xref: /OK3568_Linux_fs/external/security/librkcrypto/test/c_mode/sm4_ccm.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4 #include "sm4_core.h"
5 
6 
7 #define CCM_DEBUG 0
8 #if 1
9 
10 typedef void (*ccm128_f)(const unsigned char *in, unsigned char *out,
11 			size_t blocks, const void *key,
12 			const unsigned char ivec[16],unsigned char cmac[16]);
13 
14 
15 struct ccm128_context {
16 	union { u64 u[2]; u8 c[16]; } nonce, cmac;
17 	u64 blocks;
18 	block128_f block;
19 	void *key;
20 };
21 
22 //#define U64(C) C##UL
23 
24 typedef struct ccm128_context CCM128_CONTEXT;
25 
26 
27 /* First you setup M and L parameters and pass the key schedule.
28  * This is called once per session setup... */
rk_crypto_ccm128_init(CCM128_CONTEXT * ctx,unsigned int M,unsigned int L,void * key,block128_f block)29 static void rk_crypto_ccm128_init(CCM128_CONTEXT *ctx,
30 	unsigned int M,unsigned int L,void *key,block128_f block)
31 {
32 //	printf("m = %d,L = %d\n",M,L);
33 	memset(ctx->nonce.c,0,sizeof(ctx->nonce.c));
34 	ctx->nonce.c[0] = ((u8)(L-1)&7) | (u8)(((M-2)/2)&7)<<3;
35 	ctx->blocks = 0;
36 	ctx->block = block;
37 	ctx->key = key;
38 }
39 
40 /* !!! Following interfaces are to be called *once* per packet !!! */
41 
42 /* Then you setup per-message nonce and pass the length of the message */
rk_crypto_ccm128_setiv(CCM128_CONTEXT * ctx,const unsigned char * nonce,size_t nlen,size_t mlen)43 static int  rk_crypto_ccm128_setiv(CCM128_CONTEXT *ctx,
44 	const unsigned char *nonce,size_t nlen,size_t mlen)
45 {
46 	unsigned int L = ctx->nonce.c[0]&7;	/* the L parameter */
47 
48 	if (nlen<(14-L)) return -1;		/* nonce is too short */
49 
50 	if (sizeof(mlen)==8 && L>=3) {
51 		ctx->nonce.c[8]  = (u8)(mlen>>(56%(sizeof(mlen)*8)));
52 		ctx->nonce.c[9]  = (u8)(mlen>>(48%(sizeof(mlen)*8)));
53 		ctx->nonce.c[10] = (u8)(mlen>>(40%(sizeof(mlen)*8)));
54 		ctx->nonce.c[11] = (u8)(mlen>>(32%(sizeof(mlen)*8)));
55 	}
56 	else
57 		ctx->nonce.u[1] = 0;
58 
59 	ctx->nonce.c[12] = (u8)(mlen>>24);
60 	ctx->nonce.c[13] = (u8)(mlen>>16);
61 	ctx->nonce.c[14] = (u8)(mlen>>8);
62 	ctx->nonce.c[15] = (u8)mlen;
63 
64 	ctx->nonce.c[0] &= ~0x40;	/* clear Adata flag */
65 	memcpy(&ctx->nonce.c[1],nonce,14-L);
66 
67 	return 0;
68 }
69 
70 /* Then you pass additional authentication data, this is optional */
rk_crypto_ccm128_aad(CCM128_CONTEXT * ctx,const unsigned char * aad,size_t alen)71 static void  rk_crypto_ccm128_aad(CCM128_CONTEXT *ctx,
72 	const unsigned char *aad,size_t alen)
73 {	unsigned int i;
74 	block128_f block = ctx->block;
75 
76 	if (alen==0) return;
77 
78 	ctx->nonce.c[0] |= 0x40;	/* set Adata flag */
79 	(*block)(ctx->nonce.c,ctx->cmac.c,ctx->key),
80 	ctx->blocks++;
81 
82 	if (alen<(0x10000-0x100)) {
83 		ctx->cmac.c[0] ^= (u8)(alen>>8);
84 		ctx->cmac.c[1] ^= (u8)alen;
85 		i=2;
86 	}
87 	else if (sizeof(alen)==8 && alen>=(size_t)1<<(32%(sizeof(alen)*8))) {
88 		ctx->cmac.c[0] ^= 0xFF;
89 		ctx->cmac.c[1] ^= 0xFF;
90 		ctx->cmac.c[2] ^= (u8)(alen>>(56%(sizeof(alen)*8)));
91 		ctx->cmac.c[3] ^= (u8)(alen>>(48%(sizeof(alen)*8)));
92 		ctx->cmac.c[4] ^= (u8)(alen>>(40%(sizeof(alen)*8)));
93 		ctx->cmac.c[5] ^= (u8)(alen>>(32%(sizeof(alen)*8)));
94 		ctx->cmac.c[6] ^= (u8)(alen>>24);
95 		ctx->cmac.c[7] ^= (u8)(alen>>16);
96 		ctx->cmac.c[8] ^= (u8)(alen>>8);
97 		ctx->cmac.c[9] ^= (u8)alen;
98 		i=10;
99 	}
100 	else {
101 		ctx->cmac.c[0] ^= 0xFF;
102 		ctx->cmac.c[1] ^= 0xFE;
103 		ctx->cmac.c[2] ^= (u8)(alen>>24);
104 		ctx->cmac.c[3] ^= (u8)(alen>>16);
105 		ctx->cmac.c[4] ^= (u8)(alen>>8);
106 		ctx->cmac.c[5] ^= (u8)alen;
107 		i=6;
108 	}
109 
110 	do {
111 		for(;i<16 && alen;++i,++aad,--alen)
112 			ctx->cmac.c[i] ^= *aad;
113 		(*block)(ctx->cmac.c,ctx->cmac.c,ctx->key),
114 		ctx->blocks++;
115 		i=0;
116 	} while (alen);
117 }
118 
119 /* Finally you encrypt or decrypt the message */
120 
121 /* counter part of nonce may not be larger than L*8 bits,
122  * L is not larger than 8, therefore 64-bit counter... */
rk_ctr64_inc(unsigned char * counter)123 static void  rk_ctr64_inc(unsigned char *counter) {
124 	unsigned int n=8;
125 	u8  c;
126 
127 	counter += 8;
128 	do {
129 		--n;
130 		c = counter[n];
131 		++c;
132 		counter[n] = c;
133 		if (c) return;
134 	} while (n);
135 }
136 
rk_crypto_ccm128_encrypt(CCM128_CONTEXT * ctx,const unsigned char * inp,unsigned char * out,size_t len)137 int  rk_crypto_ccm128_encrypt(CCM128_CONTEXT *ctx,
138 	const unsigned char *inp, unsigned char *out,
139 	size_t len)
140 {
141 	size_t		n;
142 	unsigned int	i,L;
143 	unsigned char	flags0	= ctx->nonce.c[0];
144 	block128_f	block	= ctx->block;
145 	void *		key	= ctx->key;
146 	union { u64 u[2]; u8 c[16]; } scratch;
147 
148 	if (!(flags0&0x40))
149 		(*block)(ctx->nonce.c,ctx->cmac.c,key),
150 		ctx->blocks++;
151 
152 	ctx->nonce.c[0] = L = flags0&7;
153 	for (n=0,i=15-L;i<15;++i) {
154 		n |= ctx->nonce.c[i];
155 		ctx->nonce.c[i]=0;
156 		n <<= 8;
157 	}
158 	n |= ctx->nonce.c[15];	/* reconstructed length */
159 	ctx->nonce.c[15]=1;
160 
161 //	printf("n = %d,len = %d\n",n,len);
162 
163 	if (n!=len) return -1;	/* length mismatch */
164 
165 	ctx->blocks += ((len+15)>>3)|1;
166 	if (ctx->blocks > (U64(1)<<61))	return -2; /* too much data */
167 
168 	while (len>=16) {
169 #if defined(STRICT_ALIGNMENT)
170 		union { u64 u[2]; u8 c[16]; } temp;
171 
172 		memcpy (temp.c,inp,16);
173 		ctx->cmac.u[0] ^= temp.u[0];
174 		ctx->cmac.u[1] ^= temp.u[1];
175 #else
176 		ctx->cmac.u[0] ^= ((u64*)inp)[0];
177 		ctx->cmac.u[1] ^= ((u64*)inp)[1];
178 #endif
179 		(*block)(ctx->cmac.c,ctx->cmac.c,key);
180 		(*block)(ctx->nonce.c,scratch.c,key);
181 		rk_ctr64_inc(ctx->nonce.c);
182 #if defined(STRICT_ALIGNMENT)
183 		temp.u[0] ^= scratch.u[0];
184 		temp.u[1] ^= scratch.u[1];
185 		memcpy(out,temp.c,16);
186 #else
187 		((u64*)out)[0] = scratch.u[0]^((u64*)inp)[0];
188 		((u64*)out)[1] = scratch.u[1]^((u64*)inp)[1];
189 #endif
190 		inp += 16;
191 		out += 16;
192 		len -= 16;
193 	}
194 
195 	if (len) {
196 		for (i=0; i<len; ++i) ctx->cmac.c[i] ^= inp[i];
197 		(*block)(ctx->cmac.c,ctx->cmac.c,key);
198 		(*block)(ctx->nonce.c,scratch.c,key);
199 		for (i=0; i<len; ++i) out[i] = scratch.c[i]^inp[i];
200 	}
201 
202 	for (i=15-L;i<16;++i)
203 		ctx->nonce.c[i]=0;
204 
205 	(*block)(ctx->nonce.c,scratch.c,key);
206 	ctx->cmac.u[0] ^= scratch.u[0];
207 	ctx->cmac.u[1] ^= scratch.u[1];
208 
209 	ctx->nonce.c[0] = flags0;
210 
211 	return 0;
212 }
213 
rk_crypto_ccm128_decrypt(CCM128_CONTEXT * ctx,const unsigned char * inp,unsigned char * out,size_t len)214 static int  rk_crypto_ccm128_decrypt(CCM128_CONTEXT *ctx,
215 	const unsigned char *inp, unsigned char *out,
216 	size_t len)
217 {
218 	size_t		n;
219 	unsigned int	i,L;
220 	unsigned char	flags0	= ctx->nonce.c[0];
221 	block128_f	block	= ctx->block;
222 	void *		key	= ctx->key;
223 	union { u64 u[2]; u8 c[16]; } scratch;
224 
225 	if (!(flags0&0x40))
226 		(*block)(ctx->nonce.c,ctx->cmac.c,key);
227 
228 	ctx->nonce.c[0] = L = flags0&7;
229 	for (n=0,i=15-L;i<15;++i) {
230 		n |= ctx->nonce.c[i];
231 		ctx->nonce.c[i]=0;
232 		n <<= 8;
233 	}
234 	n |= ctx->nonce.c[15];	/* reconstructed length */
235 	ctx->nonce.c[15]=1;
236 
237 //	printf("n = %d,len = %d\n",n,len);
238 
239 	if (n!=len) return -1;
240 
241 	while (len>=16) {
242 #if defined(STRICT_ALIGNMENT)
243 		union { u64 u[2]; u8 c[16]; } temp;
244 #endif
245 		(*block)(ctx->nonce.c,scratch.c,key);
246 		rk_ctr64_inc(ctx->nonce.c);
247 #if defined(STRICT_ALIGNMENT)
248 		memcpy (temp.c,inp,16);
249 		ctx->cmac.u[0] ^= (scratch.u[0] ^= temp.u[0]);
250 		ctx->cmac.u[1] ^= (scratch.u[1] ^= temp.u[1]);
251 		memcpy (out,scratch.c,16);
252 #else
253 		ctx->cmac.u[0] ^= (((u64*)out)[0] = scratch.u[0]^((u64*)inp)[0]);
254 		ctx->cmac.u[1] ^= (((u64*)out)[1] = scratch.u[1]^((u64*)inp)[1]);
255 #endif
256 		(*block)(ctx->cmac.c,ctx->cmac.c,key);
257 
258 		inp += 16;
259 		out += 16;
260 		len -= 16;
261 	}
262 
263 	if (len) {
264 		(*block)(ctx->nonce.c,scratch.c,key);
265 		for (i=0; i<len; ++i)
266 			ctx->cmac.c[i] ^= (out[i] = scratch.c[i]^inp[i]);
267 		(*block)(ctx->cmac.c,ctx->cmac.c,key);
268 	}
269 
270 	for (i=15-L;i<16;++i)
271 		ctx->nonce.c[i]=0;
272 
273 	(*block)(ctx->nonce.c,scratch.c,key);
274 	ctx->cmac.u[0] ^= scratch.u[0];
275 	ctx->cmac.u[1] ^= scratch.u[1];
276 
277 	ctx->nonce.c[0] = flags0;
278 
279 	return 0;
280 }
281 
rk_ctr64_add(unsigned char * counter,size_t inc)282 static void  rk_ctr64_add (unsigned char *counter,size_t inc)
283 {	size_t n=8, val=0;
284 
285 	counter += 8;
286 	do {
287 		--n;
288 		val += counter[n] + (inc&0xff);
289 		counter[n] = (unsigned char)val;
290 		val >>= 8;	/* carry bit */
291 		inc >>= 8;
292 	} while(n && (inc || val));
293 }
294 
rk_crypto_ccm128_encrypt_ccm64(CCM128_CONTEXT * ctx,const unsigned char * inp,unsigned char * out,size_t len,ccm128_f stream)295 static int  rk_crypto_ccm128_encrypt_ccm64(CCM128_CONTEXT *ctx,
296 	const unsigned char *inp, unsigned char *out,
297 	size_t len,ccm128_f stream)
298 {
299 	size_t		n;
300 	unsigned int	i,L;
301 	unsigned char	flags0	= ctx->nonce.c[0];
302 	block128_f	block	= ctx->block;
303 	void *		key	= ctx->key;
304 	union { u64 u[2]; u8 c[16]; } scratch;
305 
306 	if (!(flags0&0x40))
307 		(*block)(ctx->nonce.c,ctx->cmac.c,key),
308 		ctx->blocks++;
309 
310 	ctx->nonce.c[0] = L = flags0&7;
311 	for (n=0,i=15-L;i<15;++i) {
312 		n |= ctx->nonce.c[i];
313 		ctx->nonce.c[i]=0;
314 		n <<= 8;
315 	}
316 	n |= ctx->nonce.c[15];	/* reconstructed length */
317 	ctx->nonce.c[15]=1;
318 
319 	if (n!=len) return -1;	/* length mismatch */
320 
321 	ctx->blocks += ((len+15)>>3)|1;
322 	if (ctx->blocks > (U64(1)<<61))	return -2; /* too much data */
323 
324 	n=len/16;
325 	if (n) {
326 		(*stream)(inp,out,n,key,ctx->nonce.c,ctx->cmac.c);
327 		n   *= 16;
328 		inp += n;
329 		out += n;
330 		len -= n;
331 		if (len) rk_ctr64_add(ctx->nonce.c,n/16);
332 	}
333 
334 	if (len) {
335 		for (i=0; i<len; ++i) ctx->cmac.c[i] ^= inp[i];
336 		(*block)(ctx->cmac.c,ctx->cmac.c,key);
337 		(*block)(ctx->nonce.c,scratch.c,key);
338 		for (i=0; i<len; ++i) out[i] = scratch.c[i]^inp[i];
339 	}
340 
341 	for (i=15-L;i<16;++i)
342 		ctx->nonce.c[i]=0;
343 
344 	(*block)(ctx->nonce.c,scratch.c,key);
345 	ctx->cmac.u[0] ^= scratch.u[0];
346 	ctx->cmac.u[1] ^= scratch.u[1];
347 
348 	ctx->nonce.c[0] = flags0;
349 
350 	return 0;
351 }
352 
rk_crypto_ccm128_decrypt_ccm64(CCM128_CONTEXT * ctx,const unsigned char * inp,unsigned char * out,size_t len,ccm128_f stream)353 static int  rk_crypto_ccm128_decrypt_ccm64(CCM128_CONTEXT *ctx,
354 	const unsigned char *inp, unsigned char *out,
355 	size_t len,ccm128_f stream)
356 {
357 	size_t		n;
358 	unsigned int	i,L;
359 	unsigned char	flags0	= ctx->nonce.c[0];
360 	block128_f	block	= ctx->block;
361 	void *		key	= ctx->key;
362 	union { u64 u[2]; u8 c[16]; } scratch;
363 
364 	if (!(flags0&0x40))
365 		(*block)(ctx->nonce.c,ctx->cmac.c,key);
366 
367 	ctx->nonce.c[0] = L = flags0&7;
368 	for (n=0,i=15-L;i<15;++i) {
369 		n |= ctx->nonce.c[i];
370 		ctx->nonce.c[i]=0;
371 		n <<= 8;
372 	}
373 	n |= ctx->nonce.c[15];	/* reconstructed length */
374 	ctx->nonce.c[15]=1;
375 
376 	if (n!=len) return -1;
377 
378 	n=len/16;
379 	if (n) {
380 		(*stream)(inp,out,n,key,ctx->nonce.c,ctx->cmac.c);
381 		n   *= 16;
382 		inp += n;
383 		out += n;
384 		len -= n;
385 		if (len) rk_ctr64_add(ctx->nonce.c,n/16);
386 	}
387 
388 	if (len) {
389 		(*block)(ctx->nonce.c,scratch.c,key);
390 		for (i=0; i<len; ++i)
391 			ctx->cmac.c[i] ^= (out[i] = scratch.c[i]^inp[i]);
392 		(*block)(ctx->cmac.c,ctx->cmac.c,key);
393 	}
394 
395 	for (i=15-L;i<16;++i)
396 		ctx->nonce.c[i]=0;
397 
398 	(*block)(ctx->nonce.c,scratch.c,key);
399 	ctx->cmac.u[0] ^= scratch.u[0];
400 	ctx->cmac.u[1] ^= scratch.u[1];
401 
402 	ctx->nonce.c[0] = flags0;
403 
404 	return 0;
405 }
406 
rk_crypto_ccm128_tag(CCM128_CONTEXT * ctx,unsigned char * tag,size_t len)407 static size_t  rk_crypto_ccm128_tag(CCM128_CONTEXT *ctx,unsigned char *tag,size_t len)
408 {	unsigned int M = (ctx->nonce.c[0]>>3)&7;	/* the M parameter */
409 
410 	M *= 2; M += 2;
411 	if (len<M)	return 0;
412 	memcpy(tag,ctx->cmac.c,M);
413 	return M;
414 }
415 
416 #endif
417 
418 
419 
420 
421 /*m is the lengh of tag*/
422 
423 #if 0
424 int rk_aes_ccm_op(struct sm4_ae_in *in, struct sm4_ae_out *out, const int enc)
425 {
426 	int time = 0;
427 	int i = 0;
428     RK_AES_KEY ks1, ks2;
429 	CCM128_CONTEXT ctx;
430 	int ret = 0;
431 	//unsigned int m = 12;
432 	unsigned int l = 0;
433 
434 	if (in->key == NULL || in->iv == NULL || in->src == NULL || in->aad == NULL)
435 		return -1;
436 
437 	if (in->key_len!= 128/8 && in->key_len != 192/8 && in->key_len != 256/8)
438 		return -2;
439 
440 	if(in->src_len % 16 != 0)
441 		return -3;
442 
443 	if(out->dest == NULL || out->tag == NULL)
444 		return -4;
445 	printf("-----param sucess-----\n");
446 
447 
448 	l = out->dest_len;/* dest_len = inlength */
449 
450 	ret = rk_aes_set_encrypt_key(in->key, in->key_len * 8, &ks1);
451 	if(ret != 0)
452 		printf("-----set_encrypt_key fail-----\n");
453 
454 	rk_crypto_ccm128_init(&ctx, in->tag_size, l, &ks1, (block128_f)rk_aes_encrypt);
455 
456 	ret = rk_crypto_ccm128_setiv(&ctx, in->iv, in->iv_len, l);/*l ?*/
457 	if (ret != 0)
458 		printf("========rk_crypto_ccm128_setiv ret = %d================\n",ret);
459 
460 	rk_crypto_ccm128_aad(&ctx, in->aad, in->aad_len);
461 
462 	if(enc){
463 		if((ret = rk_crypto_ccm128_encrypt(&ctx, in->src , out->dest,in->src_len)) != 0)
464 			printf("=========rk_crypto_ccm128_encrypt ret = %d===\n",ret);
465 		rk_crypto_ccm128_tag(&ctx, out->tag, 12); /*tag is length*/
466 		}
467 	else{if((ret = rk_crypto_ccm128_decrypt(&ctx, out->dest, in->src, out->dest_len)) != 0)
468 			printf("=========rk_crypto_ccm128_decrypt ret = %d===\n",ret);
469 
470 		}
471 
472 	printf("----op done------------");
473 
474 	 return 0;
475 }
476 #endif
477 
compare_string(char * a,char * b,unsigned int len)478 static int compare_string(char *a, char *b, unsigned int len)
479 {
480 	unsigned int i;
481 
482 	if((len <= 0) || (a == NULL) || (b == NULL))
483 		return -1;
484 
485 	for (i = 0; i < len; i++){
486 		if(*a != *b)
487 			return -1;
488 		a++;
489 		b++;
490 	}
491 	return 0;
492 }
493 
494 
dump_hex(char * var_name,unsigned char * data,unsigned int len)495 static void dump_hex(char *var_name, unsigned char *data, unsigned int len)
496 {
497 	unsigned int i;
498 	printf("LINE:%d  %s:", __LINE__, var_name);
499 	for (i = 0; i < len; i++) {
500 		if(i % 16 == 0)
501 			printf("\n");
502 		printf("%02x  ", data[i]);
503 	}
504 	printf("\n");
505 }
506 
rk_sm4_ccm_op(struct sm4_ae_in * in,struct sm4_ae_out * out,const int enc)507 int rk_sm4_ccm_op(struct sm4_ae_in *in, struct sm4_ae_out *out, const int enc)
508 {
509     sm4_context sm4_ctx;
510 	CCM128_CONTEXT ctx;
511 	int ret = 0;
512 
513 	unsigned int m = 0;
514 	unsigned int l = 0;
515 
516 	unsigned char tag_tmp[16]= {0};
517 
518 	if (in->key == NULL || in->iv == NULL || in->src == NULL || in->aad == NULL)
519 		return -1;
520 
521 	if (in->key_len!= 16)
522 		return -2;
523 
524 	if(in->src_len % 16 != 0)
525 		return -3;
526 
527 	if(out->dest == NULL || out->tag == NULL)
528 		return -4;
529 
530 	m = in->tag_size;
531 //	tag_tmp = malloc(m);
532 
533 	l = 15 - in->iv_len;  /* l + iv_len = 15 */
534 	rk_sm4_setkey_enc(&sm4_ctx, in->key);
535 	if(ret != 0)
536 		printf("-----set_encrypt_key fail-----\n");
537 
538 
539 	/* M  :tag size ,L  = 8? src_Len*/
540 	rk_crypto_ccm128_init(&ctx, in->tag_size, l, &sm4_ctx, rk_rk_sm4_crypt_ecb);
541 
542 
543 
544 //	ret = rk_crypto_ccm128_setiv(&ctx, in->iv, in->iv_len, l);/*l ?*/
545 	ret = rk_crypto_ccm128_setiv(&ctx, in->iv, in->iv_len, in->src_len);
546 
547 
548 	if (ret != 0)
549 		printf("========rk_crypto_ccm128_setiv ret = %d================\n",ret);
550 
551 	rk_crypto_ccm128_aad(&ctx, in->aad, in->aad_len);
552 
553 	/* verify tag */
554 	if (enc == 2){
555 		if((ret = rk_crypto_ccm128_encrypt(&ctx, in->src , out->dest,in->src_len)) != 0)
556 			printf("=========rk_crypto_ccm128_encrypt ret = %d===\n",ret);
557 
558 		rk_crypto_ccm128_tag(&ctx, tag_tmp, m); /*tag is length*/
559 		ret = compare_string((char*)tag_tmp,out->tag,m);
560 		if (ret!=0){
561 			dump_hex("verify tag_tmp:",tag_tmp,m);
562 			dump_hex("verify out->tag:",out->tag,m);
563 			printf("=======ccm verify failed========\n");
564 			return ret;
565 		}
566 		return ret;
567 	}
568 	if(enc == 1){
569 		if((ret = rk_crypto_ccm128_encrypt(&ctx, in->src , out->dest,in->src_len)) != 0)
570 			printf("=========rk_crypto_ccm128_encrypt ret = %d===\n",ret);
571 
572 
573 		rk_crypto_ccm128_tag(&ctx, out->tag, m); /*tag is length*/
574 #if CCM_DEBUG
575 		dump_hex("rk: out->dest:",out->dest,in->src_len);
576 		dump_hex("cmm --out->tag:",out->tag,m);
577 #endif
578 	}
579 	if(enc == 0){
580 		if((ret = rk_crypto_ccm128_decrypt(&ctx, out->dest, in->src, out->dest_len)) != 0)
581 			printf("=========rk_crypto_ccm128_decrypt ret = %d===\n",ret);
582 
583 	}
584 
585 	return ret;
586 }
587 
588 
589 
590