRYPTO_HASH_CTRL, rctx->mode |
119 					       RK_CRYPTO_HASH_SWAP_DO);
120 
121 	CRYPTO_WRITE(rk_dev, RK_CRYPTO_CONF, RK_CRYPTO_BYTESWAP_HRFIFO |
122 					  RK_CRYPTO_BYTESWAP_BRFIFO |
123 					  RK_CRYPTO_BYTESWAP_BTFIFO);
124 
125 	CRYPTO_WRITE(rk_dev, RK_CRYPTO_HASH_MSG_LEN, alg_ctx->total);
126 }
127 
rk_ahash_init(struct ahash_request * req)128 static int rk_ahash_init(struct ahash_request *req)
129 {
130 	struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
131 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
132 	struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
133 
134 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
135 	rctx->fallback_req.base.flags = req->base.flags &
136 					CRYPTO_TFM_REQ_MAY_SLEEP;
137 
138 	return crypto_ahash_init(&rctx->fallback_req);
139 }
140 
rk_ahash_update(struct ahash_request * req)141 static int rk_ahash_update(struct ahash_request *req)
142 {
143 	struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
144 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
145 	struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
146 
147 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
148 	rctx->fallback_req.base.flags = req->base.flags &
149 					CRYPTO_TFM_REQ_MAY_SLEEP;
150 	rctx->fallback_req.nbytes = req->nbytes;
151 	rctx->fallback_req.src = req->src;
152 
153 	return crypto_ahash_update(&rctx->fallback_req);
154 }
155 
rk_ahash_final(struct ahash_request * req)156 static int rk_ahash_final(struct ahash_request *req)
157 {
158 	struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
159 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
160 	struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
161 
162 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
163 	rctx->fallback_req.base.flags = req->base.flags &
164 					CRYPTO_TFM_REQ_MAY_SLEEP;
165 	rctx->fallback_req.result = req->result;
166 
167 	return crypto_ahash_final(&rctx->fallback_req);
168 }
169 
rk_ahash_finup(struct ahash_request * req)170 static int rk_ahash_finup(struct ahash_request *req)
171 {
172 	struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
173 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
174 	struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
175 
176 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
177 	rctx->fallback_req.base.flags = req->base.flags &
178 					CRYPTO_TFM_REQ_MAY_SLEEP;
179 
180 	rctx->fallback_req.nbytes = req->nbytes;
181 	rctx->fallback_req.src = req->src;
182 	rctx->fallback_req.result = req->result;
183 
184 	return crypto_ahash_finup(&rctx->fallback_req);
185 }
186 
rk_ahash_import(struct ahash_request * req,const void * in)187 static int rk_ahash_import(struct ahash_request *req, const void *in)
188 {
189 	struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
190 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
191 	struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
192 
193 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
194 	rctx->fallback_req.base.flags = req->base.flags &
195 					CRYPTO_TFM_REQ_MAY_SLEEP;
196 
197 	return crypto_ahash_import(&rctx->fallback_req, in);
198 }
199 
rk_ahash_export(struct ahash_request * req,void * out)200 static int rk_ahash_export(struct ahash_request *req, void *out)
201 {
202 	struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
203 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
204 	struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
205 
206 	ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
207 	rctx->fallback_req.base.flags = req->base.flags &
208 					CRYPTO_TFM_REQ_MAY_SLEEP;
209 
210 	return crypto_ahash_export(&rctx->fallback_req, out);
211 }
212 
rk_ahash_digest(struct ahash_request * req)213 static int rk_ahash_digest(struct ahash_request *req)
214 {
215 	struct rk_ahash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
216 	struct rk_crypto_dev *rk_dev = tctx->rk_dev;
217 
218 	if (!req->nbytes)
219 		return zero_message_process(req);
220 	else
221 		return rk_dev->enqueue(rk_dev, &req->base);
222 }
223 
crypto_ahash_dma_start(struct rk_crypto_dev * rk_dev)224 static void crypto_ahash_dma_start(struct rk_crypto_dev *rk_dev)
225 {
226 	struct rk_alg_ctx *alg_ctx = rk_alg_ctx_cast(rk_dev);
227 
228 	CRYPTO_WRITE(rk_dev, RK_CRYPTO_HRDMAS, alg_ctx->addr_in);
229 	CRYPTO_WRITE(rk_dev, RK_CRYPTO_HRDMAL, (alg_ctx->count + 3) / 4);
230 	CRYPTO_WRITE(rk_dev, RK_CRYPTO_CTRL, RK_CRYPTO_HASH_START |
231 					  (RK_CRYPTO_HASH_START << 16));
232 }
233 
rk_ahash_set_data_start(struct rk_crypto_dev * rk_dev)234 static int rk_ahash_set_data_start(struct rk_crypto_dev *rk_dev)
235 {
236 	int err;
237 	struct rk_alg_ctx *alg_ctx = rk_alg_ctx_cast(rk_dev);
238 
239 	err = rk_dev->load_data(rk_dev, alg_ctx->sg_src, NULL);
240 	if (!err)
241 		crypto_ahash_dma_start(rk_dev);
242 	return err;
243 }
244 
rk_ahash_start(struct rk_crypto_dev * rk_dev)245 static int rk_ahash_start(struct rk_crypto_dev *rk_dev)
246 {
247 	struct ahash_request *req = ahash_request_cast(rk_dev->async_req);
248 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
249 	struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
250 	struct rk_alg_ctx *alg_ctx = rk_alg_ctx_cast(rk_dev);
251 
252 	alg_ctx->total      = req->nbytes;
253 	alg_ctx->left_bytes = req->nbytes;
254 	alg_ctx->sg_src     = req->src;
255 	alg_ctx->req_src    = req->src;
256 	alg_ctx->src_nents  = sg_nents_for_len(req->src, req->nbytes);
257 
258 	rctx->mode = 0;
259 
260 	switch (crypto_ahash_digestsize(tfm)) {
261 	case SHA1_DIGEST_SIZE:
262 		rctx->mode = RK_CRYPTO_HASH_SHA1;
263 		break;
264 	case SHA256_DIGEST_SIZE:
265 		rctx->mode = RK_CRYPTO_HASH_SHA256;
266 		break;
267 	case MD5_DIGEST_SIZE:
268 		rctx->mode = RK_CRYPTO_HASH_MD5;
269 		break;
270 	default:
271 		return -EINVAL;
272 	}
273 
274 	rk_ahash_reg_init(rk_dev);
275 	return rk_ahash_set_data_start(rk_dev);
276 }
277 
rk_ahash_crypto_rx(struct rk_crypto_dev * rk_dev)278 static int rk_ahash_crypto_rx(struct rk_crypto_dev *rk_dev)
279 {
280 	int err = 0;
281 	struct ahash_request *req = ahash_request_cast(rk_dev->async_req);
282 	struct rk_alg_ctx *alg_ctx = rk_alg_ctx_cast(rk_dev);
283 	struct crypto_ahash *tfm;
284 
285 	CRYPTO_TRACE("left_bytes = %u\n", alg_ctx->left_bytes);
286 
287 	err = rk_dev->unload_data(rk_dev);
288 	if (err)
289 		goto out_rx;
290 
291 	if (alg_ctx->left_bytes) {
292 		if (alg_ctx->aligned) {
293 			if (sg_is_last(alg_ctx->sg_src)) {
294 				dev_warn(rk_dev->dev, "[%s:%d], Lack of data\n",
295 					 __func__, __LINE__);
296 				err = -ENOMEM;
297 				goto out_rx;
298 			}
299 			alg_ctx->sg_src = sg_next(alg_ctx->sg_src);
300 		}
301 		err = rk_ahash_set_data_start(rk_dev);
302 	} else {
303 		/*
304 		 * it will take some time to process date after last dma
305 		 * transmission.
306 		 *
307 		 * waiting time is relative with the last date len,
308 		 * so cannot set a fixed time here.
309 		 * 10us makes system not call here frequently wasting
310 		 * efficiency, and make it response quickly when dma
311 		 * complete.
312 		 */
313 		while (!CRYPTO_READ(rk_dev, RK_CRYPTO_HASH_STS))
314 			udelay(10);
315 
316 		tfm = crypto_ahash_reqtfm(req);
317 		memcpy_fromio(req->result, rk_dev->reg + RK_CRYPTO_HASH_DOUT_0,
318 			      crypto_ahash_digestsize(tfm));
319 	}
320 
321 out_rx:
322 	return err;
323 }
324 
rk_cra_hash_init(struct crypto_tfm * tfm)325 static int rk_cra_hash_init(struct crypto_tfm *tfm)
326 {
327 	struct rk_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
328 	struct rk_crypto_algt *algt;
329 	struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
330 	const char *alg_name = crypto_tfm_alg_name(tfm);
331 	struct rk_alg_ctx *alg_ctx = &ctx->algs_ctx;
332 	struct rk_crypto_dev *rk_dev;
333 
334 	algt = container_of(alg, struct rk_crypto_algt, alg.hash);
335 	rk_dev = algt->rk_dev;
336 
337 	memset(ctx, 0x00, sizeof(*ctx));
338 
339 	if (!rk_dev->request_crypto)
340 		return -EFAULT;
341 
342 	rk_dev->request_crypto(rk_dev, crypto_tfm_alg_name(tfm));
343 
344 	alg_ctx->align_size     = 4;
345 
346 	alg_ctx->ops.start      = rk_ahash_start;
347 	alg_ctx->ops.update     = rk_ahash_crypto_rx;
348 	alg_ctx->ops.complete   = rk_ahash_crypto_complete;
349 	alg_ctx->ops.irq_handle = rk_crypto_irq_handle;
350 
351 	ctx->rk_dev = rk_dev;
352 
353 	/* for fallback */
354 	ctx->fallback_tfm = crypto_alloc_ahash(alg_name, 0,
355 					       CRYPTO_ALG_NEED_FALLBACK);
356 	if (IS_ERR(ctx->fallback_tfm)) {
357 		dev_err(rk_dev->dev, "Could not load fallback driver.\n");
358 		return PTR_ERR(ctx->fallback_tfm);
359 	}
360 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
361 				 sizeof(struct rk_ahash_rctx) +
362 				 crypto_ahash_reqsize(ctx->fallback_tfm));
363 
364 	algt->alg.hash.halg.statesize = crypto_ahash_statesize(ctx->fallback_tfm);
365 
366 	return 0;
367 }
368 
rk_cra_hash_exit(struct crypto_tfm * tfm)369 static void rk_cra_hash_exit(struct crypto_tfm *tfm)
370 {
371 	struct rk_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
372 
373 	if (ctx->fallback_tfm)
374 		crypto_free_ahash(ctx->fallback_tfm);
375 
376 	ctx->rk_dev->release_crypto(ctx->rk_dev, crypto_tfm_alg_name(tfm));
377 }
378 
379 struct rk_crypto_algt rk_v1_ahash_sha1   = RK_HASH_ALGO_INIT(SHA1, sha1);
380 struct rk_crypto_algt rk_v1_ahash_sha256 = RK_HASH_ALGO_INIT(SHA256, sha256);
381 struct rk_crypto_algt rk_v1_ahash_md5    = RK_HASH_ALGO_INIT(MD5, md5);
382 
383