xref: /OK3568_Linux_fs/kernel/drivers/base/power/main.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/power/main.c - Where the driver meets power management.
4  *
5  * Copyright (c) 2003 Patrick Mochel
6  * Copyright (c) 2003 Open Source Development Lab
7  *
8  * The driver model core calls device_pm_add() when a device is registered.
9  * This will initialize the embedded device_pm_info object in the device
10  * and add it to the list of power-controlled devices. sysfs entries for
11  * controlling device power management will also be added.
12  *
13  * A separate list is used for keeping track of power info, because the power
14  * domain dependencies may differ from the ancestral dependencies that the
15  * subsystem list maintains.
16  */
17 
18 #define pr_fmt(fmt) "PM: " fmt
19 
20 #include <linux/device.h>
21 #include <linux/export.h>
22 #include <linux/mutex.h>
23 #include <linux/pm.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pm-trace.h>
26 #include <linux/pm_wakeirq.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/sched/debug.h>
30 #include <linux/async.h>
31 #include <linux/suspend.h>
32 #include <trace/events/power.h>
33 #include <linux/cpufreq.h>
34 #include <linux/cpuidle.h>
35 #include <linux/devfreq.h>
36 #include <linux/timer.h>
37 #include <linux/wakeup_reason.h>
38 
39 #include "../base.h"
40 #include "power.h"
41 
42 typedef int (*pm_callback_t)(struct device *);
43 
44 #define list_for_each_entry_rcu_locked(pos, head, member) \
45 	list_for_each_entry_rcu(pos, head, member, \
46 			device_links_read_lock_held())
47 
48 /*
49  * The entries in the dpm_list list are in a depth first order, simply
50  * because children are guaranteed to be discovered after parents, and
51  * are inserted at the back of the list on discovery.
52  *
53  * Since device_pm_add() may be called with a device lock held,
54  * we must never try to acquire a device lock while holding
55  * dpm_list_mutex.
56  */
57 
58 LIST_HEAD(dpm_list);
59 static LIST_HEAD(dpm_prepared_list);
60 static LIST_HEAD(dpm_suspended_list);
61 static LIST_HEAD(dpm_late_early_list);
62 static LIST_HEAD(dpm_noirq_list);
63 
64 struct suspend_stats suspend_stats;
65 static DEFINE_MUTEX(dpm_list_mtx);
66 static pm_message_t pm_transition;
67 
68 static int async_error;
69 
pm_verb(int event)70 static const char *pm_verb(int event)
71 {
72 	switch (event) {
73 	case PM_EVENT_SUSPEND:
74 		return "suspend";
75 	case PM_EVENT_RESUME:
76 		return "resume";
77 	case PM_EVENT_FREEZE:
78 		return "freeze";
79 	case PM_EVENT_QUIESCE:
80 		return "quiesce";
81 	case PM_EVENT_HIBERNATE:
82 		return "hibernate";
83 	case PM_EVENT_THAW:
84 		return "thaw";
85 	case PM_EVENT_RESTORE:
86 		return "restore";
87 	case PM_EVENT_RECOVER:
88 		return "recover";
89 	default:
90 		return "(unknown PM event)";
91 	}
92 }
93 
94 /**
95  * device_pm_sleep_init - Initialize system suspend-related device fields.
96  * @dev: Device object being initialized.
97  */
device_pm_sleep_init(struct device * dev)98 void device_pm_sleep_init(struct device *dev)
99 {
100 	dev->power.is_prepared = false;
101 	dev->power.is_suspended = false;
102 	dev->power.is_noirq_suspended = false;
103 	dev->power.is_late_suspended = false;
104 	init_completion(&dev->power.completion);
105 	complete_all(&dev->power.completion);
106 	dev->power.wakeup = NULL;
107 	INIT_LIST_HEAD(&dev->power.entry);
108 }
109 
110 /**
111  * device_pm_lock - Lock the list of active devices used by the PM core.
112  */
device_pm_lock(void)113 void device_pm_lock(void)
114 {
115 	mutex_lock(&dpm_list_mtx);
116 }
117 
118 /**
119  * device_pm_unlock - Unlock the list of active devices used by the PM core.
120  */
device_pm_unlock(void)121 void device_pm_unlock(void)
122 {
123 	mutex_unlock(&dpm_list_mtx);
124 }
125 
126 /**
127  * device_pm_add - Add a device to the PM core's list of active devices.
128  * @dev: Device to add to the list.
129  */
device_pm_add(struct device * dev)130 void device_pm_add(struct device *dev)
131 {
132 	/* Skip PM setup/initialization. */
133 	if (device_pm_not_required(dev))
134 		return;
135 
136 	pr_debug("Adding info for %s:%s\n",
137 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
138 	device_pm_check_callbacks(dev);
139 	mutex_lock(&dpm_list_mtx);
140 	if (dev->parent && dev->parent->power.is_prepared)
141 		dev_warn(dev, "parent %s should not be sleeping\n",
142 			dev_name(dev->parent));
143 	list_add_tail(&dev->power.entry, &dpm_list);
144 	dev->power.in_dpm_list = true;
145 	mutex_unlock(&dpm_list_mtx);
146 }
147 
148 /**
149  * device_pm_remove - Remove a device from the PM core's list of active devices.
150  * @dev: Device to be removed from the list.
151  */
device_pm_remove(struct device * dev)152 void device_pm_remove(struct device *dev)
153 {
154 	if (device_pm_not_required(dev))
155 		return;
156 
157 	pr_debug("Removing info for %s:%s\n",
158 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
159 	complete_all(&dev->power.completion);
160 	mutex_lock(&dpm_list_mtx);
161 	list_del_init(&dev->power.entry);
162 	dev->power.in_dpm_list = false;
163 	mutex_unlock(&dpm_list_mtx);
164 	device_wakeup_disable(dev);
165 	pm_runtime_remove(dev);
166 	device_pm_check_callbacks(dev);
167 }
168 
169 /**
170  * device_pm_move_before - Move device in the PM core's list of active devices.
171  * @deva: Device to move in dpm_list.
172  * @devb: Device @deva should come before.
173  */
device_pm_move_before(struct device * deva,struct device * devb)174 void device_pm_move_before(struct device *deva, struct device *devb)
175 {
176 	pr_debug("Moving %s:%s before %s:%s\n",
177 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
178 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
179 	/* Delete deva from dpm_list and reinsert before devb. */
180 	list_move_tail(&deva->power.entry, &devb->power.entry);
181 }
182 
183 /**
184  * device_pm_move_after - Move device in the PM core's list of active devices.
185  * @deva: Device to move in dpm_list.
186  * @devb: Device @deva should come after.
187  */
device_pm_move_after(struct device * deva,struct device * devb)188 void device_pm_move_after(struct device *deva, struct device *devb)
189 {
190 	pr_debug("Moving %s:%s after %s:%s\n",
191 		 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
192 		 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
193 	/* Delete deva from dpm_list and reinsert after devb. */
194 	list_move(&deva->power.entry, &devb->power.entry);
195 }
196 
197 /**
198  * device_pm_move_last - Move device to end of the PM core's list of devices.
199  * @dev: Device to move in dpm_list.
200  */
device_pm_move_last(struct device * dev)201 void device_pm_move_last(struct device *dev)
202 {
203 	pr_debug("Moving %s:%s to end of list\n",
204 		 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
205 	list_move_tail(&dev->power.entry, &dpm_list);
206 }
207 
initcall_debug_start(struct device * dev,void * cb)208 static ktime_t initcall_debug_start(struct device *dev, void *cb)
209 {
210 	if (!pm_print_times_enabled)
211 		return 0;
212 
213 	dev_info(dev, "calling %pS @ %i, parent: %s\n", cb,
214 		 task_pid_nr(current),
215 		 dev->parent ? dev_name(dev->parent) : "none");
216 	return ktime_get();
217 }
218 
initcall_debug_report(struct device * dev,ktime_t calltime,void * cb,int error)219 static void initcall_debug_report(struct device *dev, ktime_t calltime,
220 				  void *cb, int error)
221 {
222 	ktime_t rettime;
223 	s64 nsecs;
224 
225 	if (!pm_print_times_enabled)
226 		return;
227 
228 	rettime = ktime_get();
229 	nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
230 
231 	dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error,
232 		 (unsigned long long)nsecs >> 10);
233 }
234 
235 /**
236  * dpm_wait - Wait for a PM operation to complete.
237  * @dev: Device to wait for.
238  * @async: If unset, wait only if the device's power.async_suspend flag is set.
239  */
dpm_wait(struct device * dev,bool async)240 static void dpm_wait(struct device *dev, bool async)
241 {
242 	if (!dev)
243 		return;
244 
245 	if (async || (pm_async_enabled && dev->power.async_suspend))
246 		wait_for_completion(&dev->power.completion);
247 }
248 
dpm_wait_fn(struct device * dev,void * async_ptr)249 static int dpm_wait_fn(struct device *dev, void *async_ptr)
250 {
251 	dpm_wait(dev, *((bool *)async_ptr));
252 	return 0;
253 }
254 
dpm_wait_for_children(struct device * dev,bool async)255 static void dpm_wait_for_children(struct device *dev, bool async)
256 {
257        device_for_each_child(dev, &async, dpm_wait_fn);
258 }
259 
dpm_wait_for_suppliers(struct device * dev,bool async)260 static void dpm_wait_for_suppliers(struct device *dev, bool async)
261 {
262 	struct device_link *link;
263 	int idx;
264 
265 	idx = device_links_read_lock();
266 
267 	/*
268 	 * If the supplier goes away right after we've checked the link to it,
269 	 * we'll wait for its completion to change the state, but that's fine,
270 	 * because the only things that will block as a result are the SRCU
271 	 * callbacks freeing the link objects for the links in the list we're
272 	 * walking.
273 	 */
274 	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
275 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
276 			dpm_wait(link->supplier, async);
277 
278 	device_links_read_unlock(idx);
279 }
280 
dpm_wait_for_superior(struct device * dev,bool async)281 static bool dpm_wait_for_superior(struct device *dev, bool async)
282 {
283 	struct device *parent;
284 
285 	/*
286 	 * If the device is resumed asynchronously and the parent's callback
287 	 * deletes both the device and the parent itself, the parent object may
288 	 * be freed while this function is running, so avoid that by reference
289 	 * counting the parent once more unless the device has been deleted
290 	 * already (in which case return right away).
291 	 */
292 	mutex_lock(&dpm_list_mtx);
293 
294 	if (!device_pm_initialized(dev)) {
295 		mutex_unlock(&dpm_list_mtx);
296 		return false;
297 	}
298 
299 	parent = get_device(dev->parent);
300 
301 	mutex_unlock(&dpm_list_mtx);
302 
303 	dpm_wait(parent, async);
304 	put_device(parent);
305 
306 	dpm_wait_for_suppliers(dev, async);
307 
308 	/*
309 	 * If the parent's callback has deleted the device, attempting to resume
310 	 * it would be invalid, so avoid doing that then.
311 	 */
312 	return device_pm_initialized(dev);
313 }
314 
dpm_wait_for_consumers(struct device * dev,bool async)315 static void dpm_wait_for_consumers(struct device *dev, bool async)
316 {
317 	struct device_link *link;
318 	int idx;
319 
320 	idx = device_links_read_lock();
321 
322 	/*
323 	 * The status of a device link can only be changed from "dormant" by a
324 	 * probe, but that cannot happen during system suspend/resume.  In
325 	 * theory it can change to "dormant" at that time, but then it is
326 	 * reasonable to wait for the target device anyway (eg. if it goes
327 	 * away, it's better to wait for it to go away completely and then
328 	 * continue instead of trying to continue in parallel with its
329 	 * unregistration).
330 	 */
331 	list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node)
332 		if (READ_ONCE(link->status) != DL_STATE_DORMANT)
333 			dpm_wait(link->consumer, async);
334 
335 	device_links_read_unlock(idx);
336 }
337 
dpm_wait_for_subordinate(struct device * dev,bool async)338 static void dpm_wait_for_subordinate(struct device *dev, bool async)
339 {
340 	dpm_wait_for_children(dev, async);
341 	dpm_wait_for_consumers(dev, async);
342 }
343 
344 /**
345  * pm_op - Return the PM operation appropriate for given PM event.
346  * @ops: PM operations to choose from.
347  * @state: PM transition of the system being carried out.
348  */
pm_op(const struct dev_pm_ops * ops,pm_message_t state)349 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
350 {
351 	switch (state.event) {
352 #ifdef CONFIG_SUSPEND
353 	case PM_EVENT_SUSPEND:
354 		return ops->suspend;
355 	case PM_EVENT_RESUME:
356 		return ops->resume;
357 #endif /* CONFIG_SUSPEND */
358 #ifdef CONFIG_HIBERNATE_CALLBACKS
359 	case PM_EVENT_FREEZE:
360 	case PM_EVENT_QUIESCE:
361 		return ops->freeze;
362 	case PM_EVENT_HIBERNATE:
363 		return ops->poweroff;
364 	case PM_EVENT_THAW:
365 	case PM_EVENT_RECOVER:
366 		return ops->thaw;
367 	case PM_EVENT_RESTORE:
368 		return ops->restore;
369 #endif /* CONFIG_HIBERNATE_CALLBACKS */
370 	}
371 
372 	return NULL;
373 }
374 
375 /**
376  * pm_late_early_op - Return the PM operation appropriate for given PM event.
377  * @ops: PM operations to choose from.
378  * @state: PM transition of the system being carried out.
379  *
380  * Runtime PM is disabled for @dev while this function is being executed.
381  */
pm_late_early_op(const struct dev_pm_ops * ops,pm_message_t state)382 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
383 				      pm_message_t state)
384 {
385 	switch (state.event) {
386 #ifdef CONFIG_SUSPEND
387 	case PM_EVENT_SUSPEND:
388 		return ops->suspend_late;
389 	case PM_EVENT_RESUME:
390 		return ops->resume_early;
391 #endif /* CONFIG_SUSPEND */
392 #ifdef CONFIG_HIBERNATE_CALLBACKS
393 	case PM_EVENT_FREEZE:
394 	case PM_EVENT_QUIESCE:
395 		return ops->freeze_late;
396 	case PM_EVENT_HIBERNATE:
397 		return ops->poweroff_late;
398 	case PM_EVENT_THAW:
399 	case PM_EVENT_RECOVER:
400 		return ops->thaw_early;
401 	case PM_EVENT_RESTORE:
402 		return ops->restore_early;
403 #endif /* CONFIG_HIBERNATE_CALLBACKS */
404 	}
405 
406 	return NULL;
407 }
408 
409 /**
410  * pm_noirq_op - Return the PM operation appropriate for given PM event.
411  * @ops: PM operations to choose from.
412  * @state: PM transition of the system being carried out.
413  *
414  * The driver of @dev will not receive interrupts while this function is being
415  * executed.
416  */
pm_noirq_op(const struct dev_pm_ops * ops,pm_message_t state)417 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
418 {
419 	switch (state.event) {
420 #ifdef CONFIG_SUSPEND
421 	case PM_EVENT_SUSPEND:
422 		return ops->suspend_noirq;
423 	case PM_EVENT_RESUME:
424 		return ops->resume_noirq;
425 #endif /* CONFIG_SUSPEND */
426 #ifdef CONFIG_HIBERNATE_CALLBACKS
427 	case PM_EVENT_FREEZE:
428 	case PM_EVENT_QUIESCE:
429 		return ops->freeze_noirq;
430 	case PM_EVENT_HIBERNATE:
431 		return ops->poweroff_noirq;
432 	case PM_EVENT_THAW:
433 	case PM_EVENT_RECOVER:
434 		return ops->thaw_noirq;
435 	case PM_EVENT_RESTORE:
436 		return ops->restore_noirq;
437 #endif /* CONFIG_HIBERNATE_CALLBACKS */
438 	}
439 
440 	return NULL;
441 }
442 
pm_dev_dbg(struct device * dev,pm_message_t state,const char * info)443 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
444 {
445 	dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
446 		((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
447 		", may wakeup" : "");
448 }
449 
pm_dev_err(struct device * dev,pm_message_t state,const char * info,int error)450 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
451 			int error)
452 {
453 	pr_err("Device %s failed to %s%s: error %d\n",
454 	       dev_name(dev), pm_verb(state.event), info, error);
455 }
456 
dpm_show_time(ktime_t starttime,pm_message_t state,int error,const char * info)457 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
458 			  const char *info)
459 {
460 	ktime_t calltime;
461 	u64 usecs64;
462 	int usecs;
463 
464 	calltime = ktime_get();
465 	usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
466 	do_div(usecs64, NSEC_PER_USEC);
467 	usecs = usecs64;
468 	if (usecs == 0)
469 		usecs = 1;
470 
471 	pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
472 		  info ?: "", info ? " " : "", pm_verb(state.event),
473 		  error ? "aborted" : "complete",
474 		  usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
475 }
476 
dpm_run_callback(pm_callback_t cb,struct device * dev,pm_message_t state,const char * info)477 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
478 			    pm_message_t state, const char *info)
479 {
480 	ktime_t calltime;
481 	int error;
482 
483 	if (!cb)
484 		return 0;
485 
486 	calltime = initcall_debug_start(dev, cb);
487 
488 	pm_dev_dbg(dev, state, info);
489 	trace_device_pm_callback_start(dev, info, state.event);
490 	error = cb(dev);
491 	trace_device_pm_callback_end(dev, error);
492 	suspend_report_result(cb, error);
493 
494 	initcall_debug_report(dev, calltime, cb, error);
495 
496 	return error;
497 }
498 
499 #ifdef CONFIG_DPM_WATCHDOG
500 struct dpm_watchdog {
501 	struct device		*dev;
502 	struct task_struct	*tsk;
503 	struct timer_list	timer;
504 };
505 
506 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
507 	struct dpm_watchdog wd
508 
509 /**
510  * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
511  * @t: The timer that PM watchdog depends on.
512  *
513  * Called when a driver has timed out suspending or resuming.
514  * There's not much we can do here to recover so panic() to
515  * capture a crash-dump in pstore.
516  */
dpm_watchdog_handler(struct timer_list * t)517 static void dpm_watchdog_handler(struct timer_list *t)
518 {
519 	struct dpm_watchdog *wd = from_timer(wd, t, timer);
520 
521 	dev_emerg(wd->dev, "**** DPM device timeout ****\n");
522 	show_stack(wd->tsk, NULL, KERN_EMERG);
523 	panic("%s %s: unrecoverable failure\n",
524 		dev_driver_string(wd->dev), dev_name(wd->dev));
525 }
526 
527 /**
528  * dpm_watchdog_set - Enable pm watchdog for given device.
529  * @wd: Watchdog. Must be allocated on the stack.
530  * @dev: Device to handle.
531  */
dpm_watchdog_set(struct dpm_watchdog * wd,struct device * dev)532 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
533 {
534 	struct timer_list *timer = &wd->timer;
535 
536 	wd->dev = dev;
537 	wd->tsk = current;
538 
539 	timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
540 	/* use same timeout value for both suspend and resume */
541 	timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
542 	add_timer(timer);
543 }
544 
545 /**
546  * dpm_watchdog_clear - Disable suspend/resume watchdog.
547  * @wd: Watchdog to disable.
548  */
dpm_watchdog_clear(struct dpm_watchdog * wd)549 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
550 {
551 	struct timer_list *timer = &wd->timer;
552 
553 	del_timer_sync(timer);
554 	destroy_timer_on_stack(timer);
555 }
556 #else
557 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
558 #define dpm_watchdog_set(x, y)
559 #define dpm_watchdog_clear(x)
560 #endif
561 
562 /*------------------------- Resume routines -------------------------*/
563 
564 /**
565  * dev_pm_skip_resume - System-wide device resume optimization check.
566  * @dev: Target device.
567  *
568  * Return:
569  * - %false if the transition under way is RESTORE.
570  * - Return value of dev_pm_skip_suspend() if the transition under way is THAW.
571  * - The logical negation of %power.must_resume otherwise (that is, when the
572  *   transition under way is RESUME).
573  */
dev_pm_skip_resume(struct device * dev)574 bool dev_pm_skip_resume(struct device *dev)
575 {
576 	if (pm_transition.event == PM_EVENT_RESTORE)
577 		return false;
578 
579 	if (pm_transition.event == PM_EVENT_THAW)
580 		return dev_pm_skip_suspend(dev);
581 
582 	return !dev->power.must_resume;
583 }
584 
585 /**
586  * device_resume_noirq - Execute a "noirq resume" callback for given device.
587  * @dev: Device to handle.
588  * @state: PM transition of the system being carried out.
589  * @async: If true, the device is being resumed asynchronously.
590  *
591  * The driver of @dev will not receive interrupts while this function is being
592  * executed.
593  */
device_resume_noirq(struct device * dev,pm_message_t state,bool async)594 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
595 {
596 	pm_callback_t callback = NULL;
597 	const char *info = NULL;
598 	bool skip_resume;
599 	int error = 0;
600 
601 	TRACE_DEVICE(dev);
602 	TRACE_RESUME(0);
603 
604 	if (dev->power.syscore || dev->power.direct_complete)
605 		goto Out;
606 
607 	if (!dev->power.is_noirq_suspended)
608 		goto Out;
609 
610 	if (!dpm_wait_for_superior(dev, async))
611 		goto Out;
612 
613 	skip_resume = dev_pm_skip_resume(dev);
614 	/*
615 	 * If the driver callback is skipped below or by the middle layer
616 	 * callback and device_resume_early() also skips the driver callback for
617 	 * this device later, it needs to appear as "suspended" to PM-runtime,
618 	 * so change its status accordingly.
619 	 *
620 	 * Otherwise, the device is going to be resumed, so set its PM-runtime
621 	 * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set
622 	 * to avoid confusing drivers that don't use it.
623 	 */
624 	if (skip_resume)
625 		pm_runtime_set_suspended(dev);
626 	else if (dev_pm_skip_suspend(dev))
627 		pm_runtime_set_active(dev);
628 
629 	if (dev->pm_domain) {
630 		info = "noirq power domain ";
631 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
632 	} else if (dev->type && dev->type->pm) {
633 		info = "noirq type ";
634 		callback = pm_noirq_op(dev->type->pm, state);
635 	} else if (dev->class && dev->class->pm) {
636 		info = "noirq class ";
637 		callback = pm_noirq_op(dev->class->pm, state);
638 	} else if (dev->bus && dev->bus->pm) {
639 		info = "noirq bus ";
640 		callback = pm_noirq_op(dev->bus->pm, state);
641 	}
642 	if (callback)
643 		goto Run;
644 
645 	if (skip_resume)
646 		goto Skip;
647 
648 	if (dev->driver && dev->driver->pm) {
649 		info = "noirq driver ";
650 		callback = pm_noirq_op(dev->driver->pm, state);
651 	}
652 
653 Run:
654 	error = dpm_run_callback(callback, dev, state, info);
655 
656 Skip:
657 	dev->power.is_noirq_suspended = false;
658 
659 Out:
660 	complete_all(&dev->power.completion);
661 	TRACE_RESUME(error);
662 	return error;
663 }
664 
is_async(struct device * dev)665 static bool is_async(struct device *dev)
666 {
667 	return dev->power.async_suspend && pm_async_enabled
668 		&& !pm_trace_is_enabled();
669 }
670 
dpm_async_fn(struct device * dev,async_func_t func)671 static bool dpm_async_fn(struct device *dev, async_func_t func)
672 {
673 	reinit_completion(&dev->power.completion);
674 
675 	if (is_async(dev)) {
676 		get_device(dev);
677 		async_schedule_dev(func, dev);
678 		return true;
679 	}
680 
681 	return false;
682 }
683 
async_resume_noirq(void * data,async_cookie_t cookie)684 static void async_resume_noirq(void *data, async_cookie_t cookie)
685 {
686 	struct device *dev = (struct device *)data;
687 	int error;
688 
689 	error = device_resume_noirq(dev, pm_transition, true);
690 	if (error)
691 		pm_dev_err(dev, pm_transition, " async", error);
692 
693 	put_device(dev);
694 }
695 
dpm_noirq_resume_devices(pm_message_t state)696 static void dpm_noirq_resume_devices(pm_message_t state)
697 {
698 	struct device *dev;
699 	ktime_t starttime = ktime_get();
700 
701 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
702 	mutex_lock(&dpm_list_mtx);
703 	pm_transition = state;
704 
705 	/*
706 	 * Advanced the async threads upfront,
707 	 * in case the starting of async threads is
708 	 * delayed by non-async resuming devices.
709 	 */
710 	list_for_each_entry(dev, &dpm_noirq_list, power.entry)
711 		dpm_async_fn(dev, async_resume_noirq);
712 
713 	while (!list_empty(&dpm_noirq_list)) {
714 		dev = to_device(dpm_noirq_list.next);
715 		get_device(dev);
716 		list_move_tail(&dev->power.entry, &dpm_late_early_list);
717 		mutex_unlock(&dpm_list_mtx);
718 
719 		if (!is_async(dev)) {
720 			int error;
721 
722 			error = device_resume_noirq(dev, state, false);
723 			if (error) {
724 				suspend_stats.failed_resume_noirq++;
725 				dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
726 				dpm_save_failed_dev(dev_name(dev));
727 				pm_dev_err(dev, state, " noirq", error);
728 			}
729 		}
730 
731 		mutex_lock(&dpm_list_mtx);
732 		put_device(dev);
733 	}
734 	mutex_unlock(&dpm_list_mtx);
735 	async_synchronize_full();
736 	dpm_show_time(starttime, state, 0, "noirq");
737 	trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
738 }
739 
740 /**
741  * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
742  * @state: PM transition of the system being carried out.
743  *
744  * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
745  * allow device drivers' interrupt handlers to be called.
746  */
dpm_resume_noirq(pm_message_t state)747 void dpm_resume_noirq(pm_message_t state)
748 {
749 	dpm_noirq_resume_devices(state);
750 
751 	resume_device_irqs();
752 	device_wakeup_disarm_wake_irqs();
753 
754 	cpuidle_resume();
755 }
756 
757 /**
758  * device_resume_early - Execute an "early resume" callback for given device.
759  * @dev: Device to handle.
760  * @state: PM transition of the system being carried out.
761  * @async: If true, the device is being resumed asynchronously.
762  *
763  * Runtime PM is disabled for @dev while this function is being executed.
764  */
device_resume_early(struct device * dev,pm_message_t state,bool async)765 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
766 {
767 	pm_callback_t callback = NULL;
768 	const char *info = NULL;
769 	int error = 0;
770 
771 	TRACE_DEVICE(dev);
772 	TRACE_RESUME(0);
773 
774 	if (dev->power.syscore || dev->power.direct_complete)
775 		goto Out;
776 
777 	if (!dev->power.is_late_suspended)
778 		goto Out;
779 
780 	if (!dpm_wait_for_superior(dev, async))
781 		goto Out;
782 
783 	if (dev->pm_domain) {
784 		info = "early power domain ";
785 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
786 	} else if (dev->type && dev->type->pm) {
787 		info = "early type ";
788 		callback = pm_late_early_op(dev->type->pm, state);
789 	} else if (dev->class && dev->class->pm) {
790 		info = "early class ";
791 		callback = pm_late_early_op(dev->class->pm, state);
792 	} else if (dev->bus && dev->bus->pm) {
793 		info = "early bus ";
794 		callback = pm_late_early_op(dev->bus->pm, state);
795 	}
796 	if (callback)
797 		goto Run;
798 
799 	if (dev_pm_skip_resume(dev))
800 		goto Skip;
801 
802 	if (dev->driver && dev->driver->pm) {
803 		info = "early driver ";
804 		callback = pm_late_early_op(dev->driver->pm, state);
805 	}
806 
807 Run:
808 	error = dpm_run_callback(callback, dev, state, info);
809 
810 Skip:
811 	dev->power.is_late_suspended = false;
812 
813 Out:
814 	TRACE_RESUME(error);
815 
816 	pm_runtime_enable(dev);
817 	complete_all(&dev->power.completion);
818 	return error;
819 }
820 
async_resume_early(void * data,async_cookie_t cookie)821 static void async_resume_early(void *data, async_cookie_t cookie)
822 {
823 	struct device *dev = (struct device *)data;
824 	int error;
825 
826 	error = device_resume_early(dev, pm_transition, true);
827 	if (error)
828 		pm_dev_err(dev, pm_transition, " async", error);
829 
830 	put_device(dev);
831 }
832 
833 /**
834  * dpm_resume_early - Execute "early resume" callbacks for all devices.
835  * @state: PM transition of the system being carried out.
836  */
dpm_resume_early(pm_message_t state)837 void dpm_resume_early(pm_message_t state)
838 {
839 	struct device *dev;
840 	ktime_t starttime = ktime_get();
841 
842 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
843 	mutex_lock(&dpm_list_mtx);
844 	pm_transition = state;
845 
846 	/*
847 	 * Advanced the async threads upfront,
848 	 * in case the starting of async threads is
849 	 * delayed by non-async resuming devices.
850 	 */
851 	list_for_each_entry(dev, &dpm_late_early_list, power.entry)
852 		dpm_async_fn(dev, async_resume_early);
853 
854 	while (!list_empty(&dpm_late_early_list)) {
855 		dev = to_device(dpm_late_early_list.next);
856 		get_device(dev);
857 		list_move_tail(&dev->power.entry, &dpm_suspended_list);
858 		mutex_unlock(&dpm_list_mtx);
859 
860 		if (!is_async(dev)) {
861 			int error;
862 
863 			error = device_resume_early(dev, state, false);
864 			if (error) {
865 				suspend_stats.failed_resume_early++;
866 				dpm_save_failed_step(SUSPEND_RESUME_EARLY);
867 				dpm_save_failed_dev(dev_name(dev));
868 				pm_dev_err(dev, state, " early", error);
869 			}
870 		}
871 		mutex_lock(&dpm_list_mtx);
872 		put_device(dev);
873 	}
874 	mutex_unlock(&dpm_list_mtx);
875 	async_synchronize_full();
876 	dpm_show_time(starttime, state, 0, "early");
877 	trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
878 }
879 
880 /**
881  * dpm_resume_start - Execute "noirq" and "early" device callbacks.
882  * @state: PM transition of the system being carried out.
883  */
dpm_resume_start(pm_message_t state)884 void dpm_resume_start(pm_message_t state)
885 {
886 	dpm_resume_noirq(state);
887 	dpm_resume_early(state);
888 }
889 EXPORT_SYMBOL_GPL(dpm_resume_start);
890 
891 /**
892  * device_resume - Execute "resume" callbacks for given device.
893  * @dev: Device to handle.
894  * @state: PM transition of the system being carried out.
895  * @async: If true, the device is being resumed asynchronously.
896  */
device_resume(struct device * dev,pm_message_t state,bool async)897 static int device_resume(struct device *dev, pm_message_t state, bool async)
898 {
899 	pm_callback_t callback = NULL;
900 	const char *info = NULL;
901 	int error = 0;
902 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
903 
904 	TRACE_DEVICE(dev);
905 	TRACE_RESUME(0);
906 
907 	if (dev->power.syscore)
908 		goto Complete;
909 
910 	if (dev->power.direct_complete) {
911 		/* Match the pm_runtime_disable() in __device_suspend(). */
912 		pm_runtime_enable(dev);
913 		goto Complete;
914 	}
915 
916 	if (!dpm_wait_for_superior(dev, async))
917 		goto Complete;
918 
919 	dpm_watchdog_set(&wd, dev);
920 	device_lock(dev);
921 
922 	/*
923 	 * This is a fib.  But we'll allow new children to be added below
924 	 * a resumed device, even if the device hasn't been completed yet.
925 	 */
926 	dev->power.is_prepared = false;
927 
928 	if (!dev->power.is_suspended)
929 		goto Unlock;
930 
931 	if (dev->pm_domain) {
932 		info = "power domain ";
933 		callback = pm_op(&dev->pm_domain->ops, state);
934 		goto Driver;
935 	}
936 
937 	if (dev->type && dev->type->pm) {
938 		info = "type ";
939 		callback = pm_op(dev->type->pm, state);
940 		goto Driver;
941 	}
942 
943 	if (dev->class && dev->class->pm) {
944 		info = "class ";
945 		callback = pm_op(dev->class->pm, state);
946 		goto Driver;
947 	}
948 
949 	if (dev->bus) {
950 		if (dev->bus->pm) {
951 			info = "bus ";
952 			callback = pm_op(dev->bus->pm, state);
953 		} else if (dev->bus->resume) {
954 			info = "legacy bus ";
955 			callback = dev->bus->resume;
956 			goto End;
957 		}
958 	}
959 
960  Driver:
961 	if (!callback && dev->driver && dev->driver->pm) {
962 		info = "driver ";
963 		callback = pm_op(dev->driver->pm, state);
964 	}
965 
966  End:
967 	error = dpm_run_callback(callback, dev, state, info);
968 	dev->power.is_suspended = false;
969 
970  Unlock:
971 	device_unlock(dev);
972 	dpm_watchdog_clear(&wd);
973 
974  Complete:
975 	complete_all(&dev->power.completion);
976 
977 	TRACE_RESUME(error);
978 
979 	return error;
980 }
981 
async_resume(void * data,async_cookie_t cookie)982 static void async_resume(void *data, async_cookie_t cookie)
983 {
984 	struct device *dev = (struct device *)data;
985 	int error;
986 
987 	error = device_resume(dev, pm_transition, true);
988 	if (error)
989 		pm_dev_err(dev, pm_transition, " async", error);
990 	put_device(dev);
991 }
992 
993 /**
994  * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
995  * @state: PM transition of the system being carried out.
996  *
997  * Execute the appropriate "resume" callback for all devices whose status
998  * indicates that they are suspended.
999  */
dpm_resume(pm_message_t state)1000 void dpm_resume(pm_message_t state)
1001 {
1002 	struct device *dev;
1003 	ktime_t starttime = ktime_get();
1004 
1005 	trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1006 	might_sleep();
1007 
1008 	mutex_lock(&dpm_list_mtx);
1009 	pm_transition = state;
1010 	async_error = 0;
1011 
1012 	list_for_each_entry(dev, &dpm_suspended_list, power.entry)
1013 		dpm_async_fn(dev, async_resume);
1014 
1015 	while (!list_empty(&dpm_suspended_list)) {
1016 		dev = to_device(dpm_suspended_list.next);
1017 		get_device(dev);
1018 		if (!is_async(dev)) {
1019 			int error;
1020 
1021 			mutex_unlock(&dpm_list_mtx);
1022 
1023 			error = device_resume(dev, state, false);
1024 			if (error) {
1025 				suspend_stats.failed_resume++;
1026 				dpm_save_failed_step(SUSPEND_RESUME);
1027 				dpm_save_failed_dev(dev_name(dev));
1028 				pm_dev_err(dev, state, "", error);
1029 			}
1030 
1031 			mutex_lock(&dpm_list_mtx);
1032 		}
1033 		if (!list_empty(&dev->power.entry))
1034 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1035 		put_device(dev);
1036 	}
1037 	mutex_unlock(&dpm_list_mtx);
1038 	async_synchronize_full();
1039 	dpm_show_time(starttime, state, 0, NULL);
1040 
1041 	cpufreq_resume();
1042 	devfreq_resume();
1043 	trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1044 }
1045 
1046 /**
1047  * device_complete - Complete a PM transition for given device.
1048  * @dev: Device to handle.
1049  * @state: PM transition of the system being carried out.
1050  */
device_complete(struct device * dev,pm_message_t state)1051 static void device_complete(struct device *dev, pm_message_t state)
1052 {
1053 	void (*callback)(struct device *) = NULL;
1054 	const char *info = NULL;
1055 
1056 	if (dev->power.syscore)
1057 		goto out;
1058 
1059 	device_lock(dev);
1060 
1061 	if (dev->pm_domain) {
1062 		info = "completing power domain ";
1063 		callback = dev->pm_domain->ops.complete;
1064 	} else if (dev->type && dev->type->pm) {
1065 		info = "completing type ";
1066 		callback = dev->type->pm->complete;
1067 	} else if (dev->class && dev->class->pm) {
1068 		info = "completing class ";
1069 		callback = dev->class->pm->complete;
1070 	} else if (dev->bus && dev->bus->pm) {
1071 		info = "completing bus ";
1072 		callback = dev->bus->pm->complete;
1073 	}
1074 
1075 	if (!callback && dev->driver && dev->driver->pm) {
1076 		info = "completing driver ";
1077 		callback = dev->driver->pm->complete;
1078 	}
1079 
1080 	if (callback) {
1081 		pm_dev_dbg(dev, state, info);
1082 		callback(dev);
1083 	}
1084 
1085 	device_unlock(dev);
1086 
1087 out:
1088 	pm_runtime_put(dev);
1089 }
1090 
1091 /**
1092  * dpm_complete - Complete a PM transition for all non-sysdev devices.
1093  * @state: PM transition of the system being carried out.
1094  *
1095  * Execute the ->complete() callbacks for all devices whose PM status is not
1096  * DPM_ON (this allows new devices to be registered).
1097  */
dpm_complete(pm_message_t state)1098 void dpm_complete(pm_message_t state)
1099 {
1100 	struct list_head list;
1101 
1102 	trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1103 	might_sleep();
1104 
1105 	INIT_LIST_HEAD(&list);
1106 	mutex_lock(&dpm_list_mtx);
1107 	while (!list_empty(&dpm_prepared_list)) {
1108 		struct device *dev = to_device(dpm_prepared_list.prev);
1109 
1110 		get_device(dev);
1111 		dev->power.is_prepared = false;
1112 		list_move(&dev->power.entry, &list);
1113 		mutex_unlock(&dpm_list_mtx);
1114 
1115 		trace_device_pm_callback_start(dev, "", state.event);
1116 		device_complete(dev, state);
1117 		trace_device_pm_callback_end(dev, 0);
1118 
1119 		mutex_lock(&dpm_list_mtx);
1120 		put_device(dev);
1121 	}
1122 	list_splice(&list, &dpm_list);
1123 	mutex_unlock(&dpm_list_mtx);
1124 
1125 	/* Allow device probing and trigger re-probing of deferred devices */
1126 	device_unblock_probing();
1127 	trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1128 }
1129 
1130 /**
1131  * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1132  * @state: PM transition of the system being carried out.
1133  *
1134  * Execute "resume" callbacks for all devices and complete the PM transition of
1135  * the system.
1136  */
dpm_resume_end(pm_message_t state)1137 void dpm_resume_end(pm_message_t state)
1138 {
1139 	dpm_resume(state);
1140 	dpm_complete(state);
1141 }
1142 EXPORT_SYMBOL_GPL(dpm_resume_end);
1143 
1144 
1145 /*------------------------- Suspend routines -------------------------*/
1146 
1147 /**
1148  * resume_event - Return a "resume" message for given "suspend" sleep state.
1149  * @sleep_state: PM message representing a sleep state.
1150  *
1151  * Return a PM message representing the resume event corresponding to given
1152  * sleep state.
1153  */
resume_event(pm_message_t sleep_state)1154 static pm_message_t resume_event(pm_message_t sleep_state)
1155 {
1156 	switch (sleep_state.event) {
1157 	case PM_EVENT_SUSPEND:
1158 		return PMSG_RESUME;
1159 	case PM_EVENT_FREEZE:
1160 	case PM_EVENT_QUIESCE:
1161 		return PMSG_RECOVER;
1162 	case PM_EVENT_HIBERNATE:
1163 		return PMSG_RESTORE;
1164 	}
1165 	return PMSG_ON;
1166 }
1167 
dpm_superior_set_must_resume(struct device * dev)1168 static void dpm_superior_set_must_resume(struct device *dev)
1169 {
1170 	struct device_link *link;
1171 	int idx;
1172 
1173 	if (dev->parent)
1174 		dev->parent->power.must_resume = true;
1175 
1176 	idx = device_links_read_lock();
1177 
1178 	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
1179 		link->supplier->power.must_resume = true;
1180 
1181 	device_links_read_unlock(idx);
1182 }
1183 
1184 /**
1185  * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1186  * @dev: Device to handle.
1187  * @state: PM transition of the system being carried out.
1188  * @async: If true, the device is being suspended asynchronously.
1189  *
1190  * The driver of @dev will not receive interrupts while this function is being
1191  * executed.
1192  */
__device_suspend_noirq(struct device * dev,pm_message_t state,bool async)1193 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1194 {
1195 	pm_callback_t callback = NULL;
1196 	const char *info = NULL;
1197 	int error = 0;
1198 
1199 	TRACE_DEVICE(dev);
1200 	TRACE_SUSPEND(0);
1201 
1202 	dpm_wait_for_subordinate(dev, async);
1203 
1204 	if (async_error)
1205 		goto Complete;
1206 
1207 	if (dev->power.syscore || dev->power.direct_complete)
1208 		goto Complete;
1209 
1210 	if (dev->pm_domain) {
1211 		info = "noirq power domain ";
1212 		callback = pm_noirq_op(&dev->pm_domain->ops, state);
1213 	} else if (dev->type && dev->type->pm) {
1214 		info = "noirq type ";
1215 		callback = pm_noirq_op(dev->type->pm, state);
1216 	} else if (dev->class && dev->class->pm) {
1217 		info = "noirq class ";
1218 		callback = pm_noirq_op(dev->class->pm, state);
1219 	} else if (dev->bus && dev->bus->pm) {
1220 		info = "noirq bus ";
1221 		callback = pm_noirq_op(dev->bus->pm, state);
1222 	}
1223 	if (callback)
1224 		goto Run;
1225 
1226 	if (dev_pm_skip_suspend(dev))
1227 		goto Skip;
1228 
1229 	if (dev->driver && dev->driver->pm) {
1230 		info = "noirq driver ";
1231 		callback = pm_noirq_op(dev->driver->pm, state);
1232 	}
1233 
1234 Run:
1235 	error = dpm_run_callback(callback, dev, state, info);
1236 	if (error) {
1237 		async_error = error;
1238 		log_suspend_abort_reason("Device %s failed to %s noirq: error %d",
1239 					 dev_name(dev), pm_verb(state.event), error);
1240 		goto Complete;
1241 	}
1242 
1243 Skip:
1244 	dev->power.is_noirq_suspended = true;
1245 
1246 	/*
1247 	 * Skipping the resume of devices that were in use right before the
1248 	 * system suspend (as indicated by their PM-runtime usage counters)
1249 	 * would be suboptimal.  Also resume them if doing that is not allowed
1250 	 * to be skipped.
1251 	 */
1252 	if (atomic_read(&dev->power.usage_count) > 1 ||
1253 	    !(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) &&
1254 	      dev->power.may_skip_resume))
1255 		dev->power.must_resume = true;
1256 
1257 	if (dev->power.must_resume)
1258 		dpm_superior_set_must_resume(dev);
1259 
1260 Complete:
1261 	complete_all(&dev->power.completion);
1262 	TRACE_SUSPEND(error);
1263 	return error;
1264 }
1265 
async_suspend_noirq(void * data,async_cookie_t cookie)1266 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1267 {
1268 	struct device *dev = (struct device *)data;
1269 	int error;
1270 
1271 	error = __device_suspend_noirq(dev, pm_transition, true);
1272 	if (error) {
1273 		dpm_save_failed_dev(dev_name(dev));
1274 		pm_dev_err(dev, pm_transition, " async", error);
1275 	}
1276 
1277 	put_device(dev);
1278 }
1279 
device_suspend_noirq(struct device * dev)1280 static int device_suspend_noirq(struct device *dev)
1281 {
1282 	if (dpm_async_fn(dev, async_suspend_noirq))
1283 		return 0;
1284 
1285 	return __device_suspend_noirq(dev, pm_transition, false);
1286 }
1287 
dpm_noirq_suspend_devices(pm_message_t state)1288 static int dpm_noirq_suspend_devices(pm_message_t state)
1289 {
1290 	ktime_t starttime = ktime_get();
1291 	int error = 0;
1292 
1293 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1294 	mutex_lock(&dpm_list_mtx);
1295 	pm_transition = state;
1296 	async_error = 0;
1297 
1298 	while (!list_empty(&dpm_late_early_list)) {
1299 		struct device *dev = to_device(dpm_late_early_list.prev);
1300 
1301 		get_device(dev);
1302 		mutex_unlock(&dpm_list_mtx);
1303 
1304 		error = device_suspend_noirq(dev);
1305 
1306 		mutex_lock(&dpm_list_mtx);
1307 		if (error) {
1308 			pm_dev_err(dev, state, " noirq", error);
1309 			dpm_save_failed_dev(dev_name(dev));
1310 			put_device(dev);
1311 			break;
1312 		}
1313 		if (!list_empty(&dev->power.entry))
1314 			list_move(&dev->power.entry, &dpm_noirq_list);
1315 		put_device(dev);
1316 
1317 		if (async_error)
1318 			break;
1319 	}
1320 	mutex_unlock(&dpm_list_mtx);
1321 	async_synchronize_full();
1322 	if (!error)
1323 		error = async_error;
1324 
1325 	if (error) {
1326 		suspend_stats.failed_suspend_noirq++;
1327 		dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1328 	}
1329 	dpm_show_time(starttime, state, error, "noirq");
1330 	trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1331 	return error;
1332 }
1333 
1334 /**
1335  * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1336  * @state: PM transition of the system being carried out.
1337  *
1338  * Prevent device drivers' interrupt handlers from being called and invoke
1339  * "noirq" suspend callbacks for all non-sysdev devices.
1340  */
dpm_suspend_noirq(pm_message_t state)1341 int dpm_suspend_noirq(pm_message_t state)
1342 {
1343 	int ret;
1344 
1345 	cpuidle_pause();
1346 
1347 	device_wakeup_arm_wake_irqs();
1348 	suspend_device_irqs();
1349 
1350 	ret = dpm_noirq_suspend_devices(state);
1351 	if (ret)
1352 		dpm_resume_noirq(resume_event(state));
1353 
1354 	return ret;
1355 }
1356 
dpm_propagate_wakeup_to_parent(struct device * dev)1357 static void dpm_propagate_wakeup_to_parent(struct device *dev)
1358 {
1359 	struct device *parent = dev->parent;
1360 
1361 	if (!parent)
1362 		return;
1363 
1364 	spin_lock_irq(&parent->power.lock);
1365 
1366 	if (dev->power.wakeup_path && !parent->power.ignore_children)
1367 		parent->power.wakeup_path = true;
1368 
1369 	spin_unlock_irq(&parent->power.lock);
1370 }
1371 
1372 /**
1373  * __device_suspend_late - Execute a "late suspend" callback for given device.
1374  * @dev: Device to handle.
1375  * @state: PM transition of the system being carried out.
1376  * @async: If true, the device is being suspended asynchronously.
1377  *
1378  * Runtime PM is disabled for @dev while this function is being executed.
1379  */
__device_suspend_late(struct device * dev,pm_message_t state,bool async)1380 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1381 {
1382 	pm_callback_t callback = NULL;
1383 	const char *info = NULL;
1384 	int error = 0;
1385 
1386 	TRACE_DEVICE(dev);
1387 	TRACE_SUSPEND(0);
1388 
1389 	__pm_runtime_disable(dev, false);
1390 
1391 	dpm_wait_for_subordinate(dev, async);
1392 
1393 	if (async_error)
1394 		goto Complete;
1395 
1396 	if (pm_wakeup_pending()) {
1397 		async_error = -EBUSY;
1398 		goto Complete;
1399 	}
1400 
1401 	if (dev->power.syscore || dev->power.direct_complete)
1402 		goto Complete;
1403 
1404 	if (dev->pm_domain) {
1405 		info = "late power domain ";
1406 		callback = pm_late_early_op(&dev->pm_domain->ops, state);
1407 	} else if (dev->type && dev->type->pm) {
1408 		info = "late type ";
1409 		callback = pm_late_early_op(dev->type->pm, state);
1410 	} else if (dev->class && dev->class->pm) {
1411 		info = "late class ";
1412 		callback = pm_late_early_op(dev->class->pm, state);
1413 	} else if (dev->bus && dev->bus->pm) {
1414 		info = "late bus ";
1415 		callback = pm_late_early_op(dev->bus->pm, state);
1416 	}
1417 	if (callback)
1418 		goto Run;
1419 
1420 	if (dev_pm_skip_suspend(dev))
1421 		goto Skip;
1422 
1423 	if (dev->driver && dev->driver->pm) {
1424 		info = "late driver ";
1425 		callback = pm_late_early_op(dev->driver->pm, state);
1426 	}
1427 
1428 Run:
1429 	error = dpm_run_callback(callback, dev, state, info);
1430 	if (error) {
1431 		async_error = error;
1432 		log_suspend_abort_reason("Device %s failed to %s late: error %d",
1433 					 dev_name(dev), pm_verb(state.event), error);
1434 		goto Complete;
1435 	}
1436 	dpm_propagate_wakeup_to_parent(dev);
1437 
1438 Skip:
1439 	dev->power.is_late_suspended = true;
1440 
1441 Complete:
1442 	TRACE_SUSPEND(error);
1443 	complete_all(&dev->power.completion);
1444 	return error;
1445 }
1446 
async_suspend_late(void * data,async_cookie_t cookie)1447 static void async_suspend_late(void *data, async_cookie_t cookie)
1448 {
1449 	struct device *dev = (struct device *)data;
1450 	int error;
1451 
1452 	error = __device_suspend_late(dev, pm_transition, true);
1453 	if (error) {
1454 		dpm_save_failed_dev(dev_name(dev));
1455 		pm_dev_err(dev, pm_transition, " async", error);
1456 	}
1457 	put_device(dev);
1458 }
1459 
device_suspend_late(struct device * dev)1460 static int device_suspend_late(struct device *dev)
1461 {
1462 	if (dpm_async_fn(dev, async_suspend_late))
1463 		return 0;
1464 
1465 	return __device_suspend_late(dev, pm_transition, false);
1466 }
1467 
1468 /**
1469  * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1470  * @state: PM transition of the system being carried out.
1471  */
dpm_suspend_late(pm_message_t state)1472 int dpm_suspend_late(pm_message_t state)
1473 {
1474 	ktime_t starttime = ktime_get();
1475 	int error = 0;
1476 
1477 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1478 	mutex_lock(&dpm_list_mtx);
1479 	pm_transition = state;
1480 	async_error = 0;
1481 
1482 	while (!list_empty(&dpm_suspended_list)) {
1483 		struct device *dev = to_device(dpm_suspended_list.prev);
1484 
1485 		get_device(dev);
1486 		mutex_unlock(&dpm_list_mtx);
1487 
1488 		error = device_suspend_late(dev);
1489 
1490 		mutex_lock(&dpm_list_mtx);
1491 		if (!list_empty(&dev->power.entry))
1492 			list_move(&dev->power.entry, &dpm_late_early_list);
1493 
1494 		if (error) {
1495 			pm_dev_err(dev, state, " late", error);
1496 			dpm_save_failed_dev(dev_name(dev));
1497 			put_device(dev);
1498 			break;
1499 		}
1500 		put_device(dev);
1501 
1502 		if (async_error)
1503 			break;
1504 	}
1505 	mutex_unlock(&dpm_list_mtx);
1506 	async_synchronize_full();
1507 	if (!error)
1508 		error = async_error;
1509 	if (error) {
1510 		suspend_stats.failed_suspend_late++;
1511 		dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1512 		dpm_resume_early(resume_event(state));
1513 	}
1514 	dpm_show_time(starttime, state, error, "late");
1515 	trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1516 	return error;
1517 }
1518 
1519 /**
1520  * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1521  * @state: PM transition of the system being carried out.
1522  */
dpm_suspend_end(pm_message_t state)1523 int dpm_suspend_end(pm_message_t state)
1524 {
1525 	ktime_t starttime = ktime_get();
1526 	int error;
1527 
1528 	error = dpm_suspend_late(state);
1529 	if (error)
1530 		goto out;
1531 
1532 	error = dpm_suspend_noirq(state);
1533 	if (error)
1534 		dpm_resume_early(resume_event(state));
1535 
1536 out:
1537 	dpm_show_time(starttime, state, error, "end");
1538 	return error;
1539 }
1540 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1541 
1542 /**
1543  * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1544  * @dev: Device to suspend.
1545  * @state: PM transition of the system being carried out.
1546  * @cb: Suspend callback to execute.
1547  * @info: string description of caller.
1548  */
legacy_suspend(struct device * dev,pm_message_t state,int (* cb)(struct device * dev,pm_message_t state),const char * info)1549 static int legacy_suspend(struct device *dev, pm_message_t state,
1550 			  int (*cb)(struct device *dev, pm_message_t state),
1551 			  const char *info)
1552 {
1553 	int error;
1554 	ktime_t calltime;
1555 
1556 	calltime = initcall_debug_start(dev, cb);
1557 
1558 	trace_device_pm_callback_start(dev, info, state.event);
1559 	error = cb(dev, state);
1560 	trace_device_pm_callback_end(dev, error);
1561 	suspend_report_result(cb, error);
1562 
1563 	initcall_debug_report(dev, calltime, cb, error);
1564 
1565 	return error;
1566 }
1567 
dpm_clear_superiors_direct_complete(struct device * dev)1568 static void dpm_clear_superiors_direct_complete(struct device *dev)
1569 {
1570 	struct device_link *link;
1571 	int idx;
1572 
1573 	if (dev->parent) {
1574 		spin_lock_irq(&dev->parent->power.lock);
1575 		dev->parent->power.direct_complete = false;
1576 		spin_unlock_irq(&dev->parent->power.lock);
1577 	}
1578 
1579 	idx = device_links_read_lock();
1580 
1581 	list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) {
1582 		spin_lock_irq(&link->supplier->power.lock);
1583 		link->supplier->power.direct_complete = false;
1584 		spin_unlock_irq(&link->supplier->power.lock);
1585 	}
1586 
1587 	device_links_read_unlock(idx);
1588 }
1589 
1590 /**
1591  * __device_suspend - Execute "suspend" callbacks for given device.
1592  * @dev: Device to handle.
1593  * @state: PM transition of the system being carried out.
1594  * @async: If true, the device is being suspended asynchronously.
1595  */
__device_suspend(struct device * dev,pm_message_t state,bool async)1596 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1597 {
1598 	pm_callback_t callback = NULL;
1599 	const char *info = NULL;
1600 	int error = 0;
1601 	DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1602 
1603 	TRACE_DEVICE(dev);
1604 	TRACE_SUSPEND(0);
1605 
1606 	dpm_wait_for_subordinate(dev, async);
1607 
1608 	if (async_error) {
1609 		dev->power.direct_complete = false;
1610 		goto Complete;
1611 	}
1612 
1613 	/*
1614 	 * Wait for possible runtime PM transitions of the device in progress
1615 	 * to complete and if there's a runtime resume request pending for it,
1616 	 * resume it before proceeding with invoking the system-wide suspend
1617 	 * callbacks for it.
1618 	 *
1619 	 * If the system-wide suspend callbacks below change the configuration
1620 	 * of the device, they must disable runtime PM for it or otherwise
1621 	 * ensure that its runtime-resume callbacks will not be confused by that
1622 	 * change in case they are invoked going forward.
1623 	 */
1624 	pm_runtime_barrier(dev);
1625 
1626 	if (pm_wakeup_pending()) {
1627 		dev->power.direct_complete = false;
1628 		async_error = -EBUSY;
1629 		goto Complete;
1630 	}
1631 
1632 	if (dev->power.syscore)
1633 		goto Complete;
1634 
1635 	/* Avoid direct_complete to let wakeup_path propagate. */
1636 	if (device_may_wakeup(dev) || dev->power.wakeup_path)
1637 		dev->power.direct_complete = false;
1638 
1639 	if (dev->power.direct_complete) {
1640 		if (pm_runtime_status_suspended(dev)) {
1641 			pm_runtime_disable(dev);
1642 			if (pm_runtime_status_suspended(dev)) {
1643 				pm_dev_dbg(dev, state, "direct-complete ");
1644 				goto Complete;
1645 			}
1646 
1647 			pm_runtime_enable(dev);
1648 		}
1649 		dev->power.direct_complete = false;
1650 	}
1651 
1652 	dev->power.may_skip_resume = true;
1653 	dev->power.must_resume = !dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME);
1654 
1655 	dpm_watchdog_set(&wd, dev);
1656 	device_lock(dev);
1657 
1658 	if (dev->pm_domain) {
1659 		info = "power domain ";
1660 		callback = pm_op(&dev->pm_domain->ops, state);
1661 		goto Run;
1662 	}
1663 
1664 	if (dev->type && dev->type->pm) {
1665 		info = "type ";
1666 		callback = pm_op(dev->type->pm, state);
1667 		goto Run;
1668 	}
1669 
1670 	if (dev->class && dev->class->pm) {
1671 		info = "class ";
1672 		callback = pm_op(dev->class->pm, state);
1673 		goto Run;
1674 	}
1675 
1676 	if (dev->bus) {
1677 		if (dev->bus->pm) {
1678 			info = "bus ";
1679 			callback = pm_op(dev->bus->pm, state);
1680 		} else if (dev->bus->suspend) {
1681 			pm_dev_dbg(dev, state, "legacy bus ");
1682 			error = legacy_suspend(dev, state, dev->bus->suspend,
1683 						"legacy bus ");
1684 			goto End;
1685 		}
1686 	}
1687 
1688  Run:
1689 	if (!callback && dev->driver && dev->driver->pm) {
1690 		info = "driver ";
1691 		callback = pm_op(dev->driver->pm, state);
1692 	}
1693 
1694 	error = dpm_run_callback(callback, dev, state, info);
1695 
1696  End:
1697 	if (!error) {
1698 		dev->power.is_suspended = true;
1699 		if (device_may_wakeup(dev))
1700 			dev->power.wakeup_path = true;
1701 
1702 		dpm_propagate_wakeup_to_parent(dev);
1703 		dpm_clear_superiors_direct_complete(dev);
1704 	} else {
1705 		log_suspend_abort_reason("Device %s failed to %s: error %d",
1706 					 dev_name(dev), pm_verb(state.event), error);
1707 	}
1708 
1709 	device_unlock(dev);
1710 	dpm_watchdog_clear(&wd);
1711 
1712  Complete:
1713 	if (error)
1714 		async_error = error;
1715 
1716 	complete_all(&dev->power.completion);
1717 	TRACE_SUSPEND(error);
1718 	return error;
1719 }
1720 
async_suspend(void * data,async_cookie_t cookie)1721 static void async_suspend(void *data, async_cookie_t cookie)
1722 {
1723 	struct device *dev = (struct device *)data;
1724 	int error;
1725 
1726 	error = __device_suspend(dev, pm_transition, true);
1727 	if (error) {
1728 		dpm_save_failed_dev(dev_name(dev));
1729 		pm_dev_err(dev, pm_transition, " async", error);
1730 	}
1731 
1732 	put_device(dev);
1733 }
1734 
device_suspend(struct device * dev)1735 static int device_suspend(struct device *dev)
1736 {
1737 	if (dpm_async_fn(dev, async_suspend))
1738 		return 0;
1739 
1740 	return __device_suspend(dev, pm_transition, false);
1741 }
1742 
1743 /**
1744  * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1745  * @state: PM transition of the system being carried out.
1746  */
dpm_suspend(pm_message_t state)1747 int dpm_suspend(pm_message_t state)
1748 {
1749 	ktime_t starttime = ktime_get();
1750 	int error = 0;
1751 
1752 	trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1753 	might_sleep();
1754 
1755 	devfreq_suspend();
1756 	cpufreq_suspend();
1757 
1758 	mutex_lock(&dpm_list_mtx);
1759 	pm_transition = state;
1760 	async_error = 0;
1761 	while (!list_empty(&dpm_prepared_list)) {
1762 		struct device *dev = to_device(dpm_prepared_list.prev);
1763 
1764 		get_device(dev);
1765 		mutex_unlock(&dpm_list_mtx);
1766 
1767 		error = device_suspend(dev);
1768 
1769 		mutex_lock(&dpm_list_mtx);
1770 		if (error) {
1771 			pm_dev_err(dev, state, "", error);
1772 			dpm_save_failed_dev(dev_name(dev));
1773 			put_device(dev);
1774 			break;
1775 		}
1776 		if (!list_empty(&dev->power.entry))
1777 			list_move(&dev->power.entry, &dpm_suspended_list);
1778 		put_device(dev);
1779 		if (async_error)
1780 			break;
1781 	}
1782 	mutex_unlock(&dpm_list_mtx);
1783 	async_synchronize_full();
1784 	if (!error)
1785 		error = async_error;
1786 	if (error) {
1787 		suspend_stats.failed_suspend++;
1788 		dpm_save_failed_step(SUSPEND_SUSPEND);
1789 	}
1790 	dpm_show_time(starttime, state, error, NULL);
1791 	trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1792 	return error;
1793 }
1794 
1795 /**
1796  * device_prepare - Prepare a device for system power transition.
1797  * @dev: Device to handle.
1798  * @state: PM transition of the system being carried out.
1799  *
1800  * Execute the ->prepare() callback(s) for given device.  No new children of the
1801  * device may be registered after this function has returned.
1802  */
device_prepare(struct device * dev,pm_message_t state)1803 static int device_prepare(struct device *dev, pm_message_t state)
1804 {
1805 	int (*callback)(struct device *) = NULL;
1806 	int ret = 0;
1807 
1808 	/*
1809 	 * If a device's parent goes into runtime suspend at the wrong time,
1810 	 * it won't be possible to resume the device.  To prevent this we
1811 	 * block runtime suspend here, during the prepare phase, and allow
1812 	 * it again during the complete phase.
1813 	 */
1814 	pm_runtime_get_noresume(dev);
1815 
1816 	if (dev->power.syscore)
1817 		return 0;
1818 
1819 	device_lock(dev);
1820 
1821 	dev->power.wakeup_path = false;
1822 
1823 	if (dev->power.no_pm_callbacks)
1824 		goto unlock;
1825 
1826 	if (dev->pm_domain)
1827 		callback = dev->pm_domain->ops.prepare;
1828 	else if (dev->type && dev->type->pm)
1829 		callback = dev->type->pm->prepare;
1830 	else if (dev->class && dev->class->pm)
1831 		callback = dev->class->pm->prepare;
1832 	else if (dev->bus && dev->bus->pm)
1833 		callback = dev->bus->pm->prepare;
1834 
1835 	if (!callback && dev->driver && dev->driver->pm)
1836 		callback = dev->driver->pm->prepare;
1837 
1838 	if (callback)
1839 		ret = callback(dev);
1840 
1841 unlock:
1842 	device_unlock(dev);
1843 
1844 	if (ret < 0) {
1845 		suspend_report_result(callback, ret);
1846 		pm_runtime_put(dev);
1847 		return ret;
1848 	}
1849 	/*
1850 	 * A positive return value from ->prepare() means "this device appears
1851 	 * to be runtime-suspended and its state is fine, so if it really is
1852 	 * runtime-suspended, you can leave it in that state provided that you
1853 	 * will do the same thing with all of its descendants".  This only
1854 	 * applies to suspend transitions, however.
1855 	 */
1856 	spin_lock_irq(&dev->power.lock);
1857 	dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1858 		(ret > 0 || dev->power.no_pm_callbacks) &&
1859 		!dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
1860 	spin_unlock_irq(&dev->power.lock);
1861 	return 0;
1862 }
1863 
1864 /**
1865  * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1866  * @state: PM transition of the system being carried out.
1867  *
1868  * Execute the ->prepare() callback(s) for all devices.
1869  */
dpm_prepare(pm_message_t state)1870 int dpm_prepare(pm_message_t state)
1871 {
1872 	int error = 0;
1873 
1874 	trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1875 	might_sleep();
1876 
1877 	/*
1878 	 * Give a chance for the known devices to complete their probes, before
1879 	 * disable probing of devices. This sync point is important at least
1880 	 * at boot time + hibernation restore.
1881 	 */
1882 	wait_for_device_probe();
1883 	/*
1884 	 * It is unsafe if probing of devices will happen during suspend or
1885 	 * hibernation and system behavior will be unpredictable in this case.
1886 	 * So, let's prohibit device's probing here and defer their probes
1887 	 * instead. The normal behavior will be restored in dpm_complete().
1888 	 */
1889 	device_block_probing();
1890 
1891 	mutex_lock(&dpm_list_mtx);
1892 	while (!list_empty(&dpm_list)) {
1893 		struct device *dev = to_device(dpm_list.next);
1894 
1895 		get_device(dev);
1896 		mutex_unlock(&dpm_list_mtx);
1897 
1898 		trace_device_pm_callback_start(dev, "", state.event);
1899 		error = device_prepare(dev, state);
1900 		trace_device_pm_callback_end(dev, error);
1901 
1902 		mutex_lock(&dpm_list_mtx);
1903 		if (error) {
1904 			if (error == -EAGAIN) {
1905 				put_device(dev);
1906 				error = 0;
1907 				continue;
1908 			}
1909 			pr_info("Device %s not prepared for power transition: code %d\n",
1910 				dev_name(dev), error);
1911 			log_suspend_abort_reason("Device %s not prepared for power transition: code %d",
1912 						 dev_name(dev), error);
1913 			dpm_save_failed_dev(dev_name(dev));
1914 			put_device(dev);
1915 			break;
1916 		}
1917 		dev->power.is_prepared = true;
1918 		if (!list_empty(&dev->power.entry))
1919 			list_move_tail(&dev->power.entry, &dpm_prepared_list);
1920 		put_device(dev);
1921 	}
1922 	mutex_unlock(&dpm_list_mtx);
1923 	trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1924 	return error;
1925 }
1926 
1927 /**
1928  * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1929  * @state: PM transition of the system being carried out.
1930  *
1931  * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1932  * callbacks for them.
1933  */
dpm_suspend_start(pm_message_t state)1934 int dpm_suspend_start(pm_message_t state)
1935 {
1936 	ktime_t starttime = ktime_get();
1937 	int error;
1938 
1939 	error = dpm_prepare(state);
1940 	if (error) {
1941 		suspend_stats.failed_prepare++;
1942 		dpm_save_failed_step(SUSPEND_PREPARE);
1943 	} else
1944 		error = dpm_suspend(state);
1945 	dpm_show_time(starttime, state, error, "start");
1946 	return error;
1947 }
1948 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1949 
__suspend_report_result(const char * function,void * fn,int ret)1950 void __suspend_report_result(const char *function, void *fn, int ret)
1951 {
1952 	if (ret)
1953 		pr_err("%s(): %pS returns %d\n", function, fn, ret);
1954 }
1955 EXPORT_SYMBOL_GPL(__suspend_report_result);
1956 
1957 /**
1958  * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1959  * @subordinate: Device that needs to wait for @dev.
1960  * @dev: Device to wait for.
1961  */
device_pm_wait_for_dev(struct device * subordinate,struct device * dev)1962 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1963 {
1964 	dpm_wait(dev, subordinate->power.async_suspend);
1965 	return async_error;
1966 }
1967 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1968 
1969 /**
1970  * dpm_for_each_dev - device iterator.
1971  * @data: data for the callback.
1972  * @fn: function to be called for each device.
1973  *
1974  * Iterate over devices in dpm_list, and call @fn for each device,
1975  * passing it @data.
1976  */
dpm_for_each_dev(void * data,void (* fn)(struct device *,void *))1977 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1978 {
1979 	struct device *dev;
1980 
1981 	if (!fn)
1982 		return;
1983 
1984 	device_pm_lock();
1985 	list_for_each_entry(dev, &dpm_list, power.entry)
1986 		fn(dev, data);
1987 	device_pm_unlock();
1988 }
1989 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1990 
pm_ops_is_empty(const struct dev_pm_ops * ops)1991 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1992 {
1993 	if (!ops)
1994 		return true;
1995 
1996 	return !ops->prepare &&
1997 	       !ops->suspend &&
1998 	       !ops->suspend_late &&
1999 	       !ops->suspend_noirq &&
2000 	       !ops->resume_noirq &&
2001 	       !ops->resume_early &&
2002 	       !ops->resume &&
2003 	       !ops->complete;
2004 }
2005 
device_pm_check_callbacks(struct device * dev)2006 void device_pm_check_callbacks(struct device *dev)
2007 {
2008 	unsigned long flags;
2009 
2010 	spin_lock_irqsave(&dev->power.lock, flags);
2011 	dev->power.no_pm_callbacks =
2012 		(!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2013 		 !dev->bus->suspend && !dev->bus->resume)) &&
2014 		(!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2015 		(!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2016 		(!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2017 		(!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2018 		 !dev->driver->suspend && !dev->driver->resume));
2019 	spin_unlock_irqrestore(&dev->power.lock, flags);
2020 }
2021 
dev_pm_skip_suspend(struct device * dev)2022 bool dev_pm_skip_suspend(struct device *dev)
2023 {
2024 	return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2025 		pm_runtime_status_suspended(dev);
2026 }
2027