xref: /OK3568_Linux_fs/kernel/arch/arm64/mm/fault.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/fault.c
4  *
5  * Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1995-2004 Russell King
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/bitfield.h>
12 #include <linux/extable.h>
13 #include <linux/kfence.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/hardirq.h>
17 #include <linux/init.h>
18 #include <linux/kasan.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/page-flags.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/highmem.h>
25 #include <linux/perf_event.h>
26 #include <linux/preempt.h>
27 #include <linux/hugetlb.h>
28 
29 #include <asm/acpi.h>
30 #include <asm/bug.h>
31 #include <asm/cmpxchg.h>
32 #include <asm/cpufeature.h>
33 #include <asm/exception.h>
34 #include <asm/daifflags.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/esr.h>
37 #include <asm/kprobes.h>
38 #include <asm/mte.h>
39 #include <asm/processor.h>
40 #include <asm/sysreg.h>
41 #include <asm/system_misc.h>
42 #include <asm/tlbflush.h>
43 #include <asm/traps.h>
44 
45 #include <trace/hooks/fault.h>
46 
47 struct fault_info {
48 	int	(*fn)(unsigned long far, unsigned int esr,
49 		      struct pt_regs *regs);
50 	int	sig;
51 	int	code;
52 	const char *name;
53 };
54 
55 static const struct fault_info fault_info[];
56 static struct fault_info debug_fault_info[];
57 
esr_to_fault_info(unsigned int esr)58 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
59 {
60 	return fault_info + (esr & ESR_ELx_FSC);
61 }
62 
esr_to_debug_fault_info(unsigned int esr)63 static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
64 {
65 	return debug_fault_info + DBG_ESR_EVT(esr);
66 }
67 
data_abort_decode(unsigned int esr)68 static void data_abort_decode(unsigned int esr)
69 {
70 	pr_alert("Data abort info:\n");
71 
72 	if (esr & ESR_ELx_ISV) {
73 		pr_alert("  Access size = %u byte(s)\n",
74 			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
75 		pr_alert("  SSE = %lu, SRT = %lu\n",
76 			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
77 			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
78 		pr_alert("  SF = %lu, AR = %lu\n",
79 			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
80 			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
81 	} else {
82 		pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
83 	}
84 
85 	pr_alert("  CM = %lu, WnR = %lu\n",
86 		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
87 		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
88 }
89 
mem_abort_decode(unsigned int esr)90 static void mem_abort_decode(unsigned int esr)
91 {
92 	pr_alert("Mem abort info:\n");
93 
94 	pr_alert("  ESR = 0x%08x\n", esr);
95 	pr_alert("  EC = 0x%02lx: %s, IL = %u bits\n",
96 		 ESR_ELx_EC(esr), esr_get_class_string(esr),
97 		 (esr & ESR_ELx_IL) ? 32 : 16);
98 	pr_alert("  SET = %lu, FnV = %lu\n",
99 		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
100 		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
101 	pr_alert("  EA = %lu, S1PTW = %lu\n",
102 		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
103 		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
104 
105 	if (esr_is_data_abort(esr))
106 		data_abort_decode(esr);
107 }
108 
mm_to_pgd_phys(struct mm_struct * mm)109 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
110 {
111 	/* Either init_pg_dir or swapper_pg_dir */
112 	if (mm == &init_mm)
113 		return __pa_symbol(mm->pgd);
114 
115 	return (unsigned long)virt_to_phys(mm->pgd);
116 }
117 
118 /*
119  * Dump out the page tables associated with 'addr' in the currently active mm.
120  */
show_pte(unsigned long addr)121 static void show_pte(unsigned long addr)
122 {
123 	struct mm_struct *mm;
124 	pgd_t *pgdp;
125 	pgd_t pgd;
126 
127 	if (is_ttbr0_addr(addr)) {
128 		/* TTBR0 */
129 		mm = current->active_mm;
130 		if (mm == &init_mm) {
131 			pr_alert("[%016lx] user address but active_mm is swapper\n",
132 				 addr);
133 			return;
134 		}
135 	} else if (is_ttbr1_addr(addr)) {
136 		/* TTBR1 */
137 		mm = &init_mm;
138 	} else {
139 		pr_alert("[%016lx] address between user and kernel address ranges\n",
140 			 addr);
141 		return;
142 	}
143 
144 	pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
145 		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
146 		 vabits_actual, mm_to_pgd_phys(mm));
147 	pgdp = pgd_offset(mm, addr);
148 	pgd = READ_ONCE(*pgdp);
149 	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
150 
151 	do {
152 		p4d_t *p4dp, p4d;
153 		pud_t *pudp, pud;
154 		pmd_t *pmdp, pmd;
155 		pte_t *ptep, pte;
156 
157 		if (pgd_none(pgd) || pgd_bad(pgd))
158 			break;
159 
160 		p4dp = p4d_offset(pgdp, addr);
161 		p4d = READ_ONCE(*p4dp);
162 		pr_cont(", p4d=%016llx", p4d_val(p4d));
163 		if (p4d_none(p4d) || p4d_bad(p4d))
164 			break;
165 
166 		pudp = pud_offset(p4dp, addr);
167 		pud = READ_ONCE(*pudp);
168 		pr_cont(", pud=%016llx", pud_val(pud));
169 		if (pud_none(pud) || pud_bad(pud))
170 			break;
171 
172 		pmdp = pmd_offset(pudp, addr);
173 		pmd = READ_ONCE(*pmdp);
174 		pr_cont(", pmd=%016llx", pmd_val(pmd));
175 		if (pmd_none(pmd) || pmd_bad(pmd))
176 			break;
177 
178 		ptep = pte_offset_map(pmdp, addr);
179 		pte = READ_ONCE(*ptep);
180 		pr_cont(", pte=%016llx", pte_val(pte));
181 		pte_unmap(ptep);
182 	} while(0);
183 
184 	pr_cont("\n");
185 }
186 
187 /*
188  * This function sets the access flags (dirty, accessed), as well as write
189  * permission, and only to a more permissive setting.
190  *
191  * It needs to cope with hardware update of the accessed/dirty state by other
192  * agents in the system and can safely skip the __sync_icache_dcache() call as,
193  * like set_pte_at(), the PTE is never changed from no-exec to exec here.
194  *
195  * Returns whether or not the PTE actually changed.
196  */
ptep_set_access_flags(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,pte_t entry,int dirty)197 int ptep_set_access_flags(struct vm_area_struct *vma,
198 			  unsigned long address, pte_t *ptep,
199 			  pte_t entry, int dirty)
200 {
201 	pteval_t old_pteval, pteval;
202 	pte_t pte = READ_ONCE(*ptep);
203 
204 	if (pte_same(pte, entry))
205 		return 0;
206 
207 	/* only preserve the access flags and write permission */
208 	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
209 
210 	/*
211 	 * Setting the flags must be done atomically to avoid racing with the
212 	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
213 	 * be set to the most permissive (lowest value) of *ptep and entry
214 	 * (calculated as: a & b == ~(~a | ~b)).
215 	 */
216 	pte_val(entry) ^= PTE_RDONLY;
217 	pteval = pte_val(pte);
218 	do {
219 		old_pteval = pteval;
220 		pteval ^= PTE_RDONLY;
221 		pteval |= pte_val(entry);
222 		pteval ^= PTE_RDONLY;
223 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
224 	} while (pteval != old_pteval);
225 
226 	/* Invalidate a stale read-only entry */
227 	if (dirty)
228 		flush_tlb_page(vma, address);
229 	return 1;
230 }
231 
is_el1_instruction_abort(unsigned int esr)232 static bool is_el1_instruction_abort(unsigned int esr)
233 {
234 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
235 }
236 
is_el1_permission_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)237 static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
238 					   struct pt_regs *regs)
239 {
240 	unsigned int ec       = ESR_ELx_EC(esr);
241 	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
242 
243 	if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
244 		return false;
245 
246 	if (fsc_type == ESR_ELx_FSC_PERM)
247 		return true;
248 
249 	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
250 		return fsc_type == ESR_ELx_FSC_FAULT &&
251 			(regs->pstate & PSR_PAN_BIT);
252 
253 	return false;
254 }
255 
is_spurious_el1_translation_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)256 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
257 							unsigned int esr,
258 							struct pt_regs *regs)
259 {
260 	unsigned long flags;
261 	u64 par, dfsc;
262 
263 	if (ESR_ELx_EC(esr) != ESR_ELx_EC_DABT_CUR ||
264 	    (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
265 		return false;
266 
267 	local_irq_save(flags);
268 	asm volatile("at s1e1r, %0" :: "r" (addr));
269 	isb();
270 	par = read_sysreg_par();
271 	local_irq_restore(flags);
272 
273 	/*
274 	 * If we now have a valid translation, treat the translation fault as
275 	 * spurious.
276 	 */
277 	if (!(par & SYS_PAR_EL1_F))
278 		return true;
279 
280 	/*
281 	 * If we got a different type of fault from the AT instruction,
282 	 * treat the translation fault as spurious.
283 	 */
284 	dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
285 	return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
286 }
287 
die_kernel_fault(const char * msg,unsigned long addr,unsigned int esr,struct pt_regs * regs)288 static void die_kernel_fault(const char *msg, unsigned long addr,
289 			     unsigned int esr, struct pt_regs *regs)
290 {
291 	bust_spinlocks(1);
292 
293 	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
294 		 addr);
295 
296 	trace_android_rvh_die_kernel_fault(regs, esr, addr, msg);
297 	mem_abort_decode(esr);
298 
299 	show_pte(addr);
300 	die("Oops", regs, esr);
301 	bust_spinlocks(0);
302 	do_exit(SIGKILL);
303 }
304 
305 #ifdef CONFIG_KASAN_HW_TAGS
report_tag_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)306 static void report_tag_fault(unsigned long addr, unsigned int esr,
307 			     struct pt_regs *regs)
308 {
309 	static bool reported;
310 	bool is_write;
311 
312 	if (READ_ONCE(reported))
313 		return;
314 
315 	/*
316 	 * This is used for KASAN tests and assumes that no MTE faults
317 	 * happened before running the tests.
318 	 */
319 	if (mte_report_once())
320 		WRITE_ONCE(reported, true);
321 
322 	/*
323 	 * SAS bits aren't set for all faults reported in EL1, so we can't
324 	 * find out access size.
325 	 */
326 	is_write = !!(esr & ESR_ELx_WNR);
327 	kasan_report(addr, 0, is_write, regs->pc);
328 }
329 #else
330 /* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
report_tag_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)331 static inline void report_tag_fault(unsigned long addr, unsigned int esr,
332 				    struct pt_regs *regs) { }
333 #endif
334 
do_tag_recovery(unsigned long addr,unsigned int esr,struct pt_regs * regs)335 static void do_tag_recovery(unsigned long addr, unsigned int esr,
336 			   struct pt_regs *regs)
337 {
338 
339 	report_tag_fault(addr, esr, regs);
340 
341 	/*
342 	 * Disable MTE Tag Checking on the local CPU for the current EL.
343 	 * It will be done lazily on the other CPUs when they will hit a
344 	 * tag fault.
345 	 */
346 	sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, SCTLR_ELx_TCF_NONE);
347 	isb();
348 }
349 
is_el1_mte_sync_tag_check_fault(unsigned int esr)350 static bool is_el1_mte_sync_tag_check_fault(unsigned int esr)
351 {
352 	unsigned int ec = ESR_ELx_EC(esr);
353 	unsigned int fsc = esr & ESR_ELx_FSC;
354 
355 	if (ec != ESR_ELx_EC_DABT_CUR)
356 		return false;
357 
358 	if (fsc == ESR_ELx_FSC_MTE)
359 		return true;
360 
361 	return false;
362 }
363 
__do_kernel_fault(unsigned long addr,unsigned int esr,struct pt_regs * regs)364 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
365 			      struct pt_regs *regs)
366 {
367 	const char *msg;
368 
369 	/*
370 	 * Are we prepared to handle this kernel fault?
371 	 * We are almost certainly not prepared to handle instruction faults.
372 	 */
373 	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
374 		return;
375 
376 	if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
377 	    "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
378 		return;
379 
380 	if (is_el1_mte_sync_tag_check_fault(esr)) {
381 		do_tag_recovery(addr, esr, regs);
382 
383 		return;
384 	}
385 
386 	if (is_el1_permission_fault(addr, esr, regs)) {
387 		if (esr & ESR_ELx_WNR)
388 			msg = "write to read-only memory";
389 		else if (is_el1_instruction_abort(esr))
390 			msg = "execute from non-executable memory";
391 		else
392 			msg = "read from unreadable memory";
393 	} else if (addr < PAGE_SIZE) {
394 		msg = "NULL pointer dereference";
395 	} else {
396 		if (kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
397 			return;
398 
399 		msg = "paging request";
400 	}
401 
402 	die_kernel_fault(msg, addr, esr, regs);
403 }
404 
set_thread_esr(unsigned long address,unsigned int esr)405 static void set_thread_esr(unsigned long address, unsigned int esr)
406 {
407 	current->thread.fault_address = address;
408 
409 	/*
410 	 * If the faulting address is in the kernel, we must sanitize the ESR.
411 	 * From userspace's point of view, kernel-only mappings don't exist
412 	 * at all, so we report them as level 0 translation faults.
413 	 * (This is not quite the way that "no mapping there at all" behaves:
414 	 * an alignment fault not caused by the memory type would take
415 	 * precedence over translation fault for a real access to empty
416 	 * space. Unfortunately we can't easily distinguish "alignment fault
417 	 * not caused by memory type" from "alignment fault caused by memory
418 	 * type", so we ignore this wrinkle and just return the translation
419 	 * fault.)
420 	 */
421 	if (!is_ttbr0_addr(current->thread.fault_address)) {
422 		switch (ESR_ELx_EC(esr)) {
423 		case ESR_ELx_EC_DABT_LOW:
424 			/*
425 			 * These bits provide only information about the
426 			 * faulting instruction, which userspace knows already.
427 			 * We explicitly clear bits which are architecturally
428 			 * RES0 in case they are given meanings in future.
429 			 * We always report the ESR as if the fault was taken
430 			 * to EL1 and so ISV and the bits in ISS[23:14] are
431 			 * clear. (In fact it always will be a fault to EL1.)
432 			 */
433 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
434 				ESR_ELx_CM | ESR_ELx_WNR;
435 			esr |= ESR_ELx_FSC_FAULT;
436 			break;
437 		case ESR_ELx_EC_IABT_LOW:
438 			/*
439 			 * Claim a level 0 translation fault.
440 			 * All other bits are architecturally RES0 for faults
441 			 * reported with that DFSC value, so we clear them.
442 			 */
443 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
444 			esr |= ESR_ELx_FSC_FAULT;
445 			break;
446 		default:
447 			/*
448 			 * This should never happen (entry.S only brings us
449 			 * into this code for insn and data aborts from a lower
450 			 * exception level). Fail safe by not providing an ESR
451 			 * context record at all.
452 			 */
453 			WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
454 			esr = 0;
455 			break;
456 		}
457 	}
458 
459 	current->thread.fault_code = esr;
460 }
461 
do_bad_area(unsigned long far,unsigned int esr,struct pt_regs * regs)462 static void do_bad_area(unsigned long far, unsigned int esr,
463 			struct pt_regs *regs)
464 {
465 	unsigned long addr = untagged_addr(far);
466 
467 	/*
468 	 * If we are in kernel mode at this point, we have no context to
469 	 * handle this fault with.
470 	 */
471 	if (user_mode(regs)) {
472 		const struct fault_info *inf = esr_to_fault_info(esr);
473 
474 		set_thread_esr(addr, esr);
475 		arm64_force_sig_fault(inf->sig, inf->code, far, inf->name);
476 	} else {
477 		__do_kernel_fault(addr, esr, regs);
478 	}
479 }
480 
481 #define VM_FAULT_BADMAP		0x010000
482 #define VM_FAULT_BADACCESS	0x020000
483 
__do_page_fault(struct vm_area_struct * vma,unsigned long addr,unsigned int mm_flags,unsigned long vm_flags,struct pt_regs * regs)484 static int __do_page_fault(struct vm_area_struct *vma, unsigned long addr,
485 				  unsigned int mm_flags, unsigned long vm_flags,
486 				  struct pt_regs *regs)
487 {
488 
489 	if (unlikely(!vma))
490 		return VM_FAULT_BADMAP;
491 
492 	/*
493 	 * Ok, we have a good vm_area for this memory access, so we can handle
494 	 * it.
495 	 */
496 	if (unlikely(vma->vm_start > addr)) {
497 		if (!(vma->vm_flags & VM_GROWSDOWN))
498 			return VM_FAULT_BADMAP;
499 		if (expand_stack(vma, addr))
500 			return VM_FAULT_BADMAP;
501 	}
502 
503 	/*
504 	 * Check that the permissions on the VMA allow for the fault which
505 	 * occurred.
506 	 */
507 	if (!(vma->vm_flags & vm_flags))
508 		return VM_FAULT_BADACCESS;
509 	return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags, regs);
510 }
511 
is_el0_instruction_abort(unsigned int esr)512 static bool is_el0_instruction_abort(unsigned int esr)
513 {
514 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
515 }
516 
517 /*
518  * Note: not valid for EL1 DC IVAC, but we never use that such that it
519  * should fault. EL0 cannot issue DC IVAC (undef).
520  */
is_write_abort(unsigned int esr)521 static bool is_write_abort(unsigned int esr)
522 {
523 	return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
524 }
525 
do_page_fault(unsigned long far,unsigned int esr,struct pt_regs * regs)526 static int __kprobes do_page_fault(unsigned long far, unsigned int esr,
527 				   struct pt_regs *regs)
528 {
529 	const struct fault_info *inf;
530 	struct mm_struct *mm = current->mm;
531 	vm_fault_t fault;
532 	unsigned long vm_flags = VM_ACCESS_FLAGS;
533 	unsigned int mm_flags = FAULT_FLAG_DEFAULT;
534 	struct vm_area_struct *vma = NULL;
535 	unsigned long addr = untagged_addr(far);
536 
537 	if (kprobe_page_fault(regs, esr))
538 		return 0;
539 
540 	/*
541 	 * If we're in an interrupt or have no user context, we must not take
542 	 * the fault.
543 	 */
544 	if (faulthandler_disabled() || !mm)
545 		goto no_context;
546 
547 	if (user_mode(regs))
548 		mm_flags |= FAULT_FLAG_USER;
549 
550 	if (is_el0_instruction_abort(esr)) {
551 		vm_flags = VM_EXEC;
552 		mm_flags |= FAULT_FLAG_INSTRUCTION;
553 	} else if (is_write_abort(esr)) {
554 		vm_flags = VM_WRITE;
555 		mm_flags |= FAULT_FLAG_WRITE;
556 	}
557 
558 	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
559 		/* regs->orig_addr_limit may be 0 if we entered from EL0 */
560 		if (regs->orig_addr_limit == KERNEL_DS)
561 			die_kernel_fault("access to user memory with fs=KERNEL_DS",
562 					 addr, esr, regs);
563 
564 		if (is_el1_instruction_abort(esr))
565 			die_kernel_fault("execution of user memory",
566 					 addr, esr, regs);
567 
568 		if (!search_exception_tables(regs->pc))
569 			die_kernel_fault("access to user memory outside uaccess routines",
570 					 addr, esr, regs);
571 	}
572 
573 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
574 
575 	/*
576 	 * let's try a speculative page fault without grabbing the
577 	 * mmap_sem.
578 	 */
579 	fault = handle_speculative_fault(mm, addr, mm_flags, &vma, regs);
580 	if (fault != VM_FAULT_RETRY)
581 		goto done;
582 
583 	/*
584 	 * As per x86, we may deadlock here. However, since the kernel only
585 	 * validly references user space from well defined areas of the code,
586 	 * we can bug out early if this is from code which shouldn't.
587 	 */
588 	if (!mmap_read_trylock(mm)) {
589 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
590 			goto no_context;
591 retry:
592 		mmap_read_lock(mm);
593 	} else {
594 		/*
595 		 * The above down_read_trylock() might have succeeded in which
596 		 * case, we'll have missed the might_sleep() from down_read().
597 		 */
598 		might_sleep();
599 #ifdef CONFIG_DEBUG_VM
600 		if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
601 			mmap_read_unlock(mm);
602 			goto no_context;
603 		}
604 #endif
605 	}
606 
607 	if (!vma || !can_reuse_spf_vma(vma, addr))
608 		vma = find_vma(mm, addr);
609 	fault = __do_page_fault(vma, addr, mm_flags, vm_flags, regs);
610 
611 	/* Quick path to respond to signals */
612 	if (fault_signal_pending(fault, regs)) {
613 		if (!user_mode(regs))
614 			goto no_context;
615 		return 0;
616 	}
617 
618 	if (fault & VM_FAULT_RETRY) {
619 		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
620 			mm_flags |= FAULT_FLAG_TRIED;
621 
622 			/*
623 			 * Do not try to reuse this vma and fetch it
624 			 * again since we will release the mmap_sem.
625 			 */
626 			vma = NULL;
627 
628 			goto retry;
629 		}
630 	}
631 	mmap_read_unlock(mm);
632 
633 done:
634 
635 	/*
636 	 * Handle the "normal" (no error) case first.
637 	 */
638 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
639 			      VM_FAULT_BADACCESS))))
640 		return 0;
641 
642 	/*
643 	 * If we are in kernel mode at this point, we have no context to
644 	 * handle this fault with.
645 	 */
646 	if (!user_mode(regs))
647 		goto no_context;
648 
649 	if (fault & VM_FAULT_OOM) {
650 		/*
651 		 * We ran out of memory, call the OOM killer, and return to
652 		 * userspace (which will retry the fault, or kill us if we got
653 		 * oom-killed).
654 		 */
655 		pagefault_out_of_memory();
656 		return 0;
657 	}
658 
659 	inf = esr_to_fault_info(esr);
660 	set_thread_esr(addr, esr);
661 	if (fault & VM_FAULT_SIGBUS) {
662 		/*
663 		 * We had some memory, but were unable to successfully fix up
664 		 * this page fault.
665 		 */
666 		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name);
667 	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
668 		unsigned int lsb;
669 
670 		lsb = PAGE_SHIFT;
671 		if (fault & VM_FAULT_HWPOISON_LARGE)
672 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
673 
674 		arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
675 	} else {
676 		/*
677 		 * Something tried to access memory that isn't in our memory
678 		 * map.
679 		 */
680 		arm64_force_sig_fault(SIGSEGV,
681 				      fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
682 				      far, inf->name);
683 	}
684 
685 	return 0;
686 
687 no_context:
688 	__do_kernel_fault(addr, esr, regs);
689 	return 0;
690 }
691 
do_translation_fault(unsigned long far,unsigned int esr,struct pt_regs * regs)692 static int __kprobes do_translation_fault(unsigned long far,
693 					  unsigned int esr,
694 					  struct pt_regs *regs)
695 {
696 	unsigned long addr = untagged_addr(far);
697 
698 	if (is_ttbr0_addr(addr))
699 		return do_page_fault(far, esr, regs);
700 
701 	do_bad_area(far, esr, regs);
702 	return 0;
703 }
704 
705 #ifdef CONFIG_ROCKCHIP_ARM64_ALIGN_FAULT_FIX
706 extern int alignment_fixup_helper(unsigned long addr, unsigned int esr,
707 				  struct pt_regs *regs);
708 #endif
do_alignment_fault(unsigned long far,unsigned int esr,struct pt_regs * regs)709 static int do_alignment_fault(unsigned long far, unsigned int esr,
710 			      struct pt_regs *regs)
711 {
712 #ifdef CONFIG_ROCKCHIP_ARM64_ALIGN_FAULT_FIX
713 	if (!alignment_fixup_helper(far, esr, regs))
714 		return 0;
715 #endif
716 	do_bad_area(far, esr, regs);
717 	return 0;
718 }
719 
do_bad(unsigned long far,unsigned int esr,struct pt_regs * regs)720 static int do_bad(unsigned long far, unsigned int esr, struct pt_regs *regs)
721 {
722 	unsigned long addr = untagged_addr(far);
723 	int ret = 1;
724 
725 	trace_android_vh_handle_tlb_conf(addr, esr, &ret);
726 	return ret;
727 }
728 
do_sea(unsigned long far,unsigned int esr,struct pt_regs * regs)729 static int do_sea(unsigned long far, unsigned int esr, struct pt_regs *regs)
730 {
731 	const struct fault_info *inf;
732 	unsigned long siaddr;
733 
734 	inf = esr_to_fault_info(esr);
735 
736 	if (user_mode(regs) && apei_claim_sea(regs) == 0) {
737 		/*
738 		 * APEI claimed this as a firmware-first notification.
739 		 * Some processing deferred to task_work before ret_to_user().
740 		 */
741 		return 0;
742 	}
743 
744 	if (esr & ESR_ELx_FnV) {
745 		siaddr = 0;
746 	} else {
747 		/*
748 		 * The architecture specifies that the tag bits of FAR_EL1 are
749 		 * UNKNOWN for synchronous external aborts. Mask them out now
750 		 * so that userspace doesn't see them.
751 		 */
752 		siaddr  = untagged_addr(far);
753 	}
754 	trace_android_rvh_do_sea(regs, esr, siaddr, inf->name);
755 	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
756 
757 	return 0;
758 }
759 
do_tag_check_fault(unsigned long far,unsigned int esr,struct pt_regs * regs)760 static int do_tag_check_fault(unsigned long far, unsigned int esr,
761 			      struct pt_regs *regs)
762 {
763 	/*
764 	 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN
765 	 * for tag check faults. Set them to corresponding bits in the untagged
766 	 * address.
767 	 */
768 	far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK);
769 	do_bad_area(far, esr, regs);
770 	return 0;
771 }
772 
773 static const struct fault_info fault_info[] = {
774 	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
775 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
776 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
777 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
778 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
779 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
780 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
781 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
782 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 8"			},
783 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
784 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
785 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
786 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 12"			},
787 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
788 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
789 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
790 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
791 	{ do_tag_check_fault,	SIGSEGV, SEGV_MTESERR,	"synchronous tag check fault"	},
792 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
793 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 19"			},
794 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
795 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
796 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
797 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
798 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
799 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
800 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
801 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 27"			},
802 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
803 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
804 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
805 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
806 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
807 	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
808 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
809 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
810 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
811 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
812 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
813 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
814 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
815 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 41"			},
816 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
817 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 43"			},
818 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
819 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
820 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
821 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
822 	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
823 	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
824 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
825 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
826 	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
827 	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
828 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
829 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
830 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
831 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
832 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
833 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
834 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
835 	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
836 	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
837 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
838 };
839 
do_mem_abort(unsigned long far,unsigned int esr,struct pt_regs * regs)840 void do_mem_abort(unsigned long far, unsigned int esr, struct pt_regs *regs)
841 {
842 	const struct fault_info *inf = esr_to_fault_info(esr);
843 	unsigned long addr = untagged_addr(far);
844 
845 	if (!inf->fn(far, esr, regs))
846 		return;
847 
848 	if (!user_mode(regs)) {
849 		pr_alert("Unhandled fault at 0x%016lx\n", addr);
850 		trace_android_rvh_do_mem_abort(regs, esr, addr, inf->name);
851 		mem_abort_decode(esr);
852 		show_pte(addr);
853 	}
854 
855 	/*
856 	 * At this point we have an unrecognized fault type whose tag bits may
857 	 * have been defined as UNKNOWN. Therefore we only expose the untagged
858 	 * address to the signal handler.
859 	 */
860 	arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr);
861 }
862 NOKPROBE_SYMBOL(do_mem_abort);
863 
do_el0_irq_bp_hardening(void)864 void do_el0_irq_bp_hardening(void)
865 {
866 	/* PC has already been checked in entry.S */
867 	arm64_apply_bp_hardening();
868 }
869 NOKPROBE_SYMBOL(do_el0_irq_bp_hardening);
870 
do_sp_pc_abort(unsigned long addr,unsigned int esr,struct pt_regs * regs)871 void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
872 {
873 	trace_android_rvh_do_sp_pc_abort(regs, esr, addr, user_mode(regs));
874 
875 	arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
876 			 addr, esr);
877 }
878 NOKPROBE_SYMBOL(do_sp_pc_abort);
879 
880 int __init early_brk64(unsigned long addr, unsigned int esr,
881 		       struct pt_regs *regs);
882 
883 /*
884  * __refdata because early_brk64 is __init, but the reference to it is
885  * clobbered at arch_initcall time.
886  * See traps.c and debug-monitors.c:debug_traps_init().
887  */
888 static struct fault_info __refdata debug_fault_info[] = {
889 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
890 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
891 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
892 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
893 	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
894 	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
895 	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
896 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
897 };
898 
hook_debug_fault_code(int nr,int (* fn)(unsigned long,unsigned int,struct pt_regs *),int sig,int code,const char * name)899 void __init hook_debug_fault_code(int nr,
900 				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
901 				  int sig, int code, const char *name)
902 {
903 	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
904 
905 	debug_fault_info[nr].fn		= fn;
906 	debug_fault_info[nr].sig	= sig;
907 	debug_fault_info[nr].code	= code;
908 	debug_fault_info[nr].name	= name;
909 }
910 
911 /*
912  * In debug exception context, we explicitly disable preemption despite
913  * having interrupts disabled.
914  * This serves two purposes: it makes it much less likely that we would
915  * accidentally schedule in exception context and it will force a warning
916  * if we somehow manage to schedule by accident.
917  */
debug_exception_enter(struct pt_regs * regs)918 static void debug_exception_enter(struct pt_regs *regs)
919 {
920 	preempt_disable();
921 
922 	/* This code is a bit fragile.  Test it. */
923 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
924 }
925 NOKPROBE_SYMBOL(debug_exception_enter);
926 
debug_exception_exit(struct pt_regs * regs)927 static void debug_exception_exit(struct pt_regs *regs)
928 {
929 	preempt_enable_no_resched();
930 }
931 NOKPROBE_SYMBOL(debug_exception_exit);
932 
933 #ifdef CONFIG_ARM64_ERRATUM_1463225
934 DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
935 
cortex_a76_erratum_1463225_debug_handler(struct pt_regs * regs)936 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
937 {
938 	if (user_mode(regs))
939 		return 0;
940 
941 	if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
942 		return 0;
943 
944 	/*
945 	 * We've taken a dummy step exception from the kernel to ensure
946 	 * that interrupts are re-enabled on the syscall path. Return back
947 	 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
948 	 * masked so that we can safely restore the mdscr and get on with
949 	 * handling the syscall.
950 	 */
951 	regs->pstate |= PSR_D_BIT;
952 	return 1;
953 }
954 #else
cortex_a76_erratum_1463225_debug_handler(struct pt_regs * regs)955 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
956 {
957 	return 0;
958 }
959 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
960 NOKPROBE_SYMBOL(cortex_a76_erratum_1463225_debug_handler);
961 
do_debug_exception(unsigned long addr_if_watchpoint,unsigned int esr,struct pt_regs * regs)962 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr,
963 			struct pt_regs *regs)
964 {
965 	const struct fault_info *inf = esr_to_debug_fault_info(esr);
966 	unsigned long pc = instruction_pointer(regs);
967 
968 	if (cortex_a76_erratum_1463225_debug_handler(regs))
969 		return;
970 
971 	debug_exception_enter(regs);
972 
973 	if (user_mode(regs) && !is_ttbr0_addr(pc))
974 		arm64_apply_bp_hardening();
975 
976 	if (inf->fn(addr_if_watchpoint, esr, regs)) {
977 		arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr);
978 	}
979 
980 	debug_exception_exit(regs);
981 }
982 NOKPROBE_SYMBOL(do_debug_exception);
983 
984 /*
985  * Used during anonymous page fault handling.
986  */
alloc_zeroed_user_highpage_movable(struct vm_area_struct * vma,unsigned long vaddr)987 struct page *alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma,
988 						unsigned long vaddr)
989 {
990 	gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO | __GFP_CMA;
991 
992 	/*
993 	 * If the page is mapped with PROT_MTE, initialise the tags at the
994 	 * point of allocation and page zeroing as this is usually faster than
995 	 * separate DC ZVA and STGM.
996 	 */
997 	if (vma->vm_flags & VM_MTE)
998 		flags |= __GFP_ZEROTAGS;
999 
1000 	return alloc_page_vma(flags, vma, vaddr);
1001 }
1002 
tag_clear_highpage(struct page * page)1003 void tag_clear_highpage(struct page *page)
1004 {
1005 	mte_zero_clear_page_tags(page_address(page));
1006 	page_kasan_tag_reset(page);
1007 	set_bit(PG_mte_tagged, &page->flags);
1008 }
1009