1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm64/crypto/aes-glue.c - wrapper code for ARMv8 AES
4 *
5 * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
6 */
7
8 #include <asm/neon.h>
9 #include <asm/hwcap.h>
10 #include <asm/simd.h>
11 #include <crypto/aes.h>
12 #include <crypto/ctr.h>
13 #include <crypto/sha.h>
14 #include <crypto/internal/hash.h>
15 #include <crypto/internal/simd.h>
16 #include <crypto/internal/skcipher.h>
17 #include <crypto/scatterwalk.h>
18 #include <linux/module.h>
19 #include <linux/cpufeature.h>
20 #include <crypto/xts.h>
21
22 #include "aes-ce-setkey.h"
23
24 #ifdef USE_V8_CRYPTO_EXTENSIONS
25 #define MODE "ce"
26 #define PRIO 300
27 #define aes_expandkey ce_aes_expandkey
28 #define aes_ecb_encrypt ce_aes_ecb_encrypt
29 #define aes_ecb_decrypt ce_aes_ecb_decrypt
30 #define aes_cbc_encrypt ce_aes_cbc_encrypt
31 #define aes_cbc_decrypt ce_aes_cbc_decrypt
32 #define aes_cbc_cts_encrypt ce_aes_cbc_cts_encrypt
33 #define aes_cbc_cts_decrypt ce_aes_cbc_cts_decrypt
34 #define aes_essiv_cbc_encrypt ce_aes_essiv_cbc_encrypt
35 #define aes_essiv_cbc_decrypt ce_aes_essiv_cbc_decrypt
36 #define aes_ctr_encrypt ce_aes_ctr_encrypt
37 #define aes_xts_encrypt ce_aes_xts_encrypt
38 #define aes_xts_decrypt ce_aes_xts_decrypt
39 #define aes_mac_update ce_aes_mac_update
40 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
41 #else
42 #define MODE "neon"
43 #define PRIO 200
44 #define aes_ecb_encrypt neon_aes_ecb_encrypt
45 #define aes_ecb_decrypt neon_aes_ecb_decrypt
46 #define aes_cbc_encrypt neon_aes_cbc_encrypt
47 #define aes_cbc_decrypt neon_aes_cbc_decrypt
48 #define aes_cbc_cts_encrypt neon_aes_cbc_cts_encrypt
49 #define aes_cbc_cts_decrypt neon_aes_cbc_cts_decrypt
50 #define aes_essiv_cbc_encrypt neon_aes_essiv_cbc_encrypt
51 #define aes_essiv_cbc_decrypt neon_aes_essiv_cbc_decrypt
52 #define aes_ctr_encrypt neon_aes_ctr_encrypt
53 #define aes_xts_encrypt neon_aes_xts_encrypt
54 #define aes_xts_decrypt neon_aes_xts_decrypt
55 #define aes_mac_update neon_aes_mac_update
56 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 NEON");
57 #endif
58 #if defined(USE_V8_CRYPTO_EXTENSIONS) || !IS_ENABLED(CONFIG_CRYPTO_AES_ARM64_BS)
59 MODULE_ALIAS_CRYPTO("ecb(aes)");
60 MODULE_ALIAS_CRYPTO("cbc(aes)");
61 MODULE_ALIAS_CRYPTO("ctr(aes)");
62 MODULE_ALIAS_CRYPTO("xts(aes)");
63 #endif
64 MODULE_ALIAS_CRYPTO("cts(cbc(aes))");
65 MODULE_ALIAS_CRYPTO("essiv(cbc(aes),sha256)");
66 MODULE_ALIAS_CRYPTO("cmac(aes)");
67 MODULE_ALIAS_CRYPTO("xcbc(aes)");
68 MODULE_ALIAS_CRYPTO("cbcmac(aes)");
69
70 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
71 MODULE_LICENSE("GPL v2");
72
73 /* defined in aes-modes.S */
74 asmlinkage void aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
75 int rounds, int blocks);
76 asmlinkage void aes_ecb_decrypt(u8 out[], u8 const in[], u32 const rk[],
77 int rounds, int blocks);
78
79 asmlinkage void aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
80 int rounds, int blocks, u8 iv[]);
81 asmlinkage void aes_cbc_decrypt(u8 out[], u8 const in[], u32 const rk[],
82 int rounds, int blocks, u8 iv[]);
83
84 asmlinkage void aes_cbc_cts_encrypt(u8 out[], u8 const in[], u32 const rk[],
85 int rounds, int bytes, u8 const iv[]);
86 asmlinkage void aes_cbc_cts_decrypt(u8 out[], u8 const in[], u32 const rk[],
87 int rounds, int bytes, u8 const iv[]);
88
89 asmlinkage void aes_ctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
90 int rounds, int blocks, u8 ctr[]);
91
92 asmlinkage void aes_xts_encrypt(u8 out[], u8 const in[], u32 const rk1[],
93 int rounds, int bytes, u32 const rk2[], u8 iv[],
94 int first);
95 asmlinkage void aes_xts_decrypt(u8 out[], u8 const in[], u32 const rk1[],
96 int rounds, int bytes, u32 const rk2[], u8 iv[],
97 int first);
98
99 asmlinkage void aes_essiv_cbc_encrypt(u8 out[], u8 const in[], u32 const rk1[],
100 int rounds, int blocks, u8 iv[],
101 u32 const rk2[]);
102 asmlinkage void aes_essiv_cbc_decrypt(u8 out[], u8 const in[], u32 const rk1[],
103 int rounds, int blocks, u8 iv[],
104 u32 const rk2[]);
105
106 asmlinkage int aes_mac_update(u8 const in[], u32 const rk[], int rounds,
107 int blocks, u8 dg[], int enc_before,
108 int enc_after);
109
110 struct crypto_aes_xts_ctx {
111 struct crypto_aes_ctx key1;
112 struct crypto_aes_ctx __aligned(8) key2;
113 };
114
115 struct crypto_aes_essiv_cbc_ctx {
116 struct crypto_aes_ctx key1;
117 struct crypto_aes_ctx __aligned(8) key2;
118 struct crypto_shash *hash;
119 };
120
121 struct mac_tfm_ctx {
122 struct crypto_aes_ctx key;
123 u8 __aligned(8) consts[];
124 };
125
126 struct mac_desc_ctx {
127 unsigned int len;
128 u8 dg[AES_BLOCK_SIZE];
129 };
130
skcipher_aes_setkey(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)131 static int skcipher_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
132 unsigned int key_len)
133 {
134 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
135
136 return aes_expandkey(ctx, in_key, key_len);
137 }
138
xts_set_key(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)139 static int __maybe_unused xts_set_key(struct crypto_skcipher *tfm,
140 const u8 *in_key, unsigned int key_len)
141 {
142 struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
143 int ret;
144
145 ret = xts_verify_key(tfm, in_key, key_len);
146 if (ret)
147 return ret;
148
149 ret = aes_expandkey(&ctx->key1, in_key, key_len / 2);
150 if (!ret)
151 ret = aes_expandkey(&ctx->key2, &in_key[key_len / 2],
152 key_len / 2);
153 return ret;
154 }
155
essiv_cbc_set_key(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)156 static int __maybe_unused essiv_cbc_set_key(struct crypto_skcipher *tfm,
157 const u8 *in_key,
158 unsigned int key_len)
159 {
160 struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
161 u8 digest[SHA256_DIGEST_SIZE];
162 int ret;
163
164 ret = aes_expandkey(&ctx->key1, in_key, key_len);
165 if (ret)
166 return ret;
167
168 crypto_shash_tfm_digest(ctx->hash, in_key, key_len, digest);
169
170 return aes_expandkey(&ctx->key2, digest, sizeof(digest));
171 }
172
ecb_encrypt(struct skcipher_request * req)173 static int __maybe_unused ecb_encrypt(struct skcipher_request *req)
174 {
175 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
176 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
177 int err, rounds = 6 + ctx->key_length / 4;
178 struct skcipher_walk walk;
179 unsigned int blocks;
180
181 err = skcipher_walk_virt(&walk, req, false);
182
183 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
184 kernel_neon_begin();
185 aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
186 ctx->key_enc, rounds, blocks);
187 kernel_neon_end();
188 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
189 }
190 return err;
191 }
192
ecb_decrypt(struct skcipher_request * req)193 static int __maybe_unused ecb_decrypt(struct skcipher_request *req)
194 {
195 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
196 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
197 int err, rounds = 6 + ctx->key_length / 4;
198 struct skcipher_walk walk;
199 unsigned int blocks;
200
201 err = skcipher_walk_virt(&walk, req, false);
202
203 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
204 kernel_neon_begin();
205 aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
206 ctx->key_dec, rounds, blocks);
207 kernel_neon_end();
208 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
209 }
210 return err;
211 }
212
cbc_encrypt_walk(struct skcipher_request * req,struct skcipher_walk * walk)213 static int cbc_encrypt_walk(struct skcipher_request *req,
214 struct skcipher_walk *walk)
215 {
216 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
217 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
218 int err = 0, rounds = 6 + ctx->key_length / 4;
219 unsigned int blocks;
220
221 while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
222 kernel_neon_begin();
223 aes_cbc_encrypt(walk->dst.virt.addr, walk->src.virt.addr,
224 ctx->key_enc, rounds, blocks, walk->iv);
225 kernel_neon_end();
226 err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
227 }
228 return err;
229 }
230
cbc_encrypt(struct skcipher_request * req)231 static int __maybe_unused cbc_encrypt(struct skcipher_request *req)
232 {
233 struct skcipher_walk walk;
234 int err;
235
236 err = skcipher_walk_virt(&walk, req, false);
237 if (err)
238 return err;
239 return cbc_encrypt_walk(req, &walk);
240 }
241
cbc_decrypt_walk(struct skcipher_request * req,struct skcipher_walk * walk)242 static int cbc_decrypt_walk(struct skcipher_request *req,
243 struct skcipher_walk *walk)
244 {
245 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
246 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
247 int err = 0, rounds = 6 + ctx->key_length / 4;
248 unsigned int blocks;
249
250 while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
251 kernel_neon_begin();
252 aes_cbc_decrypt(walk->dst.virt.addr, walk->src.virt.addr,
253 ctx->key_dec, rounds, blocks, walk->iv);
254 kernel_neon_end();
255 err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
256 }
257 return err;
258 }
259
cbc_decrypt(struct skcipher_request * req)260 static int __maybe_unused cbc_decrypt(struct skcipher_request *req)
261 {
262 struct skcipher_walk walk;
263 int err;
264
265 err = skcipher_walk_virt(&walk, req, false);
266 if (err)
267 return err;
268 return cbc_decrypt_walk(req, &walk);
269 }
270
cts_cbc_encrypt(struct skcipher_request * req)271 static int cts_cbc_encrypt(struct skcipher_request *req)
272 {
273 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
274 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
275 int err, rounds = 6 + ctx->key_length / 4;
276 int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
277 struct scatterlist *src = req->src, *dst = req->dst;
278 struct scatterlist sg_src[2], sg_dst[2];
279 struct skcipher_request subreq;
280 struct skcipher_walk walk;
281
282 skcipher_request_set_tfm(&subreq, tfm);
283 skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
284 NULL, NULL);
285
286 if (req->cryptlen <= AES_BLOCK_SIZE) {
287 if (req->cryptlen < AES_BLOCK_SIZE)
288 return -EINVAL;
289 cbc_blocks = 1;
290 }
291
292 if (cbc_blocks > 0) {
293 skcipher_request_set_crypt(&subreq, req->src, req->dst,
294 cbc_blocks * AES_BLOCK_SIZE,
295 req->iv);
296
297 err = skcipher_walk_virt(&walk, &subreq, false) ?:
298 cbc_encrypt_walk(&subreq, &walk);
299 if (err)
300 return err;
301
302 if (req->cryptlen == AES_BLOCK_SIZE)
303 return 0;
304
305 dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
306 if (req->dst != req->src)
307 dst = scatterwalk_ffwd(sg_dst, req->dst,
308 subreq.cryptlen);
309 }
310
311 /* handle ciphertext stealing */
312 skcipher_request_set_crypt(&subreq, src, dst,
313 req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
314 req->iv);
315
316 err = skcipher_walk_virt(&walk, &subreq, false);
317 if (err)
318 return err;
319
320 kernel_neon_begin();
321 aes_cbc_cts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
322 ctx->key_enc, rounds, walk.nbytes, walk.iv);
323 kernel_neon_end();
324
325 return skcipher_walk_done(&walk, 0);
326 }
327
cts_cbc_decrypt(struct skcipher_request * req)328 static int cts_cbc_decrypt(struct skcipher_request *req)
329 {
330 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
331 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
332 int err, rounds = 6 + ctx->key_length / 4;
333 int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
334 struct scatterlist *src = req->src, *dst = req->dst;
335 struct scatterlist sg_src[2], sg_dst[2];
336 struct skcipher_request subreq;
337 struct skcipher_walk walk;
338
339 skcipher_request_set_tfm(&subreq, tfm);
340 skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
341 NULL, NULL);
342
343 if (req->cryptlen <= AES_BLOCK_SIZE) {
344 if (req->cryptlen < AES_BLOCK_SIZE)
345 return -EINVAL;
346 cbc_blocks = 1;
347 }
348
349 if (cbc_blocks > 0) {
350 skcipher_request_set_crypt(&subreq, req->src, req->dst,
351 cbc_blocks * AES_BLOCK_SIZE,
352 req->iv);
353
354 err = skcipher_walk_virt(&walk, &subreq, false) ?:
355 cbc_decrypt_walk(&subreq, &walk);
356 if (err)
357 return err;
358
359 if (req->cryptlen == AES_BLOCK_SIZE)
360 return 0;
361
362 dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
363 if (req->dst != req->src)
364 dst = scatterwalk_ffwd(sg_dst, req->dst,
365 subreq.cryptlen);
366 }
367
368 /* handle ciphertext stealing */
369 skcipher_request_set_crypt(&subreq, src, dst,
370 req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
371 req->iv);
372
373 err = skcipher_walk_virt(&walk, &subreq, false);
374 if (err)
375 return err;
376
377 kernel_neon_begin();
378 aes_cbc_cts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
379 ctx->key_dec, rounds, walk.nbytes, walk.iv);
380 kernel_neon_end();
381
382 return skcipher_walk_done(&walk, 0);
383 }
384
essiv_cbc_init_tfm(struct crypto_skcipher * tfm)385 static int __maybe_unused essiv_cbc_init_tfm(struct crypto_skcipher *tfm)
386 {
387 struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
388
389 ctx->hash = crypto_alloc_shash("sha256", 0, 0);
390
391 return PTR_ERR_OR_ZERO(ctx->hash);
392 }
393
essiv_cbc_exit_tfm(struct crypto_skcipher * tfm)394 static void __maybe_unused essiv_cbc_exit_tfm(struct crypto_skcipher *tfm)
395 {
396 struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
397
398 crypto_free_shash(ctx->hash);
399 }
400
essiv_cbc_encrypt(struct skcipher_request * req)401 static int __maybe_unused essiv_cbc_encrypt(struct skcipher_request *req)
402 {
403 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
404 struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
405 int err, rounds = 6 + ctx->key1.key_length / 4;
406 struct skcipher_walk walk;
407 unsigned int blocks;
408
409 err = skcipher_walk_virt(&walk, req, false);
410
411 blocks = walk.nbytes / AES_BLOCK_SIZE;
412 if (blocks) {
413 kernel_neon_begin();
414 aes_essiv_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
415 ctx->key1.key_enc, rounds, blocks,
416 req->iv, ctx->key2.key_enc);
417 kernel_neon_end();
418 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
419 }
420 return err ?: cbc_encrypt_walk(req, &walk);
421 }
422
essiv_cbc_decrypt(struct skcipher_request * req)423 static int __maybe_unused essiv_cbc_decrypt(struct skcipher_request *req)
424 {
425 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
426 struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
427 int err, rounds = 6 + ctx->key1.key_length / 4;
428 struct skcipher_walk walk;
429 unsigned int blocks;
430
431 err = skcipher_walk_virt(&walk, req, false);
432
433 blocks = walk.nbytes / AES_BLOCK_SIZE;
434 if (blocks) {
435 kernel_neon_begin();
436 aes_essiv_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
437 ctx->key1.key_dec, rounds, blocks,
438 req->iv, ctx->key2.key_enc);
439 kernel_neon_end();
440 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
441 }
442 return err ?: cbc_decrypt_walk(req, &walk);
443 }
444
ctr_encrypt(struct skcipher_request * req)445 static int __maybe_unused ctr_encrypt(struct skcipher_request *req)
446 {
447 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
448 struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
449 int err, rounds = 6 + ctx->key_length / 4;
450 struct skcipher_walk walk;
451 int blocks;
452
453 err = skcipher_walk_virt(&walk, req, false);
454
455 while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
456 kernel_neon_begin();
457 aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
458 ctx->key_enc, rounds, blocks, walk.iv);
459 kernel_neon_end();
460 err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
461 }
462 if (walk.nbytes) {
463 u8 __aligned(8) tail[AES_BLOCK_SIZE];
464 unsigned int nbytes = walk.nbytes;
465 u8 *tdst = walk.dst.virt.addr;
466 u8 *tsrc = walk.src.virt.addr;
467
468 /*
469 * Tell aes_ctr_encrypt() to process a tail block.
470 */
471 blocks = -1;
472
473 kernel_neon_begin();
474 aes_ctr_encrypt(tail, NULL, ctx->key_enc, rounds,
475 blocks, walk.iv);
476 kernel_neon_end();
477 crypto_xor_cpy(tdst, tsrc, tail, nbytes);
478 err = skcipher_walk_done(&walk, 0);
479 }
480
481 return err;
482 }
483
xts_encrypt(struct skcipher_request * req)484 static int __maybe_unused xts_encrypt(struct skcipher_request *req)
485 {
486 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
487 struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
488 int err, first, rounds = 6 + ctx->key1.key_length / 4;
489 int tail = req->cryptlen % AES_BLOCK_SIZE;
490 struct scatterlist sg_src[2], sg_dst[2];
491 struct skcipher_request subreq;
492 struct scatterlist *src, *dst;
493 struct skcipher_walk walk;
494
495 if (req->cryptlen < AES_BLOCK_SIZE)
496 return -EINVAL;
497
498 err = skcipher_walk_virt(&walk, req, false);
499
500 if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
501 int xts_blocks = DIV_ROUND_UP(req->cryptlen,
502 AES_BLOCK_SIZE) - 2;
503
504 skcipher_walk_abort(&walk);
505
506 skcipher_request_set_tfm(&subreq, tfm);
507 skcipher_request_set_callback(&subreq,
508 skcipher_request_flags(req),
509 NULL, NULL);
510 skcipher_request_set_crypt(&subreq, req->src, req->dst,
511 xts_blocks * AES_BLOCK_SIZE,
512 req->iv);
513 req = &subreq;
514 err = skcipher_walk_virt(&walk, req, false);
515 } else {
516 tail = 0;
517 }
518
519 for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
520 int nbytes = walk.nbytes;
521
522 if (walk.nbytes < walk.total)
523 nbytes &= ~(AES_BLOCK_SIZE - 1);
524
525 kernel_neon_begin();
526 aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
527 ctx->key1.key_enc, rounds, nbytes,
528 ctx->key2.key_enc, walk.iv, first);
529 kernel_neon_end();
530 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
531 }
532
533 if (err || likely(!tail))
534 return err;
535
536 dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
537 if (req->dst != req->src)
538 dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
539
540 skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
541 req->iv);
542
543 err = skcipher_walk_virt(&walk, &subreq, false);
544 if (err)
545 return err;
546
547 kernel_neon_begin();
548 aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
549 ctx->key1.key_enc, rounds, walk.nbytes,
550 ctx->key2.key_enc, walk.iv, first);
551 kernel_neon_end();
552
553 return skcipher_walk_done(&walk, 0);
554 }
555
xts_decrypt(struct skcipher_request * req)556 static int __maybe_unused xts_decrypt(struct skcipher_request *req)
557 {
558 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
559 struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
560 int err, first, rounds = 6 + ctx->key1.key_length / 4;
561 int tail = req->cryptlen % AES_BLOCK_SIZE;
562 struct scatterlist sg_src[2], sg_dst[2];
563 struct skcipher_request subreq;
564 struct scatterlist *src, *dst;
565 struct skcipher_walk walk;
566
567 if (req->cryptlen < AES_BLOCK_SIZE)
568 return -EINVAL;
569
570 err = skcipher_walk_virt(&walk, req, false);
571
572 if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
573 int xts_blocks = DIV_ROUND_UP(req->cryptlen,
574 AES_BLOCK_SIZE) - 2;
575
576 skcipher_walk_abort(&walk);
577
578 skcipher_request_set_tfm(&subreq, tfm);
579 skcipher_request_set_callback(&subreq,
580 skcipher_request_flags(req),
581 NULL, NULL);
582 skcipher_request_set_crypt(&subreq, req->src, req->dst,
583 xts_blocks * AES_BLOCK_SIZE,
584 req->iv);
585 req = &subreq;
586 err = skcipher_walk_virt(&walk, req, false);
587 } else {
588 tail = 0;
589 }
590
591 for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
592 int nbytes = walk.nbytes;
593
594 if (walk.nbytes < walk.total)
595 nbytes &= ~(AES_BLOCK_SIZE - 1);
596
597 kernel_neon_begin();
598 aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
599 ctx->key1.key_dec, rounds, nbytes,
600 ctx->key2.key_enc, walk.iv, first);
601 kernel_neon_end();
602 err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
603 }
604
605 if (err || likely(!tail))
606 return err;
607
608 dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
609 if (req->dst != req->src)
610 dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
611
612 skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
613 req->iv);
614
615 err = skcipher_walk_virt(&walk, &subreq, false);
616 if (err)
617 return err;
618
619
620 kernel_neon_begin();
621 aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
622 ctx->key1.key_dec, rounds, walk.nbytes,
623 ctx->key2.key_enc, walk.iv, first);
624 kernel_neon_end();
625
626 return skcipher_walk_done(&walk, 0);
627 }
628
629 static struct skcipher_alg aes_algs[] = { {
630 #if defined(USE_V8_CRYPTO_EXTENSIONS) || !IS_ENABLED(CONFIG_CRYPTO_AES_ARM64_BS)
631 .base = {
632 .cra_name = "ecb(aes)",
633 .cra_driver_name = "ecb-aes-" MODE,
634 .cra_priority = PRIO,
635 .cra_blocksize = AES_BLOCK_SIZE,
636 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
637 .cra_module = THIS_MODULE,
638 },
639 .min_keysize = AES_MIN_KEY_SIZE,
640 .max_keysize = AES_MAX_KEY_SIZE,
641 .setkey = skcipher_aes_setkey,
642 .encrypt = ecb_encrypt,
643 .decrypt = ecb_decrypt,
644 }, {
645 .base = {
646 .cra_name = "cbc(aes)",
647 .cra_driver_name = "cbc-aes-" MODE,
648 .cra_priority = PRIO,
649 .cra_blocksize = AES_BLOCK_SIZE,
650 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
651 .cra_module = THIS_MODULE,
652 },
653 .min_keysize = AES_MIN_KEY_SIZE,
654 .max_keysize = AES_MAX_KEY_SIZE,
655 .ivsize = AES_BLOCK_SIZE,
656 .setkey = skcipher_aes_setkey,
657 .encrypt = cbc_encrypt,
658 .decrypt = cbc_decrypt,
659 }, {
660 .base = {
661 .cra_name = "ctr(aes)",
662 .cra_driver_name = "ctr-aes-" MODE,
663 .cra_priority = PRIO,
664 .cra_blocksize = 1,
665 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
666 .cra_module = THIS_MODULE,
667 },
668 .min_keysize = AES_MIN_KEY_SIZE,
669 .max_keysize = AES_MAX_KEY_SIZE,
670 .ivsize = AES_BLOCK_SIZE,
671 .chunksize = AES_BLOCK_SIZE,
672 .setkey = skcipher_aes_setkey,
673 .encrypt = ctr_encrypt,
674 .decrypt = ctr_encrypt,
675 }, {
676 .base = {
677 .cra_name = "xts(aes)",
678 .cra_driver_name = "xts-aes-" MODE,
679 .cra_priority = PRIO,
680 .cra_blocksize = AES_BLOCK_SIZE,
681 .cra_ctxsize = sizeof(struct crypto_aes_xts_ctx),
682 .cra_module = THIS_MODULE,
683 },
684 .min_keysize = 2 * AES_MIN_KEY_SIZE,
685 .max_keysize = 2 * AES_MAX_KEY_SIZE,
686 .ivsize = AES_BLOCK_SIZE,
687 .walksize = 2 * AES_BLOCK_SIZE,
688 .setkey = xts_set_key,
689 .encrypt = xts_encrypt,
690 .decrypt = xts_decrypt,
691 }, {
692 #endif
693 .base = {
694 .cra_name = "cts(cbc(aes))",
695 .cra_driver_name = "cts-cbc-aes-" MODE,
696 .cra_priority = PRIO,
697 .cra_blocksize = AES_BLOCK_SIZE,
698 .cra_ctxsize = sizeof(struct crypto_aes_ctx),
699 .cra_module = THIS_MODULE,
700 },
701 .min_keysize = AES_MIN_KEY_SIZE,
702 .max_keysize = AES_MAX_KEY_SIZE,
703 .ivsize = AES_BLOCK_SIZE,
704 .walksize = 2 * AES_BLOCK_SIZE,
705 .setkey = skcipher_aes_setkey,
706 .encrypt = cts_cbc_encrypt,
707 .decrypt = cts_cbc_decrypt,
708 }, {
709 .base = {
710 .cra_name = "essiv(cbc(aes),sha256)",
711 .cra_driver_name = "essiv-cbc-aes-sha256-" MODE,
712 .cra_priority = PRIO + 1,
713 .cra_blocksize = AES_BLOCK_SIZE,
714 .cra_ctxsize = sizeof(struct crypto_aes_essiv_cbc_ctx),
715 .cra_module = THIS_MODULE,
716 },
717 .min_keysize = AES_MIN_KEY_SIZE,
718 .max_keysize = AES_MAX_KEY_SIZE,
719 .ivsize = AES_BLOCK_SIZE,
720 .setkey = essiv_cbc_set_key,
721 .encrypt = essiv_cbc_encrypt,
722 .decrypt = essiv_cbc_decrypt,
723 .init = essiv_cbc_init_tfm,
724 .exit = essiv_cbc_exit_tfm,
725 } };
726
cbcmac_setkey(struct crypto_shash * tfm,const u8 * in_key,unsigned int key_len)727 static int cbcmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
728 unsigned int key_len)
729 {
730 struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
731
732 return aes_expandkey(&ctx->key, in_key, key_len);
733 }
734
cmac_gf128_mul_by_x(be128 * y,const be128 * x)735 static void cmac_gf128_mul_by_x(be128 *y, const be128 *x)
736 {
737 u64 a = be64_to_cpu(x->a);
738 u64 b = be64_to_cpu(x->b);
739
740 y->a = cpu_to_be64((a << 1) | (b >> 63));
741 y->b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0));
742 }
743
cmac_setkey(struct crypto_shash * tfm,const u8 * in_key,unsigned int key_len)744 static int cmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
745 unsigned int key_len)
746 {
747 struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
748 be128 *consts = (be128 *)ctx->consts;
749 int rounds = 6 + key_len / 4;
750 int err;
751
752 err = cbcmac_setkey(tfm, in_key, key_len);
753 if (err)
754 return err;
755
756 /* encrypt the zero vector */
757 kernel_neon_begin();
758 aes_ecb_encrypt(ctx->consts, (u8[AES_BLOCK_SIZE]){}, ctx->key.key_enc,
759 rounds, 1);
760 kernel_neon_end();
761
762 cmac_gf128_mul_by_x(consts, consts);
763 cmac_gf128_mul_by_x(consts + 1, consts);
764
765 return 0;
766 }
767
xcbc_setkey(struct crypto_shash * tfm,const u8 * in_key,unsigned int key_len)768 static int xcbc_setkey(struct crypto_shash *tfm, const u8 *in_key,
769 unsigned int key_len)
770 {
771 static u8 const ks[3][AES_BLOCK_SIZE] = {
772 { [0 ... AES_BLOCK_SIZE - 1] = 0x1 },
773 { [0 ... AES_BLOCK_SIZE - 1] = 0x2 },
774 { [0 ... AES_BLOCK_SIZE - 1] = 0x3 },
775 };
776
777 struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
778 int rounds = 6 + key_len / 4;
779 u8 key[AES_BLOCK_SIZE];
780 int err;
781
782 err = cbcmac_setkey(tfm, in_key, key_len);
783 if (err)
784 return err;
785
786 kernel_neon_begin();
787 aes_ecb_encrypt(key, ks[0], ctx->key.key_enc, rounds, 1);
788 aes_ecb_encrypt(ctx->consts, ks[1], ctx->key.key_enc, rounds, 2);
789 kernel_neon_end();
790
791 return cbcmac_setkey(tfm, key, sizeof(key));
792 }
793
mac_init(struct shash_desc * desc)794 static int mac_init(struct shash_desc *desc)
795 {
796 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
797
798 memset(ctx->dg, 0, AES_BLOCK_SIZE);
799 ctx->len = 0;
800
801 return 0;
802 }
803
mac_do_update(struct crypto_aes_ctx * ctx,u8 const in[],int blocks,u8 dg[],int enc_before,int enc_after)804 static void mac_do_update(struct crypto_aes_ctx *ctx, u8 const in[], int blocks,
805 u8 dg[], int enc_before, int enc_after)
806 {
807 int rounds = 6 + ctx->key_length / 4;
808
809 if (crypto_simd_usable()) {
810 int rem;
811
812 do {
813 kernel_neon_begin();
814 rem = aes_mac_update(in, ctx->key_enc, rounds, blocks,
815 dg, enc_before, enc_after);
816 kernel_neon_end();
817 in += (blocks - rem) * AES_BLOCK_SIZE;
818 blocks = rem;
819 enc_before = 0;
820 } while (blocks);
821 } else {
822 if (enc_before)
823 aes_encrypt(ctx, dg, dg);
824
825 while (blocks--) {
826 crypto_xor(dg, in, AES_BLOCK_SIZE);
827 in += AES_BLOCK_SIZE;
828
829 if (blocks || enc_after)
830 aes_encrypt(ctx, dg, dg);
831 }
832 }
833 }
834
mac_update(struct shash_desc * desc,const u8 * p,unsigned int len)835 static int mac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
836 {
837 struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
838 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
839
840 while (len > 0) {
841 unsigned int l;
842
843 if ((ctx->len % AES_BLOCK_SIZE) == 0 &&
844 (ctx->len + len) > AES_BLOCK_SIZE) {
845
846 int blocks = len / AES_BLOCK_SIZE;
847
848 len %= AES_BLOCK_SIZE;
849
850 mac_do_update(&tctx->key, p, blocks, ctx->dg,
851 (ctx->len != 0), (len != 0));
852
853 p += blocks * AES_BLOCK_SIZE;
854
855 if (!len) {
856 ctx->len = AES_BLOCK_SIZE;
857 break;
858 }
859 ctx->len = 0;
860 }
861
862 l = min(len, AES_BLOCK_SIZE - ctx->len);
863
864 if (l <= AES_BLOCK_SIZE) {
865 crypto_xor(ctx->dg + ctx->len, p, l);
866 ctx->len += l;
867 len -= l;
868 p += l;
869 }
870 }
871
872 return 0;
873 }
874
cbcmac_final(struct shash_desc * desc,u8 * out)875 static int cbcmac_final(struct shash_desc *desc, u8 *out)
876 {
877 struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
878 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
879
880 mac_do_update(&tctx->key, NULL, 0, ctx->dg, (ctx->len != 0), 0);
881
882 memcpy(out, ctx->dg, AES_BLOCK_SIZE);
883
884 return 0;
885 }
886
cmac_final(struct shash_desc * desc,u8 * out)887 static int cmac_final(struct shash_desc *desc, u8 *out)
888 {
889 struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
890 struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
891 u8 *consts = tctx->consts;
892
893 if (ctx->len != AES_BLOCK_SIZE) {
894 ctx->dg[ctx->len] ^= 0x80;
895 consts += AES_BLOCK_SIZE;
896 }
897
898 mac_do_update(&tctx->key, consts, 1, ctx->dg, 0, 1);
899
900 memcpy(out, ctx->dg, AES_BLOCK_SIZE);
901
902 return 0;
903 }
904
905 static struct shash_alg mac_algs[] = { {
906 .base.cra_name = "cmac(aes)",
907 .base.cra_driver_name = "cmac-aes-" MODE,
908 .base.cra_priority = PRIO,
909 .base.cra_blocksize = AES_BLOCK_SIZE,
910 .base.cra_ctxsize = sizeof(struct mac_tfm_ctx) +
911 2 * AES_BLOCK_SIZE,
912 .base.cra_module = THIS_MODULE,
913
914 .digestsize = AES_BLOCK_SIZE,
915 .init = mac_init,
916 .update = mac_update,
917 .final = cmac_final,
918 .setkey = cmac_setkey,
919 .descsize = sizeof(struct mac_desc_ctx),
920 }, {
921 .base.cra_name = "xcbc(aes)",
922 .base.cra_driver_name = "xcbc-aes-" MODE,
923 .base.cra_priority = PRIO,
924 .base.cra_blocksize = AES_BLOCK_SIZE,
925 .base.cra_ctxsize = sizeof(struct mac_tfm_ctx) +
926 2 * AES_BLOCK_SIZE,
927 .base.cra_module = THIS_MODULE,
928
929 .digestsize = AES_BLOCK_SIZE,
930 .init = mac_init,
931 .update = mac_update,
932 .final = cmac_final,
933 .setkey = xcbc_setkey,
934 .descsize = sizeof(struct mac_desc_ctx),
935 }, {
936 .base.cra_name = "cbcmac(aes)",
937 .base.cra_driver_name = "cbcmac-aes-" MODE,
938 .base.cra_priority = PRIO,
939 .base.cra_blocksize = 1,
940 .base.cra_ctxsize = sizeof(struct mac_tfm_ctx),
941 .base.cra_module = THIS_MODULE,
942
943 .digestsize = AES_BLOCK_SIZE,
944 .init = mac_init,
945 .update = mac_update,
946 .final = cbcmac_final,
947 .setkey = cbcmac_setkey,
948 .descsize = sizeof(struct mac_desc_ctx),
949 } };
950
aes_exit(void)951 static void aes_exit(void)
952 {
953 crypto_unregister_shashes(mac_algs, ARRAY_SIZE(mac_algs));
954 crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
955 }
956
aes_init(void)957 static int __init aes_init(void)
958 {
959 int err;
960
961 err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
962 if (err)
963 return err;
964
965 err = crypto_register_shashes(mac_algs, ARRAY_SIZE(mac_algs));
966 if (err)
967 goto unregister_ciphers;
968
969 return 0;
970
971 unregister_ciphers:
972 crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
973 return err;
974 }
975
976 #ifdef USE_V8_CRYPTO_EXTENSIONS
977 module_cpu_feature_match(AES, aes_init);
978 #else
979 module_init(aes_init);
980 EXPORT_SYMBOL(neon_aes_ecb_encrypt);
981 EXPORT_SYMBOL(neon_aes_cbc_encrypt);
982 EXPORT_SYMBOL(neon_aes_xts_encrypt);
983 EXPORT_SYMBOL(neon_aes_xts_decrypt);
984 #endif
985 module_exit(aes_exit);
986