1*4882a593Smuzhiyun // SPDX-License-Identifier: GPL-2.0-only
2*4882a593Smuzhiyun /*
3*4882a593Smuzhiyun * Based on arch/arm/mm/fault.c
4*4882a593Smuzhiyun *
5*4882a593Smuzhiyun * Copyright (C) 1995 Linus Torvalds
6*4882a593Smuzhiyun * Copyright (C) 1995-2004 Russell King
7*4882a593Smuzhiyun * Copyright (C) 2012 ARM Ltd.
8*4882a593Smuzhiyun */
9*4882a593Smuzhiyun
10*4882a593Smuzhiyun #include <linux/acpi.h>
11*4882a593Smuzhiyun #include <linux/bitfield.h>
12*4882a593Smuzhiyun #include <linux/extable.h>
13*4882a593Smuzhiyun #include <linux/kfence.h>
14*4882a593Smuzhiyun #include <linux/signal.h>
15*4882a593Smuzhiyun #include <linux/mm.h>
16*4882a593Smuzhiyun #include <linux/hardirq.h>
17*4882a593Smuzhiyun #include <linux/init.h>
18*4882a593Smuzhiyun #include <linux/kasan.h>
19*4882a593Smuzhiyun #include <linux/kprobes.h>
20*4882a593Smuzhiyun #include <linux/uaccess.h>
21*4882a593Smuzhiyun #include <linux/page-flags.h>
22*4882a593Smuzhiyun #include <linux/sched/signal.h>
23*4882a593Smuzhiyun #include <linux/sched/debug.h>
24*4882a593Smuzhiyun #include <linux/highmem.h>
25*4882a593Smuzhiyun #include <linux/perf_event.h>
26*4882a593Smuzhiyun #include <linux/preempt.h>
27*4882a593Smuzhiyun #include <linux/hugetlb.h>
28*4882a593Smuzhiyun
29*4882a593Smuzhiyun #include <asm/acpi.h>
30*4882a593Smuzhiyun #include <asm/bug.h>
31*4882a593Smuzhiyun #include <asm/cmpxchg.h>
32*4882a593Smuzhiyun #include <asm/cpufeature.h>
33*4882a593Smuzhiyun #include <asm/exception.h>
34*4882a593Smuzhiyun #include <asm/daifflags.h>
35*4882a593Smuzhiyun #include <asm/debug-monitors.h>
36*4882a593Smuzhiyun #include <asm/esr.h>
37*4882a593Smuzhiyun #include <asm/kprobes.h>
38*4882a593Smuzhiyun #include <asm/mte.h>
39*4882a593Smuzhiyun #include <asm/processor.h>
40*4882a593Smuzhiyun #include <asm/sysreg.h>
41*4882a593Smuzhiyun #include <asm/system_misc.h>
42*4882a593Smuzhiyun #include <asm/tlbflush.h>
43*4882a593Smuzhiyun #include <asm/traps.h>
44*4882a593Smuzhiyun
45*4882a593Smuzhiyun #include <trace/hooks/fault.h>
46*4882a593Smuzhiyun
47*4882a593Smuzhiyun struct fault_info {
48*4882a593Smuzhiyun int (*fn)(unsigned long far, unsigned int esr,
49*4882a593Smuzhiyun struct pt_regs *regs);
50*4882a593Smuzhiyun int sig;
51*4882a593Smuzhiyun int code;
52*4882a593Smuzhiyun const char *name;
53*4882a593Smuzhiyun };
54*4882a593Smuzhiyun
55*4882a593Smuzhiyun static const struct fault_info fault_info[];
56*4882a593Smuzhiyun static struct fault_info debug_fault_info[];
57*4882a593Smuzhiyun
esr_to_fault_info(unsigned int esr)58*4882a593Smuzhiyun static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
59*4882a593Smuzhiyun {
60*4882a593Smuzhiyun return fault_info + (esr & ESR_ELx_FSC);
61*4882a593Smuzhiyun }
62*4882a593Smuzhiyun
esr_to_debug_fault_info(unsigned int esr)63*4882a593Smuzhiyun static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
64*4882a593Smuzhiyun {
65*4882a593Smuzhiyun return debug_fault_info + DBG_ESR_EVT(esr);
66*4882a593Smuzhiyun }
67*4882a593Smuzhiyun
data_abort_decode(unsigned int esr)68*4882a593Smuzhiyun static void data_abort_decode(unsigned int esr)
69*4882a593Smuzhiyun {
70*4882a593Smuzhiyun pr_alert("Data abort info:\n");
71*4882a593Smuzhiyun
72*4882a593Smuzhiyun if (esr & ESR_ELx_ISV) {
73*4882a593Smuzhiyun pr_alert(" Access size = %u byte(s)\n",
74*4882a593Smuzhiyun 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
75*4882a593Smuzhiyun pr_alert(" SSE = %lu, SRT = %lu\n",
76*4882a593Smuzhiyun (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
77*4882a593Smuzhiyun (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
78*4882a593Smuzhiyun pr_alert(" SF = %lu, AR = %lu\n",
79*4882a593Smuzhiyun (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
80*4882a593Smuzhiyun (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
81*4882a593Smuzhiyun } else {
82*4882a593Smuzhiyun pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
83*4882a593Smuzhiyun }
84*4882a593Smuzhiyun
85*4882a593Smuzhiyun pr_alert(" CM = %lu, WnR = %lu\n",
86*4882a593Smuzhiyun (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
87*4882a593Smuzhiyun (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
88*4882a593Smuzhiyun }
89*4882a593Smuzhiyun
mem_abort_decode(unsigned int esr)90*4882a593Smuzhiyun static void mem_abort_decode(unsigned int esr)
91*4882a593Smuzhiyun {
92*4882a593Smuzhiyun pr_alert("Mem abort info:\n");
93*4882a593Smuzhiyun
94*4882a593Smuzhiyun pr_alert(" ESR = 0x%08x\n", esr);
95*4882a593Smuzhiyun pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n",
96*4882a593Smuzhiyun ESR_ELx_EC(esr), esr_get_class_string(esr),
97*4882a593Smuzhiyun (esr & ESR_ELx_IL) ? 32 : 16);
98*4882a593Smuzhiyun pr_alert(" SET = %lu, FnV = %lu\n",
99*4882a593Smuzhiyun (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
100*4882a593Smuzhiyun (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
101*4882a593Smuzhiyun pr_alert(" EA = %lu, S1PTW = %lu\n",
102*4882a593Smuzhiyun (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
103*4882a593Smuzhiyun (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
104*4882a593Smuzhiyun
105*4882a593Smuzhiyun if (esr_is_data_abort(esr))
106*4882a593Smuzhiyun data_abort_decode(esr);
107*4882a593Smuzhiyun }
108*4882a593Smuzhiyun
mm_to_pgd_phys(struct mm_struct * mm)109*4882a593Smuzhiyun static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
110*4882a593Smuzhiyun {
111*4882a593Smuzhiyun /* Either init_pg_dir or swapper_pg_dir */
112*4882a593Smuzhiyun if (mm == &init_mm)
113*4882a593Smuzhiyun return __pa_symbol(mm->pgd);
114*4882a593Smuzhiyun
115*4882a593Smuzhiyun return (unsigned long)virt_to_phys(mm->pgd);
116*4882a593Smuzhiyun }
117*4882a593Smuzhiyun
118*4882a593Smuzhiyun /*
119*4882a593Smuzhiyun * Dump out the page tables associated with 'addr' in the currently active mm.
120*4882a593Smuzhiyun */
show_pte(unsigned long addr)121*4882a593Smuzhiyun static void show_pte(unsigned long addr)
122*4882a593Smuzhiyun {
123*4882a593Smuzhiyun struct mm_struct *mm;
124*4882a593Smuzhiyun pgd_t *pgdp;
125*4882a593Smuzhiyun pgd_t pgd;
126*4882a593Smuzhiyun
127*4882a593Smuzhiyun if (is_ttbr0_addr(addr)) {
128*4882a593Smuzhiyun /* TTBR0 */
129*4882a593Smuzhiyun mm = current->active_mm;
130*4882a593Smuzhiyun if (mm == &init_mm) {
131*4882a593Smuzhiyun pr_alert("[%016lx] user address but active_mm is swapper\n",
132*4882a593Smuzhiyun addr);
133*4882a593Smuzhiyun return;
134*4882a593Smuzhiyun }
135*4882a593Smuzhiyun } else if (is_ttbr1_addr(addr)) {
136*4882a593Smuzhiyun /* TTBR1 */
137*4882a593Smuzhiyun mm = &init_mm;
138*4882a593Smuzhiyun } else {
139*4882a593Smuzhiyun pr_alert("[%016lx] address between user and kernel address ranges\n",
140*4882a593Smuzhiyun addr);
141*4882a593Smuzhiyun return;
142*4882a593Smuzhiyun }
143*4882a593Smuzhiyun
144*4882a593Smuzhiyun pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
145*4882a593Smuzhiyun mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
146*4882a593Smuzhiyun vabits_actual, mm_to_pgd_phys(mm));
147*4882a593Smuzhiyun pgdp = pgd_offset(mm, addr);
148*4882a593Smuzhiyun pgd = READ_ONCE(*pgdp);
149*4882a593Smuzhiyun pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
150*4882a593Smuzhiyun
151*4882a593Smuzhiyun do {
152*4882a593Smuzhiyun p4d_t *p4dp, p4d;
153*4882a593Smuzhiyun pud_t *pudp, pud;
154*4882a593Smuzhiyun pmd_t *pmdp, pmd;
155*4882a593Smuzhiyun pte_t *ptep, pte;
156*4882a593Smuzhiyun
157*4882a593Smuzhiyun if (pgd_none(pgd) || pgd_bad(pgd))
158*4882a593Smuzhiyun break;
159*4882a593Smuzhiyun
160*4882a593Smuzhiyun p4dp = p4d_offset(pgdp, addr);
161*4882a593Smuzhiyun p4d = READ_ONCE(*p4dp);
162*4882a593Smuzhiyun pr_cont(", p4d=%016llx", p4d_val(p4d));
163*4882a593Smuzhiyun if (p4d_none(p4d) || p4d_bad(p4d))
164*4882a593Smuzhiyun break;
165*4882a593Smuzhiyun
166*4882a593Smuzhiyun pudp = pud_offset(p4dp, addr);
167*4882a593Smuzhiyun pud = READ_ONCE(*pudp);
168*4882a593Smuzhiyun pr_cont(", pud=%016llx", pud_val(pud));
169*4882a593Smuzhiyun if (pud_none(pud) || pud_bad(pud))
170*4882a593Smuzhiyun break;
171*4882a593Smuzhiyun
172*4882a593Smuzhiyun pmdp = pmd_offset(pudp, addr);
173*4882a593Smuzhiyun pmd = READ_ONCE(*pmdp);
174*4882a593Smuzhiyun pr_cont(", pmd=%016llx", pmd_val(pmd));
175*4882a593Smuzhiyun if (pmd_none(pmd) || pmd_bad(pmd))
176*4882a593Smuzhiyun break;
177*4882a593Smuzhiyun
178*4882a593Smuzhiyun ptep = pte_offset_map(pmdp, addr);
179*4882a593Smuzhiyun pte = READ_ONCE(*ptep);
180*4882a593Smuzhiyun pr_cont(", pte=%016llx", pte_val(pte));
181*4882a593Smuzhiyun pte_unmap(ptep);
182*4882a593Smuzhiyun } while(0);
183*4882a593Smuzhiyun
184*4882a593Smuzhiyun pr_cont("\n");
185*4882a593Smuzhiyun }
186*4882a593Smuzhiyun
187*4882a593Smuzhiyun /*
188*4882a593Smuzhiyun * This function sets the access flags (dirty, accessed), as well as write
189*4882a593Smuzhiyun * permission, and only to a more permissive setting.
190*4882a593Smuzhiyun *
191*4882a593Smuzhiyun * It needs to cope with hardware update of the accessed/dirty state by other
192*4882a593Smuzhiyun * agents in the system and can safely skip the __sync_icache_dcache() call as,
193*4882a593Smuzhiyun * like set_pte_at(), the PTE is never changed from no-exec to exec here.
194*4882a593Smuzhiyun *
195*4882a593Smuzhiyun * Returns whether or not the PTE actually changed.
196*4882a593Smuzhiyun */
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)197*4882a593Smuzhiyun int ptep_set_access_flags(struct vm_area_struct *vma,
198*4882a593Smuzhiyun unsigned long address, pte_t *ptep,
199*4882a593Smuzhiyun pte_t entry, int dirty)
200*4882a593Smuzhiyun {
201*4882a593Smuzhiyun pteval_t old_pteval, pteval;
202*4882a593Smuzhiyun pte_t pte = READ_ONCE(*ptep);
203*4882a593Smuzhiyun
204*4882a593Smuzhiyun if (pte_same(pte, entry))
205*4882a593Smuzhiyun return 0;
206*4882a593Smuzhiyun
207*4882a593Smuzhiyun /* only preserve the access flags and write permission */
208*4882a593Smuzhiyun pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
209*4882a593Smuzhiyun
210*4882a593Smuzhiyun /*
211*4882a593Smuzhiyun * Setting the flags must be done atomically to avoid racing with the
212*4882a593Smuzhiyun * hardware update of the access/dirty state. The PTE_RDONLY bit must
213*4882a593Smuzhiyun * be set to the most permissive (lowest value) of *ptep and entry
214*4882a593Smuzhiyun * (calculated as: a & b == ~(~a | ~b)).
215*4882a593Smuzhiyun */
216*4882a593Smuzhiyun pte_val(entry) ^= PTE_RDONLY;
217*4882a593Smuzhiyun pteval = pte_val(pte);
218*4882a593Smuzhiyun do {
219*4882a593Smuzhiyun old_pteval = pteval;
220*4882a593Smuzhiyun pteval ^= PTE_RDONLY;
221*4882a593Smuzhiyun pteval |= pte_val(entry);
222*4882a593Smuzhiyun pteval ^= PTE_RDONLY;
223*4882a593Smuzhiyun pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
224*4882a593Smuzhiyun } while (pteval != old_pteval);
225*4882a593Smuzhiyun
226*4882a593Smuzhiyun /* Invalidate a stale read-only entry */
227*4882a593Smuzhiyun if (dirty)
228*4882a593Smuzhiyun flush_tlb_page(vma, address);
229*4882a593Smuzhiyun return 1;
230*4882a593Smuzhiyun }
231*4882a593Smuzhiyun
is_el1_instruction_abort(unsigned int esr)232*4882a593Smuzhiyun static bool is_el1_instruction_abort(unsigned int esr)
233*4882a593Smuzhiyun {
234*4882a593Smuzhiyun return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
235*4882a593Smuzhiyun }
236*4882a593Smuzhiyun
is_el1_permission_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)237*4882a593Smuzhiyun static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
238*4882a593Smuzhiyun struct pt_regs *regs)
239*4882a593Smuzhiyun {
240*4882a593Smuzhiyun unsigned int ec = ESR_ELx_EC(esr);
241*4882a593Smuzhiyun unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
242*4882a593Smuzhiyun
243*4882a593Smuzhiyun if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
244*4882a593Smuzhiyun return false;
245*4882a593Smuzhiyun
246*4882a593Smuzhiyun if (fsc_type == ESR_ELx_FSC_PERM)
247*4882a593Smuzhiyun return true;
248*4882a593Smuzhiyun
249*4882a593Smuzhiyun if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
250*4882a593Smuzhiyun return fsc_type == ESR_ELx_FSC_FAULT &&
251*4882a593Smuzhiyun (regs->pstate & PSR_PAN_BIT);
252*4882a593Smuzhiyun
253*4882a593Smuzhiyun return false;
254*4882a593Smuzhiyun }
255*4882a593Smuzhiyun
is_spurious_el1_translation_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)256*4882a593Smuzhiyun static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
257*4882a593Smuzhiyun unsigned int esr,
258*4882a593Smuzhiyun struct pt_regs *regs)
259*4882a593Smuzhiyun {
260*4882a593Smuzhiyun unsigned long flags;
261*4882a593Smuzhiyun u64 par, dfsc;
262*4882a593Smuzhiyun
263*4882a593Smuzhiyun if (ESR_ELx_EC(esr) != ESR_ELx_EC_DABT_CUR ||
264*4882a593Smuzhiyun (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
265*4882a593Smuzhiyun return false;
266*4882a593Smuzhiyun
267*4882a593Smuzhiyun local_irq_save(flags);
268*4882a593Smuzhiyun asm volatile("at s1e1r, %0" :: "r" (addr));
269*4882a593Smuzhiyun isb();
270*4882a593Smuzhiyun par = read_sysreg_par();
271*4882a593Smuzhiyun local_irq_restore(flags);
272*4882a593Smuzhiyun
273*4882a593Smuzhiyun /*
274*4882a593Smuzhiyun * If we now have a valid translation, treat the translation fault as
275*4882a593Smuzhiyun * spurious.
276*4882a593Smuzhiyun */
277*4882a593Smuzhiyun if (!(par & SYS_PAR_EL1_F))
278*4882a593Smuzhiyun return true;
279*4882a593Smuzhiyun
280*4882a593Smuzhiyun /*
281*4882a593Smuzhiyun * If we got a different type of fault from the AT instruction,
282*4882a593Smuzhiyun * treat the translation fault as spurious.
283*4882a593Smuzhiyun */
284*4882a593Smuzhiyun dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
285*4882a593Smuzhiyun return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
286*4882a593Smuzhiyun }
287*4882a593Smuzhiyun
die_kernel_fault(const char * msg,unsigned long addr,unsigned int esr,struct pt_regs * regs)288*4882a593Smuzhiyun static void die_kernel_fault(const char *msg, unsigned long addr,
289*4882a593Smuzhiyun unsigned int esr, struct pt_regs *regs)
290*4882a593Smuzhiyun {
291*4882a593Smuzhiyun bust_spinlocks(1);
292*4882a593Smuzhiyun
293*4882a593Smuzhiyun pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
294*4882a593Smuzhiyun addr);
295*4882a593Smuzhiyun
296*4882a593Smuzhiyun trace_android_rvh_die_kernel_fault(regs, esr, addr, msg);
297*4882a593Smuzhiyun mem_abort_decode(esr);
298*4882a593Smuzhiyun
299*4882a593Smuzhiyun show_pte(addr);
300*4882a593Smuzhiyun die("Oops", regs, esr);
301*4882a593Smuzhiyun bust_spinlocks(0);
302*4882a593Smuzhiyun do_exit(SIGKILL);
303*4882a593Smuzhiyun }
304*4882a593Smuzhiyun
305*4882a593Smuzhiyun #ifdef CONFIG_KASAN_HW_TAGS
report_tag_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)306*4882a593Smuzhiyun static void report_tag_fault(unsigned long addr, unsigned int esr,
307*4882a593Smuzhiyun struct pt_regs *regs)
308*4882a593Smuzhiyun {
309*4882a593Smuzhiyun static bool reported;
310*4882a593Smuzhiyun bool is_write;
311*4882a593Smuzhiyun
312*4882a593Smuzhiyun if (READ_ONCE(reported))
313*4882a593Smuzhiyun return;
314*4882a593Smuzhiyun
315*4882a593Smuzhiyun /*
316*4882a593Smuzhiyun * This is used for KASAN tests and assumes that no MTE faults
317*4882a593Smuzhiyun * happened before running the tests.
318*4882a593Smuzhiyun */
319*4882a593Smuzhiyun if (mte_report_once())
320*4882a593Smuzhiyun WRITE_ONCE(reported, true);
321*4882a593Smuzhiyun
322*4882a593Smuzhiyun /*
323*4882a593Smuzhiyun * SAS bits aren't set for all faults reported in EL1, so we can't
324*4882a593Smuzhiyun * find out access size.
325*4882a593Smuzhiyun */
326*4882a593Smuzhiyun is_write = !!(esr & ESR_ELx_WNR);
327*4882a593Smuzhiyun kasan_report(addr, 0, is_write, regs->pc);
328*4882a593Smuzhiyun }
329*4882a593Smuzhiyun #else
330*4882a593Smuzhiyun /* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
report_tag_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)331*4882a593Smuzhiyun static inline void report_tag_fault(unsigned long addr, unsigned int esr,
332*4882a593Smuzhiyun struct pt_regs *regs) { }
333*4882a593Smuzhiyun #endif
334*4882a593Smuzhiyun
do_tag_recovery(unsigned long addr,unsigned int esr,struct pt_regs * regs)335*4882a593Smuzhiyun static void do_tag_recovery(unsigned long addr, unsigned int esr,
336*4882a593Smuzhiyun struct pt_regs *regs)
337*4882a593Smuzhiyun {
338*4882a593Smuzhiyun
339*4882a593Smuzhiyun report_tag_fault(addr, esr, regs);
340*4882a593Smuzhiyun
341*4882a593Smuzhiyun /*
342*4882a593Smuzhiyun * Disable MTE Tag Checking on the local CPU for the current EL.
343*4882a593Smuzhiyun * It will be done lazily on the other CPUs when they will hit a
344*4882a593Smuzhiyun * tag fault.
345*4882a593Smuzhiyun */
346*4882a593Smuzhiyun sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, SCTLR_ELx_TCF_NONE);
347*4882a593Smuzhiyun isb();
348*4882a593Smuzhiyun }
349*4882a593Smuzhiyun
is_el1_mte_sync_tag_check_fault(unsigned int esr)350*4882a593Smuzhiyun static bool is_el1_mte_sync_tag_check_fault(unsigned int esr)
351*4882a593Smuzhiyun {
352*4882a593Smuzhiyun unsigned int ec = ESR_ELx_EC(esr);
353*4882a593Smuzhiyun unsigned int fsc = esr & ESR_ELx_FSC;
354*4882a593Smuzhiyun
355*4882a593Smuzhiyun if (ec != ESR_ELx_EC_DABT_CUR)
356*4882a593Smuzhiyun return false;
357*4882a593Smuzhiyun
358*4882a593Smuzhiyun if (fsc == ESR_ELx_FSC_MTE)
359*4882a593Smuzhiyun return true;
360*4882a593Smuzhiyun
361*4882a593Smuzhiyun return false;
362*4882a593Smuzhiyun }
363*4882a593Smuzhiyun
__do_kernel_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)364*4882a593Smuzhiyun static void __do_kernel_fault(unsigned long addr, unsigned int esr,
365*4882a593Smuzhiyun struct pt_regs *regs)
366*4882a593Smuzhiyun {
367*4882a593Smuzhiyun const char *msg;
368*4882a593Smuzhiyun
369*4882a593Smuzhiyun /*
370*4882a593Smuzhiyun * Are we prepared to handle this kernel fault?
371*4882a593Smuzhiyun * We are almost certainly not prepared to handle instruction faults.
372*4882a593Smuzhiyun */
373*4882a593Smuzhiyun if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
374*4882a593Smuzhiyun return;
375*4882a593Smuzhiyun
376*4882a593Smuzhiyun if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
377*4882a593Smuzhiyun "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
378*4882a593Smuzhiyun return;
379*4882a593Smuzhiyun
380*4882a593Smuzhiyun if (is_el1_mte_sync_tag_check_fault(esr)) {
381*4882a593Smuzhiyun do_tag_recovery(addr, esr, regs);
382*4882a593Smuzhiyun
383*4882a593Smuzhiyun return;
384*4882a593Smuzhiyun }
385*4882a593Smuzhiyun
386*4882a593Smuzhiyun if (is_el1_permission_fault(addr, esr, regs)) {
387*4882a593Smuzhiyun if (esr & ESR_ELx_WNR)
388*4882a593Smuzhiyun msg = "write to read-only memory";
389*4882a593Smuzhiyun else if (is_el1_instruction_abort(esr))
390*4882a593Smuzhiyun msg = "execute from non-executable memory";
391*4882a593Smuzhiyun else
392*4882a593Smuzhiyun msg = "read from unreadable memory";
393*4882a593Smuzhiyun } else if (addr < PAGE_SIZE) {
394*4882a593Smuzhiyun msg = "NULL pointer dereference";
395*4882a593Smuzhiyun } else {
396*4882a593Smuzhiyun if (kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
397*4882a593Smuzhiyun return;
398*4882a593Smuzhiyun
399*4882a593Smuzhiyun msg = "paging request";
400*4882a593Smuzhiyun }
401*4882a593Smuzhiyun
402*4882a593Smuzhiyun die_kernel_fault(msg, addr, esr, regs);
403*4882a593Smuzhiyun }
404*4882a593Smuzhiyun
set_thread_esr(unsigned long address,unsigned int esr)405*4882a593Smuzhiyun static void set_thread_esr(unsigned long address, unsigned int esr)
406*4882a593Smuzhiyun {
407*4882a593Smuzhiyun current->thread.fault_address = address;
408*4882a593Smuzhiyun
409*4882a593Smuzhiyun /*
410*4882a593Smuzhiyun * If the faulting address is in the kernel, we must sanitize the ESR.
411*4882a593Smuzhiyun * From userspace's point of view, kernel-only mappings don't exist
412*4882a593Smuzhiyun * at all, so we report them as level 0 translation faults.
413*4882a593Smuzhiyun * (This is not quite the way that "no mapping there at all" behaves:
414*4882a593Smuzhiyun * an alignment fault not caused by the memory type would take
415*4882a593Smuzhiyun * precedence over translation fault for a real access to empty
416*4882a593Smuzhiyun * space. Unfortunately we can't easily distinguish "alignment fault
417*4882a593Smuzhiyun * not caused by memory type" from "alignment fault caused by memory
418*4882a593Smuzhiyun * type", so we ignore this wrinkle and just return the translation
419*4882a593Smuzhiyun * fault.)
420*4882a593Smuzhiyun */
421*4882a593Smuzhiyun if (!is_ttbr0_addr(current->thread.fault_address)) {
422*4882a593Smuzhiyun switch (ESR_ELx_EC(esr)) {
423*4882a593Smuzhiyun case ESR_ELx_EC_DABT_LOW:
424*4882a593Smuzhiyun /*
425*4882a593Smuzhiyun * These bits provide only information about the
426*4882a593Smuzhiyun * faulting instruction, which userspace knows already.
427*4882a593Smuzhiyun * We explicitly clear bits which are architecturally
428*4882a593Smuzhiyun * RES0 in case they are given meanings in future.
429*4882a593Smuzhiyun * We always report the ESR as if the fault was taken
430*4882a593Smuzhiyun * to EL1 and so ISV and the bits in ISS[23:14] are
431*4882a593Smuzhiyun * clear. (In fact it always will be a fault to EL1.)
432*4882a593Smuzhiyun */
433*4882a593Smuzhiyun esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
434*4882a593Smuzhiyun ESR_ELx_CM | ESR_ELx_WNR;
435*4882a593Smuzhiyun esr |= ESR_ELx_FSC_FAULT;
436*4882a593Smuzhiyun break;
437*4882a593Smuzhiyun case ESR_ELx_EC_IABT_LOW:
438*4882a593Smuzhiyun /*
439*4882a593Smuzhiyun * Claim a level 0 translation fault.
440*4882a593Smuzhiyun * All other bits are architecturally RES0 for faults
441*4882a593Smuzhiyun * reported with that DFSC value, so we clear them.
442*4882a593Smuzhiyun */
443*4882a593Smuzhiyun esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
444*4882a593Smuzhiyun esr |= ESR_ELx_FSC_FAULT;
445*4882a593Smuzhiyun break;
446*4882a593Smuzhiyun default:
447*4882a593Smuzhiyun /*
448*4882a593Smuzhiyun * This should never happen (entry.S only brings us
449*4882a593Smuzhiyun * into this code for insn and data aborts from a lower
450*4882a593Smuzhiyun * exception level). Fail safe by not providing an ESR
451*4882a593Smuzhiyun * context record at all.
452*4882a593Smuzhiyun */
453*4882a593Smuzhiyun WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
454*4882a593Smuzhiyun esr = 0;
455*4882a593Smuzhiyun break;
456*4882a593Smuzhiyun }
457*4882a593Smuzhiyun }
458*4882a593Smuzhiyun
459*4882a593Smuzhiyun current->thread.fault_code = esr;
460*4882a593Smuzhiyun }
461*4882a593Smuzhiyun
do_bad_area(unsigned long far,unsigned int esr,struct pt_regs * regs)462*4882a593Smuzhiyun static void do_bad_area(unsigned long far, unsigned int esr,
463*4882a593Smuzhiyun struct pt_regs *regs)
464*4882a593Smuzhiyun {
465*4882a593Smuzhiyun unsigned long addr = untagged_addr(far);
466*4882a593Smuzhiyun
467*4882a593Smuzhiyun /*
468*4882a593Smuzhiyun * If we are in kernel mode at this point, we have no context to
469*4882a593Smuzhiyun * handle this fault with.
470*4882a593Smuzhiyun */
471*4882a593Smuzhiyun if (user_mode(regs)) {
472*4882a593Smuzhiyun const struct fault_info *inf = esr_to_fault_info(esr);
473*4882a593Smuzhiyun
474*4882a593Smuzhiyun set_thread_esr(addr, esr);
475*4882a593Smuzhiyun arm64_force_sig_fault(inf->sig, inf->code, far, inf->name);
476*4882a593Smuzhiyun } else {
477*4882a593Smuzhiyun __do_kernel_fault(addr, esr, regs);
478*4882a593Smuzhiyun }
479*4882a593Smuzhiyun }
480*4882a593Smuzhiyun
481*4882a593Smuzhiyun #define VM_FAULT_BADMAP 0x010000
482*4882a593Smuzhiyun #define VM_FAULT_BADACCESS 0x020000
483*4882a593Smuzhiyun
__do_page_fault(struct vm_area_struct * vma,unsigned long addr,unsigned int mm_flags,unsigned long vm_flags,struct pt_regs * regs)484*4882a593Smuzhiyun static int __do_page_fault(struct vm_area_struct *vma, unsigned long addr,
485*4882a593Smuzhiyun unsigned int mm_flags, unsigned long vm_flags,
486*4882a593Smuzhiyun struct pt_regs *regs)
487*4882a593Smuzhiyun {
488*4882a593Smuzhiyun
489*4882a593Smuzhiyun if (unlikely(!vma))
490*4882a593Smuzhiyun return VM_FAULT_BADMAP;
491*4882a593Smuzhiyun
492*4882a593Smuzhiyun /*
493*4882a593Smuzhiyun * Ok, we have a good vm_area for this memory access, so we can handle
494*4882a593Smuzhiyun * it.
495*4882a593Smuzhiyun */
496*4882a593Smuzhiyun if (unlikely(vma->vm_start > addr)) {
497*4882a593Smuzhiyun if (!(vma->vm_flags & VM_GROWSDOWN))
498*4882a593Smuzhiyun return VM_FAULT_BADMAP;
499*4882a593Smuzhiyun if (expand_stack(vma, addr))
500*4882a593Smuzhiyun return VM_FAULT_BADMAP;
501*4882a593Smuzhiyun }
502*4882a593Smuzhiyun
503*4882a593Smuzhiyun /*
504*4882a593Smuzhiyun * Check that the permissions on the VMA allow for the fault which
505*4882a593Smuzhiyun * occurred.
506*4882a593Smuzhiyun */
507*4882a593Smuzhiyun if (!(vma->vm_flags & vm_flags))
508*4882a593Smuzhiyun return VM_FAULT_BADACCESS;
509*4882a593Smuzhiyun return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags, regs);
510*4882a593Smuzhiyun }
511*4882a593Smuzhiyun
is_el0_instruction_abort(unsigned int esr)512*4882a593Smuzhiyun static bool is_el0_instruction_abort(unsigned int esr)
513*4882a593Smuzhiyun {
514*4882a593Smuzhiyun return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
515*4882a593Smuzhiyun }
516*4882a593Smuzhiyun
517*4882a593Smuzhiyun /*
518*4882a593Smuzhiyun * Note: not valid for EL1 DC IVAC, but we never use that such that it
519*4882a593Smuzhiyun * should fault. EL0 cannot issue DC IVAC (undef).
520*4882a593Smuzhiyun */
is_write_abort(unsigned int esr)521*4882a593Smuzhiyun static bool is_write_abort(unsigned int esr)
522*4882a593Smuzhiyun {
523*4882a593Smuzhiyun return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
524*4882a593Smuzhiyun }
525*4882a593Smuzhiyun
do_page_fault(unsigned long far,unsigned int esr,struct pt_regs * regs)526*4882a593Smuzhiyun static int __kprobes do_page_fault(unsigned long far, unsigned int esr,
527*4882a593Smuzhiyun struct pt_regs *regs)
528*4882a593Smuzhiyun {
529*4882a593Smuzhiyun const struct fault_info *inf;
530*4882a593Smuzhiyun struct mm_struct *mm = current->mm;
531*4882a593Smuzhiyun vm_fault_t fault;
532*4882a593Smuzhiyun unsigned long vm_flags = VM_ACCESS_FLAGS;
533*4882a593Smuzhiyun unsigned int mm_flags = FAULT_FLAG_DEFAULT;
534*4882a593Smuzhiyun struct vm_area_struct *vma = NULL;
535*4882a593Smuzhiyun unsigned long addr = untagged_addr(far);
536*4882a593Smuzhiyun
537*4882a593Smuzhiyun if (kprobe_page_fault(regs, esr))
538*4882a593Smuzhiyun return 0;
539*4882a593Smuzhiyun
540*4882a593Smuzhiyun /*
541*4882a593Smuzhiyun * If we're in an interrupt or have no user context, we must not take
542*4882a593Smuzhiyun * the fault.
543*4882a593Smuzhiyun */
544*4882a593Smuzhiyun if (faulthandler_disabled() || !mm)
545*4882a593Smuzhiyun goto no_context;
546*4882a593Smuzhiyun
547*4882a593Smuzhiyun if (user_mode(regs))
548*4882a593Smuzhiyun mm_flags |= FAULT_FLAG_USER;
549*4882a593Smuzhiyun
550*4882a593Smuzhiyun if (is_el0_instruction_abort(esr)) {
551*4882a593Smuzhiyun vm_flags = VM_EXEC;
552*4882a593Smuzhiyun mm_flags |= FAULT_FLAG_INSTRUCTION;
553*4882a593Smuzhiyun } else if (is_write_abort(esr)) {
554*4882a593Smuzhiyun vm_flags = VM_WRITE;
555*4882a593Smuzhiyun mm_flags |= FAULT_FLAG_WRITE;
556*4882a593Smuzhiyun }
557*4882a593Smuzhiyun
558*4882a593Smuzhiyun if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
559*4882a593Smuzhiyun /* regs->orig_addr_limit may be 0 if we entered from EL0 */
560*4882a593Smuzhiyun if (regs->orig_addr_limit == KERNEL_DS)
561*4882a593Smuzhiyun die_kernel_fault("access to user memory with fs=KERNEL_DS",
562*4882a593Smuzhiyun addr, esr, regs);
563*4882a593Smuzhiyun
564*4882a593Smuzhiyun if (is_el1_instruction_abort(esr))
565*4882a593Smuzhiyun die_kernel_fault("execution of user memory",
566*4882a593Smuzhiyun addr, esr, regs);
567*4882a593Smuzhiyun
568*4882a593Smuzhiyun if (!search_exception_tables(regs->pc))
569*4882a593Smuzhiyun die_kernel_fault("access to user memory outside uaccess routines",
570*4882a593Smuzhiyun addr, esr, regs);
571*4882a593Smuzhiyun }
572*4882a593Smuzhiyun
573*4882a593Smuzhiyun perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
574*4882a593Smuzhiyun
575*4882a593Smuzhiyun /*
576*4882a593Smuzhiyun * let's try a speculative page fault without grabbing the
577*4882a593Smuzhiyun * mmap_sem.
578*4882a593Smuzhiyun */
579*4882a593Smuzhiyun fault = handle_speculative_fault(mm, addr, mm_flags, &vma, regs);
580*4882a593Smuzhiyun if (fault != VM_FAULT_RETRY)
581*4882a593Smuzhiyun goto done;
582*4882a593Smuzhiyun
583*4882a593Smuzhiyun /*
584*4882a593Smuzhiyun * As per x86, we may deadlock here. However, since the kernel only
585*4882a593Smuzhiyun * validly references user space from well defined areas of the code,
586*4882a593Smuzhiyun * we can bug out early if this is from code which shouldn't.
587*4882a593Smuzhiyun */
588*4882a593Smuzhiyun if (!mmap_read_trylock(mm)) {
589*4882a593Smuzhiyun if (!user_mode(regs) && !search_exception_tables(regs->pc))
590*4882a593Smuzhiyun goto no_context;
591*4882a593Smuzhiyun retry:
592*4882a593Smuzhiyun mmap_read_lock(mm);
593*4882a593Smuzhiyun } else {
594*4882a593Smuzhiyun /*
595*4882a593Smuzhiyun * The above down_read_trylock() might have succeeded in which
596*4882a593Smuzhiyun * case, we'll have missed the might_sleep() from down_read().
597*4882a593Smuzhiyun */
598*4882a593Smuzhiyun might_sleep();
599*4882a593Smuzhiyun #ifdef CONFIG_DEBUG_VM
600*4882a593Smuzhiyun if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
601*4882a593Smuzhiyun mmap_read_unlock(mm);
602*4882a593Smuzhiyun goto no_context;
603*4882a593Smuzhiyun }
604*4882a593Smuzhiyun #endif
605*4882a593Smuzhiyun }
606*4882a593Smuzhiyun
607*4882a593Smuzhiyun if (!vma || !can_reuse_spf_vma(vma, addr))
608*4882a593Smuzhiyun vma = find_vma(mm, addr);
609*4882a593Smuzhiyun fault = __do_page_fault(vma, addr, mm_flags, vm_flags, regs);
610*4882a593Smuzhiyun
611*4882a593Smuzhiyun /* Quick path to respond to signals */
612*4882a593Smuzhiyun if (fault_signal_pending(fault, regs)) {
613*4882a593Smuzhiyun if (!user_mode(regs))
614*4882a593Smuzhiyun goto no_context;
615*4882a593Smuzhiyun return 0;
616*4882a593Smuzhiyun }
617*4882a593Smuzhiyun
618*4882a593Smuzhiyun if (fault & VM_FAULT_RETRY) {
619*4882a593Smuzhiyun if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
620*4882a593Smuzhiyun mm_flags |= FAULT_FLAG_TRIED;
621*4882a593Smuzhiyun
622*4882a593Smuzhiyun /*
623*4882a593Smuzhiyun * Do not try to reuse this vma and fetch it
624*4882a593Smuzhiyun * again since we will release the mmap_sem.
625*4882a593Smuzhiyun */
626*4882a593Smuzhiyun vma = NULL;
627*4882a593Smuzhiyun
628*4882a593Smuzhiyun goto retry;
629*4882a593Smuzhiyun }
630*4882a593Smuzhiyun }
631*4882a593Smuzhiyun mmap_read_unlock(mm);
632*4882a593Smuzhiyun
633*4882a593Smuzhiyun done:
634*4882a593Smuzhiyun
635*4882a593Smuzhiyun /*
636*4882a593Smuzhiyun * Handle the "normal" (no error) case first.
637*4882a593Smuzhiyun */
638*4882a593Smuzhiyun if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
639*4882a593Smuzhiyun VM_FAULT_BADACCESS))))
640*4882a593Smuzhiyun return 0;
641*4882a593Smuzhiyun
642*4882a593Smuzhiyun /*
643*4882a593Smuzhiyun * If we are in kernel mode at this point, we have no context to
644*4882a593Smuzhiyun * handle this fault with.
645*4882a593Smuzhiyun */
646*4882a593Smuzhiyun if (!user_mode(regs))
647*4882a593Smuzhiyun goto no_context;
648*4882a593Smuzhiyun
649*4882a593Smuzhiyun if (fault & VM_FAULT_OOM) {
650*4882a593Smuzhiyun /*
651*4882a593Smuzhiyun * We ran out of memory, call the OOM killer, and return to
652*4882a593Smuzhiyun * userspace (which will retry the fault, or kill us if we got
653*4882a593Smuzhiyun * oom-killed).
654*4882a593Smuzhiyun */
655*4882a593Smuzhiyun pagefault_out_of_memory();
656*4882a593Smuzhiyun return 0;
657*4882a593Smuzhiyun }
658*4882a593Smuzhiyun
659*4882a593Smuzhiyun inf = esr_to_fault_info(esr);
660*4882a593Smuzhiyun set_thread_esr(addr, esr);
661*4882a593Smuzhiyun if (fault & VM_FAULT_SIGBUS) {
662*4882a593Smuzhiyun /*
663*4882a593Smuzhiyun * We had some memory, but were unable to successfully fix up
664*4882a593Smuzhiyun * this page fault.
665*4882a593Smuzhiyun */
666*4882a593Smuzhiyun arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name);
667*4882a593Smuzhiyun } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
668*4882a593Smuzhiyun unsigned int lsb;
669*4882a593Smuzhiyun
670*4882a593Smuzhiyun lsb = PAGE_SHIFT;
671*4882a593Smuzhiyun if (fault & VM_FAULT_HWPOISON_LARGE)
672*4882a593Smuzhiyun lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
673*4882a593Smuzhiyun
674*4882a593Smuzhiyun arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
675*4882a593Smuzhiyun } else {
676*4882a593Smuzhiyun /*
677*4882a593Smuzhiyun * Something tried to access memory that isn't in our memory
678*4882a593Smuzhiyun * map.
679*4882a593Smuzhiyun */
680*4882a593Smuzhiyun arm64_force_sig_fault(SIGSEGV,
681*4882a593Smuzhiyun fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
682*4882a593Smuzhiyun far, inf->name);
683*4882a593Smuzhiyun }
684*4882a593Smuzhiyun
685*4882a593Smuzhiyun return 0;
686*4882a593Smuzhiyun
687*4882a593Smuzhiyun no_context:
688*4882a593Smuzhiyun __do_kernel_fault(addr, esr, regs);
689*4882a593Smuzhiyun return 0;
690*4882a593Smuzhiyun }
691*4882a593Smuzhiyun
do_translation_fault(unsigned long far,unsigned int esr,struct pt_regs * regs)692*4882a593Smuzhiyun static int __kprobes do_translation_fault(unsigned long far,
693*4882a593Smuzhiyun unsigned int esr,
694*4882a593Smuzhiyun struct pt_regs *regs)
695*4882a593Smuzhiyun {
696*4882a593Smuzhiyun unsigned long addr = untagged_addr(far);
697*4882a593Smuzhiyun
698*4882a593Smuzhiyun if (is_ttbr0_addr(addr))
699*4882a593Smuzhiyun return do_page_fault(far, esr, regs);
700*4882a593Smuzhiyun
701*4882a593Smuzhiyun do_bad_area(far, esr, regs);
702*4882a593Smuzhiyun return 0;
703*4882a593Smuzhiyun }
704*4882a593Smuzhiyun
705*4882a593Smuzhiyun #ifdef CONFIG_ROCKCHIP_ARM64_ALIGN_FAULT_FIX
706*4882a593Smuzhiyun extern int alignment_fixup_helper(unsigned long addr, unsigned int esr,
707*4882a593Smuzhiyun struct pt_regs *regs);
708*4882a593Smuzhiyun #endif
do_alignment_fault(unsigned long far,unsigned int esr,struct pt_regs * regs)709*4882a593Smuzhiyun static int do_alignment_fault(unsigned long far, unsigned int esr,
710*4882a593Smuzhiyun struct pt_regs *regs)
711*4882a593Smuzhiyun {
712*4882a593Smuzhiyun #ifdef CONFIG_ROCKCHIP_ARM64_ALIGN_FAULT_FIX
713*4882a593Smuzhiyun if (!alignment_fixup_helper(far, esr, regs))
714*4882a593Smuzhiyun return 0;
715*4882a593Smuzhiyun #endif
716*4882a593Smuzhiyun do_bad_area(far, esr, regs);
717*4882a593Smuzhiyun return 0;
718*4882a593Smuzhiyun }
719*4882a593Smuzhiyun
do_bad(unsigned long far,unsigned int esr,struct pt_regs * regs)720*4882a593Smuzhiyun static int do_bad(unsigned long far, unsigned int esr, struct pt_regs *regs)
721*4882a593Smuzhiyun {
722*4882a593Smuzhiyun unsigned long addr = untagged_addr(far);
723*4882a593Smuzhiyun int ret = 1;
724*4882a593Smuzhiyun
725*4882a593Smuzhiyun trace_android_vh_handle_tlb_conf(addr, esr, &ret);
726*4882a593Smuzhiyun return ret;
727*4882a593Smuzhiyun }
728*4882a593Smuzhiyun
do_sea(unsigned long far,unsigned int esr,struct pt_regs * regs)729*4882a593Smuzhiyun static int do_sea(unsigned long far, unsigned int esr, struct pt_regs *regs)
730*4882a593Smuzhiyun {
731*4882a593Smuzhiyun const struct fault_info *inf;
732*4882a593Smuzhiyun unsigned long siaddr;
733*4882a593Smuzhiyun
734*4882a593Smuzhiyun inf = esr_to_fault_info(esr);
735*4882a593Smuzhiyun
736*4882a593Smuzhiyun if (user_mode(regs) && apei_claim_sea(regs) == 0) {
737*4882a593Smuzhiyun /*
738*4882a593Smuzhiyun * APEI claimed this as a firmware-first notification.
739*4882a593Smuzhiyun * Some processing deferred to task_work before ret_to_user().
740*4882a593Smuzhiyun */
741*4882a593Smuzhiyun return 0;
742*4882a593Smuzhiyun }
743*4882a593Smuzhiyun
744*4882a593Smuzhiyun if (esr & ESR_ELx_FnV) {
745*4882a593Smuzhiyun siaddr = 0;
746*4882a593Smuzhiyun } else {
747*4882a593Smuzhiyun /*
748*4882a593Smuzhiyun * The architecture specifies that the tag bits of FAR_EL1 are
749*4882a593Smuzhiyun * UNKNOWN for synchronous external aborts. Mask them out now
750*4882a593Smuzhiyun * so that userspace doesn't see them.
751*4882a593Smuzhiyun */
752*4882a593Smuzhiyun siaddr = untagged_addr(far);
753*4882a593Smuzhiyun }
754*4882a593Smuzhiyun trace_android_rvh_do_sea(regs, esr, siaddr, inf->name);
755*4882a593Smuzhiyun arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
756*4882a593Smuzhiyun
757*4882a593Smuzhiyun return 0;
758*4882a593Smuzhiyun }
759*4882a593Smuzhiyun
do_tag_check_fault(unsigned long far,unsigned int esr,struct pt_regs * regs)760*4882a593Smuzhiyun static int do_tag_check_fault(unsigned long far, unsigned int esr,
761*4882a593Smuzhiyun struct pt_regs *regs)
762*4882a593Smuzhiyun {
763*4882a593Smuzhiyun /*
764*4882a593Smuzhiyun * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN
765*4882a593Smuzhiyun * for tag check faults. Set them to corresponding bits in the untagged
766*4882a593Smuzhiyun * address.
767*4882a593Smuzhiyun */
768*4882a593Smuzhiyun far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK);
769*4882a593Smuzhiyun do_bad_area(far, esr, regs);
770*4882a593Smuzhiyun return 0;
771*4882a593Smuzhiyun }
772*4882a593Smuzhiyun
773*4882a593Smuzhiyun static const struct fault_info fault_info[] = {
774*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" },
775*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" },
776*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" },
777*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" },
778*4882a593Smuzhiyun { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" },
779*4882a593Smuzhiyun { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" },
780*4882a593Smuzhiyun { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" },
781*4882a593Smuzhiyun { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" },
782*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 8" },
783*4882a593Smuzhiyun { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" },
784*4882a593Smuzhiyun { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" },
785*4882a593Smuzhiyun { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" },
786*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 12" },
787*4882a593Smuzhiyun { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" },
788*4882a593Smuzhiyun { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" },
789*4882a593Smuzhiyun { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" },
790*4882a593Smuzhiyun { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" },
791*4882a593Smuzhiyun { do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" },
792*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 18" },
793*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 19" },
794*4882a593Smuzhiyun { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" },
795*4882a593Smuzhiyun { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" },
796*4882a593Smuzhiyun { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" },
797*4882a593Smuzhiyun { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" },
798*4882a593Smuzhiyun { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented
799*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 25" },
800*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 26" },
801*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 27" },
802*4882a593Smuzhiyun { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
803*4882a593Smuzhiyun { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
804*4882a593Smuzhiyun { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
805*4882a593Smuzhiyun { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented
806*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 32" },
807*4882a593Smuzhiyun { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" },
808*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 34" },
809*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 35" },
810*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 36" },
811*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 37" },
812*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 38" },
813*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 39" },
814*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 40" },
815*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 41" },
816*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 42" },
817*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 43" },
818*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 44" },
819*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 45" },
820*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 46" },
821*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 47" },
822*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" },
823*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" },
824*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 50" },
825*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 51" },
826*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" },
827*4882a593Smuzhiyun { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" },
828*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 54" },
829*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 55" },
830*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 56" },
831*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 57" },
832*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 58" },
833*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 59" },
834*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 60" },
835*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "section domain fault" },
836*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "page domain fault" },
837*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 63" },
838*4882a593Smuzhiyun };
839*4882a593Smuzhiyun
do_mem_abort(unsigned long far,unsigned int esr,struct pt_regs * regs)840*4882a593Smuzhiyun void do_mem_abort(unsigned long far, unsigned int esr, struct pt_regs *regs)
841*4882a593Smuzhiyun {
842*4882a593Smuzhiyun const struct fault_info *inf = esr_to_fault_info(esr);
843*4882a593Smuzhiyun unsigned long addr = untagged_addr(far);
844*4882a593Smuzhiyun
845*4882a593Smuzhiyun if (!inf->fn(far, esr, regs))
846*4882a593Smuzhiyun return;
847*4882a593Smuzhiyun
848*4882a593Smuzhiyun if (!user_mode(regs)) {
849*4882a593Smuzhiyun pr_alert("Unhandled fault at 0x%016lx\n", addr);
850*4882a593Smuzhiyun trace_android_rvh_do_mem_abort(regs, esr, addr, inf->name);
851*4882a593Smuzhiyun mem_abort_decode(esr);
852*4882a593Smuzhiyun show_pte(addr);
853*4882a593Smuzhiyun }
854*4882a593Smuzhiyun
855*4882a593Smuzhiyun /*
856*4882a593Smuzhiyun * At this point we have an unrecognized fault type whose tag bits may
857*4882a593Smuzhiyun * have been defined as UNKNOWN. Therefore we only expose the untagged
858*4882a593Smuzhiyun * address to the signal handler.
859*4882a593Smuzhiyun */
860*4882a593Smuzhiyun arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr);
861*4882a593Smuzhiyun }
862*4882a593Smuzhiyun NOKPROBE_SYMBOL(do_mem_abort);
863*4882a593Smuzhiyun
do_el0_irq_bp_hardening(void)864*4882a593Smuzhiyun void do_el0_irq_bp_hardening(void)
865*4882a593Smuzhiyun {
866*4882a593Smuzhiyun /* PC has already been checked in entry.S */
867*4882a593Smuzhiyun arm64_apply_bp_hardening();
868*4882a593Smuzhiyun }
869*4882a593Smuzhiyun NOKPROBE_SYMBOL(do_el0_irq_bp_hardening);
870*4882a593Smuzhiyun
do_sp_pc_abort(unsigned long addr,unsigned int esr,struct pt_regs * regs)871*4882a593Smuzhiyun void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
872*4882a593Smuzhiyun {
873*4882a593Smuzhiyun trace_android_rvh_do_sp_pc_abort(regs, esr, addr, user_mode(regs));
874*4882a593Smuzhiyun
875*4882a593Smuzhiyun arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
876*4882a593Smuzhiyun addr, esr);
877*4882a593Smuzhiyun }
878*4882a593Smuzhiyun NOKPROBE_SYMBOL(do_sp_pc_abort);
879*4882a593Smuzhiyun
880*4882a593Smuzhiyun int __init early_brk64(unsigned long addr, unsigned int esr,
881*4882a593Smuzhiyun struct pt_regs *regs);
882*4882a593Smuzhiyun
883*4882a593Smuzhiyun /*
884*4882a593Smuzhiyun * __refdata because early_brk64 is __init, but the reference to it is
885*4882a593Smuzhiyun * clobbered at arch_initcall time.
886*4882a593Smuzhiyun * See traps.c and debug-monitors.c:debug_traps_init().
887*4882a593Smuzhiyun */
888*4882a593Smuzhiyun static struct fault_info __refdata debug_fault_info[] = {
889*4882a593Smuzhiyun { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" },
890*4882a593Smuzhiyun { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" },
891*4882a593Smuzhiyun { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" },
892*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 3" },
893*4882a593Smuzhiyun { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" },
894*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" },
895*4882a593Smuzhiyun { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" },
896*4882a593Smuzhiyun { do_bad, SIGKILL, SI_KERNEL, "unknown 7" },
897*4882a593Smuzhiyun };
898*4882a593Smuzhiyun
hook_debug_fault_code(int nr,int (* fn)(unsigned long,unsigned int,struct pt_regs *),int sig,int code,const char * name)899*4882a593Smuzhiyun void __init hook_debug_fault_code(int nr,
900*4882a593Smuzhiyun int (*fn)(unsigned long, unsigned int, struct pt_regs *),
901*4882a593Smuzhiyun int sig, int code, const char *name)
902*4882a593Smuzhiyun {
903*4882a593Smuzhiyun BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
904*4882a593Smuzhiyun
905*4882a593Smuzhiyun debug_fault_info[nr].fn = fn;
906*4882a593Smuzhiyun debug_fault_info[nr].sig = sig;
907*4882a593Smuzhiyun debug_fault_info[nr].code = code;
908*4882a593Smuzhiyun debug_fault_info[nr].name = name;
909*4882a593Smuzhiyun }
910*4882a593Smuzhiyun
911*4882a593Smuzhiyun /*
912*4882a593Smuzhiyun * In debug exception context, we explicitly disable preemption despite
913*4882a593Smuzhiyun * having interrupts disabled.
914*4882a593Smuzhiyun * This serves two purposes: it makes it much less likely that we would
915*4882a593Smuzhiyun * accidentally schedule in exception context and it will force a warning
916*4882a593Smuzhiyun * if we somehow manage to schedule by accident.
917*4882a593Smuzhiyun */
debug_exception_enter(struct pt_regs * regs)918*4882a593Smuzhiyun static void debug_exception_enter(struct pt_regs *regs)
919*4882a593Smuzhiyun {
920*4882a593Smuzhiyun preempt_disable();
921*4882a593Smuzhiyun
922*4882a593Smuzhiyun /* This code is a bit fragile. Test it. */
923*4882a593Smuzhiyun RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
924*4882a593Smuzhiyun }
925*4882a593Smuzhiyun NOKPROBE_SYMBOL(debug_exception_enter);
926*4882a593Smuzhiyun
debug_exception_exit(struct pt_regs * regs)927*4882a593Smuzhiyun static void debug_exception_exit(struct pt_regs *regs)
928*4882a593Smuzhiyun {
929*4882a593Smuzhiyun preempt_enable_no_resched();
930*4882a593Smuzhiyun }
931*4882a593Smuzhiyun NOKPROBE_SYMBOL(debug_exception_exit);
932*4882a593Smuzhiyun
933*4882a593Smuzhiyun #ifdef CONFIG_ARM64_ERRATUM_1463225
934*4882a593Smuzhiyun DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
935*4882a593Smuzhiyun
cortex_a76_erratum_1463225_debug_handler(struct pt_regs * regs)936*4882a593Smuzhiyun static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
937*4882a593Smuzhiyun {
938*4882a593Smuzhiyun if (user_mode(regs))
939*4882a593Smuzhiyun return 0;
940*4882a593Smuzhiyun
941*4882a593Smuzhiyun if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
942*4882a593Smuzhiyun return 0;
943*4882a593Smuzhiyun
944*4882a593Smuzhiyun /*
945*4882a593Smuzhiyun * We've taken a dummy step exception from the kernel to ensure
946*4882a593Smuzhiyun * that interrupts are re-enabled on the syscall path. Return back
947*4882a593Smuzhiyun * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
948*4882a593Smuzhiyun * masked so that we can safely restore the mdscr and get on with
949*4882a593Smuzhiyun * handling the syscall.
950*4882a593Smuzhiyun */
951*4882a593Smuzhiyun regs->pstate |= PSR_D_BIT;
952*4882a593Smuzhiyun return 1;
953*4882a593Smuzhiyun }
954*4882a593Smuzhiyun #else
cortex_a76_erratum_1463225_debug_handler(struct pt_regs * regs)955*4882a593Smuzhiyun static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
956*4882a593Smuzhiyun {
957*4882a593Smuzhiyun return 0;
958*4882a593Smuzhiyun }
959*4882a593Smuzhiyun #endif /* CONFIG_ARM64_ERRATUM_1463225 */
960*4882a593Smuzhiyun NOKPROBE_SYMBOL(cortex_a76_erratum_1463225_debug_handler);
961*4882a593Smuzhiyun
do_debug_exception(unsigned long addr_if_watchpoint,unsigned int esr,struct pt_regs * regs)962*4882a593Smuzhiyun void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr,
963*4882a593Smuzhiyun struct pt_regs *regs)
964*4882a593Smuzhiyun {
965*4882a593Smuzhiyun const struct fault_info *inf = esr_to_debug_fault_info(esr);
966*4882a593Smuzhiyun unsigned long pc = instruction_pointer(regs);
967*4882a593Smuzhiyun
968*4882a593Smuzhiyun if (cortex_a76_erratum_1463225_debug_handler(regs))
969*4882a593Smuzhiyun return;
970*4882a593Smuzhiyun
971*4882a593Smuzhiyun debug_exception_enter(regs);
972*4882a593Smuzhiyun
973*4882a593Smuzhiyun if (user_mode(regs) && !is_ttbr0_addr(pc))
974*4882a593Smuzhiyun arm64_apply_bp_hardening();
975*4882a593Smuzhiyun
976*4882a593Smuzhiyun if (inf->fn(addr_if_watchpoint, esr, regs)) {
977*4882a593Smuzhiyun arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr);
978*4882a593Smuzhiyun }
979*4882a593Smuzhiyun
980*4882a593Smuzhiyun debug_exception_exit(regs);
981*4882a593Smuzhiyun }
982*4882a593Smuzhiyun NOKPROBE_SYMBOL(do_debug_exception);
983*4882a593Smuzhiyun
984*4882a593Smuzhiyun /*
985*4882a593Smuzhiyun * Used during anonymous page fault handling.
986*4882a593Smuzhiyun */
alloc_zeroed_user_highpage_movable(struct vm_area_struct * vma,unsigned long vaddr)987*4882a593Smuzhiyun struct page *alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma,
988*4882a593Smuzhiyun unsigned long vaddr)
989*4882a593Smuzhiyun {
990*4882a593Smuzhiyun gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO | __GFP_CMA;
991*4882a593Smuzhiyun
992*4882a593Smuzhiyun /*
993*4882a593Smuzhiyun * If the page is mapped with PROT_MTE, initialise the tags at the
994*4882a593Smuzhiyun * point of allocation and page zeroing as this is usually faster than
995*4882a593Smuzhiyun * separate DC ZVA and STGM.
996*4882a593Smuzhiyun */
997*4882a593Smuzhiyun if (vma->vm_flags & VM_MTE)
998*4882a593Smuzhiyun flags |= __GFP_ZEROTAGS;
999*4882a593Smuzhiyun
1000*4882a593Smuzhiyun return alloc_page_vma(flags, vma, vaddr);
1001*4882a593Smuzhiyun }
1002*4882a593Smuzhiyun
tag_clear_highpage(struct page * page)1003*4882a593Smuzhiyun void tag_clear_highpage(struct page *page)
1004*4882a593Smuzhiyun {
1005*4882a593Smuzhiyun mte_zero_clear_page_tags(page_address(page));
1006*4882a593Smuzhiyun page_kasan_tag_reset(page);
1007*4882a593Smuzhiyun set_bit(PG_mte_tagged, &page->flags);
1008*4882a593Smuzhiyun }
1009