1 /******************************************************************************
2 *
3 * Copyright(c) 2007 - 2019 Realtek Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 *****************************************************************************/
15 #ifndef __OSDEP_BSD_SERVICE_H_
16 #define __OSDEP_BSD_SERVICE_H_
17
18
19 #include <sys/cdefs.h>
20 #include <sys/types.h>
21 #include <sys/systm.h>
22 #include <sys/param.h>
23 #include <sys/sockio.h>
24 #include <sys/sysctl.h>
25 #include <sys/lock.h>
26 #include <sys/mutex.h>
27 #include <sys/mbuf.h>
28 #include <sys/kernel.h>
29 #include <sys/socket.h>
30 #include <sys/systm.h>
31 #include <sys/malloc.h>
32 #include <sys/module.h>
33 #include <sys/bus.h>
34 #include <sys/endian.h>
35 #include <sys/kdb.h>
36 #include <sys/kthread.h>
37 #include <sys/malloc.h>
38 #include <sys/time.h>
39 #include <machine/atomic.h>
40 #include <machine/bus.h>
41 #include <machine/resource.h>
42 #include <sys/rman.h>
43
44 #include <net/bpf.h>
45 #include <net/if.h>
46 #include <net/if_arp.h>
47 #include <net/ethernet.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51 #include <net/route.h>
52
53
54 #include <netinet/in.h>
55 #include <netinet/in_systm.h>
56 #include <netinet/in_var.h>
57 #include <netinet/if_ether.h>
58 #include <if_ether.h>
59
60 #include <net80211/ieee80211_var.h>
61 #include <net80211/ieee80211_regdomain.h>
62 #include <net80211/ieee80211_radiotap.h>
63 #include <net80211/ieee80211_ratectl.h>
64
65 #include <dev/usb/usb.h>
66 #include <dev/usb/usbdi.h>
67 #include "usbdevs.h"
68
69 #define USB_DEBUG_VAR rum_debug
70 #include <dev/usb/usb_debug.h>
71
72 #if 1 //Baron porting from linux, it's all temp solution, needs to check again
73 #include <sys/sema.h>
74 #include <sys/pcpu.h> /* XXX for PCPU_GET */
75 // typedef struct semaphore _sema;
76 typedef struct sema _sema;
77 // typedef spinlock_t _lock;
78 typedef struct mtx _lock;
79 typedef struct mtx _mutex;
80 typedef struct rtw_timer_list _timer;
81 struct list_head {
82 struct list_head *next, *prev;
83 };
84 struct __queue {
85 struct list_head queue;
86 _lock lock;
87 };
88
89 typedef struct mbuf _buffer;
90
91 typedef struct __queue _queue;
92 typedef struct list_head _list;
93
94 typedef struct ifnet * _nic_hdl;
95
96 typedef pid_t _thread_hdl_;
97 // typedef struct thread _thread_hdl_;
98 typedef void thread_return;
99 typedef void* thread_context;
100
101 typedef void timer_hdl_return;
102 typedef void* timer_hdl_context;
103 typedef struct work_struct _workitem;
104 typedef struct task _tasklet;
105
106 #define KERNEL_VERSION(a,b,c) (((a) << 16) + ((b) << 8) + (c))
107 /* emulate a modern version */
108 #define LINUX_VERSION_CODE KERNEL_VERSION(2, 6, 35)
109
110 #define WIRELESS_EXT -1
111 #define HZ hz
112
113 //#define IFT_RTW 0xf9 //ifnet allocate type for RTW
114 #define free_netdev if_free
115 #define LIST_CONTAINOR(ptr, type, member) \
116 ((type *)((char *)(ptr)-(SIZE_T)(&((type *)0)->member)))
117 #define container_of(p,t,n) (t*)((p)-&(((t*)0)->n))
118
119 /*lock - spinlock*/
_rtw_spinlock_init(_lock * plock)120 static inline void _rtw_spinlock_init(_lock *plock)
121 {
122 mtx_init(plock, "", NULL, MTX_DEF | MTX_RECURSE);
123 }
124
_rtw_spinlock_free(_lock * plock)125 static inline void _rtw_spinlock_free(_lock *plock)
126 {
127 mtx_destroy(plock);
128 }
129
_rtw_spinlock(_lock * plock)130 static inline void _rtw_spinlock(_lock *plock)
131 {
132 mtx_lock(plock);
133 }
134
_rtw_spinunlock(_lock * plock)135 static inline void _rtw_spinunlock(_lock *plock)
136 {
137 mtx_unlock(plock);
138 }
139
140 #if 0
_rtw_spinlock_ex(_lock * plock)141 static inline void _rtw_spinlock_ex(_lock *plock)
142 {
143 mtx_lock(plock);
144 }
145
_rtw_spinunlock_ex(_lock * plock)146 static inline void _rtw_spinunlock_ex(_lock *plock)
147 {
148 mtx_unlock(plock);
149 }
150 #endif
151
_rtw_spinlock_irq(_lock * plock,unsigned long * flags)152 __inline static void _rtw_spinlock_irq(_lock *plock, unsigned long *flags)
153 {
154 mtx_lock(plock); /*{local_irq_save((x)); mtx_lock_spin((lock));}*/
155 }
156
_rtw_spinunlock_irq(_lock * plock,unsigned long * flags)157 __inline static void _rtw_spinunlock_irq(_lock *plock, unsigned long *flags)
158 {
159 mtx_unlock(plock);
160 }
161
_rtw_spinlock_bh(_lock * plock)162 __inline static void _rtw_spinlock_bh(_lock *plock)
163 {
164 mtx_lock(plock);/*{local_irq_save((x)); mtx_lock_spin((lock));}*/
165 }
166
_rtw_spinunlock_bh(_lock * plock)167 __inline static void _rtw_spinunlock_bh(_lock *plock)
168 {
169 mtx_unlock(plock);
170 }
171
172 /*lock - semaphore*/
_rtw_init_sema(_sema * sema,int init_val)173 static inline void _rtw_init_sema(_sema *sema, int init_val)
174 {
175 sema_init(sema, init_val, "rtw_drv");
176 }
177
_rtw_free_sema(_sema * sema)178 static inline void _rtw_free_sema(_sema *sema)
179 {
180 sema_destroy(sema);
181 }
182
_rtw_up_sema(_sema * sema)183 static inline void _rtw_up_sema(_sema *sema)
184 {
185 sema_post(sema);
186 }
187
_rtw_down_sema(_sema * sema)188 static inline u32 _rtw_down_sema(_sema *sema)
189 {
190 sema_wait(sema);
191 return _SUCCESS;
192 }
193
194 /*lock - mutex*/
_rtw_mutex_init(_mutex * pmutex)195 static inline void _rtw_mutex_init(_mutex *pmutex)
196 {
197 mtx_init(pmutex, "", NULL, MTX_DEF | MTX_RECURSE);
198 }
199
_rtw_mutex_free(_mutex * pmutex)200 static inline void _rtw_mutex_free(_mutex *pmutex)
201 {
202 sema_destroy(pmutex);
203 }
204
_rtw_mutex_lock_interruptible(_mutex * pmutex)205 __inline static void _rtw_mutex_lock_interruptible(_mutex *pmutex)
206 {
207
208 mtx_lock(pmutex);
209
210 }
_rtw_mutex_lock(_mutex * pmutex)211 __inline static void _rtw_mutex_lock(_mutex *pmutex)
212 {
213
214 mtx_lock(pmutex);
215
216 }
217
_rtw_mutex_unlock(_mutex * pmutex)218 __inline static void _rtw_mutex_unlock(_mutex *pmutex)
219 {
220 mtx_unlock(pmutex);
221 }
222
_rtw_vmalloc(u32 sz)223 static inline void *_rtw_vmalloc(u32 sz)
224 {
225 void *pbuf;
226 pbuf = malloc(sz, M_DEVBUF, M_NOWAIT);
227
228 return pbuf;
229 }
230
_rtw_zvmalloc(u32 sz)231 static inline void *_rtw_zvmalloc(u32 sz)
232 {
233 void *pbuf;
234
235 pbuf = malloc(sz, M_DEVBUF, M_ZERO | M_NOWAIT);
236 return pbuf;
237 }
238
_rtw_vmfree(void * pbuf,u32 sz)239 static inline void _rtw_vmfree(void *pbuf, u32 sz)
240 {
241 free(pbuf, M_DEVBUF);
242 }
243
_rtw_malloc(u32 sz)244 static inline void *_rtw_malloc(u32 sz)
245 {
246 void *pbuf = NULL;
247
248 pbuf = malloc(sz, M_DEVBUF, M_NOWAIT);
249 return pbuf;
250 }
_rtw_zmalloc(u32 sz)251 static inline void *_rtw_zmalloc(u32 sz)
252 {
253 return malloc(sz, M_DEVBUF, M_ZERO | M_NOWAIT);
254 }
_rtw_mfree(void * pbuf,u32 sz)255 static inline void _rtw_mfree(void *pbuf, u32 sz)
256 {
257 free(pbuf, M_DEVBUF);
258 }
259 #ifdef CONFIG_USB_HCI
_rtw_usb_buffer_alloc(struct usb_device * dev,size_t size,dma_addr_t * dma)260 static inline void *_rtw_usb_buffer_alloc(struct usb_device *dev, size_t size, dma_addr_t *dma)
261 {
262 return malloc(size, M_USBDEV, M_NOWAIT | M_ZERO);
263 }
_rtw_usb_buffer_free(struct usb_device * dev,size_t size,void * addr,dma_addr_t dma)264 static inline void _rtw_usb_buffer_free(struct usb_device *dev, size_t size, void *addr, dma_addr_t dma)
265 {
266 free(addr, M_USBDEV);
267 }
268 #endif /* CONFIG_USB_HCI */
269
270 struct sk_buff *_rtw_skb_alloc(u32 sz);
271 void _rtw_skb_free(struct sk_buff *skb);
_rtw_skb_copy(const struct sk_buff * skb)272 static inline struct sk_buff *_rtw_skb_copy(const struct sk_buff *skb)
273 {
274 return NULL;
275 }
276
_rtw_skb_clone(struct sk_buff * skb)277 static inline struct sk_buff *_rtw_skb_clone(struct sk_buff *skb)
278 {
279 return skb_clone(skb);
280 }
281
_rtw_netif_rx(_nic_hdl ndev,struct sk_buff * skb)282 static inline int _rtw_netif_rx(_nic_hdl ndev, struct sk_buff *skb)
283 {
284 return (*ndev->if_input)(ndev, skb);
285 }
286
287 #ifdef CONFIG_RTW_NAPI
_rtw_netif_receive_skb(_nic_hdl ndev,struct sk_buff * skb)288 static inline int _rtw_netif_receive_skb(_nic_hdl ndev, struct sk_buff *skb)
289 {
290 rtw_warn_on(1);
291 return -1;
292 }
293
294 #ifdef CONFIG_RTW_GRO
_rtw_napi_gro_receive(struct napi_struct * napi,struct sk_buff * skb)295 static inline gro_result_t _rtw_napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
296 {
297 rtw_warn_on(1);
298 return -1;
299 }
300 #endif /* CONFIG_RTW_GRO */
301 #endif /* CONFIG_RTW_NAPI */
302
303
304 /*
305 * Linux timers are emulated using FreeBSD callout functions
306 * (and taskqueue functionality).
307 *
308 * Currently no timer stats functionality.
309 *
310 * See (linux_compat) processes.c
311 *
312 */
313 struct rtw_timer_list {
314 struct callout callout;
315 void (*function)(void *);
316 void *arg;
317 };
318
319 struct workqueue_struct;
320 struct work_struct;
321 typedef void (*work_func_t)(struct work_struct *work);
322 /* Values for the state of an item of work (work_struct) */
323 typedef enum work_state {
324 WORK_STATE_UNSET = 0,
325 WORK_STATE_CALLOUT_PENDING = 1,
326 WORK_STATE_TASK_PENDING = 2,
327 WORK_STATE_WORK_CANCELLED = 3
328 } work_state_t;
329
330 struct work_struct {
331 struct task task; /* FreeBSD task */
332 work_state_t state; /* the pending or otherwise state of work. */
333 work_func_t func;
334 };
335
336 //modify private structure to match freebsd
337 #define BITS_PER_LONG 32
338 union ktime {
339 s64 tv64;
340 #if BITS_PER_LONG != 64 && !defined(CONFIG_KTIME_SCALAR)
341 struct {
342 #ifdef __BIG_ENDIAN
343 s32 sec, nsec;
344 #else
345 s32 nsec, sec;
346 #endif
347 } tv;
348 #endif
349 };
350 #define kmemcheck_bitfield_begin(name)
351 #define kmemcheck_bitfield_end(name)
352 #define CHECKSUM_NONE 0
353 typedef unsigned char *sk_buff_data_t;
354 typedef union ktime ktime_t; /* Kill this */
355
356 void rtw_mtx_lock(_lock *plock);
357
358 void rtw_mtx_unlock(_lock *plock);
359
360 /**
361 * struct sk_buff - socket buffer
362 * @next: Next buffer in list
363 * @prev: Previous buffer in list
364 * @sk: Socket we are owned by
365 * @tstamp: Time we arrived
366 * @dev: Device we arrived on/are leaving by
367 * @transport_header: Transport layer header
368 * @network_header: Network layer header
369 * @mac_header: Link layer header
370 * @_skb_refdst: destination entry (with norefcount bit)
371 * @sp: the security path, used for xfrm
372 * @cb: Control buffer. Free for use by every layer. Put private vars here
373 * @len: Length of actual data
374 * @data_len: Data length
375 * @mac_len: Length of link layer header
376 * @hdr_len: writable header length of cloned skb
377 * @csum: Checksum (must include start/offset pair)
378 * @csum_start: Offset from skb->head where checksumming should start
379 * @csum_offset: Offset from csum_start where checksum should be stored
380 * @local_df: allow local fragmentation
381 * @cloned: Head may be cloned (check refcnt to be sure)
382 * @nohdr: Payload reference only, must not modify header
383 * @pkt_type: Packet class
384 * @fclone: skbuff clone status
385 * @ip_summed: Driver fed us an IP checksum
386 * @priority: Packet queueing priority
387 * @users: User count - see {datagram,tcp}.c
388 * @protocol: Packet protocol from driver
389 * @truesize: Buffer size
390 * @head: Head of buffer
391 * @data: Data head pointer
392 * @tail: Tail pointer
393 * @end: End pointer
394 * @destructor: Destruct function
395 * @mark: Generic packet mark
396 * @nfct: Associated connection, if any
397 * @ipvs_property: skbuff is owned by ipvs
398 * @peeked: this packet has been seen already, so stats have been
399 * done for it, don't do them again
400 * @nf_trace: netfilter packet trace flag
401 * @nfctinfo: Relationship of this skb to the connection
402 * @nfct_reasm: netfilter conntrack re-assembly pointer
403 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
404 * @skb_iif: ifindex of device we arrived on
405 * @rxhash: the packet hash computed on receive
406 * @queue_mapping: Queue mapping for multiqueue devices
407 * @tc_index: Traffic control index
408 * @tc_verd: traffic control verdict
409 * @ndisc_nodetype: router type (from link layer)
410 * @dma_cookie: a cookie to one of several possible DMA operations
411 * done by skb DMA functions
412 * @secmark: security marking
413 * @vlan_tci: vlan tag control information
414 */
415
416 struct sk_buff {
417 /* These two members must be first. */
418 struct sk_buff *next;
419 struct sk_buff *prev;
420
421 ktime_t tstamp;
422
423 struct sock *sk;
424 //struct net_device *dev;
425 struct ifnet *dev;
426
427 /*
428 * This is the control buffer. It is free to use for every
429 * layer. Please put your private variables there. If you
430 * want to keep them across layers you have to do a skb_clone()
431 * first. This is owned by whoever has the skb queued ATM.
432 */
433 char cb[48] __aligned(8);
434
435 unsigned long _skb_refdst;
436 #ifdef CONFIG_XFRM
437 struct sec_path *sp;
438 #endif
439 unsigned int len,
440 data_len;
441 u16 mac_len,
442 hdr_len;
443 union {
444 u32 csum;
445 struct {
446 u16 csum_start;
447 u16 csum_offset;
448 }smbol2;
449 }smbol1;
450 u32 priority;
451 kmemcheck_bitfield_begin(flags1);
452 u8 local_df:1,
453 cloned:1,
454 ip_summed:2,
455 nohdr:1,
456 nfctinfo:3;
457 u8 pkt_type:3,
458 fclone:2,
459 ipvs_property:1,
460 peeked:1,
461 nf_trace:1;
462 kmemcheck_bitfield_end(flags1);
463 u16 protocol;
464
465 void (*destructor)(struct sk_buff *skb);
466 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
467 struct nf_conntrack *nfct;
468 struct sk_buff *nfct_reasm;
469 #endif
470 #ifdef CONFIG_BRIDGE_NETFILTER
471 struct nf_bridge_info *nf_bridge;
472 #endif
473
474 int skb_iif;
475 #ifdef CONFIG_NET_SCHED
476 u16 tc_index; /* traffic control index */
477 #ifdef CONFIG_NET_CLS_ACT
478 u16 tc_verd; /* traffic control verdict */
479 #endif
480 #endif
481
482 u32 rxhash;
483
484 kmemcheck_bitfield_begin(flags2);
485 u16 queue_mapping:16;
486 #ifdef CONFIG_IPV6_NDISC_NODETYPE
487 u8 ndisc_nodetype:2,
488 deliver_no_wcard:1;
489 #else
490 u8 deliver_no_wcard:1;
491 #endif
492 kmemcheck_bitfield_end(flags2);
493
494 /* 0/14 bit hole */
495
496 #ifdef CONFIG_NET_DMA
497 dma_cookie_t dma_cookie;
498 #endif
499 #ifdef CONFIG_NETWORK_SECMARK
500 u32 secmark;
501 #endif
502 union {
503 u32 mark;
504 u32 dropcount;
505 }symbol3;
506
507 u16 vlan_tci;
508
509 sk_buff_data_t transport_header;
510 sk_buff_data_t network_header;
511 sk_buff_data_t mac_header;
512 /* These elements must be at the end, see alloc_skb() for details. */
513 sk_buff_data_t tail;
514 sk_buff_data_t end;
515 unsigned char *head,
516 *data;
517 unsigned int truesize;
518 ATOMIC_T users;
519 };
520 struct sk_buff_head {
521 /* These two members must be first. */
522 struct sk_buff *next;
523 struct sk_buff *prev;
524
525 u32 qlen;
526 _lock lock;
527 };
528 #define skb_tail_pointer(skb) skb->tail
skb_put(struct sk_buff * skb,unsigned int len)529 static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
530 {
531 unsigned char *tmp = skb_tail_pointer(skb);
532 //SKB_LINEAR_ASSERT(skb);
533 skb->tail += len;
534 skb->len += len;
535 return tmp;
536 }
537
__skb_pull(struct sk_buff * skb,unsigned int len)538 static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
539 {
540 skb->len -= len;
541 if(skb->len < skb->data_len)
542 printf("%s(),%d,error!\n",__FUNCTION__,__LINE__);
543 return skb->data += len;
544 }
skb_pull(struct sk_buff * skb,unsigned int len)545 static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
546 {
547 return __skb_pull(skb, len);
548 }
skb_queue_len(const struct sk_buff_head * list_)549 static inline u32 skb_queue_len(const struct sk_buff_head *list_)
550 {
551 return list_->qlen;
552 }
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)553 static inline void __skb_insert(struct sk_buff *newsk,
554 struct sk_buff *prev, struct sk_buff *next,
555 struct sk_buff_head *list)
556 {
557 newsk->next = next;
558 newsk->prev = prev;
559 next->prev = prev->next = newsk;
560 list->qlen++;
561 }
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)562 static inline void __skb_queue_before(struct sk_buff_head *list,
563 struct sk_buff *next,
564 struct sk_buff *newsk)
565 {
566 __skb_insert(newsk, next->prev, next, list);
567 }
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)568 static inline void skb_queue_tail(struct sk_buff_head *list,
569 struct sk_buff *newsk)
570 {
571 mtx_lock(&list->lock);
572 __skb_queue_before(list, (struct sk_buff *)list, newsk);
573 mtx_unlock(&list->lock);
574 }
skb_peek(struct sk_buff_head * list_)575 static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
576 {
577 struct sk_buff *list = ((struct sk_buff *)list_)->next;
578 if (list == (struct sk_buff *)list_)
579 list = NULL;
580 return list;
581 }
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)582 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
583 {
584 struct sk_buff *next, *prev;
585
586 list->qlen--;
587 next = skb->next;
588 prev = skb->prev;
589 skb->next = skb->prev = NULL;
590 next->prev = prev;
591 prev->next = next;
592 }
593
skb_dequeue(struct sk_buff_head * list)594 static inline struct sk_buff *skb_dequeue(struct sk_buff_head *list)
595 {
596 mtx_lock(&list->lock);
597
598 struct sk_buff *skb = skb_peek(list);
599 if (skb)
600 __skb_unlink(skb, list);
601
602 mtx_unlock(&list->lock);
603
604 return skb;
605 }
skb_reserve(struct sk_buff * skb,int len)606 static inline void skb_reserve(struct sk_buff *skb, int len)
607 {
608 skb->data += len;
609 skb->tail += len;
610 }
__skb_queue_head_init(struct sk_buff_head * list)611 static inline void __skb_queue_head_init(struct sk_buff_head *list)
612 {
613 list->prev = list->next = (struct sk_buff *)list;
614 list->qlen = 0;
615 }
616 /*
617 * This function creates a split out lock class for each invocation;
618 * this is needed for now since a whole lot of users of the skb-queue
619 * infrastructure in drivers have different locking usage (in hardirq)
620 * than the networking core (in softirq only). In the long run either the
621 * network layer or drivers should need annotation to consolidate the
622 * main types of usage into 3 classes.
623 */
skb_queue_head_init(struct sk_buff_head * list)624 static inline void skb_queue_head_init(struct sk_buff_head *list)
625 {
626 _rtw_spinlock_init(&list->lock);
627 __skb_queue_head_init(list);
628 }
rtw_skb_data(struct sk_buff * pkt)629 static inline u8 *rtw_skb_data(struct sk_buff *pkt)
630 {
631 return pkt->data;
632 }
633
rtw_skb_len(struct sk_buff * pkt)634 static inline u32 rtw_skb_len(struct sk_buff *pkt)
635 {
636 return pkt->len;
637 }
638
639 unsigned long copy_from_user(void *to, const void *from, unsigned long n);
640 unsigned long copy_to_user(void *to, const void *from, unsigned long n);
641 struct sk_buff * dev_alloc_skb(unsigned int size);
642 struct sk_buff *skb_clone(const struct sk_buff *skb);
643 void dev_kfree_skb_any(struct sk_buff *skb);
644 #endif //Baron porting from linux, it's all temp solution, needs to check again
645
646
647 #if 1 // kenny add Linux compatibility code for Linux USB driver
648 #include <dev/usb/usb_compat_linux.h>
649
650 #define __init // __attribute ((constructor))
651 #define __exit // __attribute ((destructor))
652
653 /*
654 * Definitions for module_init and module_exit macros.
655 *
656 * These macros will use the SYSINIT framework to call a specified
657 * function (with no arguments) on module loading or unloading.
658 *
659 */
660
661 void module_init_exit_wrapper(void *arg);
662
663 #define module_init(initfn) \
664 SYSINIT(mod_init_ ## initfn, \
665 SI_SUB_KLD, SI_ORDER_FIRST, \
666 module_init_exit_wrapper, initfn)
667
668 #define module_exit(exitfn) \
669 SYSUNINIT(mod_exit_ ## exitfn, \
670 SI_SUB_KLD, SI_ORDER_ANY, \
671 module_init_exit_wrapper, exitfn)
672
673 /*
674 * The usb_register and usb_deregister functions are used to register
675 * usb drivers with the usb subsystem.
676 */
677 int usb_register(struct usb_driver *driver);
678 int usb_deregister(struct usb_driver *driver);
679
680 /*
681 * usb_get_dev and usb_put_dev - increment/decrement the reference count
682 * of the usb device structure.
683 *
684 * Original body of usb_get_dev:
685 *
686 * if (dev)
687 * get_device(&dev->dev);
688 * return dev;
689 *
690 * Reference counts are not currently used in this compatibility
691 * layer. So these functions will do nothing.
692 */
693 static inline struct usb_device *
usb_get_dev(struct usb_device * dev)694 usb_get_dev(struct usb_device *dev)
695 {
696 return dev;
697 }
698
699 static inline void
usb_put_dev(struct usb_device * dev)700 usb_put_dev(struct usb_device *dev)
701 {
702 return;
703 }
704
705
706 // rtw_usb_compat_linux
707 int rtw_usb_submit_urb(struct urb *urb, uint16_t mem_flags);
708 int rtw_usb_unlink_urb(struct urb *urb);
709 int rtw_usb_clear_halt(struct usb_device *dev, struct usb_host_endpoint *uhe);
710 int rtw_usb_control_msg(struct usb_device *dev, struct usb_host_endpoint *uhe,
711 uint8_t request, uint8_t requesttype,
712 uint16_t value, uint16_t index, void *data,
713 uint16_t size, usb_timeout_t timeout);
714 int rtw_usb_set_interface(struct usb_device *dev, uint8_t iface_no, uint8_t alt_index);
715 int rtw_usb_setup_endpoint(struct usb_device *dev,
716 struct usb_host_endpoint *uhe, usb_size_t bufsize);
717 struct urb *rtw_usb_alloc_urb(uint16_t iso_packets, uint16_t mem_flags);
718 struct usb_host_endpoint *rtw_usb_find_host_endpoint(struct usb_device *dev, uint8_t type, uint8_t ep);
719 struct usb_host_interface *rtw_usb_altnum_to_altsetting(const struct usb_interface *intf, uint8_t alt_index);
720 struct usb_interface *rtw_usb_ifnum_to_if(struct usb_device *dev, uint8_t iface_no);
721 void *rtw_usb_get_intfdata(struct usb_interface *intf);
722 void rtw_usb_linux_register(void *arg);
723 void rtw_usb_linux_deregister(void *arg);
724 void rtw_usb_linux_free_device(struct usb_device *dev);
725 void rtw_usb_free_urb(struct urb *urb);
726 void rtw_usb_init_urb(struct urb *urb);
727 void rtw_usb_kill_urb(struct urb *urb);
728 void rtw_usb_set_intfdata(struct usb_interface *intf, void *data);
729 void rtw_usb_fill_bulk_urb(struct urb *urb, struct usb_device *udev,
730 struct usb_host_endpoint *uhe, void *buf,
731 int length, usb_complete_t callback, void *arg);
732 int rtw_usb_bulk_msg(struct usb_device *udev, struct usb_host_endpoint *uhe,
733 void *data, int len, uint16_t *pactlen, usb_timeout_t timeout);
734 void *usb_get_intfdata(struct usb_interface *intf);
735 int usb_linux_init_endpoints(struct usb_device *udev);
736
737
738
739 typedef struct urb * PURB;
740
741 typedef unsigned gfp_t;
742 #define __GFP_WAIT ((gfp_t)0x10u) /* Can wait and reschedule? */
743 #define __GFP_HIGH ((gfp_t)0x20u) /* Should access emergency pools? */
744 #define __GFP_IO ((gfp_t)0x40u) /* Can start physical IO? */
745 #define __GFP_FS ((gfp_t)0x80u) /* Can call down to low-level FS? */
746 #define __GFP_COLD ((gfp_t)0x100u) /* Cache-cold page required */
747 #define __GFP_NOWARN ((gfp_t)0x200u) /* Suppress page allocation failure warning */
748 #define __GFP_REPEAT ((gfp_t)0x400u) /* Retry the allocation. Might fail */
749 #define __GFP_NOFAIL ((gfp_t)0x800u) /* Retry for ever. Cannot fail */
750 #define __GFP_NORETRY ((gfp_t)0x1000u)/* Do not retry. Might fail */
751 #define __GFP_NO_GROW ((gfp_t)0x2000u)/* Slab internal usage */
752 #define __GFP_COMP ((gfp_t)0x4000u)/* Add compound page metadata */
753 #define __GFP_ZERO ((gfp_t)0x8000u)/* Return zeroed page on success */
754 #define __GFP_NOMEMALLOC ((gfp_t)0x10000u) /* Don't use emergency reserves */
755 #define __GFP_HARDWALL ((gfp_t)0x20000u) /* Enforce hardwall cpuset memory allocs */
756
757 /* This equals 0, but use constants in case they ever change */
758 #define GFP_NOWAIT (GFP_ATOMIC & ~__GFP_HIGH)
759 /* GFP_ATOMIC means both !wait (__GFP_WAIT not set) and use emergency pool */
760 #define GFP_ATOMIC (__GFP_HIGH)
761 #define GFP_NOIO (__GFP_WAIT)
762 #define GFP_NOFS (__GFP_WAIT | __GFP_IO)
763 #define GFP_KERNEL (__GFP_WAIT | __GFP_IO | __GFP_FS)
764 #define GFP_USER (__GFP_WAIT | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
765 #define GFP_HIGHUSER (__GFP_WAIT | __GFP_IO | __GFP_FS | __GFP_HARDWALL | \
766 __GFP_HIGHMEM)
767
768
769 #endif // kenny add Linux compatibility code for Linux USB
770
get_next(_list * list)771 __inline static _list *get_next(_list *list)
772 {
773 return list->next;
774 }
775
get_list_head(_queue * queue)776 __inline static _list *get_list_head(_queue *queue)
777 {
778 return (&(queue->queue));
779 }
780
781
782 #define LIST_CONTAINOR(ptr, type, member) \
783 ((type *)((char *)(ptr)-(SIZE_T)(&((type *)0)->member)))
784
785
__list_del(struct list_head * prev,struct list_head * next)786 static inline void __list_del(struct list_head * prev, struct list_head * next)
787 {
788 next->prev = prev;
789 prev->next = next;
790 }
INIT_LIST_HEAD(struct list_head * list)791 static inline void INIT_LIST_HEAD(struct list_head *list)
792 {
793 list->next = list;
794 list->prev = list;
795 }
rtw_list_delete(_list * plist)796 __inline static void rtw_list_delete(_list *plist)
797 {
798 __list_del(plist->prev, plist->next);
799 INIT_LIST_HEAD(plist);
800 }
801
timer_hdl(void * ctx)802 static inline void timer_hdl(void *ctx)
803 {
804 _timer *timer = (_timer *)ctx;
805
806 rtw_mtx_lock(NULL);
807 if (callout_pending(&timer->callout)) {
808 /* callout was reset */
809 rtw_mtx_unlock(NULL);
810 return;
811 }
812
813 if (!callout_active(&timer->callout)) {
814 /* callout was stopped */
815 rtw_mtx_unlock(NULL);
816 return;
817 }
818
819 callout_deactivate(&timer->callout);
820
821 timer->function(timer->arg);
822
823 rtw_mtx_unlock(NULL);
824 }
825
_init_timer(_timer * ptimer,void * pfunc,void * cntx)826 static inline void _init_timer(_timer *ptimer, void *pfunc, void *cntx)
827 {
828 ptimer->function = pfunc;
829 ptimer->arg = cntx;
830 callout_init(&ptimer->callout, CALLOUT_MPSAFE);
831 }
832
_set_timer(_timer * ptimer,u32 delay_time)833 __inline static void _set_timer(_timer *ptimer,u32 delay_time)
834 {
835 if (ptimer->function && ptimer->arg) {
836 rtw_mtx_lock(NULL);
837 callout_reset(&ptimer->callout, delay_time, timer_hdl, ptimer);
838 rtw_mtx_unlock(NULL);
839 }
840 }
841
_cancel_timer(_timer * ptimer,u8 * bcancelled)842 __inline static void _cancel_timer(_timer *ptimer,u8 *bcancelled)
843 {
844 rtw_mtx_lock(NULL);
845 callout_drain(&ptimer->callout);
846 rtw_mtx_unlock(NULL);
847 *bcancelled = 1; /* assume an pending timer to be canceled */
848 }
849
_init_workitem(_workitem * pwork,void * pfunc,PVOID cntx)850 __inline static void _init_workitem(_workitem *pwork, void *pfunc, PVOID cntx)
851 {
852 printf("%s Not implement yet! \n",__FUNCTION__);
853 }
854
_set_workitem(_workitem * pwork)855 __inline static void _set_workitem(_workitem *pwork)
856 {
857 printf("%s Not implement yet! \n",__FUNCTION__);
858 // schedule_work(pwork);
859 }
860
861 //
862 // Global Mutex: can only be used at PASSIVE level.
863 //
864
865 #define ACQUIRE_GLOBAL_MUTEX(_MutexCounter) \
866 { \
867 }
868
869 #define RELEASE_GLOBAL_MUTEX(_MutexCounter) \
870 { \
871 }
872
873 /* Atomic integer operations */
874 #define ATOMIC_T atomic_t
875
876 #define ATOMIC_INIT(i) { (i) }
ATOMIC_SET(ATOMIC_T * v,int i)877 static inline void ATOMIC_SET(ATOMIC_T *v, int i)
878 {
879 atomic_set_int(v, i);
880 }
881
ATOMIC_READ(ATOMIC_T * v)882 static inline int ATOMIC_READ(ATOMIC_T *v)
883 {
884 return atomic_load_acq_32(v);
885 }
886
ATOMIC_ADD(ATOMIC_T * v,int i)887 static inline void ATOMIC_ADD(ATOMIC_T *v, int i)
888 {
889 atomic_add_int(v, i);
890 }
ATOMIC_SUB(ATOMIC_T * v,int i)891 static inline void ATOMIC_SUB(ATOMIC_T *v, int i)
892 {
893 atomic_subtract_int(v, i);
894 }
895
ATOMIC_INC(ATOMIC_T * v)896 static inline void ATOMIC_INC(ATOMIC_T *v)
897 {
898 atomic_add_int(v, 1);
899 }
900
ATOMIC_DEC(ATOMIC_T * v)901 static inline void ATOMIC_DEC(ATOMIC_T *v)
902 {
903 atomic_subtract_int(v, 1);
904 }
905
ATOMIC_ADD_RETURN(ATOMIC_T * v,int i)906 static inline int ATOMIC_ADD_RETURN(ATOMIC_T *v, int i)
907 {
908 atomic_add_int(v, i);
909 return atomic_load_acq_32(v);
910 }
911
ATOMIC_SUB_RETURN(ATOMIC_T * v,int i)912 static inline int ATOMIC_SUB_RETURN(ATOMIC_T *v, int i)
913 {
914 atomic_subtract_int(v, i);
915 return atomic_load_acq_32(v);
916 }
917
ATOMIC_INC_RETURN(ATOMIC_T * v)918 static inline int ATOMIC_INC_RETURN(ATOMIC_T *v)
919 {
920 atomic_add_int(v, 1);
921 return atomic_load_acq_32(v);
922 }
923
ATOMIC_DEC_RETURN(ATOMIC_T * v)924 static inline int ATOMIC_DEC_RETURN(ATOMIC_T *v)
925 {
926 atomic_subtract_int(v, 1);
927 return atomic_load_acq_32(v);
928 }
929
ATOMIC_INC_UNLESS(ATOMIC_T * v,int u)930 static inline bool ATOMIC_INC_UNLESS(ATOMIC_T *v, int u)
931 {
932 #error "TBD\n"
933 }
934
935 /*task*/
936 typedef void (*task_fn_t)(void *context, int pending);
937 #if 0 /*taskqueue -- asynchronous task execution*/
938
939 TASK_INIT(struct task *task, int priority, task_fn_t func,
940 void *context);
941
942 TASK_INITIALIZER(int priority, task_fn_t func, void *context);
943
944 TASKQUEUE_DECLARE(name);
945
946 TASKQUEUE_DEFINE(name, taskqueue_enqueue_fn enqueue, void *context,
947 init);
948
949 #endif
rtw_tasklet_init(_tasklet * t,task_fn_t func,unsigned long data)950 static inline void rtw_tasklet_init(_tasklet *t,task_fn_t func,
951 unsigned long data)
952 {
953 TASK_INIT(t, 0, func, padapter);
954 }
955 static inline void rtw_tasklet_kill(_tasklet *t)
956
957
958 }
959
960 static inline void rtw_tasklet_schedule(_tasklet *t)
961 {
962
963 }
964 static inline void rtw_tasklet_hi_schedule(_tasklet *t)
965 {
966
967 }
968
969
970 /*thread*/
971 static inline void rtw_thread_enter(char *name)
972 {
973 printf("%s", "RTKTHREAD_enter");
974 }
975
976 static inline void rtw_thread_exit(_completion *comp)
977 {
978 printf("%s", "RTKTHREAD_exit");
979 }
980
981 #include <sys/unistd.h> /* for RFHIGHPID */
982 static inline _thread_hdl_ rtw_thread_start(int (*threadfn)(void *data),
983 void *data, const char namefmt[])
984 {
985 _thread_hdl_ _rtw_thread = NULL;
986 struct proc *p;
987 struct thread *td;
988
989 _rtw_thread = kproc_kthread_add(mp_xmit_packet_thread, data,
990 &p, &td, RFHIGHPID, 0, namefmt, namefmt);
991
992 if (_rtw_thread < 0)
993 _rtw_thread = NULL;
994 return _rtw_thread;
995 }
996
997 static inline bool rtw_thread_stop(_thread_hdl_ th)
998 {
999 return _FALSE;
1000 }
1001 static inline void rtw_thread_wait_stop(void)
1002 {
1003
1004 }
1005 __inline static void flush_signals_thread(void)
1006 {
1007
1008 }
1009
1010 #define rtw_dump_stack(void) do {} while (0)
1011 #define rtw_bug_on(condition) do {} while (0)
1012 #define rtw_warn_on(condition) do {} while (0)
1013 #define rtw_sprintf(buf, size, format, arg...) do {} while (0)
1014
1015 #define rtw_netdev_priv(netdev) (((struct ifnet *)netdev)->if_softc)
1016 #define rtw_free_netdev(netdev) if_free((netdev))
1017
1018 #define RTW_DIV_ROUND_UP(n, d) (((n) + (d - 1)) / d)
1019
1020 #define NDEV_FMT "%s"
1021 #define NDEV_ARG(ndev) ""
1022 #define ADPT_FMT "%s"
1023 #define ADPT_ARG(adapter) ""
1024 #define FUNC_NDEV_FMT "%s"
1025 #define FUNC_NDEV_ARG(ndev) __func__
1026 #define FUNC_ADPT_FMT "%s"
1027 #define FUNC_ADPT_ARG(adapter) __func__
1028
1029 #define STRUCT_PACKED
1030
1031 #endif
1032
1033