1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/ptrace.c
4 *
5 * By Ross Biro 1/23/92
6 * edited by Linus Torvalds
7 * ARM modifications Copyright (C) 2000 Russell King
8 * Copyright (C) 2012 ARM Ltd.
9 */
10
11 #include <linux/audit.h>
12 #include <linux/compat.h>
13 #include <linux/kernel.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/task_stack.h>
16 #include <linux/mm.h>
17 #include <linux/nospec.h>
18 #include <linux/smp.h>
19 #include <linux/ptrace.h>
20 #include <linux/user.h>
21 #include <linux/seccomp.h>
22 #include <linux/security.h>
23 #include <linux/init.h>
24 #include <linux/signal.h>
25 #include <linux/string.h>
26 #include <linux/uaccess.h>
27 #include <linux/perf_event.h>
28 #include <linux/hw_breakpoint.h>
29 #include <linux/regset.h>
30 #include <linux/tracehook.h>
31 #include <linux/elf.h>
32
33 #include <asm/compat.h>
34 #include <asm/cpufeature.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/fpsimd.h>
37 #include <asm/mte.h>
38 #include <asm/pointer_auth.h>
39 #include <asm/stacktrace.h>
40 #include <asm/syscall.h>
41 #include <asm/traps.h>
42 #include <asm/system_misc.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/syscalls.h>
46
47 struct pt_regs_offset {
48 const char *name;
49 int offset;
50 };
51
52 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
53 #define REG_OFFSET_END {.name = NULL, .offset = 0}
54 #define GPR_OFFSET_NAME(r) \
55 {.name = "x" #r, .offset = offsetof(struct pt_regs, regs[r])}
56
57 static const struct pt_regs_offset regoffset_table[] = {
58 GPR_OFFSET_NAME(0),
59 GPR_OFFSET_NAME(1),
60 GPR_OFFSET_NAME(2),
61 GPR_OFFSET_NAME(3),
62 GPR_OFFSET_NAME(4),
63 GPR_OFFSET_NAME(5),
64 GPR_OFFSET_NAME(6),
65 GPR_OFFSET_NAME(7),
66 GPR_OFFSET_NAME(8),
67 GPR_OFFSET_NAME(9),
68 GPR_OFFSET_NAME(10),
69 GPR_OFFSET_NAME(11),
70 GPR_OFFSET_NAME(12),
71 GPR_OFFSET_NAME(13),
72 GPR_OFFSET_NAME(14),
73 GPR_OFFSET_NAME(15),
74 GPR_OFFSET_NAME(16),
75 GPR_OFFSET_NAME(17),
76 GPR_OFFSET_NAME(18),
77 GPR_OFFSET_NAME(19),
78 GPR_OFFSET_NAME(20),
79 GPR_OFFSET_NAME(21),
80 GPR_OFFSET_NAME(22),
81 GPR_OFFSET_NAME(23),
82 GPR_OFFSET_NAME(24),
83 GPR_OFFSET_NAME(25),
84 GPR_OFFSET_NAME(26),
85 GPR_OFFSET_NAME(27),
86 GPR_OFFSET_NAME(28),
87 GPR_OFFSET_NAME(29),
88 GPR_OFFSET_NAME(30),
89 {.name = "lr", .offset = offsetof(struct pt_regs, regs[30])},
90 REG_OFFSET_NAME(sp),
91 REG_OFFSET_NAME(pc),
92 REG_OFFSET_NAME(pstate),
93 REG_OFFSET_END,
94 };
95
96 /**
97 * regs_query_register_offset() - query register offset from its name
98 * @name: the name of a register
99 *
100 * regs_query_register_offset() returns the offset of a register in struct
101 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
102 */
regs_query_register_offset(const char * name)103 int regs_query_register_offset(const char *name)
104 {
105 const struct pt_regs_offset *roff;
106
107 for (roff = regoffset_table; roff->name != NULL; roff++)
108 if (!strcmp(roff->name, name))
109 return roff->offset;
110 return -EINVAL;
111 }
112
113 /**
114 * regs_within_kernel_stack() - check the address in the stack
115 * @regs: pt_regs which contains kernel stack pointer.
116 * @addr: address which is checked.
117 *
118 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
119 * If @addr is within the kernel stack, it returns true. If not, returns false.
120 */
regs_within_kernel_stack(struct pt_regs * regs,unsigned long addr)121 static bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
122 {
123 return ((addr & ~(THREAD_SIZE - 1)) ==
124 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1))) ||
125 on_irq_stack(addr, NULL);
126 }
127
128 /**
129 * regs_get_kernel_stack_nth() - get Nth entry of the stack
130 * @regs: pt_regs which contains kernel stack pointer.
131 * @n: stack entry number.
132 *
133 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
134 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
135 * this returns 0.
136 */
regs_get_kernel_stack_nth(struct pt_regs * regs,unsigned int n)137 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
138 {
139 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
140
141 addr += n;
142 if (regs_within_kernel_stack(regs, (unsigned long)addr))
143 return *addr;
144 else
145 return 0;
146 }
147
148 /*
149 * TODO: does not yet catch signals sent when the child dies.
150 * in exit.c or in signal.c.
151 */
152
153 /*
154 * Called by kernel/ptrace.c when detaching..
155 */
ptrace_disable(struct task_struct * child)156 void ptrace_disable(struct task_struct *child)
157 {
158 /*
159 * This would be better off in core code, but PTRACE_DETACH has
160 * grown its fair share of arch-specific worts and changing it
161 * is likely to cause regressions on obscure architectures.
162 */
163 user_disable_single_step(child);
164 }
165
166 #ifdef CONFIG_HAVE_HW_BREAKPOINT
167 /*
168 * Handle hitting a HW-breakpoint.
169 */
ptrace_hbptriggered(struct perf_event * bp,struct perf_sample_data * data,struct pt_regs * regs)170 static void ptrace_hbptriggered(struct perf_event *bp,
171 struct perf_sample_data *data,
172 struct pt_regs *regs)
173 {
174 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
175 const char *desc = "Hardware breakpoint trap (ptrace)";
176
177 #ifdef CONFIG_COMPAT
178 if (is_compat_task()) {
179 int si_errno = 0;
180 int i;
181
182 for (i = 0; i < ARM_MAX_BRP; ++i) {
183 if (current->thread.debug.hbp_break[i] == bp) {
184 si_errno = (i << 1) + 1;
185 break;
186 }
187 }
188
189 for (i = 0; i < ARM_MAX_WRP; ++i) {
190 if (current->thread.debug.hbp_watch[i] == bp) {
191 si_errno = -((i << 1) + 1);
192 break;
193 }
194 }
195 arm64_force_sig_ptrace_errno_trap(si_errno, bkpt->trigger,
196 desc);
197 }
198 #endif
199 arm64_force_sig_fault(SIGTRAP, TRAP_HWBKPT, bkpt->trigger, desc);
200 }
201
202 /*
203 * Unregister breakpoints from this task and reset the pointers in
204 * the thread_struct.
205 */
flush_ptrace_hw_breakpoint(struct task_struct * tsk)206 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
207 {
208 int i;
209 struct thread_struct *t = &tsk->thread;
210
211 for (i = 0; i < ARM_MAX_BRP; i++) {
212 if (t->debug.hbp_break[i]) {
213 unregister_hw_breakpoint(t->debug.hbp_break[i]);
214 t->debug.hbp_break[i] = NULL;
215 }
216 }
217
218 for (i = 0; i < ARM_MAX_WRP; i++) {
219 if (t->debug.hbp_watch[i]) {
220 unregister_hw_breakpoint(t->debug.hbp_watch[i]);
221 t->debug.hbp_watch[i] = NULL;
222 }
223 }
224 }
225
ptrace_hw_copy_thread(struct task_struct * tsk)226 void ptrace_hw_copy_thread(struct task_struct *tsk)
227 {
228 memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
229 }
230
ptrace_hbp_get_event(unsigned int note_type,struct task_struct * tsk,unsigned long idx)231 static struct perf_event *ptrace_hbp_get_event(unsigned int note_type,
232 struct task_struct *tsk,
233 unsigned long idx)
234 {
235 struct perf_event *bp = ERR_PTR(-EINVAL);
236
237 switch (note_type) {
238 case NT_ARM_HW_BREAK:
239 if (idx >= ARM_MAX_BRP)
240 goto out;
241 idx = array_index_nospec(idx, ARM_MAX_BRP);
242 bp = tsk->thread.debug.hbp_break[idx];
243 break;
244 case NT_ARM_HW_WATCH:
245 if (idx >= ARM_MAX_WRP)
246 goto out;
247 idx = array_index_nospec(idx, ARM_MAX_WRP);
248 bp = tsk->thread.debug.hbp_watch[idx];
249 break;
250 }
251
252 out:
253 return bp;
254 }
255
ptrace_hbp_set_event(unsigned int note_type,struct task_struct * tsk,unsigned long idx,struct perf_event * bp)256 static int ptrace_hbp_set_event(unsigned int note_type,
257 struct task_struct *tsk,
258 unsigned long idx,
259 struct perf_event *bp)
260 {
261 int err = -EINVAL;
262
263 switch (note_type) {
264 case NT_ARM_HW_BREAK:
265 if (idx >= ARM_MAX_BRP)
266 goto out;
267 idx = array_index_nospec(idx, ARM_MAX_BRP);
268 tsk->thread.debug.hbp_break[idx] = bp;
269 err = 0;
270 break;
271 case NT_ARM_HW_WATCH:
272 if (idx >= ARM_MAX_WRP)
273 goto out;
274 idx = array_index_nospec(idx, ARM_MAX_WRP);
275 tsk->thread.debug.hbp_watch[idx] = bp;
276 err = 0;
277 break;
278 }
279
280 out:
281 return err;
282 }
283
ptrace_hbp_create(unsigned int note_type,struct task_struct * tsk,unsigned long idx)284 static struct perf_event *ptrace_hbp_create(unsigned int note_type,
285 struct task_struct *tsk,
286 unsigned long idx)
287 {
288 struct perf_event *bp;
289 struct perf_event_attr attr;
290 int err, type;
291
292 switch (note_type) {
293 case NT_ARM_HW_BREAK:
294 type = HW_BREAKPOINT_X;
295 break;
296 case NT_ARM_HW_WATCH:
297 type = HW_BREAKPOINT_RW;
298 break;
299 default:
300 return ERR_PTR(-EINVAL);
301 }
302
303 ptrace_breakpoint_init(&attr);
304
305 /*
306 * Initialise fields to sane defaults
307 * (i.e. values that will pass validation).
308 */
309 attr.bp_addr = 0;
310 attr.bp_len = HW_BREAKPOINT_LEN_4;
311 attr.bp_type = type;
312 attr.disabled = 1;
313
314 bp = register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL, tsk);
315 if (IS_ERR(bp))
316 return bp;
317
318 err = ptrace_hbp_set_event(note_type, tsk, idx, bp);
319 if (err)
320 return ERR_PTR(err);
321
322 return bp;
323 }
324
ptrace_hbp_fill_attr_ctrl(unsigned int note_type,struct arch_hw_breakpoint_ctrl ctrl,struct perf_event_attr * attr)325 static int ptrace_hbp_fill_attr_ctrl(unsigned int note_type,
326 struct arch_hw_breakpoint_ctrl ctrl,
327 struct perf_event_attr *attr)
328 {
329 int err, len, type, offset, disabled = !ctrl.enabled;
330
331 attr->disabled = disabled;
332 if (disabled)
333 return 0;
334
335 err = arch_bp_generic_fields(ctrl, &len, &type, &offset);
336 if (err)
337 return err;
338
339 switch (note_type) {
340 case NT_ARM_HW_BREAK:
341 if ((type & HW_BREAKPOINT_X) != type)
342 return -EINVAL;
343 break;
344 case NT_ARM_HW_WATCH:
345 if ((type & HW_BREAKPOINT_RW) != type)
346 return -EINVAL;
347 break;
348 default:
349 return -EINVAL;
350 }
351
352 attr->bp_len = len;
353 attr->bp_type = type;
354 attr->bp_addr += offset;
355
356 return 0;
357 }
358
ptrace_hbp_get_resource_info(unsigned int note_type,u32 * info)359 static int ptrace_hbp_get_resource_info(unsigned int note_type, u32 *info)
360 {
361 u8 num;
362 u32 reg = 0;
363
364 switch (note_type) {
365 case NT_ARM_HW_BREAK:
366 num = hw_breakpoint_slots(TYPE_INST);
367 break;
368 case NT_ARM_HW_WATCH:
369 num = hw_breakpoint_slots(TYPE_DATA);
370 break;
371 default:
372 return -EINVAL;
373 }
374
375 reg |= debug_monitors_arch();
376 reg <<= 8;
377 reg |= num;
378
379 *info = reg;
380 return 0;
381 }
382
ptrace_hbp_get_ctrl(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u32 * ctrl)383 static int ptrace_hbp_get_ctrl(unsigned int note_type,
384 struct task_struct *tsk,
385 unsigned long idx,
386 u32 *ctrl)
387 {
388 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
389
390 if (IS_ERR(bp))
391 return PTR_ERR(bp);
392
393 *ctrl = bp ? encode_ctrl_reg(counter_arch_bp(bp)->ctrl) : 0;
394 return 0;
395 }
396
ptrace_hbp_get_addr(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u64 * addr)397 static int ptrace_hbp_get_addr(unsigned int note_type,
398 struct task_struct *tsk,
399 unsigned long idx,
400 u64 *addr)
401 {
402 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
403
404 if (IS_ERR(bp))
405 return PTR_ERR(bp);
406
407 *addr = bp ? counter_arch_bp(bp)->address : 0;
408 return 0;
409 }
410
ptrace_hbp_get_initialised_bp(unsigned int note_type,struct task_struct * tsk,unsigned long idx)411 static struct perf_event *ptrace_hbp_get_initialised_bp(unsigned int note_type,
412 struct task_struct *tsk,
413 unsigned long idx)
414 {
415 struct perf_event *bp = ptrace_hbp_get_event(note_type, tsk, idx);
416
417 if (!bp)
418 bp = ptrace_hbp_create(note_type, tsk, idx);
419
420 return bp;
421 }
422
ptrace_hbp_set_ctrl(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u32 uctrl)423 static int ptrace_hbp_set_ctrl(unsigned int note_type,
424 struct task_struct *tsk,
425 unsigned long idx,
426 u32 uctrl)
427 {
428 int err;
429 struct perf_event *bp;
430 struct perf_event_attr attr;
431 struct arch_hw_breakpoint_ctrl ctrl;
432
433 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
434 if (IS_ERR(bp)) {
435 err = PTR_ERR(bp);
436 return err;
437 }
438
439 attr = bp->attr;
440 decode_ctrl_reg(uctrl, &ctrl);
441 err = ptrace_hbp_fill_attr_ctrl(note_type, ctrl, &attr);
442 if (err)
443 return err;
444
445 return modify_user_hw_breakpoint(bp, &attr);
446 }
447
ptrace_hbp_set_addr(unsigned int note_type,struct task_struct * tsk,unsigned long idx,u64 addr)448 static int ptrace_hbp_set_addr(unsigned int note_type,
449 struct task_struct *tsk,
450 unsigned long idx,
451 u64 addr)
452 {
453 int err;
454 struct perf_event *bp;
455 struct perf_event_attr attr;
456
457 bp = ptrace_hbp_get_initialised_bp(note_type, tsk, idx);
458 if (IS_ERR(bp)) {
459 err = PTR_ERR(bp);
460 return err;
461 }
462
463 attr = bp->attr;
464 attr.bp_addr = addr;
465 err = modify_user_hw_breakpoint(bp, &attr);
466 return err;
467 }
468
469 #define PTRACE_HBP_ADDR_SZ sizeof(u64)
470 #define PTRACE_HBP_CTRL_SZ sizeof(u32)
471 #define PTRACE_HBP_PAD_SZ sizeof(u32)
472
hw_break_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)473 static int hw_break_get(struct task_struct *target,
474 const struct user_regset *regset,
475 struct membuf to)
476 {
477 unsigned int note_type = regset->core_note_type;
478 int ret, idx = 0;
479 u32 info, ctrl;
480 u64 addr;
481
482 /* Resource info */
483 ret = ptrace_hbp_get_resource_info(note_type, &info);
484 if (ret)
485 return ret;
486
487 membuf_write(&to, &info, sizeof(info));
488 membuf_zero(&to, sizeof(u32));
489 /* (address, ctrl) registers */
490 while (to.left) {
491 ret = ptrace_hbp_get_addr(note_type, target, idx, &addr);
492 if (ret)
493 return ret;
494 ret = ptrace_hbp_get_ctrl(note_type, target, idx, &ctrl);
495 if (ret)
496 return ret;
497 membuf_store(&to, addr);
498 membuf_store(&to, ctrl);
499 membuf_zero(&to, sizeof(u32));
500 idx++;
501 }
502 return 0;
503 }
504
hw_break_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)505 static int hw_break_set(struct task_struct *target,
506 const struct user_regset *regset,
507 unsigned int pos, unsigned int count,
508 const void *kbuf, const void __user *ubuf)
509 {
510 unsigned int note_type = regset->core_note_type;
511 int ret, idx = 0, offset, limit;
512 u32 ctrl;
513 u64 addr;
514
515 /* Resource info and pad */
516 offset = offsetof(struct user_hwdebug_state, dbg_regs);
517 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf, 0, offset);
518 if (ret)
519 return ret;
520
521 /* (address, ctrl) registers */
522 limit = regset->n * regset->size;
523 while (count && offset < limit) {
524 if (count < PTRACE_HBP_ADDR_SZ)
525 return -EINVAL;
526 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &addr,
527 offset, offset + PTRACE_HBP_ADDR_SZ);
528 if (ret)
529 return ret;
530 ret = ptrace_hbp_set_addr(note_type, target, idx, addr);
531 if (ret)
532 return ret;
533 offset += PTRACE_HBP_ADDR_SZ;
534
535 if (!count)
536 break;
537 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl,
538 offset, offset + PTRACE_HBP_CTRL_SZ);
539 if (ret)
540 return ret;
541 ret = ptrace_hbp_set_ctrl(note_type, target, idx, ctrl);
542 if (ret)
543 return ret;
544 offset += PTRACE_HBP_CTRL_SZ;
545
546 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
547 offset,
548 offset + PTRACE_HBP_PAD_SZ);
549 if (ret)
550 return ret;
551 offset += PTRACE_HBP_PAD_SZ;
552 idx++;
553 }
554
555 return 0;
556 }
557 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
558
gpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)559 static int gpr_get(struct task_struct *target,
560 const struct user_regset *regset,
561 struct membuf to)
562 {
563 struct user_pt_regs *uregs = &task_pt_regs(target)->user_regs;
564 return membuf_write(&to, uregs, sizeof(*uregs));
565 }
566
gpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)567 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
568 unsigned int pos, unsigned int count,
569 const void *kbuf, const void __user *ubuf)
570 {
571 int ret;
572 struct user_pt_regs newregs = task_pt_regs(target)->user_regs;
573
574 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newregs, 0, -1);
575 if (ret)
576 return ret;
577
578 if (!valid_user_regs(&newregs, target))
579 return -EINVAL;
580
581 task_pt_regs(target)->user_regs = newregs;
582 return 0;
583 }
584
fpr_active(struct task_struct * target,const struct user_regset * regset)585 static int fpr_active(struct task_struct *target, const struct user_regset *regset)
586 {
587 if (!system_supports_fpsimd())
588 return -ENODEV;
589 return regset->n;
590 }
591
592 /*
593 * TODO: update fp accessors for lazy context switching (sync/flush hwstate)
594 */
__fpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)595 static int __fpr_get(struct task_struct *target,
596 const struct user_regset *regset,
597 struct membuf to)
598 {
599 struct user_fpsimd_state *uregs;
600
601 sve_sync_to_fpsimd(target);
602
603 uregs = &target->thread.uw.fpsimd_state;
604
605 return membuf_write(&to, uregs, sizeof(*uregs));
606 }
607
fpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)608 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
609 struct membuf to)
610 {
611 if (!system_supports_fpsimd())
612 return -EINVAL;
613
614 if (target == current)
615 fpsimd_preserve_current_state();
616
617 return __fpr_get(target, regset, to);
618 }
619
__fpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf,unsigned int start_pos)620 static int __fpr_set(struct task_struct *target,
621 const struct user_regset *regset,
622 unsigned int pos, unsigned int count,
623 const void *kbuf, const void __user *ubuf,
624 unsigned int start_pos)
625 {
626 int ret;
627 struct user_fpsimd_state newstate;
628
629 /*
630 * Ensure target->thread.uw.fpsimd_state is up to date, so that a
631 * short copyin can't resurrect stale data.
632 */
633 sve_sync_to_fpsimd(target);
634
635 newstate = target->thread.uw.fpsimd_state;
636
637 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &newstate,
638 start_pos, start_pos + sizeof(newstate));
639 if (ret)
640 return ret;
641
642 target->thread.uw.fpsimd_state = newstate;
643
644 return ret;
645 }
646
fpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)647 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
648 unsigned int pos, unsigned int count,
649 const void *kbuf, const void __user *ubuf)
650 {
651 int ret;
652
653 if (!system_supports_fpsimd())
654 return -EINVAL;
655
656 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf, 0);
657 if (ret)
658 return ret;
659
660 sve_sync_from_fpsimd_zeropad(target);
661 fpsimd_flush_task_state(target);
662
663 return ret;
664 }
665
tls_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)666 static int tls_get(struct task_struct *target, const struct user_regset *regset,
667 struct membuf to)
668 {
669 if (target == current)
670 tls_preserve_current_state();
671
672 return membuf_store(&to, target->thread.uw.tp_value);
673 }
674
tls_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)675 static int tls_set(struct task_struct *target, const struct user_regset *regset,
676 unsigned int pos, unsigned int count,
677 const void *kbuf, const void __user *ubuf)
678 {
679 int ret;
680 unsigned long tls = target->thread.uw.tp_value;
681
682 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
683 if (ret)
684 return ret;
685
686 target->thread.uw.tp_value = tls;
687 return ret;
688 }
689
system_call_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)690 static int system_call_get(struct task_struct *target,
691 const struct user_regset *regset,
692 struct membuf to)
693 {
694 return membuf_store(&to, task_pt_regs(target)->syscallno);
695 }
696
system_call_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)697 static int system_call_set(struct task_struct *target,
698 const struct user_regset *regset,
699 unsigned int pos, unsigned int count,
700 const void *kbuf, const void __user *ubuf)
701 {
702 int syscallno = task_pt_regs(target)->syscallno;
703 int ret;
704
705 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &syscallno, 0, -1);
706 if (ret)
707 return ret;
708
709 task_pt_regs(target)->syscallno = syscallno;
710 return ret;
711 }
712
713 #ifdef CONFIG_ARM64_SVE
714
sve_init_header_from_task(struct user_sve_header * header,struct task_struct * target)715 static void sve_init_header_from_task(struct user_sve_header *header,
716 struct task_struct *target)
717 {
718 unsigned int vq;
719
720 memset(header, 0, sizeof(*header));
721
722 header->flags = test_tsk_thread_flag(target, TIF_SVE) ?
723 SVE_PT_REGS_SVE : SVE_PT_REGS_FPSIMD;
724 if (test_tsk_thread_flag(target, TIF_SVE_VL_INHERIT))
725 header->flags |= SVE_PT_VL_INHERIT;
726
727 header->vl = target->thread.sve_vl;
728 vq = sve_vq_from_vl(header->vl);
729
730 header->max_vl = sve_max_vl;
731 header->size = SVE_PT_SIZE(vq, header->flags);
732 header->max_size = SVE_PT_SIZE(sve_vq_from_vl(header->max_vl),
733 SVE_PT_REGS_SVE);
734 }
735
sve_size_from_header(struct user_sve_header const * header)736 static unsigned int sve_size_from_header(struct user_sve_header const *header)
737 {
738 return ALIGN(header->size, SVE_VQ_BYTES);
739 }
740
sve_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)741 static int sve_get(struct task_struct *target,
742 const struct user_regset *regset,
743 struct membuf to)
744 {
745 struct user_sve_header header;
746 unsigned int vq;
747 unsigned long start, end;
748
749 if (!system_supports_sve())
750 return -EINVAL;
751
752 /* Header */
753 sve_init_header_from_task(&header, target);
754 vq = sve_vq_from_vl(header.vl);
755
756 membuf_write(&to, &header, sizeof(header));
757
758 if (target == current)
759 fpsimd_preserve_current_state();
760
761 /* Registers: FPSIMD-only case */
762
763 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
764 if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD)
765 return __fpr_get(target, regset, to);
766
767 /* Otherwise: full SVE case */
768
769 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
770 start = SVE_PT_SVE_OFFSET;
771 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
772 membuf_write(&to, target->thread.sve_state, end - start);
773
774 start = end;
775 end = SVE_PT_SVE_FPSR_OFFSET(vq);
776 membuf_zero(&to, end - start);
777
778 /*
779 * Copy fpsr, and fpcr which must follow contiguously in
780 * struct fpsimd_state:
781 */
782 start = end;
783 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
784 membuf_write(&to, &target->thread.uw.fpsimd_state.fpsr, end - start);
785
786 start = end;
787 end = sve_size_from_header(&header);
788 return membuf_zero(&to, end - start);
789 }
790
sve_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)791 static int sve_set(struct task_struct *target,
792 const struct user_regset *regset,
793 unsigned int pos, unsigned int count,
794 const void *kbuf, const void __user *ubuf)
795 {
796 int ret;
797 struct user_sve_header header;
798 unsigned int vq;
799 unsigned long start, end;
800
801 if (!system_supports_sve())
802 return -EINVAL;
803
804 /* Header */
805 if (count < sizeof(header))
806 return -EINVAL;
807 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &header,
808 0, sizeof(header));
809 if (ret)
810 goto out;
811
812 /*
813 * Apart from SVE_PT_REGS_MASK, all SVE_PT_* flags are consumed by
814 * sve_set_vector_length(), which will also validate them for us:
815 */
816 ret = sve_set_vector_length(target, header.vl,
817 ((unsigned long)header.flags & ~SVE_PT_REGS_MASK) << 16);
818 if (ret)
819 goto out;
820
821 /* Actual VL set may be less than the user asked for: */
822 vq = sve_vq_from_vl(target->thread.sve_vl);
823
824 /* Registers: FPSIMD-only case */
825
826 BUILD_BUG_ON(SVE_PT_FPSIMD_OFFSET != sizeof(header));
827 if ((header.flags & SVE_PT_REGS_MASK) == SVE_PT_REGS_FPSIMD) {
828 ret = __fpr_set(target, regset, pos, count, kbuf, ubuf,
829 SVE_PT_FPSIMD_OFFSET);
830 clear_tsk_thread_flag(target, TIF_SVE);
831 goto out;
832 }
833
834 /* Otherwise: full SVE case */
835
836 /*
837 * If setting a different VL from the requested VL and there is
838 * register data, the data layout will be wrong: don't even
839 * try to set the registers in this case.
840 */
841 if (count && vq != sve_vq_from_vl(header.vl)) {
842 ret = -EIO;
843 goto out;
844 }
845
846 sve_alloc(target);
847
848 /*
849 * Ensure target->thread.sve_state is up to date with target's
850 * FPSIMD regs, so that a short copyin leaves trailing registers
851 * unmodified.
852 */
853 fpsimd_sync_to_sve(target);
854 set_tsk_thread_flag(target, TIF_SVE);
855
856 BUILD_BUG_ON(SVE_PT_SVE_OFFSET != sizeof(header));
857 start = SVE_PT_SVE_OFFSET;
858 end = SVE_PT_SVE_FFR_OFFSET(vq) + SVE_PT_SVE_FFR_SIZE(vq);
859 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
860 target->thread.sve_state,
861 start, end);
862 if (ret)
863 goto out;
864
865 start = end;
866 end = SVE_PT_SVE_FPSR_OFFSET(vq);
867 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
868 start, end);
869 if (ret)
870 goto out;
871
872 /*
873 * Copy fpsr, and fpcr which must follow contiguously in
874 * struct fpsimd_state:
875 */
876 start = end;
877 end = SVE_PT_SVE_FPCR_OFFSET(vq) + SVE_PT_SVE_FPCR_SIZE;
878 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
879 &target->thread.uw.fpsimd_state.fpsr,
880 start, end);
881
882 out:
883 fpsimd_flush_task_state(target);
884 return ret;
885 }
886
887 #endif /* CONFIG_ARM64_SVE */
888
889 #ifdef CONFIG_ARM64_PTR_AUTH
pac_mask_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)890 static int pac_mask_get(struct task_struct *target,
891 const struct user_regset *regset,
892 struct membuf to)
893 {
894 /*
895 * The PAC bits can differ across data and instruction pointers
896 * depending on TCR_EL1.TBID*, which we may make use of in future, so
897 * we expose separate masks.
898 */
899 unsigned long mask = ptrauth_user_pac_mask();
900 struct user_pac_mask uregs = {
901 .data_mask = mask,
902 .insn_mask = mask,
903 };
904
905 if (!system_supports_address_auth())
906 return -EINVAL;
907
908 return membuf_write(&to, &uregs, sizeof(uregs));
909 }
910
pac_enabled_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)911 static int pac_enabled_keys_get(struct task_struct *target,
912 const struct user_regset *regset,
913 struct membuf to)
914 {
915 long enabled_keys = ptrauth_get_enabled_keys(target);
916
917 if (IS_ERR_VALUE(enabled_keys))
918 return enabled_keys;
919
920 return membuf_write(&to, &enabled_keys, sizeof(enabled_keys));
921 }
922
pac_enabled_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)923 static int pac_enabled_keys_set(struct task_struct *target,
924 const struct user_regset *regset,
925 unsigned int pos, unsigned int count,
926 const void *kbuf, const void __user *ubuf)
927 {
928 int ret;
929 long enabled_keys = ptrauth_get_enabled_keys(target);
930
931 if (IS_ERR_VALUE(enabled_keys))
932 return enabled_keys;
933
934 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &enabled_keys, 0,
935 sizeof(long));
936 if (ret)
937 return ret;
938
939 return ptrauth_set_enabled_keys(target, PR_PAC_ENABLED_KEYS_MASK,
940 enabled_keys);
941 }
942
943 #ifdef CONFIG_CHECKPOINT_RESTORE
pac_key_to_user(const struct ptrauth_key * key)944 static __uint128_t pac_key_to_user(const struct ptrauth_key *key)
945 {
946 return (__uint128_t)key->hi << 64 | key->lo;
947 }
948
pac_key_from_user(__uint128_t ukey)949 static struct ptrauth_key pac_key_from_user(__uint128_t ukey)
950 {
951 struct ptrauth_key key = {
952 .lo = (unsigned long)ukey,
953 .hi = (unsigned long)(ukey >> 64),
954 };
955
956 return key;
957 }
958
pac_address_keys_to_user(struct user_pac_address_keys * ukeys,const struct ptrauth_keys_user * keys)959 static void pac_address_keys_to_user(struct user_pac_address_keys *ukeys,
960 const struct ptrauth_keys_user *keys)
961 {
962 ukeys->apiakey = pac_key_to_user(&keys->apia);
963 ukeys->apibkey = pac_key_to_user(&keys->apib);
964 ukeys->apdakey = pac_key_to_user(&keys->apda);
965 ukeys->apdbkey = pac_key_to_user(&keys->apdb);
966 }
967
pac_address_keys_from_user(struct ptrauth_keys_user * keys,const struct user_pac_address_keys * ukeys)968 static void pac_address_keys_from_user(struct ptrauth_keys_user *keys,
969 const struct user_pac_address_keys *ukeys)
970 {
971 keys->apia = pac_key_from_user(ukeys->apiakey);
972 keys->apib = pac_key_from_user(ukeys->apibkey);
973 keys->apda = pac_key_from_user(ukeys->apdakey);
974 keys->apdb = pac_key_from_user(ukeys->apdbkey);
975 }
976
pac_address_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)977 static int pac_address_keys_get(struct task_struct *target,
978 const struct user_regset *regset,
979 struct membuf to)
980 {
981 struct ptrauth_keys_user *keys = &target->thread.keys_user;
982 struct user_pac_address_keys user_keys;
983
984 if (!system_supports_address_auth())
985 return -EINVAL;
986
987 pac_address_keys_to_user(&user_keys, keys);
988
989 return membuf_write(&to, &user_keys, sizeof(user_keys));
990 }
991
pac_address_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)992 static int pac_address_keys_set(struct task_struct *target,
993 const struct user_regset *regset,
994 unsigned int pos, unsigned int count,
995 const void *kbuf, const void __user *ubuf)
996 {
997 struct ptrauth_keys_user *keys = &target->thread.keys_user;
998 struct user_pac_address_keys user_keys;
999 int ret;
1000
1001 if (!system_supports_address_auth())
1002 return -EINVAL;
1003
1004 pac_address_keys_to_user(&user_keys, keys);
1005 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1006 &user_keys, 0, -1);
1007 if (ret)
1008 return ret;
1009 pac_address_keys_from_user(keys, &user_keys);
1010
1011 return 0;
1012 }
1013
pac_generic_keys_to_user(struct user_pac_generic_keys * ukeys,const struct ptrauth_keys_user * keys)1014 static void pac_generic_keys_to_user(struct user_pac_generic_keys *ukeys,
1015 const struct ptrauth_keys_user *keys)
1016 {
1017 ukeys->apgakey = pac_key_to_user(&keys->apga);
1018 }
1019
pac_generic_keys_from_user(struct ptrauth_keys_user * keys,const struct user_pac_generic_keys * ukeys)1020 static void pac_generic_keys_from_user(struct ptrauth_keys_user *keys,
1021 const struct user_pac_generic_keys *ukeys)
1022 {
1023 keys->apga = pac_key_from_user(ukeys->apgakey);
1024 }
1025
pac_generic_keys_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1026 static int pac_generic_keys_get(struct task_struct *target,
1027 const struct user_regset *regset,
1028 struct membuf to)
1029 {
1030 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1031 struct user_pac_generic_keys user_keys;
1032
1033 if (!system_supports_generic_auth())
1034 return -EINVAL;
1035
1036 pac_generic_keys_to_user(&user_keys, keys);
1037
1038 return membuf_write(&to, &user_keys, sizeof(user_keys));
1039 }
1040
pac_generic_keys_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1041 static int pac_generic_keys_set(struct task_struct *target,
1042 const struct user_regset *regset,
1043 unsigned int pos, unsigned int count,
1044 const void *kbuf, const void __user *ubuf)
1045 {
1046 struct ptrauth_keys_user *keys = &target->thread.keys_user;
1047 struct user_pac_generic_keys user_keys;
1048 int ret;
1049
1050 if (!system_supports_generic_auth())
1051 return -EINVAL;
1052
1053 pac_generic_keys_to_user(&user_keys, keys);
1054 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1055 &user_keys, 0, -1);
1056 if (ret)
1057 return ret;
1058 pac_generic_keys_from_user(keys, &user_keys);
1059
1060 return 0;
1061 }
1062 #endif /* CONFIG_CHECKPOINT_RESTORE */
1063 #endif /* CONFIG_ARM64_PTR_AUTH */
1064
1065 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
tagged_addr_ctrl_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1066 static int tagged_addr_ctrl_get(struct task_struct *target,
1067 const struct user_regset *regset,
1068 struct membuf to)
1069 {
1070 long ctrl = get_tagged_addr_ctrl(target);
1071
1072 if (IS_ERR_VALUE(ctrl))
1073 return ctrl;
1074
1075 return membuf_write(&to, &ctrl, sizeof(ctrl));
1076 }
1077
tagged_addr_ctrl_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1078 static int tagged_addr_ctrl_set(struct task_struct *target, const struct
1079 user_regset *regset, unsigned int pos,
1080 unsigned int count, const void *kbuf, const
1081 void __user *ubuf)
1082 {
1083 int ret;
1084 long ctrl;
1085
1086 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl, 0, -1);
1087 if (ret)
1088 return ret;
1089
1090 return set_tagged_addr_ctrl(target, ctrl);
1091 }
1092 #endif
1093
1094 enum aarch64_regset {
1095 REGSET_GPR,
1096 REGSET_FPR,
1097 REGSET_TLS,
1098 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1099 REGSET_HW_BREAK,
1100 REGSET_HW_WATCH,
1101 #endif
1102 REGSET_SYSTEM_CALL,
1103 #ifdef CONFIG_ARM64_SVE
1104 REGSET_SVE,
1105 #endif
1106 #ifdef CONFIG_ARM64_PTR_AUTH
1107 REGSET_PAC_MASK,
1108 REGSET_PAC_ENABLED_KEYS,
1109 #ifdef CONFIG_CHECKPOINT_RESTORE
1110 REGSET_PACA_KEYS,
1111 REGSET_PACG_KEYS,
1112 #endif
1113 #endif
1114 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1115 REGSET_TAGGED_ADDR_CTRL,
1116 #endif
1117 };
1118
1119 static const struct user_regset aarch64_regsets[] = {
1120 [REGSET_GPR] = {
1121 .core_note_type = NT_PRSTATUS,
1122 .n = sizeof(struct user_pt_regs) / sizeof(u64),
1123 .size = sizeof(u64),
1124 .align = sizeof(u64),
1125 .regset_get = gpr_get,
1126 .set = gpr_set
1127 },
1128 [REGSET_FPR] = {
1129 .core_note_type = NT_PRFPREG,
1130 .n = sizeof(struct user_fpsimd_state) / sizeof(u32),
1131 /*
1132 * We pretend we have 32-bit registers because the fpsr and
1133 * fpcr are 32-bits wide.
1134 */
1135 .size = sizeof(u32),
1136 .align = sizeof(u32),
1137 .active = fpr_active,
1138 .regset_get = fpr_get,
1139 .set = fpr_set
1140 },
1141 [REGSET_TLS] = {
1142 .core_note_type = NT_ARM_TLS,
1143 .n = 1,
1144 .size = sizeof(void *),
1145 .align = sizeof(void *),
1146 .regset_get = tls_get,
1147 .set = tls_set,
1148 },
1149 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1150 [REGSET_HW_BREAK] = {
1151 .core_note_type = NT_ARM_HW_BREAK,
1152 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1153 .size = sizeof(u32),
1154 .align = sizeof(u32),
1155 .regset_get = hw_break_get,
1156 .set = hw_break_set,
1157 },
1158 [REGSET_HW_WATCH] = {
1159 .core_note_type = NT_ARM_HW_WATCH,
1160 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1161 .size = sizeof(u32),
1162 .align = sizeof(u32),
1163 .regset_get = hw_break_get,
1164 .set = hw_break_set,
1165 },
1166 #endif
1167 [REGSET_SYSTEM_CALL] = {
1168 .core_note_type = NT_ARM_SYSTEM_CALL,
1169 .n = 1,
1170 .size = sizeof(int),
1171 .align = sizeof(int),
1172 .regset_get = system_call_get,
1173 .set = system_call_set,
1174 },
1175 #ifdef CONFIG_ARM64_SVE
1176 [REGSET_SVE] = { /* Scalable Vector Extension */
1177 .core_note_type = NT_ARM_SVE,
1178 .n = DIV_ROUND_UP(SVE_PT_SIZE(SVE_VQ_MAX, SVE_PT_REGS_SVE),
1179 SVE_VQ_BYTES),
1180 .size = SVE_VQ_BYTES,
1181 .align = SVE_VQ_BYTES,
1182 .regset_get = sve_get,
1183 .set = sve_set,
1184 },
1185 #endif
1186 #ifdef CONFIG_ARM64_PTR_AUTH
1187 [REGSET_PAC_MASK] = {
1188 .core_note_type = NT_ARM_PAC_MASK,
1189 .n = sizeof(struct user_pac_mask) / sizeof(u64),
1190 .size = sizeof(u64),
1191 .align = sizeof(u64),
1192 .regset_get = pac_mask_get,
1193 /* this cannot be set dynamically */
1194 },
1195 [REGSET_PAC_ENABLED_KEYS] = {
1196 .core_note_type = NT_ARM_PAC_ENABLED_KEYS,
1197 .n = 1,
1198 .size = sizeof(long),
1199 .align = sizeof(long),
1200 .regset_get = pac_enabled_keys_get,
1201 .set = pac_enabled_keys_set,
1202 },
1203 #ifdef CONFIG_CHECKPOINT_RESTORE
1204 [REGSET_PACA_KEYS] = {
1205 .core_note_type = NT_ARM_PACA_KEYS,
1206 .n = sizeof(struct user_pac_address_keys) / sizeof(__uint128_t),
1207 .size = sizeof(__uint128_t),
1208 .align = sizeof(__uint128_t),
1209 .regset_get = pac_address_keys_get,
1210 .set = pac_address_keys_set,
1211 },
1212 [REGSET_PACG_KEYS] = {
1213 .core_note_type = NT_ARM_PACG_KEYS,
1214 .n = sizeof(struct user_pac_generic_keys) / sizeof(__uint128_t),
1215 .size = sizeof(__uint128_t),
1216 .align = sizeof(__uint128_t),
1217 .regset_get = pac_generic_keys_get,
1218 .set = pac_generic_keys_set,
1219 },
1220 #endif
1221 #endif
1222 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
1223 [REGSET_TAGGED_ADDR_CTRL] = {
1224 .core_note_type = NT_ARM_TAGGED_ADDR_CTRL,
1225 .n = 1,
1226 .size = sizeof(long),
1227 .align = sizeof(long),
1228 .regset_get = tagged_addr_ctrl_get,
1229 .set = tagged_addr_ctrl_set,
1230 },
1231 #endif
1232 };
1233
1234 static const struct user_regset_view user_aarch64_view = {
1235 .name = "aarch64", .e_machine = EM_AARCH64,
1236 .regsets = aarch64_regsets, .n = ARRAY_SIZE(aarch64_regsets)
1237 };
1238
1239 #ifdef CONFIG_COMPAT
1240 enum compat_regset {
1241 REGSET_COMPAT_GPR,
1242 REGSET_COMPAT_VFP,
1243 };
1244
compat_get_user_reg(struct task_struct * task,int idx)1245 static inline compat_ulong_t compat_get_user_reg(struct task_struct *task, int idx)
1246 {
1247 struct pt_regs *regs = task_pt_regs(task);
1248
1249 switch (idx) {
1250 case 15:
1251 return regs->pc;
1252 case 16:
1253 return pstate_to_compat_psr(regs->pstate);
1254 case 17:
1255 return regs->orig_x0;
1256 default:
1257 return regs->regs[idx];
1258 }
1259 }
1260
compat_gpr_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1261 static int compat_gpr_get(struct task_struct *target,
1262 const struct user_regset *regset,
1263 struct membuf to)
1264 {
1265 int i = 0;
1266
1267 while (to.left)
1268 membuf_store(&to, compat_get_user_reg(target, i++));
1269 return 0;
1270 }
1271
compat_gpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1272 static int compat_gpr_set(struct task_struct *target,
1273 const struct user_regset *regset,
1274 unsigned int pos, unsigned int count,
1275 const void *kbuf, const void __user *ubuf)
1276 {
1277 struct pt_regs newregs;
1278 int ret = 0;
1279 unsigned int i, start, num_regs;
1280
1281 /* Calculate the number of AArch32 registers contained in count */
1282 num_regs = count / regset->size;
1283
1284 /* Convert pos into an register number */
1285 start = pos / regset->size;
1286
1287 if (start + num_regs > regset->n)
1288 return -EIO;
1289
1290 newregs = *task_pt_regs(target);
1291
1292 for (i = 0; i < num_regs; ++i) {
1293 unsigned int idx = start + i;
1294 compat_ulong_t reg;
1295
1296 if (kbuf) {
1297 memcpy(®, kbuf, sizeof(reg));
1298 kbuf += sizeof(reg);
1299 } else {
1300 ret = copy_from_user(®, ubuf, sizeof(reg));
1301 if (ret) {
1302 ret = -EFAULT;
1303 break;
1304 }
1305
1306 ubuf += sizeof(reg);
1307 }
1308
1309 switch (idx) {
1310 case 15:
1311 newregs.pc = reg;
1312 break;
1313 case 16:
1314 reg = compat_psr_to_pstate(reg);
1315 newregs.pstate = reg;
1316 break;
1317 case 17:
1318 newregs.orig_x0 = reg;
1319 break;
1320 default:
1321 newregs.regs[idx] = reg;
1322 }
1323
1324 }
1325
1326 if (valid_user_regs(&newregs.user_regs, target))
1327 *task_pt_regs(target) = newregs;
1328 else
1329 ret = -EINVAL;
1330
1331 return ret;
1332 }
1333
compat_vfp_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1334 static int compat_vfp_get(struct task_struct *target,
1335 const struct user_regset *regset,
1336 struct membuf to)
1337 {
1338 struct user_fpsimd_state *uregs;
1339 compat_ulong_t fpscr;
1340
1341 if (!system_supports_fpsimd())
1342 return -EINVAL;
1343
1344 uregs = &target->thread.uw.fpsimd_state;
1345
1346 if (target == current)
1347 fpsimd_preserve_current_state();
1348
1349 /*
1350 * The VFP registers are packed into the fpsimd_state, so they all sit
1351 * nicely together for us. We just need to create the fpscr separately.
1352 */
1353 membuf_write(&to, uregs, VFP_STATE_SIZE - sizeof(compat_ulong_t));
1354 fpscr = (uregs->fpsr & VFP_FPSCR_STAT_MASK) |
1355 (uregs->fpcr & VFP_FPSCR_CTRL_MASK);
1356 return membuf_store(&to, fpscr);
1357 }
1358
compat_vfp_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1359 static int compat_vfp_set(struct task_struct *target,
1360 const struct user_regset *regset,
1361 unsigned int pos, unsigned int count,
1362 const void *kbuf, const void __user *ubuf)
1363 {
1364 struct user_fpsimd_state *uregs;
1365 compat_ulong_t fpscr;
1366 int ret, vregs_end_pos;
1367
1368 if (!system_supports_fpsimd())
1369 return -EINVAL;
1370
1371 uregs = &target->thread.uw.fpsimd_state;
1372
1373 vregs_end_pos = VFP_STATE_SIZE - sizeof(compat_ulong_t);
1374 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
1375 vregs_end_pos);
1376
1377 if (count && !ret) {
1378 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpscr,
1379 vregs_end_pos, VFP_STATE_SIZE);
1380 if (!ret) {
1381 uregs->fpsr = fpscr & VFP_FPSCR_STAT_MASK;
1382 uregs->fpcr = fpscr & VFP_FPSCR_CTRL_MASK;
1383 }
1384 }
1385
1386 fpsimd_flush_task_state(target);
1387 return ret;
1388 }
1389
compat_tls_get(struct task_struct * target,const struct user_regset * regset,struct membuf to)1390 static int compat_tls_get(struct task_struct *target,
1391 const struct user_regset *regset,
1392 struct membuf to)
1393 {
1394 return membuf_store(&to, (compat_ulong_t)target->thread.uw.tp_value);
1395 }
1396
compat_tls_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)1397 static int compat_tls_set(struct task_struct *target,
1398 const struct user_regset *regset, unsigned int pos,
1399 unsigned int count, const void *kbuf,
1400 const void __user *ubuf)
1401 {
1402 int ret;
1403 compat_ulong_t tls = target->thread.uw.tp_value;
1404
1405 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &tls, 0, -1);
1406 if (ret)
1407 return ret;
1408
1409 target->thread.uw.tp_value = tls;
1410 return ret;
1411 }
1412
1413 static const struct user_regset aarch32_regsets[] = {
1414 [REGSET_COMPAT_GPR] = {
1415 .core_note_type = NT_PRSTATUS,
1416 .n = COMPAT_ELF_NGREG,
1417 .size = sizeof(compat_elf_greg_t),
1418 .align = sizeof(compat_elf_greg_t),
1419 .regset_get = compat_gpr_get,
1420 .set = compat_gpr_set
1421 },
1422 [REGSET_COMPAT_VFP] = {
1423 .core_note_type = NT_ARM_VFP,
1424 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1425 .size = sizeof(compat_ulong_t),
1426 .align = sizeof(compat_ulong_t),
1427 .active = fpr_active,
1428 .regset_get = compat_vfp_get,
1429 .set = compat_vfp_set
1430 },
1431 };
1432
1433 static const struct user_regset_view user_aarch32_view = {
1434 .name = "aarch32", .e_machine = EM_ARM,
1435 .regsets = aarch32_regsets, .n = ARRAY_SIZE(aarch32_regsets)
1436 };
1437
1438 static const struct user_regset aarch32_ptrace_regsets[] = {
1439 [REGSET_GPR] = {
1440 .core_note_type = NT_PRSTATUS,
1441 .n = COMPAT_ELF_NGREG,
1442 .size = sizeof(compat_elf_greg_t),
1443 .align = sizeof(compat_elf_greg_t),
1444 .regset_get = compat_gpr_get,
1445 .set = compat_gpr_set
1446 },
1447 [REGSET_FPR] = {
1448 .core_note_type = NT_ARM_VFP,
1449 .n = VFP_STATE_SIZE / sizeof(compat_ulong_t),
1450 .size = sizeof(compat_ulong_t),
1451 .align = sizeof(compat_ulong_t),
1452 .regset_get = compat_vfp_get,
1453 .set = compat_vfp_set
1454 },
1455 [REGSET_TLS] = {
1456 .core_note_type = NT_ARM_TLS,
1457 .n = 1,
1458 .size = sizeof(compat_ulong_t),
1459 .align = sizeof(compat_ulong_t),
1460 .regset_get = compat_tls_get,
1461 .set = compat_tls_set,
1462 },
1463 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1464 [REGSET_HW_BREAK] = {
1465 .core_note_type = NT_ARM_HW_BREAK,
1466 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1467 .size = sizeof(u32),
1468 .align = sizeof(u32),
1469 .regset_get = hw_break_get,
1470 .set = hw_break_set,
1471 },
1472 [REGSET_HW_WATCH] = {
1473 .core_note_type = NT_ARM_HW_WATCH,
1474 .n = sizeof(struct user_hwdebug_state) / sizeof(u32),
1475 .size = sizeof(u32),
1476 .align = sizeof(u32),
1477 .regset_get = hw_break_get,
1478 .set = hw_break_set,
1479 },
1480 #endif
1481 [REGSET_SYSTEM_CALL] = {
1482 .core_note_type = NT_ARM_SYSTEM_CALL,
1483 .n = 1,
1484 .size = sizeof(int),
1485 .align = sizeof(int),
1486 .regset_get = system_call_get,
1487 .set = system_call_set,
1488 },
1489 };
1490
1491 static const struct user_regset_view user_aarch32_ptrace_view = {
1492 .name = "aarch32", .e_machine = EM_ARM,
1493 .regsets = aarch32_ptrace_regsets, .n = ARRAY_SIZE(aarch32_ptrace_regsets)
1494 };
1495
compat_ptrace_read_user(struct task_struct * tsk,compat_ulong_t off,compat_ulong_t __user * ret)1496 static int compat_ptrace_read_user(struct task_struct *tsk, compat_ulong_t off,
1497 compat_ulong_t __user *ret)
1498 {
1499 compat_ulong_t tmp;
1500
1501 if (off & 3)
1502 return -EIO;
1503
1504 if (off == COMPAT_PT_TEXT_ADDR)
1505 tmp = tsk->mm->start_code;
1506 else if (off == COMPAT_PT_DATA_ADDR)
1507 tmp = tsk->mm->start_data;
1508 else if (off == COMPAT_PT_TEXT_END_ADDR)
1509 tmp = tsk->mm->end_code;
1510 else if (off < sizeof(compat_elf_gregset_t))
1511 tmp = compat_get_user_reg(tsk, off >> 2);
1512 else if (off >= COMPAT_USER_SZ)
1513 return -EIO;
1514 else
1515 tmp = 0;
1516
1517 return put_user(tmp, ret);
1518 }
1519
compat_ptrace_write_user(struct task_struct * tsk,compat_ulong_t off,compat_ulong_t val)1520 static int compat_ptrace_write_user(struct task_struct *tsk, compat_ulong_t off,
1521 compat_ulong_t val)
1522 {
1523 struct pt_regs newregs = *task_pt_regs(tsk);
1524 unsigned int idx = off / 4;
1525
1526 if (off & 3 || off >= COMPAT_USER_SZ)
1527 return -EIO;
1528
1529 if (off >= sizeof(compat_elf_gregset_t))
1530 return 0;
1531
1532 switch (idx) {
1533 case 15:
1534 newregs.pc = val;
1535 break;
1536 case 16:
1537 newregs.pstate = compat_psr_to_pstate(val);
1538 break;
1539 case 17:
1540 newregs.orig_x0 = val;
1541 break;
1542 default:
1543 newregs.regs[idx] = val;
1544 }
1545
1546 if (!valid_user_regs(&newregs.user_regs, tsk))
1547 return -EINVAL;
1548
1549 *task_pt_regs(tsk) = newregs;
1550 return 0;
1551 }
1552
1553 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1554
1555 /*
1556 * Convert a virtual register number into an index for a thread_info
1557 * breakpoint array. Breakpoints are identified using positive numbers
1558 * whilst watchpoints are negative. The registers are laid out as pairs
1559 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
1560 * Register 0 is reserved for describing resource information.
1561 */
compat_ptrace_hbp_num_to_idx(compat_long_t num)1562 static int compat_ptrace_hbp_num_to_idx(compat_long_t num)
1563 {
1564 return (abs(num) - 1) >> 1;
1565 }
1566
compat_ptrace_hbp_get_resource_info(u32 * kdata)1567 static int compat_ptrace_hbp_get_resource_info(u32 *kdata)
1568 {
1569 u8 num_brps, num_wrps, debug_arch, wp_len;
1570 u32 reg = 0;
1571
1572 num_brps = hw_breakpoint_slots(TYPE_INST);
1573 num_wrps = hw_breakpoint_slots(TYPE_DATA);
1574
1575 debug_arch = debug_monitors_arch();
1576 wp_len = 8;
1577 reg |= debug_arch;
1578 reg <<= 8;
1579 reg |= wp_len;
1580 reg <<= 8;
1581 reg |= num_wrps;
1582 reg <<= 8;
1583 reg |= num_brps;
1584
1585 *kdata = reg;
1586 return 0;
1587 }
1588
compat_ptrace_hbp_get(unsigned int note_type,struct task_struct * tsk,compat_long_t num,u32 * kdata)1589 static int compat_ptrace_hbp_get(unsigned int note_type,
1590 struct task_struct *tsk,
1591 compat_long_t num,
1592 u32 *kdata)
1593 {
1594 u64 addr = 0;
1595 u32 ctrl = 0;
1596
1597 int err, idx = compat_ptrace_hbp_num_to_idx(num);
1598
1599 if (num & 1) {
1600 err = ptrace_hbp_get_addr(note_type, tsk, idx, &addr);
1601 *kdata = (u32)addr;
1602 } else {
1603 err = ptrace_hbp_get_ctrl(note_type, tsk, idx, &ctrl);
1604 *kdata = ctrl;
1605 }
1606
1607 return err;
1608 }
1609
compat_ptrace_hbp_set(unsigned int note_type,struct task_struct * tsk,compat_long_t num,u32 * kdata)1610 static int compat_ptrace_hbp_set(unsigned int note_type,
1611 struct task_struct *tsk,
1612 compat_long_t num,
1613 u32 *kdata)
1614 {
1615 u64 addr;
1616 u32 ctrl;
1617
1618 int err, idx = compat_ptrace_hbp_num_to_idx(num);
1619
1620 if (num & 1) {
1621 addr = *kdata;
1622 err = ptrace_hbp_set_addr(note_type, tsk, idx, addr);
1623 } else {
1624 ctrl = *kdata;
1625 err = ptrace_hbp_set_ctrl(note_type, tsk, idx, ctrl);
1626 }
1627
1628 return err;
1629 }
1630
compat_ptrace_gethbpregs(struct task_struct * tsk,compat_long_t num,compat_ulong_t __user * data)1631 static int compat_ptrace_gethbpregs(struct task_struct *tsk, compat_long_t num,
1632 compat_ulong_t __user *data)
1633 {
1634 int ret;
1635 u32 kdata;
1636
1637 /* Watchpoint */
1638 if (num < 0) {
1639 ret = compat_ptrace_hbp_get(NT_ARM_HW_WATCH, tsk, num, &kdata);
1640 /* Resource info */
1641 } else if (num == 0) {
1642 ret = compat_ptrace_hbp_get_resource_info(&kdata);
1643 /* Breakpoint */
1644 } else {
1645 ret = compat_ptrace_hbp_get(NT_ARM_HW_BREAK, tsk, num, &kdata);
1646 }
1647
1648 if (!ret)
1649 ret = put_user(kdata, data);
1650
1651 return ret;
1652 }
1653
compat_ptrace_sethbpregs(struct task_struct * tsk,compat_long_t num,compat_ulong_t __user * data)1654 static int compat_ptrace_sethbpregs(struct task_struct *tsk, compat_long_t num,
1655 compat_ulong_t __user *data)
1656 {
1657 int ret;
1658 u32 kdata = 0;
1659
1660 if (num == 0)
1661 return 0;
1662
1663 ret = get_user(kdata, data);
1664 if (ret)
1665 return ret;
1666
1667 if (num < 0)
1668 ret = compat_ptrace_hbp_set(NT_ARM_HW_WATCH, tsk, num, &kdata);
1669 else
1670 ret = compat_ptrace_hbp_set(NT_ARM_HW_BREAK, tsk, num, &kdata);
1671
1672 return ret;
1673 }
1674 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1675
compat_arch_ptrace(struct task_struct * child,compat_long_t request,compat_ulong_t caddr,compat_ulong_t cdata)1676 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
1677 compat_ulong_t caddr, compat_ulong_t cdata)
1678 {
1679 unsigned long addr = caddr;
1680 unsigned long data = cdata;
1681 void __user *datap = compat_ptr(data);
1682 int ret;
1683
1684 switch (request) {
1685 case PTRACE_PEEKUSR:
1686 ret = compat_ptrace_read_user(child, addr, datap);
1687 break;
1688
1689 case PTRACE_POKEUSR:
1690 ret = compat_ptrace_write_user(child, addr, data);
1691 break;
1692
1693 case COMPAT_PTRACE_GETREGS:
1694 ret = copy_regset_to_user(child,
1695 &user_aarch32_view,
1696 REGSET_COMPAT_GPR,
1697 0, sizeof(compat_elf_gregset_t),
1698 datap);
1699 break;
1700
1701 case COMPAT_PTRACE_SETREGS:
1702 ret = copy_regset_from_user(child,
1703 &user_aarch32_view,
1704 REGSET_COMPAT_GPR,
1705 0, sizeof(compat_elf_gregset_t),
1706 datap);
1707 break;
1708
1709 case COMPAT_PTRACE_GET_THREAD_AREA:
1710 ret = put_user((compat_ulong_t)child->thread.uw.tp_value,
1711 (compat_ulong_t __user *)datap);
1712 break;
1713
1714 case COMPAT_PTRACE_SET_SYSCALL:
1715 task_pt_regs(child)->syscallno = data;
1716 ret = 0;
1717 break;
1718
1719 case COMPAT_PTRACE_GETVFPREGS:
1720 ret = copy_regset_to_user(child,
1721 &user_aarch32_view,
1722 REGSET_COMPAT_VFP,
1723 0, VFP_STATE_SIZE,
1724 datap);
1725 break;
1726
1727 case COMPAT_PTRACE_SETVFPREGS:
1728 ret = copy_regset_from_user(child,
1729 &user_aarch32_view,
1730 REGSET_COMPAT_VFP,
1731 0, VFP_STATE_SIZE,
1732 datap);
1733 break;
1734
1735 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1736 case COMPAT_PTRACE_GETHBPREGS:
1737 ret = compat_ptrace_gethbpregs(child, addr, datap);
1738 break;
1739
1740 case COMPAT_PTRACE_SETHBPREGS:
1741 ret = compat_ptrace_sethbpregs(child, addr, datap);
1742 break;
1743 #endif
1744
1745 default:
1746 ret = compat_ptrace_request(child, request, addr,
1747 data);
1748 break;
1749 }
1750
1751 return ret;
1752 }
1753 #endif /* CONFIG_COMPAT */
1754
task_user_regset_view(struct task_struct * task)1755 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1756 {
1757 #ifdef CONFIG_COMPAT
1758 /*
1759 * Core dumping of 32-bit tasks or compat ptrace requests must use the
1760 * user_aarch32_view compatible with arm32. Native ptrace requests on
1761 * 32-bit children use an extended user_aarch32_ptrace_view to allow
1762 * access to the TLS register.
1763 */
1764 if (is_compat_task())
1765 return &user_aarch32_view;
1766 else if (is_compat_thread(task_thread_info(task)))
1767 return &user_aarch32_ptrace_view;
1768 #endif
1769 return &user_aarch64_view;
1770 }
1771
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)1772 long arch_ptrace(struct task_struct *child, long request,
1773 unsigned long addr, unsigned long data)
1774 {
1775 switch (request) {
1776 case PTRACE_PEEKMTETAGS:
1777 case PTRACE_POKEMTETAGS:
1778 return mte_ptrace_copy_tags(child, request, addr, data);
1779 }
1780
1781 return ptrace_request(child, request, addr, data);
1782 }
1783
1784 enum ptrace_syscall_dir {
1785 PTRACE_SYSCALL_ENTER = 0,
1786 PTRACE_SYSCALL_EXIT,
1787 };
1788
tracehook_report_syscall(struct pt_regs * regs,enum ptrace_syscall_dir dir)1789 static void tracehook_report_syscall(struct pt_regs *regs,
1790 enum ptrace_syscall_dir dir)
1791 {
1792 int regno;
1793 unsigned long saved_reg;
1794
1795 /*
1796 * We have some ABI weirdness here in the way that we handle syscall
1797 * exit stops because we indicate whether or not the stop has been
1798 * signalled from syscall entry or syscall exit by clobbering a general
1799 * purpose register (ip/r12 for AArch32, x7 for AArch64) in the tracee
1800 * and restoring its old value after the stop. This means that:
1801 *
1802 * - Any writes by the tracer to this register during the stop are
1803 * ignored/discarded.
1804 *
1805 * - The actual value of the register is not available during the stop,
1806 * so the tracer cannot save it and restore it later.
1807 *
1808 * - Syscall stops behave differently to seccomp and pseudo-step traps
1809 * (the latter do not nobble any registers).
1810 */
1811 regno = (is_compat_task() ? 12 : 7);
1812 saved_reg = regs->regs[regno];
1813 regs->regs[regno] = dir;
1814
1815 if (dir == PTRACE_SYSCALL_ENTER) {
1816 if (tracehook_report_syscall_entry(regs))
1817 forget_syscall(regs);
1818 regs->regs[regno] = saved_reg;
1819 } else if (!test_thread_flag(TIF_SINGLESTEP)) {
1820 tracehook_report_syscall_exit(regs, 0);
1821 regs->regs[regno] = saved_reg;
1822 } else {
1823 regs->regs[regno] = saved_reg;
1824
1825 /*
1826 * Signal a pseudo-step exception since we are stepping but
1827 * tracer modifications to the registers may have rewound the
1828 * state machine.
1829 */
1830 tracehook_report_syscall_exit(regs, 1);
1831 }
1832 }
1833
syscall_trace_enter(struct pt_regs * regs)1834 int syscall_trace_enter(struct pt_regs *regs)
1835 {
1836 unsigned long flags = READ_ONCE(current_thread_info()->flags);
1837
1838 if (flags & (_TIF_SYSCALL_EMU | _TIF_SYSCALL_TRACE)) {
1839 tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
1840 if (flags & _TIF_SYSCALL_EMU)
1841 return NO_SYSCALL;
1842 }
1843
1844 /* Do the secure computing after ptrace; failures should be fast. */
1845 if (secure_computing() == -1)
1846 return NO_SYSCALL;
1847
1848 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
1849 trace_sys_enter(regs, regs->syscallno);
1850
1851 audit_syscall_entry(regs->syscallno, regs->orig_x0, regs->regs[1],
1852 regs->regs[2], regs->regs[3]);
1853
1854 return regs->syscallno;
1855 }
1856
syscall_trace_exit(struct pt_regs * regs)1857 void syscall_trace_exit(struct pt_regs *regs)
1858 {
1859 unsigned long flags = READ_ONCE(current_thread_info()->flags);
1860
1861 audit_syscall_exit(regs);
1862
1863 if (flags & _TIF_SYSCALL_TRACEPOINT)
1864 trace_sys_exit(regs, syscall_get_return_value(current, regs));
1865
1866 if (flags & (_TIF_SYSCALL_TRACE | _TIF_SINGLESTEP))
1867 tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
1868
1869 rseq_syscall(regs);
1870 }
1871
1872 /*
1873 * SPSR_ELx bits which are always architecturally RES0 per ARM DDI 0487D.a.
1874 * We permit userspace to set SSBS (AArch64 bit 12, AArch32 bit 23) which is
1875 * not described in ARM DDI 0487D.a.
1876 * We treat PAN and UAO as RES0 bits, as they are meaningless at EL0, and may
1877 * be allocated an EL0 meaning in future.
1878 * Userspace cannot use these until they have an architectural meaning.
1879 * Note that this follows the SPSR_ELx format, not the AArch32 PSR format.
1880 * We also reserve IL for the kernel; SS is handled dynamically.
1881 */
1882 #define SPSR_EL1_AARCH64_RES0_BITS \
1883 (GENMASK_ULL(63, 32) | GENMASK_ULL(27, 26) | GENMASK_ULL(23, 22) | \
1884 GENMASK_ULL(20, 13) | GENMASK_ULL(5, 5))
1885 #define SPSR_EL1_AARCH32_RES0_BITS \
1886 (GENMASK_ULL(63, 32) | GENMASK_ULL(22, 22) | GENMASK_ULL(20, 20))
1887
valid_compat_regs(struct user_pt_regs * regs)1888 static int valid_compat_regs(struct user_pt_regs *regs)
1889 {
1890 regs->pstate &= ~SPSR_EL1_AARCH32_RES0_BITS;
1891
1892 if (!system_supports_mixed_endian_el0()) {
1893 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN))
1894 regs->pstate |= PSR_AA32_E_BIT;
1895 else
1896 regs->pstate &= ~PSR_AA32_E_BIT;
1897 }
1898
1899 if (user_mode(regs) && (regs->pstate & PSR_MODE32_BIT) &&
1900 (regs->pstate & PSR_AA32_A_BIT) == 0 &&
1901 (regs->pstate & PSR_AA32_I_BIT) == 0 &&
1902 (regs->pstate & PSR_AA32_F_BIT) == 0) {
1903 return 1;
1904 }
1905
1906 /*
1907 * Force PSR to a valid 32-bit EL0t, preserving the same bits as
1908 * arch/arm.
1909 */
1910 regs->pstate &= PSR_AA32_N_BIT | PSR_AA32_Z_BIT |
1911 PSR_AA32_C_BIT | PSR_AA32_V_BIT |
1912 PSR_AA32_Q_BIT | PSR_AA32_IT_MASK |
1913 PSR_AA32_GE_MASK | PSR_AA32_E_BIT |
1914 PSR_AA32_T_BIT;
1915 regs->pstate |= PSR_MODE32_BIT;
1916
1917 return 0;
1918 }
1919
valid_native_regs(struct user_pt_regs * regs)1920 static int valid_native_regs(struct user_pt_regs *regs)
1921 {
1922 regs->pstate &= ~SPSR_EL1_AARCH64_RES0_BITS;
1923
1924 if (user_mode(regs) && !(regs->pstate & PSR_MODE32_BIT) &&
1925 (regs->pstate & PSR_D_BIT) == 0 &&
1926 (regs->pstate & PSR_A_BIT) == 0 &&
1927 (regs->pstate & PSR_I_BIT) == 0 &&
1928 (regs->pstate & PSR_F_BIT) == 0) {
1929 return 1;
1930 }
1931
1932 /* Force PSR to a valid 64-bit EL0t */
1933 regs->pstate &= PSR_N_BIT | PSR_Z_BIT | PSR_C_BIT | PSR_V_BIT;
1934
1935 return 0;
1936 }
1937
1938 /*
1939 * Are the current registers suitable for user mode? (used to maintain
1940 * security in signal handlers)
1941 */
valid_user_regs(struct user_pt_regs * regs,struct task_struct * task)1942 int valid_user_regs(struct user_pt_regs *regs, struct task_struct *task)
1943 {
1944 /* https://lore.kernel.org/lkml/20191118131525.GA4180@willie-the-truck */
1945 user_regs_reset_single_step(regs, task);
1946
1947 if (is_compat_thread(task_thread_info(task)))
1948 return valid_compat_regs(regs);
1949 else
1950 return valid_native_regs(regs);
1951 }
1952