xref: /OK3568_Linux_fs/external/rkwifibt/drivers/infineon/bcmspibrcm.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /*
2  * Broadcom BCMSDH to gSPI Protocol Conversion Layer
3  *
4  * Portions of this code are copyright (c) 2021 Cypress Semiconductor Corporation
5  *
6  * Copyright (C) 1999-2017, Broadcom Corporation
7  *
8  *      Unless you and Broadcom execute a separate written software license
9  * agreement governing use of this software, this software is licensed to you
10  * under the terms of the GNU General Public License version 2 (the "GPL"),
11  * available at http://www.broadcom.com/licenses/GPLv2.php, with the
12  * following added to such license:
13  *
14  *      As a special exception, the copyright holders of this software give you
15  * permission to link this software with independent modules, and to copy and
16  * distribute the resulting executable under terms of your choice, provided that
17  * you also meet, for each linked independent module, the terms and conditions of
18  * the license of that module.  An independent module is a module which is not
19  * derived from this software.  The special exception does not apply to any
20  * modifications of the software.
21  *
22  *      Notwithstanding the above, under no circumstances may you combine this
23  * software in any way with any other Broadcom software provided under a license
24  * other than the GPL, without Broadcom's express prior written consent.
25  *
26  *
27  * <<Broadcom-WL-IPTag/Open:>>
28  *
29  * $Id: bcmspibrcm.c 700323 2017-05-18 16:12:11Z $
30  */
31 
32 #define HSMODE
33 
34 #include <typedefs.h>
35 
36 #include <bcmdevs.h>
37 #include <bcmendian.h>
38 #include <bcmutils.h>
39 #include <osl.h>
40 #include <hndsoc.h>
41 #include <siutils.h>
42 #include <sbchipc.h>
43 #include <sbsdio.h>	/* SDIO device core hardware definitions. */
44 #include <spid.h>
45 
46 #include <bcmsdbus.h>	/* bcmsdh to/from specific controller APIs */
47 #include <sdiovar.h>	/* ioctl/iovars */
48 #include <sdio.h>	/* SDIO Device and Protocol Specs */
49 
50 #include <pcicfg.h>
51 
52 #include <bcmspibrcm.h>
53 #ifdef BCMSPI_ANDROID
54 extern void spi_sendrecv(sdioh_info_t *sd, uint8 *msg_out, uint8 *msg_in, int msglen);
55 #else
56 #include <bcmspi.h>
57 #endif /* BCMSPI_ANDROID */
58 
59 /* these are for the older cores... for newer cores we have control for each of them */
60 #define F0_RESPONSE_DELAY	16
61 #define F1_RESPONSE_DELAY	16
62 #define F2_RESPONSE_DELAY	F0_RESPONSE_DELAY
63 
64 #define GSPI_F0_RESP_DELAY		0
65 #define GSPI_F1_RESP_DELAY		F1_RESPONSE_DELAY
66 #define GSPI_F2_RESP_DELAY		0
67 #define GSPI_F3_RESP_DELAY		0
68 
69 #define CMDLEN		4
70 
71 /* Globals */
72 #if defined(DHD_DEBUG)
73 uint sd_msglevel = SDH_ERROR_VAL;
74 #else
75 uint sd_msglevel = 0;
76 #endif // endif
77 
78 uint sd_hiok = FALSE;		/* Use hi-speed mode if available? */
79 uint sd_sdmode = SDIOH_MODE_SPI;		/* Use SD4 mode by default */
80 uint sd_f1_blocksize = 64;		/* Default blocksize */
81 uint sd_f2_blocksize = 64;		/* Default blocksize */
82 
83 uint sd_divisor = 1;
84 uint sd_power = 1;		/* Default to SD Slot powered ON */
85 uint sd_clock = 1;		/* Default to SD Clock turned ON */
86 uint sd_crc = 0;		/* Default to SPI CRC Check turned OFF */
87 uint sd_pci_slot = 0xFFFFffff; /* Used to force selection of a particular PCI slot */
88 
89 uint8	spi_outbuf[SPI_MAX_PKT_LEN];
90 uint8	spi_inbuf[SPI_MAX_PKT_LEN];
91 
92 /* 128bytes buffer is enough to clear data-not-available and program response-delay F0 bits
93  * assuming we will not exceed F0 response delay > 100 bytes at 48MHz.
94  */
95 #define BUF2_PKT_LEN	128
96 uint8	spi_outbuf2[BUF2_PKT_LEN];
97 uint8	spi_inbuf2[BUF2_PKT_LEN];
98 #ifdef BCMSPI_ANDROID
99 uint *dhd_spi_lockcount = NULL;
100 #endif /* BCMSPI_ANDROID */
101 
102 #if !(defined(SPI_PIO_RW_BIGENDIAN) && defined(SPI_PIO_32BIT_RW))
103 #define SPISWAP_WD4(x) bcmswap32(x);
104 #define SPISWAP_WD2(x) (bcmswap16(x & 0xffff)) | \
105 						(bcmswap16((x & 0xffff0000) >> 16) << 16);
106 #else
107 #define SPISWAP_WD4(x) x;
108 #define SPISWAP_WD2(x) bcmswap32by16(x);
109 #endif // endif
110 
111 /* Prototypes */
112 static bool bcmspi_test_card(sdioh_info_t *sd);
113 static bool bcmspi_host_device_init_adapt(sdioh_info_t *sd);
114 static int bcmspi_set_highspeed_mode(sdioh_info_t *sd, bool hsmode);
115 static int bcmspi_cmd_issue(sdioh_info_t *sd, bool use_dma, uint32 cmd_arg,
116                            uint32 *data, uint32 datalen);
117 static int bcmspi_card_regread(sdioh_info_t *sd, int func, uint32 regaddr,
118                               int regsize, uint32 *data);
119 static int bcmspi_card_regwrite(sdioh_info_t *sd, int func, uint32 regaddr,
120                                int regsize, uint32 data);
121 static int bcmspi_card_bytewrite(sdioh_info_t *sd, int func, uint32 regaddr,
122                                uint8 *data);
123 static int bcmspi_driver_init(sdioh_info_t *sd);
124 static int bcmspi_card_buf(sdioh_info_t *sd, int rw, int func, bool fifo,
125                           uint32 addr, int nbytes, uint32 *data);
126 static int bcmspi_card_regread_fixedaddr(sdioh_info_t *sd, int func, uint32 regaddr, int regsize,
127                                  uint32 *data);
128 static void bcmspi_cmd_getdstatus(sdioh_info_t *sd, uint32 *dstatus_buffer);
129 static int bcmspi_update_stats(sdioh_info_t *sd, uint32 cmd_arg);
130 
131 /*
132  *  Public entry points & extern's
133  */
134 extern sdioh_info_t *
sdioh_attach(osl_t * osh,void * bar0,uint irq)135 sdioh_attach(osl_t *osh, void *bar0, uint irq)
136 {
137 	sdioh_info_t *sd;
138 
139 	sd_trace(("%s\n", __FUNCTION__));
140 	if ((sd = (sdioh_info_t *)MALLOC(osh, sizeof(sdioh_info_t))) == NULL) {
141 		sd_err(("%s: out of memory, malloced %d bytes\n", __FUNCTION__, MALLOCED(osh)));
142 		return NULL;
143 	}
144 	bzero((char *)sd, sizeof(sdioh_info_t));
145 	sd->osh = osh;
146 	if (spi_osinit(sd) != 0) {
147 		sd_err(("%s: spi_osinit() failed\n", __FUNCTION__));
148 		MFREE(sd->osh, sd, sizeof(sdioh_info_t));
149 		return NULL;
150 	}
151 
152 #ifndef BCMSPI_ANDROID
153 	sd->bar0 = bar0;
154 #endif /* !BCMSPI_ANDROID */
155 	sd->irq = irq;
156 #ifndef BCMSPI_ANDROID
157 	sd->intr_handler = NULL;
158 	sd->intr_handler_arg = NULL;
159 	sd->intr_handler_valid = FALSE;
160 #endif /* !BCMSPI_ANDROID */
161 
162 	/* Set defaults */
163 	sd->use_client_ints = TRUE;
164 	sd->sd_use_dma = FALSE;	/* DMA Not supported */
165 
166 	/* Spi device default is 16bit mode, change to 4 when device is changed to 32bit
167 	 * mode
168 	 */
169 	sd->wordlen = 2;
170 
171 #ifdef BCMSPI_ANDROID
172 	dhd_spi_lockcount = &sd->lockcount;
173 #endif /* BCMSPI_ANDROID */
174 
175 #ifndef BCMSPI_ANDROID
176 	if (!spi_hw_attach(sd)) {
177 		sd_err(("%s: spi_hw_attach() failed\n", __FUNCTION__));
178 		spi_osfree(sd);
179 		MFREE(sd->osh, sd, sizeof(sdioh_info_t));
180 		return (NULL);
181 	}
182 #endif /* !BCMSPI_ANDROID */
183 
184 	if (bcmspi_driver_init(sd) != SUCCESS) {
185 		sd_err(("%s: bcmspi_driver_init() failed()\n", __FUNCTION__));
186 #ifndef BCMSPI_ANDROID
187 		spi_hw_detach(sd);
188 #endif /* !BCMSPI_ANDROID */
189 		spi_osfree(sd);
190 		MFREE(sd->osh, sd, sizeof(sdioh_info_t));
191 		return (NULL);
192 	}
193 
194 	if (spi_register_irq(sd, irq) != SUCCESS) {
195 		sd_err(("%s: spi_register_irq() failed for irq = %d\n", __FUNCTION__, irq));
196 #ifndef BCMSPI_ANDROID
197 		spi_hw_detach(sd);
198 #endif /* !BCMSPI_ANDROID */
199 		spi_osfree(sd);
200 		MFREE(sd->osh, sd, sizeof(sdioh_info_t));
201 		return (NULL);
202 	}
203 
204 	sd_trace(("%s: Done\n", __FUNCTION__));
205 
206 	return sd;
207 }
208 
209 extern SDIOH_API_RC
sdioh_detach(osl_t * osh,sdioh_info_t * sd)210 sdioh_detach(osl_t *osh, sdioh_info_t *sd)
211 {
212 	sd_trace(("%s\n", __FUNCTION__));
213 	if (sd) {
214 		sd_err(("%s: detaching from hardware\n", __FUNCTION__));
215 		spi_free_irq(sd->irq, sd);
216 #ifndef BCMSPI_ANDROID
217 		spi_hw_detach(sd);
218 #endif /* !BCMSPI_ANDROID */
219 		spi_osfree(sd);
220 #ifdef BCMSPI_ANDROID
221 		dhd_spi_lockcount = NULL;
222 #endif /* !BCMSPI_ANDROID */
223 		MFREE(sd->osh, sd, sizeof(sdioh_info_t));
224 	}
225 	return SDIOH_API_RC_SUCCESS;
226 }
227 
228 /* Configure callback to client when we recieve client interrupt */
229 extern SDIOH_API_RC
sdioh_interrupt_register(sdioh_info_t * sd,sdioh_cb_fn_t fn,void * argh)230 sdioh_interrupt_register(sdioh_info_t *sd, sdioh_cb_fn_t fn, void *argh)
231 {
232 	sd_trace(("%s: Entering\n", __FUNCTION__));
233 #if !defined(OOB_INTR_ONLY)
234 	sd->intr_handler = fn;
235 	sd->intr_handler_arg = argh;
236 	sd->intr_handler_valid = TRUE;
237 #endif /* !defined(OOB_INTR_ONLY) */
238 	return SDIOH_API_RC_SUCCESS;
239 }
240 
241 extern SDIOH_API_RC
sdioh_interrupt_deregister(sdioh_info_t * sd)242 sdioh_interrupt_deregister(sdioh_info_t *sd)
243 {
244 	sd_trace(("%s: Entering\n", __FUNCTION__));
245 #if !defined(OOB_INTR_ONLY)
246 	sd->intr_handler_valid = FALSE;
247 	sd->intr_handler = NULL;
248 	sd->intr_handler_arg = NULL;
249 #endif /* !defined(OOB_INTR_ONLY) */
250 	return SDIOH_API_RC_SUCCESS;
251 }
252 
253 extern SDIOH_API_RC
sdioh_interrupt_query(sdioh_info_t * sd,bool * onoff)254 sdioh_interrupt_query(sdioh_info_t *sd, bool *onoff)
255 {
256 #ifndef BCMSPI_ANDROID
257 	sd_trace(("%s: Entering\n", __FUNCTION__));
258 	*onoff = sd->client_intr_enabled;
259 #endif /* !BCMSPI_ANDROID */
260 	return SDIOH_API_RC_SUCCESS;
261 }
262 
263 #if defined(DHD_DEBUG)
264 extern bool
sdioh_interrupt_pending(sdioh_info_t * sd)265 sdioh_interrupt_pending(sdioh_info_t *sd)
266 {
267 	return 0;
268 }
269 #endif // endif
270 
271 /* Provide dstatus bits of spi-transaction for dhd layers. */
272 extern uint32
sdioh_get_dstatus(sdioh_info_t * sd)273 sdioh_get_dstatus(sdioh_info_t *sd)
274 {
275 	return sd->card_dstatus;
276 }
277 
278 extern void
sdioh_chipinfo(sdioh_info_t * sd,uint32 chip,uint32 chiprev)279 sdioh_chipinfo(sdioh_info_t *sd, uint32 chip, uint32 chiprev)
280 {
281 	sd->chip = chip;
282 	sd->chiprev = chiprev;
283 }
284 
285 extern void
sdioh_dwordmode(sdioh_info_t * sd,bool set)286 sdioh_dwordmode(sdioh_info_t *sd, bool set)
287 {
288 	uint8 reg = 0;
289 	int status;
290 
291 	if ((status = sdioh_request_byte(sd, SDIOH_READ, SPI_FUNC_0, SPID_STATUS_ENABLE, &reg)) !=
292 	     SUCCESS) {
293 		sd_err(("%s: Failed to set dwordmode in gSPI\n", __FUNCTION__));
294 		return;
295 	}
296 
297 	if (set) {
298 		reg |= DWORD_PKT_LEN_EN;
299 		sd->dwordmode = TRUE;
300 		sd->client_block_size[SPI_FUNC_2] = 4096; /* h2spi's limit is 4KB, we support 8KB */
301 	} else {
302 		reg &= ~DWORD_PKT_LEN_EN;
303 		sd->dwordmode = FALSE;
304 		sd->client_block_size[SPI_FUNC_2] = 2048;
305 	}
306 
307 	if ((status = sdioh_request_byte(sd, SDIOH_WRITE, SPI_FUNC_0, SPID_STATUS_ENABLE, &reg)) !=
308 	     SUCCESS) {
309 		sd_err(("%s: Failed to set dwordmode in gSPI\n", __FUNCTION__));
310 		return;
311 	}
312 }
313 
314 uint
sdioh_query_iofnum(sdioh_info_t * sd)315 sdioh_query_iofnum(sdioh_info_t *sd)
316 {
317 	return sd->num_funcs;
318 }
319 
320 /* IOVar table */
321 enum {
322 	IOV_MSGLEVEL = 1,
323 	IOV_BLOCKMODE,
324 	IOV_BLOCKSIZE,
325 	IOV_DMA,
326 	IOV_USEINTS,
327 	IOV_NUMINTS,
328 	IOV_NUMLOCALINTS,
329 	IOV_HOSTREG,
330 	IOV_DEVREG,
331 	IOV_DIVISOR,
332 	IOV_SDMODE,
333 	IOV_HISPEED,
334 	IOV_HCIREGS,
335 	IOV_POWER,
336 	IOV_CLOCK,
337 	IOV_SPIERRSTATS,
338 	IOV_RESP_DELAY_ALL
339 };
340 
341 const bcm_iovar_t sdioh_iovars[] = {
342 	{"sd_msglevel",		IOV_MSGLEVEL,	0,	0,	IOVT_UINT32,	0 },
343 	{"sd_blocksize",	IOV_BLOCKSIZE,	0,	0,	IOVT_UINT32,	0 },
344 	{"sd_dma",		IOV_DMA,	0,	0,	IOVT_BOOL,	0 },
345 	{"sd_ints",		IOV_USEINTS,	0,	0,	IOVT_BOOL,	0 },
346 	{"sd_numints",		IOV_NUMINTS,	0,	0,	IOVT_UINT32,	0 },
347 	{"sd_numlocalints",	IOV_NUMLOCALINTS,	0,	0,	IOVT_UINT32,	0 },
348 	{"sd_hostreg",		IOV_HOSTREG,	0,	0,	IOVT_BUFFER,	sizeof(sdreg_t) },
349 	{"sd_devreg",		IOV_DEVREG,	0,	0,	IOVT_BUFFER,	sizeof(sdreg_t)	},
350 	{"sd_divisor",		IOV_DIVISOR,	0,	0,	IOVT_UINT32,	0 },
351 	{"sd_power",		IOV_POWER,	0,	0,	IOVT_UINT32,	0 },
352 	{"sd_clock",		IOV_CLOCK,	0,	0,	IOVT_UINT32,	0 },
353 	{"sd_mode",		IOV_SDMODE,	0,	0,	IOVT_UINT32,	100},
354 	{"sd_highspeed",	IOV_HISPEED,	0,	0,	IOVT_UINT32,	0},
355 	{"spi_errstats",	IOV_SPIERRSTATS, 0, 0, IOVT_BUFFER, sizeof(struct spierrstats_t) },
356 	{"spi_respdelay",	IOV_RESP_DELAY_ALL,	0,	0,	IOVT_BOOL,	0 },
357 	{NULL, 0, 0, 0, 0, 0 }
358 };
359 
360 int
sdioh_iovar_op(sdioh_info_t * si,const char * name,void * params,int plen,void * arg,int len,bool set)361 sdioh_iovar_op(sdioh_info_t *si, const char *name,
362                void *params, int plen, void *arg, int len, bool set)
363 {
364 	const bcm_iovar_t *vi = NULL;
365 	int bcmerror = 0;
366 	int val_size;
367 	int32 int_val = 0;
368 	uint32 actionid;
369 /*
370 	sdioh_regs_t *regs;
371 */
372 
373 	ASSERT(name);
374 	ASSERT(len >= 0);
375 
376 	/* Get must have return space; Set does not take qualifiers */
377 	ASSERT(set || (arg && len));
378 	ASSERT(!set || (!params && !plen));
379 
380 	sd_trace(("%s: Enter (%s %s)\n", __FUNCTION__, (set ? "set" : "get"), name));
381 
382 	if ((vi = bcm_iovar_lookup(sdioh_iovars, name)) == NULL) {
383 		bcmerror = BCME_UNSUPPORTED;
384 		goto exit;
385 	}
386 
387 	if ((bcmerror = bcm_iovar_lencheck(vi, arg, len, set)) != 0)
388 		goto exit;
389 
390 	/* Set up params so get and set can share the convenience variables */
391 	if (params == NULL) {
392 		params = arg;
393 		plen = len;
394 	}
395 
396 	if (vi->type == IOVT_VOID)
397 		val_size = 0;
398 	else if (vi->type == IOVT_BUFFER)
399 		val_size = len;
400 	else
401 		val_size = sizeof(int);
402 
403 	if (plen >= (int)sizeof(int_val))
404 		bcopy(params, &int_val, sizeof(int_val));
405 
406 	actionid = set ? IOV_SVAL(vi->varid) : IOV_GVAL(vi->varid);
407 	switch (actionid) {
408 	case IOV_GVAL(IOV_MSGLEVEL):
409 		int_val = (int32)sd_msglevel;
410 		bcopy(&int_val, arg, val_size);
411 		break;
412 
413 	case IOV_SVAL(IOV_MSGLEVEL):
414 		sd_msglevel = int_val;
415 		break;
416 
417 	case IOV_GVAL(IOV_BLOCKSIZE):
418 		if ((uint32)int_val > si->num_funcs) {
419 			bcmerror = BCME_BADARG;
420 			break;
421 		}
422 		int_val = (int32)si->client_block_size[int_val];
423 		bcopy(&int_val, arg, val_size);
424 		break;
425 
426 	case IOV_GVAL(IOV_DMA):
427 		int_val = (int32)si->sd_use_dma;
428 		bcopy(&int_val, arg, val_size);
429 		break;
430 
431 	case IOV_SVAL(IOV_DMA):
432 		si->sd_use_dma = (bool)int_val;
433 		break;
434 
435 	case IOV_GVAL(IOV_USEINTS):
436 		int_val = (int32)si->use_client_ints;
437 		bcopy(&int_val, arg, val_size);
438 		break;
439 
440 	case IOV_SVAL(IOV_USEINTS):
441 		break;
442 
443 	case IOV_GVAL(IOV_DIVISOR):
444 		int_val = (uint32)sd_divisor;
445 		bcopy(&int_val, arg, val_size);
446 		break;
447 
448 #ifndef BCMSPI_ANDROID
449 	case IOV_SVAL(IOV_DIVISOR):
450 		sd_divisor = int_val;
451 		if (!spi_start_clock(si, (uint16)sd_divisor)) {
452 			sd_err(("%s: set clock failed\n", __FUNCTION__));
453 			bcmerror = BCME_ERROR;
454 		}
455 		break;
456 #endif /* !BCMSPI_ANDROID */
457 
458 	case IOV_GVAL(IOV_POWER):
459 		int_val = (uint32)sd_power;
460 		bcopy(&int_val, arg, val_size);
461 		break;
462 
463 	case IOV_SVAL(IOV_POWER):
464 		sd_power = int_val;
465 		break;
466 
467 	case IOV_GVAL(IOV_CLOCK):
468 		int_val = (uint32)sd_clock;
469 		bcopy(&int_val, arg, val_size);
470 		break;
471 
472 	case IOV_SVAL(IOV_CLOCK):
473 		sd_clock = int_val;
474 		break;
475 
476 	case IOV_GVAL(IOV_SDMODE):
477 		int_val = (uint32)sd_sdmode;
478 		bcopy(&int_val, arg, val_size);
479 		break;
480 
481 	case IOV_SVAL(IOV_SDMODE):
482 		sd_sdmode = int_val;
483 		break;
484 
485 	case IOV_GVAL(IOV_HISPEED):
486 		int_val = (uint32)sd_hiok;
487 		bcopy(&int_val, arg, val_size);
488 		break;
489 
490 	case IOV_SVAL(IOV_HISPEED):
491 		sd_hiok = int_val;
492 
493 		if (!bcmspi_set_highspeed_mode(si, (bool)sd_hiok)) {
494 			sd_err(("%s: Failed changing highspeed mode to %d.\n",
495 			        __FUNCTION__, sd_hiok));
496 			bcmerror = BCME_ERROR;
497 			return ERROR;
498 		}
499 		break;
500 
501 	case IOV_GVAL(IOV_NUMINTS):
502 		int_val = (int32)si->intrcount;
503 		bcopy(&int_val, arg, val_size);
504 		break;
505 
506 	case IOV_GVAL(IOV_NUMLOCALINTS):
507 		int_val = (int32)si->local_intrcount;
508 		bcopy(&int_val, arg, val_size);
509 		break;
510 	case IOV_GVAL(IOV_DEVREG):
511 	{
512 		sdreg_t *sd_ptr = (sdreg_t *)params;
513 		uint8 data;
514 
515 		if (sdioh_cfg_read(si, sd_ptr->func, sd_ptr->offset, &data)) {
516 			bcmerror = BCME_SDIO_ERROR;
517 			break;
518 		}
519 
520 		int_val = (int)data;
521 		bcopy(&int_val, arg, sizeof(int_val));
522 		break;
523 	}
524 
525 	case IOV_SVAL(IOV_DEVREG):
526 	{
527 		sdreg_t *sd_ptr = (sdreg_t *)params;
528 		uint8 data = (uint8)sd_ptr->value;
529 
530 		if (sdioh_cfg_write(si, sd_ptr->func, sd_ptr->offset, &data)) {
531 			bcmerror = BCME_SDIO_ERROR;
532 			break;
533 		}
534 		break;
535 	}
536 
537 	case IOV_GVAL(IOV_SPIERRSTATS):
538 	{
539 		bcopy(&si->spierrstats, arg, sizeof(struct spierrstats_t));
540 		break;
541 	}
542 
543 	case IOV_SVAL(IOV_SPIERRSTATS):
544 	{
545 		bzero(&si->spierrstats, sizeof(struct spierrstats_t));
546 		break;
547 	}
548 
549 	case IOV_GVAL(IOV_RESP_DELAY_ALL):
550 		int_val = (int32)si->resp_delay_all;
551 		bcopy(&int_val, arg, val_size);
552 		break;
553 
554 	case IOV_SVAL(IOV_RESP_DELAY_ALL):
555 		si->resp_delay_all = (bool)int_val;
556 		int_val = STATUS_ENABLE|INTR_WITH_STATUS;
557 		if (si->resp_delay_all)
558 			int_val |= RESP_DELAY_ALL;
559 		else {
560 			if (bcmspi_card_regwrite(si, SPI_FUNC_0, SPID_RESPONSE_DELAY, 1,
561 			     F1_RESPONSE_DELAY) != SUCCESS) {
562 				sd_err(("%s: Unable to set response delay.\n", __FUNCTION__));
563 				bcmerror = BCME_SDIO_ERROR;
564 				break;
565 			}
566 		}
567 
568 		if (bcmspi_card_regwrite(si, SPI_FUNC_0, SPID_STATUS_ENABLE, 1, int_val)
569 		     != SUCCESS) {
570 			sd_err(("%s: Unable to set response delay.\n", __FUNCTION__));
571 			bcmerror = BCME_SDIO_ERROR;
572 			break;
573 		}
574 		break;
575 
576 	default:
577 		bcmerror = BCME_UNSUPPORTED;
578 		break;
579 	}
580 exit:
581 
582 	return bcmerror;
583 }
584 
585 extern SDIOH_API_RC
sdioh_cfg_read(sdioh_info_t * sd,uint fnc_num,uint32 addr,uint8 * data)586 sdioh_cfg_read(sdioh_info_t *sd, uint fnc_num, uint32 addr, uint8 *data)
587 {
588 	SDIOH_API_RC status;
589 	/* No lock needed since sdioh_request_byte does locking */
590 	status = sdioh_request_byte(sd, SDIOH_READ, fnc_num, addr, data);
591 	return status;
592 }
593 
594 extern SDIOH_API_RC
sdioh_cfg_write(sdioh_info_t * sd,uint fnc_num,uint32 addr,uint8 * data)595 sdioh_cfg_write(sdioh_info_t *sd, uint fnc_num, uint32 addr, uint8 *data)
596 {
597 	/* No lock needed since sdioh_request_byte does locking */
598 	SDIOH_API_RC status;
599 
600 	if ((fnc_num == SPI_FUNC_1) && (addr == SBSDIO_FUNC1_FRAMECTRL)) {
601 		uint8 dummy_data;
602 		status = sdioh_cfg_read(sd, fnc_num, addr, &dummy_data);
603 		if (status) {
604 			sd_err(("sdioh_cfg_read() failed.\n"));
605 			return status;
606 		}
607 	}
608 
609 	status = sdioh_request_byte(sd, SDIOH_WRITE, fnc_num, addr, data);
610 	return status;
611 }
612 
613 extern SDIOH_API_RC
sdioh_cis_read(sdioh_info_t * sd,uint func,uint8 * cisd,uint32 length)614 sdioh_cis_read(sdioh_info_t *sd, uint func, uint8 *cisd, uint32 length)
615 {
616 	uint32 count;
617 	int offset;
618 	uint32 cis_byte;
619 	uint16 *cis = (uint16 *)cisd;
620 	uint bar0 = SI_ENUM_BASE_DEFAULT;
621 	int status;
622 	uint8 data;
623 
624 	sd_trace(("%s: Func %d\n", __FUNCTION__, func));
625 
626 	spi_lock(sd);
627 
628 	/* Set sb window address to 0x18000000 */
629 	data = (bar0 >> 8) & SBSDIO_SBADDRLOW_MASK;
630 	status = bcmspi_card_bytewrite(sd, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRLOW, &data);
631 	if (status == SUCCESS) {
632 		data = (bar0 >> 16) & SBSDIO_SBADDRMID_MASK;
633 		status = bcmspi_card_bytewrite(sd, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRMID, &data);
634 	} else {
635 		sd_err(("%s: Unable to set sb-addr-windows\n", __FUNCTION__));
636 		spi_unlock(sd);
637 		return (BCME_ERROR);
638 	}
639 	if (status == SUCCESS) {
640 		data = (bar0 >> 24) & SBSDIO_SBADDRHIGH_MASK;
641 		status = bcmspi_card_bytewrite(sd, SDIO_FUNC_1, SBSDIO_FUNC1_SBADDRHIGH, &data);
642 	} else {
643 		sd_err(("%s: Unable to set sb-addr-windows\n", __FUNCTION__));
644 		spi_unlock(sd);
645 		return (BCME_ERROR);
646 	}
647 
648 	offset =  CC_SROM_OTP; /* OTP offset in chipcommon. */
649 	for (count = 0; count < length/2; count++) {
650 		if (bcmspi_card_regread (sd, SDIO_FUNC_1, offset, 2, &cis_byte) < 0) {
651 			sd_err(("%s: regread failed: Can't read CIS\n", __FUNCTION__));
652 			spi_unlock(sd);
653 			return (BCME_ERROR);
654 		}
655 
656 		*cis = (uint16)cis_byte;
657 		cis++;
658 		offset += 2;
659 	}
660 
661 	spi_unlock(sd);
662 
663 	return (BCME_OK);
664 }
665 
666 extern SDIOH_API_RC
sdioh_request_byte(sdioh_info_t * sd,uint rw,uint func,uint regaddr,uint8 * byte)667 sdioh_request_byte(sdioh_info_t *sd, uint rw, uint func, uint regaddr, uint8 *byte)
668 {
669 	int status;
670 	uint32 cmd_arg;
671 	uint32 dstatus;
672 	uint32 data = (uint32)(*byte);
673 
674 	spi_lock(sd);
675 
676 	cmd_arg = 0;
677 	cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
678 	cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1);	/* Incremental access */
679 	cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
680 	cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, rw == SDIOH_READ ? 0 : 1);
681 	cmd_arg = SFIELD(cmd_arg, SPI_LEN, 1);
682 
683 	if (rw == SDIOH_READ) {
684 		sd_trace(("%s: RD cmd_arg=0x%x func=%d regaddr=0x%x\n",
685 		          __FUNCTION__, cmd_arg, func, regaddr));
686 	} else {
687 		sd_trace(("%s: WR cmd_arg=0x%x func=%d regaddr=0x%x data=0x%x\n",
688 		          __FUNCTION__, cmd_arg, func, regaddr, data));
689 	}
690 
691 	if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, &data, 1)) != SUCCESS) {
692 		spi_unlock(sd);
693 		return status;
694 	}
695 
696 	if (rw == SDIOH_READ) {
697 		*byte = (uint8)data;
698 		sd_trace(("%s: RD result=0x%x\n", __FUNCTION__, *byte));
699 	}
700 
701 	bcmspi_cmd_getdstatus(sd, &dstatus);
702 	if (dstatus)
703 		sd_trace(("dstatus=0x%x\n", dstatus));
704 
705 	spi_unlock(sd);
706 	return SDIOH_API_RC_SUCCESS;
707 }
708 
709 extern SDIOH_API_RC
sdioh_request_word(sdioh_info_t * sd,uint cmd_type,uint rw,uint func,uint addr,uint32 * word,uint nbytes)710 sdioh_request_word(sdioh_info_t *sd, uint cmd_type, uint rw, uint func, uint addr,
711                    uint32 *word, uint nbytes)
712 {
713 	int status;
714 
715 	spi_lock(sd);
716 
717 	if (rw == SDIOH_READ)
718 		status = bcmspi_card_regread(sd, func, addr, nbytes, word);
719 	else
720 		status = bcmspi_card_regwrite(sd, func, addr, nbytes, *word);
721 
722 	spi_unlock(sd);
723 	return (status == SUCCESS ?  SDIOH_API_RC_SUCCESS : SDIOH_API_RC_FAIL);
724 }
725 
726 extern SDIOH_API_RC
sdioh_request_buffer(sdioh_info_t * sd,uint pio_dma,uint fix_inc,uint rw,uint func,uint addr,uint reg_width,uint buflen_u,uint8 * buffer,void * pkt)727 sdioh_request_buffer(sdioh_info_t *sd, uint pio_dma, uint fix_inc, uint rw, uint func,
728                      uint addr, uint reg_width, uint buflen_u, uint8 *buffer, void *pkt)
729 {
730 	int len;
731 	int buflen = (int)buflen_u;
732 	bool fifo = (fix_inc == SDIOH_DATA_FIX);
733 
734 	spi_lock(sd);
735 
736 	ASSERT(reg_width == 4);
737 	ASSERT(buflen_u < (1 << 30));
738 	ASSERT(sd->client_block_size[func]);
739 
740 	sd_data(("%s: %c len %d r_cnt %d t_cnt %d, pkt @0x%p\n",
741 	         __FUNCTION__, rw == SDIOH_READ ? 'R' : 'W',
742 	         buflen_u, sd->r_cnt, sd->t_cnt, pkt));
743 
744 	/* Break buffer down into blocksize chunks. */
745 	while (buflen > 0) {
746 		len = MIN(sd->client_block_size[func], buflen);
747 		if (bcmspi_card_buf(sd, rw, func, fifo, addr, len, (uint32 *)buffer) != SUCCESS) {
748 			sd_err(("%s: bcmspi_card_buf %s failed\n",
749 				__FUNCTION__, rw == SDIOH_READ ? "Read" : "Write"));
750 			spi_unlock(sd);
751 			return SDIOH_API_RC_FAIL;
752 		}
753 		buffer += len;
754 		buflen -= len;
755 		if (!fifo)
756 			addr += len;
757 	}
758 	spi_unlock(sd);
759 	return SDIOH_API_RC_SUCCESS;
760 }
761 
762 /* This function allows write to gspi bus when another rd/wr function is deep down the call stack.
763  * Its main aim is to have simpler spi writes rather than recursive writes.
764  * e.g. When there is a need to program response delay on the fly after detecting the SPI-func
765  * this call will allow to program the response delay.
766  */
767 static int
bcmspi_card_byterewrite(sdioh_info_t * sd,int func,uint32 regaddr,uint8 byte)768 bcmspi_card_byterewrite(sdioh_info_t *sd, int func, uint32 regaddr, uint8 byte)
769 {
770 	uint32 cmd_arg;
771 	uint32 datalen = 1;
772 	uint32 hostlen;
773 
774 	cmd_arg = 0;
775 
776 	cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 1);
777 	cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1);	/* Incremental access */
778 	cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
779 	cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
780 	cmd_arg = SFIELD(cmd_arg, SPI_LEN, datalen);
781 
782 	sd_trace(("%s cmd_arg = 0x%x\n", __FUNCTION__, cmd_arg));
783 
784 	/* Set up and issue the SPI command.  MSByte goes out on bus first.  Increase datalen
785 	 * according to the wordlen mode(16/32bit) the device is in.
786 	 */
787 	ASSERT(sd->wordlen == 4 || sd->wordlen == 2);
788 	datalen = ROUNDUP(datalen, sd->wordlen);
789 
790 	/* Start by copying command in the spi-outbuffer */
791 	if (sd->wordlen == 4) { /* 32bit spid */
792 		*(uint32 *)spi_outbuf2 = SPISWAP_WD4(cmd_arg);
793 		if (datalen & 0x3)
794 			datalen += (4 - (datalen & 0x3));
795 	} else if (sd->wordlen == 2) { /* 16bit spid */
796 		*(uint32 *)spi_outbuf2 = SPISWAP_WD2(cmd_arg);
797 		if (datalen & 0x1)
798 			datalen++;
799 	} else {
800 		sd_err(("%s: Host is %d bit spid, could not create SPI command.\n",
801 		        __FUNCTION__, 8 * sd->wordlen));
802 		return ERROR;
803 	}
804 
805 	/* for Write, put the data into the output buffer  */
806 	if (datalen != 0) {
807 			if (sd->wordlen == 4) { /* 32bit spid */
808 				*(uint32 *)&spi_outbuf2[CMDLEN] = SPISWAP_WD4(byte);
809 			} else if (sd->wordlen == 2) { /* 16bit spid */
810 				*(uint32 *)&spi_outbuf2[CMDLEN] = SPISWAP_WD2(byte);
811 			}
812 	}
813 
814 	/* +4 for cmd, +4 for dstatus */
815 	hostlen = datalen + 8;
816 	hostlen += (4 - (hostlen & 0x3));
817 	spi_sendrecv(sd, spi_outbuf2, spi_inbuf2, hostlen);
818 
819 	/* Last 4bytes are dstatus.  Device is configured to return status bits. */
820 	if (sd->wordlen == 4) { /* 32bit spid */
821 		sd->card_dstatus = SPISWAP_WD4(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]);
822 	} else if (sd->wordlen == 2) { /* 16bit spid */
823 		sd->card_dstatus = SPISWAP_WD2(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]);
824 	} else {
825 		sd_err(("%s: Host is %d bit machine, could not read SPI dstatus.\n",
826 		        __FUNCTION__, 8 * sd->wordlen));
827 		return ERROR;
828 	}
829 
830 	if (sd->card_dstatus)
831 		sd_trace(("dstatus after byte rewrite = 0x%x\n", sd->card_dstatus));
832 
833 	return (BCME_OK);
834 }
835 
836 /* Program the response delay corresponding to the spi function */
837 static int
bcmspi_prog_resp_delay(sdioh_info_t * sd,int func,uint8 resp_delay)838 bcmspi_prog_resp_delay(sdioh_info_t *sd, int func, uint8 resp_delay)
839 {
840 	if (sd->resp_delay_all == FALSE)
841 		return (BCME_OK);
842 
843 	if (sd->prev_fun == func)
844 		return (BCME_OK);
845 
846 	if (F0_RESPONSE_DELAY == F1_RESPONSE_DELAY)
847 		return (BCME_OK);
848 
849 	bcmspi_card_byterewrite(sd, SPI_FUNC_0, SPID_RESPONSE_DELAY, resp_delay);
850 
851 	/* Remember function for which to avoid reprogramming resp-delay in next iteration */
852 	sd->prev_fun = func;
853 
854 	return (BCME_OK);
855 
856 }
857 
858 #define GSPI_RESYNC_PATTERN	0x0
859 
860 /* A resync pattern is a 32bit MOSI line with all zeros. Its a special command in gSPI.
861  * It resets the spi-bkplane logic so that all F1 related ping-pong buffer logic is
862  * synchronised and all queued resuests are cancelled.
863  */
864 static int
bcmspi_resync_f1(sdioh_info_t * sd)865 bcmspi_resync_f1(sdioh_info_t *sd)
866 {
867 	uint32 cmd_arg = GSPI_RESYNC_PATTERN, data = 0, datalen = 0;
868 
869 	/* Set up and issue the SPI command.  MSByte goes out on bus first.  Increase datalen
870 	 * according to the wordlen mode(16/32bit) the device is in.
871 	 */
872 	ASSERT(sd->wordlen == 4 || sd->wordlen == 2);
873 	datalen = ROUNDUP(datalen, sd->wordlen);
874 
875 	/* Start by copying command in the spi-outbuffer */
876 	*(uint32 *)spi_outbuf2 = cmd_arg;
877 
878 	/* for Write, put the data into the output buffer  */
879 	*(uint32 *)&spi_outbuf2[CMDLEN] = data;
880 
881 	/* +4 for cmd, +4 for dstatus */
882 	spi_sendrecv(sd, spi_outbuf2, spi_inbuf2, datalen + 8);
883 
884 	/* Last 4bytes are dstatus.  Device is configured to return status bits. */
885 	if (sd->wordlen == 4) { /* 32bit spid */
886 		sd->card_dstatus = SPISWAP_WD4(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]);
887 	} else if (sd->wordlen == 2) { /* 16bit spid */
888 		sd->card_dstatus = SPISWAP_WD2(*(uint32 *)&spi_inbuf2[datalen + CMDLEN ]);
889 	} else {
890 		sd_err(("%s: Host is %d bit machine, could not read SPI dstatus.\n",
891 		        __FUNCTION__, 8 * sd->wordlen));
892 		return ERROR;
893 	}
894 
895 	if (sd->card_dstatus)
896 		sd_trace(("dstatus after resync pattern write = 0x%x\n", sd->card_dstatus));
897 
898 	return (BCME_OK);
899 }
900 
901 uint32 dstatus_count = 0;
902 
903 static int
bcmspi_update_stats(sdioh_info_t * sd,uint32 cmd_arg)904 bcmspi_update_stats(sdioh_info_t *sd, uint32 cmd_arg)
905 {
906 	uint32 dstatus = sd->card_dstatus;
907 	struct spierrstats_t *spierrstats = &sd->spierrstats;
908 	int err = SUCCESS;
909 
910 	sd_trace(("cmd = 0x%x, dstatus = 0x%x\n", cmd_arg, dstatus));
911 
912 	/* Store dstatus of last few gSPI transactions */
913 	spierrstats->dstatus[dstatus_count % NUM_PREV_TRANSACTIONS] = dstatus;
914 	spierrstats->spicmd[dstatus_count % NUM_PREV_TRANSACTIONS] = cmd_arg;
915 	dstatus_count++;
916 
917 	if (sd->card_init_done == FALSE)
918 		return err;
919 
920 	if (dstatus & STATUS_DATA_NOT_AVAILABLE) {
921 		spierrstats->dna++;
922 		sd_trace(("Read data not available on F1 addr = 0x%x\n",
923 		        GFIELD(cmd_arg, SPI_REG_ADDR)));
924 		/* Clear dna bit */
925 		bcmspi_card_byterewrite(sd, SPI_FUNC_0, SPID_INTR_REG, DATA_UNAVAILABLE);
926 	}
927 
928 	if (dstatus & STATUS_UNDERFLOW) {
929 		spierrstats->rdunderflow++;
930 		sd_err(("FIFO underflow happened due to current F2 read command.\n"));
931 	}
932 
933 	if (dstatus & STATUS_OVERFLOW) {
934 		spierrstats->wroverflow++;
935 		sd_err(("FIFO overflow happened due to current (F1/F2) write command.\n"));
936 		bcmspi_card_byterewrite(sd, SPI_FUNC_0, SPID_INTR_REG, F1_OVERFLOW);
937 		bcmspi_resync_f1(sd);
938 		sd_err(("Recovering from F1 FIFO overflow.\n"));
939 	}
940 
941 	if (dstatus & STATUS_F2_INTR) {
942 		spierrstats->f2interrupt++;
943 		sd_trace(("Interrupt from F2.  SW should clear corresponding IntStatus bits\n"));
944 	}
945 
946 	if (dstatus & STATUS_F3_INTR) {
947 		spierrstats->f3interrupt++;
948 		sd_err(("Interrupt from F3.  SW should clear corresponding IntStatus bits\n"));
949 	}
950 
951 	if (dstatus & STATUS_HOST_CMD_DATA_ERR) {
952 		spierrstats->hostcmddataerr++;
953 		sd_err(("Error in CMD or Host data, detected by CRC/Checksum (optional)\n"));
954 	}
955 
956 	if (dstatus & STATUS_F2_PKT_AVAILABLE) {
957 		spierrstats->f2pktavailable++;
958 		sd_trace(("Packet is available/ready in F2 TX FIFO\n"));
959 		sd_trace(("Packet length = %d\n", sd->dwordmode ?
960 		         ((dstatus & STATUS_F2_PKT_LEN_MASK) >> (STATUS_F2_PKT_LEN_SHIFT - 2)) :
961 		         ((dstatus & STATUS_F2_PKT_LEN_MASK) >> STATUS_F2_PKT_LEN_SHIFT)));
962 	}
963 
964 	if (dstatus & STATUS_F3_PKT_AVAILABLE) {
965 		spierrstats->f3pktavailable++;
966 		sd_err(("Packet is available/ready in F3 TX FIFO\n"));
967 		sd_err(("Packet length = %d\n",
968 		        (dstatus & STATUS_F3_PKT_LEN_MASK) >> STATUS_F3_PKT_LEN_SHIFT));
969 	}
970 
971 	return err;
972 }
973 
974 extern int
sdioh_abort(sdioh_info_t * sd,uint func)975 sdioh_abort(sdioh_info_t *sd, uint func)
976 {
977 	return 0;
978 }
979 
980 int
sdioh_start(sdioh_info_t * sd,int stage)981 sdioh_start(sdioh_info_t *sd, int stage)
982 {
983 	return SUCCESS;
984 }
985 
986 int
sdioh_stop(sdioh_info_t * sd)987 sdioh_stop(sdioh_info_t *sd)
988 {
989 	return SUCCESS;
990 }
991 
992 int
sdioh_waitlockfree(sdioh_info_t * sd)993 sdioh_waitlockfree(sdioh_info_t *sd)
994 {
995 	return SUCCESS;
996 }
997 
998 /*
999  * Private/Static work routines
1000  */
1001 static int
bcmspi_host_init(sdioh_info_t * sd)1002 bcmspi_host_init(sdioh_info_t *sd)
1003 {
1004 
1005 	/* Default power on mode */
1006 	sd->sd_mode = SDIOH_MODE_SPI;
1007 	sd->polled_mode = TRUE;
1008 	sd->host_init_done = TRUE;
1009 	sd->card_init_done = FALSE;
1010 	sd->adapter_slot = 1;
1011 
1012 	return (SUCCESS);
1013 }
1014 
1015 static int
get_client_blocksize(sdioh_info_t * sd)1016 get_client_blocksize(sdioh_info_t *sd)
1017 {
1018 	uint32 regdata[2];
1019 	int status;
1020 
1021 	/* Find F1/F2/F3 max packet size */
1022 	if ((status = bcmspi_card_regread(sd, 0, SPID_F1_INFO_REG,
1023 	                                 8, regdata)) != SUCCESS) {
1024 		return status;
1025 	}
1026 
1027 	sd_trace(("pkt_size regdata[0] = 0x%x, regdata[1] = 0x%x\n",
1028 	        regdata[0], regdata[1]));
1029 
1030 	sd->client_block_size[1] = (regdata[0] & F1_MAX_PKT_SIZE) >> 2;
1031 	sd_trace(("Func1 blocksize = %d\n", sd->client_block_size[1]));
1032 	ASSERT(sd->client_block_size[1] == BLOCK_SIZE_F1);
1033 
1034 	sd->client_block_size[2] = ((regdata[0] >> 16) & F2_MAX_PKT_SIZE) >> 2;
1035 	sd_trace(("Func2 blocksize = %d\n", sd->client_block_size[2]));
1036 	ASSERT(sd->client_block_size[2] == BLOCK_SIZE_F2);
1037 
1038 	sd->client_block_size[3] = (regdata[1] & F3_MAX_PKT_SIZE) >> 2;
1039 	sd_trace(("Func3 blocksize = %d\n", sd->client_block_size[3]));
1040 	ASSERT(sd->client_block_size[3] == BLOCK_SIZE_F3);
1041 
1042 	return 0;
1043 }
1044 
1045 static int
bcmspi_client_init(sdioh_info_t * sd)1046 bcmspi_client_init(sdioh_info_t *sd)
1047 {
1048 	uint32	status_en_reg = 0;
1049 	sd_trace(("%s: Powering up slot %d\n", __FUNCTION__, sd->adapter_slot));
1050 
1051 #ifndef BCMSPI_ANDROID
1052 #ifdef HSMODE
1053 	if (!spi_start_clock(sd, (uint16)sd_divisor)) {
1054 		sd_err(("spi_start_clock failed\n"));
1055 		return ERROR;
1056 	}
1057 #else
1058 	/* Start at ~400KHz clock rate for initialization */
1059 	if (!spi_start_clock(sd, 128)) {
1060 		sd_err(("spi_start_clock failed\n"));
1061 		return ERROR;
1062 	}
1063 #endif /* HSMODE */
1064 #endif /* !BCMSPI_ANDROID */
1065 
1066 	if (!bcmspi_host_device_init_adapt(sd)) {
1067 		sd_err(("bcmspi_host_device_init_adapt failed\n"));
1068 		return ERROR;
1069 	}
1070 
1071 	if (!bcmspi_test_card(sd)) {
1072 		sd_err(("bcmspi_test_card failed\n"));
1073 		return ERROR;
1074 	}
1075 
1076 	sd->num_funcs = SPI_MAX_IOFUNCS;
1077 
1078 	get_client_blocksize(sd);
1079 
1080 	/* Apply resync pattern cmd with all zeros to reset spi-bkplane F1 logic */
1081 	bcmspi_resync_f1(sd);
1082 
1083 	sd->dwordmode = FALSE;
1084 
1085 	bcmspi_card_regread(sd, 0, SPID_STATUS_ENABLE, 1, &status_en_reg);
1086 
1087 	sd_trace(("%s: Enabling interrupt with dstatus \n", __FUNCTION__));
1088 	status_en_reg |= INTR_WITH_STATUS;
1089 
1090 	if (bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_STATUS_ENABLE, 1,
1091 	    status_en_reg & 0xff) != SUCCESS) {
1092 		sd_err(("%s: Unable to set response delay for all fun's.\n", __FUNCTION__));
1093 		return ERROR;
1094 	}
1095 
1096 #ifndef HSMODE
1097 #ifndef BCMSPI_ANDROID
1098 	/* After configuring for High-Speed mode, set the desired clock rate. */
1099 	if (!spi_start_clock(sd, 4)) {
1100 		sd_err(("spi_start_clock failed\n"));
1101 		return ERROR;
1102 	}
1103 #endif /* !BCMSPI_ANDROID */
1104 #endif /* HSMODE */
1105 
1106 	/* check to see if the response delay needs to be programmed properly */
1107 	{
1108 		uint32 f1_respdelay = 0;
1109 		bcmspi_card_regread(sd, 0, SPID_RESP_DELAY_F1, 1, &f1_respdelay);
1110 		if ((f1_respdelay == 0) || (f1_respdelay == 0xFF)) {
1111 			/* older sdiodevice core and has no separte resp delay for each of */
1112 			sd_err(("older corerev < 4 so use the same resp delay for all funcs\n"));
1113 			sd->resp_delay_new = FALSE;
1114 		}
1115 		else {
1116 			/* older sdiodevice core and has no separte resp delay for each of */
1117 			int ret_val;
1118 			sd->resp_delay_new = TRUE;
1119 			sd_err(("new corerev >= 4 so set the resp delay for each of the funcs\n"));
1120 			sd_trace(("resp delay for funcs f0(%d), f1(%d), f2(%d), f3(%d)\n",
1121 				GSPI_F0_RESP_DELAY, GSPI_F1_RESP_DELAY,
1122 				GSPI_F2_RESP_DELAY, GSPI_F3_RESP_DELAY));
1123 			ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F0, 1,
1124 				GSPI_F0_RESP_DELAY);
1125 			if (ret_val != SUCCESS) {
1126 				sd_err(("%s: Unable to set response delay for F0\n", __FUNCTION__));
1127 				return ERROR;
1128 			}
1129 			ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F1, 1,
1130 				GSPI_F1_RESP_DELAY);
1131 			if (ret_val != SUCCESS) {
1132 				sd_err(("%s: Unable to set response delay for F1\n", __FUNCTION__));
1133 				return ERROR;
1134 			}
1135 			ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F2, 1,
1136 				GSPI_F2_RESP_DELAY);
1137 			if (ret_val != SUCCESS) {
1138 				sd_err(("%s: Unable to set response delay for F2\n", __FUNCTION__));
1139 				return ERROR;
1140 			}
1141 			ret_val = bcmspi_card_regwrite(sd, SPI_FUNC_0, SPID_RESP_DELAY_F3, 1,
1142 				GSPI_F3_RESP_DELAY);
1143 			if (ret_val != SUCCESS) {
1144 				sd_err(("%s: Unable to set response delay for F2\n", __FUNCTION__));
1145 				return ERROR;
1146 			}
1147 		}
1148 	}
1149 
1150 	sd->card_init_done = TRUE;
1151 
1152 	/* get the device rev to program the prop respdelays */
1153 
1154 	return SUCCESS;
1155 }
1156 
1157 static int
bcmspi_set_highspeed_mode(sdioh_info_t * sd,bool hsmode)1158 bcmspi_set_highspeed_mode(sdioh_info_t *sd, bool hsmode)
1159 {
1160 	uint32 regdata;
1161 	int status;
1162 
1163 	if ((status = bcmspi_card_regread(sd, 0, SPID_CONFIG,
1164 	                                 4, &regdata)) != SUCCESS)
1165 		return status;
1166 
1167 	sd_trace(("In %s spih-ctrl = 0x%x \n", __FUNCTION__, regdata));
1168 
1169 	if (hsmode == TRUE) {
1170 		sd_trace(("Attempting to enable High-Speed mode.\n"));
1171 
1172 		if (regdata & HIGH_SPEED_MODE) {
1173 			sd_trace(("Device is already in High-Speed mode.\n"));
1174 			return status;
1175 		} else {
1176 			regdata |= HIGH_SPEED_MODE;
1177 			sd_trace(("Writing %08x to device at %08x\n", regdata, SPID_CONFIG));
1178 			if ((status = bcmspi_card_regwrite(sd, 0, SPID_CONFIG,
1179 			                                  4, regdata)) != SUCCESS) {
1180 				return status;
1181 			}
1182 		}
1183 	} else {
1184 		sd_trace(("Attempting to disable High-Speed mode.\n"));
1185 
1186 		if (regdata & HIGH_SPEED_MODE) {
1187 			regdata &= ~HIGH_SPEED_MODE;
1188 			regdata |= CLOCK_POLARITY;
1189 			sd_trace(("Writing %08x to device at %08x\n", regdata, SPID_CONFIG));
1190 			if ((status = bcmspi_card_regwrite(sd, 0, SPID_CONFIG,
1191 			                                  4, regdata)) != SUCCESS)
1192 				return status;
1193 		}
1194 		 else {
1195 			sd_trace(("Device is already in Low-Speed mode.\n"));
1196 			return status;
1197 		}
1198 	}
1199 #ifndef BCMSPI_ANDROID
1200 	spi_controller_highspeed_mode(sd, hsmode);
1201 #endif /* !BCMSPI_ANDROID */
1202 
1203 	return TRUE;
1204 }
1205 
1206 #define bcmspi_find_curr_mode(sd) { \
1207 	sd->wordlen = 2; \
1208 	status = bcmspi_card_regread_fixedaddr(sd, 0, SPID_TEST_READ, 4, &regdata); \
1209 	regdata &= 0xff; \
1210 	if ((regdata == 0xad) || (regdata == 0x5b) || \
1211 	    (regdata == 0x5d) || (regdata == 0x5a)) \
1212 		break; \
1213 	sd->wordlen = 4; \
1214 	status = bcmspi_card_regread_fixedaddr(sd, 0, SPID_TEST_READ, 4, &regdata); \
1215 	regdata &= 0xff; \
1216 	if ((regdata == 0xad) || (regdata == 0x5b) || \
1217 	    (regdata == 0x5d) || (regdata == 0x5a)) \
1218 		break; \
1219 	sd_trace(("Silicon testability issue: regdata = 0x%x." \
1220 		" Expected 0xad, 0x5a, 0x5b or 0x5d.\n", regdata)); \
1221 	OSL_DELAY(100000); \
1222 }
1223 
1224 #define INIT_ADAPT_LOOP		100
1225 
1226 /* Adapt clock-phase-speed-bitwidth between host and device */
1227 static bool
bcmspi_host_device_init_adapt(sdioh_info_t * sd)1228 bcmspi_host_device_init_adapt(sdioh_info_t *sd)
1229 {
1230 	uint32 wrregdata, regdata = 0;
1231 	int status;
1232 	int i;
1233 
1234 	/* Due to a silicon testability issue, the first command from the Host
1235 	 * to the device will get corrupted (first bit will be lost). So the
1236 	 * Host should poll the device with a safe read request. ie: The Host
1237 	 * should try to read F0 addr 0x14 using the Fixed address mode
1238 	 * (This will prevent a unintended write command to be detected by device)
1239 	 */
1240 	for (i = 0; i < INIT_ADAPT_LOOP; i++) {
1241 	/* If device was not power-cycled it will stay in 32bit mode with
1242 	 * response-delay-all bit set.  Alternate the iteration so that
1243 	 * read either with or without response-delay for F0 to succeed.
1244 	 */
1245 		bcmspi_find_curr_mode(sd);
1246 		sd->resp_delay_all = (i & 0x1) ? TRUE : FALSE;
1247 
1248 		bcmspi_find_curr_mode(sd);
1249 		sd->dwordmode = TRUE;
1250 
1251 		bcmspi_find_curr_mode(sd);
1252 		sd->dwordmode = FALSE;
1253 	}
1254 
1255 	/* Bail out, device not detected */
1256 	if (i == INIT_ADAPT_LOOP)
1257 		return FALSE;
1258 
1259 	/* Softreset the spid logic */
1260 	if ((sd->dwordmode) || (sd->wordlen == 4)) {
1261 		bcmspi_card_regwrite(sd, 0, SPID_RESET_BP, 1, RESET_ON_WLAN_BP_RESET|RESET_SPI);
1262 		bcmspi_card_regread(sd, 0, SPID_RESET_BP, 1, &regdata);
1263 		sd_trace(("reset reg read = 0x%x\n", regdata));
1264 		sd_trace(("dwordmode = %d, wordlen = %d, resp_delay_all = %d\n", sd->dwordmode,
1265 		       sd->wordlen, sd->resp_delay_all));
1266 		/* Restore default state after softreset */
1267 		sd->wordlen = 2;
1268 		sd->dwordmode = FALSE;
1269 	}
1270 
1271 	if (sd->wordlen == 4) {
1272 		if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, &regdata)) !=
1273 		     SUCCESS)
1274 				return FALSE;
1275 		if (regdata == TEST_RO_DATA_32BIT_LE) {
1276 			sd_trace(("Spid is already in 32bit LE mode. Value read = 0x%x\n",
1277 			          regdata));
1278 			sd_trace(("Spid power was left on.\n"));
1279 		} else {
1280 			sd_err(("Spid power was left on but signature read failed."
1281 			        " Value read = 0x%x\n", regdata));
1282 			return FALSE;
1283 		}
1284 	} else {
1285 		sd->wordlen = 2;
1286 
1287 #define CTRL_REG_DEFAULT	0x00010430 /* according to the host m/c */
1288 
1289 		wrregdata = (CTRL_REG_DEFAULT);
1290 
1291 		if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, &regdata)) != SUCCESS)
1292 			return FALSE;
1293 		sd_trace(("(we are still in 16bit mode) 32bit READ LE regdata = 0x%x\n", regdata));
1294 
1295 #ifndef HSMODE
1296 		wrregdata |= (CLOCK_PHASE | CLOCK_POLARITY);
1297 		wrregdata &= ~HIGH_SPEED_MODE;
1298 		bcmspi_card_regwrite(sd, 0, SPID_CONFIG, 4, wrregdata);
1299 #endif /* HSMODE */
1300 
1301 		for (i = 0; i < INIT_ADAPT_LOOP; i++) {
1302 			if ((regdata == 0xfdda7d5b) || (regdata == 0xfdda7d5a)) {
1303 				sd_trace(("0xfeedbead was leftshifted by 1-bit.\n"));
1304 				if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4,
1305 				     &regdata)) != SUCCESS)
1306 					return FALSE;
1307 			}
1308 			OSL_DELAY(1000);
1309 		}
1310 
1311 #if defined(CHANGE_SPI_INTR_POLARITY_ACTIVE_HIGH)
1312 		/* Change to host controller intr-polarity of active-high */
1313 		wrregdata |= INTR_POLARITY;
1314 #else
1315 		/* Change to host controller intr-polarity of active-low */
1316 		wrregdata &= ~INTR_POLARITY;
1317 #endif /* CHANGE_SPI_INTR_POLARITY_ACTIVE_HIGH */
1318 
1319 		sd_trace(("(we are still in 16bit mode) 32bit Write LE reg-ctrl-data = 0x%x\n",
1320 		        wrregdata));
1321 		/* Change to 32bit mode */
1322 		wrregdata |= WORD_LENGTH_32;
1323 		bcmspi_card_regwrite(sd, 0, SPID_CONFIG, 4, wrregdata);
1324 
1325 		/* Change command/data packaging in 32bit LE mode */
1326 		sd->wordlen = 4;
1327 
1328 		if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, &regdata)) != SUCCESS)
1329 			return FALSE;
1330 
1331 		if (regdata == TEST_RO_DATA_32BIT_LE) {
1332 			sd_trace(("Read spid passed. Value read = 0x%x\n", regdata));
1333 			sd_trace(("Spid had power-on cycle OR spi was soft-resetted \n"));
1334 		} else {
1335 			sd_err(("Stale spid reg values read as it was kept powered. Value read ="
1336 			  "0x%x\n", regdata));
1337 			return FALSE;
1338 		}
1339 	}
1340 
1341 	return TRUE;
1342 }
1343 
1344 static bool
bcmspi_test_card(sdioh_info_t * sd)1345 bcmspi_test_card(sdioh_info_t *sd)
1346 {
1347 	uint32 regdata;
1348 	int status;
1349 
1350 	if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_READ, 4, &regdata)) != SUCCESS)
1351 		return FALSE;
1352 
1353 	if (regdata == (TEST_RO_DATA_32BIT_LE))
1354 		sd_trace(("32bit LE regdata = 0x%x\n", regdata));
1355 	else {
1356 		sd_trace(("Incorrect 32bit LE regdata = 0x%x\n", regdata));
1357 		return FALSE;
1358 	}
1359 
1360 #define RW_PATTERN1	0xA0A1A2A3
1361 #define RW_PATTERN2	0x4B5B6B7B
1362 
1363 	regdata = RW_PATTERN1;
1364 	if ((status = bcmspi_card_regwrite(sd, 0, SPID_TEST_RW, 4, regdata)) != SUCCESS)
1365 		return FALSE;
1366 	regdata = 0;
1367 	if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_RW, 4, &regdata)) != SUCCESS)
1368 		return FALSE;
1369 	if (regdata != RW_PATTERN1) {
1370 		sd_err(("Write-Read spid failed. Value wrote = 0x%x, Value read = 0x%x\n",
1371 			RW_PATTERN1, regdata));
1372 		return FALSE;
1373 	} else
1374 		sd_trace(("R/W spid passed. Value read = 0x%x\n", regdata));
1375 
1376 	regdata = RW_PATTERN2;
1377 	if ((status = bcmspi_card_regwrite(sd, 0, SPID_TEST_RW, 4, regdata)) != SUCCESS)
1378 		return FALSE;
1379 	regdata = 0;
1380 	if ((status = bcmspi_card_regread(sd, 0, SPID_TEST_RW, 4, &regdata)) != SUCCESS)
1381 		return FALSE;
1382 	if (regdata != RW_PATTERN2) {
1383 		sd_err(("Write-Read spid failed. Value wrote = 0x%x, Value read = 0x%x\n",
1384 			RW_PATTERN2, regdata));
1385 		return FALSE;
1386 	} else
1387 		sd_trace(("R/W spid passed. Value read = 0x%x\n", regdata));
1388 
1389 	return TRUE;
1390 }
1391 
1392 static int
bcmspi_driver_init(sdioh_info_t * sd)1393 bcmspi_driver_init(sdioh_info_t *sd)
1394 {
1395 	sd_trace(("%s\n", __FUNCTION__));
1396 	if ((bcmspi_host_init(sd)) != SUCCESS) {
1397 		return ERROR;
1398 	}
1399 
1400 	if (bcmspi_client_init(sd) != SUCCESS) {
1401 		return ERROR;
1402 	}
1403 
1404 	return SUCCESS;
1405 }
1406 
1407 /* Read device reg */
1408 static int
bcmspi_card_regread(sdioh_info_t * sd,int func,uint32 regaddr,int regsize,uint32 * data)1409 bcmspi_card_regread(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 *data)
1410 {
1411 	int status;
1412 	uint32 cmd_arg, dstatus;
1413 
1414 	ASSERT(regsize);
1415 
1416 	if (func == 2)
1417 		sd_trace(("Reg access on F2 will generate error indication in dstatus bits.\n"));
1418 
1419 	cmd_arg = 0;
1420 	cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 0);
1421 	cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1);	/* Incremental access */
1422 	cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
1423 	cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
1424 	cmd_arg = SFIELD(cmd_arg, SPI_LEN, regsize == BLOCK_SIZE_F2 ? 0 : regsize);
1425 
1426 	sd_trace(("%s: RD cmd_arg=0x%x func=%d regaddr=0x%x regsize=%d\n",
1427 	          __FUNCTION__, cmd_arg, func, regaddr, regsize));
1428 
1429 	if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, data, regsize)) != SUCCESS)
1430 		return status;
1431 
1432 	bcmspi_cmd_getdstatus(sd, &dstatus);
1433 	if (dstatus)
1434 		sd_trace(("dstatus =0x%x\n", dstatus));
1435 
1436 	return SUCCESS;
1437 }
1438 
1439 static int
bcmspi_card_regread_fixedaddr(sdioh_info_t * sd,int func,uint32 regaddr,int regsize,uint32 * data)1440 bcmspi_card_regread_fixedaddr(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 *data)
1441 {
1442 
1443 	int status;
1444 	uint32 cmd_arg;
1445 	uint32 dstatus;
1446 
1447 	ASSERT(regsize);
1448 
1449 	if (func == 2)
1450 		sd_trace(("Reg access on F2 will generate error indication in dstatus bits.\n"));
1451 
1452 	cmd_arg = 0;
1453 	cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 0);
1454 	cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 0);	/* Fixed access */
1455 	cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
1456 	cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
1457 	cmd_arg = SFIELD(cmd_arg, SPI_LEN, regsize);
1458 
1459 	sd_trace(("%s: RD cmd_arg=0x%x func=%d regaddr=0x%x regsize=%d\n",
1460 	          __FUNCTION__, cmd_arg, func, regaddr, regsize));
1461 
1462 	if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, data, regsize)) != SUCCESS)
1463 		return status;
1464 
1465 	sd_trace(("%s: RD result=0x%x\n", __FUNCTION__, *data));
1466 
1467 	bcmspi_cmd_getdstatus(sd, &dstatus);
1468 	sd_trace(("dstatus =0x%x\n", dstatus));
1469 	return SUCCESS;
1470 }
1471 
1472 /* write a device register */
1473 static int
bcmspi_card_regwrite(sdioh_info_t * sd,int func,uint32 regaddr,int regsize,uint32 data)1474 bcmspi_card_regwrite(sdioh_info_t *sd, int func, uint32 regaddr, int regsize, uint32 data)
1475 {
1476 	int status;
1477 	uint32 cmd_arg, dstatus;
1478 
1479 	ASSERT(regsize);
1480 
1481 	cmd_arg = 0;
1482 
1483 	cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 1);
1484 	cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1);	/* Incremental access */
1485 	cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
1486 	cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
1487 	cmd_arg = SFIELD(cmd_arg, SPI_LEN, regsize == BLOCK_SIZE_F2 ? 0 : regsize);
1488 
1489 	sd_trace(("%s: WR cmd_arg=0x%x func=%d regaddr=0x%x regsize=%d data=0x%x\n",
1490 	          __FUNCTION__, cmd_arg, func, regaddr, regsize, data));
1491 
1492 	if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, &data, regsize)) != SUCCESS)
1493 		return status;
1494 
1495 	bcmspi_cmd_getdstatus(sd, &dstatus);
1496 	if (dstatus)
1497 		sd_trace(("dstatus=0x%x\n", dstatus));
1498 
1499 	return SUCCESS;
1500 }
1501 
1502 /* write a device register - 1 byte */
1503 static int
bcmspi_card_bytewrite(sdioh_info_t * sd,int func,uint32 regaddr,uint8 * byte)1504 bcmspi_card_bytewrite(sdioh_info_t *sd, int func, uint32 regaddr, uint8 *byte)
1505 {
1506 	int status;
1507 	uint32 cmd_arg;
1508 	uint32 dstatus;
1509 	uint32 data = (uint32)(*byte);
1510 
1511 	cmd_arg = 0;
1512 	cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
1513 	cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1);	/* Incremental access */
1514 	cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, regaddr);
1515 	cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, 1);
1516 	cmd_arg = SFIELD(cmd_arg, SPI_LEN, 1);
1517 
1518 	sd_trace(("%s: WR cmd_arg=0x%x func=%d regaddr=0x%x data=0x%x\n",
1519 	          __FUNCTION__, cmd_arg, func, regaddr, data));
1520 
1521 	if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, &data, 1)) != SUCCESS)
1522 		return status;
1523 
1524 	bcmspi_cmd_getdstatus(sd, &dstatus);
1525 	if (dstatus)
1526 		sd_trace(("dstatus =0x%x\n", dstatus));
1527 
1528 	return SUCCESS;
1529 }
1530 
1531 void
bcmspi_cmd_getdstatus(sdioh_info_t * sd,uint32 * dstatus_buffer)1532 bcmspi_cmd_getdstatus(sdioh_info_t *sd, uint32 *dstatus_buffer)
1533 {
1534 	*dstatus_buffer = sd->card_dstatus;
1535 }
1536 
1537 /* 'data' is of type uint32 whereas other buffers are of type uint8 */
1538 static int
bcmspi_cmd_issue(sdioh_info_t * sd,bool use_dma,uint32 cmd_arg,uint32 * data,uint32 datalen)1539 bcmspi_cmd_issue(sdioh_info_t *sd, bool use_dma, uint32 cmd_arg,
1540                 uint32 *data, uint32 datalen)
1541 {
1542 	uint32	i, j;
1543 	uint8	resp_delay = 0;
1544 	int	err = SUCCESS;
1545 	uint32	hostlen;
1546 	uint32 dstatus_idx = 0;
1547 //	uint16 templen, buslen, len;
1548 
1549 	sd_trace(("spi cmd = 0x%x\n", cmd_arg));
1550 
1551 	/* Set up and issue the SPI command.  MSByte goes out on bus first.  Increase datalen
1552 	 * according to the wordlen mode(16/32bit) the device is in.
1553 	 */
1554 	if (sd->wordlen == 4) { /* 32bit spid */
1555 		*(uint32 *)spi_outbuf = SPISWAP_WD4(cmd_arg);
1556 		if (datalen & 0x3)
1557 			datalen += (4 - (datalen & 0x3));
1558 	} else if (sd->wordlen == 2) { /* 16bit spid */
1559 		*(uint32 *)spi_outbuf = SPISWAP_WD2(cmd_arg);
1560 		if (datalen & 0x1)
1561 			datalen++;
1562 		if (datalen < 4)
1563 			datalen = ROUNDUP(datalen, 4);
1564 	} else {
1565 		sd_err(("Host is %d bit spid, could not create SPI command.\n",
1566 			8 * sd->wordlen));
1567 		return ERROR;
1568 	}
1569 
1570 	/* for Write, put the data into the output buffer */
1571 	if (GFIELD(cmd_arg, SPI_RW_FLAG) == 1) {
1572 		/* We send len field of hw-header always a mod16 size, both from host and dongle */
1573 		if (datalen != 0) {
1574 			for (i = 0; i < datalen/4; i++) {
1575 				if (sd->wordlen == 4) { /* 32bit spid */
1576 					*(uint32 *)&spi_outbuf[i * 4 + CMDLEN] =
1577 						SPISWAP_WD4(data[i]);
1578 				} else if (sd->wordlen == 2) { /* 16bit spid */
1579 					*(uint32 *)&spi_outbuf[i * 4 + CMDLEN] =
1580 						SPISWAP_WD2(data[i]);
1581 				}
1582 			}
1583 		}
1584 	}
1585 
1586 	/* Append resp-delay number of bytes and clock them out for F0/1/2 reads. */
1587 	if ((GFIELD(cmd_arg, SPI_RW_FLAG) == 0)) {
1588 		int func = GFIELD(cmd_arg, SPI_FUNCTION);
1589 		switch (func) {
1590 			case 0:
1591 				if (sd->resp_delay_new)
1592 					resp_delay = GSPI_F0_RESP_DELAY;
1593 				else
1594 					resp_delay = sd->resp_delay_all ? F0_RESPONSE_DELAY : 0;
1595 				break;
1596 			case 1:
1597 				if (sd->resp_delay_new)
1598 					resp_delay = GSPI_F1_RESP_DELAY;
1599 				else
1600 					resp_delay = F1_RESPONSE_DELAY;
1601 				break;
1602 			case 2:
1603 				if (sd->resp_delay_new)
1604 					resp_delay = GSPI_F2_RESP_DELAY;
1605 				else
1606 					resp_delay = sd->resp_delay_all ? F2_RESPONSE_DELAY : 0;
1607 				break;
1608 			default:
1609 				ASSERT(0);
1610 				break;
1611 		}
1612 		/* Program response delay */
1613 		if (sd->resp_delay_new == FALSE)
1614 			bcmspi_prog_resp_delay(sd, func, resp_delay);
1615 	}
1616 
1617 	/* +4 for cmd and +4 for dstatus */
1618 	hostlen = datalen + 8 + resp_delay;
1619 	hostlen += dstatus_idx;
1620 #ifdef BCMSPI_ANDROID
1621 	if (hostlen%4) {
1622 		sd_err(("Unaligned data len %d, hostlen %d\n",
1623 			datalen, hostlen));
1624 #endif /* BCMSPI_ANDROID */
1625 	hostlen += (4 - (hostlen & 0x3));
1626 #ifdef BCMSPI_ANDROID
1627 	}
1628 #endif /* BCMSPI_ANDROID */
1629 	spi_sendrecv(sd, spi_outbuf, spi_inbuf, hostlen);
1630 
1631 	/* for Read, get the data into the input buffer */
1632 	if (datalen != 0) {
1633 		if (GFIELD(cmd_arg, SPI_RW_FLAG) == 0) { /* if read cmd */
1634 			for (j = 0; j < datalen/4; j++) {
1635 				if (sd->wordlen == 4) { /* 32bit spid */
1636 					data[j] = SPISWAP_WD4(*(uint32 *)&spi_inbuf[j * 4 +
1637 					            CMDLEN + resp_delay]);
1638 				} else if (sd->wordlen == 2) { /* 16bit spid */
1639 					data[j] = SPISWAP_WD2(*(uint32 *)&spi_inbuf[j * 4 +
1640 					            CMDLEN + resp_delay]);
1641 				}
1642 			}
1643 		}
1644 	}
1645 
1646 	dstatus_idx += (datalen + CMDLEN + resp_delay);
1647 	/* Last 4bytes are dstatus.  Device is configured to return status bits. */
1648 	if (sd->wordlen == 4) { /* 32bit spid */
1649 		sd->card_dstatus = SPISWAP_WD4(*(uint32 *)&spi_inbuf[dstatus_idx]);
1650 	} else if (sd->wordlen == 2) { /* 16bit spid */
1651 		sd->card_dstatus = SPISWAP_WD2(*(uint32 *)&spi_inbuf[dstatus_idx]);
1652 	} else {
1653 		sd_err(("Host is %d bit machine, could not read SPI dstatus.\n",
1654 			8 * sd->wordlen));
1655 		return ERROR;
1656 	}
1657 	if (sd->card_dstatus == 0xffffffff) {
1658 		sd_err(("looks like not a GSPI device or device is not powered.\n"));
1659 	}
1660 
1661 	err = bcmspi_update_stats(sd, cmd_arg);
1662 
1663 	return err;
1664 
1665 }
1666 
1667 static int
bcmspi_card_buf(sdioh_info_t * sd,int rw,int func,bool fifo,uint32 addr,int nbytes,uint32 * data)1668 bcmspi_card_buf(sdioh_info_t *sd, int rw, int func, bool fifo,
1669                 uint32 addr, int nbytes, uint32 *data)
1670 {
1671 	int status;
1672 	uint32 cmd_arg;
1673 	bool write = rw == SDIOH_READ ? 0 : 1;
1674 	uint retries = 0;
1675 
1676 	bool enable;
1677 	uint32	spilen;
1678 
1679 	cmd_arg = 0;
1680 
1681 	ASSERT(nbytes);
1682 	ASSERT(nbytes <= sd->client_block_size[func]);
1683 
1684 	if (write) sd->t_cnt++; else sd->r_cnt++;
1685 
1686 	if (func == 2) {
1687 		/* Frame len check limited by gSPI. */
1688 		if ((nbytes > 2000) && write) {
1689 			sd_trace((">2KB write: F2 wr of %d bytes\n", nbytes));
1690 		}
1691 		/* ASSERT(nbytes <= 2048); Fix bigger len gspi issue and uncomment. */
1692 		/* If F2 fifo on device is not ready to receive data, don't do F2 transfer */
1693 		if (write) {
1694 			uint32 dstatus;
1695 			/* check F2 ready with cached one */
1696 			bcmspi_cmd_getdstatus(sd, &dstatus);
1697 			if ((dstatus & STATUS_F2_RX_READY) == 0) {
1698 				retries = WAIT_F2RXFIFORDY;
1699 				enable = 0;
1700 				while (retries-- && !enable) {
1701 					OSL_DELAY(WAIT_F2RXFIFORDY_DELAY * 1000);
1702 					bcmspi_card_regread(sd, SPI_FUNC_0, SPID_STATUS_REG, 4,
1703 					                   &dstatus);
1704 					if (dstatus & STATUS_F2_RX_READY)
1705 						enable = TRUE;
1706 				}
1707 				if (!enable) {
1708 					struct spierrstats_t *spierrstats = &sd->spierrstats;
1709 					spierrstats->f2rxnotready++;
1710 					sd_err(("F2 FIFO is not ready to receive data.\n"));
1711 					return ERROR;
1712 				}
1713 				sd_trace(("No of retries on F2 ready %d\n",
1714 					(WAIT_F2RXFIFORDY - retries)));
1715 			}
1716 		}
1717 	}
1718 
1719 	/* F2 transfers happen on 0 addr */
1720 	addr = (func == 2) ? 0 : addr;
1721 
1722 	/* In pio mode buffer is read using fixed address fifo in func 1 */
1723 	if ((func == 1) && (fifo))
1724 		cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 0);
1725 	else
1726 		cmd_arg = SFIELD(cmd_arg, SPI_ACCESS, 1);
1727 
1728 	cmd_arg = SFIELD(cmd_arg, SPI_FUNCTION, func);
1729 	cmd_arg = SFIELD(cmd_arg, SPI_REG_ADDR, addr);
1730 	cmd_arg = SFIELD(cmd_arg, SPI_RW_FLAG, write);
1731 	spilen = sd->data_xfer_count = MIN(sd->client_block_size[func], nbytes);
1732 	if ((sd->dwordmode == TRUE) && (GFIELD(cmd_arg, SPI_FUNCTION) == SPI_FUNC_2)) {
1733 		/* convert len to mod4 size */
1734 		spilen = spilen + ((spilen & 0x3) ? (4 - (spilen & 0x3)): 0);
1735 		cmd_arg = SFIELD(cmd_arg, SPI_LEN, (spilen >> 2));
1736 	} else
1737 		cmd_arg = SFIELD(cmd_arg, SPI_LEN, spilen);
1738 
1739 	if ((func == 2) && (fifo == 1)) {
1740 		sd_data(("%s: %s func %d, %s, addr 0x%x, len %d bytes, r_cnt %d t_cnt %d\n",
1741 		          __FUNCTION__, write ? "Wr" : "Rd", func, "INCR",
1742 		          addr, nbytes, sd->r_cnt, sd->t_cnt));
1743 	}
1744 
1745 	sd_trace(("%s cmd_arg = 0x%x\n", __FUNCTION__, cmd_arg));
1746 	sd_data(("%s: %s func %d, %s, addr 0x%x, len %d bytes, r_cnt %d t_cnt %d\n",
1747 	         __FUNCTION__, write ? "Wd" : "Rd", func, "INCR",
1748 	         addr, nbytes, sd->r_cnt, sd->t_cnt));
1749 
1750 	if ((status = bcmspi_cmd_issue(sd, sd->sd_use_dma, cmd_arg, data, nbytes)) != SUCCESS) {
1751 		sd_err(("%s: cmd_issue failed for %s\n", __FUNCTION__,
1752 			(write ? "write" : "read")));
1753 		return status;
1754 	}
1755 
1756 	if ((nbytes > 2000) && !write) {
1757 		sd_trace((">2KB read: F2 rd of %d bytes\n", nbytes));
1758 	}
1759 
1760 	return SUCCESS;
1761 }
1762 
1763 /* Reset and re-initialize the device */
1764 int
sdioh_sdio_reset(sdioh_info_t * si)1765 sdioh_sdio_reset(sdioh_info_t *si)
1766 {
1767 	si->card_init_done = FALSE;
1768 	return bcmspi_client_init(si);
1769 }
1770 
1771 SDIOH_API_RC
sdioh_gpioouten(sdioh_info_t * sd,uint32 gpio)1772 sdioh_gpioouten(sdioh_info_t *sd, uint32 gpio)
1773 {
1774 	return SDIOH_API_RC_FAIL;
1775 }
1776 
1777 SDIOH_API_RC
sdioh_gpioout(sdioh_info_t * sd,uint32 gpio,bool enab)1778 sdioh_gpioout(sdioh_info_t *sd, uint32 gpio, bool enab)
1779 {
1780 	return SDIOH_API_RC_FAIL;
1781 }
1782 
1783 bool
sdioh_gpioin(sdioh_info_t * sd,uint32 gpio)1784 sdioh_gpioin(sdioh_info_t *sd, uint32 gpio)
1785 {
1786 	return FALSE;
1787 }
1788 
1789 SDIOH_API_RC
sdioh_gpio_init(sdioh_info_t * sd)1790 sdioh_gpio_init(sdioh_info_t *sd)
1791 {
1792 	return SDIOH_API_RC_FAIL;
1793 }
1794