xref: /OK3568_Linux_fs/kernel/drivers/clk/clk.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
4  * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
5  *
6  * Standard functionality for the common clock API.  See Documentation/driver-api/clk.rst
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/clk-provider.h>
11 #include <linux/clk/clk-conf.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/spinlock.h>
15 #include <linux/err.h>
16 #include <linux/list.h>
17 #include <linux/slab.h>
18 #include <linux/of.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/sched.h>
23 #include <linux/clkdev.h>
24 
25 #include "clk.h"
26 
27 static DEFINE_SPINLOCK(enable_lock);
28 static DEFINE_MUTEX(prepare_lock);
29 
30 static struct task_struct *prepare_owner;
31 static struct task_struct *enable_owner;
32 
33 static int prepare_refcnt;
34 static int enable_refcnt;
35 
36 static HLIST_HEAD(clk_root_list);
37 static HLIST_HEAD(clk_orphan_list);
38 static LIST_HEAD(clk_notifier_list);
39 
40 static struct hlist_head *all_lists[] = {
41 	&clk_root_list,
42 	&clk_orphan_list,
43 	NULL,
44 };
45 
46 /***    private data structures    ***/
47 
48 struct clk_parent_map {
49 	const struct clk_hw	*hw;
50 	struct clk_core		*core;
51 	const char		*fw_name;
52 	const char		*name;
53 	int			index;
54 };
55 
56 struct clk_core {
57 	const char		*name;
58 	const struct clk_ops	*ops;
59 	struct clk_hw		*hw;
60 	struct module		*owner;
61 	struct device		*dev;
62 	struct device_node	*of_node;
63 	struct clk_core		*parent;
64 	struct clk_parent_map	*parents;
65 	u8			num_parents;
66 	u8			new_parent_index;
67 	unsigned long		rate;
68 	unsigned long		req_rate;
69 	unsigned long		new_rate;
70 	struct clk_core		*new_parent;
71 	struct clk_core		*new_child;
72 	unsigned long		flags;
73 	bool			orphan;
74 	bool			rpm_enabled;
75 	bool			need_sync;
76 	bool			boot_enabled;
77 	unsigned int		enable_count;
78 	unsigned int		prepare_count;
79 	unsigned int		protect_count;
80 	unsigned long		min_rate;
81 	unsigned long		max_rate;
82 	unsigned long		accuracy;
83 	int			phase;
84 	struct clk_duty		duty;
85 	struct hlist_head	children;
86 	struct hlist_node	child_node;
87 	struct hlist_head	clks;
88 	unsigned int		notifier_count;
89 #ifdef CONFIG_DEBUG_FS
90 	struct dentry		*dentry;
91 	struct hlist_node	debug_node;
92 #endif
93 	struct kref		ref;
94 };
95 
96 #define CREATE_TRACE_POINTS
97 #include <trace/events/clk.h>
98 
99 struct clk {
100 	struct clk_core	*core;
101 	struct device *dev;
102 	const char *dev_id;
103 	const char *con_id;
104 	unsigned long min_rate;
105 	unsigned long max_rate;
106 	unsigned int exclusive_count;
107 	struct hlist_node clks_node;
108 };
109 
110 /***           runtime pm          ***/
clk_pm_runtime_get(struct clk_core * core)111 static int clk_pm_runtime_get(struct clk_core *core)
112 {
113 	int ret;
114 
115 	if (!core->rpm_enabled)
116 		return 0;
117 
118 	ret = pm_runtime_get_sync(core->dev);
119 	if (ret < 0) {
120 		pm_runtime_put_noidle(core->dev);
121 		return ret;
122 	}
123 	return 0;
124 }
125 
clk_pm_runtime_put(struct clk_core * core)126 static void clk_pm_runtime_put(struct clk_core *core)
127 {
128 	if (!core->rpm_enabled)
129 		return;
130 
131 	pm_runtime_put_sync(core->dev);
132 }
133 
134 /***           locking             ***/
clk_prepare_lock(void)135 static void clk_prepare_lock(void)
136 {
137 	if (!mutex_trylock(&prepare_lock)) {
138 		if (prepare_owner == current) {
139 			prepare_refcnt++;
140 			return;
141 		}
142 		mutex_lock(&prepare_lock);
143 	}
144 	WARN_ON_ONCE(prepare_owner != NULL);
145 	WARN_ON_ONCE(prepare_refcnt != 0);
146 	prepare_owner = current;
147 	prepare_refcnt = 1;
148 }
149 
clk_prepare_unlock(void)150 static void clk_prepare_unlock(void)
151 {
152 	WARN_ON_ONCE(prepare_owner != current);
153 	WARN_ON_ONCE(prepare_refcnt == 0);
154 
155 	if (--prepare_refcnt)
156 		return;
157 	prepare_owner = NULL;
158 	mutex_unlock(&prepare_lock);
159 }
160 
clk_enable_lock(void)161 static unsigned long clk_enable_lock(void)
162 	__acquires(enable_lock)
163 {
164 	unsigned long flags;
165 
166 	/*
167 	 * On UP systems, spin_trylock_irqsave() always returns true, even if
168 	 * we already hold the lock. So, in that case, we rely only on
169 	 * reference counting.
170 	 */
171 	if (!IS_ENABLED(CONFIG_SMP) ||
172 	    !spin_trylock_irqsave(&enable_lock, flags)) {
173 		if (enable_owner == current) {
174 			enable_refcnt++;
175 			__acquire(enable_lock);
176 			if (!IS_ENABLED(CONFIG_SMP))
177 				local_save_flags(flags);
178 			return flags;
179 		}
180 		spin_lock_irqsave(&enable_lock, flags);
181 	}
182 	WARN_ON_ONCE(enable_owner != NULL);
183 	WARN_ON_ONCE(enable_refcnt != 0);
184 	enable_owner = current;
185 	enable_refcnt = 1;
186 	return flags;
187 }
188 
clk_enable_unlock(unsigned long flags)189 static void clk_enable_unlock(unsigned long flags)
190 	__releases(enable_lock)
191 {
192 	WARN_ON_ONCE(enable_owner != current);
193 	WARN_ON_ONCE(enable_refcnt == 0);
194 
195 	if (--enable_refcnt) {
196 		__release(enable_lock);
197 		return;
198 	}
199 	enable_owner = NULL;
200 	spin_unlock_irqrestore(&enable_lock, flags);
201 }
202 
clk_core_rate_is_protected(struct clk_core * core)203 static bool clk_core_rate_is_protected(struct clk_core *core)
204 {
205 	return core->protect_count;
206 }
207 
clk_core_is_prepared(struct clk_core * core)208 static bool clk_core_is_prepared(struct clk_core *core)
209 {
210 	bool ret = false;
211 
212 	/*
213 	 * .is_prepared is optional for clocks that can prepare
214 	 * fall back to software usage counter if it is missing
215 	 */
216 	if (!core->ops->is_prepared)
217 		return core->prepare_count;
218 
219 	if (!clk_pm_runtime_get(core)) {
220 		ret = core->ops->is_prepared(core->hw);
221 		clk_pm_runtime_put(core);
222 	}
223 
224 	return ret;
225 }
226 
clk_core_is_enabled(struct clk_core * core)227 static bool clk_core_is_enabled(struct clk_core *core)
228 {
229 	bool ret = false;
230 
231 	/*
232 	 * .is_enabled is only mandatory for clocks that gate
233 	 * fall back to software usage counter if .is_enabled is missing
234 	 */
235 	if (!core->ops->is_enabled)
236 		return core->enable_count;
237 
238 	/*
239 	 * Check if clock controller's device is runtime active before
240 	 * calling .is_enabled callback. If not, assume that clock is
241 	 * disabled, because we might be called from atomic context, from
242 	 * which pm_runtime_get() is not allowed.
243 	 * This function is called mainly from clk_disable_unused_subtree,
244 	 * which ensures proper runtime pm activation of controller before
245 	 * taking enable spinlock, but the below check is needed if one tries
246 	 * to call it from other places.
247 	 */
248 	if (core->rpm_enabled) {
249 		pm_runtime_get_noresume(core->dev);
250 		if (!pm_runtime_active(core->dev)) {
251 			ret = false;
252 			goto done;
253 		}
254 	}
255 
256 	ret = core->ops->is_enabled(core->hw);
257 done:
258 	if (core->rpm_enabled)
259 		pm_runtime_put(core->dev);
260 
261 	return ret;
262 }
263 
264 /***    helper functions   ***/
265 
__clk_get_name(const struct clk * clk)266 const char *__clk_get_name(const struct clk *clk)
267 {
268 	return !clk ? NULL : clk->core->name;
269 }
270 EXPORT_SYMBOL_GPL(__clk_get_name);
271 
clk_hw_get_name(const struct clk_hw * hw)272 const char *clk_hw_get_name(const struct clk_hw *hw)
273 {
274 	return hw->core->name;
275 }
276 EXPORT_SYMBOL_GPL(clk_hw_get_name);
277 
__clk_get_hw(struct clk * clk)278 struct clk_hw *__clk_get_hw(struct clk *clk)
279 {
280 	return !clk ? NULL : clk->core->hw;
281 }
282 EXPORT_SYMBOL_GPL(__clk_get_hw);
283 
clk_hw_get_num_parents(const struct clk_hw * hw)284 unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
285 {
286 	return hw->core->num_parents;
287 }
288 EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
289 
clk_hw_get_parent(const struct clk_hw * hw)290 struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
291 {
292 	return hw->core->parent ? hw->core->parent->hw : NULL;
293 }
294 EXPORT_SYMBOL_GPL(clk_hw_get_parent);
295 
__clk_lookup_subtree(const char * name,struct clk_core * core)296 static struct clk_core *__clk_lookup_subtree(const char *name,
297 					     struct clk_core *core)
298 {
299 	struct clk_core *child;
300 	struct clk_core *ret;
301 
302 	if (!strcmp(core->name, name))
303 		return core;
304 
305 	hlist_for_each_entry(child, &core->children, child_node) {
306 		ret = __clk_lookup_subtree(name, child);
307 		if (ret)
308 			return ret;
309 	}
310 
311 	return NULL;
312 }
313 
clk_core_lookup(const char * name)314 static struct clk_core *clk_core_lookup(const char *name)
315 {
316 	struct clk_core *root_clk;
317 	struct clk_core *ret;
318 
319 	if (!name)
320 		return NULL;
321 
322 	/* search the 'proper' clk tree first */
323 	hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
324 		ret = __clk_lookup_subtree(name, root_clk);
325 		if (ret)
326 			return ret;
327 	}
328 
329 	/* if not found, then search the orphan tree */
330 	hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
331 		ret = __clk_lookup_subtree(name, root_clk);
332 		if (ret)
333 			return ret;
334 	}
335 
336 	return NULL;
337 }
338 
339 #ifdef CONFIG_OF
340 static int of_parse_clkspec(const struct device_node *np, int index,
341 			    const char *name, struct of_phandle_args *out_args);
342 static struct clk_hw *
343 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec);
344 #else
of_parse_clkspec(const struct device_node * np,int index,const char * name,struct of_phandle_args * out_args)345 static inline int of_parse_clkspec(const struct device_node *np, int index,
346 				   const char *name,
347 				   struct of_phandle_args *out_args)
348 {
349 	return -ENOENT;
350 }
351 static inline struct clk_hw *
of_clk_get_hw_from_clkspec(struct of_phandle_args * clkspec)352 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
353 {
354 	return ERR_PTR(-ENOENT);
355 }
356 #endif
357 
358 /**
359  * clk_core_get - Find the clk_core parent of a clk
360  * @core: clk to find parent of
361  * @p_index: parent index to search for
362  *
363  * This is the preferred method for clk providers to find the parent of a
364  * clk when that parent is external to the clk controller. The parent_names
365  * array is indexed and treated as a local name matching a string in the device
366  * node's 'clock-names' property or as the 'con_id' matching the device's
367  * dev_name() in a clk_lookup. This allows clk providers to use their own
368  * namespace instead of looking for a globally unique parent string.
369  *
370  * For example the following DT snippet would allow a clock registered by the
371  * clock-controller@c001 that has a clk_init_data::parent_data array
372  * with 'xtal' in the 'name' member to find the clock provided by the
373  * clock-controller@f00abcd without needing to get the globally unique name of
374  * the xtal clk.
375  *
376  *      parent: clock-controller@f00abcd {
377  *              reg = <0xf00abcd 0xabcd>;
378  *              #clock-cells = <0>;
379  *      };
380  *
381  *      clock-controller@c001 {
382  *              reg = <0xc001 0xf00d>;
383  *              clocks = <&parent>;
384  *              clock-names = "xtal";
385  *              #clock-cells = <1>;
386  *      };
387  *
388  * Returns: -ENOENT when the provider can't be found or the clk doesn't
389  * exist in the provider or the name can't be found in the DT node or
390  * in a clkdev lookup. NULL when the provider knows about the clk but it
391  * isn't provided on this system.
392  * A valid clk_core pointer when the clk can be found in the provider.
393  */
clk_core_get(struct clk_core * core,u8 p_index)394 static struct clk_core *clk_core_get(struct clk_core *core, u8 p_index)
395 {
396 	const char *name = core->parents[p_index].fw_name;
397 	int index = core->parents[p_index].index;
398 	struct clk_hw *hw = ERR_PTR(-ENOENT);
399 	struct device *dev = core->dev;
400 	const char *dev_id = dev ? dev_name(dev) : NULL;
401 	struct device_node *np = core->of_node;
402 	struct of_phandle_args clkspec;
403 
404 	if (np && (name || index >= 0) &&
405 	    !of_parse_clkspec(np, index, name, &clkspec)) {
406 		hw = of_clk_get_hw_from_clkspec(&clkspec);
407 		of_node_put(clkspec.np);
408 	} else if (name) {
409 		/*
410 		 * If the DT search above couldn't find the provider fallback to
411 		 * looking up via clkdev based clk_lookups.
412 		 */
413 		hw = clk_find_hw(dev_id, name);
414 	}
415 
416 	if (IS_ERR(hw))
417 		return ERR_CAST(hw);
418 
419 	return hw->core;
420 }
421 
clk_core_fill_parent_index(struct clk_core * core,u8 index)422 static void clk_core_fill_parent_index(struct clk_core *core, u8 index)
423 {
424 	struct clk_parent_map *entry = &core->parents[index];
425 	struct clk_core *parent = ERR_PTR(-ENOENT);
426 
427 	if (entry->hw) {
428 		parent = entry->hw->core;
429 		/*
430 		 * We have a direct reference but it isn't registered yet?
431 		 * Orphan it and let clk_reparent() update the orphan status
432 		 * when the parent is registered.
433 		 */
434 		if (!parent)
435 			parent = ERR_PTR(-EPROBE_DEFER);
436 	} else {
437 		parent = clk_core_get(core, index);
438 		if (PTR_ERR(parent) == -ENOENT && entry->name)
439 			parent = clk_core_lookup(entry->name);
440 	}
441 
442 	/* Only cache it if it's not an error */
443 	if (!IS_ERR(parent))
444 		entry->core = parent;
445 }
446 
clk_core_get_parent_by_index(struct clk_core * core,u8 index)447 static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
448 							 u8 index)
449 {
450 	if (!core || index >= core->num_parents || !core->parents)
451 		return NULL;
452 
453 	if (!core->parents[index].core)
454 		clk_core_fill_parent_index(core, index);
455 
456 	return core->parents[index].core;
457 }
458 
459 struct clk_hw *
clk_hw_get_parent_by_index(const struct clk_hw * hw,unsigned int index)460 clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
461 {
462 	struct clk_core *parent;
463 
464 	parent = clk_core_get_parent_by_index(hw->core, index);
465 
466 	return !parent ? NULL : parent->hw;
467 }
468 EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
469 
__clk_get_enable_count(struct clk * clk)470 unsigned int __clk_get_enable_count(struct clk *clk)
471 {
472 	return !clk ? 0 : clk->core->enable_count;
473 }
474 
clk_core_get_rate_nolock(struct clk_core * core)475 static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
476 {
477 	if (!core)
478 		return 0;
479 
480 	if (!core->num_parents || core->parent)
481 		return core->rate;
482 
483 	/*
484 	 * Clk must have a parent because num_parents > 0 but the parent isn't
485 	 * known yet. Best to return 0 as the rate of this clk until we can
486 	 * properly recalc the rate based on the parent's rate.
487 	 */
488 	return 0;
489 }
490 
clk_hw_get_rate(const struct clk_hw * hw)491 unsigned long clk_hw_get_rate(const struct clk_hw *hw)
492 {
493 	return clk_core_get_rate_nolock(hw->core);
494 }
495 EXPORT_SYMBOL_GPL(clk_hw_get_rate);
496 
clk_core_get_accuracy_no_lock(struct clk_core * core)497 static unsigned long clk_core_get_accuracy_no_lock(struct clk_core *core)
498 {
499 	if (!core)
500 		return 0;
501 
502 	return core->accuracy;
503 }
504 
clk_hw_get_flags(const struct clk_hw * hw)505 unsigned long clk_hw_get_flags(const struct clk_hw *hw)
506 {
507 	return hw->core->flags;
508 }
509 EXPORT_SYMBOL_GPL(clk_hw_get_flags);
510 
clk_hw_is_prepared(const struct clk_hw * hw)511 bool clk_hw_is_prepared(const struct clk_hw *hw)
512 {
513 	return clk_core_is_prepared(hw->core);
514 }
515 EXPORT_SYMBOL_GPL(clk_hw_is_prepared);
516 
clk_hw_rate_is_protected(const struct clk_hw * hw)517 bool clk_hw_rate_is_protected(const struct clk_hw *hw)
518 {
519 	return clk_core_rate_is_protected(hw->core);
520 }
521 EXPORT_SYMBOL_GPL(clk_hw_rate_is_protected);
522 
clk_hw_is_enabled(const struct clk_hw * hw)523 bool clk_hw_is_enabled(const struct clk_hw *hw)
524 {
525 	return clk_core_is_enabled(hw->core);
526 }
527 EXPORT_SYMBOL_GPL(clk_hw_is_enabled);
528 
__clk_is_enabled(struct clk * clk)529 bool __clk_is_enabled(struct clk *clk)
530 {
531 	if (!clk)
532 		return false;
533 
534 	return clk_core_is_enabled(clk->core);
535 }
536 EXPORT_SYMBOL_GPL(__clk_is_enabled);
537 
mux_is_better_rate(unsigned long rate,unsigned long now,unsigned long best,unsigned long flags)538 static bool mux_is_better_rate(unsigned long rate, unsigned long now,
539 			   unsigned long best, unsigned long flags)
540 {
541 	if (flags & CLK_MUX_ROUND_CLOSEST)
542 		return abs(now - rate) < abs(best - rate);
543 
544 	return now <= rate && now > best;
545 }
546 
clk_mux_determine_rate_flags(struct clk_hw * hw,struct clk_rate_request * req,unsigned long flags)547 int clk_mux_determine_rate_flags(struct clk_hw *hw,
548 				 struct clk_rate_request *req,
549 				 unsigned long flags)
550 {
551 	struct clk_core *core = hw->core, *parent, *best_parent = NULL;
552 	int i, num_parents, ret;
553 	unsigned long best = 0;
554 	struct clk_rate_request parent_req = *req;
555 
556 	/* if NO_REPARENT flag set, pass through to current parent */
557 	if (core->flags & CLK_SET_RATE_NO_REPARENT) {
558 		parent = core->parent;
559 		if (core->flags & CLK_SET_RATE_PARENT) {
560 			ret = __clk_determine_rate(parent ? parent->hw : NULL,
561 						   &parent_req);
562 			if (ret)
563 				return ret;
564 
565 			best = parent_req.rate;
566 		} else if (parent) {
567 			best = clk_core_get_rate_nolock(parent);
568 		} else {
569 			best = clk_core_get_rate_nolock(core);
570 		}
571 
572 		goto out;
573 	}
574 
575 	/* find the parent that can provide the fastest rate <= rate */
576 	num_parents = core->num_parents;
577 	for (i = 0; i < num_parents; i++) {
578 		parent = clk_core_get_parent_by_index(core, i);
579 		if (!parent)
580 			continue;
581 
582 		if (core->flags & CLK_SET_RATE_PARENT) {
583 			parent_req = *req;
584 			ret = __clk_determine_rate(parent->hw, &parent_req);
585 			if (ret)
586 				continue;
587 		} else {
588 			parent_req.rate = clk_core_get_rate_nolock(parent);
589 		}
590 
591 		if (mux_is_better_rate(req->rate, parent_req.rate,
592 				       best, flags)) {
593 			best_parent = parent;
594 			best = parent_req.rate;
595 		}
596 	}
597 
598 	if (!best_parent)
599 		return -EINVAL;
600 
601 out:
602 	if (best_parent)
603 		req->best_parent_hw = best_parent->hw;
604 	req->best_parent_rate = best;
605 	req->rate = best;
606 
607 	return 0;
608 }
609 EXPORT_SYMBOL_GPL(clk_mux_determine_rate_flags);
610 
__clk_lookup(const char * name)611 struct clk *__clk_lookup(const char *name)
612 {
613 	struct clk_core *core = clk_core_lookup(name);
614 
615 	return !core ? NULL : core->hw->clk;
616 }
617 
clk_core_get_boundaries(struct clk_core * core,unsigned long * min_rate,unsigned long * max_rate)618 static void clk_core_get_boundaries(struct clk_core *core,
619 				    unsigned long *min_rate,
620 				    unsigned long *max_rate)
621 {
622 	struct clk *clk_user;
623 
624 	lockdep_assert_held(&prepare_lock);
625 
626 	*min_rate = core->min_rate;
627 	*max_rate = core->max_rate;
628 
629 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
630 		*min_rate = max(*min_rate, clk_user->min_rate);
631 
632 	hlist_for_each_entry(clk_user, &core->clks, clks_node)
633 		*max_rate = min(*max_rate, clk_user->max_rate);
634 }
635 
clk_core_check_boundaries(struct clk_core * core,unsigned long min_rate,unsigned long max_rate)636 static bool clk_core_check_boundaries(struct clk_core *core,
637 				      unsigned long min_rate,
638 				      unsigned long max_rate)
639 {
640 	struct clk *user;
641 
642 	lockdep_assert_held(&prepare_lock);
643 
644 	if (min_rate > core->max_rate || max_rate < core->min_rate)
645 		return false;
646 
647 	hlist_for_each_entry(user, &core->clks, clks_node)
648 		if (min_rate > user->max_rate || max_rate < user->min_rate)
649 			return false;
650 
651 	return true;
652 }
653 
clk_hw_set_rate_range(struct clk_hw * hw,unsigned long min_rate,unsigned long max_rate)654 void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
655 			   unsigned long max_rate)
656 {
657 	hw->core->min_rate = min_rate;
658 	hw->core->max_rate = max_rate;
659 }
660 EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
661 
662 /*
663  * __clk_mux_determine_rate - clk_ops::determine_rate implementation for a mux type clk
664  * @hw: mux type clk to determine rate on
665  * @req: rate request, also used to return preferred parent and frequencies
666  *
667  * Helper for finding best parent to provide a given frequency. This can be used
668  * directly as a determine_rate callback (e.g. for a mux), or from a more
669  * complex clock that may combine a mux with other operations.
670  *
671  * Returns: 0 on success, -EERROR value on error
672  */
__clk_mux_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)673 int __clk_mux_determine_rate(struct clk_hw *hw,
674 			     struct clk_rate_request *req)
675 {
676 	return clk_mux_determine_rate_flags(hw, req, 0);
677 }
678 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
679 
__clk_mux_determine_rate_closest(struct clk_hw * hw,struct clk_rate_request * req)680 int __clk_mux_determine_rate_closest(struct clk_hw *hw,
681 				     struct clk_rate_request *req)
682 {
683 	return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
684 }
685 EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
686 
687 /***        clk api        ***/
688 
clk_core_rate_unprotect(struct clk_core * core)689 static void clk_core_rate_unprotect(struct clk_core *core)
690 {
691 	lockdep_assert_held(&prepare_lock);
692 
693 	if (!core)
694 		return;
695 
696 	if (WARN(core->protect_count == 0,
697 	    "%s already unprotected\n", core->name))
698 		return;
699 
700 	if (--core->protect_count > 0)
701 		return;
702 
703 	clk_core_rate_unprotect(core->parent);
704 }
705 
clk_core_rate_nuke_protect(struct clk_core * core)706 static int clk_core_rate_nuke_protect(struct clk_core *core)
707 {
708 	int ret;
709 
710 	lockdep_assert_held(&prepare_lock);
711 
712 	if (!core)
713 		return -EINVAL;
714 
715 	if (core->protect_count == 0)
716 		return 0;
717 
718 	ret = core->protect_count;
719 	core->protect_count = 1;
720 	clk_core_rate_unprotect(core);
721 
722 	return ret;
723 }
724 
725 /**
726  * clk_rate_exclusive_put - release exclusivity over clock rate control
727  * @clk: the clk over which the exclusivity is released
728  *
729  * clk_rate_exclusive_put() completes a critical section during which a clock
730  * consumer cannot tolerate any other consumer making any operation on the
731  * clock which could result in a rate change or rate glitch. Exclusive clocks
732  * cannot have their rate changed, either directly or indirectly due to changes
733  * further up the parent chain of clocks. As a result, clocks up parent chain
734  * also get under exclusive control of the calling consumer.
735  *
736  * If exlusivity is claimed more than once on clock, even by the same consumer,
737  * the rate effectively gets locked as exclusivity can't be preempted.
738  *
739  * Calls to clk_rate_exclusive_put() must be balanced with calls to
740  * clk_rate_exclusive_get(). Calls to this function may sleep, and do not return
741  * error status.
742  */
clk_rate_exclusive_put(struct clk * clk)743 void clk_rate_exclusive_put(struct clk *clk)
744 {
745 	if (!clk)
746 		return;
747 
748 	clk_prepare_lock();
749 
750 	/*
751 	 * if there is something wrong with this consumer protect count, stop
752 	 * here before messing with the provider
753 	 */
754 	if (WARN_ON(clk->exclusive_count <= 0))
755 		goto out;
756 
757 	clk_core_rate_unprotect(clk->core);
758 	clk->exclusive_count--;
759 out:
760 	clk_prepare_unlock();
761 }
762 EXPORT_SYMBOL_GPL(clk_rate_exclusive_put);
763 
clk_core_rate_protect(struct clk_core * core)764 static void clk_core_rate_protect(struct clk_core *core)
765 {
766 	lockdep_assert_held(&prepare_lock);
767 
768 	if (!core)
769 		return;
770 
771 	if (core->protect_count == 0)
772 		clk_core_rate_protect(core->parent);
773 
774 	core->protect_count++;
775 }
776 
clk_core_rate_restore_protect(struct clk_core * core,int count)777 static void clk_core_rate_restore_protect(struct clk_core *core, int count)
778 {
779 	lockdep_assert_held(&prepare_lock);
780 
781 	if (!core)
782 		return;
783 
784 	if (count == 0)
785 		return;
786 
787 	clk_core_rate_protect(core);
788 	core->protect_count = count;
789 }
790 
791 /**
792  * clk_rate_exclusive_get - get exclusivity over the clk rate control
793  * @clk: the clk over which the exclusity of rate control is requested
794  *
795  * clk_rate_exclusive_get() begins a critical section during which a clock
796  * consumer cannot tolerate any other consumer making any operation on the
797  * clock which could result in a rate change or rate glitch. Exclusive clocks
798  * cannot have their rate changed, either directly or indirectly due to changes
799  * further up the parent chain of clocks. As a result, clocks up parent chain
800  * also get under exclusive control of the calling consumer.
801  *
802  * If exlusivity is claimed more than once on clock, even by the same consumer,
803  * the rate effectively gets locked as exclusivity can't be preempted.
804  *
805  * Calls to clk_rate_exclusive_get() should be balanced with calls to
806  * clk_rate_exclusive_put(). Calls to this function may sleep.
807  * Returns 0 on success, -EERROR otherwise
808  */
clk_rate_exclusive_get(struct clk * clk)809 int clk_rate_exclusive_get(struct clk *clk)
810 {
811 	if (!clk)
812 		return 0;
813 
814 	clk_prepare_lock();
815 	clk_core_rate_protect(clk->core);
816 	clk->exclusive_count++;
817 	clk_prepare_unlock();
818 
819 	return 0;
820 }
821 EXPORT_SYMBOL_GPL(clk_rate_exclusive_get);
822 
clk_core_unprepare(struct clk_core * core)823 static void clk_core_unprepare(struct clk_core *core)
824 {
825 	lockdep_assert_held(&prepare_lock);
826 
827 	if (!core)
828 		return;
829 
830 	if (WARN(core->prepare_count == 0,
831 	    "%s already unprepared\n", core->name))
832 		return;
833 
834 	if (WARN(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL,
835 	    "Unpreparing critical %s\n", core->name))
836 		return;
837 
838 	if (core->flags & CLK_SET_RATE_GATE)
839 		clk_core_rate_unprotect(core);
840 
841 	if (--core->prepare_count > 0)
842 		return;
843 
844 	WARN(core->enable_count > 0, "Unpreparing enabled %s\n", core->name);
845 
846 	trace_clk_unprepare(core);
847 
848 	if (core->ops->unprepare)
849 		core->ops->unprepare(core->hw);
850 
851 	trace_clk_unprepare_complete(core);
852 	clk_core_unprepare(core->parent);
853 	clk_pm_runtime_put(core);
854 }
855 
clk_core_unprepare_lock(struct clk_core * core)856 static void clk_core_unprepare_lock(struct clk_core *core)
857 {
858 	clk_prepare_lock();
859 	clk_core_unprepare(core);
860 	clk_prepare_unlock();
861 }
862 
863 /**
864  * clk_unprepare - undo preparation of a clock source
865  * @clk: the clk being unprepared
866  *
867  * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
868  * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
869  * if the operation may sleep.  One example is a clk which is accessed over
870  * I2c.  In the complex case a clk gate operation may require a fast and a slow
871  * part.  It is this reason that clk_unprepare and clk_disable are not mutually
872  * exclusive.  In fact clk_disable must be called before clk_unprepare.
873  */
clk_unprepare(struct clk * clk)874 void clk_unprepare(struct clk *clk)
875 {
876 	if (IS_ERR_OR_NULL(clk))
877 		return;
878 
879 	clk_core_unprepare_lock(clk->core);
880 }
881 EXPORT_SYMBOL_GPL(clk_unprepare);
882 
clk_core_prepare(struct clk_core * core)883 static int clk_core_prepare(struct clk_core *core)
884 {
885 	int ret = 0;
886 
887 	lockdep_assert_held(&prepare_lock);
888 
889 	if (!core)
890 		return 0;
891 
892 	if (core->prepare_count == 0) {
893 		ret = clk_pm_runtime_get(core);
894 		if (ret)
895 			return ret;
896 
897 		ret = clk_core_prepare(core->parent);
898 		if (ret)
899 			goto runtime_put;
900 
901 		trace_clk_prepare(core);
902 
903 		if (core->ops->prepare)
904 			ret = core->ops->prepare(core->hw);
905 
906 		trace_clk_prepare_complete(core);
907 
908 		if (ret)
909 			goto unprepare;
910 	}
911 
912 	core->prepare_count++;
913 
914 	/*
915 	 * CLK_SET_RATE_GATE is a special case of clock protection
916 	 * Instead of a consumer claiming exclusive rate control, it is
917 	 * actually the provider which prevents any consumer from making any
918 	 * operation which could result in a rate change or rate glitch while
919 	 * the clock is prepared.
920 	 */
921 	if (core->flags & CLK_SET_RATE_GATE)
922 		clk_core_rate_protect(core);
923 
924 	return 0;
925 unprepare:
926 	clk_core_unprepare(core->parent);
927 runtime_put:
928 	clk_pm_runtime_put(core);
929 	return ret;
930 }
931 
clk_core_prepare_lock(struct clk_core * core)932 static int clk_core_prepare_lock(struct clk_core *core)
933 {
934 	int ret;
935 
936 	clk_prepare_lock();
937 	ret = clk_core_prepare(core);
938 	clk_prepare_unlock();
939 
940 	return ret;
941 }
942 
943 /**
944  * clk_prepare - prepare a clock source
945  * @clk: the clk being prepared
946  *
947  * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
948  * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
949  * operation may sleep.  One example is a clk which is accessed over I2c.  In
950  * the complex case a clk ungate operation may require a fast and a slow part.
951  * It is this reason that clk_prepare and clk_enable are not mutually
952  * exclusive.  In fact clk_prepare must be called before clk_enable.
953  * Returns 0 on success, -EERROR otherwise.
954  */
clk_prepare(struct clk * clk)955 int clk_prepare(struct clk *clk)
956 {
957 	if (!clk)
958 		return 0;
959 
960 	return clk_core_prepare_lock(clk->core);
961 }
962 EXPORT_SYMBOL_GPL(clk_prepare);
963 
clk_core_disable(struct clk_core * core)964 static void clk_core_disable(struct clk_core *core)
965 {
966 	lockdep_assert_held(&enable_lock);
967 
968 	if (!core)
969 		return;
970 
971 	if (WARN(core->enable_count == 0, "%s already disabled\n", core->name))
972 		return;
973 
974 	if (WARN(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL,
975 	    "Disabling critical %s\n", core->name))
976 		return;
977 
978 	if (--core->enable_count > 0)
979 		return;
980 
981 	trace_clk_disable_rcuidle(core);
982 
983 	if (core->ops->disable)
984 		core->ops->disable(core->hw);
985 
986 	trace_clk_disable_complete_rcuidle(core);
987 
988 	clk_core_disable(core->parent);
989 }
990 
clk_core_disable_lock(struct clk_core * core)991 static void clk_core_disable_lock(struct clk_core *core)
992 {
993 	unsigned long flags;
994 
995 	flags = clk_enable_lock();
996 	clk_core_disable(core);
997 	clk_enable_unlock(flags);
998 }
999 
1000 /**
1001  * clk_disable - gate a clock
1002  * @clk: the clk being gated
1003  *
1004  * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
1005  * a simple case, clk_disable can be used instead of clk_unprepare to gate a
1006  * clk if the operation is fast and will never sleep.  One example is a
1007  * SoC-internal clk which is controlled via simple register writes.  In the
1008  * complex case a clk gate operation may require a fast and a slow part.  It is
1009  * this reason that clk_unprepare and clk_disable are not mutually exclusive.
1010  * In fact clk_disable must be called before clk_unprepare.
1011  */
clk_disable(struct clk * clk)1012 void clk_disable(struct clk *clk)
1013 {
1014 	if (IS_ERR_OR_NULL(clk))
1015 		return;
1016 
1017 	clk_core_disable_lock(clk->core);
1018 }
1019 EXPORT_SYMBOL_GPL(clk_disable);
1020 
clk_core_enable(struct clk_core * core)1021 static int clk_core_enable(struct clk_core *core)
1022 {
1023 	int ret = 0;
1024 
1025 	lockdep_assert_held(&enable_lock);
1026 
1027 	if (!core)
1028 		return 0;
1029 
1030 	if (WARN(core->prepare_count == 0,
1031 	    "Enabling unprepared %s\n", core->name))
1032 		return -ESHUTDOWN;
1033 
1034 	if (core->enable_count == 0) {
1035 		ret = clk_core_enable(core->parent);
1036 
1037 		if (ret)
1038 			return ret;
1039 
1040 		trace_clk_enable_rcuidle(core);
1041 
1042 		if (core->ops->enable)
1043 			ret = core->ops->enable(core->hw);
1044 
1045 		trace_clk_enable_complete_rcuidle(core);
1046 
1047 		if (ret) {
1048 			clk_core_disable(core->parent);
1049 			return ret;
1050 		}
1051 	}
1052 
1053 	core->enable_count++;
1054 	return 0;
1055 }
1056 
clk_core_enable_lock(struct clk_core * core)1057 static int clk_core_enable_lock(struct clk_core *core)
1058 {
1059 	unsigned long flags;
1060 	int ret;
1061 
1062 	flags = clk_enable_lock();
1063 	ret = clk_core_enable(core);
1064 	clk_enable_unlock(flags);
1065 
1066 	return ret;
1067 }
1068 
1069 /**
1070  * clk_gate_restore_context - restore context for poweroff
1071  * @hw: the clk_hw pointer of clock whose state is to be restored
1072  *
1073  * The clock gate restore context function enables or disables
1074  * the gate clocks based on the enable_count. This is done in cases
1075  * where the clock context is lost and based on the enable_count
1076  * the clock either needs to be enabled/disabled. This
1077  * helps restore the state of gate clocks.
1078  */
clk_gate_restore_context(struct clk_hw * hw)1079 void clk_gate_restore_context(struct clk_hw *hw)
1080 {
1081 	struct clk_core *core = hw->core;
1082 
1083 	if (core->enable_count)
1084 		core->ops->enable(hw);
1085 	else
1086 		core->ops->disable(hw);
1087 }
1088 EXPORT_SYMBOL_GPL(clk_gate_restore_context);
1089 
clk_core_save_context(struct clk_core * core)1090 static int clk_core_save_context(struct clk_core *core)
1091 {
1092 	struct clk_core *child;
1093 	int ret = 0;
1094 
1095 	hlist_for_each_entry(child, &core->children, child_node) {
1096 		ret = clk_core_save_context(child);
1097 		if (ret < 0)
1098 			return ret;
1099 	}
1100 
1101 	if (core->ops && core->ops->save_context)
1102 		ret = core->ops->save_context(core->hw);
1103 
1104 	return ret;
1105 }
1106 
clk_core_restore_context(struct clk_core * core)1107 static void clk_core_restore_context(struct clk_core *core)
1108 {
1109 	struct clk_core *child;
1110 
1111 	if (core->ops && core->ops->restore_context)
1112 		core->ops->restore_context(core->hw);
1113 
1114 	hlist_for_each_entry(child, &core->children, child_node)
1115 		clk_core_restore_context(child);
1116 }
1117 
1118 /**
1119  * clk_save_context - save clock context for poweroff
1120  *
1121  * Saves the context of the clock register for powerstates in which the
1122  * contents of the registers will be lost. Occurs deep within the suspend
1123  * code.  Returns 0 on success.
1124  */
clk_save_context(void)1125 int clk_save_context(void)
1126 {
1127 	struct clk_core *clk;
1128 	int ret;
1129 
1130 	hlist_for_each_entry(clk, &clk_root_list, child_node) {
1131 		ret = clk_core_save_context(clk);
1132 		if (ret < 0)
1133 			return ret;
1134 	}
1135 
1136 	hlist_for_each_entry(clk, &clk_orphan_list, child_node) {
1137 		ret = clk_core_save_context(clk);
1138 		if (ret < 0)
1139 			return ret;
1140 	}
1141 
1142 	return 0;
1143 }
1144 EXPORT_SYMBOL_GPL(clk_save_context);
1145 
1146 /**
1147  * clk_restore_context - restore clock context after poweroff
1148  *
1149  * Restore the saved clock context upon resume.
1150  *
1151  */
clk_restore_context(void)1152 void clk_restore_context(void)
1153 {
1154 	struct clk_core *core;
1155 
1156 	hlist_for_each_entry(core, &clk_root_list, child_node)
1157 		clk_core_restore_context(core);
1158 
1159 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1160 		clk_core_restore_context(core);
1161 }
1162 EXPORT_SYMBOL_GPL(clk_restore_context);
1163 
1164 /**
1165  * clk_enable - ungate a clock
1166  * @clk: the clk being ungated
1167  *
1168  * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
1169  * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
1170  * if the operation will never sleep.  One example is a SoC-internal clk which
1171  * is controlled via simple register writes.  In the complex case a clk ungate
1172  * operation may require a fast and a slow part.  It is this reason that
1173  * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
1174  * must be called before clk_enable.  Returns 0 on success, -EERROR
1175  * otherwise.
1176  */
clk_enable(struct clk * clk)1177 int clk_enable(struct clk *clk)
1178 {
1179 	if (!clk)
1180 		return 0;
1181 
1182 	return clk_core_enable_lock(clk->core);
1183 }
1184 EXPORT_SYMBOL_GPL(clk_enable);
1185 
clk_core_prepare_enable(struct clk_core * core)1186 static int clk_core_prepare_enable(struct clk_core *core)
1187 {
1188 	int ret;
1189 
1190 	ret = clk_core_prepare_lock(core);
1191 	if (ret)
1192 		return ret;
1193 
1194 	ret = clk_core_enable_lock(core);
1195 	if (ret)
1196 		clk_core_unprepare_lock(core);
1197 
1198 	return ret;
1199 }
1200 
clk_core_disable_unprepare(struct clk_core * core)1201 static void clk_core_disable_unprepare(struct clk_core *core)
1202 {
1203 	clk_core_disable_lock(core);
1204 	clk_core_unprepare_lock(core);
1205 }
1206 
clk_unprepare_unused_subtree(struct clk_core * core)1207 static void __init clk_unprepare_unused_subtree(struct clk_core *core)
1208 {
1209 	struct clk_core *child;
1210 
1211 	lockdep_assert_held(&prepare_lock);
1212 
1213 	hlist_for_each_entry(child, &core->children, child_node)
1214 		clk_unprepare_unused_subtree(child);
1215 
1216 	if (dev_has_sync_state(core->dev) &&
1217 	    !(core->flags & CLK_DONT_HOLD_STATE))
1218 		return;
1219 
1220 	if (core->prepare_count)
1221 		return;
1222 
1223 	if (core->flags & CLK_IGNORE_UNUSED)
1224 		return;
1225 
1226 	if (clk_pm_runtime_get(core))
1227 		return;
1228 
1229 	if (clk_core_is_prepared(core)) {
1230 		trace_clk_unprepare(core);
1231 		if (core->ops->unprepare_unused)
1232 			core->ops->unprepare_unused(core->hw);
1233 		else if (core->ops->unprepare)
1234 			core->ops->unprepare(core->hw);
1235 		trace_clk_unprepare_complete(core);
1236 	}
1237 
1238 	clk_pm_runtime_put(core);
1239 }
1240 
clk_disable_unused_subtree(struct clk_core * core)1241 static void __init clk_disable_unused_subtree(struct clk_core *core)
1242 {
1243 	struct clk_core *child;
1244 	unsigned long flags;
1245 
1246 	lockdep_assert_held(&prepare_lock);
1247 
1248 	hlist_for_each_entry(child, &core->children, child_node)
1249 		clk_disable_unused_subtree(child);
1250 
1251 	if (dev_has_sync_state(core->dev) &&
1252 	    !(core->flags & CLK_DONT_HOLD_STATE))
1253 		return;
1254 
1255 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1256 		clk_core_prepare_enable(core->parent);
1257 
1258 	if (clk_pm_runtime_get(core))
1259 		goto unprepare_out;
1260 
1261 	flags = clk_enable_lock();
1262 
1263 	if (core->enable_count)
1264 		goto unlock_out;
1265 
1266 	if (core->flags & CLK_IGNORE_UNUSED)
1267 		goto unlock_out;
1268 
1269 	/*
1270 	 * some gate clocks have special needs during the disable-unused
1271 	 * sequence.  call .disable_unused if available, otherwise fall
1272 	 * back to .disable
1273 	 */
1274 	if (clk_core_is_enabled(core)) {
1275 		trace_clk_disable(core);
1276 		if (core->ops->disable_unused)
1277 			core->ops->disable_unused(core->hw);
1278 		else if (core->ops->disable)
1279 			core->ops->disable(core->hw);
1280 		trace_clk_disable_complete(core);
1281 	}
1282 
1283 unlock_out:
1284 	clk_enable_unlock(flags);
1285 	clk_pm_runtime_put(core);
1286 unprepare_out:
1287 	if (core->flags & CLK_OPS_PARENT_ENABLE)
1288 		clk_core_disable_unprepare(core->parent);
1289 }
1290 
1291 static bool clk_ignore_unused __initdata;
clk_ignore_unused_setup(char * __unused)1292 static int __init clk_ignore_unused_setup(char *__unused)
1293 {
1294 	clk_ignore_unused = true;
1295 	return 1;
1296 }
1297 __setup("clk_ignore_unused", clk_ignore_unused_setup);
1298 
clk_disable_unused(void)1299 static int __init clk_disable_unused(void)
1300 {
1301 	struct clk_core *core;
1302 
1303 	if (clk_ignore_unused) {
1304 		pr_warn("clk: Not disabling unused clocks\n");
1305 		return 0;
1306 	}
1307 
1308 	clk_prepare_lock();
1309 
1310 	hlist_for_each_entry(core, &clk_root_list, child_node)
1311 		clk_disable_unused_subtree(core);
1312 
1313 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1314 		clk_disable_unused_subtree(core);
1315 
1316 	hlist_for_each_entry(core, &clk_root_list, child_node)
1317 		clk_unprepare_unused_subtree(core);
1318 
1319 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1320 		clk_unprepare_unused_subtree(core);
1321 
1322 	clk_prepare_unlock();
1323 
1324 	return 0;
1325 }
1326 late_initcall_sync(clk_disable_unused);
1327 
clk_unprepare_disable_dev_subtree(struct clk_core * core,struct device * dev)1328 static void clk_unprepare_disable_dev_subtree(struct clk_core *core,
1329 					      struct device *dev)
1330 {
1331 	struct clk_core *child;
1332 
1333 	lockdep_assert_held(&prepare_lock);
1334 
1335 	hlist_for_each_entry(child, &core->children, child_node)
1336 		clk_unprepare_disable_dev_subtree(child, dev);
1337 
1338 	if (core->dev != dev || !core->need_sync)
1339 		return;
1340 
1341 	clk_core_disable_unprepare(core);
1342 }
1343 
clk_sync_state(struct device * dev)1344 void clk_sync_state(struct device *dev)
1345 {
1346 	struct clk_core *core;
1347 
1348 	clk_prepare_lock();
1349 
1350 	hlist_for_each_entry(core, &clk_root_list, child_node)
1351 		clk_unprepare_disable_dev_subtree(core, dev);
1352 
1353 	hlist_for_each_entry(core, &clk_orphan_list, child_node)
1354 		clk_unprepare_disable_dev_subtree(core, dev);
1355 
1356 	clk_prepare_unlock();
1357 }
1358 EXPORT_SYMBOL_GPL(clk_sync_state);
1359 
clk_core_determine_round_nolock(struct clk_core * core,struct clk_rate_request * req)1360 static int clk_core_determine_round_nolock(struct clk_core *core,
1361 					   struct clk_rate_request *req)
1362 {
1363 	long rate;
1364 
1365 	lockdep_assert_held(&prepare_lock);
1366 
1367 	if (!core)
1368 		return 0;
1369 
1370 	/*
1371 	 * At this point, core protection will be disabled if
1372 	 * - if the provider is not protected at all
1373 	 * - if the calling consumer is the only one which has exclusivity
1374 	 *   over the provider
1375 	 */
1376 	if (clk_core_rate_is_protected(core)) {
1377 		req->rate = core->rate;
1378 	} else if (core->ops->determine_rate) {
1379 		return core->ops->determine_rate(core->hw, req);
1380 	} else if (core->ops->round_rate) {
1381 		rate = core->ops->round_rate(core->hw, req->rate,
1382 					     &req->best_parent_rate);
1383 		if (rate < 0)
1384 			return rate;
1385 
1386 		req->rate = rate;
1387 	} else {
1388 		return -EINVAL;
1389 	}
1390 
1391 	return 0;
1392 }
1393 
clk_core_init_rate_req(struct clk_core * const core,struct clk_rate_request * req)1394 static void clk_core_init_rate_req(struct clk_core * const core,
1395 				   struct clk_rate_request *req)
1396 {
1397 	struct clk_core *parent;
1398 
1399 	if (WARN_ON(!core || !req))
1400 		return;
1401 
1402 	parent = core->parent;
1403 	if (parent) {
1404 		req->best_parent_hw = parent->hw;
1405 		req->best_parent_rate = parent->rate;
1406 	} else {
1407 		req->best_parent_hw = NULL;
1408 		req->best_parent_rate = 0;
1409 	}
1410 }
1411 
clk_core_can_round(struct clk_core * const core)1412 static bool clk_core_can_round(struct clk_core * const core)
1413 {
1414 	return core->ops->determine_rate || core->ops->round_rate;
1415 }
1416 
clk_core_round_rate_nolock(struct clk_core * core,struct clk_rate_request * req)1417 static int clk_core_round_rate_nolock(struct clk_core *core,
1418 				      struct clk_rate_request *req)
1419 {
1420 	lockdep_assert_held(&prepare_lock);
1421 
1422 	if (!core) {
1423 		req->rate = 0;
1424 		return 0;
1425 	}
1426 
1427 	clk_core_init_rate_req(core, req);
1428 
1429 	if (clk_core_can_round(core))
1430 		return clk_core_determine_round_nolock(core, req);
1431 	else if (core->flags & CLK_SET_RATE_PARENT)
1432 		return clk_core_round_rate_nolock(core->parent, req);
1433 
1434 	req->rate = core->rate;
1435 	return 0;
1436 }
1437 
1438 /**
1439  * __clk_determine_rate - get the closest rate actually supported by a clock
1440  * @hw: determine the rate of this clock
1441  * @req: target rate request
1442  *
1443  * Useful for clk_ops such as .set_rate and .determine_rate.
1444  */
__clk_determine_rate(struct clk_hw * hw,struct clk_rate_request * req)1445 int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
1446 {
1447 	if (!hw) {
1448 		req->rate = 0;
1449 		return 0;
1450 	}
1451 
1452 	return clk_core_round_rate_nolock(hw->core, req);
1453 }
1454 EXPORT_SYMBOL_GPL(__clk_determine_rate);
1455 
1456 /**
1457  * clk_hw_round_rate() - round the given rate for a hw clk
1458  * @hw: the hw clk for which we are rounding a rate
1459  * @rate: the rate which is to be rounded
1460  *
1461  * Takes in a rate as input and rounds it to a rate that the clk can actually
1462  * use.
1463  *
1464  * Context: prepare_lock must be held.
1465  *          For clk providers to call from within clk_ops such as .round_rate,
1466  *          .determine_rate.
1467  *
1468  * Return: returns rounded rate of hw clk if clk supports round_rate operation
1469  *         else returns the parent rate.
1470  */
clk_hw_round_rate(struct clk_hw * hw,unsigned long rate)1471 unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
1472 {
1473 	int ret;
1474 	struct clk_rate_request req;
1475 
1476 	clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
1477 	req.rate = rate;
1478 
1479 	ret = clk_core_round_rate_nolock(hw->core, &req);
1480 	if (ret)
1481 		return 0;
1482 
1483 	return req.rate;
1484 }
1485 EXPORT_SYMBOL_GPL(clk_hw_round_rate);
1486 
1487 /**
1488  * clk_round_rate - round the given rate for a clk
1489  * @clk: the clk for which we are rounding a rate
1490  * @rate: the rate which is to be rounded
1491  *
1492  * Takes in a rate as input and rounds it to a rate that the clk can actually
1493  * use which is then returned.  If clk doesn't support round_rate operation
1494  * then the parent rate is returned.
1495  */
clk_round_rate(struct clk * clk,unsigned long rate)1496 long clk_round_rate(struct clk *clk, unsigned long rate)
1497 {
1498 	struct clk_rate_request req;
1499 	int ret;
1500 
1501 	if (!clk)
1502 		return 0;
1503 
1504 	clk_prepare_lock();
1505 
1506 	if (clk->exclusive_count)
1507 		clk_core_rate_unprotect(clk->core);
1508 
1509 	clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
1510 	req.rate = rate;
1511 
1512 	ret = clk_core_round_rate_nolock(clk->core, &req);
1513 
1514 	if (clk->exclusive_count)
1515 		clk_core_rate_protect(clk->core);
1516 
1517 	clk_prepare_unlock();
1518 
1519 	if (ret)
1520 		return ret;
1521 
1522 	return req.rate;
1523 }
1524 EXPORT_SYMBOL_GPL(clk_round_rate);
1525 
1526 /**
1527  * __clk_notify - call clk notifier chain
1528  * @core: clk that is changing rate
1529  * @msg: clk notifier type (see include/linux/clk.h)
1530  * @old_rate: old clk rate
1531  * @new_rate: new clk rate
1532  *
1533  * Triggers a notifier call chain on the clk rate-change notification
1534  * for 'clk'.  Passes a pointer to the struct clk and the previous
1535  * and current rates to the notifier callback.  Intended to be called by
1536  * internal clock code only.  Returns NOTIFY_DONE from the last driver
1537  * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
1538  * a driver returns that.
1539  */
__clk_notify(struct clk_core * core,unsigned long msg,unsigned long old_rate,unsigned long new_rate)1540 static int __clk_notify(struct clk_core *core, unsigned long msg,
1541 		unsigned long old_rate, unsigned long new_rate)
1542 {
1543 	struct clk_notifier *cn;
1544 	struct clk_notifier_data cnd;
1545 	int ret = NOTIFY_DONE;
1546 
1547 	cnd.old_rate = old_rate;
1548 	cnd.new_rate = new_rate;
1549 
1550 	list_for_each_entry(cn, &clk_notifier_list, node) {
1551 		if (cn->clk->core == core) {
1552 			cnd.clk = cn->clk;
1553 			ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
1554 					&cnd);
1555 			if (ret & NOTIFY_STOP_MASK)
1556 				return ret;
1557 		}
1558 	}
1559 
1560 	return ret;
1561 }
1562 
1563 /**
1564  * __clk_recalc_accuracies
1565  * @core: first clk in the subtree
1566  *
1567  * Walks the subtree of clks starting with clk and recalculates accuracies as
1568  * it goes.  Note that if a clk does not implement the .recalc_accuracy
1569  * callback then it is assumed that the clock will take on the accuracy of its
1570  * parent.
1571  */
__clk_recalc_accuracies(struct clk_core * core)1572 static void __clk_recalc_accuracies(struct clk_core *core)
1573 {
1574 	unsigned long parent_accuracy = 0;
1575 	struct clk_core *child;
1576 
1577 	lockdep_assert_held(&prepare_lock);
1578 
1579 	if (core->parent)
1580 		parent_accuracy = core->parent->accuracy;
1581 
1582 	if (core->ops->recalc_accuracy)
1583 		core->accuracy = core->ops->recalc_accuracy(core->hw,
1584 							  parent_accuracy);
1585 	else
1586 		core->accuracy = parent_accuracy;
1587 
1588 	hlist_for_each_entry(child, &core->children, child_node)
1589 		__clk_recalc_accuracies(child);
1590 }
1591 
clk_core_get_accuracy_recalc(struct clk_core * core)1592 static long clk_core_get_accuracy_recalc(struct clk_core *core)
1593 {
1594 	if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1595 		__clk_recalc_accuracies(core);
1596 
1597 	return clk_core_get_accuracy_no_lock(core);
1598 }
1599 
1600 /**
1601  * clk_get_accuracy - return the accuracy of clk
1602  * @clk: the clk whose accuracy is being returned
1603  *
1604  * Simply returns the cached accuracy of the clk, unless
1605  * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1606  * issued.
1607  * If clk is NULL then returns 0.
1608  */
clk_get_accuracy(struct clk * clk)1609 long clk_get_accuracy(struct clk *clk)
1610 {
1611 	long accuracy;
1612 
1613 	if (!clk)
1614 		return 0;
1615 
1616 	clk_prepare_lock();
1617 	accuracy = clk_core_get_accuracy_recalc(clk->core);
1618 	clk_prepare_unlock();
1619 
1620 	return accuracy;
1621 }
1622 EXPORT_SYMBOL_GPL(clk_get_accuracy);
1623 
clk_recalc(struct clk_core * core,unsigned long parent_rate)1624 static unsigned long clk_recalc(struct clk_core *core,
1625 				unsigned long parent_rate)
1626 {
1627 	unsigned long rate = parent_rate;
1628 
1629 	if (core->ops->recalc_rate && !clk_pm_runtime_get(core)) {
1630 		rate = core->ops->recalc_rate(core->hw, parent_rate);
1631 		clk_pm_runtime_put(core);
1632 	}
1633 	return rate;
1634 }
1635 
1636 /**
1637  * __clk_recalc_rates
1638  * @core: first clk in the subtree
1639  * @msg: notification type (see include/linux/clk.h)
1640  *
1641  * Walks the subtree of clks starting with clk and recalculates rates as it
1642  * goes.  Note that if a clk does not implement the .recalc_rate callback then
1643  * it is assumed that the clock will take on the rate of its parent.
1644  *
1645  * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1646  * if necessary.
1647  */
__clk_recalc_rates(struct clk_core * core,unsigned long msg)1648 static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1649 {
1650 	unsigned long old_rate;
1651 	unsigned long parent_rate = 0;
1652 	struct clk_core *child;
1653 
1654 	lockdep_assert_held(&prepare_lock);
1655 
1656 	old_rate = core->rate;
1657 
1658 	if (core->parent)
1659 		parent_rate = core->parent->rate;
1660 
1661 	core->rate = clk_recalc(core, parent_rate);
1662 
1663 	/*
1664 	 * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1665 	 * & ABORT_RATE_CHANGE notifiers
1666 	 */
1667 	if (core->notifier_count && msg)
1668 		__clk_notify(core, msg, old_rate, core->rate);
1669 
1670 	hlist_for_each_entry(child, &core->children, child_node)
1671 		__clk_recalc_rates(child, msg);
1672 }
1673 
clk_core_get_rate_recalc(struct clk_core * core)1674 static unsigned long clk_core_get_rate_recalc(struct clk_core *core)
1675 {
1676 	if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1677 		__clk_recalc_rates(core, 0);
1678 
1679 	return clk_core_get_rate_nolock(core);
1680 }
1681 
1682 /**
1683  * clk_get_rate - return the rate of clk
1684  * @clk: the clk whose rate is being returned
1685  *
1686  * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1687  * is set, which means a recalc_rate will be issued.
1688  * If clk is NULL then returns 0.
1689  */
clk_get_rate(struct clk * clk)1690 unsigned long clk_get_rate(struct clk *clk)
1691 {
1692 	unsigned long rate;
1693 
1694 	if (!clk)
1695 		return 0;
1696 
1697 	clk_prepare_lock();
1698 	rate = clk_core_get_rate_recalc(clk->core);
1699 	clk_prepare_unlock();
1700 
1701 	return rate;
1702 }
1703 EXPORT_SYMBOL_GPL(clk_get_rate);
1704 
clk_fetch_parent_index(struct clk_core * core,struct clk_core * parent)1705 static int clk_fetch_parent_index(struct clk_core *core,
1706 				  struct clk_core *parent)
1707 {
1708 	int i;
1709 
1710 	if (!parent)
1711 		return -EINVAL;
1712 
1713 	for (i = 0; i < core->num_parents; i++) {
1714 		/* Found it first try! */
1715 		if (core->parents[i].core == parent)
1716 			return i;
1717 
1718 		/* Something else is here, so keep looking */
1719 		if (core->parents[i].core)
1720 			continue;
1721 
1722 		/* Maybe core hasn't been cached but the hw is all we know? */
1723 		if (core->parents[i].hw) {
1724 			if (core->parents[i].hw == parent->hw)
1725 				break;
1726 
1727 			/* Didn't match, but we're expecting a clk_hw */
1728 			continue;
1729 		}
1730 
1731 		/* Maybe it hasn't been cached (clk_set_parent() path) */
1732 		if (parent == clk_core_get(core, i))
1733 			break;
1734 
1735 		/* Fallback to comparing globally unique names */
1736 		if (core->parents[i].name &&
1737 		    !strcmp(parent->name, core->parents[i].name))
1738 			break;
1739 	}
1740 
1741 	if (i == core->num_parents)
1742 		return -EINVAL;
1743 
1744 	core->parents[i].core = parent;
1745 	return i;
1746 }
1747 
1748 /**
1749  * clk_hw_get_parent_index - return the index of the parent clock
1750  * @hw: clk_hw associated with the clk being consumed
1751  *
1752  * Fetches and returns the index of parent clock. Returns -EINVAL if the given
1753  * clock does not have a current parent.
1754  */
clk_hw_get_parent_index(struct clk_hw * hw)1755 int clk_hw_get_parent_index(struct clk_hw *hw)
1756 {
1757 	struct clk_hw *parent = clk_hw_get_parent(hw);
1758 
1759 	if (WARN_ON(parent == NULL))
1760 		return -EINVAL;
1761 
1762 	return clk_fetch_parent_index(hw->core, parent->core);
1763 }
1764 EXPORT_SYMBOL_GPL(clk_hw_get_parent_index);
1765 
clk_core_hold_state(struct clk_core * core)1766 static void clk_core_hold_state(struct clk_core *core)
1767 {
1768 	if (core->need_sync || !core->boot_enabled)
1769 		return;
1770 
1771 	if (core->orphan || !dev_has_sync_state(core->dev))
1772 		return;
1773 
1774 	if (core->flags & CLK_DONT_HOLD_STATE)
1775 		return;
1776 
1777 	core->need_sync = !clk_core_prepare_enable(core);
1778 }
1779 
__clk_core_update_orphan_hold_state(struct clk_core * core)1780 static void __clk_core_update_orphan_hold_state(struct clk_core *core)
1781 {
1782 	struct clk_core *child;
1783 
1784 	if (core->orphan)
1785 		return;
1786 
1787 	clk_core_hold_state(core);
1788 
1789 	hlist_for_each_entry(child, &core->children, child_node)
1790 		__clk_core_update_orphan_hold_state(child);
1791 }
1792 
1793 /*
1794  * Update the orphan status of @core and all its children.
1795  */
clk_core_update_orphan_status(struct clk_core * core,bool is_orphan)1796 static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1797 {
1798 	struct clk_core *child;
1799 
1800 	core->orphan = is_orphan;
1801 
1802 	hlist_for_each_entry(child, &core->children, child_node)
1803 		clk_core_update_orphan_status(child, is_orphan);
1804 }
1805 
clk_reparent(struct clk_core * core,struct clk_core * new_parent)1806 static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1807 {
1808 	bool was_orphan = core->orphan;
1809 
1810 	hlist_del(&core->child_node);
1811 
1812 	if (new_parent) {
1813 		bool becomes_orphan = new_parent->orphan;
1814 
1815 		/* avoid duplicate POST_RATE_CHANGE notifications */
1816 		if (new_parent->new_child == core)
1817 			new_parent->new_child = NULL;
1818 
1819 		hlist_add_head(&core->child_node, &new_parent->children);
1820 
1821 		if (was_orphan != becomes_orphan)
1822 			clk_core_update_orphan_status(core, becomes_orphan);
1823 	} else {
1824 		hlist_add_head(&core->child_node, &clk_orphan_list);
1825 		if (!was_orphan)
1826 			clk_core_update_orphan_status(core, true);
1827 	}
1828 
1829 	core->parent = new_parent;
1830 }
1831 
__clk_set_parent_before(struct clk_core * core,struct clk_core * parent)1832 static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1833 					   struct clk_core *parent)
1834 {
1835 	unsigned long flags;
1836 	struct clk_core *old_parent = core->parent;
1837 
1838 	/*
1839 	 * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1840 	 *
1841 	 * 2. Migrate prepare state between parents and prevent race with
1842 	 * clk_enable().
1843 	 *
1844 	 * If the clock is not prepared, then a race with
1845 	 * clk_enable/disable() is impossible since we already have the
1846 	 * prepare lock (future calls to clk_enable() need to be preceded by
1847 	 * a clk_prepare()).
1848 	 *
1849 	 * If the clock is prepared, migrate the prepared state to the new
1850 	 * parent and also protect against a race with clk_enable() by
1851 	 * forcing the clock and the new parent on.  This ensures that all
1852 	 * future calls to clk_enable() are practically NOPs with respect to
1853 	 * hardware and software states.
1854 	 *
1855 	 * See also: Comment for clk_set_parent() below.
1856 	 */
1857 
1858 	/* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1859 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1860 		clk_core_prepare_enable(old_parent);
1861 		clk_core_prepare_enable(parent);
1862 	}
1863 
1864 	/* migrate prepare count if > 0 */
1865 	if (core->prepare_count) {
1866 		clk_core_prepare_enable(parent);
1867 		clk_core_enable_lock(core);
1868 	}
1869 
1870 	/* update the clk tree topology */
1871 	flags = clk_enable_lock();
1872 	clk_reparent(core, parent);
1873 	clk_enable_unlock(flags);
1874 
1875 	return old_parent;
1876 }
1877 
__clk_set_parent_after(struct clk_core * core,struct clk_core * parent,struct clk_core * old_parent)1878 static void __clk_set_parent_after(struct clk_core *core,
1879 				   struct clk_core *parent,
1880 				   struct clk_core *old_parent)
1881 {
1882 	/*
1883 	 * Finish the migration of prepare state and undo the changes done
1884 	 * for preventing a race with clk_enable().
1885 	 */
1886 	if (core->prepare_count) {
1887 		clk_core_disable_lock(core);
1888 		clk_core_disable_unprepare(old_parent);
1889 	}
1890 
1891 	/* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1892 	if (core->flags & CLK_OPS_PARENT_ENABLE) {
1893 		clk_core_disable_unprepare(parent);
1894 		clk_core_disable_unprepare(old_parent);
1895 	}
1896 }
1897 
__clk_set_parent(struct clk_core * core,struct clk_core * parent,u8 p_index)1898 static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1899 			    u8 p_index)
1900 {
1901 	unsigned long flags;
1902 	int ret = 0;
1903 	struct clk_core *old_parent;
1904 
1905 	old_parent = __clk_set_parent_before(core, parent);
1906 
1907 	trace_clk_set_parent(core, parent);
1908 
1909 	/* change clock input source */
1910 	if (parent && core->ops->set_parent)
1911 		ret = core->ops->set_parent(core->hw, p_index);
1912 
1913 	trace_clk_set_parent_complete(core, parent);
1914 
1915 	if (ret) {
1916 		flags = clk_enable_lock();
1917 		clk_reparent(core, old_parent);
1918 		clk_enable_unlock(flags);
1919 		__clk_set_parent_after(core, old_parent, parent);
1920 
1921 		return ret;
1922 	}
1923 
1924 	__clk_set_parent_after(core, parent, old_parent);
1925 
1926 	return 0;
1927 }
1928 
1929 /**
1930  * __clk_speculate_rates
1931  * @core: first clk in the subtree
1932  * @parent_rate: the "future" rate of clk's parent
1933  *
1934  * Walks the subtree of clks starting with clk, speculating rates as it
1935  * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1936  *
1937  * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1938  * pre-rate change notifications and returns early if no clks in the
1939  * subtree have subscribed to the notifications.  Note that if a clk does not
1940  * implement the .recalc_rate callback then it is assumed that the clock will
1941  * take on the rate of its parent.
1942  */
__clk_speculate_rates(struct clk_core * core,unsigned long parent_rate)1943 static int __clk_speculate_rates(struct clk_core *core,
1944 				 unsigned long parent_rate)
1945 {
1946 	struct clk_core *child;
1947 	unsigned long new_rate;
1948 	int ret = NOTIFY_DONE;
1949 
1950 	lockdep_assert_held(&prepare_lock);
1951 
1952 	new_rate = clk_recalc(core, parent_rate);
1953 
1954 	/* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1955 	if (core->notifier_count)
1956 		ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1957 
1958 	if (ret & NOTIFY_STOP_MASK) {
1959 		pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1960 				__func__, core->name, ret);
1961 		goto out;
1962 	}
1963 
1964 	hlist_for_each_entry(child, &core->children, child_node) {
1965 		ret = __clk_speculate_rates(child, new_rate);
1966 		if (ret & NOTIFY_STOP_MASK)
1967 			break;
1968 	}
1969 
1970 out:
1971 	return ret;
1972 }
1973 
clk_calc_subtree(struct clk_core * core,unsigned long new_rate,struct clk_core * new_parent,u8 p_index)1974 static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1975 			     struct clk_core *new_parent, u8 p_index)
1976 {
1977 	struct clk_core *child;
1978 
1979 	core->new_rate = new_rate;
1980 	core->new_parent = new_parent;
1981 	core->new_parent_index = p_index;
1982 	/* include clk in new parent's PRE_RATE_CHANGE notifications */
1983 	core->new_child = NULL;
1984 	if (new_parent && new_parent != core->parent)
1985 		new_parent->new_child = core;
1986 
1987 	hlist_for_each_entry(child, &core->children, child_node) {
1988 		child->new_rate = clk_recalc(child, new_rate);
1989 		clk_calc_subtree(child, child->new_rate, NULL, 0);
1990 	}
1991 }
1992 
1993 /*
1994  * calculate the new rates returning the topmost clock that has to be
1995  * changed.
1996  */
clk_calc_new_rates(struct clk_core * core,unsigned long rate)1997 static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1998 					   unsigned long rate)
1999 {
2000 	struct clk_core *top = core;
2001 	struct clk_core *old_parent, *parent;
2002 	unsigned long best_parent_rate = 0;
2003 	unsigned long new_rate;
2004 	unsigned long min_rate;
2005 	unsigned long max_rate;
2006 	int p_index = 0;
2007 	long ret;
2008 
2009 	/* sanity */
2010 	if (IS_ERR_OR_NULL(core))
2011 		return NULL;
2012 
2013 	/* save parent rate, if it exists */
2014 	parent = old_parent = core->parent;
2015 	if (parent)
2016 		best_parent_rate = parent->rate;
2017 
2018 	clk_core_get_boundaries(core, &min_rate, &max_rate);
2019 
2020 	/* find the closest rate and parent clk/rate */
2021 	if (clk_core_can_round(core)) {
2022 		struct clk_rate_request req;
2023 
2024 		req.rate = rate;
2025 		req.min_rate = min_rate;
2026 		req.max_rate = max_rate;
2027 
2028 		clk_core_init_rate_req(core, &req);
2029 
2030 		ret = clk_core_determine_round_nolock(core, &req);
2031 		if (ret < 0)
2032 			return NULL;
2033 
2034 		best_parent_rate = req.best_parent_rate;
2035 		new_rate = req.rate;
2036 		parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
2037 
2038 		if (new_rate < min_rate || new_rate > max_rate)
2039 			return NULL;
2040 	} else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
2041 		/* pass-through clock without adjustable parent */
2042 		core->new_rate = core->rate;
2043 		return NULL;
2044 	} else {
2045 		/* pass-through clock with adjustable parent */
2046 		top = clk_calc_new_rates(parent, rate);
2047 		new_rate = parent->new_rate;
2048 		goto out;
2049 	}
2050 
2051 	/* some clocks must be gated to change parent */
2052 	if (parent != old_parent &&
2053 	    (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
2054 		pr_debug("%s: %s not gated but wants to reparent\n",
2055 			 __func__, core->name);
2056 		return NULL;
2057 	}
2058 
2059 	/* try finding the new parent index */
2060 	if (parent && core->num_parents > 1) {
2061 		p_index = clk_fetch_parent_index(core, parent);
2062 		if (p_index < 0) {
2063 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2064 				 __func__, parent->name, core->name);
2065 			return NULL;
2066 		}
2067 	}
2068 
2069 	if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
2070 	    best_parent_rate != parent->rate)
2071 		top = clk_calc_new_rates(parent, best_parent_rate);
2072 
2073 out:
2074 	clk_calc_subtree(core, new_rate, parent, p_index);
2075 
2076 	return top;
2077 }
2078 
2079 /*
2080  * Notify about rate changes in a subtree. Always walk down the whole tree
2081  * so that in case of an error we can walk down the whole tree again and
2082  * abort the change.
2083  */
clk_propagate_rate_change(struct clk_core * core,unsigned long event)2084 static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
2085 						  unsigned long event)
2086 {
2087 	struct clk_core *child, *tmp_clk, *fail_clk = NULL;
2088 	int ret = NOTIFY_DONE;
2089 
2090 	if (core->rate == core->new_rate)
2091 		return NULL;
2092 
2093 	if (core->notifier_count) {
2094 		ret = __clk_notify(core, event, core->rate, core->new_rate);
2095 		if (ret & NOTIFY_STOP_MASK)
2096 			fail_clk = core;
2097 	}
2098 
2099 	if (core->ops->pre_rate_change) {
2100 		ret = core->ops->pre_rate_change(core->hw, core->rate,
2101 						 core->new_rate);
2102 		if (ret)
2103 			fail_clk = core;
2104 	}
2105 
2106 	hlist_for_each_entry(child, &core->children, child_node) {
2107 		/* Skip children who will be reparented to another clock */
2108 		if (child->new_parent && child->new_parent != core)
2109 			continue;
2110 		tmp_clk = clk_propagate_rate_change(child, event);
2111 		if (tmp_clk)
2112 			fail_clk = tmp_clk;
2113 	}
2114 
2115 	/* handle the new child who might not be in core->children yet */
2116 	if (core->new_child) {
2117 		tmp_clk = clk_propagate_rate_change(core->new_child, event);
2118 		if (tmp_clk)
2119 			fail_clk = tmp_clk;
2120 	}
2121 
2122 	return fail_clk;
2123 }
2124 
2125 /*
2126  * walk down a subtree and set the new rates notifying the rate
2127  * change on the way
2128  */
clk_change_rate(struct clk_core * core)2129 static void clk_change_rate(struct clk_core *core)
2130 {
2131 	struct clk_core *child;
2132 	struct hlist_node *tmp;
2133 	unsigned long old_rate;
2134 	unsigned long best_parent_rate = 0;
2135 	bool skip_set_rate = false;
2136 	struct clk_core *old_parent;
2137 	struct clk_core *parent = NULL;
2138 
2139 	old_rate = core->rate;
2140 
2141 	if (core->new_parent) {
2142 		parent = core->new_parent;
2143 		best_parent_rate = core->new_parent->rate;
2144 	} else if (core->parent) {
2145 		parent = core->parent;
2146 		best_parent_rate = core->parent->rate;
2147 	}
2148 
2149 	if (clk_pm_runtime_get(core))
2150 		return;
2151 
2152 	if (core->flags & CLK_SET_RATE_UNGATE) {
2153 		unsigned long flags;
2154 
2155 		clk_core_prepare(core);
2156 		flags = clk_enable_lock();
2157 		clk_core_enable(core);
2158 		clk_enable_unlock(flags);
2159 	}
2160 
2161 	if (core->new_parent && core->new_parent != core->parent) {
2162 		old_parent = __clk_set_parent_before(core, core->new_parent);
2163 		trace_clk_set_parent(core, core->new_parent);
2164 
2165 		if (core->ops->set_rate_and_parent) {
2166 			skip_set_rate = true;
2167 			core->ops->set_rate_and_parent(core->hw, core->new_rate,
2168 					best_parent_rate,
2169 					core->new_parent_index);
2170 		} else if (core->ops->set_parent) {
2171 			core->ops->set_parent(core->hw, core->new_parent_index);
2172 		}
2173 
2174 		trace_clk_set_parent_complete(core, core->new_parent);
2175 		__clk_set_parent_after(core, core->new_parent, old_parent);
2176 	}
2177 
2178 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2179 		clk_core_prepare_enable(parent);
2180 
2181 	trace_clk_set_rate(core, core->new_rate);
2182 
2183 	if (!skip_set_rate && core->ops->set_rate)
2184 		core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
2185 
2186 	trace_clk_set_rate_complete(core, core->new_rate);
2187 
2188 	core->rate = clk_recalc(core, best_parent_rate);
2189 
2190 	if (core->flags & CLK_SET_RATE_UNGATE) {
2191 		unsigned long flags;
2192 
2193 		flags = clk_enable_lock();
2194 		clk_core_disable(core);
2195 		clk_enable_unlock(flags);
2196 		clk_core_unprepare(core);
2197 	}
2198 
2199 	if (core->flags & CLK_OPS_PARENT_ENABLE)
2200 		clk_core_disable_unprepare(parent);
2201 
2202 	if (core->notifier_count && old_rate != core->rate)
2203 		__clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
2204 
2205 	if (core->flags & CLK_RECALC_NEW_RATES)
2206 		(void)clk_calc_new_rates(core, core->new_rate);
2207 
2208 	if (core->ops->post_rate_change)
2209 		core->ops->post_rate_change(core->hw, old_rate, core->rate);
2210 
2211 	/*
2212 	 * Use safe iteration, as change_rate can actually swap parents
2213 	 * for certain clock types.
2214 	 */
2215 	hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
2216 		/* Skip children who will be reparented to another clock */
2217 		if (child->new_parent && child->new_parent != core)
2218 			continue;
2219 		clk_change_rate(child);
2220 	}
2221 
2222 	/* handle the new child who might not be in core->children yet */
2223 	if (core->new_child)
2224 		clk_change_rate(core->new_child);
2225 
2226 	clk_pm_runtime_put(core);
2227 }
2228 
clk_core_req_round_rate_nolock(struct clk_core * core,unsigned long req_rate)2229 static unsigned long clk_core_req_round_rate_nolock(struct clk_core *core,
2230 						     unsigned long req_rate)
2231 {
2232 	int ret, cnt;
2233 	struct clk_rate_request req;
2234 
2235 	lockdep_assert_held(&prepare_lock);
2236 
2237 	if (!core)
2238 		return 0;
2239 
2240 	/* simulate what the rate would be if it could be freely set */
2241 	cnt = clk_core_rate_nuke_protect(core);
2242 	if (cnt < 0)
2243 		return cnt;
2244 
2245 	clk_core_get_boundaries(core, &req.min_rate, &req.max_rate);
2246 	req.rate = req_rate;
2247 
2248 	ret = clk_core_round_rate_nolock(core, &req);
2249 
2250 	/* restore the protection */
2251 	clk_core_rate_restore_protect(core, cnt);
2252 
2253 	return ret ? 0 : req.rate;
2254 }
2255 
clk_core_set_rate_nolock(struct clk_core * core,unsigned long req_rate)2256 static int clk_core_set_rate_nolock(struct clk_core *core,
2257 				    unsigned long req_rate)
2258 {
2259 	struct clk_core *top, *fail_clk;
2260 	unsigned long rate;
2261 	int ret = 0;
2262 
2263 	if (!core)
2264 		return 0;
2265 
2266 	rate = clk_core_req_round_rate_nolock(core, req_rate);
2267 
2268 	/* bail early if nothing to do */
2269 	if (rate == clk_core_get_rate_nolock(core))
2270 		return 0;
2271 
2272 	/* fail on a direct rate set of a protected provider */
2273 	if (clk_core_rate_is_protected(core))
2274 		return -EBUSY;
2275 
2276 	/* calculate new rates and get the topmost changed clock */
2277 	top = clk_calc_new_rates(core, req_rate);
2278 	if (!top)
2279 		return -EINVAL;
2280 
2281 	ret = clk_pm_runtime_get(core);
2282 	if (ret)
2283 		return ret;
2284 
2285 	/* notify that we are about to change rates */
2286 	fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
2287 	if (fail_clk) {
2288 		pr_debug("%s: failed to set %s rate\n", __func__,
2289 				fail_clk->name);
2290 		clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
2291 		ret = -EBUSY;
2292 		goto err;
2293 	}
2294 
2295 	/* change the rates */
2296 	clk_change_rate(top);
2297 
2298 	core->req_rate = req_rate;
2299 err:
2300 	clk_pm_runtime_put(core);
2301 
2302 	return ret;
2303 }
2304 
2305 /**
2306  * clk_set_rate - specify a new rate for clk
2307  * @clk: the clk whose rate is being changed
2308  * @rate: the new rate for clk
2309  *
2310  * In the simplest case clk_set_rate will only adjust the rate of clk.
2311  *
2312  * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
2313  * propagate up to clk's parent; whether or not this happens depends on the
2314  * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
2315  * after calling .round_rate then upstream parent propagation is ignored.  If
2316  * *parent_rate comes back with a new rate for clk's parent then we propagate
2317  * up to clk's parent and set its rate.  Upward propagation will continue
2318  * until either a clk does not support the CLK_SET_RATE_PARENT flag or
2319  * .round_rate stops requesting changes to clk's parent_rate.
2320  *
2321  * Rate changes are accomplished via tree traversal that also recalculates the
2322  * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
2323  *
2324  * Returns 0 on success, -EERROR otherwise.
2325  */
clk_set_rate(struct clk * clk,unsigned long rate)2326 int clk_set_rate(struct clk *clk, unsigned long rate)
2327 {
2328 	int ret;
2329 
2330 	if (!clk)
2331 		return 0;
2332 
2333 	/* prevent racing with updates to the clock topology */
2334 	clk_prepare_lock();
2335 
2336 	if (clk->exclusive_count)
2337 		clk_core_rate_unprotect(clk->core);
2338 
2339 	ret = clk_core_set_rate_nolock(clk->core, rate);
2340 
2341 	if (clk->exclusive_count)
2342 		clk_core_rate_protect(clk->core);
2343 
2344 	clk_prepare_unlock();
2345 
2346 	return ret;
2347 }
2348 EXPORT_SYMBOL_GPL(clk_set_rate);
2349 
2350 /**
2351  * clk_set_rate_exclusive - specify a new rate and get exclusive control
2352  * @clk: the clk whose rate is being changed
2353  * @rate: the new rate for clk
2354  *
2355  * This is a combination of clk_set_rate() and clk_rate_exclusive_get()
2356  * within a critical section
2357  *
2358  * This can be used initially to ensure that at least 1 consumer is
2359  * satisfied when several consumers are competing for exclusivity over the
2360  * same clock provider.
2361  *
2362  * The exclusivity is not applied if setting the rate failed.
2363  *
2364  * Calls to clk_rate_exclusive_get() should be balanced with calls to
2365  * clk_rate_exclusive_put().
2366  *
2367  * Returns 0 on success, -EERROR otherwise.
2368  */
clk_set_rate_exclusive(struct clk * clk,unsigned long rate)2369 int clk_set_rate_exclusive(struct clk *clk, unsigned long rate)
2370 {
2371 	int ret;
2372 
2373 	if (!clk)
2374 		return 0;
2375 
2376 	/* prevent racing with updates to the clock topology */
2377 	clk_prepare_lock();
2378 
2379 	/*
2380 	 * The temporary protection removal is not here, on purpose
2381 	 * This function is meant to be used instead of clk_rate_protect,
2382 	 * so before the consumer code path protect the clock provider
2383 	 */
2384 
2385 	ret = clk_core_set_rate_nolock(clk->core, rate);
2386 	if (!ret) {
2387 		clk_core_rate_protect(clk->core);
2388 		clk->exclusive_count++;
2389 	}
2390 
2391 	clk_prepare_unlock();
2392 
2393 	return ret;
2394 }
2395 EXPORT_SYMBOL_GPL(clk_set_rate_exclusive);
2396 
2397 /**
2398  * clk_set_rate_range - set a rate range for a clock source
2399  * @clk: clock source
2400  * @min: desired minimum clock rate in Hz, inclusive
2401  * @max: desired maximum clock rate in Hz, inclusive
2402  *
2403  * Returns success (0) or negative errno.
2404  */
clk_set_rate_range(struct clk * clk,unsigned long min,unsigned long max)2405 int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
2406 {
2407 	int ret = 0;
2408 	unsigned long old_min, old_max, rate;
2409 
2410 	if (!clk)
2411 		return 0;
2412 
2413 	if (min > max) {
2414 		pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
2415 		       __func__, clk->core->name, clk->dev_id, clk->con_id,
2416 		       min, max);
2417 		return -EINVAL;
2418 	}
2419 
2420 	clk_prepare_lock();
2421 
2422 	if (clk->exclusive_count)
2423 		clk_core_rate_unprotect(clk->core);
2424 
2425 	/* Save the current values in case we need to rollback the change */
2426 	old_min = clk->min_rate;
2427 	old_max = clk->max_rate;
2428 	clk->min_rate = min;
2429 	clk->max_rate = max;
2430 
2431 	if (!clk_core_check_boundaries(clk->core, min, max)) {
2432 		ret = -EINVAL;
2433 		goto out;
2434 	}
2435 
2436 	rate = clk_core_get_rate_nolock(clk->core);
2437 	if (rate < min || rate > max) {
2438 		/*
2439 		 * FIXME:
2440 		 * We are in bit of trouble here, current rate is outside the
2441 		 * the requested range. We are going try to request appropriate
2442 		 * range boundary but there is a catch. It may fail for the
2443 		 * usual reason (clock broken, clock protected, etc) but also
2444 		 * because:
2445 		 * - round_rate() was not favorable and fell on the wrong
2446 		 *   side of the boundary
2447 		 * - the determine_rate() callback does not really check for
2448 		 *   this corner case when determining the rate
2449 		 */
2450 
2451 		if (rate < min)
2452 			rate = min;
2453 		else
2454 			rate = max;
2455 
2456 		ret = clk_core_set_rate_nolock(clk->core, rate);
2457 		if (ret) {
2458 			/* rollback the changes */
2459 			clk->min_rate = old_min;
2460 			clk->max_rate = old_max;
2461 		}
2462 	}
2463 
2464 out:
2465 	if (clk->exclusive_count)
2466 		clk_core_rate_protect(clk->core);
2467 
2468 	clk_prepare_unlock();
2469 
2470 	return ret;
2471 }
2472 EXPORT_SYMBOL_GPL(clk_set_rate_range);
2473 
2474 /**
2475  * clk_set_min_rate - set a minimum clock rate for a clock source
2476  * @clk: clock source
2477  * @rate: desired minimum clock rate in Hz, inclusive
2478  *
2479  * Returns success (0) or negative errno.
2480  */
clk_set_min_rate(struct clk * clk,unsigned long rate)2481 int clk_set_min_rate(struct clk *clk, unsigned long rate)
2482 {
2483 	if (!clk)
2484 		return 0;
2485 
2486 	return clk_set_rate_range(clk, rate, clk->max_rate);
2487 }
2488 EXPORT_SYMBOL_GPL(clk_set_min_rate);
2489 
2490 /**
2491  * clk_set_max_rate - set a maximum clock rate for a clock source
2492  * @clk: clock source
2493  * @rate: desired maximum clock rate in Hz, inclusive
2494  *
2495  * Returns success (0) or negative errno.
2496  */
clk_set_max_rate(struct clk * clk,unsigned long rate)2497 int clk_set_max_rate(struct clk *clk, unsigned long rate)
2498 {
2499 	if (!clk)
2500 		return 0;
2501 
2502 	return clk_set_rate_range(clk, clk->min_rate, rate);
2503 }
2504 EXPORT_SYMBOL_GPL(clk_set_max_rate);
2505 
2506 /**
2507  * clk_get_parent - return the parent of a clk
2508  * @clk: the clk whose parent gets returned
2509  *
2510  * Simply returns clk->parent.  Returns NULL if clk is NULL.
2511  */
clk_get_parent(struct clk * clk)2512 struct clk *clk_get_parent(struct clk *clk)
2513 {
2514 	struct clk *parent;
2515 
2516 	if (!clk)
2517 		return NULL;
2518 
2519 	clk_prepare_lock();
2520 	/* TODO: Create a per-user clk and change callers to call clk_put */
2521 	parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
2522 	clk_prepare_unlock();
2523 
2524 	return parent;
2525 }
2526 EXPORT_SYMBOL_GPL(clk_get_parent);
2527 
__clk_init_parent(struct clk_core * core)2528 static struct clk_core *__clk_init_parent(struct clk_core *core)
2529 {
2530 	u8 index = 0;
2531 
2532 	if (core->num_parents > 1 && core->ops->get_parent)
2533 		index = core->ops->get_parent(core->hw);
2534 
2535 	return clk_core_get_parent_by_index(core, index);
2536 }
2537 
clk_core_reparent(struct clk_core * core,struct clk_core * new_parent)2538 static void clk_core_reparent(struct clk_core *core,
2539 				  struct clk_core *new_parent)
2540 {
2541 	clk_reparent(core, new_parent);
2542 	__clk_recalc_accuracies(core);
2543 	__clk_recalc_rates(core, POST_RATE_CHANGE);
2544 }
2545 
clk_hw_reparent(struct clk_hw * hw,struct clk_hw * new_parent)2546 void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
2547 {
2548 	if (!hw)
2549 		return;
2550 
2551 	clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
2552 }
2553 
2554 /**
2555  * clk_has_parent - check if a clock is a possible parent for another
2556  * @clk: clock source
2557  * @parent: parent clock source
2558  *
2559  * This function can be used in drivers that need to check that a clock can be
2560  * the parent of another without actually changing the parent.
2561  *
2562  * Returns true if @parent is a possible parent for @clk, false otherwise.
2563  */
clk_has_parent(struct clk * clk,struct clk * parent)2564 bool clk_has_parent(struct clk *clk, struct clk *parent)
2565 {
2566 	struct clk_core *core, *parent_core;
2567 	int i;
2568 
2569 	/* NULL clocks should be nops, so return success if either is NULL. */
2570 	if (!clk || !parent)
2571 		return true;
2572 
2573 	core = clk->core;
2574 	parent_core = parent->core;
2575 
2576 	/* Optimize for the case where the parent is already the parent. */
2577 	if (core->parent == parent_core)
2578 		return true;
2579 
2580 	for (i = 0; i < core->num_parents; i++)
2581 		if (!strcmp(core->parents[i].name, parent_core->name))
2582 			return true;
2583 
2584 	return false;
2585 }
2586 EXPORT_SYMBOL_GPL(clk_has_parent);
2587 
clk_core_set_parent_nolock(struct clk_core * core,struct clk_core * parent)2588 static int clk_core_set_parent_nolock(struct clk_core *core,
2589 				      struct clk_core *parent)
2590 {
2591 	int ret = 0;
2592 	int p_index = 0;
2593 	unsigned long p_rate = 0;
2594 
2595 	lockdep_assert_held(&prepare_lock);
2596 
2597 	if (!core)
2598 		return 0;
2599 
2600 	if (core->parent == parent)
2601 		return 0;
2602 
2603 	/* verify ops for multi-parent clks */
2604 	if (core->num_parents > 1 && !core->ops->set_parent)
2605 		return -EPERM;
2606 
2607 	/* check that we are allowed to re-parent if the clock is in use */
2608 	if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count)
2609 		return -EBUSY;
2610 
2611 	if (clk_core_rate_is_protected(core))
2612 		return -EBUSY;
2613 
2614 	/* try finding the new parent index */
2615 	if (parent) {
2616 		p_index = clk_fetch_parent_index(core, parent);
2617 		if (p_index < 0) {
2618 			pr_debug("%s: clk %s can not be parent of clk %s\n",
2619 					__func__, parent->name, core->name);
2620 			return p_index;
2621 		}
2622 		p_rate = parent->rate;
2623 	}
2624 
2625 	ret = clk_pm_runtime_get(core);
2626 	if (ret)
2627 		return ret;
2628 
2629 	/* propagate PRE_RATE_CHANGE notifications */
2630 	ret = __clk_speculate_rates(core, p_rate);
2631 
2632 	/* abort if a driver objects */
2633 	if (ret & NOTIFY_STOP_MASK)
2634 		goto runtime_put;
2635 
2636 	/* do the re-parent */
2637 	ret = __clk_set_parent(core, parent, p_index);
2638 
2639 	/* propagate rate an accuracy recalculation accordingly */
2640 	if (ret) {
2641 		__clk_recalc_rates(core, ABORT_RATE_CHANGE);
2642 	} else {
2643 		__clk_recalc_rates(core, POST_RATE_CHANGE);
2644 		__clk_recalc_accuracies(core);
2645 	}
2646 
2647 runtime_put:
2648 	clk_pm_runtime_put(core);
2649 
2650 	return ret;
2651 }
2652 
clk_hw_set_parent(struct clk_hw * hw,struct clk_hw * parent)2653 int clk_hw_set_parent(struct clk_hw *hw, struct clk_hw *parent)
2654 {
2655 	return clk_core_set_parent_nolock(hw->core, parent->core);
2656 }
2657 EXPORT_SYMBOL_GPL(clk_hw_set_parent);
2658 
2659 /**
2660  * clk_set_parent - switch the parent of a mux clk
2661  * @clk: the mux clk whose input we are switching
2662  * @parent: the new input to clk
2663  *
2664  * Re-parent clk to use parent as its new input source.  If clk is in
2665  * prepared state, the clk will get enabled for the duration of this call. If
2666  * that's not acceptable for a specific clk (Eg: the consumer can't handle
2667  * that, the reparenting is glitchy in hardware, etc), use the
2668  * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
2669  *
2670  * After successfully changing clk's parent clk_set_parent will update the
2671  * clk topology, sysfs topology and propagate rate recalculation via
2672  * __clk_recalc_rates.
2673  *
2674  * Returns 0 on success, -EERROR otherwise.
2675  */
clk_set_parent(struct clk * clk,struct clk * parent)2676 int clk_set_parent(struct clk *clk, struct clk *parent)
2677 {
2678 	int ret;
2679 
2680 	if (!clk)
2681 		return 0;
2682 
2683 	clk_prepare_lock();
2684 
2685 	if (clk->exclusive_count)
2686 		clk_core_rate_unprotect(clk->core);
2687 
2688 	ret = clk_core_set_parent_nolock(clk->core,
2689 					 parent ? parent->core : NULL);
2690 
2691 	if (clk->exclusive_count)
2692 		clk_core_rate_protect(clk->core);
2693 
2694 	clk_prepare_unlock();
2695 
2696 	return ret;
2697 }
2698 EXPORT_SYMBOL_GPL(clk_set_parent);
2699 
clk_core_set_phase_nolock(struct clk_core * core,int degrees)2700 static int clk_core_set_phase_nolock(struct clk_core *core, int degrees)
2701 {
2702 	int ret = -EINVAL;
2703 
2704 	lockdep_assert_held(&prepare_lock);
2705 
2706 	if (!core)
2707 		return 0;
2708 
2709 	if (clk_core_rate_is_protected(core))
2710 		return -EBUSY;
2711 
2712 	trace_clk_set_phase(core, degrees);
2713 
2714 	if (core->ops->set_phase) {
2715 		ret = core->ops->set_phase(core->hw, degrees);
2716 		if (!ret)
2717 			core->phase = degrees;
2718 	}
2719 
2720 	trace_clk_set_phase_complete(core, degrees);
2721 
2722 	return ret;
2723 }
2724 
2725 /**
2726  * clk_set_phase - adjust the phase shift of a clock signal
2727  * @clk: clock signal source
2728  * @degrees: number of degrees the signal is shifted
2729  *
2730  * Shifts the phase of a clock signal by the specified
2731  * degrees. Returns 0 on success, -EERROR otherwise.
2732  *
2733  * This function makes no distinction about the input or reference
2734  * signal that we adjust the clock signal phase against. For example
2735  * phase locked-loop clock signal generators we may shift phase with
2736  * respect to feedback clock signal input, but for other cases the
2737  * clock phase may be shifted with respect to some other, unspecified
2738  * signal.
2739  *
2740  * Additionally the concept of phase shift does not propagate through
2741  * the clock tree hierarchy, which sets it apart from clock rates and
2742  * clock accuracy. A parent clock phase attribute does not have an
2743  * impact on the phase attribute of a child clock.
2744  */
clk_set_phase(struct clk * clk,int degrees)2745 int clk_set_phase(struct clk *clk, int degrees)
2746 {
2747 	int ret;
2748 
2749 	if (!clk)
2750 		return 0;
2751 
2752 	/* sanity check degrees */
2753 	degrees %= 360;
2754 	if (degrees < 0)
2755 		degrees += 360;
2756 
2757 	clk_prepare_lock();
2758 
2759 	if (clk->exclusive_count)
2760 		clk_core_rate_unprotect(clk->core);
2761 
2762 	ret = clk_core_set_phase_nolock(clk->core, degrees);
2763 
2764 	if (clk->exclusive_count)
2765 		clk_core_rate_protect(clk->core);
2766 
2767 	clk_prepare_unlock();
2768 
2769 	return ret;
2770 }
2771 EXPORT_SYMBOL_GPL(clk_set_phase);
2772 
clk_core_get_phase(struct clk_core * core)2773 static int clk_core_get_phase(struct clk_core *core)
2774 {
2775 	int ret;
2776 
2777 	lockdep_assert_held(&prepare_lock);
2778 	if (!core->ops->get_phase)
2779 		return 0;
2780 
2781 	/* Always try to update cached phase if possible */
2782 	ret = core->ops->get_phase(core->hw);
2783 	if (ret >= 0)
2784 		core->phase = ret;
2785 
2786 	return ret;
2787 }
2788 
2789 /**
2790  * clk_get_phase - return the phase shift of a clock signal
2791  * @clk: clock signal source
2792  *
2793  * Returns the phase shift of a clock node in degrees, otherwise returns
2794  * -EERROR.
2795  */
clk_get_phase(struct clk * clk)2796 int clk_get_phase(struct clk *clk)
2797 {
2798 	int ret;
2799 
2800 	if (!clk)
2801 		return 0;
2802 
2803 	clk_prepare_lock();
2804 	ret = clk_core_get_phase(clk->core);
2805 	clk_prepare_unlock();
2806 
2807 	return ret;
2808 }
2809 EXPORT_SYMBOL_GPL(clk_get_phase);
2810 
clk_core_reset_duty_cycle_nolock(struct clk_core * core)2811 static void clk_core_reset_duty_cycle_nolock(struct clk_core *core)
2812 {
2813 	/* Assume a default value of 50% */
2814 	core->duty.num = 1;
2815 	core->duty.den = 2;
2816 }
2817 
2818 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core);
2819 
clk_core_update_duty_cycle_nolock(struct clk_core * core)2820 static int clk_core_update_duty_cycle_nolock(struct clk_core *core)
2821 {
2822 	struct clk_duty *duty = &core->duty;
2823 	int ret = 0;
2824 
2825 	if (!core->ops->get_duty_cycle)
2826 		return clk_core_update_duty_cycle_parent_nolock(core);
2827 
2828 	ret = core->ops->get_duty_cycle(core->hw, duty);
2829 	if (ret)
2830 		goto reset;
2831 
2832 	/* Don't trust the clock provider too much */
2833 	if (duty->den == 0 || duty->num > duty->den) {
2834 		ret = -EINVAL;
2835 		goto reset;
2836 	}
2837 
2838 	return 0;
2839 
2840 reset:
2841 	clk_core_reset_duty_cycle_nolock(core);
2842 	return ret;
2843 }
2844 
clk_core_update_duty_cycle_parent_nolock(struct clk_core * core)2845 static int clk_core_update_duty_cycle_parent_nolock(struct clk_core *core)
2846 {
2847 	int ret = 0;
2848 
2849 	if (core->parent &&
2850 	    core->flags & CLK_DUTY_CYCLE_PARENT) {
2851 		ret = clk_core_update_duty_cycle_nolock(core->parent);
2852 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2853 	} else {
2854 		clk_core_reset_duty_cycle_nolock(core);
2855 	}
2856 
2857 	return ret;
2858 }
2859 
2860 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2861 						 struct clk_duty *duty);
2862 
clk_core_set_duty_cycle_nolock(struct clk_core * core,struct clk_duty * duty)2863 static int clk_core_set_duty_cycle_nolock(struct clk_core *core,
2864 					  struct clk_duty *duty)
2865 {
2866 	int ret;
2867 
2868 	lockdep_assert_held(&prepare_lock);
2869 
2870 	if (clk_core_rate_is_protected(core))
2871 		return -EBUSY;
2872 
2873 	trace_clk_set_duty_cycle(core, duty);
2874 
2875 	if (!core->ops->set_duty_cycle)
2876 		return clk_core_set_duty_cycle_parent_nolock(core, duty);
2877 
2878 	ret = core->ops->set_duty_cycle(core->hw, duty);
2879 	if (!ret)
2880 		memcpy(&core->duty, duty, sizeof(*duty));
2881 
2882 	trace_clk_set_duty_cycle_complete(core, duty);
2883 
2884 	return ret;
2885 }
2886 
clk_core_set_duty_cycle_parent_nolock(struct clk_core * core,struct clk_duty * duty)2887 static int clk_core_set_duty_cycle_parent_nolock(struct clk_core *core,
2888 						 struct clk_duty *duty)
2889 {
2890 	int ret = 0;
2891 
2892 	if (core->parent &&
2893 	    core->flags & (CLK_DUTY_CYCLE_PARENT | CLK_SET_RATE_PARENT)) {
2894 		ret = clk_core_set_duty_cycle_nolock(core->parent, duty);
2895 		memcpy(&core->duty, &core->parent->duty, sizeof(core->duty));
2896 	}
2897 
2898 	return ret;
2899 }
2900 
2901 /**
2902  * clk_set_duty_cycle - adjust the duty cycle ratio of a clock signal
2903  * @clk: clock signal source
2904  * @num: numerator of the duty cycle ratio to be applied
2905  * @den: denominator of the duty cycle ratio to be applied
2906  *
2907  * Apply the duty cycle ratio if the ratio is valid and the clock can
2908  * perform this operation
2909  *
2910  * Returns (0) on success, a negative errno otherwise.
2911  */
clk_set_duty_cycle(struct clk * clk,unsigned int num,unsigned int den)2912 int clk_set_duty_cycle(struct clk *clk, unsigned int num, unsigned int den)
2913 {
2914 	int ret;
2915 	struct clk_duty duty;
2916 
2917 	if (!clk)
2918 		return 0;
2919 
2920 	/* sanity check the ratio */
2921 	if (den == 0 || num > den)
2922 		return -EINVAL;
2923 
2924 	duty.num = num;
2925 	duty.den = den;
2926 
2927 	clk_prepare_lock();
2928 
2929 	if (clk->exclusive_count)
2930 		clk_core_rate_unprotect(clk->core);
2931 
2932 	ret = clk_core_set_duty_cycle_nolock(clk->core, &duty);
2933 
2934 	if (clk->exclusive_count)
2935 		clk_core_rate_protect(clk->core);
2936 
2937 	clk_prepare_unlock();
2938 
2939 	return ret;
2940 }
2941 EXPORT_SYMBOL_GPL(clk_set_duty_cycle);
2942 
clk_core_get_scaled_duty_cycle(struct clk_core * core,unsigned int scale)2943 static int clk_core_get_scaled_duty_cycle(struct clk_core *core,
2944 					  unsigned int scale)
2945 {
2946 	struct clk_duty *duty = &core->duty;
2947 	int ret;
2948 
2949 	clk_prepare_lock();
2950 
2951 	ret = clk_core_update_duty_cycle_nolock(core);
2952 	if (!ret)
2953 		ret = mult_frac(scale, duty->num, duty->den);
2954 
2955 	clk_prepare_unlock();
2956 
2957 	return ret;
2958 }
2959 
2960 /**
2961  * clk_get_scaled_duty_cycle - return the duty cycle ratio of a clock signal
2962  * @clk: clock signal source
2963  * @scale: scaling factor to be applied to represent the ratio as an integer
2964  *
2965  * Returns the duty cycle ratio of a clock node multiplied by the provided
2966  * scaling factor, or negative errno on error.
2967  */
clk_get_scaled_duty_cycle(struct clk * clk,unsigned int scale)2968 int clk_get_scaled_duty_cycle(struct clk *clk, unsigned int scale)
2969 {
2970 	if (!clk)
2971 		return 0;
2972 
2973 	return clk_core_get_scaled_duty_cycle(clk->core, scale);
2974 }
2975 EXPORT_SYMBOL_GPL(clk_get_scaled_duty_cycle);
2976 
2977 /**
2978  * clk_is_match - check if two clk's point to the same hardware clock
2979  * @p: clk compared against q
2980  * @q: clk compared against p
2981  *
2982  * Returns true if the two struct clk pointers both point to the same hardware
2983  * clock node. Put differently, returns true if struct clk *p and struct clk *q
2984  * share the same struct clk_core object.
2985  *
2986  * Returns false otherwise. Note that two NULL clks are treated as matching.
2987  */
clk_is_match(const struct clk * p,const struct clk * q)2988 bool clk_is_match(const struct clk *p, const struct clk *q)
2989 {
2990 	/* trivial case: identical struct clk's or both NULL */
2991 	if (p == q)
2992 		return true;
2993 
2994 	/* true if clk->core pointers match. Avoid dereferencing garbage */
2995 	if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
2996 		if (p->core == q->core)
2997 			return true;
2998 
2999 	return false;
3000 }
3001 EXPORT_SYMBOL_GPL(clk_is_match);
3002 
3003 /***        debugfs support        ***/
3004 
3005 #ifdef CONFIG_DEBUG_FS
3006 #include <linux/debugfs.h>
3007 
3008 static struct dentry *rootdir;
3009 static int inited = 0;
3010 static DEFINE_MUTEX(clk_debug_lock);
3011 static HLIST_HEAD(clk_debug_list);
3012 
3013 static struct hlist_head *orphan_list[] = {
3014 	&clk_orphan_list,
3015 	NULL,
3016 };
3017 
clk_summary_show_one(struct seq_file * s,struct clk_core * c,int level)3018 static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
3019 				 int level)
3020 {
3021 	int phase;
3022 
3023 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu ",
3024 		   level * 3 + 1, "",
3025 		   30 - level * 3, c->name,
3026 		   c->enable_count, c->prepare_count, c->protect_count,
3027 		   clk_core_get_rate_recalc(c),
3028 		   clk_core_get_accuracy_recalc(c));
3029 
3030 	phase = clk_core_get_phase(c);
3031 	if (phase >= 0)
3032 		seq_printf(s, "%5d", phase);
3033 	else
3034 		seq_puts(s, "-----");
3035 
3036 	seq_printf(s, " %6d\n", clk_core_get_scaled_duty_cycle(c, 100000));
3037 }
3038 
clk_summary_show_subtree(struct seq_file * s,struct clk_core * c,int level)3039 static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
3040 				     int level)
3041 {
3042 	struct clk_core *child;
3043 
3044 	clk_summary_show_one(s, c, level);
3045 
3046 	hlist_for_each_entry(child, &c->children, child_node)
3047 		clk_summary_show_subtree(s, child, level + 1);
3048 }
3049 
clk_summary_show(struct seq_file * s,void * data)3050 static int clk_summary_show(struct seq_file *s, void *data)
3051 {
3052 	struct clk_core *c;
3053 	struct hlist_head **lists = (struct hlist_head **)s->private;
3054 
3055 	seq_puts(s, "                                 enable  prepare  protect                                duty\n");
3056 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle\n");
3057 	seq_puts(s, "---------------------------------------------------------------------------------------------\n");
3058 
3059 	clk_prepare_lock();
3060 
3061 	for (; *lists; lists++)
3062 		hlist_for_each_entry(c, *lists, child_node)
3063 			clk_summary_show_subtree(s, c, 0);
3064 
3065 	clk_prepare_unlock();
3066 
3067 	return 0;
3068 }
3069 DEFINE_SHOW_ATTRIBUTE(clk_summary);
3070 
clk_dump_one(struct seq_file * s,struct clk_core * c,int level)3071 static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
3072 {
3073 	int phase;
3074 	unsigned long min_rate, max_rate;
3075 
3076 	clk_core_get_boundaries(c, &min_rate, &max_rate);
3077 
3078 	/* This should be JSON format, i.e. elements separated with a comma */
3079 	seq_printf(s, "\"%s\": { ", c->name);
3080 	seq_printf(s, "\"enable_count\": %d,", c->enable_count);
3081 	seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
3082 	seq_printf(s, "\"protect_count\": %d,", c->protect_count);
3083 	seq_printf(s, "\"rate\": %lu,", clk_core_get_rate_recalc(c));
3084 	seq_printf(s, "\"min_rate\": %lu,", min_rate);
3085 	seq_printf(s, "\"max_rate\": %lu,", max_rate);
3086 	seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy_recalc(c));
3087 	phase = clk_core_get_phase(c);
3088 	if (phase >= 0)
3089 		seq_printf(s, "\"phase\": %d,", phase);
3090 	seq_printf(s, "\"duty_cycle\": %u",
3091 		   clk_core_get_scaled_duty_cycle(c, 100000));
3092 }
3093 
clk_dump_subtree(struct seq_file * s,struct clk_core * c,int level)3094 static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
3095 {
3096 	struct clk_core *child;
3097 
3098 	clk_dump_one(s, c, level);
3099 
3100 	hlist_for_each_entry(child, &c->children, child_node) {
3101 		seq_putc(s, ',');
3102 		clk_dump_subtree(s, child, level + 1);
3103 	}
3104 
3105 	seq_putc(s, '}');
3106 }
3107 
clk_dump_show(struct seq_file * s,void * data)3108 static int clk_dump_show(struct seq_file *s, void *data)
3109 {
3110 	struct clk_core *c;
3111 	bool first_node = true;
3112 	struct hlist_head **lists = (struct hlist_head **)s->private;
3113 
3114 	seq_putc(s, '{');
3115 	clk_prepare_lock();
3116 
3117 	for (; *lists; lists++) {
3118 		hlist_for_each_entry(c, *lists, child_node) {
3119 			if (!first_node)
3120 				seq_putc(s, ',');
3121 			first_node = false;
3122 			clk_dump_subtree(s, c, 0);
3123 		}
3124 	}
3125 
3126 	clk_prepare_unlock();
3127 
3128 	seq_puts(s, "}\n");
3129 	return 0;
3130 }
3131 DEFINE_SHOW_ATTRIBUTE(clk_dump);
3132 
3133 #ifdef CONFIG_ANDROID_BINDER_IPC
3134 #define CLOCK_ALLOW_WRITE_DEBUGFS
3135 #else
3136 #undef CLOCK_ALLOW_WRITE_DEBUGFS
3137 #endif
3138 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3139 /*
3140  * This can be dangerous, therefore don't provide any real compile time
3141  * configuration option for this feature.
3142  * People who want to use this will need to modify the source code directly.
3143  */
clk_rate_set(void * data,u64 val)3144 static int clk_rate_set(void *data, u64 val)
3145 {
3146 	struct clk_core *core = data;
3147 	int ret;
3148 
3149 	clk_prepare_lock();
3150 	ret = clk_core_set_rate_nolock(core, val);
3151 	clk_prepare_unlock();
3152 
3153 	return ret;
3154 }
3155 
3156 #define clk_rate_mode	0644
3157 
clk_prepare_enable_set(void * data,u64 val)3158 static int clk_prepare_enable_set(void *data, u64 val)
3159 {
3160 	struct clk_core *core = data;
3161 	int ret = 0;
3162 
3163 	if (val)
3164 		ret = clk_prepare_enable(core->hw->clk);
3165 	else
3166 		clk_disable_unprepare(core->hw->clk);
3167 
3168 	return ret;
3169 }
3170 
clk_prepare_enable_get(void * data,u64 * val)3171 static int clk_prepare_enable_get(void *data, u64 *val)
3172 {
3173 	struct clk_core *core = data;
3174 
3175 	*val = core->enable_count && core->prepare_count;
3176 	return 0;
3177 }
3178 
3179 DEFINE_DEBUGFS_ATTRIBUTE(clk_prepare_enable_fops, clk_prepare_enable_get,
3180 			 clk_prepare_enable_set, "%llu\n");
3181 
3182 #else
3183 #define clk_rate_set	NULL
3184 #define clk_rate_mode	0444
3185 #endif
3186 
clk_rate_get(void * data,u64 * val)3187 static int clk_rate_get(void *data, u64 *val)
3188 {
3189 	struct clk_core *core = data;
3190 
3191 	*val = core->rate;
3192 	return 0;
3193 }
3194 
3195 DEFINE_DEBUGFS_ATTRIBUTE(clk_rate_fops, clk_rate_get, clk_rate_set, "%llu\n");
3196 
3197 static const struct {
3198 	unsigned long flag;
3199 	const char *name;
3200 } clk_flags[] = {
3201 #define ENTRY(f) { f, #f }
3202 	ENTRY(CLK_SET_RATE_GATE),
3203 	ENTRY(CLK_SET_PARENT_GATE),
3204 	ENTRY(CLK_SET_RATE_PARENT),
3205 	ENTRY(CLK_IGNORE_UNUSED),
3206 	ENTRY(CLK_GET_RATE_NOCACHE),
3207 	ENTRY(CLK_SET_RATE_NO_REPARENT),
3208 	ENTRY(CLK_GET_ACCURACY_NOCACHE),
3209 	ENTRY(CLK_RECALC_NEW_RATES),
3210 	ENTRY(CLK_SET_RATE_UNGATE),
3211 	ENTRY(CLK_IS_CRITICAL),
3212 	ENTRY(CLK_OPS_PARENT_ENABLE),
3213 	ENTRY(CLK_DUTY_CYCLE_PARENT),
3214 #undef ENTRY
3215 };
3216 
clk_flags_show(struct seq_file * s,void * data)3217 static int clk_flags_show(struct seq_file *s, void *data)
3218 {
3219 	struct clk_core *core = s->private;
3220 	unsigned long flags = core->flags;
3221 	unsigned int i;
3222 
3223 	for (i = 0; flags && i < ARRAY_SIZE(clk_flags); i++) {
3224 		if (flags & clk_flags[i].flag) {
3225 			seq_printf(s, "%s\n", clk_flags[i].name);
3226 			flags &= ~clk_flags[i].flag;
3227 		}
3228 	}
3229 	if (flags) {
3230 		/* Unknown flags */
3231 		seq_printf(s, "0x%lx\n", flags);
3232 	}
3233 
3234 	return 0;
3235 }
3236 DEFINE_SHOW_ATTRIBUTE(clk_flags);
3237 
possible_parent_show(struct seq_file * s,struct clk_core * core,unsigned int i,char terminator)3238 static void possible_parent_show(struct seq_file *s, struct clk_core *core,
3239 				 unsigned int i, char terminator)
3240 {
3241 	struct clk_core *parent;
3242 
3243 	/*
3244 	 * Go through the following options to fetch a parent's name.
3245 	 *
3246 	 * 1. Fetch the registered parent clock and use its name
3247 	 * 2. Use the global (fallback) name if specified
3248 	 * 3. Use the local fw_name if provided
3249 	 * 4. Fetch parent clock's clock-output-name if DT index was set
3250 	 *
3251 	 * This may still fail in some cases, such as when the parent is
3252 	 * specified directly via a struct clk_hw pointer, but it isn't
3253 	 * registered (yet).
3254 	 */
3255 	parent = clk_core_get_parent_by_index(core, i);
3256 	if (parent)
3257 		seq_puts(s, parent->name);
3258 	else if (core->parents[i].name)
3259 		seq_puts(s, core->parents[i].name);
3260 	else if (core->parents[i].fw_name)
3261 		seq_printf(s, "<%s>(fw)", core->parents[i].fw_name);
3262 	else if (core->parents[i].index >= 0)
3263 		seq_puts(s,
3264 			 of_clk_get_parent_name(core->of_node,
3265 						core->parents[i].index));
3266 	else
3267 		seq_puts(s, "(missing)");
3268 
3269 	seq_putc(s, terminator);
3270 }
3271 
possible_parents_show(struct seq_file * s,void * data)3272 static int possible_parents_show(struct seq_file *s, void *data)
3273 {
3274 	struct clk_core *core = s->private;
3275 	int i;
3276 
3277 	for (i = 0; i < core->num_parents - 1; i++)
3278 		possible_parent_show(s, core, i, ' ');
3279 
3280 	possible_parent_show(s, core, i, '\n');
3281 
3282 	return 0;
3283 }
3284 DEFINE_SHOW_ATTRIBUTE(possible_parents);
3285 
current_parent_show(struct seq_file * s,void * data)3286 static int current_parent_show(struct seq_file *s, void *data)
3287 {
3288 	struct clk_core *core = s->private;
3289 
3290 	if (core->parent)
3291 		seq_printf(s, "%s\n", core->parent->name);
3292 
3293 	return 0;
3294 }
3295 DEFINE_SHOW_ATTRIBUTE(current_parent);
3296 
clk_duty_cycle_show(struct seq_file * s,void * data)3297 static int clk_duty_cycle_show(struct seq_file *s, void *data)
3298 {
3299 	struct clk_core *core = s->private;
3300 	struct clk_duty *duty = &core->duty;
3301 
3302 	seq_printf(s, "%u/%u\n", duty->num, duty->den);
3303 
3304 	return 0;
3305 }
3306 DEFINE_SHOW_ATTRIBUTE(clk_duty_cycle);
3307 
clk_min_rate_show(struct seq_file * s,void * data)3308 static int clk_min_rate_show(struct seq_file *s, void *data)
3309 {
3310 	struct clk_core *core = s->private;
3311 	unsigned long min_rate, max_rate;
3312 
3313 	clk_prepare_lock();
3314 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3315 	clk_prepare_unlock();
3316 	seq_printf(s, "%lu\n", min_rate);
3317 
3318 	return 0;
3319 }
3320 DEFINE_SHOW_ATTRIBUTE(clk_min_rate);
3321 
clk_max_rate_show(struct seq_file * s,void * data)3322 static int clk_max_rate_show(struct seq_file *s, void *data)
3323 {
3324 	struct clk_core *core = s->private;
3325 	unsigned long min_rate, max_rate;
3326 
3327 	clk_prepare_lock();
3328 	clk_core_get_boundaries(core, &min_rate, &max_rate);
3329 	clk_prepare_unlock();
3330 	seq_printf(s, "%lu\n", max_rate);
3331 
3332 	return 0;
3333 }
3334 DEFINE_SHOW_ATTRIBUTE(clk_max_rate);
3335 
clk_debug_create_one(struct clk_core * core,struct dentry * pdentry)3336 static void clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
3337 {
3338 	struct dentry *root;
3339 
3340 	if (!core || !pdentry)
3341 		return;
3342 
3343 	root = debugfs_create_dir(core->name, pdentry);
3344 	core->dentry = root;
3345 
3346 	debugfs_create_file("clk_rate", clk_rate_mode, root, core,
3347 			    &clk_rate_fops);
3348 	debugfs_create_file("clk_min_rate", 0444, root, core, &clk_min_rate_fops);
3349 	debugfs_create_file("clk_max_rate", 0444, root, core, &clk_max_rate_fops);
3350 	debugfs_create_ulong("clk_accuracy", 0444, root, &core->accuracy);
3351 	debugfs_create_u32("clk_phase", 0444, root, &core->phase);
3352 	debugfs_create_file("clk_flags", 0444, root, core, &clk_flags_fops);
3353 	debugfs_create_u32("clk_prepare_count", 0444, root, &core->prepare_count);
3354 	debugfs_create_u32("clk_enable_count", 0444, root, &core->enable_count);
3355 	debugfs_create_u32("clk_protect_count", 0444, root, &core->protect_count);
3356 	debugfs_create_u32("clk_notifier_count", 0444, root, &core->notifier_count);
3357 	debugfs_create_file("clk_duty_cycle", 0444, root, core,
3358 			    &clk_duty_cycle_fops);
3359 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3360 	debugfs_create_file("clk_prepare_enable", 0644, root, core,
3361 			    &clk_prepare_enable_fops);
3362 #endif
3363 
3364 	if (core->num_parents > 0)
3365 		debugfs_create_file("clk_parent", 0444, root, core,
3366 				    &current_parent_fops);
3367 
3368 	if (core->num_parents > 1)
3369 		debugfs_create_file("clk_possible_parents", 0444, root, core,
3370 				    &possible_parents_fops);
3371 
3372 	if (core->ops->debug_init)
3373 		core->ops->debug_init(core->hw, core->dentry);
3374 }
3375 
3376 /**
3377  * clk_debug_register - add a clk node to the debugfs clk directory
3378  * @core: the clk being added to the debugfs clk directory
3379  *
3380  * Dynamically adds a clk to the debugfs clk directory if debugfs has been
3381  * initialized.  Otherwise it bails out early since the debugfs clk directory
3382  * will be created lazily by clk_debug_init as part of a late_initcall.
3383  */
clk_debug_register(struct clk_core * core)3384 static void clk_debug_register(struct clk_core *core)
3385 {
3386 	mutex_lock(&clk_debug_lock);
3387 	hlist_add_head(&core->debug_node, &clk_debug_list);
3388 	if (inited)
3389 		clk_debug_create_one(core, rootdir);
3390 	mutex_unlock(&clk_debug_lock);
3391 }
3392 
3393  /**
3394  * clk_debug_unregister - remove a clk node from the debugfs clk directory
3395  * @core: the clk being removed from the debugfs clk directory
3396  *
3397  * Dynamically removes a clk and all its child nodes from the
3398  * debugfs clk directory if clk->dentry points to debugfs created by
3399  * clk_debug_register in __clk_core_init.
3400  */
clk_debug_unregister(struct clk_core * core)3401 static void clk_debug_unregister(struct clk_core *core)
3402 {
3403 	mutex_lock(&clk_debug_lock);
3404 	hlist_del_init(&core->debug_node);
3405 	debugfs_remove_recursive(core->dentry);
3406 	core->dentry = NULL;
3407 	mutex_unlock(&clk_debug_lock);
3408 }
3409 
3410 /**
3411  * clk_debug_init - lazily populate the debugfs clk directory
3412  *
3413  * clks are often initialized very early during boot before memory can be
3414  * dynamically allocated and well before debugfs is setup. This function
3415  * populates the debugfs clk directory once at boot-time when we know that
3416  * debugfs is setup. It should only be called once at boot-time, all other clks
3417  * added dynamically will be done so with clk_debug_register.
3418  */
clk_debug_init(void)3419 static int __init clk_debug_init(void)
3420 {
3421 	struct clk_core *core;
3422 
3423 #ifdef CLOCK_ALLOW_WRITE_DEBUGFS
3424 	pr_warn("\n");
3425 	pr_warn("********************************************************************\n");
3426 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3427 	pr_warn("**                                                                **\n");
3428 	pr_warn("**  WRITEABLE clk DebugFS SUPPORT HAS BEEN ENABLED IN THIS KERNEL **\n");
3429 	pr_warn("**                                                                **\n");
3430 	pr_warn("** This means that this kernel is built to expose clk operations  **\n");
3431 	pr_warn("** such as parent or rate setting, enabling, disabling, etc.      **\n");
3432 	pr_warn("** to userspace, which may compromise security on your system.    **\n");
3433 	pr_warn("**                                                                **\n");
3434 	pr_warn("** If you see this message and you are not debugging the          **\n");
3435 	pr_warn("** kernel, report this immediately to your vendor!                **\n");
3436 	pr_warn("**                                                                **\n");
3437 	pr_warn("**     NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE NOTICE           **\n");
3438 	pr_warn("********************************************************************\n");
3439 #endif
3440 
3441 	rootdir = debugfs_create_dir("clk", NULL);
3442 
3443 	debugfs_create_file("clk_summary", 0444, rootdir, &all_lists,
3444 			    &clk_summary_fops);
3445 	debugfs_create_file("clk_dump", 0444, rootdir, &all_lists,
3446 			    &clk_dump_fops);
3447 	debugfs_create_file("clk_orphan_summary", 0444, rootdir, &orphan_list,
3448 			    &clk_summary_fops);
3449 	debugfs_create_file("clk_orphan_dump", 0444, rootdir, &orphan_list,
3450 			    &clk_dump_fops);
3451 
3452 	mutex_lock(&clk_debug_lock);
3453 	hlist_for_each_entry(core, &clk_debug_list, debug_node)
3454 		clk_debug_create_one(core, rootdir);
3455 
3456 	inited = 1;
3457 	mutex_unlock(&clk_debug_lock);
3458 
3459 	return 0;
3460 }
3461 late_initcall(clk_debug_init);
3462 #else
clk_debug_register(struct clk_core * core)3463 static inline void clk_debug_register(struct clk_core *core) { }
clk_debug_unregister(struct clk_core * core)3464 static inline void clk_debug_unregister(struct clk_core *core)
3465 {
3466 }
3467 #endif
3468 
clk_core_reparent_orphans_nolock(void)3469 static void clk_core_reparent_orphans_nolock(void)
3470 {
3471 	struct clk_core *orphan;
3472 	struct hlist_node *tmp2;
3473 
3474 	/*
3475 	 * walk the list of orphan clocks and reparent any that newly finds a
3476 	 * parent.
3477 	 */
3478 	hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
3479 		struct clk_core *parent = __clk_init_parent(orphan);
3480 
3481 		/*
3482 		 * We need to use __clk_set_parent_before() and _after() to
3483 		 * to properly migrate any prepare/enable count of the orphan
3484 		 * clock. This is important for CLK_IS_CRITICAL clocks, which
3485 		 * are enabled during init but might not have a parent yet.
3486 		 */
3487 		if (parent) {
3488 			/* update the clk tree topology */
3489 			__clk_set_parent_before(orphan, parent);
3490 			__clk_set_parent_after(orphan, parent, NULL);
3491 			__clk_recalc_accuracies(orphan);
3492 			__clk_recalc_rates(orphan, 0);
3493 			__clk_core_update_orphan_hold_state(orphan);
3494 
3495 			/*
3496 			 * __clk_init_parent() will set the initial req_rate to
3497 			 * 0 if the clock doesn't have clk_ops::recalc_rate and
3498 			 * is an orphan when it's registered.
3499 			 *
3500 			 * 'req_rate' is used by clk_set_rate_range() and
3501 			 * clk_put() to trigger a clk_set_rate() call whenever
3502 			 * the boundaries are modified. Let's make sure
3503 			 * 'req_rate' is set to something non-zero so that
3504 			 * clk_set_rate_range() doesn't drop the frequency.
3505 			 */
3506 			orphan->req_rate = orphan->rate;
3507 		}
3508 	}
3509 }
3510 
3511 /**
3512  * __clk_core_init - initialize the data structures in a struct clk_core
3513  * @core:	clk_core being initialized
3514  *
3515  * Initializes the lists in struct clk_core, queries the hardware for the
3516  * parent and rate and sets them both.
3517  */
__clk_core_init(struct clk_core * core)3518 static int __clk_core_init(struct clk_core *core)
3519 {
3520 	int ret;
3521 	struct clk_core *parent;
3522 	unsigned long rate;
3523 	int phase;
3524 
3525 	if (!core)
3526 		return -EINVAL;
3527 
3528 	clk_prepare_lock();
3529 
3530 	/*
3531 	 * Set hw->core after grabbing the prepare_lock to synchronize with
3532 	 * callers of clk_core_fill_parent_index() where we treat hw->core
3533 	 * being NULL as the clk not being registered yet. This is crucial so
3534 	 * that clks aren't parented until their parent is fully registered.
3535 	 */
3536 	core->hw->core = core;
3537 
3538 	ret = clk_pm_runtime_get(core);
3539 	if (ret)
3540 		goto unlock;
3541 
3542 	/* check to see if a clock with this name is already registered */
3543 	if (clk_core_lookup(core->name)) {
3544 		pr_debug("%s: clk %s already initialized\n",
3545 				__func__, core->name);
3546 		ret = -EEXIST;
3547 		goto out;
3548 	}
3549 
3550 	/* check that clk_ops are sane.  See Documentation/driver-api/clk.rst */
3551 	if (core->ops->set_rate &&
3552 	    !((core->ops->round_rate || core->ops->determine_rate) &&
3553 	      core->ops->recalc_rate)) {
3554 		pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
3555 		       __func__, core->name);
3556 		ret = -EINVAL;
3557 		goto out;
3558 	}
3559 
3560 	if (core->ops->set_parent && !core->ops->get_parent) {
3561 		pr_err("%s: %s must implement .get_parent & .set_parent\n",
3562 		       __func__, core->name);
3563 		ret = -EINVAL;
3564 		goto out;
3565 	}
3566 
3567 	if (core->num_parents > 1 && !core->ops->get_parent) {
3568 		pr_err("%s: %s must implement .get_parent as it has multi parents\n",
3569 		       __func__, core->name);
3570 		ret = -EINVAL;
3571 		goto out;
3572 	}
3573 
3574 	if (core->ops->set_rate_and_parent &&
3575 			!(core->ops->set_parent && core->ops->set_rate)) {
3576 		pr_err("%s: %s must implement .set_parent & .set_rate\n",
3577 				__func__, core->name);
3578 		ret = -EINVAL;
3579 		goto out;
3580 	}
3581 
3582 	/*
3583 	 * optional platform-specific magic
3584 	 *
3585 	 * The .init callback is not used by any of the basic clock types, but
3586 	 * exists for weird hardware that must perform initialization magic for
3587 	 * CCF to get an accurate view of clock for any other callbacks. It may
3588 	 * also be used needs to perform dynamic allocations. Such allocation
3589 	 * must be freed in the terminate() callback.
3590 	 * This callback shall not be used to initialize the parameters state,
3591 	 * such as rate, parent, etc ...
3592 	 *
3593 	 * If it exist, this callback should called before any other callback of
3594 	 * the clock
3595 	 */
3596 	if (core->ops->init) {
3597 		ret = core->ops->init(core->hw);
3598 		if (ret)
3599 			goto out;
3600 	}
3601 
3602 	parent = core->parent = __clk_init_parent(core);
3603 
3604 	/*
3605 	 * Populate core->parent if parent has already been clk_core_init'd. If
3606 	 * parent has not yet been clk_core_init'd then place clk in the orphan
3607 	 * list.  If clk doesn't have any parents then place it in the root
3608 	 * clk list.
3609 	 *
3610 	 * Every time a new clk is clk_init'd then we walk the list of orphan
3611 	 * clocks and re-parent any that are children of the clock currently
3612 	 * being clk_init'd.
3613 	 */
3614 	if (parent) {
3615 		hlist_add_head(&core->child_node, &parent->children);
3616 		core->orphan = parent->orphan;
3617 	} else if (!core->num_parents) {
3618 		hlist_add_head(&core->child_node, &clk_root_list);
3619 		core->orphan = false;
3620 	} else {
3621 		hlist_add_head(&core->child_node, &clk_orphan_list);
3622 		core->orphan = true;
3623 	}
3624 
3625 	/*
3626 	 * Set clk's accuracy.  The preferred method is to use
3627 	 * .recalc_accuracy. For simple clocks and lazy developers the default
3628 	 * fallback is to use the parent's accuracy.  If a clock doesn't have a
3629 	 * parent (or is orphaned) then accuracy is set to zero (perfect
3630 	 * clock).
3631 	 */
3632 	if (core->ops->recalc_accuracy)
3633 		core->accuracy = core->ops->recalc_accuracy(core->hw,
3634 					clk_core_get_accuracy_no_lock(parent));
3635 	else if (parent)
3636 		core->accuracy = parent->accuracy;
3637 	else
3638 		core->accuracy = 0;
3639 
3640 	/*
3641 	 * Set clk's phase by clk_core_get_phase() caching the phase.
3642 	 * Since a phase is by definition relative to its parent, just
3643 	 * query the current clock phase, or just assume it's in phase.
3644 	 */
3645 	phase = clk_core_get_phase(core);
3646 	if (phase < 0) {
3647 		ret = phase;
3648 		pr_warn("%s: Failed to get phase for clk '%s'\n", __func__,
3649 			core->name);
3650 		goto out;
3651 	}
3652 
3653 	/*
3654 	 * Set clk's duty cycle.
3655 	 */
3656 	clk_core_update_duty_cycle_nolock(core);
3657 
3658 	/*
3659 	 * Set clk's rate.  The preferred method is to use .recalc_rate.  For
3660 	 * simple clocks and lazy developers the default fallback is to use the
3661 	 * parent's rate.  If a clock doesn't have a parent (or is orphaned)
3662 	 * then rate is set to zero.
3663 	 */
3664 	if (core->ops->recalc_rate)
3665 		rate = core->ops->recalc_rate(core->hw,
3666 				clk_core_get_rate_nolock(parent));
3667 	else if (parent)
3668 		rate = parent->rate;
3669 	else
3670 		rate = 0;
3671 	core->rate = core->req_rate = rate;
3672 
3673 	core->boot_enabled = clk_core_is_enabled(core);
3674 
3675 	/*
3676 	 * Enable CLK_IS_CRITICAL clocks so newly added critical clocks
3677 	 * don't get accidentally disabled when walking the orphan tree and
3678 	 * reparenting clocks
3679 	 */
3680 	if (core->flags & CLK_IS_CRITICAL) {
3681 		unsigned long flags;
3682 
3683 		ret = clk_core_prepare(core);
3684 		if (ret) {
3685 			pr_warn("%s: critical clk '%s' failed to prepare\n",
3686 			       __func__, core->name);
3687 			goto out;
3688 		}
3689 
3690 		flags = clk_enable_lock();
3691 		ret = clk_core_enable(core);
3692 		clk_enable_unlock(flags);
3693 		if (ret) {
3694 			pr_warn("%s: critical clk '%s' failed to enable\n",
3695 			       __func__, core->name);
3696 			clk_core_unprepare(core);
3697 			goto out;
3698 		}
3699 	}
3700 
3701 	clk_core_hold_state(core);
3702 	clk_core_reparent_orphans_nolock();
3703 
3704 
3705 	kref_init(&core->ref);
3706 out:
3707 	clk_pm_runtime_put(core);
3708 unlock:
3709 	if (ret) {
3710 		hlist_del_init(&core->child_node);
3711 		core->hw->core = NULL;
3712 	}
3713 
3714 	clk_prepare_unlock();
3715 
3716 	if (!ret)
3717 		clk_debug_register(core);
3718 
3719 	return ret;
3720 }
3721 
3722 /**
3723  * clk_core_link_consumer - Add a clk consumer to the list of consumers in a clk_core
3724  * @core: clk to add consumer to
3725  * @clk: consumer to link to a clk
3726  */
clk_core_link_consumer(struct clk_core * core,struct clk * clk)3727 static void clk_core_link_consumer(struct clk_core *core, struct clk *clk)
3728 {
3729 	clk_prepare_lock();
3730 	hlist_add_head(&clk->clks_node, &core->clks);
3731 	clk_prepare_unlock();
3732 }
3733 
3734 /**
3735  * clk_core_unlink_consumer - Remove a clk consumer from the list of consumers in a clk_core
3736  * @clk: consumer to unlink
3737  */
clk_core_unlink_consumer(struct clk * clk)3738 static void clk_core_unlink_consumer(struct clk *clk)
3739 {
3740 	lockdep_assert_held(&prepare_lock);
3741 	hlist_del(&clk->clks_node);
3742 }
3743 
3744 /**
3745  * alloc_clk - Allocate a clk consumer, but leave it unlinked to the clk_core
3746  * @core: clk to allocate a consumer for
3747  * @dev_id: string describing device name
3748  * @con_id: connection ID string on device
3749  *
3750  * Returns: clk consumer left unlinked from the consumer list
3751  */
alloc_clk(struct clk_core * core,const char * dev_id,const char * con_id)3752 static struct clk *alloc_clk(struct clk_core *core, const char *dev_id,
3753 			     const char *con_id)
3754 {
3755 	struct clk *clk;
3756 
3757 	clk = kzalloc(sizeof(*clk), GFP_KERNEL);
3758 	if (!clk)
3759 		return ERR_PTR(-ENOMEM);
3760 
3761 	clk->core = core;
3762 	clk->dev_id = dev_id;
3763 	clk->con_id = kstrdup_const(con_id, GFP_KERNEL);
3764 	clk->max_rate = ULONG_MAX;
3765 
3766 	return clk;
3767 }
3768 
3769 /**
3770  * free_clk - Free a clk consumer
3771  * @clk: clk consumer to free
3772  *
3773  * Note, this assumes the clk has been unlinked from the clk_core consumer
3774  * list.
3775  */
free_clk(struct clk * clk)3776 static void free_clk(struct clk *clk)
3777 {
3778 	kfree_const(clk->con_id);
3779 	kfree(clk);
3780 }
3781 
3782 /**
3783  * clk_hw_create_clk: Allocate and link a clk consumer to a clk_core given
3784  * a clk_hw
3785  * @dev: clk consumer device
3786  * @hw: clk_hw associated with the clk being consumed
3787  * @dev_id: string describing device name
3788  * @con_id: connection ID string on device
3789  *
3790  * This is the main function used to create a clk pointer for use by clk
3791  * consumers. It connects a consumer to the clk_core and clk_hw structures
3792  * used by the framework and clk provider respectively.
3793  */
clk_hw_create_clk(struct device * dev,struct clk_hw * hw,const char * dev_id,const char * con_id)3794 struct clk *clk_hw_create_clk(struct device *dev, struct clk_hw *hw,
3795 			      const char *dev_id, const char *con_id)
3796 {
3797 	struct clk *clk;
3798 	struct clk_core *core;
3799 
3800 	/* This is to allow this function to be chained to others */
3801 	if (IS_ERR_OR_NULL(hw))
3802 		return ERR_CAST(hw);
3803 
3804 	core = hw->core;
3805 	clk = alloc_clk(core, dev_id, con_id);
3806 	if (IS_ERR(clk))
3807 		return clk;
3808 	clk->dev = dev;
3809 
3810 	if (!try_module_get(core->owner)) {
3811 		free_clk(clk);
3812 		return ERR_PTR(-ENOENT);
3813 	}
3814 
3815 	kref_get(&core->ref);
3816 	clk_core_link_consumer(core, clk);
3817 
3818 	return clk;
3819 }
3820 
3821 /**
3822  * clk_hw_get_clk - get clk consumer given an clk_hw
3823  * @hw: clk_hw associated with the clk being consumed
3824  * @con_id: connection ID string on device
3825  *
3826  * Returns: new clk consumer
3827  * This is the function to be used by providers which need
3828  * to get a consumer clk and act on the clock element
3829  * Calls to this function must be balanced with calls clk_put()
3830  */
clk_hw_get_clk(struct clk_hw * hw,const char * con_id)3831 struct clk *clk_hw_get_clk(struct clk_hw *hw, const char *con_id)
3832 {
3833 	struct device *dev = hw->core->dev;
3834 	const char *name = dev ? dev_name(dev) : NULL;
3835 
3836 	return clk_hw_create_clk(dev, hw, name, con_id);
3837 }
3838 EXPORT_SYMBOL(clk_hw_get_clk);
3839 
clk_cpy_name(const char ** dst_p,const char * src,bool must_exist)3840 static int clk_cpy_name(const char **dst_p, const char *src, bool must_exist)
3841 {
3842 	const char *dst;
3843 
3844 	if (!src) {
3845 		if (must_exist)
3846 			return -EINVAL;
3847 		return 0;
3848 	}
3849 
3850 	*dst_p = dst = kstrdup_const(src, GFP_KERNEL);
3851 	if (!dst)
3852 		return -ENOMEM;
3853 
3854 	return 0;
3855 }
3856 
clk_core_populate_parent_map(struct clk_core * core,const struct clk_init_data * init)3857 static int clk_core_populate_parent_map(struct clk_core *core,
3858 					const struct clk_init_data *init)
3859 {
3860 	u8 num_parents = init->num_parents;
3861 	const char * const *parent_names = init->parent_names;
3862 	const struct clk_hw **parent_hws = init->parent_hws;
3863 	const struct clk_parent_data *parent_data = init->parent_data;
3864 	int i, ret = 0;
3865 	struct clk_parent_map *parents, *parent;
3866 
3867 	if (!num_parents)
3868 		return 0;
3869 
3870 	/*
3871 	 * Avoid unnecessary string look-ups of clk_core's possible parents by
3872 	 * having a cache of names/clk_hw pointers to clk_core pointers.
3873 	 */
3874 	parents = kcalloc(num_parents, sizeof(*parents), GFP_KERNEL);
3875 	core->parents = parents;
3876 	if (!parents)
3877 		return -ENOMEM;
3878 
3879 	/* Copy everything over because it might be __initdata */
3880 	for (i = 0, parent = parents; i < num_parents; i++, parent++) {
3881 		parent->index = -1;
3882 		if (parent_names) {
3883 			/* throw a WARN if any entries are NULL */
3884 			WARN(!parent_names[i],
3885 				"%s: invalid NULL in %s's .parent_names\n",
3886 				__func__, core->name);
3887 			ret = clk_cpy_name(&parent->name, parent_names[i],
3888 					   true);
3889 		} else if (parent_data) {
3890 			parent->hw = parent_data[i].hw;
3891 			parent->index = parent_data[i].index;
3892 			ret = clk_cpy_name(&parent->fw_name,
3893 					   parent_data[i].fw_name, false);
3894 			if (!ret)
3895 				ret = clk_cpy_name(&parent->name,
3896 						   parent_data[i].name,
3897 						   false);
3898 		} else if (parent_hws) {
3899 			parent->hw = parent_hws[i];
3900 		} else {
3901 			ret = -EINVAL;
3902 			WARN(1, "Must specify parents if num_parents > 0\n");
3903 		}
3904 
3905 		if (ret) {
3906 			do {
3907 				kfree_const(parents[i].name);
3908 				kfree_const(parents[i].fw_name);
3909 			} while (--i >= 0);
3910 			kfree(parents);
3911 
3912 			return ret;
3913 		}
3914 	}
3915 
3916 	return 0;
3917 }
3918 
clk_core_free_parent_map(struct clk_core * core)3919 static void clk_core_free_parent_map(struct clk_core *core)
3920 {
3921 	int i = core->num_parents;
3922 
3923 	if (!core->num_parents)
3924 		return;
3925 
3926 	while (--i >= 0) {
3927 		kfree_const(core->parents[i].name);
3928 		kfree_const(core->parents[i].fw_name);
3929 	}
3930 
3931 	kfree(core->parents);
3932 }
3933 
3934 static struct clk *
__clk_register(struct device * dev,struct device_node * np,struct clk_hw * hw)3935 __clk_register(struct device *dev, struct device_node *np, struct clk_hw *hw)
3936 {
3937 	int ret;
3938 	struct clk_core *core;
3939 	const struct clk_init_data *init = hw->init;
3940 
3941 	/*
3942 	 * The init data is not supposed to be used outside of registration path.
3943 	 * Set it to NULL so that provider drivers can't use it either and so that
3944 	 * we catch use of hw->init early on in the core.
3945 	 */
3946 	hw->init = NULL;
3947 
3948 	core = kzalloc(sizeof(*core), GFP_KERNEL);
3949 	if (!core) {
3950 		ret = -ENOMEM;
3951 		goto fail_out;
3952 	}
3953 
3954 	core->name = kstrdup_const(init->name, GFP_KERNEL);
3955 	if (!core->name) {
3956 		ret = -ENOMEM;
3957 		goto fail_name;
3958 	}
3959 
3960 	if (WARN_ON(!init->ops)) {
3961 		ret = -EINVAL;
3962 		goto fail_ops;
3963 	}
3964 	core->ops = init->ops;
3965 
3966 	if (dev && pm_runtime_enabled(dev))
3967 		core->rpm_enabled = true;
3968 	core->dev = dev;
3969 	core->of_node = np;
3970 	if (dev && dev->driver)
3971 		core->owner = dev->driver->owner;
3972 	core->hw = hw;
3973 	core->flags = init->flags;
3974 	core->num_parents = init->num_parents;
3975 	core->min_rate = 0;
3976 	core->max_rate = ULONG_MAX;
3977 
3978 	ret = clk_core_populate_parent_map(core, init);
3979 	if (ret)
3980 		goto fail_parents;
3981 
3982 	INIT_HLIST_HEAD(&core->clks);
3983 
3984 	/*
3985 	 * Don't call clk_hw_create_clk() here because that would pin the
3986 	 * provider module to itself and prevent it from ever being removed.
3987 	 */
3988 	hw->clk = alloc_clk(core, NULL, NULL);
3989 	if (IS_ERR(hw->clk)) {
3990 		ret = PTR_ERR(hw->clk);
3991 		goto fail_create_clk;
3992 	}
3993 
3994 	clk_core_link_consumer(core, hw->clk);
3995 
3996 	ret = __clk_core_init(core);
3997 	if (!ret)
3998 		return hw->clk;
3999 
4000 	clk_prepare_lock();
4001 	clk_core_unlink_consumer(hw->clk);
4002 	clk_prepare_unlock();
4003 
4004 	free_clk(hw->clk);
4005 	hw->clk = NULL;
4006 
4007 fail_create_clk:
4008 	clk_core_free_parent_map(core);
4009 fail_parents:
4010 fail_ops:
4011 	kfree_const(core->name);
4012 fail_name:
4013 	kfree(core);
4014 fail_out:
4015 	return ERR_PTR(ret);
4016 }
4017 
4018 /**
4019  * dev_or_parent_of_node() - Get device node of @dev or @dev's parent
4020  * @dev: Device to get device node of
4021  *
4022  * Return: device node pointer of @dev, or the device node pointer of
4023  * @dev->parent if dev doesn't have a device node, or NULL if neither
4024  * @dev or @dev->parent have a device node.
4025  */
dev_or_parent_of_node(struct device * dev)4026 static struct device_node *dev_or_parent_of_node(struct device *dev)
4027 {
4028 	struct device_node *np;
4029 
4030 	if (!dev)
4031 		return NULL;
4032 
4033 	np = dev_of_node(dev);
4034 	if (!np)
4035 		np = dev_of_node(dev->parent);
4036 
4037 	return np;
4038 }
4039 
4040 /**
4041  * clk_register - allocate a new clock, register it and return an opaque cookie
4042  * @dev: device that is registering this clock
4043  * @hw: link to hardware-specific clock data
4044  *
4045  * clk_register is the *deprecated* interface for populating the clock tree with
4046  * new clock nodes. Use clk_hw_register() instead.
4047  *
4048  * Returns: a pointer to the newly allocated struct clk which
4049  * cannot be dereferenced by driver code but may be used in conjunction with the
4050  * rest of the clock API.  In the event of an error clk_register will return an
4051  * error code; drivers must test for an error code after calling clk_register.
4052  */
clk_register(struct device * dev,struct clk_hw * hw)4053 struct clk *clk_register(struct device *dev, struct clk_hw *hw)
4054 {
4055 	return __clk_register(dev, dev_or_parent_of_node(dev), hw);
4056 }
4057 EXPORT_SYMBOL_GPL(clk_register);
4058 
4059 /**
4060  * clk_hw_register - register a clk_hw and return an error code
4061  * @dev: device that is registering this clock
4062  * @hw: link to hardware-specific clock data
4063  *
4064  * clk_hw_register is the primary interface for populating the clock tree with
4065  * new clock nodes. It returns an integer equal to zero indicating success or
4066  * less than zero indicating failure. Drivers must test for an error code after
4067  * calling clk_hw_register().
4068  */
clk_hw_register(struct device * dev,struct clk_hw * hw)4069 int clk_hw_register(struct device *dev, struct clk_hw *hw)
4070 {
4071 	return PTR_ERR_OR_ZERO(__clk_register(dev, dev_or_parent_of_node(dev),
4072 			       hw));
4073 }
4074 EXPORT_SYMBOL_GPL(clk_hw_register);
4075 
4076 /*
4077  * of_clk_hw_register - register a clk_hw and return an error code
4078  * @node: device_node of device that is registering this clock
4079  * @hw: link to hardware-specific clock data
4080  *
4081  * of_clk_hw_register() is the primary interface for populating the clock tree
4082  * with new clock nodes when a struct device is not available, but a struct
4083  * device_node is. It returns an integer equal to zero indicating success or
4084  * less than zero indicating failure. Drivers must test for an error code after
4085  * calling of_clk_hw_register().
4086  */
of_clk_hw_register(struct device_node * node,struct clk_hw * hw)4087 int of_clk_hw_register(struct device_node *node, struct clk_hw *hw)
4088 {
4089 	return PTR_ERR_OR_ZERO(__clk_register(NULL, node, hw));
4090 }
4091 EXPORT_SYMBOL_GPL(of_clk_hw_register);
4092 
4093 /* Free memory allocated for a clock. */
__clk_release(struct kref * ref)4094 static void __clk_release(struct kref *ref)
4095 {
4096 	struct clk_core *core = container_of(ref, struct clk_core, ref);
4097 
4098 	lockdep_assert_held(&prepare_lock);
4099 
4100 	clk_core_free_parent_map(core);
4101 	kfree_const(core->name);
4102 	kfree(core);
4103 }
4104 
4105 /*
4106  * Empty clk_ops for unregistered clocks. These are used temporarily
4107  * after clk_unregister() was called on a clock and until last clock
4108  * consumer calls clk_put() and the struct clk object is freed.
4109  */
clk_nodrv_prepare_enable(struct clk_hw * hw)4110 static int clk_nodrv_prepare_enable(struct clk_hw *hw)
4111 {
4112 	return -ENXIO;
4113 }
4114 
clk_nodrv_disable_unprepare(struct clk_hw * hw)4115 static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
4116 {
4117 	WARN_ON_ONCE(1);
4118 }
4119 
clk_nodrv_set_rate(struct clk_hw * hw,unsigned long rate,unsigned long parent_rate)4120 static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
4121 					unsigned long parent_rate)
4122 {
4123 	return -ENXIO;
4124 }
4125 
clk_nodrv_set_parent(struct clk_hw * hw,u8 index)4126 static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
4127 {
4128 	return -ENXIO;
4129 }
4130 
4131 static const struct clk_ops clk_nodrv_ops = {
4132 	.enable		= clk_nodrv_prepare_enable,
4133 	.disable	= clk_nodrv_disable_unprepare,
4134 	.prepare	= clk_nodrv_prepare_enable,
4135 	.unprepare	= clk_nodrv_disable_unprepare,
4136 	.set_rate	= clk_nodrv_set_rate,
4137 	.set_parent	= clk_nodrv_set_parent,
4138 };
4139 
clk_core_evict_parent_cache_subtree(struct clk_core * root,struct clk_core * target)4140 static void clk_core_evict_parent_cache_subtree(struct clk_core *root,
4141 						struct clk_core *target)
4142 {
4143 	int i;
4144 	struct clk_core *child;
4145 
4146 	for (i = 0; i < root->num_parents; i++)
4147 		if (root->parents[i].core == target)
4148 			root->parents[i].core = NULL;
4149 
4150 	hlist_for_each_entry(child, &root->children, child_node)
4151 		clk_core_evict_parent_cache_subtree(child, target);
4152 }
4153 
4154 /* Remove this clk from all parent caches */
clk_core_evict_parent_cache(struct clk_core * core)4155 static void clk_core_evict_parent_cache(struct clk_core *core)
4156 {
4157 	struct hlist_head **lists;
4158 	struct clk_core *root;
4159 
4160 	lockdep_assert_held(&prepare_lock);
4161 
4162 	for (lists = all_lists; *lists; lists++)
4163 		hlist_for_each_entry(root, *lists, child_node)
4164 			clk_core_evict_parent_cache_subtree(root, core);
4165 
4166 }
4167 
4168 /**
4169  * clk_unregister - unregister a currently registered clock
4170  * @clk: clock to unregister
4171  */
clk_unregister(struct clk * clk)4172 void clk_unregister(struct clk *clk)
4173 {
4174 	unsigned long flags;
4175 	const struct clk_ops *ops;
4176 
4177 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4178 		return;
4179 
4180 	clk_debug_unregister(clk->core);
4181 
4182 	clk_prepare_lock();
4183 
4184 	ops = clk->core->ops;
4185 	if (ops == &clk_nodrv_ops) {
4186 		pr_err("%s: unregistered clock: %s\n", __func__,
4187 		       clk->core->name);
4188 		goto unlock;
4189 	}
4190 	/*
4191 	 * Assign empty clock ops for consumers that might still hold
4192 	 * a reference to this clock.
4193 	 */
4194 	flags = clk_enable_lock();
4195 	clk->core->ops = &clk_nodrv_ops;
4196 	clk_enable_unlock(flags);
4197 
4198 	if (ops->terminate)
4199 		ops->terminate(clk->core->hw);
4200 
4201 	if (!hlist_empty(&clk->core->children)) {
4202 		struct clk_core *child;
4203 		struct hlist_node *t;
4204 
4205 		/* Reparent all children to the orphan list. */
4206 		hlist_for_each_entry_safe(child, t, &clk->core->children,
4207 					  child_node)
4208 			clk_core_set_parent_nolock(child, NULL);
4209 	}
4210 
4211 	clk_core_evict_parent_cache(clk->core);
4212 
4213 	hlist_del_init(&clk->core->child_node);
4214 
4215 	if (clk->core->prepare_count)
4216 		pr_warn("%s: unregistering prepared clock: %s\n",
4217 					__func__, clk->core->name);
4218 
4219 	if (clk->core->protect_count)
4220 		pr_warn("%s: unregistering protected clock: %s\n",
4221 					__func__, clk->core->name);
4222 
4223 	kref_put(&clk->core->ref, __clk_release);
4224 	free_clk(clk);
4225 unlock:
4226 	clk_prepare_unlock();
4227 }
4228 EXPORT_SYMBOL_GPL(clk_unregister);
4229 
4230 /**
4231  * clk_hw_unregister - unregister a currently registered clk_hw
4232  * @hw: hardware-specific clock data to unregister
4233  */
clk_hw_unregister(struct clk_hw * hw)4234 void clk_hw_unregister(struct clk_hw *hw)
4235 {
4236 	clk_unregister(hw->clk);
4237 }
4238 EXPORT_SYMBOL_GPL(clk_hw_unregister);
4239 
devm_clk_unregister_cb(struct device * dev,void * res)4240 static void devm_clk_unregister_cb(struct device *dev, void *res)
4241 {
4242 	clk_unregister(*(struct clk **)res);
4243 }
4244 
devm_clk_hw_unregister_cb(struct device * dev,void * res)4245 static void devm_clk_hw_unregister_cb(struct device *dev, void *res)
4246 {
4247 	clk_hw_unregister(*(struct clk_hw **)res);
4248 }
4249 
4250 /**
4251  * devm_clk_register - resource managed clk_register()
4252  * @dev: device that is registering this clock
4253  * @hw: link to hardware-specific clock data
4254  *
4255  * Managed clk_register(). This function is *deprecated*, use devm_clk_hw_register() instead.
4256  *
4257  * Clocks returned from this function are automatically clk_unregister()ed on
4258  * driver detach. See clk_register() for more information.
4259  */
devm_clk_register(struct device * dev,struct clk_hw * hw)4260 struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
4261 {
4262 	struct clk *clk;
4263 	struct clk **clkp;
4264 
4265 	clkp = devres_alloc(devm_clk_unregister_cb, sizeof(*clkp), GFP_KERNEL);
4266 	if (!clkp)
4267 		return ERR_PTR(-ENOMEM);
4268 
4269 	clk = clk_register(dev, hw);
4270 	if (!IS_ERR(clk)) {
4271 		*clkp = clk;
4272 		devres_add(dev, clkp);
4273 	} else {
4274 		devres_free(clkp);
4275 	}
4276 
4277 	return clk;
4278 }
4279 EXPORT_SYMBOL_GPL(devm_clk_register);
4280 
4281 /**
4282  * devm_clk_hw_register - resource managed clk_hw_register()
4283  * @dev: device that is registering this clock
4284  * @hw: link to hardware-specific clock data
4285  *
4286  * Managed clk_hw_register(). Clocks registered by this function are
4287  * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
4288  * for more information.
4289  */
devm_clk_hw_register(struct device * dev,struct clk_hw * hw)4290 int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
4291 {
4292 	struct clk_hw **hwp;
4293 	int ret;
4294 
4295 	hwp = devres_alloc(devm_clk_hw_unregister_cb, sizeof(*hwp), GFP_KERNEL);
4296 	if (!hwp)
4297 		return -ENOMEM;
4298 
4299 	ret = clk_hw_register(dev, hw);
4300 	if (!ret) {
4301 		*hwp = hw;
4302 		devres_add(dev, hwp);
4303 	} else {
4304 		devres_free(hwp);
4305 	}
4306 
4307 	return ret;
4308 }
4309 EXPORT_SYMBOL_GPL(devm_clk_hw_register);
4310 
devm_clk_match(struct device * dev,void * res,void * data)4311 static int devm_clk_match(struct device *dev, void *res, void *data)
4312 {
4313 	struct clk *c = res;
4314 	if (WARN_ON(!c))
4315 		return 0;
4316 	return c == data;
4317 }
4318 
devm_clk_hw_match(struct device * dev,void * res,void * data)4319 static int devm_clk_hw_match(struct device *dev, void *res, void *data)
4320 {
4321 	struct clk_hw *hw = res;
4322 
4323 	if (WARN_ON(!hw))
4324 		return 0;
4325 	return hw == data;
4326 }
4327 
4328 /**
4329  * devm_clk_unregister - resource managed clk_unregister()
4330  * @dev: device that is unregistering the clock data
4331  * @clk: clock to unregister
4332  *
4333  * Deallocate a clock allocated with devm_clk_register(). Normally
4334  * this function will not need to be called and the resource management
4335  * code will ensure that the resource is freed.
4336  */
devm_clk_unregister(struct device * dev,struct clk * clk)4337 void devm_clk_unregister(struct device *dev, struct clk *clk)
4338 {
4339 	WARN_ON(devres_release(dev, devm_clk_unregister_cb, devm_clk_match, clk));
4340 }
4341 EXPORT_SYMBOL_GPL(devm_clk_unregister);
4342 
4343 /**
4344  * devm_clk_hw_unregister - resource managed clk_hw_unregister()
4345  * @dev: device that is unregistering the hardware-specific clock data
4346  * @hw: link to hardware-specific clock data
4347  *
4348  * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
4349  * this function will not need to be called and the resource management
4350  * code will ensure that the resource is freed.
4351  */
devm_clk_hw_unregister(struct device * dev,struct clk_hw * hw)4352 void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
4353 {
4354 	WARN_ON(devres_release(dev, devm_clk_hw_unregister_cb, devm_clk_hw_match,
4355 				hw));
4356 }
4357 EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
4358 
devm_clk_release(struct device * dev,void * res)4359 static void devm_clk_release(struct device *dev, void *res)
4360 {
4361 	clk_put(*(struct clk **)res);
4362 }
4363 
4364 /**
4365  * devm_clk_hw_get_clk - resource managed clk_hw_get_clk()
4366  * @dev: device that is registering this clock
4367  * @hw: clk_hw associated with the clk being consumed
4368  * @con_id: connection ID string on device
4369  *
4370  * Managed clk_hw_get_clk(). Clocks got with this function are
4371  * automatically clk_put() on driver detach. See clk_put()
4372  * for more information.
4373  */
devm_clk_hw_get_clk(struct device * dev,struct clk_hw * hw,const char * con_id)4374 struct clk *devm_clk_hw_get_clk(struct device *dev, struct clk_hw *hw,
4375 				const char *con_id)
4376 {
4377 	struct clk *clk;
4378 	struct clk **clkp;
4379 
4380 	/* This should not happen because it would mean we have drivers
4381 	 * passing around clk_hw pointers instead of having the caller use
4382 	 * proper clk_get() style APIs
4383 	 */
4384 	WARN_ON_ONCE(dev != hw->core->dev);
4385 
4386 	clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
4387 	if (!clkp)
4388 		return ERR_PTR(-ENOMEM);
4389 
4390 	clk = clk_hw_get_clk(hw, con_id);
4391 	if (!IS_ERR(clk)) {
4392 		*clkp = clk;
4393 		devres_add(dev, clkp);
4394 	} else {
4395 		devres_free(clkp);
4396 	}
4397 
4398 	return clk;
4399 }
4400 EXPORT_SYMBOL_GPL(devm_clk_hw_get_clk);
4401 
4402 /*
4403  * clkdev helpers
4404  */
4405 
__clk_put(struct clk * clk)4406 void __clk_put(struct clk *clk)
4407 {
4408 	struct module *owner;
4409 
4410 	if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
4411 		return;
4412 
4413 	clk_prepare_lock();
4414 
4415 	/*
4416 	 * Before calling clk_put, all calls to clk_rate_exclusive_get() from a
4417 	 * given user should be balanced with calls to clk_rate_exclusive_put()
4418 	 * and by that same consumer
4419 	 */
4420 	if (WARN_ON(clk->exclusive_count)) {
4421 		/* We voiced our concern, let's sanitize the situation */
4422 		clk->core->protect_count -= (clk->exclusive_count - 1);
4423 		clk_core_rate_unprotect(clk->core);
4424 		clk->exclusive_count = 0;
4425 	}
4426 
4427 	hlist_del(&clk->clks_node);
4428 	if (clk->min_rate > clk->core->req_rate ||
4429 	    clk->max_rate < clk->core->req_rate)
4430 		clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
4431 
4432 	owner = clk->core->owner;
4433 	kref_put(&clk->core->ref, __clk_release);
4434 
4435 	clk_prepare_unlock();
4436 
4437 	module_put(owner);
4438 
4439 	free_clk(clk);
4440 }
4441 
4442 /***        clk rate change notifiers        ***/
4443 
4444 /**
4445  * clk_notifier_register - add a clk rate change notifier
4446  * @clk: struct clk * to watch
4447  * @nb: struct notifier_block * with callback info
4448  *
4449  * Request notification when clk's rate changes.  This uses an SRCU
4450  * notifier because we want it to block and notifier unregistrations are
4451  * uncommon.  The callbacks associated with the notifier must not
4452  * re-enter into the clk framework by calling any top-level clk APIs;
4453  * this will cause a nested prepare_lock mutex.
4454  *
4455  * In all notification cases (pre, post and abort rate change) the original
4456  * clock rate is passed to the callback via struct clk_notifier_data.old_rate
4457  * and the new frequency is passed via struct clk_notifier_data.new_rate.
4458  *
4459  * clk_notifier_register() must be called from non-atomic context.
4460  * Returns -EINVAL if called with null arguments, -ENOMEM upon
4461  * allocation failure; otherwise, passes along the return value of
4462  * srcu_notifier_chain_register().
4463  */
clk_notifier_register(struct clk * clk,struct notifier_block * nb)4464 int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
4465 {
4466 	struct clk_notifier *cn;
4467 	int ret = -ENOMEM;
4468 
4469 	if (!clk || !nb)
4470 		return -EINVAL;
4471 
4472 	clk_prepare_lock();
4473 
4474 	/* search the list of notifiers for this clk */
4475 	list_for_each_entry(cn, &clk_notifier_list, node)
4476 		if (cn->clk == clk)
4477 			goto found;
4478 
4479 	/* if clk wasn't in the notifier list, allocate new clk_notifier */
4480 	cn = kzalloc(sizeof(*cn), GFP_KERNEL);
4481 	if (!cn)
4482 		goto out;
4483 
4484 	cn->clk = clk;
4485 	srcu_init_notifier_head(&cn->notifier_head);
4486 
4487 	list_add(&cn->node, &clk_notifier_list);
4488 
4489 found:
4490 	ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
4491 
4492 	clk->core->notifier_count++;
4493 
4494 out:
4495 	clk_prepare_unlock();
4496 
4497 	return ret;
4498 }
4499 EXPORT_SYMBOL_GPL(clk_notifier_register);
4500 
4501 /**
4502  * clk_notifier_unregister - remove a clk rate change notifier
4503  * @clk: struct clk *
4504  * @nb: struct notifier_block * with callback info
4505  *
4506  * Request no further notification for changes to 'clk' and frees memory
4507  * allocated in clk_notifier_register.
4508  *
4509  * Returns -EINVAL if called with null arguments; otherwise, passes
4510  * along the return value of srcu_notifier_chain_unregister().
4511  */
clk_notifier_unregister(struct clk * clk,struct notifier_block * nb)4512 int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
4513 {
4514 	struct clk_notifier *cn;
4515 	int ret = -ENOENT;
4516 
4517 	if (!clk || !nb)
4518 		return -EINVAL;
4519 
4520 	clk_prepare_lock();
4521 
4522 	list_for_each_entry(cn, &clk_notifier_list, node) {
4523 		if (cn->clk == clk) {
4524 			ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
4525 
4526 			clk->core->notifier_count--;
4527 
4528 			/* XXX the notifier code should handle this better */
4529 			if (!cn->notifier_head.head) {
4530 				srcu_cleanup_notifier_head(&cn->notifier_head);
4531 				list_del(&cn->node);
4532 				kfree(cn);
4533 			}
4534 			break;
4535 		}
4536 	}
4537 
4538 	clk_prepare_unlock();
4539 
4540 	return ret;
4541 }
4542 EXPORT_SYMBOL_GPL(clk_notifier_unregister);
4543 
4544 struct clk_notifier_devres {
4545 	struct clk *clk;
4546 	struct notifier_block *nb;
4547 };
4548 
devm_clk_notifier_release(struct device * dev,void * res)4549 static void devm_clk_notifier_release(struct device *dev, void *res)
4550 {
4551 	struct clk_notifier_devres *devres = res;
4552 
4553 	clk_notifier_unregister(devres->clk, devres->nb);
4554 }
4555 
devm_clk_notifier_register(struct device * dev,struct clk * clk,struct notifier_block * nb)4556 int devm_clk_notifier_register(struct device *dev, struct clk *clk,
4557 			       struct notifier_block *nb)
4558 {
4559 	struct clk_notifier_devres *devres;
4560 	int ret;
4561 
4562 	devres = devres_alloc(devm_clk_notifier_release,
4563 			      sizeof(*devres), GFP_KERNEL);
4564 
4565 	if (!devres)
4566 		return -ENOMEM;
4567 
4568 	ret = clk_notifier_register(clk, nb);
4569 	if (!ret) {
4570 		devres->clk = clk;
4571 		devres->nb = nb;
4572 	} else {
4573 		devres_free(devres);
4574 	}
4575 
4576 	return ret;
4577 }
4578 EXPORT_SYMBOL_GPL(devm_clk_notifier_register);
4579 
4580 #ifdef CONFIG_OF
clk_core_reparent_orphans(void)4581 static void clk_core_reparent_orphans(void)
4582 {
4583 	clk_prepare_lock();
4584 	clk_core_reparent_orphans_nolock();
4585 	clk_prepare_unlock();
4586 }
4587 
4588 /**
4589  * struct of_clk_provider - Clock provider registration structure
4590  * @link: Entry in global list of clock providers
4591  * @node: Pointer to device tree node of clock provider
4592  * @get: Get clock callback.  Returns NULL or a struct clk for the
4593  *       given clock specifier
4594  * @get_hw: Get clk_hw callback.  Returns NULL, ERR_PTR or a
4595  *       struct clk_hw for the given clock specifier
4596  * @data: context pointer to be passed into @get callback
4597  */
4598 struct of_clk_provider {
4599 	struct list_head link;
4600 
4601 	struct device_node *node;
4602 	struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
4603 	struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
4604 	void *data;
4605 };
4606 
4607 extern struct of_device_id __clk_of_table;
4608 static const struct of_device_id __clk_of_table_sentinel
4609 	__used __section("__clk_of_table_end");
4610 
4611 static LIST_HEAD(of_clk_providers);
4612 static DEFINE_MUTEX(of_clk_mutex);
4613 
of_clk_src_simple_get(struct of_phandle_args * clkspec,void * data)4614 struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
4615 				     void *data)
4616 {
4617 	return data;
4618 }
4619 EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
4620 
of_clk_hw_simple_get(struct of_phandle_args * clkspec,void * data)4621 struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
4622 {
4623 	return data;
4624 }
4625 EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
4626 
of_clk_src_onecell_get(struct of_phandle_args * clkspec,void * data)4627 struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
4628 {
4629 	struct clk_onecell_data *clk_data = data;
4630 	unsigned int idx = clkspec->args[0];
4631 
4632 	if (idx >= clk_data->clk_num) {
4633 		pr_err("%s: invalid clock index %u\n", __func__, idx);
4634 		return ERR_PTR(-EINVAL);
4635 	}
4636 
4637 	return clk_data->clks[idx];
4638 }
4639 EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
4640 
4641 struct clk_hw *
of_clk_hw_onecell_get(struct of_phandle_args * clkspec,void * data)4642 of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
4643 {
4644 	struct clk_hw_onecell_data *hw_data = data;
4645 	unsigned int idx = clkspec->args[0];
4646 
4647 	if (idx >= hw_data->num) {
4648 		pr_err("%s: invalid index %u\n", __func__, idx);
4649 		return ERR_PTR(-EINVAL);
4650 	}
4651 
4652 	return hw_data->hws[idx];
4653 }
4654 EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
4655 
4656 /**
4657  * of_clk_add_provider() - Register a clock provider for a node
4658  * @np: Device node pointer associated with clock provider
4659  * @clk_src_get: callback for decoding clock
4660  * @data: context pointer for @clk_src_get callback.
4661  *
4662  * This function is *deprecated*. Use of_clk_add_hw_provider() instead.
4663  */
of_clk_add_provider(struct device_node * np,struct clk * (* clk_src_get)(struct of_phandle_args * clkspec,void * data),void * data)4664 int of_clk_add_provider(struct device_node *np,
4665 			struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
4666 						   void *data),
4667 			void *data)
4668 {
4669 	struct of_clk_provider *cp;
4670 	int ret;
4671 
4672 	if (!np)
4673 		return 0;
4674 
4675 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4676 	if (!cp)
4677 		return -ENOMEM;
4678 
4679 	cp->node = of_node_get(np);
4680 	cp->data = data;
4681 	cp->get = clk_src_get;
4682 
4683 	mutex_lock(&of_clk_mutex);
4684 	list_add(&cp->link, &of_clk_providers);
4685 	mutex_unlock(&of_clk_mutex);
4686 	pr_debug("Added clock from %pOF\n", np);
4687 
4688 	clk_core_reparent_orphans();
4689 
4690 	ret = of_clk_set_defaults(np, true);
4691 	if (ret < 0)
4692 		of_clk_del_provider(np);
4693 
4694 	fwnode_dev_initialized(&np->fwnode, true);
4695 
4696 	return ret;
4697 }
4698 EXPORT_SYMBOL_GPL(of_clk_add_provider);
4699 
4700 /**
4701  * of_clk_add_hw_provider() - Register a clock provider for a node
4702  * @np: Device node pointer associated with clock provider
4703  * @get: callback for decoding clk_hw
4704  * @data: context pointer for @get callback.
4705  */
of_clk_add_hw_provider(struct device_node * np,struct clk_hw * (* get)(struct of_phandle_args * clkspec,void * data),void * data)4706 int of_clk_add_hw_provider(struct device_node *np,
4707 			   struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4708 						 void *data),
4709 			   void *data)
4710 {
4711 	struct of_clk_provider *cp;
4712 	int ret;
4713 
4714 	if (!np)
4715 		return 0;
4716 
4717 	cp = kzalloc(sizeof(*cp), GFP_KERNEL);
4718 	if (!cp)
4719 		return -ENOMEM;
4720 
4721 	cp->node = of_node_get(np);
4722 	cp->data = data;
4723 	cp->get_hw = get;
4724 
4725 	mutex_lock(&of_clk_mutex);
4726 	list_add(&cp->link, &of_clk_providers);
4727 	mutex_unlock(&of_clk_mutex);
4728 	pr_debug("Added clk_hw provider from %pOF\n", np);
4729 
4730 	clk_core_reparent_orphans();
4731 
4732 	ret = of_clk_set_defaults(np, true);
4733 	if (ret < 0)
4734 		of_clk_del_provider(np);
4735 
4736 	return ret;
4737 }
4738 EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
4739 
devm_of_clk_release_provider(struct device * dev,void * res)4740 static void devm_of_clk_release_provider(struct device *dev, void *res)
4741 {
4742 	of_clk_del_provider(*(struct device_node **)res);
4743 }
4744 
4745 /*
4746  * We allow a child device to use its parent device as the clock provider node
4747  * for cases like MFD sub-devices where the child device driver wants to use
4748  * devm_*() APIs but not list the device in DT as a sub-node.
4749  */
get_clk_provider_node(struct device * dev)4750 static struct device_node *get_clk_provider_node(struct device *dev)
4751 {
4752 	struct device_node *np, *parent_np;
4753 
4754 	np = dev->of_node;
4755 	parent_np = dev->parent ? dev->parent->of_node : NULL;
4756 
4757 	if (!of_find_property(np, "#clock-cells", NULL))
4758 		if (of_find_property(parent_np, "#clock-cells", NULL))
4759 			np = parent_np;
4760 
4761 	return np;
4762 }
4763 
4764 /**
4765  * devm_of_clk_add_hw_provider() - Managed clk provider node registration
4766  * @dev: Device acting as the clock provider (used for DT node and lifetime)
4767  * @get: callback for decoding clk_hw
4768  * @data: context pointer for @get callback
4769  *
4770  * Registers clock provider for given device's node. If the device has no DT
4771  * node or if the device node lacks of clock provider information (#clock-cells)
4772  * then the parent device's node is scanned for this information. If parent node
4773  * has the #clock-cells then it is used in registration. Provider is
4774  * automatically released at device exit.
4775  *
4776  * Return: 0 on success or an errno on failure.
4777  */
devm_of_clk_add_hw_provider(struct device * dev,struct clk_hw * (* get)(struct of_phandle_args * clkspec,void * data),void * data)4778 int devm_of_clk_add_hw_provider(struct device *dev,
4779 			struct clk_hw *(*get)(struct of_phandle_args *clkspec,
4780 					      void *data),
4781 			void *data)
4782 {
4783 	struct device_node **ptr, *np;
4784 	int ret;
4785 
4786 	ptr = devres_alloc(devm_of_clk_release_provider, sizeof(*ptr),
4787 			   GFP_KERNEL);
4788 	if (!ptr)
4789 		return -ENOMEM;
4790 
4791 	np = get_clk_provider_node(dev);
4792 	ret = of_clk_add_hw_provider(np, get, data);
4793 	if (!ret) {
4794 		*ptr = np;
4795 		devres_add(dev, ptr);
4796 	} else {
4797 		devres_free(ptr);
4798 	}
4799 
4800 	return ret;
4801 }
4802 EXPORT_SYMBOL_GPL(devm_of_clk_add_hw_provider);
4803 
4804 /**
4805  * of_clk_del_provider() - Remove a previously registered clock provider
4806  * @np: Device node pointer associated with clock provider
4807  */
of_clk_del_provider(struct device_node * np)4808 void of_clk_del_provider(struct device_node *np)
4809 {
4810 	struct of_clk_provider *cp;
4811 
4812 	if (!np)
4813 		return;
4814 
4815 	mutex_lock(&of_clk_mutex);
4816 	list_for_each_entry(cp, &of_clk_providers, link) {
4817 		if (cp->node == np) {
4818 			list_del(&cp->link);
4819 			fwnode_dev_initialized(&np->fwnode, false);
4820 			of_node_put(cp->node);
4821 			kfree(cp);
4822 			break;
4823 		}
4824 	}
4825 	mutex_unlock(&of_clk_mutex);
4826 }
4827 EXPORT_SYMBOL_GPL(of_clk_del_provider);
4828 
devm_clk_provider_match(struct device * dev,void * res,void * data)4829 static int devm_clk_provider_match(struct device *dev, void *res, void *data)
4830 {
4831 	struct device_node **np = res;
4832 
4833 	if (WARN_ON(!np || !*np))
4834 		return 0;
4835 
4836 	return *np == data;
4837 }
4838 
4839 /**
4840  * devm_of_clk_del_provider() - Remove clock provider registered using devm
4841  * @dev: Device to whose lifetime the clock provider was bound
4842  */
devm_of_clk_del_provider(struct device * dev)4843 void devm_of_clk_del_provider(struct device *dev)
4844 {
4845 	int ret;
4846 	struct device_node *np = get_clk_provider_node(dev);
4847 
4848 	ret = devres_release(dev, devm_of_clk_release_provider,
4849 			     devm_clk_provider_match, np);
4850 
4851 	WARN_ON(ret);
4852 }
4853 EXPORT_SYMBOL(devm_of_clk_del_provider);
4854 
4855 /**
4856  * of_parse_clkspec() - Parse a DT clock specifier for a given device node
4857  * @np: device node to parse clock specifier from
4858  * @index: index of phandle to parse clock out of. If index < 0, @name is used
4859  * @name: clock name to find and parse. If name is NULL, the index is used
4860  * @out_args: Result of parsing the clock specifier
4861  *
4862  * Parses a device node's "clocks" and "clock-names" properties to find the
4863  * phandle and cells for the index or name that is desired. The resulting clock
4864  * specifier is placed into @out_args, or an errno is returned when there's a
4865  * parsing error. The @index argument is ignored if @name is non-NULL.
4866  *
4867  * Example:
4868  *
4869  * phandle1: clock-controller@1 {
4870  *	#clock-cells = <2>;
4871  * }
4872  *
4873  * phandle2: clock-controller@2 {
4874  *	#clock-cells = <1>;
4875  * }
4876  *
4877  * clock-consumer@3 {
4878  *	clocks = <&phandle1 1 2 &phandle2 3>;
4879  *	clock-names = "name1", "name2";
4880  * }
4881  *
4882  * To get a device_node for `clock-controller@2' node you may call this
4883  * function a few different ways:
4884  *
4885  *   of_parse_clkspec(clock-consumer@3, -1, "name2", &args);
4886  *   of_parse_clkspec(clock-consumer@3, 1, NULL, &args);
4887  *   of_parse_clkspec(clock-consumer@3, 1, "name2", &args);
4888  *
4889  * Return: 0 upon successfully parsing the clock specifier. Otherwise, -ENOENT
4890  * if @name is NULL or -EINVAL if @name is non-NULL and it can't be found in
4891  * the "clock-names" property of @np.
4892  */
of_parse_clkspec(const struct device_node * np,int index,const char * name,struct of_phandle_args * out_args)4893 static int of_parse_clkspec(const struct device_node *np, int index,
4894 			    const char *name, struct of_phandle_args *out_args)
4895 {
4896 	int ret = -ENOENT;
4897 
4898 	/* Walk up the tree of devices looking for a clock property that matches */
4899 	while (np) {
4900 		/*
4901 		 * For named clocks, first look up the name in the
4902 		 * "clock-names" property.  If it cannot be found, then index
4903 		 * will be an error code and of_parse_phandle_with_args() will
4904 		 * return -EINVAL.
4905 		 */
4906 		if (name)
4907 			index = of_property_match_string(np, "clock-names", name);
4908 		ret = of_parse_phandle_with_args(np, "clocks", "#clock-cells",
4909 						 index, out_args);
4910 		if (!ret)
4911 			break;
4912 		if (name && index >= 0)
4913 			break;
4914 
4915 		/*
4916 		 * No matching clock found on this node.  If the parent node
4917 		 * has a "clock-ranges" property, then we can try one of its
4918 		 * clocks.
4919 		 */
4920 		np = np->parent;
4921 		if (np && !of_get_property(np, "clock-ranges", NULL))
4922 			break;
4923 		index = 0;
4924 	}
4925 
4926 	return ret;
4927 }
4928 
4929 static struct clk_hw *
__of_clk_get_hw_from_provider(struct of_clk_provider * provider,struct of_phandle_args * clkspec)4930 __of_clk_get_hw_from_provider(struct of_clk_provider *provider,
4931 			      struct of_phandle_args *clkspec)
4932 {
4933 	struct clk *clk;
4934 
4935 	if (provider->get_hw)
4936 		return provider->get_hw(clkspec, provider->data);
4937 
4938 	clk = provider->get(clkspec, provider->data);
4939 	if (IS_ERR(clk))
4940 		return ERR_CAST(clk);
4941 	return __clk_get_hw(clk);
4942 }
4943 
4944 static struct clk_hw *
of_clk_get_hw_from_clkspec(struct of_phandle_args * clkspec)4945 of_clk_get_hw_from_clkspec(struct of_phandle_args *clkspec)
4946 {
4947 	struct of_clk_provider *provider;
4948 	struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
4949 
4950 	if (!clkspec)
4951 		return ERR_PTR(-EINVAL);
4952 
4953 	mutex_lock(&of_clk_mutex);
4954 	list_for_each_entry(provider, &of_clk_providers, link) {
4955 		if (provider->node == clkspec->np) {
4956 			hw = __of_clk_get_hw_from_provider(provider, clkspec);
4957 			if (!IS_ERR(hw))
4958 				break;
4959 		}
4960 	}
4961 	mutex_unlock(&of_clk_mutex);
4962 
4963 	return hw;
4964 }
4965 
4966 /**
4967  * of_clk_get_from_provider() - Lookup a clock from a clock provider
4968  * @clkspec: pointer to a clock specifier data structure
4969  *
4970  * This function looks up a struct clk from the registered list of clock
4971  * providers, an input is a clock specifier data structure as returned
4972  * from the of_parse_phandle_with_args() function call.
4973  */
of_clk_get_from_provider(struct of_phandle_args * clkspec)4974 struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
4975 {
4976 	struct clk_hw *hw = of_clk_get_hw_from_clkspec(clkspec);
4977 
4978 	return clk_hw_create_clk(NULL, hw, NULL, __func__);
4979 }
4980 EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
4981 
of_clk_get_hw(struct device_node * np,int index,const char * con_id)4982 struct clk_hw *of_clk_get_hw(struct device_node *np, int index,
4983 			     const char *con_id)
4984 {
4985 	int ret;
4986 	struct clk_hw *hw;
4987 	struct of_phandle_args clkspec;
4988 
4989 	ret = of_parse_clkspec(np, index, con_id, &clkspec);
4990 	if (ret)
4991 		return ERR_PTR(ret);
4992 
4993 	hw = of_clk_get_hw_from_clkspec(&clkspec);
4994 	of_node_put(clkspec.np);
4995 
4996 	return hw;
4997 }
4998 
__of_clk_get(struct device_node * np,int index,const char * dev_id,const char * con_id)4999 static struct clk *__of_clk_get(struct device_node *np,
5000 				int index, const char *dev_id,
5001 				const char *con_id)
5002 {
5003 	struct clk_hw *hw = of_clk_get_hw(np, index, con_id);
5004 
5005 	return clk_hw_create_clk(NULL, hw, dev_id, con_id);
5006 }
5007 
of_clk_get(struct device_node * np,int index)5008 struct clk *of_clk_get(struct device_node *np, int index)
5009 {
5010 	return __of_clk_get(np, index, np->full_name, NULL);
5011 }
5012 EXPORT_SYMBOL(of_clk_get);
5013 
5014 /**
5015  * of_clk_get_by_name() - Parse and lookup a clock referenced by a device node
5016  * @np: pointer to clock consumer node
5017  * @name: name of consumer's clock input, or NULL for the first clock reference
5018  *
5019  * This function parses the clocks and clock-names properties,
5020  * and uses them to look up the struct clk from the registered list of clock
5021  * providers.
5022  */
of_clk_get_by_name(struct device_node * np,const char * name)5023 struct clk *of_clk_get_by_name(struct device_node *np, const char *name)
5024 {
5025 	if (!np)
5026 		return ERR_PTR(-ENOENT);
5027 
5028 	return __of_clk_get(np, 0, np->full_name, name);
5029 }
5030 EXPORT_SYMBOL(of_clk_get_by_name);
5031 
5032 /**
5033  * of_clk_get_parent_count() - Count the number of clocks a device node has
5034  * @np: device node to count
5035  *
5036  * Returns: The number of clocks that are possible parents of this node
5037  */
of_clk_get_parent_count(const struct device_node * np)5038 unsigned int of_clk_get_parent_count(const struct device_node *np)
5039 {
5040 	int count;
5041 
5042 	count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
5043 	if (count < 0)
5044 		return 0;
5045 
5046 	return count;
5047 }
5048 EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
5049 
of_clk_get_parent_name(const struct device_node * np,int index)5050 const char *of_clk_get_parent_name(const struct device_node *np, int index)
5051 {
5052 	struct of_phandle_args clkspec;
5053 	struct property *prop;
5054 	const char *clk_name;
5055 	const __be32 *vp;
5056 	u32 pv;
5057 	int rc;
5058 	int count;
5059 	struct clk *clk;
5060 
5061 	rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
5062 					&clkspec);
5063 	if (rc)
5064 		return NULL;
5065 
5066 	index = clkspec.args_count ? clkspec.args[0] : 0;
5067 	count = 0;
5068 
5069 	/* if there is an indices property, use it to transfer the index
5070 	 * specified into an array offset for the clock-output-names property.
5071 	 */
5072 	of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
5073 		if (index == pv) {
5074 			index = count;
5075 			break;
5076 		}
5077 		count++;
5078 	}
5079 	/* We went off the end of 'clock-indices' without finding it */
5080 	if (prop && !vp)
5081 		return NULL;
5082 
5083 	if (of_property_read_string_index(clkspec.np, "clock-output-names",
5084 					  index,
5085 					  &clk_name) < 0) {
5086 		/*
5087 		 * Best effort to get the name if the clock has been
5088 		 * registered with the framework. If the clock isn't
5089 		 * registered, we return the node name as the name of
5090 		 * the clock as long as #clock-cells = 0.
5091 		 */
5092 		clk = of_clk_get_from_provider(&clkspec);
5093 		if (IS_ERR(clk)) {
5094 			if (clkspec.args_count == 0)
5095 				clk_name = clkspec.np->name;
5096 			else
5097 				clk_name = NULL;
5098 		} else {
5099 			clk_name = __clk_get_name(clk);
5100 			clk_put(clk);
5101 		}
5102 	}
5103 
5104 
5105 	of_node_put(clkspec.np);
5106 	return clk_name;
5107 }
5108 EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
5109 
5110 /**
5111  * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
5112  * number of parents
5113  * @np: Device node pointer associated with clock provider
5114  * @parents: pointer to char array that hold the parents' names
5115  * @size: size of the @parents array
5116  *
5117  * Return: number of parents for the clock node.
5118  */
of_clk_parent_fill(struct device_node * np,const char ** parents,unsigned int size)5119 int of_clk_parent_fill(struct device_node *np, const char **parents,
5120 		       unsigned int size)
5121 {
5122 	unsigned int i = 0;
5123 
5124 	while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
5125 		i++;
5126 
5127 	return i;
5128 }
5129 EXPORT_SYMBOL_GPL(of_clk_parent_fill);
5130 
5131 struct clock_provider {
5132 	void (*clk_init_cb)(struct device_node *);
5133 	struct device_node *np;
5134 	struct list_head node;
5135 };
5136 
5137 /*
5138  * This function looks for a parent clock. If there is one, then it
5139  * checks that the provider for this parent clock was initialized, in
5140  * this case the parent clock will be ready.
5141  */
parent_ready(struct device_node * np)5142 static int parent_ready(struct device_node *np)
5143 {
5144 	int i = 0;
5145 
5146 	while (true) {
5147 		struct clk *clk = of_clk_get(np, i);
5148 
5149 		/* this parent is ready we can check the next one */
5150 		if (!IS_ERR(clk)) {
5151 			clk_put(clk);
5152 			i++;
5153 			continue;
5154 		}
5155 
5156 		/* at least one parent is not ready, we exit now */
5157 		if (PTR_ERR(clk) == -EPROBE_DEFER)
5158 			return 0;
5159 
5160 		/*
5161 		 * Here we make assumption that the device tree is
5162 		 * written correctly. So an error means that there is
5163 		 * no more parent. As we didn't exit yet, then the
5164 		 * previous parent are ready. If there is no clock
5165 		 * parent, no need to wait for them, then we can
5166 		 * consider their absence as being ready
5167 		 */
5168 		return 1;
5169 	}
5170 }
5171 
5172 /**
5173  * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
5174  * @np: Device node pointer associated with clock provider
5175  * @index: clock index
5176  * @flags: pointer to top-level framework flags
5177  *
5178  * Detects if the clock-critical property exists and, if so, sets the
5179  * corresponding CLK_IS_CRITICAL flag.
5180  *
5181  * Do not use this function. It exists only for legacy Device Tree
5182  * bindings, such as the one-clock-per-node style that are outdated.
5183  * Those bindings typically put all clock data into .dts and the Linux
5184  * driver has no clock data, thus making it impossible to set this flag
5185  * correctly from the driver. Only those drivers may call
5186  * of_clk_detect_critical from their setup functions.
5187  *
5188  * Return: error code or zero on success
5189  */
of_clk_detect_critical(struct device_node * np,int index,unsigned long * flags)5190 int of_clk_detect_critical(struct device_node *np, int index,
5191 			   unsigned long *flags)
5192 {
5193 	struct property *prop;
5194 	const __be32 *cur;
5195 	uint32_t idx;
5196 
5197 	if (!np || !flags)
5198 		return -EINVAL;
5199 
5200 	of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
5201 		if (index == idx)
5202 			*flags |= CLK_IS_CRITICAL;
5203 
5204 	return 0;
5205 }
5206 
5207 /**
5208  * of_clk_init() - Scan and init clock providers from the DT
5209  * @matches: array of compatible values and init functions for providers.
5210  *
5211  * This function scans the device tree for matching clock providers
5212  * and calls their initialization functions. It also does it by trying
5213  * to follow the dependencies.
5214  */
of_clk_init(const struct of_device_id * matches)5215 void __init of_clk_init(const struct of_device_id *matches)
5216 {
5217 	const struct of_device_id *match;
5218 	struct device_node *np;
5219 	struct clock_provider *clk_provider, *next;
5220 	bool is_init_done;
5221 	bool force = false;
5222 	LIST_HEAD(clk_provider_list);
5223 
5224 	if (!matches)
5225 		matches = &__clk_of_table;
5226 
5227 	/* First prepare the list of the clocks providers */
5228 	for_each_matching_node_and_match(np, matches, &match) {
5229 		struct clock_provider *parent;
5230 
5231 		if (!of_device_is_available(np))
5232 			continue;
5233 
5234 		parent = kzalloc(sizeof(*parent), GFP_KERNEL);
5235 		if (!parent) {
5236 			list_for_each_entry_safe(clk_provider, next,
5237 						 &clk_provider_list, node) {
5238 				list_del(&clk_provider->node);
5239 				of_node_put(clk_provider->np);
5240 				kfree(clk_provider);
5241 			}
5242 			of_node_put(np);
5243 			return;
5244 		}
5245 
5246 		parent->clk_init_cb = match->data;
5247 		parent->np = of_node_get(np);
5248 		list_add_tail(&parent->node, &clk_provider_list);
5249 	}
5250 
5251 	while (!list_empty(&clk_provider_list)) {
5252 		is_init_done = false;
5253 		list_for_each_entry_safe(clk_provider, next,
5254 					&clk_provider_list, node) {
5255 			if (force || parent_ready(clk_provider->np)) {
5256 
5257 				/* Don't populate platform devices */
5258 				of_node_set_flag(clk_provider->np,
5259 						 OF_POPULATED);
5260 
5261 				clk_provider->clk_init_cb(clk_provider->np);
5262 				of_clk_set_defaults(clk_provider->np, true);
5263 
5264 				list_del(&clk_provider->node);
5265 				of_node_put(clk_provider->np);
5266 				kfree(clk_provider);
5267 				is_init_done = true;
5268 			}
5269 		}
5270 
5271 		/*
5272 		 * We didn't manage to initialize any of the
5273 		 * remaining providers during the last loop, so now we
5274 		 * initialize all the remaining ones unconditionally
5275 		 * in case the clock parent was not mandatory
5276 		 */
5277 		if (!is_init_done)
5278 			force = true;
5279 	}
5280 }
5281 #endif
5282 
5283 #ifdef CONFIG_COMMON_CLK_PROCFS
5284 #include <linux/proc_fs.h>
5285 #include <linux/seq_file.h>
5286 
clk_rate_show(struct seq_file * s,void * v)5287 static int clk_rate_show(struct seq_file *s, void *v)
5288 {
5289 	seq_puts(s, "set clk rate:\n");
5290 	seq_puts(s, "	echo [clk_name] [rate(Hz)] > /proc/clk/rate\n");
5291 
5292 	return 0;
5293 }
5294 
clk_rate_open(struct inode * inode,struct file * file)5295 static int clk_rate_open(struct inode *inode, struct file *file)
5296 {
5297 	return single_open(file, clk_rate_show, NULL);
5298 }
5299 
clk_rate_write(struct file * filp,const char __user * buf,size_t cnt,loff_t * ppos)5300 static ssize_t clk_rate_write(struct file *filp, const char __user *buf,
5301 			      size_t cnt, loff_t *ppos)
5302 {
5303 	char clk_name[40], input[55];
5304 	struct clk_core *core;
5305 	int argc, ret, val;
5306 
5307 	if (cnt >= sizeof(input))
5308 		return -EINVAL;
5309 
5310 	if (copy_from_user(input, buf, cnt))
5311 		return -EFAULT;
5312 
5313 	input[cnt] = '\0';
5314 
5315 	argc = sscanf(input, "%38s %10d", clk_name, &val);
5316 	if (argc != 2)
5317 		return -EINVAL;
5318 
5319 	core = clk_core_lookup(clk_name);
5320 	if (IS_ERR_OR_NULL(core)) {
5321 		pr_err("get %s error\n", clk_name);
5322 		return -EINVAL;
5323 	}
5324 
5325 	clk_prepare_lock();
5326 	ret = clk_core_set_rate_nolock(core, val);
5327 	clk_prepare_unlock();
5328 	if (ret) {
5329 		pr_err("set %s rate %d error\n", clk_name, val);
5330 		return ret;
5331 	}
5332 
5333 	return cnt;
5334 }
5335 
5336 static const struct proc_ops clk_rate_proc_ops = {
5337 	.proc_open	= clk_rate_open,
5338 	.proc_read	= seq_read,
5339 	.proc_write	= clk_rate_write,
5340 	.proc_lseek	= seq_lseek,
5341 	.proc_release	= single_release,
5342 };
5343 
clk_enable_show(struct seq_file * s,void * v)5344 static int clk_enable_show(struct seq_file *s, void *v)
5345 {
5346 	seq_puts(s, "enable clk:\n");
5347 	seq_puts(s, "	echo enable [clk_name] > /proc/clk/enable\n");
5348 	seq_puts(s, "disable clk:\n");
5349 	seq_puts(s, "	echo disable [clk_name] > /proc/clk/enable\n");
5350 
5351 	return 0;
5352 }
5353 
clk_enable_open(struct inode * inode,struct file * file)5354 static int clk_enable_open(struct inode *inode, struct file *file)
5355 {
5356 	return single_open(file, clk_enable_show, NULL);
5357 }
5358 
clk_enable_write(struct file * filp,const char __user * buf,size_t cnt,loff_t * ppos)5359 static ssize_t clk_enable_write(struct file *filp, const char __user *buf,
5360 				size_t cnt, loff_t *ppos)
5361 {
5362 	char cmd[10], clk_name[40], input[50];
5363 	struct clk_core *core;
5364 	int argc, ret;
5365 
5366 	if (cnt >= sizeof(input))
5367 		return -EINVAL;
5368 
5369 	if (copy_from_user(input, buf, cnt))
5370 		return -EFAULT;
5371 
5372 	input[cnt] = '\0';
5373 
5374 	argc = sscanf(input, "%8s %38s", cmd, clk_name);
5375 	if (argc != 2)
5376 		return -EINVAL;
5377 
5378 	core = clk_core_lookup(clk_name);
5379 	if (IS_ERR_OR_NULL(core)) {
5380 		pr_err("get %s error\n", clk_name);
5381 		return -EINVAL;
5382 	}
5383 
5384 	if (!strncmp(cmd, "enable", strlen("enable"))) {
5385 		ret = clk_core_prepare_enable(core);
5386 		if (ret)
5387 			pr_err("enable %s err\n", clk_name);
5388 	} else if (!strncmp(cmd, "disable", strlen("disable"))) {
5389 		clk_core_disable_unprepare(core);
5390 	} else {
5391 		pr_err("unsupported cmd(%s)\n", cmd);
5392 	}
5393 
5394 	return cnt;
5395 }
5396 
5397 static const struct proc_ops clk_enable_proc_ops = {
5398 	.proc_open	= clk_enable_open,
5399 	.proc_read	= seq_read,
5400 	.proc_write	= clk_enable_write,
5401 	.proc_lseek	= seq_lseek,
5402 	.proc_release	= single_release,
5403 };
5404 
clk_parent_show(struct seq_file * s,void * v)5405 static int clk_parent_show(struct seq_file *s, void *v)
5406 {
5407 	seq_puts(s, "echo [clk_name] [parent_name] > /proc/clk/parent\n");
5408 
5409 	return 0;
5410 }
5411 
clk_parent_open(struct inode * inode,struct file * file)5412 static int clk_parent_open(struct inode *inode, struct file *file)
5413 {
5414 	return single_open(file, clk_parent_show, NULL);
5415 }
5416 
clk_parent_write(struct file * filp,const char __user * buf,size_t cnt,loff_t * ppos)5417 static ssize_t clk_parent_write(struct file *filp, const char __user *buf,
5418 				size_t cnt, loff_t *ppos)
5419 {
5420 	char clk_name[40], p_name[40];
5421 	char input[80];
5422 	struct clk_core *core, *p;
5423 	int argc, ret;
5424 
5425 	if (cnt >= sizeof(input))
5426 		return -EINVAL;
5427 
5428 	if (copy_from_user(input, buf, cnt))
5429 		return -EFAULT;
5430 
5431 	input[cnt] = '\0';
5432 
5433 	argc = sscanf(input, "%38s %38s", clk_name, p_name);
5434 	if (argc != 2)
5435 		return -EINVAL;
5436 
5437 	core = clk_core_lookup(clk_name);
5438 	if (IS_ERR_OR_NULL(core)) {
5439 		pr_err("get %s error\n", clk_name);
5440 		return -EINVAL;
5441 	}
5442 	p = clk_core_lookup(p_name);
5443 	if (IS_ERR_OR_NULL(p)) {
5444 		pr_err("get %s error\n", p_name);
5445 		return -EINVAL;
5446 	}
5447 	clk_prepare_lock();
5448 	ret = clk_core_set_parent_nolock(core, p);
5449 	clk_prepare_unlock();
5450 	if (ret < 0)
5451 		pr_err("set clk(%s)'s parent(%s) error\n", clk_name, p_name);
5452 
5453 	return cnt;
5454 }
5455 
5456 static const struct proc_ops clk_parent_proc_ops = {
5457 	.proc_open	= clk_parent_open,
5458 	.proc_read	= seq_read,
5459 	.proc_write	= clk_parent_write,
5460 	.proc_lseek	= seq_lseek,
5461 	.proc_release	= single_release,
5462 };
5463 
clk_proc_summary_show_one(struct seq_file * s,struct clk_core * c,int level)5464 static void clk_proc_summary_show_one(struct seq_file *s, struct clk_core *c,
5465 				      int level)
5466 {
5467 	if (!c)
5468 		return;
5469 
5470 	seq_printf(s, "%*s%-*s %7d %8d %8d %11lu %10lu %5d %6d\n",
5471 		   level * 3 + 1, "",
5472 		   30 - level * 3, c->name,
5473 		   c->enable_count, c->prepare_count, c->protect_count,
5474 		   clk_core_get_rate_recalc(c),
5475 		   clk_core_get_accuracy_recalc(c),
5476 		   clk_core_get_phase(c),
5477 		   clk_core_get_scaled_duty_cycle(c, 100000));
5478 }
5479 
clk_proc_summary_show_subtree(struct seq_file * s,struct clk_core * c,int level)5480 static void clk_proc_summary_show_subtree(struct seq_file *s,
5481 					  struct clk_core *c, int level)
5482 {
5483 	struct clk_core *child;
5484 
5485 	if (!c)
5486 		return;
5487 
5488 	clk_proc_summary_show_one(s, c, level);
5489 
5490 	hlist_for_each_entry(child, &c->children, child_node)
5491 		clk_proc_summary_show_subtree(s, child, level + 1);
5492 }
5493 
clk_proc_summary_show(struct seq_file * s,void * v)5494 static int clk_proc_summary_show(struct seq_file *s, void *v)
5495 {
5496 	struct clk_core *c;
5497 	struct hlist_head *all_lists[] = {
5498 		&clk_root_list,
5499 		&clk_orphan_list,
5500 		NULL,
5501 	};
5502 	struct hlist_head **lists = all_lists;
5503 
5504 	seq_puts(s, "                                 enable  prepare  protect                                duty\n");
5505 	seq_puts(s, "   clock                          count    count    count        rate   accuracy phase  cycle\n");
5506 	seq_puts(s, "---------------------------------------------------------------------------------------------\n");
5507 
5508 	clk_prepare_lock();
5509 
5510 	for (; *lists; lists++)
5511 		hlist_for_each_entry(c, *lists, child_node)
5512 			clk_proc_summary_show_subtree(s, c, 0);
5513 
5514 	clk_prepare_unlock();
5515 
5516 	return 0;
5517 }
5518 
clk_create_procfs(void)5519 static int __init clk_create_procfs(void)
5520 {
5521 	struct proc_dir_entry *proc_clk_root;
5522 	struct proc_dir_entry *ent;
5523 
5524 	proc_clk_root = proc_mkdir("clk", NULL);
5525 	if (!proc_clk_root)
5526 		return -EINVAL;
5527 
5528 	ent = proc_create("rate", 0644, proc_clk_root, &clk_rate_proc_ops);
5529 	if (!ent)
5530 		goto fail;
5531 
5532 	ent = proc_create("enable", 0644, proc_clk_root, &clk_enable_proc_ops);
5533 	if (!ent)
5534 		goto fail;
5535 
5536 	ent = proc_create("parent", 0644, proc_clk_root, &clk_parent_proc_ops);
5537 	if (!ent)
5538 		goto fail;
5539 
5540 	ent = proc_create_single("summary", 0444, proc_clk_root,
5541 				 clk_proc_summary_show);
5542 	if (!ent)
5543 		goto fail;
5544 
5545 	return 0;
5546 
5547 fail:
5548 	proc_remove(proc_clk_root);
5549 	return -EINVAL;
5550 }
5551 late_initcall_sync(clk_create_procfs);
5552 #endif
5553