xref: /OK3568_Linux_fs/kernel/arch/arm64/crypto/aes-glue.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/arch/arm64/crypto/aes-glue.c - wrapper code for ARMv8 AES
4  *
5  * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
6  */
7 
8 #include <asm/neon.h>
9 #include <asm/hwcap.h>
10 #include <asm/simd.h>
11 #include <crypto/aes.h>
12 #include <crypto/ctr.h>
13 #include <crypto/sha.h>
14 #include <crypto/internal/hash.h>
15 #include <crypto/internal/simd.h>
16 #include <crypto/internal/skcipher.h>
17 #include <crypto/scatterwalk.h>
18 #include <linux/module.h>
19 #include <linux/cpufeature.h>
20 #include <crypto/xts.h>
21 
22 #include "aes-ce-setkey.h"
23 
24 #ifdef USE_V8_CRYPTO_EXTENSIONS
25 #define MODE			"ce"
26 #define PRIO			300
27 #define aes_expandkey		ce_aes_expandkey
28 #define aes_ecb_encrypt		ce_aes_ecb_encrypt
29 #define aes_ecb_decrypt		ce_aes_ecb_decrypt
30 #define aes_cbc_encrypt		ce_aes_cbc_encrypt
31 #define aes_cbc_decrypt		ce_aes_cbc_decrypt
32 #define aes_cbc_cts_encrypt	ce_aes_cbc_cts_encrypt
33 #define aes_cbc_cts_decrypt	ce_aes_cbc_cts_decrypt
34 #define aes_essiv_cbc_encrypt	ce_aes_essiv_cbc_encrypt
35 #define aes_essiv_cbc_decrypt	ce_aes_essiv_cbc_decrypt
36 #define aes_ctr_encrypt		ce_aes_ctr_encrypt
37 #define aes_xts_encrypt		ce_aes_xts_encrypt
38 #define aes_xts_decrypt		ce_aes_xts_decrypt
39 #define aes_mac_update		ce_aes_mac_update
40 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
41 #else
42 #define MODE			"neon"
43 #define PRIO			200
44 #define aes_ecb_encrypt		neon_aes_ecb_encrypt
45 #define aes_ecb_decrypt		neon_aes_ecb_decrypt
46 #define aes_cbc_encrypt		neon_aes_cbc_encrypt
47 #define aes_cbc_decrypt		neon_aes_cbc_decrypt
48 #define aes_cbc_cts_encrypt	neon_aes_cbc_cts_encrypt
49 #define aes_cbc_cts_decrypt	neon_aes_cbc_cts_decrypt
50 #define aes_essiv_cbc_encrypt	neon_aes_essiv_cbc_encrypt
51 #define aes_essiv_cbc_decrypt	neon_aes_essiv_cbc_decrypt
52 #define aes_ctr_encrypt		neon_aes_ctr_encrypt
53 #define aes_xts_encrypt		neon_aes_xts_encrypt
54 #define aes_xts_decrypt		neon_aes_xts_decrypt
55 #define aes_mac_update		neon_aes_mac_update
56 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 NEON");
57 #endif
58 #if defined(USE_V8_CRYPTO_EXTENSIONS) || !IS_ENABLED(CONFIG_CRYPTO_AES_ARM64_BS)
59 MODULE_ALIAS_CRYPTO("ecb(aes)");
60 MODULE_ALIAS_CRYPTO("cbc(aes)");
61 MODULE_ALIAS_CRYPTO("ctr(aes)");
62 MODULE_ALIAS_CRYPTO("xts(aes)");
63 #endif
64 MODULE_ALIAS_CRYPTO("cts(cbc(aes))");
65 MODULE_ALIAS_CRYPTO("essiv(cbc(aes),sha256)");
66 MODULE_ALIAS_CRYPTO("cmac(aes)");
67 MODULE_ALIAS_CRYPTO("xcbc(aes)");
68 MODULE_ALIAS_CRYPTO("cbcmac(aes)");
69 
70 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
71 MODULE_LICENSE("GPL v2");
72 
73 /* defined in aes-modes.S */
74 asmlinkage void aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[],
75 				int rounds, int blocks);
76 asmlinkage void aes_ecb_decrypt(u8 out[], u8 const in[], u32 const rk[],
77 				int rounds, int blocks);
78 
79 asmlinkage void aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[],
80 				int rounds, int blocks, u8 iv[]);
81 asmlinkage void aes_cbc_decrypt(u8 out[], u8 const in[], u32 const rk[],
82 				int rounds, int blocks, u8 iv[]);
83 
84 asmlinkage void aes_cbc_cts_encrypt(u8 out[], u8 const in[], u32 const rk[],
85 				int rounds, int bytes, u8 const iv[]);
86 asmlinkage void aes_cbc_cts_decrypt(u8 out[], u8 const in[], u32 const rk[],
87 				int rounds, int bytes, u8 const iv[]);
88 
89 asmlinkage void aes_ctr_encrypt(u8 out[], u8 const in[], u32 const rk[],
90 				int rounds, int blocks, u8 ctr[]);
91 
92 asmlinkage void aes_xts_encrypt(u8 out[], u8 const in[], u32 const rk1[],
93 				int rounds, int bytes, u32 const rk2[], u8 iv[],
94 				int first);
95 asmlinkage void aes_xts_decrypt(u8 out[], u8 const in[], u32 const rk1[],
96 				int rounds, int bytes, u32 const rk2[], u8 iv[],
97 				int first);
98 
99 asmlinkage void aes_essiv_cbc_encrypt(u8 out[], u8 const in[], u32 const rk1[],
100 				      int rounds, int blocks, u8 iv[],
101 				      u32 const rk2[]);
102 asmlinkage void aes_essiv_cbc_decrypt(u8 out[], u8 const in[], u32 const rk1[],
103 				      int rounds, int blocks, u8 iv[],
104 				      u32 const rk2[]);
105 
106 asmlinkage int aes_mac_update(u8 const in[], u32 const rk[], int rounds,
107 			      int blocks, u8 dg[], int enc_before,
108 			      int enc_after);
109 
110 struct crypto_aes_xts_ctx {
111 	struct crypto_aes_ctx key1;
112 	struct crypto_aes_ctx __aligned(8) key2;
113 };
114 
115 struct crypto_aes_essiv_cbc_ctx {
116 	struct crypto_aes_ctx key1;
117 	struct crypto_aes_ctx __aligned(8) key2;
118 	struct crypto_shash *hash;
119 };
120 
121 struct mac_tfm_ctx {
122 	struct crypto_aes_ctx key;
123 	u8 __aligned(8) consts[];
124 };
125 
126 struct mac_desc_ctx {
127 	unsigned int len;
128 	u8 dg[AES_BLOCK_SIZE];
129 };
130 
skcipher_aes_setkey(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)131 static int skcipher_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
132 			       unsigned int key_len)
133 {
134 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
135 
136 	return aes_expandkey(ctx, in_key, key_len);
137 }
138 
xts_set_key(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)139 static int __maybe_unused xts_set_key(struct crypto_skcipher *tfm,
140 				      const u8 *in_key, unsigned int key_len)
141 {
142 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
143 	int ret;
144 
145 	ret = xts_verify_key(tfm, in_key, key_len);
146 	if (ret)
147 		return ret;
148 
149 	ret = aes_expandkey(&ctx->key1, in_key, key_len / 2);
150 	if (!ret)
151 		ret = aes_expandkey(&ctx->key2, &in_key[key_len / 2],
152 				    key_len / 2);
153 	return ret;
154 }
155 
essiv_cbc_set_key(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)156 static int __maybe_unused essiv_cbc_set_key(struct crypto_skcipher *tfm,
157 					    const u8 *in_key,
158 					    unsigned int key_len)
159 {
160 	struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
161 	u8 digest[SHA256_DIGEST_SIZE];
162 	int ret;
163 
164 	ret = aes_expandkey(&ctx->key1, in_key, key_len);
165 	if (ret)
166 		return ret;
167 
168 	crypto_shash_tfm_digest(ctx->hash, in_key, key_len, digest);
169 
170 	return aes_expandkey(&ctx->key2, digest, sizeof(digest));
171 }
172 
ecb_encrypt(struct skcipher_request * req)173 static int __maybe_unused ecb_encrypt(struct skcipher_request *req)
174 {
175 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
176 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
177 	int err, rounds = 6 + ctx->key_length / 4;
178 	struct skcipher_walk walk;
179 	unsigned int blocks;
180 
181 	err = skcipher_walk_virt(&walk, req, false);
182 
183 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
184 		kernel_neon_begin();
185 		aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
186 				ctx->key_enc, rounds, blocks);
187 		kernel_neon_end();
188 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
189 	}
190 	return err;
191 }
192 
ecb_decrypt(struct skcipher_request * req)193 static int __maybe_unused ecb_decrypt(struct skcipher_request *req)
194 {
195 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
196 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
197 	int err, rounds = 6 + ctx->key_length / 4;
198 	struct skcipher_walk walk;
199 	unsigned int blocks;
200 
201 	err = skcipher_walk_virt(&walk, req, false);
202 
203 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
204 		kernel_neon_begin();
205 		aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
206 				ctx->key_dec, rounds, blocks);
207 		kernel_neon_end();
208 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
209 	}
210 	return err;
211 }
212 
cbc_encrypt_walk(struct skcipher_request * req,struct skcipher_walk * walk)213 static int cbc_encrypt_walk(struct skcipher_request *req,
214 			    struct skcipher_walk *walk)
215 {
216 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
217 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
218 	int err = 0, rounds = 6 + ctx->key_length / 4;
219 	unsigned int blocks;
220 
221 	while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
222 		kernel_neon_begin();
223 		aes_cbc_encrypt(walk->dst.virt.addr, walk->src.virt.addr,
224 				ctx->key_enc, rounds, blocks, walk->iv);
225 		kernel_neon_end();
226 		err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
227 	}
228 	return err;
229 }
230 
cbc_encrypt(struct skcipher_request * req)231 static int __maybe_unused cbc_encrypt(struct skcipher_request *req)
232 {
233 	struct skcipher_walk walk;
234 	int err;
235 
236 	err = skcipher_walk_virt(&walk, req, false);
237 	if (err)
238 		return err;
239 	return cbc_encrypt_walk(req, &walk);
240 }
241 
cbc_decrypt_walk(struct skcipher_request * req,struct skcipher_walk * walk)242 static int cbc_decrypt_walk(struct skcipher_request *req,
243 			    struct skcipher_walk *walk)
244 {
245 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
246 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
247 	int err = 0, rounds = 6 + ctx->key_length / 4;
248 	unsigned int blocks;
249 
250 	while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) {
251 		kernel_neon_begin();
252 		aes_cbc_decrypt(walk->dst.virt.addr, walk->src.virt.addr,
253 				ctx->key_dec, rounds, blocks, walk->iv);
254 		kernel_neon_end();
255 		err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE);
256 	}
257 	return err;
258 }
259 
cbc_decrypt(struct skcipher_request * req)260 static int __maybe_unused cbc_decrypt(struct skcipher_request *req)
261 {
262 	struct skcipher_walk walk;
263 	int err;
264 
265 	err = skcipher_walk_virt(&walk, req, false);
266 	if (err)
267 		return err;
268 	return cbc_decrypt_walk(req, &walk);
269 }
270 
cts_cbc_encrypt(struct skcipher_request * req)271 static int cts_cbc_encrypt(struct skcipher_request *req)
272 {
273 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
274 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
275 	int err, rounds = 6 + ctx->key_length / 4;
276 	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
277 	struct scatterlist *src = req->src, *dst = req->dst;
278 	struct scatterlist sg_src[2], sg_dst[2];
279 	struct skcipher_request subreq;
280 	struct skcipher_walk walk;
281 
282 	skcipher_request_set_tfm(&subreq, tfm);
283 	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
284 				      NULL, NULL);
285 
286 	if (req->cryptlen <= AES_BLOCK_SIZE) {
287 		if (req->cryptlen < AES_BLOCK_SIZE)
288 			return -EINVAL;
289 		cbc_blocks = 1;
290 	}
291 
292 	if (cbc_blocks > 0) {
293 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
294 					   cbc_blocks * AES_BLOCK_SIZE,
295 					   req->iv);
296 
297 		err = skcipher_walk_virt(&walk, &subreq, false) ?:
298 		      cbc_encrypt_walk(&subreq, &walk);
299 		if (err)
300 			return err;
301 
302 		if (req->cryptlen == AES_BLOCK_SIZE)
303 			return 0;
304 
305 		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
306 		if (req->dst != req->src)
307 			dst = scatterwalk_ffwd(sg_dst, req->dst,
308 					       subreq.cryptlen);
309 	}
310 
311 	/* handle ciphertext stealing */
312 	skcipher_request_set_crypt(&subreq, src, dst,
313 				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
314 				   req->iv);
315 
316 	err = skcipher_walk_virt(&walk, &subreq, false);
317 	if (err)
318 		return err;
319 
320 	kernel_neon_begin();
321 	aes_cbc_cts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
322 			    ctx->key_enc, rounds, walk.nbytes, walk.iv);
323 	kernel_neon_end();
324 
325 	return skcipher_walk_done(&walk, 0);
326 }
327 
cts_cbc_decrypt(struct skcipher_request * req)328 static int cts_cbc_decrypt(struct skcipher_request *req)
329 {
330 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
331 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
332 	int err, rounds = 6 + ctx->key_length / 4;
333 	int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2;
334 	struct scatterlist *src = req->src, *dst = req->dst;
335 	struct scatterlist sg_src[2], sg_dst[2];
336 	struct skcipher_request subreq;
337 	struct skcipher_walk walk;
338 
339 	skcipher_request_set_tfm(&subreq, tfm);
340 	skcipher_request_set_callback(&subreq, skcipher_request_flags(req),
341 				      NULL, NULL);
342 
343 	if (req->cryptlen <= AES_BLOCK_SIZE) {
344 		if (req->cryptlen < AES_BLOCK_SIZE)
345 			return -EINVAL;
346 		cbc_blocks = 1;
347 	}
348 
349 	if (cbc_blocks > 0) {
350 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
351 					   cbc_blocks * AES_BLOCK_SIZE,
352 					   req->iv);
353 
354 		err = skcipher_walk_virt(&walk, &subreq, false) ?:
355 		      cbc_decrypt_walk(&subreq, &walk);
356 		if (err)
357 			return err;
358 
359 		if (req->cryptlen == AES_BLOCK_SIZE)
360 			return 0;
361 
362 		dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen);
363 		if (req->dst != req->src)
364 			dst = scatterwalk_ffwd(sg_dst, req->dst,
365 					       subreq.cryptlen);
366 	}
367 
368 	/* handle ciphertext stealing */
369 	skcipher_request_set_crypt(&subreq, src, dst,
370 				   req->cryptlen - cbc_blocks * AES_BLOCK_SIZE,
371 				   req->iv);
372 
373 	err = skcipher_walk_virt(&walk, &subreq, false);
374 	if (err)
375 		return err;
376 
377 	kernel_neon_begin();
378 	aes_cbc_cts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
379 			    ctx->key_dec, rounds, walk.nbytes, walk.iv);
380 	kernel_neon_end();
381 
382 	return skcipher_walk_done(&walk, 0);
383 }
384 
essiv_cbc_init_tfm(struct crypto_skcipher * tfm)385 static int __maybe_unused essiv_cbc_init_tfm(struct crypto_skcipher *tfm)
386 {
387 	struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
388 
389 	ctx->hash = crypto_alloc_shash("sha256", 0, 0);
390 
391 	return PTR_ERR_OR_ZERO(ctx->hash);
392 }
393 
essiv_cbc_exit_tfm(struct crypto_skcipher * tfm)394 static void __maybe_unused essiv_cbc_exit_tfm(struct crypto_skcipher *tfm)
395 {
396 	struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
397 
398 	crypto_free_shash(ctx->hash);
399 }
400 
essiv_cbc_encrypt(struct skcipher_request * req)401 static int __maybe_unused essiv_cbc_encrypt(struct skcipher_request *req)
402 {
403 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
404 	struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
405 	int err, rounds = 6 + ctx->key1.key_length / 4;
406 	struct skcipher_walk walk;
407 	unsigned int blocks;
408 
409 	err = skcipher_walk_virt(&walk, req, false);
410 
411 	blocks = walk.nbytes / AES_BLOCK_SIZE;
412 	if (blocks) {
413 		kernel_neon_begin();
414 		aes_essiv_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
415 				      ctx->key1.key_enc, rounds, blocks,
416 				      req->iv, ctx->key2.key_enc);
417 		kernel_neon_end();
418 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
419 	}
420 	return err ?: cbc_encrypt_walk(req, &walk);
421 }
422 
essiv_cbc_decrypt(struct skcipher_request * req)423 static int __maybe_unused essiv_cbc_decrypt(struct skcipher_request *req)
424 {
425 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
426 	struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm);
427 	int err, rounds = 6 + ctx->key1.key_length / 4;
428 	struct skcipher_walk walk;
429 	unsigned int blocks;
430 
431 	err = skcipher_walk_virt(&walk, req, false);
432 
433 	blocks = walk.nbytes / AES_BLOCK_SIZE;
434 	if (blocks) {
435 		kernel_neon_begin();
436 		aes_essiv_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
437 				      ctx->key1.key_dec, rounds, blocks,
438 				      req->iv, ctx->key2.key_enc);
439 		kernel_neon_end();
440 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
441 	}
442 	return err ?: cbc_decrypt_walk(req, &walk);
443 }
444 
ctr_encrypt(struct skcipher_request * req)445 static int __maybe_unused ctr_encrypt(struct skcipher_request *req)
446 {
447 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
448 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
449 	int err, rounds = 6 + ctx->key_length / 4;
450 	struct skcipher_walk walk;
451 	int blocks;
452 
453 	err = skcipher_walk_virt(&walk, req, false);
454 
455 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
456 		kernel_neon_begin();
457 		aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
458 				ctx->key_enc, rounds, blocks, walk.iv);
459 		kernel_neon_end();
460 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
461 	}
462 	if (walk.nbytes) {
463 		u8 __aligned(8) tail[AES_BLOCK_SIZE];
464 		unsigned int nbytes = walk.nbytes;
465 		u8 *tdst = walk.dst.virt.addr;
466 		u8 *tsrc = walk.src.virt.addr;
467 
468 		/*
469 		 * Tell aes_ctr_encrypt() to process a tail block.
470 		 */
471 		blocks = -1;
472 
473 		kernel_neon_begin();
474 		aes_ctr_encrypt(tail, NULL, ctx->key_enc, rounds,
475 				blocks, walk.iv);
476 		kernel_neon_end();
477 		crypto_xor_cpy(tdst, tsrc, tail, nbytes);
478 		err = skcipher_walk_done(&walk, 0);
479 	}
480 
481 	return err;
482 }
483 
xts_encrypt(struct skcipher_request * req)484 static int __maybe_unused xts_encrypt(struct skcipher_request *req)
485 {
486 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
487 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
488 	int err, first, rounds = 6 + ctx->key1.key_length / 4;
489 	int tail = req->cryptlen % AES_BLOCK_SIZE;
490 	struct scatterlist sg_src[2], sg_dst[2];
491 	struct skcipher_request subreq;
492 	struct scatterlist *src, *dst;
493 	struct skcipher_walk walk;
494 
495 	if (req->cryptlen < AES_BLOCK_SIZE)
496 		return -EINVAL;
497 
498 	err = skcipher_walk_virt(&walk, req, false);
499 
500 	if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
501 		int xts_blocks = DIV_ROUND_UP(req->cryptlen,
502 					      AES_BLOCK_SIZE) - 2;
503 
504 		skcipher_walk_abort(&walk);
505 
506 		skcipher_request_set_tfm(&subreq, tfm);
507 		skcipher_request_set_callback(&subreq,
508 					      skcipher_request_flags(req),
509 					      NULL, NULL);
510 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
511 					   xts_blocks * AES_BLOCK_SIZE,
512 					   req->iv);
513 		req = &subreq;
514 		err = skcipher_walk_virt(&walk, req, false);
515 	} else {
516 		tail = 0;
517 	}
518 
519 	for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
520 		int nbytes = walk.nbytes;
521 
522 		if (walk.nbytes < walk.total)
523 			nbytes &= ~(AES_BLOCK_SIZE - 1);
524 
525 		kernel_neon_begin();
526 		aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
527 				ctx->key1.key_enc, rounds, nbytes,
528 				ctx->key2.key_enc, walk.iv, first);
529 		kernel_neon_end();
530 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
531 	}
532 
533 	if (err || likely(!tail))
534 		return err;
535 
536 	dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
537 	if (req->dst != req->src)
538 		dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
539 
540 	skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
541 				   req->iv);
542 
543 	err = skcipher_walk_virt(&walk, &subreq, false);
544 	if (err)
545 		return err;
546 
547 	kernel_neon_begin();
548 	aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
549 			ctx->key1.key_enc, rounds, walk.nbytes,
550 			ctx->key2.key_enc, walk.iv, first);
551 	kernel_neon_end();
552 
553 	return skcipher_walk_done(&walk, 0);
554 }
555 
xts_decrypt(struct skcipher_request * req)556 static int __maybe_unused xts_decrypt(struct skcipher_request *req)
557 {
558 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
559 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
560 	int err, first, rounds = 6 + ctx->key1.key_length / 4;
561 	int tail = req->cryptlen % AES_BLOCK_SIZE;
562 	struct scatterlist sg_src[2], sg_dst[2];
563 	struct skcipher_request subreq;
564 	struct scatterlist *src, *dst;
565 	struct skcipher_walk walk;
566 
567 	if (req->cryptlen < AES_BLOCK_SIZE)
568 		return -EINVAL;
569 
570 	err = skcipher_walk_virt(&walk, req, false);
571 
572 	if (unlikely(tail > 0 && walk.nbytes < walk.total)) {
573 		int xts_blocks = DIV_ROUND_UP(req->cryptlen,
574 					      AES_BLOCK_SIZE) - 2;
575 
576 		skcipher_walk_abort(&walk);
577 
578 		skcipher_request_set_tfm(&subreq, tfm);
579 		skcipher_request_set_callback(&subreq,
580 					      skcipher_request_flags(req),
581 					      NULL, NULL);
582 		skcipher_request_set_crypt(&subreq, req->src, req->dst,
583 					   xts_blocks * AES_BLOCK_SIZE,
584 					   req->iv);
585 		req = &subreq;
586 		err = skcipher_walk_virt(&walk, req, false);
587 	} else {
588 		tail = 0;
589 	}
590 
591 	for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) {
592 		int nbytes = walk.nbytes;
593 
594 		if (walk.nbytes < walk.total)
595 			nbytes &= ~(AES_BLOCK_SIZE - 1);
596 
597 		kernel_neon_begin();
598 		aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
599 				ctx->key1.key_dec, rounds, nbytes,
600 				ctx->key2.key_enc, walk.iv, first);
601 		kernel_neon_end();
602 		err = skcipher_walk_done(&walk, walk.nbytes - nbytes);
603 	}
604 
605 	if (err || likely(!tail))
606 		return err;
607 
608 	dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen);
609 	if (req->dst != req->src)
610 		dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen);
611 
612 	skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail,
613 				   req->iv);
614 
615 	err = skcipher_walk_virt(&walk, &subreq, false);
616 	if (err)
617 		return err;
618 
619 
620 	kernel_neon_begin();
621 	aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
622 			ctx->key1.key_dec, rounds, walk.nbytes,
623 			ctx->key2.key_enc, walk.iv, first);
624 	kernel_neon_end();
625 
626 	return skcipher_walk_done(&walk, 0);
627 }
628 
629 static struct skcipher_alg aes_algs[] = { {
630 #if defined(USE_V8_CRYPTO_EXTENSIONS) || !IS_ENABLED(CONFIG_CRYPTO_AES_ARM64_BS)
631 	.base = {
632 		.cra_name		= "ecb(aes)",
633 		.cra_driver_name	= "ecb-aes-" MODE,
634 		.cra_priority		= PRIO,
635 		.cra_blocksize		= AES_BLOCK_SIZE,
636 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
637 		.cra_module		= THIS_MODULE,
638 	},
639 	.min_keysize	= AES_MIN_KEY_SIZE,
640 	.max_keysize	= AES_MAX_KEY_SIZE,
641 	.setkey		= skcipher_aes_setkey,
642 	.encrypt	= ecb_encrypt,
643 	.decrypt	= ecb_decrypt,
644 }, {
645 	.base = {
646 		.cra_name		= "cbc(aes)",
647 		.cra_driver_name	= "cbc-aes-" MODE,
648 		.cra_priority		= PRIO,
649 		.cra_blocksize		= AES_BLOCK_SIZE,
650 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
651 		.cra_module		= THIS_MODULE,
652 	},
653 	.min_keysize	= AES_MIN_KEY_SIZE,
654 	.max_keysize	= AES_MAX_KEY_SIZE,
655 	.ivsize		= AES_BLOCK_SIZE,
656 	.setkey		= skcipher_aes_setkey,
657 	.encrypt	= cbc_encrypt,
658 	.decrypt	= cbc_decrypt,
659 }, {
660 	.base = {
661 		.cra_name		= "ctr(aes)",
662 		.cra_driver_name	= "ctr-aes-" MODE,
663 		.cra_priority		= PRIO,
664 		.cra_blocksize		= 1,
665 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
666 		.cra_module		= THIS_MODULE,
667 	},
668 	.min_keysize	= AES_MIN_KEY_SIZE,
669 	.max_keysize	= AES_MAX_KEY_SIZE,
670 	.ivsize		= AES_BLOCK_SIZE,
671 	.chunksize	= AES_BLOCK_SIZE,
672 	.setkey		= skcipher_aes_setkey,
673 	.encrypt	= ctr_encrypt,
674 	.decrypt	= ctr_encrypt,
675 }, {
676 	.base = {
677 		.cra_name		= "xts(aes)",
678 		.cra_driver_name	= "xts-aes-" MODE,
679 		.cra_priority		= PRIO,
680 		.cra_blocksize		= AES_BLOCK_SIZE,
681 		.cra_ctxsize		= sizeof(struct crypto_aes_xts_ctx),
682 		.cra_module		= THIS_MODULE,
683 	},
684 	.min_keysize	= 2 * AES_MIN_KEY_SIZE,
685 	.max_keysize	= 2 * AES_MAX_KEY_SIZE,
686 	.ivsize		= AES_BLOCK_SIZE,
687 	.walksize	= 2 * AES_BLOCK_SIZE,
688 	.setkey		= xts_set_key,
689 	.encrypt	= xts_encrypt,
690 	.decrypt	= xts_decrypt,
691 }, {
692 #endif
693 	.base = {
694 		.cra_name		= "cts(cbc(aes))",
695 		.cra_driver_name	= "cts-cbc-aes-" MODE,
696 		.cra_priority		= PRIO,
697 		.cra_blocksize		= AES_BLOCK_SIZE,
698 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
699 		.cra_module		= THIS_MODULE,
700 	},
701 	.min_keysize	= AES_MIN_KEY_SIZE,
702 	.max_keysize	= AES_MAX_KEY_SIZE,
703 	.ivsize		= AES_BLOCK_SIZE,
704 	.walksize	= 2 * AES_BLOCK_SIZE,
705 	.setkey		= skcipher_aes_setkey,
706 	.encrypt	= cts_cbc_encrypt,
707 	.decrypt	= cts_cbc_decrypt,
708 }, {
709 	.base = {
710 		.cra_name		= "essiv(cbc(aes),sha256)",
711 		.cra_driver_name	= "essiv-cbc-aes-sha256-" MODE,
712 		.cra_priority		= PRIO + 1,
713 		.cra_blocksize		= AES_BLOCK_SIZE,
714 		.cra_ctxsize		= sizeof(struct crypto_aes_essiv_cbc_ctx),
715 		.cra_module		= THIS_MODULE,
716 	},
717 	.min_keysize	= AES_MIN_KEY_SIZE,
718 	.max_keysize	= AES_MAX_KEY_SIZE,
719 	.ivsize		= AES_BLOCK_SIZE,
720 	.setkey		= essiv_cbc_set_key,
721 	.encrypt	= essiv_cbc_encrypt,
722 	.decrypt	= essiv_cbc_decrypt,
723 	.init		= essiv_cbc_init_tfm,
724 	.exit		= essiv_cbc_exit_tfm,
725 } };
726 
cbcmac_setkey(struct crypto_shash * tfm,const u8 * in_key,unsigned int key_len)727 static int cbcmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
728 			 unsigned int key_len)
729 {
730 	struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
731 
732 	return aes_expandkey(&ctx->key, in_key, key_len);
733 }
734 
cmac_gf128_mul_by_x(be128 * y,const be128 * x)735 static void cmac_gf128_mul_by_x(be128 *y, const be128 *x)
736 {
737 	u64 a = be64_to_cpu(x->a);
738 	u64 b = be64_to_cpu(x->b);
739 
740 	y->a = cpu_to_be64((a << 1) | (b >> 63));
741 	y->b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0));
742 }
743 
cmac_setkey(struct crypto_shash * tfm,const u8 * in_key,unsigned int key_len)744 static int cmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
745 		       unsigned int key_len)
746 {
747 	struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
748 	be128 *consts = (be128 *)ctx->consts;
749 	int rounds = 6 + key_len / 4;
750 	int err;
751 
752 	err = cbcmac_setkey(tfm, in_key, key_len);
753 	if (err)
754 		return err;
755 
756 	/* encrypt the zero vector */
757 	kernel_neon_begin();
758 	aes_ecb_encrypt(ctx->consts, (u8[AES_BLOCK_SIZE]){}, ctx->key.key_enc,
759 			rounds, 1);
760 	kernel_neon_end();
761 
762 	cmac_gf128_mul_by_x(consts, consts);
763 	cmac_gf128_mul_by_x(consts + 1, consts);
764 
765 	return 0;
766 }
767 
xcbc_setkey(struct crypto_shash * tfm,const u8 * in_key,unsigned int key_len)768 static int xcbc_setkey(struct crypto_shash *tfm, const u8 *in_key,
769 		       unsigned int key_len)
770 {
771 	static u8 const ks[3][AES_BLOCK_SIZE] = {
772 		{ [0 ... AES_BLOCK_SIZE - 1] = 0x1 },
773 		{ [0 ... AES_BLOCK_SIZE - 1] = 0x2 },
774 		{ [0 ... AES_BLOCK_SIZE - 1] = 0x3 },
775 	};
776 
777 	struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
778 	int rounds = 6 + key_len / 4;
779 	u8 key[AES_BLOCK_SIZE];
780 	int err;
781 
782 	err = cbcmac_setkey(tfm, in_key, key_len);
783 	if (err)
784 		return err;
785 
786 	kernel_neon_begin();
787 	aes_ecb_encrypt(key, ks[0], ctx->key.key_enc, rounds, 1);
788 	aes_ecb_encrypt(ctx->consts, ks[1], ctx->key.key_enc, rounds, 2);
789 	kernel_neon_end();
790 
791 	return cbcmac_setkey(tfm, key, sizeof(key));
792 }
793 
mac_init(struct shash_desc * desc)794 static int mac_init(struct shash_desc *desc)
795 {
796 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
797 
798 	memset(ctx->dg, 0, AES_BLOCK_SIZE);
799 	ctx->len = 0;
800 
801 	return 0;
802 }
803 
mac_do_update(struct crypto_aes_ctx * ctx,u8 const in[],int blocks,u8 dg[],int enc_before,int enc_after)804 static void mac_do_update(struct crypto_aes_ctx *ctx, u8 const in[], int blocks,
805 			  u8 dg[], int enc_before, int enc_after)
806 {
807 	int rounds = 6 + ctx->key_length / 4;
808 
809 	if (crypto_simd_usable()) {
810 		int rem;
811 
812 		do {
813 			kernel_neon_begin();
814 			rem = aes_mac_update(in, ctx->key_enc, rounds, blocks,
815 					     dg, enc_before, enc_after);
816 			kernel_neon_end();
817 			in += (blocks - rem) * AES_BLOCK_SIZE;
818 			blocks = rem;
819 			enc_before = 0;
820 		} while (blocks);
821 	} else {
822 		if (enc_before)
823 			aes_encrypt(ctx, dg, dg);
824 
825 		while (blocks--) {
826 			crypto_xor(dg, in, AES_BLOCK_SIZE);
827 			in += AES_BLOCK_SIZE;
828 
829 			if (blocks || enc_after)
830 				aes_encrypt(ctx, dg, dg);
831 		}
832 	}
833 }
834 
mac_update(struct shash_desc * desc,const u8 * p,unsigned int len)835 static int mac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
836 {
837 	struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
838 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
839 
840 	while (len > 0) {
841 		unsigned int l;
842 
843 		if ((ctx->len % AES_BLOCK_SIZE) == 0 &&
844 		    (ctx->len + len) > AES_BLOCK_SIZE) {
845 
846 			int blocks = len / AES_BLOCK_SIZE;
847 
848 			len %= AES_BLOCK_SIZE;
849 
850 			mac_do_update(&tctx->key, p, blocks, ctx->dg,
851 				      (ctx->len != 0), (len != 0));
852 
853 			p += blocks * AES_BLOCK_SIZE;
854 
855 			if (!len) {
856 				ctx->len = AES_BLOCK_SIZE;
857 				break;
858 			}
859 			ctx->len = 0;
860 		}
861 
862 		l = min(len, AES_BLOCK_SIZE - ctx->len);
863 
864 		if (l <= AES_BLOCK_SIZE) {
865 			crypto_xor(ctx->dg + ctx->len, p, l);
866 			ctx->len += l;
867 			len -= l;
868 			p += l;
869 		}
870 	}
871 
872 	return 0;
873 }
874 
cbcmac_final(struct shash_desc * desc,u8 * out)875 static int cbcmac_final(struct shash_desc *desc, u8 *out)
876 {
877 	struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
878 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
879 
880 	mac_do_update(&tctx->key, NULL, 0, ctx->dg, (ctx->len != 0), 0);
881 
882 	memcpy(out, ctx->dg, AES_BLOCK_SIZE);
883 
884 	return 0;
885 }
886 
cmac_final(struct shash_desc * desc,u8 * out)887 static int cmac_final(struct shash_desc *desc, u8 *out)
888 {
889 	struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
890 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
891 	u8 *consts = tctx->consts;
892 
893 	if (ctx->len != AES_BLOCK_SIZE) {
894 		ctx->dg[ctx->len] ^= 0x80;
895 		consts += AES_BLOCK_SIZE;
896 	}
897 
898 	mac_do_update(&tctx->key, consts, 1, ctx->dg, 0, 1);
899 
900 	memcpy(out, ctx->dg, AES_BLOCK_SIZE);
901 
902 	return 0;
903 }
904 
905 static struct shash_alg mac_algs[] = { {
906 	.base.cra_name		= "cmac(aes)",
907 	.base.cra_driver_name	= "cmac-aes-" MODE,
908 	.base.cra_priority	= PRIO,
909 	.base.cra_blocksize	= AES_BLOCK_SIZE,
910 	.base.cra_ctxsize	= sizeof(struct mac_tfm_ctx) +
911 				  2 * AES_BLOCK_SIZE,
912 	.base.cra_module	= THIS_MODULE,
913 
914 	.digestsize		= AES_BLOCK_SIZE,
915 	.init			= mac_init,
916 	.update			= mac_update,
917 	.final			= cmac_final,
918 	.setkey			= cmac_setkey,
919 	.descsize		= sizeof(struct mac_desc_ctx),
920 }, {
921 	.base.cra_name		= "xcbc(aes)",
922 	.base.cra_driver_name	= "xcbc-aes-" MODE,
923 	.base.cra_priority	= PRIO,
924 	.base.cra_blocksize	= AES_BLOCK_SIZE,
925 	.base.cra_ctxsize	= sizeof(struct mac_tfm_ctx) +
926 				  2 * AES_BLOCK_SIZE,
927 	.base.cra_module	= THIS_MODULE,
928 
929 	.digestsize		= AES_BLOCK_SIZE,
930 	.init			= mac_init,
931 	.update			= mac_update,
932 	.final			= cmac_final,
933 	.setkey			= xcbc_setkey,
934 	.descsize		= sizeof(struct mac_desc_ctx),
935 }, {
936 	.base.cra_name		= "cbcmac(aes)",
937 	.base.cra_driver_name	= "cbcmac-aes-" MODE,
938 	.base.cra_priority	= PRIO,
939 	.base.cra_blocksize	= 1,
940 	.base.cra_ctxsize	= sizeof(struct mac_tfm_ctx),
941 	.base.cra_module	= THIS_MODULE,
942 
943 	.digestsize		= AES_BLOCK_SIZE,
944 	.init			= mac_init,
945 	.update			= mac_update,
946 	.final			= cbcmac_final,
947 	.setkey			= cbcmac_setkey,
948 	.descsize		= sizeof(struct mac_desc_ctx),
949 } };
950 
aes_exit(void)951 static void aes_exit(void)
952 {
953 	crypto_unregister_shashes(mac_algs, ARRAY_SIZE(mac_algs));
954 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
955 }
956 
aes_init(void)957 static int __init aes_init(void)
958 {
959 	int err;
960 
961 	err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
962 	if (err)
963 		return err;
964 
965 	err = crypto_register_shashes(mac_algs, ARRAY_SIZE(mac_algs));
966 	if (err)
967 		goto unregister_ciphers;
968 
969 	return 0;
970 
971 unregister_ciphers:
972 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
973 	return err;
974 }
975 
976 #ifdef USE_V8_CRYPTO_EXTENSIONS
977 module_cpu_feature_match(AES, aes_init);
978 #else
979 module_init(aes_init);
980 EXPORT_SYMBOL(neon_aes_ecb_encrypt);
981 EXPORT_SYMBOL(neon_aes_cbc_encrypt);
982 EXPORT_SYMBOL(neon_aes_xts_encrypt);
983 EXPORT_SYMBOL(neon_aes_xts_decrypt);
984 #endif
985 module_exit(aes_exit);
986