xref: /OK3568_Linux_fs/external/rkwifibt/drivers/bcmdhd/include/bcm_ring.h (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /*
2  * bcm_ring.h : Ring context abstraction
3  * The ring context tracks the WRITE and READ indices where elements may be
4  * produced and consumed respectively. All elements in the ring need to be
5  * fixed size.
6  *
7  * NOTE: A ring of size N, may only hold N-1 elements.
8  *
9  * Copyright (C) 2020, Broadcom.
10  *
11  *      Unless you and Broadcom execute a separate written software license
12  * agreement governing use of this software, this software is licensed to you
13  * under the terms of the GNU General Public License version 2 (the "GPL"),
14  * available at http://www.broadcom.com/licenses/GPLv2.php, with the
15  * following added to such license:
16  *
17  *      As a special exception, the copyright holders of this software give you
18  * permission to link this software with independent modules, and to copy and
19  * distribute the resulting executable under terms of your choice, provided that
20  * you also meet, for each linked independent module, the terms and conditions of
21  * the license of that module.  An independent module is a module which is not
22  * derived from this software.  The special exception does not apply to any
23  * modifications of the software.
24  *
25  *
26  * <<Broadcom-WL-IPTag/Dual:>>
27  */
28 #ifndef __bcm_ring_included__
29 #define __bcm_ring_included__
30 /*
31  * API Notes:
32  *
33  * Ring manipulation API allows for:
34  *  Pending operations: Often before some work can be completed, it may be
35  *  desired that several resources are available, e.g. space for production in
36  *  a ring. Approaches such as, #1) reserve resources one by one and return them
37  *  if another required resource is not available, or #2) employ a two pass
38  *  algorithm of first testing whether all resources are available, have a
39  *  an impact on performance critical code. The approach taken here is more akin
40  *  to approach #2, where a test for resource availability essentially also
41  *  provides the index for production in an un-committed state.
42  *  The same approach is taken for the consumer side.
43  *
44  *  - Pending production: Fetch the next index where a ring element may be
45  *    produced. The caller may not commit the WRITE of the element.
46  *  - Pending consumption: Fetch the next index where a ring element may be
47  *    consumed. The caller may not commut the READ of the element.
48  *
49  *  Producer side API:
50  *  - bcm_ring_is_full  : Test whether ring is full
51  *  - bcm_ring_prod     : Fetch index where an element may be produced (commit)
52  *  - bcm_ring_prod_pend: Fetch index where an element may be produced (pending)
53  *  - bcm_ring_prod_done: Commit a previous pending produce fetch
54  *  - bcm_ring_prod_avail: Fetch total number free slots eligible for production
55  *
56  * Consumer side API:
57  *  - bcm_ring_is_empty : Test whether ring is empty
58  *  - bcm_ring_cons     : Fetch index where an element may be consumed (commit)
59  *  - bcm_ring_cons_pend: Fetch index where an element may be consumed (pending)
60  *  - bcm_ring_cons_done: Commit a previous pending consume fetch
61  *  - bcm_ring_cons_avail: Fetch total number elements eligible for consumption
62  *
63  *  - bcm_ring_sync_read: Sync read offset in peer ring, from local ring
64  *  - bcm_ring_sync_write: Sync write offset in peer ring, from local ring
65  *
66  * +----------------------------------------------------------------------------
67  *
68  * Design Notes:
69  * Following items are not tracked in a ring context (design decision)
70  *  - width of a ring element.
71  *  - depth of the ring.
72  *  - base of the buffer, where the elements are stored.
73  *  - count of number of free slots in the ring
74  *
75  * Implementation Notes:
76  *  - When BCM_RING_DEBUG is enabled, need explicit bcm_ring_init().
77  *  - BCM_RING_EMPTY and BCM_RING_FULL are (-1)
78  *
79  * +----------------------------------------------------------------------------
80  *
81  * Usage Notes:
82  * An application may incarnate a ring of some fixed sized elements, by defining
83  *  - a ring data buffer to store the ring elements.
84  *  - depth of the ring (max number of elements managed by ring context).
85  *    Preferrably, depth may be represented as a constant.
86  *  - width of a ring element: to be used in pointer arithmetic with the ring's
87  *    data buffer base and an index to fetch the ring element.
88  *
89  * Use bcm_workq_t to instantiate a pair of workq constructs, one for the
90  * producer and the other for the consumer, both pointing to the same circular
91  * buffer. The producer may operate on it's own local workq and flush the write
92  * index to the consumer. Likewise the consumer may use its local workq and
93  * flush the read index to the producer. This way we do not repeatedly access
94  * the peer's context. The two peers may reside on different CPU cores with a
95  * private L1 data cache.
96  * +----------------------------------------------------------------------------
97  *
98  * -*- Mode: C; tab-width: 4; indent-tabs-mode: t; c-basic-offset: 4 -*-
99  * vim: set ts=4 noet sw=4 tw=80:
100  *
101  * +----------------------------------------------------------------------------
102  */
103 
104 #ifdef ____cacheline_aligned
105 #define __ring_aligned                      ____cacheline_aligned
106 #else
107 #define __ring_aligned
108 #endif
109 
110 /* Conditional compile for debug */
111 /* #define BCM_RING_DEBUG */
112 
113 #define BCM_RING_EMPTY                      (-1)
114 #define BCM_RING_FULL                       (-1)
115 #define BCM_RING_NULL                       ((bcm_ring_t *)NULL)
116 
117 #if defined(BCM_RING_DEBUG)
118 #define RING_ASSERT(exp)                    ASSERT(exp)
119 #define BCM_RING_IS_VALID(ring)             (((ring) != BCM_RING_NULL) && \
120 	                                         ((ring)->self == (ring)))
121 #else  /* ! BCM_RING_DEBUG */
122 #define RING_ASSERT(exp)                    do {} while (0)
123 #define BCM_RING_IS_VALID(ring)             ((ring) != BCM_RING_NULL)
124 #endif /* ! BCM_RING_DEBUG */
125 
126 #define BCM_RING_SIZE_IS_VALID(ring_size)   ((ring_size) > 0)
127 
128 /*
129  * +----------------------------------------------------------------------------
130  * Ring Context
131  * +----------------------------------------------------------------------------
132  */
133 typedef struct bcm_ring {     /* Ring context */
134 #if defined(BCM_RING_DEBUG)
135 	struct bcm_ring *self;    /* ptr to self for IS VALID test */
136 #endif /* BCM_RING_DEBUG */
137 	int write __ring_aligned; /* WRITE index in a circular ring */
138 	int read  __ring_aligned; /* READ index in a circular ring */
139 } bcm_ring_t;
140 
141 static INLINE void bcm_ring_init(bcm_ring_t *ring);
142 static INLINE void bcm_ring_copy(bcm_ring_t *to, bcm_ring_t *from);
143 static INLINE bool bcm_ring_is_empty(const bcm_ring_t *ring);
144 
145 static INLINE int  __bcm_ring_next_write(const bcm_ring_t *ring, const int ring_size);
146 
147 static INLINE bool __bcm_ring_full(const bcm_ring_t *ring, int next_write);
148 static INLINE bool bcm_ring_is_full(bcm_ring_t *ring, const int ring_size);
149 
150 static INLINE void bcm_ring_prod_done(bcm_ring_t *ring, int write);
151 static INLINE int  bcm_ring_prod_pend(const bcm_ring_t *ring, int *pend_write,
152                                       const int ring_size);
153 static INLINE int  bcm_ring_prod(bcm_ring_t *ring, const int ring_size);
154 
155 static INLINE void bcm_ring_cons_done(bcm_ring_t *ring, int read);
156 static INLINE int  bcm_ring_cons_pend(const bcm_ring_t *ring, int *pend_read,
157                                       const int ring_size);
158 static INLINE int  bcm_ring_cons(bcm_ring_t *ring, const int ring_size);
159 
160 static INLINE void bcm_ring_sync_read(bcm_ring_t *peer, const bcm_ring_t *self);
161 static INLINE void bcm_ring_sync_write(bcm_ring_t *peer, const bcm_ring_t *self);
162 
163 static INLINE int  bcm_ring_prod_avail(const bcm_ring_t *ring,
164                                        const int ring_size);
165 static INLINE int  bcm_ring_cons_avail(const bcm_ring_t *ring,
166                                        const int ring_size);
167 static INLINE void bcm_ring_cons_all(bcm_ring_t *ring);
168 
169 /**
170  * bcm_ring_init - initialize a ring context.
171  * @ring: pointer to a ring context
172  */
173 static INLINE void
bcm_ring_init(bcm_ring_t * ring)174 bcm_ring_init(bcm_ring_t *ring)
175 {
176 	ASSERT(ring != (bcm_ring_t *)NULL);
177 #if defined(BCM_RING_DEBUG)
178 	ring->self = ring;
179 #endif /* BCM_RING_DEBUG */
180 	ring->write = 0;
181 	ring->read = 0;
182 }
183 
184 /**
185  * bcm_ring_copy - copy construct a ring
186  * @to: pointer to the new ring context
187  * @from: pointer to orig ring context
188  */
189 static INLINE void
bcm_ring_copy(bcm_ring_t * to,bcm_ring_t * from)190 bcm_ring_copy(bcm_ring_t *to, bcm_ring_t *from)
191 {
192 	bcm_ring_init(to);
193 
194 	to->write = from->write;
195 	to->read  = from->read;
196 }
197 
198 /**
199  * bcm_ring_is_empty - "Boolean" test whether ring is empty.
200  * @ring: pointer to a ring context
201  *
202  * PS. does not return BCM_RING_EMPTY value.
203  */
204 static INLINE bool
bcm_ring_is_empty(const bcm_ring_t * ring)205 bcm_ring_is_empty(const bcm_ring_t *ring)
206 {
207 	RING_ASSERT(BCM_RING_IS_VALID(ring));
208 	return (ring->read == ring->write);
209 }
210 
211 /**
212  * __bcm_ring_next_write - determine the index where the next write may occur
213  *                         (with wrap-around).
214  * @ring: pointer to a ring context
215  * @ring_size: size of the ring
216  *
217  * PRIVATE INTERNAL USE ONLY.
218  */
219 static INLINE int
__bcm_ring_next_write(const bcm_ring_t * ring,const int ring_size)220 __bcm_ring_next_write(const bcm_ring_t *ring, const int ring_size)
221 {
222 	RING_ASSERT(BCM_RING_IS_VALID(ring) && BCM_RING_SIZE_IS_VALID(ring_size));
223 	return ((ring->write + 1) % ring_size);
224 }
225 
226 /**
227  * __bcm_ring_full - support function for ring full test.
228  * @ring: pointer to a ring context
229  * @next_write: next location in ring where an element is to be produced
230  *
231  * PRIVATE INTERNAL USE ONLY.
232  */
233 static INLINE bool
__bcm_ring_full(const bcm_ring_t * ring,int next_write)234 __bcm_ring_full(const bcm_ring_t *ring, int next_write)
235 {
236 	return (next_write == ring->read);
237 }
238 
239 /**
240  * bcm_ring_is_full - "Boolean" test whether a ring is full.
241  * @ring: pointer to a ring context
242  * @ring_size: size of the ring
243  *
244  * PS. does not return BCM_RING_FULL value.
245  */
246 static INLINE bool
bcm_ring_is_full(bcm_ring_t * ring,const int ring_size)247 bcm_ring_is_full(bcm_ring_t *ring, const int ring_size)
248 {
249 	int next_write;
250 	RING_ASSERT(BCM_RING_IS_VALID(ring) && BCM_RING_SIZE_IS_VALID(ring_size));
251 	next_write = __bcm_ring_next_write(ring, ring_size);
252 	return __bcm_ring_full(ring, next_write);
253 }
254 
255 /**
256  * bcm_ring_prod_done - commit a previously pending index where production
257  * was requested.
258  * @ring: pointer to a ring context
259  * @write: index into ring upto where production was done.
260  * +----------------------------------------------------------------------------
261  */
262 static INLINE void
bcm_ring_prod_done(bcm_ring_t * ring,int write)263 bcm_ring_prod_done(bcm_ring_t *ring, int write)
264 {
265 	RING_ASSERT(BCM_RING_IS_VALID(ring));
266 	ring->write = write;
267 }
268 
269 /**
270  * bcm_ring_prod_pend - Fetch in "pend" mode, the index where an element may be
271  * produced.
272  * @ring: pointer to a ring context
273  * @pend_write: next index, after the returned index
274  * @ring_size: size of the ring
275  */
276 static INLINE int
bcm_ring_prod_pend(const bcm_ring_t * ring,int * pend_write,const int ring_size)277 bcm_ring_prod_pend(const bcm_ring_t *ring, int *pend_write, const int ring_size)
278 {
279 	int rtn;
280 	RING_ASSERT(BCM_RING_IS_VALID(ring) && BCM_RING_SIZE_IS_VALID(ring_size));
281 	*pend_write = __bcm_ring_next_write(ring, ring_size);
282 	if (__bcm_ring_full(ring, *pend_write)) {
283 		*pend_write = BCM_RING_FULL;
284 		rtn = BCM_RING_FULL;
285 	} else {
286 		/* production is not committed, caller needs to explicitly commit */
287 		rtn = ring->write;
288 	}
289 	return rtn;
290 }
291 
292 /**
293  * bcm_ring_prod - Fetch and "commit" the next index where a ring element may
294  * be produced.
295  * @ring: pointer to a ring context
296  * @ring_size: size of the ring
297  */
298 static INLINE int
bcm_ring_prod(bcm_ring_t * ring,const int ring_size)299 bcm_ring_prod(bcm_ring_t *ring, const int ring_size)
300 {
301 	int next_write, prod_write;
302 	RING_ASSERT(BCM_RING_IS_VALID(ring) && BCM_RING_SIZE_IS_VALID(ring_size));
303 
304 	next_write = __bcm_ring_next_write(ring, ring_size);
305 	if (__bcm_ring_full(ring, next_write)) {
306 		prod_write = BCM_RING_FULL;
307 	} else {
308 		prod_write = ring->write;
309 		bcm_ring_prod_done(ring, next_write); /* "commit" production */
310 	}
311 	return prod_write;
312 }
313 
314 /**
315  * bcm_ring_cons_done - commit a previously pending read
316  * @ring: pointer to a ring context
317  * @read: index upto which elements have been consumed.
318  */
319 static INLINE void
bcm_ring_cons_done(bcm_ring_t * ring,int read)320 bcm_ring_cons_done(bcm_ring_t *ring, int read)
321 {
322 	RING_ASSERT(BCM_RING_IS_VALID(ring));
323 	ring->read = read;
324 }
325 
326 /**
327  * bcm_ring_cons_pend - fetch in "pend" mode, the next index where a ring
328  * element may be consumed.
329  * @ring: pointer to a ring context
330  * @pend_read: index into ring upto which elements may be consumed.
331  * @ring_size: size of the ring
332  */
333 static INLINE int
bcm_ring_cons_pend(const bcm_ring_t * ring,int * pend_read,const int ring_size)334 bcm_ring_cons_pend(const bcm_ring_t *ring, int *pend_read, const int ring_size)
335 {
336 	int rtn;
337 	RING_ASSERT(BCM_RING_IS_VALID(ring) && BCM_RING_SIZE_IS_VALID(ring_size));
338 	if (bcm_ring_is_empty(ring)) {
339 		*pend_read = BCM_RING_EMPTY;
340 		rtn = BCM_RING_EMPTY;
341 	} else {
342 		*pend_read = (ring->read + 1) % ring_size;
343 		/* production is not committed, caller needs to explicitly commit */
344 		rtn = ring->read;
345 	}
346 	return rtn;
347 }
348 
349 /**
350  * bcm_ring_cons - fetch and "commit" the next index where a ring element may
351  * be consumed.
352  * @ring: pointer to a ring context
353  * @ring_size: size of the ring
354  */
355 static INLINE int
bcm_ring_cons(bcm_ring_t * ring,const int ring_size)356 bcm_ring_cons(bcm_ring_t *ring, const int ring_size)
357 {
358 	int cons_read;
359 	RING_ASSERT(BCM_RING_IS_VALID(ring) && BCM_RING_SIZE_IS_VALID(ring_size));
360 	if (bcm_ring_is_empty(ring)) {
361 		cons_read = BCM_RING_EMPTY;
362 	} else {
363 		cons_read = ring->read;
364 		ring->read = (ring->read + 1) % ring_size; /* read is committed */
365 	}
366 	return cons_read;
367 }
368 
369 /**
370  * bcm_ring_sync_read - on consumption, update peer's read index.
371  * @peer: pointer to peer's producer ring context
372  * @self: pointer to consumer's ring context
373  */
374 static INLINE void
bcm_ring_sync_read(bcm_ring_t * peer,const bcm_ring_t * self)375 bcm_ring_sync_read(bcm_ring_t *peer, const bcm_ring_t *self)
376 {
377 	RING_ASSERT(BCM_RING_IS_VALID(peer));
378 	RING_ASSERT(BCM_RING_IS_VALID(self));
379 	peer->read = self->read; /* flush read update to peer producer */
380 }
381 
382 /**
383  * bcm_ring_sync_write - on consumption, update peer's write index.
384  * @peer: pointer to peer's consumer ring context
385  * @self: pointer to producer's ring context
386  */
387 static INLINE void
bcm_ring_sync_write(bcm_ring_t * peer,const bcm_ring_t * self)388 bcm_ring_sync_write(bcm_ring_t *peer, const bcm_ring_t *self)
389 {
390 	RING_ASSERT(BCM_RING_IS_VALID(peer));
391 	RING_ASSERT(BCM_RING_IS_VALID(self));
392 	peer->write = self->write; /* flush write update to peer consumer */
393 }
394 
395 /**
396  * bcm_ring_prod_avail - fetch total number of available empty slots in the
397  * ring for production.
398  * @ring: pointer to a ring context
399  * @ring_size: size of the ring
400  */
401 static INLINE int
bcm_ring_prod_avail(const bcm_ring_t * ring,const int ring_size)402 bcm_ring_prod_avail(const bcm_ring_t *ring, const int ring_size)
403 {
404 	int prod_avail;
405 	RING_ASSERT(BCM_RING_IS_VALID(ring) && BCM_RING_SIZE_IS_VALID(ring_size));
406 	if (ring->write >= ring->read) {
407 		prod_avail = (ring_size - (ring->write - ring->read) - 1);
408 	} else {
409 		prod_avail = (ring->read - (ring->write + 1));
410 	}
411 	ASSERT(prod_avail < ring_size);
412 	return prod_avail;
413 }
414 
415 /**
416  * bcm_ring_cons_avail - fetch total number of available elements for consumption.
417  * @ring: pointer to a ring context
418  * @ring_size: size of the ring
419  */
420 static INLINE int
bcm_ring_cons_avail(const bcm_ring_t * ring,const int ring_size)421 bcm_ring_cons_avail(const bcm_ring_t *ring, const int ring_size)
422 {
423 	int cons_avail;
424 	RING_ASSERT(BCM_RING_IS_VALID(ring) && BCM_RING_SIZE_IS_VALID(ring_size));
425 	if (ring->read == ring->write) {
426 		cons_avail = 0;
427 	} else if (ring->read > ring->write) {
428 		cons_avail = ((ring_size - ring->read) + ring->write);
429 	} else {
430 		cons_avail = ring->write - ring->read;
431 	}
432 	ASSERT(cons_avail < ring_size);
433 	return cons_avail;
434 }
435 
436 /**
437  * bcm_ring_cons_all - set ring in state where all elements are consumed.
438  * @ring: pointer to a ring context
439  */
440 static INLINE void
bcm_ring_cons_all(bcm_ring_t * ring)441 bcm_ring_cons_all(bcm_ring_t *ring)
442 {
443 	ring->read = ring->write;
444 }
445 
446 /**
447  * Work Queue
448  * A work Queue is composed of a ring of work items, of a specified depth.
449  * It HAS-A bcm_ring object, comprising of a RD and WR offset, to implement a
450  * producer/consumer circular ring.
451  */
452 
453 struct bcm_workq {
454 	bcm_ring_t ring;        /* Ring context abstraction */
455 	struct bcm_workq *peer; /* Peer workq context */
456 	void       *buffer;     /* Buffer storage for work items in workQ */
457 	int        ring_size;   /* Depth of workQ */
458 } __ring_aligned;
459 
460 typedef struct bcm_workq bcm_workq_t;
461 
462 /* #define BCM_WORKQ_DEBUG */
463 #if defined(BCM_WORKQ_DEBUG)
464 #define WORKQ_ASSERT(exp)               ASSERT(exp)
465 #else  /* ! BCM_WORKQ_DEBUG */
466 #define WORKQ_ASSERT(exp)               do {} while (0)
467 #endif /* ! BCM_WORKQ_DEBUG */
468 
469 #define WORKQ_AUDIT(workq) \
470 	WORKQ_ASSERT((workq) != BCM_WORKQ_NULL); \
471 	WORKQ_ASSERT(WORKQ_PEER(workq) != BCM_WORKQ_NULL); \
472 	WORKQ_ASSERT((workq)->buffer == WORKQ_PEER(workq)->buffer); \
473 	WORKQ_ASSERT((workq)->ring_size == WORKQ_PEER(workq)->ring_size);
474 
475 #define BCM_WORKQ_NULL                  ((bcm_workq_t *)NULL)
476 
477 #define WORKQ_PEER(workq)               ((workq)->peer)
478 #define WORKQ_RING(workq)               (&((workq)->ring))
479 #define WORKQ_PEER_RING(workq)          (&((workq)->peer->ring))
480 
481 #define WORKQ_ELEMENT(__elem_type, __workq, __index) ({ \
482 	WORKQ_ASSERT((__workq) != BCM_WORKQ_NULL); \
483 	WORKQ_ASSERT((__index) < ((__workq)->ring_size)); \
484 	((__elem_type *)((__workq)->buffer)) + (__index); \
485 })
486 
487 static INLINE void bcm_workq_init(bcm_workq_t *workq, bcm_workq_t *workq_peer,
488                                   void *buffer, int ring_size);
489 
490 static INLINE bool bcm_workq_is_empty(const bcm_workq_t *workq_prod);
491 
492 static INLINE void bcm_workq_prod_sync(bcm_workq_t *workq_prod);
493 static INLINE void bcm_workq_cons_sync(bcm_workq_t *workq_cons);
494 
495 static INLINE void bcm_workq_prod_refresh(bcm_workq_t *workq_prod);
496 static INLINE void bcm_workq_cons_refresh(bcm_workq_t *workq_cons);
497 
498 /**
499  * bcm_workq_init - initialize a workq
500  * @workq: pointer to a workq context
501  * @buffer: pointer to a pre-allocated circular buffer to serve as a ring
502  * @ring_size: size of the ring in terms of max number of elements.
503  */
504 static INLINE void
bcm_workq_init(bcm_workq_t * workq,bcm_workq_t * workq_peer,void * buffer,int ring_size)505 bcm_workq_init(bcm_workq_t *workq, bcm_workq_t *workq_peer,
506                void *buffer, int ring_size)
507 {
508 	ASSERT(workq != BCM_WORKQ_NULL);
509 	ASSERT(workq_peer != BCM_WORKQ_NULL);
510 	ASSERT(buffer != NULL);
511 	ASSERT(ring_size > 0);
512 
513 	WORKQ_PEER(workq) = workq_peer;
514 	WORKQ_PEER(workq_peer) = workq;
515 
516 	bcm_ring_init(WORKQ_RING(workq));
517 	bcm_ring_init(WORKQ_RING(workq_peer));
518 
519 	workq->buffer = workq_peer->buffer = buffer;
520 	workq->ring_size = workq_peer->ring_size = ring_size;
521 }
522 
523 /**
524  * bcm_workq_empty - test whether there is work
525  * @workq_prod: producer's workq
526  */
527 static INLINE bool
bcm_workq_is_empty(const bcm_workq_t * workq_prod)528 bcm_workq_is_empty(const bcm_workq_t *workq_prod)
529 {
530 	return bcm_ring_is_empty(WORKQ_RING(workq_prod));
531 }
532 
533 /**
534  * bcm_workq_prod_sync - Commit the producer write index to peer workq's ring
535  * @workq_prod: producer's workq whose write index must be synced to peer
536  */
537 static INLINE void
bcm_workq_prod_sync(bcm_workq_t * workq_prod)538 bcm_workq_prod_sync(bcm_workq_t *workq_prod)
539 {
540 	WORKQ_AUDIT(workq_prod);
541 
542 	/* cons::write <--- prod::write */
543 	bcm_ring_sync_write(WORKQ_PEER_RING(workq_prod), WORKQ_RING(workq_prod));
544 }
545 
546 /**
547  * bcm_workq_cons_sync - Commit the consumer read index to the peer workq's ring
548  * @workq_cons: consumer's workq whose read index must be synced to peer
549  */
550 static INLINE void
bcm_workq_cons_sync(bcm_workq_t * workq_cons)551 bcm_workq_cons_sync(bcm_workq_t *workq_cons)
552 {
553 	WORKQ_AUDIT(workq_cons);
554 
555 	/* prod::read <--- cons::read */
556 	bcm_ring_sync_read(WORKQ_PEER_RING(workq_cons), WORKQ_RING(workq_cons));
557 }
558 
559 /**
560  * bcm_workq_prod_refresh - Fetch the updated consumer's read index
561  * @workq_prod: producer's workq whose read index must be refreshed from peer
562  */
563 static INLINE void
bcm_workq_prod_refresh(bcm_workq_t * workq_prod)564 bcm_workq_prod_refresh(bcm_workq_t *workq_prod)
565 {
566 	WORKQ_AUDIT(workq_prod);
567 
568 	/* prod::read <--- cons::read */
569 	bcm_ring_sync_read(WORKQ_RING(workq_prod), WORKQ_PEER_RING(workq_prod));
570 }
571 
572 /**
573  * bcm_workq_cons_refresh - Fetch the updated producer's write index
574  * @workq_cons: consumer's workq whose write index must be refreshed from peer
575  */
576 static INLINE void
bcm_workq_cons_refresh(bcm_workq_t * workq_cons)577 bcm_workq_cons_refresh(bcm_workq_t *workq_cons)
578 {
579 	WORKQ_AUDIT(workq_cons);
580 
581 	/* cons::write <--- prod::write */
582 	bcm_ring_sync_write(WORKQ_RING(workq_cons), WORKQ_PEER_RING(workq_cons));
583 }
584 
585 #endif /* ! __bcm_ring_h_included__ */
586