1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/power/main.c - Where the driver meets power management.
4 *
5 * Copyright (c) 2003 Patrick Mochel
6 * Copyright (c) 2003 Open Source Development Lab
7 *
8 * The driver model core calls device_pm_add() when a device is registered.
9 * This will initialize the embedded device_pm_info object in the device
10 * and add it to the list of power-controlled devices. sysfs entries for
11 * controlling device power management will also be added.
12 *
13 * A separate list is used for keeping track of power info, because the power
14 * domain dependencies may differ from the ancestral dependencies that the
15 * subsystem list maintains.
16 */
17
18 #define pr_fmt(fmt) "PM: " fmt
19
20 #include <linux/device.h>
21 #include <linux/export.h>
22 #include <linux/mutex.h>
23 #include <linux/pm.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pm-trace.h>
26 #include <linux/pm_wakeirq.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/sched/debug.h>
30 #include <linux/async.h>
31 #include <linux/suspend.h>
32 #include <trace/events/power.h>
33 #include <linux/cpufreq.h>
34 #include <linux/cpuidle.h>
35 #include <linux/devfreq.h>
36 #include <linux/timer.h>
37 #include <linux/wakeup_reason.h>
38
39 #include "../base.h"
40 #include "power.h"
41
42 typedef int (*pm_callback_t)(struct device *);
43
44 #define list_for_each_entry_rcu_locked(pos, head, member) \
45 list_for_each_entry_rcu(pos, head, member, \
46 device_links_read_lock_held())
47
48 /*
49 * The entries in the dpm_list list are in a depth first order, simply
50 * because children are guaranteed to be discovered after parents, and
51 * are inserted at the back of the list on discovery.
52 *
53 * Since device_pm_add() may be called with a device lock held,
54 * we must never try to acquire a device lock while holding
55 * dpm_list_mutex.
56 */
57
58 LIST_HEAD(dpm_list);
59 static LIST_HEAD(dpm_prepared_list);
60 static LIST_HEAD(dpm_suspended_list);
61 static LIST_HEAD(dpm_late_early_list);
62 static LIST_HEAD(dpm_noirq_list);
63
64 struct suspend_stats suspend_stats;
65 static DEFINE_MUTEX(dpm_list_mtx);
66 static pm_message_t pm_transition;
67
68 static int async_error;
69
pm_verb(int event)70 static const char *pm_verb(int event)
71 {
72 switch (event) {
73 case PM_EVENT_SUSPEND:
74 return "suspend";
75 case PM_EVENT_RESUME:
76 return "resume";
77 case PM_EVENT_FREEZE:
78 return "freeze";
79 case PM_EVENT_QUIESCE:
80 return "quiesce";
81 case PM_EVENT_HIBERNATE:
82 return "hibernate";
83 case PM_EVENT_THAW:
84 return "thaw";
85 case PM_EVENT_RESTORE:
86 return "restore";
87 case PM_EVENT_RECOVER:
88 return "recover";
89 default:
90 return "(unknown PM event)";
91 }
92 }
93
94 /**
95 * device_pm_sleep_init - Initialize system suspend-related device fields.
96 * @dev: Device object being initialized.
97 */
device_pm_sleep_init(struct device * dev)98 void device_pm_sleep_init(struct device *dev)
99 {
100 dev->power.is_prepared = false;
101 dev->power.is_suspended = false;
102 dev->power.is_noirq_suspended = false;
103 dev->power.is_late_suspended = false;
104 init_completion(&dev->power.completion);
105 complete_all(&dev->power.completion);
106 dev->power.wakeup = NULL;
107 INIT_LIST_HEAD(&dev->power.entry);
108 }
109
110 /**
111 * device_pm_lock - Lock the list of active devices used by the PM core.
112 */
device_pm_lock(void)113 void device_pm_lock(void)
114 {
115 mutex_lock(&dpm_list_mtx);
116 }
117
118 /**
119 * device_pm_unlock - Unlock the list of active devices used by the PM core.
120 */
device_pm_unlock(void)121 void device_pm_unlock(void)
122 {
123 mutex_unlock(&dpm_list_mtx);
124 }
125
126 /**
127 * device_pm_add - Add a device to the PM core's list of active devices.
128 * @dev: Device to add to the list.
129 */
device_pm_add(struct device * dev)130 void device_pm_add(struct device *dev)
131 {
132 /* Skip PM setup/initialization. */
133 if (device_pm_not_required(dev))
134 return;
135
136 pr_debug("Adding info for %s:%s\n",
137 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
138 device_pm_check_callbacks(dev);
139 mutex_lock(&dpm_list_mtx);
140 if (dev->parent && dev->parent->power.is_prepared)
141 dev_warn(dev, "parent %s should not be sleeping\n",
142 dev_name(dev->parent));
143 list_add_tail(&dev->power.entry, &dpm_list);
144 dev->power.in_dpm_list = true;
145 mutex_unlock(&dpm_list_mtx);
146 }
147
148 /**
149 * device_pm_remove - Remove a device from the PM core's list of active devices.
150 * @dev: Device to be removed from the list.
151 */
device_pm_remove(struct device * dev)152 void device_pm_remove(struct device *dev)
153 {
154 if (device_pm_not_required(dev))
155 return;
156
157 pr_debug("Removing info for %s:%s\n",
158 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
159 complete_all(&dev->power.completion);
160 mutex_lock(&dpm_list_mtx);
161 list_del_init(&dev->power.entry);
162 dev->power.in_dpm_list = false;
163 mutex_unlock(&dpm_list_mtx);
164 device_wakeup_disable(dev);
165 pm_runtime_remove(dev);
166 device_pm_check_callbacks(dev);
167 }
168
169 /**
170 * device_pm_move_before - Move device in the PM core's list of active devices.
171 * @deva: Device to move in dpm_list.
172 * @devb: Device @deva should come before.
173 */
device_pm_move_before(struct device * deva,struct device * devb)174 void device_pm_move_before(struct device *deva, struct device *devb)
175 {
176 pr_debug("Moving %s:%s before %s:%s\n",
177 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
178 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
179 /* Delete deva from dpm_list and reinsert before devb. */
180 list_move_tail(&deva->power.entry, &devb->power.entry);
181 }
182
183 /**
184 * device_pm_move_after - Move device in the PM core's list of active devices.
185 * @deva: Device to move in dpm_list.
186 * @devb: Device @deva should come after.
187 */
device_pm_move_after(struct device * deva,struct device * devb)188 void device_pm_move_after(struct device *deva, struct device *devb)
189 {
190 pr_debug("Moving %s:%s after %s:%s\n",
191 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
192 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
193 /* Delete deva from dpm_list and reinsert after devb. */
194 list_move(&deva->power.entry, &devb->power.entry);
195 }
196
197 /**
198 * device_pm_move_last - Move device to end of the PM core's list of devices.
199 * @dev: Device to move in dpm_list.
200 */
device_pm_move_last(struct device * dev)201 void device_pm_move_last(struct device *dev)
202 {
203 pr_debug("Moving %s:%s to end of list\n",
204 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
205 list_move_tail(&dev->power.entry, &dpm_list);
206 }
207
initcall_debug_start(struct device * dev,void * cb)208 static ktime_t initcall_debug_start(struct device *dev, void *cb)
209 {
210 if (!pm_print_times_enabled)
211 return 0;
212
213 dev_info(dev, "calling %pS @ %i, parent: %s\n", cb,
214 task_pid_nr(current),
215 dev->parent ? dev_name(dev->parent) : "none");
216 return ktime_get();
217 }
218
initcall_debug_report(struct device * dev,ktime_t calltime,void * cb,int error)219 static void initcall_debug_report(struct device *dev, ktime_t calltime,
220 void *cb, int error)
221 {
222 ktime_t rettime;
223 s64 nsecs;
224
225 if (!pm_print_times_enabled)
226 return;
227
228 rettime = ktime_get();
229 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
230
231 dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error,
232 (unsigned long long)nsecs >> 10);
233 }
234
235 /**
236 * dpm_wait - Wait for a PM operation to complete.
237 * @dev: Device to wait for.
238 * @async: If unset, wait only if the device's power.async_suspend flag is set.
239 */
dpm_wait(struct device * dev,bool async)240 static void dpm_wait(struct device *dev, bool async)
241 {
242 if (!dev)
243 return;
244
245 if (async || (pm_async_enabled && dev->power.async_suspend))
246 wait_for_completion(&dev->power.completion);
247 }
248
dpm_wait_fn(struct device * dev,void * async_ptr)249 static int dpm_wait_fn(struct device *dev, void *async_ptr)
250 {
251 dpm_wait(dev, *((bool *)async_ptr));
252 return 0;
253 }
254
dpm_wait_for_children(struct device * dev,bool async)255 static void dpm_wait_for_children(struct device *dev, bool async)
256 {
257 device_for_each_child(dev, &async, dpm_wait_fn);
258 }
259
dpm_wait_for_suppliers(struct device * dev,bool async)260 static void dpm_wait_for_suppliers(struct device *dev, bool async)
261 {
262 struct device_link *link;
263 int idx;
264
265 idx = device_links_read_lock();
266
267 /*
268 * If the supplier goes away right after we've checked the link to it,
269 * we'll wait for its completion to change the state, but that's fine,
270 * because the only things that will block as a result are the SRCU
271 * callbacks freeing the link objects for the links in the list we're
272 * walking.
273 */
274 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
275 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
276 dpm_wait(link->supplier, async);
277
278 device_links_read_unlock(idx);
279 }
280
dpm_wait_for_superior(struct device * dev,bool async)281 static bool dpm_wait_for_superior(struct device *dev, bool async)
282 {
283 struct device *parent;
284
285 /*
286 * If the device is resumed asynchronously and the parent's callback
287 * deletes both the device and the parent itself, the parent object may
288 * be freed while this function is running, so avoid that by reference
289 * counting the parent once more unless the device has been deleted
290 * already (in which case return right away).
291 */
292 mutex_lock(&dpm_list_mtx);
293
294 if (!device_pm_initialized(dev)) {
295 mutex_unlock(&dpm_list_mtx);
296 return false;
297 }
298
299 parent = get_device(dev->parent);
300
301 mutex_unlock(&dpm_list_mtx);
302
303 dpm_wait(parent, async);
304 put_device(parent);
305
306 dpm_wait_for_suppliers(dev, async);
307
308 /*
309 * If the parent's callback has deleted the device, attempting to resume
310 * it would be invalid, so avoid doing that then.
311 */
312 return device_pm_initialized(dev);
313 }
314
dpm_wait_for_consumers(struct device * dev,bool async)315 static void dpm_wait_for_consumers(struct device *dev, bool async)
316 {
317 struct device_link *link;
318 int idx;
319
320 idx = device_links_read_lock();
321
322 /*
323 * The status of a device link can only be changed from "dormant" by a
324 * probe, but that cannot happen during system suspend/resume. In
325 * theory it can change to "dormant" at that time, but then it is
326 * reasonable to wait for the target device anyway (eg. if it goes
327 * away, it's better to wait for it to go away completely and then
328 * continue instead of trying to continue in parallel with its
329 * unregistration).
330 */
331 list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node)
332 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
333 dpm_wait(link->consumer, async);
334
335 device_links_read_unlock(idx);
336 }
337
dpm_wait_for_subordinate(struct device * dev,bool async)338 static void dpm_wait_for_subordinate(struct device *dev, bool async)
339 {
340 dpm_wait_for_children(dev, async);
341 dpm_wait_for_consumers(dev, async);
342 }
343
344 /**
345 * pm_op - Return the PM operation appropriate for given PM event.
346 * @ops: PM operations to choose from.
347 * @state: PM transition of the system being carried out.
348 */
pm_op(const struct dev_pm_ops * ops,pm_message_t state)349 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
350 {
351 switch (state.event) {
352 #ifdef CONFIG_SUSPEND
353 case PM_EVENT_SUSPEND:
354 return ops->suspend;
355 case PM_EVENT_RESUME:
356 return ops->resume;
357 #endif /* CONFIG_SUSPEND */
358 #ifdef CONFIG_HIBERNATE_CALLBACKS
359 case PM_EVENT_FREEZE:
360 case PM_EVENT_QUIESCE:
361 return ops->freeze;
362 case PM_EVENT_HIBERNATE:
363 return ops->poweroff;
364 case PM_EVENT_THAW:
365 case PM_EVENT_RECOVER:
366 return ops->thaw;
367 case PM_EVENT_RESTORE:
368 return ops->restore;
369 #endif /* CONFIG_HIBERNATE_CALLBACKS */
370 }
371
372 return NULL;
373 }
374
375 /**
376 * pm_late_early_op - Return the PM operation appropriate for given PM event.
377 * @ops: PM operations to choose from.
378 * @state: PM transition of the system being carried out.
379 *
380 * Runtime PM is disabled for @dev while this function is being executed.
381 */
pm_late_early_op(const struct dev_pm_ops * ops,pm_message_t state)382 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
383 pm_message_t state)
384 {
385 switch (state.event) {
386 #ifdef CONFIG_SUSPEND
387 case PM_EVENT_SUSPEND:
388 return ops->suspend_late;
389 case PM_EVENT_RESUME:
390 return ops->resume_early;
391 #endif /* CONFIG_SUSPEND */
392 #ifdef CONFIG_HIBERNATE_CALLBACKS
393 case PM_EVENT_FREEZE:
394 case PM_EVENT_QUIESCE:
395 return ops->freeze_late;
396 case PM_EVENT_HIBERNATE:
397 return ops->poweroff_late;
398 case PM_EVENT_THAW:
399 case PM_EVENT_RECOVER:
400 return ops->thaw_early;
401 case PM_EVENT_RESTORE:
402 return ops->restore_early;
403 #endif /* CONFIG_HIBERNATE_CALLBACKS */
404 }
405
406 return NULL;
407 }
408
409 /**
410 * pm_noirq_op - Return the PM operation appropriate for given PM event.
411 * @ops: PM operations to choose from.
412 * @state: PM transition of the system being carried out.
413 *
414 * The driver of @dev will not receive interrupts while this function is being
415 * executed.
416 */
pm_noirq_op(const struct dev_pm_ops * ops,pm_message_t state)417 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
418 {
419 switch (state.event) {
420 #ifdef CONFIG_SUSPEND
421 case PM_EVENT_SUSPEND:
422 return ops->suspend_noirq;
423 case PM_EVENT_RESUME:
424 return ops->resume_noirq;
425 #endif /* CONFIG_SUSPEND */
426 #ifdef CONFIG_HIBERNATE_CALLBACKS
427 case PM_EVENT_FREEZE:
428 case PM_EVENT_QUIESCE:
429 return ops->freeze_noirq;
430 case PM_EVENT_HIBERNATE:
431 return ops->poweroff_noirq;
432 case PM_EVENT_THAW:
433 case PM_EVENT_RECOVER:
434 return ops->thaw_noirq;
435 case PM_EVENT_RESTORE:
436 return ops->restore_noirq;
437 #endif /* CONFIG_HIBERNATE_CALLBACKS */
438 }
439
440 return NULL;
441 }
442
pm_dev_dbg(struct device * dev,pm_message_t state,const char * info)443 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
444 {
445 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
446 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
447 ", may wakeup" : "");
448 }
449
pm_dev_err(struct device * dev,pm_message_t state,const char * info,int error)450 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
451 int error)
452 {
453 pr_err("Device %s failed to %s%s: error %d\n",
454 dev_name(dev), pm_verb(state.event), info, error);
455 }
456
dpm_show_time(ktime_t starttime,pm_message_t state,int error,const char * info)457 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
458 const char *info)
459 {
460 ktime_t calltime;
461 u64 usecs64;
462 int usecs;
463
464 calltime = ktime_get();
465 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
466 do_div(usecs64, NSEC_PER_USEC);
467 usecs = usecs64;
468 if (usecs == 0)
469 usecs = 1;
470
471 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
472 info ?: "", info ? " " : "", pm_verb(state.event),
473 error ? "aborted" : "complete",
474 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
475 }
476
dpm_run_callback(pm_callback_t cb,struct device * dev,pm_message_t state,const char * info)477 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
478 pm_message_t state, const char *info)
479 {
480 ktime_t calltime;
481 int error;
482
483 if (!cb)
484 return 0;
485
486 calltime = initcall_debug_start(dev, cb);
487
488 pm_dev_dbg(dev, state, info);
489 trace_device_pm_callback_start(dev, info, state.event);
490 error = cb(dev);
491 trace_device_pm_callback_end(dev, error);
492 suspend_report_result(cb, error);
493
494 initcall_debug_report(dev, calltime, cb, error);
495
496 return error;
497 }
498
499 #ifdef CONFIG_DPM_WATCHDOG
500 struct dpm_watchdog {
501 struct device *dev;
502 struct task_struct *tsk;
503 struct timer_list timer;
504 };
505
506 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
507 struct dpm_watchdog wd
508
509 /**
510 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
511 * @t: The timer that PM watchdog depends on.
512 *
513 * Called when a driver has timed out suspending or resuming.
514 * There's not much we can do here to recover so panic() to
515 * capture a crash-dump in pstore.
516 */
dpm_watchdog_handler(struct timer_list * t)517 static void dpm_watchdog_handler(struct timer_list *t)
518 {
519 struct dpm_watchdog *wd = from_timer(wd, t, timer);
520
521 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
522 show_stack(wd->tsk, NULL, KERN_EMERG);
523 panic("%s %s: unrecoverable failure\n",
524 dev_driver_string(wd->dev), dev_name(wd->dev));
525 }
526
527 /**
528 * dpm_watchdog_set - Enable pm watchdog for given device.
529 * @wd: Watchdog. Must be allocated on the stack.
530 * @dev: Device to handle.
531 */
dpm_watchdog_set(struct dpm_watchdog * wd,struct device * dev)532 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
533 {
534 struct timer_list *timer = &wd->timer;
535
536 wd->dev = dev;
537 wd->tsk = current;
538
539 timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
540 /* use same timeout value for both suspend and resume */
541 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
542 add_timer(timer);
543 }
544
545 /**
546 * dpm_watchdog_clear - Disable suspend/resume watchdog.
547 * @wd: Watchdog to disable.
548 */
dpm_watchdog_clear(struct dpm_watchdog * wd)549 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
550 {
551 struct timer_list *timer = &wd->timer;
552
553 del_timer_sync(timer);
554 destroy_timer_on_stack(timer);
555 }
556 #else
557 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
558 #define dpm_watchdog_set(x, y)
559 #define dpm_watchdog_clear(x)
560 #endif
561
562 /*------------------------- Resume routines -------------------------*/
563
564 /**
565 * dev_pm_skip_resume - System-wide device resume optimization check.
566 * @dev: Target device.
567 *
568 * Return:
569 * - %false if the transition under way is RESTORE.
570 * - Return value of dev_pm_skip_suspend() if the transition under way is THAW.
571 * - The logical negation of %power.must_resume otherwise (that is, when the
572 * transition under way is RESUME).
573 */
dev_pm_skip_resume(struct device * dev)574 bool dev_pm_skip_resume(struct device *dev)
575 {
576 if (pm_transition.event == PM_EVENT_RESTORE)
577 return false;
578
579 if (pm_transition.event == PM_EVENT_THAW)
580 return dev_pm_skip_suspend(dev);
581
582 return !dev->power.must_resume;
583 }
584
585 /**
586 * device_resume_noirq - Execute a "noirq resume" callback for given device.
587 * @dev: Device to handle.
588 * @state: PM transition of the system being carried out.
589 * @async: If true, the device is being resumed asynchronously.
590 *
591 * The driver of @dev will not receive interrupts while this function is being
592 * executed.
593 */
device_resume_noirq(struct device * dev,pm_message_t state,bool async)594 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
595 {
596 pm_callback_t callback = NULL;
597 const char *info = NULL;
598 bool skip_resume;
599 int error = 0;
600
601 TRACE_DEVICE(dev);
602 TRACE_RESUME(0);
603
604 if (dev->power.syscore || dev->power.direct_complete)
605 goto Out;
606
607 if (!dev->power.is_noirq_suspended)
608 goto Out;
609
610 if (!dpm_wait_for_superior(dev, async))
611 goto Out;
612
613 skip_resume = dev_pm_skip_resume(dev);
614 /*
615 * If the driver callback is skipped below or by the middle layer
616 * callback and device_resume_early() also skips the driver callback for
617 * this device later, it needs to appear as "suspended" to PM-runtime,
618 * so change its status accordingly.
619 *
620 * Otherwise, the device is going to be resumed, so set its PM-runtime
621 * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set
622 * to avoid confusing drivers that don't use it.
623 */
624 if (skip_resume)
625 pm_runtime_set_suspended(dev);
626 else if (dev_pm_skip_suspend(dev))
627 pm_runtime_set_active(dev);
628
629 if (dev->pm_domain) {
630 info = "noirq power domain ";
631 callback = pm_noirq_op(&dev->pm_domain->ops, state);
632 } else if (dev->type && dev->type->pm) {
633 info = "noirq type ";
634 callback = pm_noirq_op(dev->type->pm, state);
635 } else if (dev->class && dev->class->pm) {
636 info = "noirq class ";
637 callback = pm_noirq_op(dev->class->pm, state);
638 } else if (dev->bus && dev->bus->pm) {
639 info = "noirq bus ";
640 callback = pm_noirq_op(dev->bus->pm, state);
641 }
642 if (callback)
643 goto Run;
644
645 if (skip_resume)
646 goto Skip;
647
648 if (dev->driver && dev->driver->pm) {
649 info = "noirq driver ";
650 callback = pm_noirq_op(dev->driver->pm, state);
651 }
652
653 Run:
654 error = dpm_run_callback(callback, dev, state, info);
655
656 Skip:
657 dev->power.is_noirq_suspended = false;
658
659 Out:
660 complete_all(&dev->power.completion);
661 TRACE_RESUME(error);
662 return error;
663 }
664
is_async(struct device * dev)665 static bool is_async(struct device *dev)
666 {
667 return dev->power.async_suspend && pm_async_enabled
668 && !pm_trace_is_enabled();
669 }
670
dpm_async_fn(struct device * dev,async_func_t func)671 static bool dpm_async_fn(struct device *dev, async_func_t func)
672 {
673 reinit_completion(&dev->power.completion);
674
675 if (is_async(dev)) {
676 get_device(dev);
677 async_schedule_dev(func, dev);
678 return true;
679 }
680
681 return false;
682 }
683
async_resume_noirq(void * data,async_cookie_t cookie)684 static void async_resume_noirq(void *data, async_cookie_t cookie)
685 {
686 struct device *dev = (struct device *)data;
687 int error;
688
689 error = device_resume_noirq(dev, pm_transition, true);
690 if (error)
691 pm_dev_err(dev, pm_transition, " async", error);
692
693 put_device(dev);
694 }
695
dpm_noirq_resume_devices(pm_message_t state)696 static void dpm_noirq_resume_devices(pm_message_t state)
697 {
698 struct device *dev;
699 ktime_t starttime = ktime_get();
700
701 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
702 mutex_lock(&dpm_list_mtx);
703 pm_transition = state;
704
705 /*
706 * Advanced the async threads upfront,
707 * in case the starting of async threads is
708 * delayed by non-async resuming devices.
709 */
710 list_for_each_entry(dev, &dpm_noirq_list, power.entry)
711 dpm_async_fn(dev, async_resume_noirq);
712
713 while (!list_empty(&dpm_noirq_list)) {
714 dev = to_device(dpm_noirq_list.next);
715 get_device(dev);
716 list_move_tail(&dev->power.entry, &dpm_late_early_list);
717 mutex_unlock(&dpm_list_mtx);
718
719 if (!is_async(dev)) {
720 int error;
721
722 error = device_resume_noirq(dev, state, false);
723 if (error) {
724 suspend_stats.failed_resume_noirq++;
725 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
726 dpm_save_failed_dev(dev_name(dev));
727 pm_dev_err(dev, state, " noirq", error);
728 }
729 }
730
731 mutex_lock(&dpm_list_mtx);
732 put_device(dev);
733 }
734 mutex_unlock(&dpm_list_mtx);
735 async_synchronize_full();
736 dpm_show_time(starttime, state, 0, "noirq");
737 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
738 }
739
740 /**
741 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
742 * @state: PM transition of the system being carried out.
743 *
744 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
745 * allow device drivers' interrupt handlers to be called.
746 */
dpm_resume_noirq(pm_message_t state)747 void dpm_resume_noirq(pm_message_t state)
748 {
749 dpm_noirq_resume_devices(state);
750
751 resume_device_irqs();
752 device_wakeup_disarm_wake_irqs();
753
754 cpuidle_resume();
755 }
756
757 /**
758 * device_resume_early - Execute an "early resume" callback for given device.
759 * @dev: Device to handle.
760 * @state: PM transition of the system being carried out.
761 * @async: If true, the device is being resumed asynchronously.
762 *
763 * Runtime PM is disabled for @dev while this function is being executed.
764 */
device_resume_early(struct device * dev,pm_message_t state,bool async)765 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
766 {
767 pm_callback_t callback = NULL;
768 const char *info = NULL;
769 int error = 0;
770
771 TRACE_DEVICE(dev);
772 TRACE_RESUME(0);
773
774 if (dev->power.syscore || dev->power.direct_complete)
775 goto Out;
776
777 if (!dev->power.is_late_suspended)
778 goto Out;
779
780 if (!dpm_wait_for_superior(dev, async))
781 goto Out;
782
783 if (dev->pm_domain) {
784 info = "early power domain ";
785 callback = pm_late_early_op(&dev->pm_domain->ops, state);
786 } else if (dev->type && dev->type->pm) {
787 info = "early type ";
788 callback = pm_late_early_op(dev->type->pm, state);
789 } else if (dev->class && dev->class->pm) {
790 info = "early class ";
791 callback = pm_late_early_op(dev->class->pm, state);
792 } else if (dev->bus && dev->bus->pm) {
793 info = "early bus ";
794 callback = pm_late_early_op(dev->bus->pm, state);
795 }
796 if (callback)
797 goto Run;
798
799 if (dev_pm_skip_resume(dev))
800 goto Skip;
801
802 if (dev->driver && dev->driver->pm) {
803 info = "early driver ";
804 callback = pm_late_early_op(dev->driver->pm, state);
805 }
806
807 Run:
808 error = dpm_run_callback(callback, dev, state, info);
809
810 Skip:
811 dev->power.is_late_suspended = false;
812
813 Out:
814 TRACE_RESUME(error);
815
816 pm_runtime_enable(dev);
817 complete_all(&dev->power.completion);
818 return error;
819 }
820
async_resume_early(void * data,async_cookie_t cookie)821 static void async_resume_early(void *data, async_cookie_t cookie)
822 {
823 struct device *dev = (struct device *)data;
824 int error;
825
826 error = device_resume_early(dev, pm_transition, true);
827 if (error)
828 pm_dev_err(dev, pm_transition, " async", error);
829
830 put_device(dev);
831 }
832
833 /**
834 * dpm_resume_early - Execute "early resume" callbacks for all devices.
835 * @state: PM transition of the system being carried out.
836 */
dpm_resume_early(pm_message_t state)837 void dpm_resume_early(pm_message_t state)
838 {
839 struct device *dev;
840 ktime_t starttime = ktime_get();
841
842 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
843 mutex_lock(&dpm_list_mtx);
844 pm_transition = state;
845
846 /*
847 * Advanced the async threads upfront,
848 * in case the starting of async threads is
849 * delayed by non-async resuming devices.
850 */
851 list_for_each_entry(dev, &dpm_late_early_list, power.entry)
852 dpm_async_fn(dev, async_resume_early);
853
854 while (!list_empty(&dpm_late_early_list)) {
855 dev = to_device(dpm_late_early_list.next);
856 get_device(dev);
857 list_move_tail(&dev->power.entry, &dpm_suspended_list);
858 mutex_unlock(&dpm_list_mtx);
859
860 if (!is_async(dev)) {
861 int error;
862
863 error = device_resume_early(dev, state, false);
864 if (error) {
865 suspend_stats.failed_resume_early++;
866 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
867 dpm_save_failed_dev(dev_name(dev));
868 pm_dev_err(dev, state, " early", error);
869 }
870 }
871 mutex_lock(&dpm_list_mtx);
872 put_device(dev);
873 }
874 mutex_unlock(&dpm_list_mtx);
875 async_synchronize_full();
876 dpm_show_time(starttime, state, 0, "early");
877 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
878 }
879
880 /**
881 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
882 * @state: PM transition of the system being carried out.
883 */
dpm_resume_start(pm_message_t state)884 void dpm_resume_start(pm_message_t state)
885 {
886 dpm_resume_noirq(state);
887 dpm_resume_early(state);
888 }
889 EXPORT_SYMBOL_GPL(dpm_resume_start);
890
891 /**
892 * device_resume - Execute "resume" callbacks for given device.
893 * @dev: Device to handle.
894 * @state: PM transition of the system being carried out.
895 * @async: If true, the device is being resumed asynchronously.
896 */
device_resume(struct device * dev,pm_message_t state,bool async)897 static int device_resume(struct device *dev, pm_message_t state, bool async)
898 {
899 pm_callback_t callback = NULL;
900 const char *info = NULL;
901 int error = 0;
902 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
903
904 TRACE_DEVICE(dev);
905 TRACE_RESUME(0);
906
907 if (dev->power.syscore)
908 goto Complete;
909
910 if (dev->power.direct_complete) {
911 /* Match the pm_runtime_disable() in __device_suspend(). */
912 pm_runtime_enable(dev);
913 goto Complete;
914 }
915
916 if (!dpm_wait_for_superior(dev, async))
917 goto Complete;
918
919 dpm_watchdog_set(&wd, dev);
920 device_lock(dev);
921
922 /*
923 * This is a fib. But we'll allow new children to be added below
924 * a resumed device, even if the device hasn't been completed yet.
925 */
926 dev->power.is_prepared = false;
927
928 if (!dev->power.is_suspended)
929 goto Unlock;
930
931 if (dev->pm_domain) {
932 info = "power domain ";
933 callback = pm_op(&dev->pm_domain->ops, state);
934 goto Driver;
935 }
936
937 if (dev->type && dev->type->pm) {
938 info = "type ";
939 callback = pm_op(dev->type->pm, state);
940 goto Driver;
941 }
942
943 if (dev->class && dev->class->pm) {
944 info = "class ";
945 callback = pm_op(dev->class->pm, state);
946 goto Driver;
947 }
948
949 if (dev->bus) {
950 if (dev->bus->pm) {
951 info = "bus ";
952 callback = pm_op(dev->bus->pm, state);
953 } else if (dev->bus->resume) {
954 info = "legacy bus ";
955 callback = dev->bus->resume;
956 goto End;
957 }
958 }
959
960 Driver:
961 if (!callback && dev->driver && dev->driver->pm) {
962 info = "driver ";
963 callback = pm_op(dev->driver->pm, state);
964 }
965
966 End:
967 error = dpm_run_callback(callback, dev, state, info);
968 dev->power.is_suspended = false;
969
970 Unlock:
971 device_unlock(dev);
972 dpm_watchdog_clear(&wd);
973
974 Complete:
975 complete_all(&dev->power.completion);
976
977 TRACE_RESUME(error);
978
979 return error;
980 }
981
async_resume(void * data,async_cookie_t cookie)982 static void async_resume(void *data, async_cookie_t cookie)
983 {
984 struct device *dev = (struct device *)data;
985 int error;
986
987 error = device_resume(dev, pm_transition, true);
988 if (error)
989 pm_dev_err(dev, pm_transition, " async", error);
990 put_device(dev);
991 }
992
993 /**
994 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
995 * @state: PM transition of the system being carried out.
996 *
997 * Execute the appropriate "resume" callback for all devices whose status
998 * indicates that they are suspended.
999 */
dpm_resume(pm_message_t state)1000 void dpm_resume(pm_message_t state)
1001 {
1002 struct device *dev;
1003 ktime_t starttime = ktime_get();
1004
1005 trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1006 might_sleep();
1007
1008 mutex_lock(&dpm_list_mtx);
1009 pm_transition = state;
1010 async_error = 0;
1011
1012 list_for_each_entry(dev, &dpm_suspended_list, power.entry)
1013 dpm_async_fn(dev, async_resume);
1014
1015 while (!list_empty(&dpm_suspended_list)) {
1016 dev = to_device(dpm_suspended_list.next);
1017 get_device(dev);
1018 if (!is_async(dev)) {
1019 int error;
1020
1021 mutex_unlock(&dpm_list_mtx);
1022
1023 error = device_resume(dev, state, false);
1024 if (error) {
1025 suspend_stats.failed_resume++;
1026 dpm_save_failed_step(SUSPEND_RESUME);
1027 dpm_save_failed_dev(dev_name(dev));
1028 pm_dev_err(dev, state, "", error);
1029 }
1030
1031 mutex_lock(&dpm_list_mtx);
1032 }
1033 if (!list_empty(&dev->power.entry))
1034 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1035 put_device(dev);
1036 }
1037 mutex_unlock(&dpm_list_mtx);
1038 async_synchronize_full();
1039 dpm_show_time(starttime, state, 0, NULL);
1040
1041 cpufreq_resume();
1042 devfreq_resume();
1043 trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1044 }
1045
1046 /**
1047 * device_complete - Complete a PM transition for given device.
1048 * @dev: Device to handle.
1049 * @state: PM transition of the system being carried out.
1050 */
device_complete(struct device * dev,pm_message_t state)1051 static void device_complete(struct device *dev, pm_message_t state)
1052 {
1053 void (*callback)(struct device *) = NULL;
1054 const char *info = NULL;
1055
1056 if (dev->power.syscore)
1057 goto out;
1058
1059 device_lock(dev);
1060
1061 if (dev->pm_domain) {
1062 info = "completing power domain ";
1063 callback = dev->pm_domain->ops.complete;
1064 } else if (dev->type && dev->type->pm) {
1065 info = "completing type ";
1066 callback = dev->type->pm->complete;
1067 } else if (dev->class && dev->class->pm) {
1068 info = "completing class ";
1069 callback = dev->class->pm->complete;
1070 } else if (dev->bus && dev->bus->pm) {
1071 info = "completing bus ";
1072 callback = dev->bus->pm->complete;
1073 }
1074
1075 if (!callback && dev->driver && dev->driver->pm) {
1076 info = "completing driver ";
1077 callback = dev->driver->pm->complete;
1078 }
1079
1080 if (callback) {
1081 pm_dev_dbg(dev, state, info);
1082 callback(dev);
1083 }
1084
1085 device_unlock(dev);
1086
1087 out:
1088 pm_runtime_put(dev);
1089 }
1090
1091 /**
1092 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1093 * @state: PM transition of the system being carried out.
1094 *
1095 * Execute the ->complete() callbacks for all devices whose PM status is not
1096 * DPM_ON (this allows new devices to be registered).
1097 */
dpm_complete(pm_message_t state)1098 void dpm_complete(pm_message_t state)
1099 {
1100 struct list_head list;
1101
1102 trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1103 might_sleep();
1104
1105 INIT_LIST_HEAD(&list);
1106 mutex_lock(&dpm_list_mtx);
1107 while (!list_empty(&dpm_prepared_list)) {
1108 struct device *dev = to_device(dpm_prepared_list.prev);
1109
1110 get_device(dev);
1111 dev->power.is_prepared = false;
1112 list_move(&dev->power.entry, &list);
1113 mutex_unlock(&dpm_list_mtx);
1114
1115 trace_device_pm_callback_start(dev, "", state.event);
1116 device_complete(dev, state);
1117 trace_device_pm_callback_end(dev, 0);
1118
1119 mutex_lock(&dpm_list_mtx);
1120 put_device(dev);
1121 }
1122 list_splice(&list, &dpm_list);
1123 mutex_unlock(&dpm_list_mtx);
1124
1125 /* Allow device probing and trigger re-probing of deferred devices */
1126 device_unblock_probing();
1127 trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1128 }
1129
1130 /**
1131 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1132 * @state: PM transition of the system being carried out.
1133 *
1134 * Execute "resume" callbacks for all devices and complete the PM transition of
1135 * the system.
1136 */
dpm_resume_end(pm_message_t state)1137 void dpm_resume_end(pm_message_t state)
1138 {
1139 dpm_resume(state);
1140 dpm_complete(state);
1141 }
1142 EXPORT_SYMBOL_GPL(dpm_resume_end);
1143
1144
1145 /*------------------------- Suspend routines -------------------------*/
1146
1147 /**
1148 * resume_event - Return a "resume" message for given "suspend" sleep state.
1149 * @sleep_state: PM message representing a sleep state.
1150 *
1151 * Return a PM message representing the resume event corresponding to given
1152 * sleep state.
1153 */
resume_event(pm_message_t sleep_state)1154 static pm_message_t resume_event(pm_message_t sleep_state)
1155 {
1156 switch (sleep_state.event) {
1157 case PM_EVENT_SUSPEND:
1158 return PMSG_RESUME;
1159 case PM_EVENT_FREEZE:
1160 case PM_EVENT_QUIESCE:
1161 return PMSG_RECOVER;
1162 case PM_EVENT_HIBERNATE:
1163 return PMSG_RESTORE;
1164 }
1165 return PMSG_ON;
1166 }
1167
dpm_superior_set_must_resume(struct device * dev)1168 static void dpm_superior_set_must_resume(struct device *dev)
1169 {
1170 struct device_link *link;
1171 int idx;
1172
1173 if (dev->parent)
1174 dev->parent->power.must_resume = true;
1175
1176 idx = device_links_read_lock();
1177
1178 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
1179 link->supplier->power.must_resume = true;
1180
1181 device_links_read_unlock(idx);
1182 }
1183
1184 /**
1185 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1186 * @dev: Device to handle.
1187 * @state: PM transition of the system being carried out.
1188 * @async: If true, the device is being suspended asynchronously.
1189 *
1190 * The driver of @dev will not receive interrupts while this function is being
1191 * executed.
1192 */
__device_suspend_noirq(struct device * dev,pm_message_t state,bool async)1193 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1194 {
1195 pm_callback_t callback = NULL;
1196 const char *info = NULL;
1197 int error = 0;
1198
1199 TRACE_DEVICE(dev);
1200 TRACE_SUSPEND(0);
1201
1202 dpm_wait_for_subordinate(dev, async);
1203
1204 if (async_error)
1205 goto Complete;
1206
1207 if (dev->power.syscore || dev->power.direct_complete)
1208 goto Complete;
1209
1210 if (dev->pm_domain) {
1211 info = "noirq power domain ";
1212 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1213 } else if (dev->type && dev->type->pm) {
1214 info = "noirq type ";
1215 callback = pm_noirq_op(dev->type->pm, state);
1216 } else if (dev->class && dev->class->pm) {
1217 info = "noirq class ";
1218 callback = pm_noirq_op(dev->class->pm, state);
1219 } else if (dev->bus && dev->bus->pm) {
1220 info = "noirq bus ";
1221 callback = pm_noirq_op(dev->bus->pm, state);
1222 }
1223 if (callback)
1224 goto Run;
1225
1226 if (dev_pm_skip_suspend(dev))
1227 goto Skip;
1228
1229 if (dev->driver && dev->driver->pm) {
1230 info = "noirq driver ";
1231 callback = pm_noirq_op(dev->driver->pm, state);
1232 }
1233
1234 Run:
1235 error = dpm_run_callback(callback, dev, state, info);
1236 if (error) {
1237 async_error = error;
1238 log_suspend_abort_reason("Device %s failed to %s noirq: error %d",
1239 dev_name(dev), pm_verb(state.event), error);
1240 goto Complete;
1241 }
1242
1243 Skip:
1244 dev->power.is_noirq_suspended = true;
1245
1246 /*
1247 * Skipping the resume of devices that were in use right before the
1248 * system suspend (as indicated by their PM-runtime usage counters)
1249 * would be suboptimal. Also resume them if doing that is not allowed
1250 * to be skipped.
1251 */
1252 if (atomic_read(&dev->power.usage_count) > 1 ||
1253 !(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) &&
1254 dev->power.may_skip_resume))
1255 dev->power.must_resume = true;
1256
1257 if (dev->power.must_resume)
1258 dpm_superior_set_must_resume(dev);
1259
1260 Complete:
1261 complete_all(&dev->power.completion);
1262 TRACE_SUSPEND(error);
1263 return error;
1264 }
1265
async_suspend_noirq(void * data,async_cookie_t cookie)1266 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1267 {
1268 struct device *dev = (struct device *)data;
1269 int error;
1270
1271 error = __device_suspend_noirq(dev, pm_transition, true);
1272 if (error) {
1273 dpm_save_failed_dev(dev_name(dev));
1274 pm_dev_err(dev, pm_transition, " async", error);
1275 }
1276
1277 put_device(dev);
1278 }
1279
device_suspend_noirq(struct device * dev)1280 static int device_suspend_noirq(struct device *dev)
1281 {
1282 if (dpm_async_fn(dev, async_suspend_noirq))
1283 return 0;
1284
1285 return __device_suspend_noirq(dev, pm_transition, false);
1286 }
1287
dpm_noirq_suspend_devices(pm_message_t state)1288 static int dpm_noirq_suspend_devices(pm_message_t state)
1289 {
1290 ktime_t starttime = ktime_get();
1291 int error = 0;
1292
1293 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1294 mutex_lock(&dpm_list_mtx);
1295 pm_transition = state;
1296 async_error = 0;
1297
1298 while (!list_empty(&dpm_late_early_list)) {
1299 struct device *dev = to_device(dpm_late_early_list.prev);
1300
1301 get_device(dev);
1302 mutex_unlock(&dpm_list_mtx);
1303
1304 error = device_suspend_noirq(dev);
1305
1306 mutex_lock(&dpm_list_mtx);
1307 if (error) {
1308 pm_dev_err(dev, state, " noirq", error);
1309 dpm_save_failed_dev(dev_name(dev));
1310 put_device(dev);
1311 break;
1312 }
1313 if (!list_empty(&dev->power.entry))
1314 list_move(&dev->power.entry, &dpm_noirq_list);
1315 put_device(dev);
1316
1317 if (async_error)
1318 break;
1319 }
1320 mutex_unlock(&dpm_list_mtx);
1321 async_synchronize_full();
1322 if (!error)
1323 error = async_error;
1324
1325 if (error) {
1326 suspend_stats.failed_suspend_noirq++;
1327 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1328 }
1329 dpm_show_time(starttime, state, error, "noirq");
1330 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1331 return error;
1332 }
1333
1334 /**
1335 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1336 * @state: PM transition of the system being carried out.
1337 *
1338 * Prevent device drivers' interrupt handlers from being called and invoke
1339 * "noirq" suspend callbacks for all non-sysdev devices.
1340 */
dpm_suspend_noirq(pm_message_t state)1341 int dpm_suspend_noirq(pm_message_t state)
1342 {
1343 int ret;
1344
1345 cpuidle_pause();
1346
1347 device_wakeup_arm_wake_irqs();
1348 suspend_device_irqs();
1349
1350 ret = dpm_noirq_suspend_devices(state);
1351 if (ret)
1352 dpm_resume_noirq(resume_event(state));
1353
1354 return ret;
1355 }
1356
dpm_propagate_wakeup_to_parent(struct device * dev)1357 static void dpm_propagate_wakeup_to_parent(struct device *dev)
1358 {
1359 struct device *parent = dev->parent;
1360
1361 if (!parent)
1362 return;
1363
1364 spin_lock_irq(&parent->power.lock);
1365
1366 if (dev->power.wakeup_path && !parent->power.ignore_children)
1367 parent->power.wakeup_path = true;
1368
1369 spin_unlock_irq(&parent->power.lock);
1370 }
1371
1372 /**
1373 * __device_suspend_late - Execute a "late suspend" callback for given device.
1374 * @dev: Device to handle.
1375 * @state: PM transition of the system being carried out.
1376 * @async: If true, the device is being suspended asynchronously.
1377 *
1378 * Runtime PM is disabled for @dev while this function is being executed.
1379 */
__device_suspend_late(struct device * dev,pm_message_t state,bool async)1380 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1381 {
1382 pm_callback_t callback = NULL;
1383 const char *info = NULL;
1384 int error = 0;
1385
1386 TRACE_DEVICE(dev);
1387 TRACE_SUSPEND(0);
1388
1389 __pm_runtime_disable(dev, false);
1390
1391 dpm_wait_for_subordinate(dev, async);
1392
1393 if (async_error)
1394 goto Complete;
1395
1396 if (pm_wakeup_pending()) {
1397 async_error = -EBUSY;
1398 goto Complete;
1399 }
1400
1401 if (dev->power.syscore || dev->power.direct_complete)
1402 goto Complete;
1403
1404 if (dev->pm_domain) {
1405 info = "late power domain ";
1406 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1407 } else if (dev->type && dev->type->pm) {
1408 info = "late type ";
1409 callback = pm_late_early_op(dev->type->pm, state);
1410 } else if (dev->class && dev->class->pm) {
1411 info = "late class ";
1412 callback = pm_late_early_op(dev->class->pm, state);
1413 } else if (dev->bus && dev->bus->pm) {
1414 info = "late bus ";
1415 callback = pm_late_early_op(dev->bus->pm, state);
1416 }
1417 if (callback)
1418 goto Run;
1419
1420 if (dev_pm_skip_suspend(dev))
1421 goto Skip;
1422
1423 if (dev->driver && dev->driver->pm) {
1424 info = "late driver ";
1425 callback = pm_late_early_op(dev->driver->pm, state);
1426 }
1427
1428 Run:
1429 error = dpm_run_callback(callback, dev, state, info);
1430 if (error) {
1431 async_error = error;
1432 log_suspend_abort_reason("Device %s failed to %s late: error %d",
1433 dev_name(dev), pm_verb(state.event), error);
1434 goto Complete;
1435 }
1436 dpm_propagate_wakeup_to_parent(dev);
1437
1438 Skip:
1439 dev->power.is_late_suspended = true;
1440
1441 Complete:
1442 TRACE_SUSPEND(error);
1443 complete_all(&dev->power.completion);
1444 return error;
1445 }
1446
async_suspend_late(void * data,async_cookie_t cookie)1447 static void async_suspend_late(void *data, async_cookie_t cookie)
1448 {
1449 struct device *dev = (struct device *)data;
1450 int error;
1451
1452 error = __device_suspend_late(dev, pm_transition, true);
1453 if (error) {
1454 dpm_save_failed_dev(dev_name(dev));
1455 pm_dev_err(dev, pm_transition, " async", error);
1456 }
1457 put_device(dev);
1458 }
1459
device_suspend_late(struct device * dev)1460 static int device_suspend_late(struct device *dev)
1461 {
1462 if (dpm_async_fn(dev, async_suspend_late))
1463 return 0;
1464
1465 return __device_suspend_late(dev, pm_transition, false);
1466 }
1467
1468 /**
1469 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1470 * @state: PM transition of the system being carried out.
1471 */
dpm_suspend_late(pm_message_t state)1472 int dpm_suspend_late(pm_message_t state)
1473 {
1474 ktime_t starttime = ktime_get();
1475 int error = 0;
1476
1477 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1478 mutex_lock(&dpm_list_mtx);
1479 pm_transition = state;
1480 async_error = 0;
1481
1482 while (!list_empty(&dpm_suspended_list)) {
1483 struct device *dev = to_device(dpm_suspended_list.prev);
1484
1485 get_device(dev);
1486 mutex_unlock(&dpm_list_mtx);
1487
1488 error = device_suspend_late(dev);
1489
1490 mutex_lock(&dpm_list_mtx);
1491 if (!list_empty(&dev->power.entry))
1492 list_move(&dev->power.entry, &dpm_late_early_list);
1493
1494 if (error) {
1495 pm_dev_err(dev, state, " late", error);
1496 dpm_save_failed_dev(dev_name(dev));
1497 put_device(dev);
1498 break;
1499 }
1500 put_device(dev);
1501
1502 if (async_error)
1503 break;
1504 }
1505 mutex_unlock(&dpm_list_mtx);
1506 async_synchronize_full();
1507 if (!error)
1508 error = async_error;
1509 if (error) {
1510 suspend_stats.failed_suspend_late++;
1511 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1512 dpm_resume_early(resume_event(state));
1513 }
1514 dpm_show_time(starttime, state, error, "late");
1515 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1516 return error;
1517 }
1518
1519 /**
1520 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1521 * @state: PM transition of the system being carried out.
1522 */
dpm_suspend_end(pm_message_t state)1523 int dpm_suspend_end(pm_message_t state)
1524 {
1525 ktime_t starttime = ktime_get();
1526 int error;
1527
1528 error = dpm_suspend_late(state);
1529 if (error)
1530 goto out;
1531
1532 error = dpm_suspend_noirq(state);
1533 if (error)
1534 dpm_resume_early(resume_event(state));
1535
1536 out:
1537 dpm_show_time(starttime, state, error, "end");
1538 return error;
1539 }
1540 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1541
1542 /**
1543 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1544 * @dev: Device to suspend.
1545 * @state: PM transition of the system being carried out.
1546 * @cb: Suspend callback to execute.
1547 * @info: string description of caller.
1548 */
legacy_suspend(struct device * dev,pm_message_t state,int (* cb)(struct device * dev,pm_message_t state),const char * info)1549 static int legacy_suspend(struct device *dev, pm_message_t state,
1550 int (*cb)(struct device *dev, pm_message_t state),
1551 const char *info)
1552 {
1553 int error;
1554 ktime_t calltime;
1555
1556 calltime = initcall_debug_start(dev, cb);
1557
1558 trace_device_pm_callback_start(dev, info, state.event);
1559 error = cb(dev, state);
1560 trace_device_pm_callback_end(dev, error);
1561 suspend_report_result(cb, error);
1562
1563 initcall_debug_report(dev, calltime, cb, error);
1564
1565 return error;
1566 }
1567
dpm_clear_superiors_direct_complete(struct device * dev)1568 static void dpm_clear_superiors_direct_complete(struct device *dev)
1569 {
1570 struct device_link *link;
1571 int idx;
1572
1573 if (dev->parent) {
1574 spin_lock_irq(&dev->parent->power.lock);
1575 dev->parent->power.direct_complete = false;
1576 spin_unlock_irq(&dev->parent->power.lock);
1577 }
1578
1579 idx = device_links_read_lock();
1580
1581 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) {
1582 spin_lock_irq(&link->supplier->power.lock);
1583 link->supplier->power.direct_complete = false;
1584 spin_unlock_irq(&link->supplier->power.lock);
1585 }
1586
1587 device_links_read_unlock(idx);
1588 }
1589
1590 /**
1591 * __device_suspend - Execute "suspend" callbacks for given device.
1592 * @dev: Device to handle.
1593 * @state: PM transition of the system being carried out.
1594 * @async: If true, the device is being suspended asynchronously.
1595 */
__device_suspend(struct device * dev,pm_message_t state,bool async)1596 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1597 {
1598 pm_callback_t callback = NULL;
1599 const char *info = NULL;
1600 int error = 0;
1601 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1602
1603 TRACE_DEVICE(dev);
1604 TRACE_SUSPEND(0);
1605
1606 dpm_wait_for_subordinate(dev, async);
1607
1608 if (async_error) {
1609 dev->power.direct_complete = false;
1610 goto Complete;
1611 }
1612
1613 /*
1614 * Wait for possible runtime PM transitions of the device in progress
1615 * to complete and if there's a runtime resume request pending for it,
1616 * resume it before proceeding with invoking the system-wide suspend
1617 * callbacks for it.
1618 *
1619 * If the system-wide suspend callbacks below change the configuration
1620 * of the device, they must disable runtime PM for it or otherwise
1621 * ensure that its runtime-resume callbacks will not be confused by that
1622 * change in case they are invoked going forward.
1623 */
1624 pm_runtime_barrier(dev);
1625
1626 if (pm_wakeup_pending()) {
1627 dev->power.direct_complete = false;
1628 async_error = -EBUSY;
1629 goto Complete;
1630 }
1631
1632 if (dev->power.syscore)
1633 goto Complete;
1634
1635 /* Avoid direct_complete to let wakeup_path propagate. */
1636 if (device_may_wakeup(dev) || dev->power.wakeup_path)
1637 dev->power.direct_complete = false;
1638
1639 if (dev->power.direct_complete) {
1640 if (pm_runtime_status_suspended(dev)) {
1641 pm_runtime_disable(dev);
1642 if (pm_runtime_status_suspended(dev)) {
1643 pm_dev_dbg(dev, state, "direct-complete ");
1644 goto Complete;
1645 }
1646
1647 pm_runtime_enable(dev);
1648 }
1649 dev->power.direct_complete = false;
1650 }
1651
1652 dev->power.may_skip_resume = true;
1653 dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME);
1654
1655 dpm_watchdog_set(&wd, dev);
1656 device_lock(dev);
1657
1658 if (dev->pm_domain) {
1659 info = "power domain ";
1660 callback = pm_op(&dev->pm_domain->ops, state);
1661 goto Run;
1662 }
1663
1664 if (dev->type && dev->type->pm) {
1665 info = "type ";
1666 callback = pm_op(dev->type->pm, state);
1667 goto Run;
1668 }
1669
1670 if (dev->class && dev->class->pm) {
1671 info = "class ";
1672 callback = pm_op(dev->class->pm, state);
1673 goto Run;
1674 }
1675
1676 if (dev->bus) {
1677 if (dev->bus->pm) {
1678 info = "bus ";
1679 callback = pm_op(dev->bus->pm, state);
1680 } else if (dev->bus->suspend) {
1681 pm_dev_dbg(dev, state, "legacy bus ");
1682 error = legacy_suspend(dev, state, dev->bus->suspend,
1683 "legacy bus ");
1684 goto End;
1685 }
1686 }
1687
1688 Run:
1689 if (!callback && dev->driver && dev->driver->pm) {
1690 info = "driver ";
1691 callback = pm_op(dev->driver->pm, state);
1692 }
1693
1694 error = dpm_run_callback(callback, dev, state, info);
1695
1696 End:
1697 if (!error) {
1698 dev->power.is_suspended = true;
1699 if (device_may_wakeup(dev))
1700 dev->power.wakeup_path = true;
1701
1702 dpm_propagate_wakeup_to_parent(dev);
1703 dpm_clear_superiors_direct_complete(dev);
1704 } else {
1705 log_suspend_abort_reason("Device %s failed to %s: error %d",
1706 dev_name(dev), pm_verb(state.event), error);
1707 }
1708
1709 device_unlock(dev);
1710 dpm_watchdog_clear(&wd);
1711
1712 Complete:
1713 if (error)
1714 async_error = error;
1715
1716 complete_all(&dev->power.completion);
1717 TRACE_SUSPEND(error);
1718 return error;
1719 }
1720
async_suspend(void * data,async_cookie_t cookie)1721 static void async_suspend(void *data, async_cookie_t cookie)
1722 {
1723 struct device *dev = (struct device *)data;
1724 int error;
1725
1726 error = __device_suspend(dev, pm_transition, true);
1727 if (error) {
1728 dpm_save_failed_dev(dev_name(dev));
1729 pm_dev_err(dev, pm_transition, " async", error);
1730 }
1731
1732 put_device(dev);
1733 }
1734
device_suspend(struct device * dev)1735 static int device_suspend(struct device *dev)
1736 {
1737 if (dpm_async_fn(dev, async_suspend))
1738 return 0;
1739
1740 return __device_suspend(dev, pm_transition, false);
1741 }
1742
1743 /**
1744 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1745 * @state: PM transition of the system being carried out.
1746 */
dpm_suspend(pm_message_t state)1747 int dpm_suspend(pm_message_t state)
1748 {
1749 ktime_t starttime = ktime_get();
1750 int error = 0;
1751
1752 trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1753 might_sleep();
1754
1755 devfreq_suspend();
1756 cpufreq_suspend();
1757
1758 mutex_lock(&dpm_list_mtx);
1759 pm_transition = state;
1760 async_error = 0;
1761 while (!list_empty(&dpm_prepared_list)) {
1762 struct device *dev = to_device(dpm_prepared_list.prev);
1763
1764 get_device(dev);
1765 mutex_unlock(&dpm_list_mtx);
1766
1767 error = device_suspend(dev);
1768
1769 mutex_lock(&dpm_list_mtx);
1770 if (error) {
1771 pm_dev_err(dev, state, "", error);
1772 dpm_save_failed_dev(dev_name(dev));
1773 put_device(dev);
1774 break;
1775 }
1776 if (!list_empty(&dev->power.entry))
1777 list_move(&dev->power.entry, &dpm_suspended_list);
1778 put_device(dev);
1779 if (async_error)
1780 break;
1781 }
1782 mutex_unlock(&dpm_list_mtx);
1783 async_synchronize_full();
1784 if (!error)
1785 error = async_error;
1786 if (error) {
1787 suspend_stats.failed_suspend++;
1788 dpm_save_failed_step(SUSPEND_SUSPEND);
1789 }
1790 dpm_show_time(starttime, state, error, NULL);
1791 trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1792 return error;
1793 }
1794
1795 /**
1796 * device_prepare - Prepare a device for system power transition.
1797 * @dev: Device to handle.
1798 * @state: PM transition of the system being carried out.
1799 *
1800 * Execute the ->prepare() callback(s) for given device. No new children of the
1801 * device may be registered after this function has returned.
1802 */
device_prepare(struct device * dev,pm_message_t state)1803 static int device_prepare(struct device *dev, pm_message_t state)
1804 {
1805 int (*callback)(struct device *) = NULL;
1806 int ret = 0;
1807
1808 /*
1809 * If a device's parent goes into runtime suspend at the wrong time,
1810 * it won't be possible to resume the device. To prevent this we
1811 * block runtime suspend here, during the prepare phase, and allow
1812 * it again during the complete phase.
1813 */
1814 pm_runtime_get_noresume(dev);
1815
1816 if (dev->power.syscore)
1817 return 0;
1818
1819 device_lock(dev);
1820
1821 dev->power.wakeup_path = false;
1822
1823 if (dev->power.no_pm_callbacks)
1824 goto unlock;
1825
1826 if (dev->pm_domain)
1827 callback = dev->pm_domain->ops.prepare;
1828 else if (dev->type && dev->type->pm)
1829 callback = dev->type->pm->prepare;
1830 else if (dev->class && dev->class->pm)
1831 callback = dev->class->pm->prepare;
1832 else if (dev->bus && dev->bus->pm)
1833 callback = dev->bus->pm->prepare;
1834
1835 if (!callback && dev->driver && dev->driver->pm)
1836 callback = dev->driver->pm->prepare;
1837
1838 if (callback)
1839 ret = callback(dev);
1840
1841 unlock:
1842 device_unlock(dev);
1843
1844 if (ret < 0) {
1845 suspend_report_result(callback, ret);
1846 pm_runtime_put(dev);
1847 return ret;
1848 }
1849 /*
1850 * A positive return value from ->prepare() means "this device appears
1851 * to be runtime-suspended and its state is fine, so if it really is
1852 * runtime-suspended, you can leave it in that state provided that you
1853 * will do the same thing with all of its descendants". This only
1854 * applies to suspend transitions, however.
1855 */
1856 spin_lock_irq(&dev->power.lock);
1857 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1858 (ret > 0 || dev->power.no_pm_callbacks) &&
1859 !dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
1860 spin_unlock_irq(&dev->power.lock);
1861 return 0;
1862 }
1863
1864 /**
1865 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1866 * @state: PM transition of the system being carried out.
1867 *
1868 * Execute the ->prepare() callback(s) for all devices.
1869 */
dpm_prepare(pm_message_t state)1870 int dpm_prepare(pm_message_t state)
1871 {
1872 int error = 0;
1873
1874 trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1875 might_sleep();
1876
1877 /*
1878 * Give a chance for the known devices to complete their probes, before
1879 * disable probing of devices. This sync point is important at least
1880 * at boot time + hibernation restore.
1881 */
1882 wait_for_device_probe();
1883 /*
1884 * It is unsafe if probing of devices will happen during suspend or
1885 * hibernation and system behavior will be unpredictable in this case.
1886 * So, let's prohibit device's probing here and defer their probes
1887 * instead. The normal behavior will be restored in dpm_complete().
1888 */
1889 device_block_probing();
1890
1891 mutex_lock(&dpm_list_mtx);
1892 while (!list_empty(&dpm_list)) {
1893 struct device *dev = to_device(dpm_list.next);
1894
1895 get_device(dev);
1896 mutex_unlock(&dpm_list_mtx);
1897
1898 trace_device_pm_callback_start(dev, "", state.event);
1899 error = device_prepare(dev, state);
1900 trace_device_pm_callback_end(dev, error);
1901
1902 mutex_lock(&dpm_list_mtx);
1903 if (error) {
1904 if (error == -EAGAIN) {
1905 put_device(dev);
1906 error = 0;
1907 continue;
1908 }
1909 pr_info("Device %s not prepared for power transition: code %d\n",
1910 dev_name(dev), error);
1911 log_suspend_abort_reason("Device %s not prepared for power transition: code %d",
1912 dev_name(dev), error);
1913 dpm_save_failed_dev(dev_name(dev));
1914 put_device(dev);
1915 break;
1916 }
1917 dev->power.is_prepared = true;
1918 if (!list_empty(&dev->power.entry))
1919 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1920 put_device(dev);
1921 }
1922 mutex_unlock(&dpm_list_mtx);
1923 trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1924 return error;
1925 }
1926
1927 /**
1928 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1929 * @state: PM transition of the system being carried out.
1930 *
1931 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1932 * callbacks for them.
1933 */
dpm_suspend_start(pm_message_t state)1934 int dpm_suspend_start(pm_message_t state)
1935 {
1936 ktime_t starttime = ktime_get();
1937 int error;
1938
1939 error = dpm_prepare(state);
1940 if (error) {
1941 suspend_stats.failed_prepare++;
1942 dpm_save_failed_step(SUSPEND_PREPARE);
1943 } else
1944 error = dpm_suspend(state);
1945 dpm_show_time(starttime, state, error, "start");
1946 return error;
1947 }
1948 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1949
__suspend_report_result(const char * function,void * fn,int ret)1950 void __suspend_report_result(const char *function, void *fn, int ret)
1951 {
1952 if (ret)
1953 pr_err("%s(): %pS returns %d\n", function, fn, ret);
1954 }
1955 EXPORT_SYMBOL_GPL(__suspend_report_result);
1956
1957 /**
1958 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1959 * @subordinate: Device that needs to wait for @dev.
1960 * @dev: Device to wait for.
1961 */
device_pm_wait_for_dev(struct device * subordinate,struct device * dev)1962 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1963 {
1964 dpm_wait(dev, subordinate->power.async_suspend);
1965 return async_error;
1966 }
1967 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1968
1969 /**
1970 * dpm_for_each_dev - device iterator.
1971 * @data: data for the callback.
1972 * @fn: function to be called for each device.
1973 *
1974 * Iterate over devices in dpm_list, and call @fn for each device,
1975 * passing it @data.
1976 */
dpm_for_each_dev(void * data,void (* fn)(struct device *,void *))1977 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1978 {
1979 struct device *dev;
1980
1981 if (!fn)
1982 return;
1983
1984 device_pm_lock();
1985 list_for_each_entry(dev, &dpm_list, power.entry)
1986 fn(dev, data);
1987 device_pm_unlock();
1988 }
1989 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1990
pm_ops_is_empty(const struct dev_pm_ops * ops)1991 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1992 {
1993 if (!ops)
1994 return true;
1995
1996 return !ops->prepare &&
1997 !ops->suspend &&
1998 !ops->suspend_late &&
1999 !ops->suspend_noirq &&
2000 !ops->resume_noirq &&
2001 !ops->resume_early &&
2002 !ops->resume &&
2003 !ops->complete;
2004 }
2005
device_pm_check_callbacks(struct device * dev)2006 void device_pm_check_callbacks(struct device *dev)
2007 {
2008 unsigned long flags;
2009
2010 spin_lock_irqsave(&dev->power.lock, flags);
2011 dev->power.no_pm_callbacks =
2012 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2013 !dev->bus->suspend && !dev->bus->resume)) &&
2014 (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2015 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2016 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2017 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2018 !dev->driver->suspend && !dev->driver->resume));
2019 spin_unlock_irqrestore(&dev->power.lock, flags);
2020 }
2021
dev_pm_skip_suspend(struct device * dev)2022 bool dev_pm_skip_suspend(struct device *dev)
2023 {
2024 return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2025 pm_runtime_status_suspended(dev);
2026 }
2027