xref: /OK3568_Linux_fs/kernel/arch/arm64/mm/init.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/init.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/memblock.h>
20 #include <linux/sort.h>
21 #include <linux/of.h>
22 #include <linux/of_fdt.h>
23 #include <linux/dma-direct.h>
24 #include <linux/dma-map-ops.h>
25 #include <linux/efi.h>
26 #include <linux/swiotlb.h>
27 #include <linux/vmalloc.h>
28 #include <linux/mm.h>
29 #include <linux/kexec.h>
30 #include <linux/crash_dump.h>
31 #include <linux/hugetlb.h>
32 #include <linux/acpi_iort.h>
33 #include <linux/rk-dma-heap.h>
34 
35 #include <asm/boot.h>
36 #include <asm/fixmap.h>
37 #include <asm/kasan.h>
38 #include <asm/kernel-pgtable.h>
39 #include <asm/kvm_host.h>
40 #include <asm/memory.h>
41 #include <asm/numa.h>
42 #include <asm/sections.h>
43 #include <asm/setup.h>
44 #include <linux/sizes.h>
45 #include <asm/tlb.h>
46 #include <asm/alternative.h>
47 
48 /*
49  * We need to be able to catch inadvertent references to memstart_addr
50  * that occur (potentially in generic code) before arm64_memblock_init()
51  * executes, which assigns it its actual value. So use a default value
52  * that cannot be mistaken for a real physical address.
53  */
54 s64 memstart_addr __ro_after_init = -1;
55 EXPORT_SYMBOL(memstart_addr);
56 
57 /*
58  * If the corresponding config options are enabled, we create both ZONE_DMA
59  * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
60  * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
61  * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
62  * otherwise it is empty.
63  *
64  * Memory reservation for crash kernel either done early or deferred
65  * depending on DMA memory zones configs (ZONE_DMA) --
66  *
67  * In absence of ZONE_DMA configs arm64_dma_phys_limit initialized
68  * here instead of max_zone_phys().  This lets early reservation of
69  * crash kernel memory which has a dependency on arm64_dma_phys_limit.
70  * Reserving memory early for crash kernel allows linear creation of block
71  * mappings (greater than page-granularity) for all the memory bank rangs.
72  * In this scheme a comparatively quicker boot is observed.
73  *
74  * If ZONE_DMA configs are defined, crash kernel memory reservation
75  * is delayed until DMA zone memory range size initilazation performed in
76  * zone_sizes_init().  The defer is necessary to steer clear of DMA zone
77  * memory range to avoid overlap allocation.  So crash kernel memory boundaries
78  * are not known when mapping all bank memory ranges, which otherwise means
79  * not possible to exclude crash kernel range from creating block mappings
80  * so page-granularity mappings are created for the entire memory range.
81  * Hence a slightly slower boot is observed.
82  *
83  * Note: Page-granularity mapppings are necessary for crash kernel memory
84  * range for shrinking its size via /sys/kernel/kexec_crash_size interface.
85  */
86 #if IS_ENABLED(CONFIG_ZONE_DMA) || IS_ENABLED(CONFIG_ZONE_DMA32)
87 phys_addr_t __ro_after_init arm64_dma_phys_limit;
88 #else
89 phys_addr_t __ro_after_init arm64_dma_phys_limit = PHYS_MASK + 1;
90 #endif
91 
92 /*
93  * Provide a run-time mean of disabling ZONE_DMA32 if it is enabled via
94  * CONFIG_ZONE_DMA32.
95  */
96 static bool disable_dma32 __ro_after_init;
97 
98 #ifdef CONFIG_KEXEC_CORE
99 /*
100  * reserve_crashkernel() - reserves memory for crash kernel
101  *
102  * This function reserves memory area given in "crashkernel=" kernel command
103  * line parameter. The memory reserved is used by dump capture kernel when
104  * primary kernel is crashing.
105  */
reserve_crashkernel(void)106 static void __init reserve_crashkernel(void)
107 {
108 	unsigned long long crash_base, crash_size;
109 	int ret;
110 
111 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
112 				&crash_size, &crash_base);
113 	/* no crashkernel= or invalid value specified */
114 	if (ret || !crash_size)
115 		return;
116 
117 	crash_size = PAGE_ALIGN(crash_size);
118 
119 	if (crash_base == 0) {
120 		/* Current arm64 boot protocol requires 2MB alignment */
121 		crash_base = memblock_find_in_range(0, arm64_dma_phys_limit,
122 				crash_size, SZ_2M);
123 		if (crash_base == 0) {
124 			pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
125 				crash_size);
126 			return;
127 		}
128 	} else {
129 		/* User specifies base address explicitly. */
130 		if (!memblock_is_region_memory(crash_base, crash_size)) {
131 			pr_warn("cannot reserve crashkernel: region is not memory\n");
132 			return;
133 		}
134 
135 		if (memblock_is_region_reserved(crash_base, crash_size)) {
136 			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
137 			return;
138 		}
139 
140 		if (!IS_ALIGNED(crash_base, SZ_2M)) {
141 			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
142 			return;
143 		}
144 	}
145 	memblock_reserve(crash_base, crash_size);
146 
147 	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
148 		crash_base, crash_base + crash_size, crash_size >> 20);
149 
150 	crashk_res.start = crash_base;
151 	crashk_res.end = crash_base + crash_size - 1;
152 }
153 #else
reserve_crashkernel(void)154 static void __init reserve_crashkernel(void)
155 {
156 }
157 #endif /* CONFIG_KEXEC_CORE */
158 
159 #ifdef CONFIG_CRASH_DUMP
early_init_dt_scan_elfcorehdr(unsigned long node,const char * uname,int depth,void * data)160 static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
161 		const char *uname, int depth, void *data)
162 {
163 	const __be32 *reg;
164 	int len;
165 
166 	if (depth != 1 || strcmp(uname, "chosen") != 0)
167 		return 0;
168 
169 	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
170 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
171 		return 1;
172 
173 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
174 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
175 
176 	return 1;
177 }
178 
179 /*
180  * reserve_elfcorehdr() - reserves memory for elf core header
181  *
182  * This function reserves the memory occupied by an elf core header
183  * described in the device tree. This region contains all the
184  * information about primary kernel's core image and is used by a dump
185  * capture kernel to access the system memory on primary kernel.
186  */
reserve_elfcorehdr(void)187 static void __init reserve_elfcorehdr(void)
188 {
189 	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
190 
191 	if (!elfcorehdr_size)
192 		return;
193 
194 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
195 		pr_warn("elfcorehdr is overlapped\n");
196 		return;
197 	}
198 
199 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
200 
201 	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
202 		elfcorehdr_size >> 10, elfcorehdr_addr);
203 }
204 #else
reserve_elfcorehdr(void)205 static void __init reserve_elfcorehdr(void)
206 {
207 }
208 #endif /* CONFIG_CRASH_DUMP */
209 
210 /*
211  * Return the maximum physical address for a zone accessible by the given bits
212  * limit. If DRAM starts above 32-bit, expand the zone to the maximum
213  * available memory, otherwise cap it at 32-bit.
214  */
max_zone_phys(unsigned int zone_bits)215 static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
216 {
217 	phys_addr_t zone_mask = DMA_BIT_MASK(zone_bits);
218 	phys_addr_t phys_start = memblock_start_of_DRAM();
219 
220 	if (phys_start > U32_MAX)
221 		zone_mask = PHYS_ADDR_MAX;
222 	else if (phys_start > zone_mask)
223 		zone_mask = U32_MAX;
224 
225 	return min(zone_mask, memblock_end_of_DRAM() - 1) + 1;
226 }
227 
zone_sizes_init(unsigned long min,unsigned long max)228 static void __init zone_sizes_init(unsigned long min, unsigned long max)
229 {
230 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
231 	unsigned int __maybe_unused acpi_zone_dma_bits;
232 	unsigned int __maybe_unused dt_zone_dma_bits;
233 	phys_addr_t __maybe_unused dma32_phys_limit = max_zone_phys(32);
234 
235 #ifdef CONFIG_ZONE_DMA
236 	acpi_zone_dma_bits = fls64(acpi_iort_dma_get_max_cpu_address());
237 	dt_zone_dma_bits = fls64(of_dma_get_max_cpu_address(NULL));
238 	zone_dma_bits = min3(32U, dt_zone_dma_bits, acpi_zone_dma_bits);
239 	arm64_dma_phys_limit = max_zone_phys(zone_dma_bits);
240 	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
241 #endif
242 #ifdef CONFIG_ZONE_DMA32
243 	max_zone_pfns[ZONE_DMA32] = disable_dma32 ? 0 : PFN_DOWN(dma32_phys_limit);
244 	if (!arm64_dma_phys_limit)
245 		arm64_dma_phys_limit = dma32_phys_limit;
246 #endif
247 	max_zone_pfns[ZONE_NORMAL] = max;
248 
249 	free_area_init(max_zone_pfns);
250 }
251 
early_disable_dma32(char * buf)252 static int __init early_disable_dma32(char *buf)
253 {
254 	if (!buf)
255 		return -EINVAL;
256 
257 	if (!strcmp(buf, "on"))
258 		disable_dma32 = true;
259 
260 	return 0;
261 }
262 early_param("disable_dma32", early_disable_dma32);
263 
pfn_valid(unsigned long pfn)264 int pfn_valid(unsigned long pfn)
265 {
266 	phys_addr_t addr = pfn << PAGE_SHIFT;
267 
268 	if ((addr >> PAGE_SHIFT) != pfn)
269 		return 0;
270 
271 #ifdef CONFIG_SPARSEMEM
272 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
273 		return 0;
274 
275 	if (!valid_section(__pfn_to_section(pfn)))
276 		return 0;
277 
278 	/*
279 	 * ZONE_DEVICE memory does not have the memblock entries.
280 	 * memblock_is_map_memory() check for ZONE_DEVICE based
281 	 * addresses will always fail. Even the normal hotplugged
282 	 * memory will never have MEMBLOCK_NOMAP flag set in their
283 	 * memblock entries. Skip memblock search for all non early
284 	 * memory sections covering all of hotplug memory including
285 	 * both normal and ZONE_DEVICE based.
286 	 */
287 	if (!early_section(__pfn_to_section(pfn)))
288 		return pfn_section_valid(__pfn_to_section(pfn), pfn);
289 #endif
290 	return memblock_is_map_memory(addr);
291 }
292 EXPORT_SYMBOL(pfn_valid);
293 
294 static phys_addr_t memory_limit = PHYS_ADDR_MAX;
295 
296 /*
297  * Limit the memory size that was specified via FDT.
298  */
early_mem(char * p)299 static int __init early_mem(char *p)
300 {
301 	if (!p)
302 		return 1;
303 
304 	memory_limit = memparse(p, &p) & PAGE_MASK;
305 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
306 
307 	return 0;
308 }
309 early_param("mem", early_mem);
310 
early_init_dt_scan_usablemem(unsigned long node,const char * uname,int depth,void * data)311 static int __init early_init_dt_scan_usablemem(unsigned long node,
312 		const char *uname, int depth, void *data)
313 {
314 	struct memblock_region *usablemem = data;
315 	const __be32 *reg;
316 	int len;
317 
318 	if (depth != 1 || strcmp(uname, "chosen") != 0)
319 		return 0;
320 
321 	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
322 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
323 		return 1;
324 
325 	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
326 	usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
327 
328 	return 1;
329 }
330 
fdt_enforce_memory_region(void)331 static void __init fdt_enforce_memory_region(void)
332 {
333 	struct memblock_region reg = {
334 		.size = 0,
335 	};
336 
337 	of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
338 
339 	if (reg.size)
340 		memblock_cap_memory_range(reg.base, reg.size);
341 }
342 
arm64_memblock_init(void)343 void __init arm64_memblock_init(void)
344 {
345 	const s64 linear_region_size = BIT(vabits_actual - 1);
346 
347 	/* Handle linux,usable-memory-range property */
348 	fdt_enforce_memory_region();
349 
350 	/* Remove memory above our supported physical address size */
351 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
352 
353 	/*
354 	 * Select a suitable value for the base of physical memory.
355 	 */
356 	memstart_addr = round_down(memblock_start_of_DRAM(),
357 				   ARM64_MEMSTART_ALIGN);
358 
359 	/*
360 	 * Remove the memory that we will not be able to cover with the
361 	 * linear mapping. Take care not to clip the kernel which may be
362 	 * high in memory.
363 	 */
364 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
365 			__pa_symbol(_end)), ULLONG_MAX);
366 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
367 		/* ensure that memstart_addr remains sufficiently aligned */
368 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
369 					 ARM64_MEMSTART_ALIGN);
370 		memblock_remove(0, memstart_addr);
371 	}
372 
373 	/*
374 	 * If we are running with a 52-bit kernel VA config on a system that
375 	 * does not support it, we have to place the available physical
376 	 * memory in the 48-bit addressable part of the linear region, i.e.,
377 	 * we have to move it upward. Since memstart_addr represents the
378 	 * physical address of PAGE_OFFSET, we have to *subtract* from it.
379 	 */
380 	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
381 		memstart_addr -= _PAGE_OFFSET(48) - _PAGE_OFFSET(52);
382 
383 	/*
384 	 * Apply the memory limit if it was set. Since the kernel may be loaded
385 	 * high up in memory, add back the kernel region that must be accessible
386 	 * via the linear mapping.
387 	 */
388 	if (memory_limit != PHYS_ADDR_MAX) {
389 		memblock_mem_limit_remove_map(memory_limit);
390 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
391 	}
392 
393 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
394 		/*
395 		 * Add back the memory we just removed if it results in the
396 		 * initrd to become inaccessible via the linear mapping.
397 		 * Otherwise, this is a no-op
398 		 */
399 		u64 base = phys_initrd_start & PAGE_MASK;
400 		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
401 
402 		/*
403 		 * We can only add back the initrd memory if we don't end up
404 		 * with more memory than we can address via the linear mapping.
405 		 * It is up to the bootloader to position the kernel and the
406 		 * initrd reasonably close to each other (i.e., within 32 GB of
407 		 * each other) so that all granule/#levels combinations can
408 		 * always access both.
409 		 */
410 		if (WARN(base < memblock_start_of_DRAM() ||
411 			 base + size > memblock_start_of_DRAM() +
412 				       linear_region_size,
413 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
414 			phys_initrd_size = 0;
415 		} else {
416 			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
417 			memblock_add(base, size);
418 			memblock_reserve(base, size);
419 		}
420 	}
421 
422 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
423 		extern u16 memstart_offset_seed;
424 		u64 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
425 		int parange = cpuid_feature_extract_unsigned_field(
426 					mmfr0, ID_AA64MMFR0_PARANGE_SHIFT);
427 		s64 range = linear_region_size -
428 			    BIT(id_aa64mmfr0_parange_to_phys_shift(parange));
429 
430 		/*
431 		 * If the size of the linear region exceeds, by a sufficient
432 		 * margin, the size of the region that the physical memory can
433 		 * span, randomize the linear region as well.
434 		 */
435 		if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) {
436 			range /= ARM64_MEMSTART_ALIGN;
437 			memstart_addr -= ARM64_MEMSTART_ALIGN *
438 					 ((range * memstart_offset_seed) >> 16);
439 		}
440 	}
441 
442 	/*
443 	 * Register the kernel text, kernel data, initrd, and initial
444 	 * pagetables with memblock.
445 	 */
446 	memblock_reserve(__pa_symbol(_text), _end - _text);
447 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
448 		/* the generic initrd code expects virtual addresses */
449 		initrd_start = __phys_to_virt(phys_initrd_start);
450 		initrd_end = initrd_start + phys_initrd_size;
451 	}
452 
453 	early_init_fdt_scan_reserved_mem();
454 
455 	reserve_elfcorehdr();
456 
457 	if (!IS_ENABLED(CONFIG_ZONE_DMA) && !IS_ENABLED(CONFIG_ZONE_DMA32))
458 		reserve_crashkernel();
459 
460 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
461 }
462 
bootmem_init(void)463 void __init bootmem_init(void)
464 {
465 	unsigned long min, max;
466 
467 	min = PFN_UP(memblock_start_of_DRAM());
468 	max = PFN_DOWN(memblock_end_of_DRAM());
469 
470 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
471 
472 	max_pfn = max_low_pfn = max;
473 	min_low_pfn = min;
474 
475 	arm64_numa_init();
476 
477 	/*
478 	 * must be done after arm64_numa_init() which calls numa_init() to
479 	 * initialize node_online_map that gets used in hugetlb_cma_reserve()
480 	 * while allocating required CMA size across online nodes.
481 	 */
482 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
483 	arm64_hugetlb_cma_reserve();
484 #endif
485 
486 	dma_pernuma_cma_reserve();
487 
488 	kvm_hyp_reserve();
489 
490 	/*
491 	 * sparse_init() tries to allocate memory from memblock, so must be
492 	 * done after the fixed reservations
493 	 */
494 	sparse_init();
495 	zone_sizes_init(min, max);
496 
497 	/*
498 	 * Reserve the CMA area after arm64_dma_phys_limit was initialised.
499 	 */
500 	dma_contiguous_reserve(arm64_dma_phys_limit);
501 	rk_dma_heap_cma_setup();
502 
503 	/*
504 	 * request_standard_resources() depends on crashkernel's memory being
505 	 * reserved, so do it here.
506 	 */
507 	if (IS_ENABLED(CONFIG_ZONE_DMA) || IS_ENABLED(CONFIG_ZONE_DMA32))
508 		reserve_crashkernel();
509 
510 	memblock_dump_all();
511 }
512 
513 #ifndef CONFIG_SPARSEMEM_VMEMMAP
free_memmap(unsigned long start_pfn,unsigned long end_pfn)514 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
515 {
516 	struct page *start_pg, *end_pg;
517 	unsigned long pg, pgend;
518 
519 	/*
520 	 * Convert start_pfn/end_pfn to a struct page pointer.
521 	 */
522 	start_pg = pfn_to_page(start_pfn - 1) + 1;
523 	end_pg = pfn_to_page(end_pfn - 1) + 1;
524 
525 	/*
526 	 * Convert to physical addresses, and round start upwards and end
527 	 * downwards.
528 	 */
529 	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
530 	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
531 
532 	/*
533 	 * If there are free pages between these, free the section of the
534 	 * memmap array.
535 	 */
536 	if (pg < pgend)
537 		memblock_free(pg, pgend - pg);
538 }
539 
540 /*
541  * The mem_map array can get very big. Free the unused area of the memory map.
542  */
free_unused_memmap(void)543 static void __init free_unused_memmap(void)
544 {
545 	unsigned long start, end, prev_end = 0;
546 	int i;
547 
548 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
549 #ifdef CONFIG_SPARSEMEM
550 		/*
551 		 * Take care not to free memmap entries that don't exist due
552 		 * to SPARSEMEM sections which aren't present.
553 		 */
554 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
555 #endif
556 		/*
557 		 * If we had a previous bank, and there is a space between the
558 		 * current bank and the previous, free it.
559 		 */
560 		if (prev_end && prev_end < start)
561 			free_memmap(prev_end, start);
562 
563 		/*
564 		 * Align up here since the VM subsystem insists that the
565 		 * memmap entries are valid from the bank end aligned to
566 		 * MAX_ORDER_NR_PAGES.
567 		 */
568 		prev_end = ALIGN(end, MAX_ORDER_NR_PAGES);
569 	}
570 
571 #ifdef CONFIG_SPARSEMEM
572 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
573 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
574 #endif
575 }
576 #endif	/* !CONFIG_SPARSEMEM_VMEMMAP */
577 
578 /*
579  * mem_init() marks the free areas in the mem_map and tells us how much memory
580  * is free.  This is done after various parts of the system have claimed their
581  * memory after the kernel image.
582  */
mem_init(void)583 void __init mem_init(void)
584 {
585 	if (swiotlb_force == SWIOTLB_FORCE ||
586 	    max_pfn > PFN_DOWN(arm64_dma_phys_limit))
587 		swiotlb_init(1);
588 	else
589 		swiotlb_force = SWIOTLB_NO_FORCE;
590 
591 	set_max_mapnr(max_pfn - PHYS_PFN_OFFSET);
592 
593 #ifndef CONFIG_SPARSEMEM_VMEMMAP
594 	free_unused_memmap();
595 #endif
596 	/* this will put all unused low memory onto the freelists */
597 	memblock_free_all();
598 
599 	mem_init_print_info(NULL);
600 
601 	/*
602 	 * Check boundaries twice: Some fundamental inconsistencies can be
603 	 * detected at build time already.
604 	 */
605 #ifdef CONFIG_COMPAT
606 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
607 #endif
608 
609 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
610 		extern int sysctl_overcommit_memory;
611 		/*
612 		 * On a machine this small we won't get anywhere without
613 		 * overcommit, so turn it on by default.
614 		 */
615 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
616 	}
617 }
618 
free_initmem(void)619 void free_initmem(void)
620 {
621 	free_reserved_area(lm_alias(__init_begin),
622 			   lm_alias(__init_end),
623 			   POISON_FREE_INITMEM, "unused kernel");
624 	/*
625 	 * Unmap the __init region but leave the VM area in place. This
626 	 * prevents the region from being reused for kernel modules, which
627 	 * is not supported by kallsyms.
628 	 */
629 	unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
630 }
631 
dump_mem_limit(void)632 void dump_mem_limit(void)
633 {
634 	if (memory_limit != PHYS_ADDR_MAX) {
635 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
636 	} else {
637 		pr_emerg("Memory Limit: none\n");
638 	}
639 }
640