xref: /OK3568_Linux_fs/external/rknpu2/examples/rknn_common_test/src/main.cc (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // Copyright (c) 2021 by Rockchip Electronics Co., Ltd. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 /*-------------------------------------------
16                 Includes
17 -------------------------------------------*/
18 #include "opencv2/core/core.hpp"
19 #include "opencv2/imgcodecs.hpp"
20 #include "opencv2/imgproc.hpp"
21 #include "rknn_api.h"
22 
23 #include <float.h>
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <string.h>
27 #include <sys/time.h>
28 
29 using namespace std;
30 using namespace cv;
31 
32 /*-------------------------------------------
33                   Functions
34 -------------------------------------------*/
getCurrentTimeUs()35 static inline int64_t getCurrentTimeUs()
36 {
37   struct timeval tv;
38   gettimeofday(&tv, NULL);
39   return tv.tv_sec * 1000000 + tv.tv_usec;
40 }
41 
rknn_GetTopN(float * pfProb,float * pfMaxProb,uint32_t * pMaxClass,uint32_t outputCount,uint32_t topNum)42 static int rknn_GetTopN(float* pfProb, float* pfMaxProb, uint32_t* pMaxClass, uint32_t outputCount, uint32_t topNum)
43 {
44   uint32_t i, j;
45   uint32_t top_count = outputCount > topNum ? topNum : outputCount;
46 
47   for (i = 0; i < topNum; ++i) {
48     pfMaxProb[i] = -FLT_MAX;
49     pMaxClass[i] = -1;
50   }
51 
52   for (j = 0; j < top_count; j++) {
53     for (i = 0; i < outputCount; i++) {
54       if ((i == *(pMaxClass + 0)) || (i == *(pMaxClass + 1)) || (i == *(pMaxClass + 2)) || (i == *(pMaxClass + 3)) ||
55           (i == *(pMaxClass + 4))) {
56         continue;
57       }
58 
59       if (pfProb[i] > *(pfMaxProb + j)) {
60         *(pfMaxProb + j) = pfProb[i];
61         *(pMaxClass + j) = i;
62       }
63     }
64   }
65 
66   return 1;
67 }
68 
dump_tensor_attr(rknn_tensor_attr * attr)69 static void dump_tensor_attr(rknn_tensor_attr* attr)
70 {
71   printf("  index=%d, name=%s, n_dims=%d, dims=[%d, %d, %d, %d], n_elems=%d, size=%d, fmt=%s, type=%s, qnt_type=%s, "
72          "zp=%d, scale=%f\n",
73          attr->index, attr->name, attr->n_dims, attr->dims[0], attr->dims[1], attr->dims[2], attr->dims[3],
74          attr->n_elems, attr->size, get_format_string(attr->fmt), get_type_string(attr->type),
75          get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale);
76 }
77 
78 /*-------------------------------------------
79                   Main Functions
80 -------------------------------------------*/
main(int argc,char * argv[])81 int main(int argc, char* argv[])
82 {
83   if (argc < 3) {
84     printf("Usage:%s model_path input_path [loop_count]\n", argv[0]);
85     return -1;
86   }
87 
88   char* model_path = argv[1];
89   char* input_path = argv[2];
90 
91   int loop_count = 1;
92   if (argc > 3) {
93     loop_count = atoi(argv[3]);
94   }
95 
96   rknn_context ctx = 0;
97 
98   // Load RKNN Model
99   int ret = rknn_init(&ctx, model_path, 0, 0, NULL);
100   if (ret < 0) {
101     printf("rknn_init fail! ret=%d\n", ret);
102     return -1;
103   }
104 
105   // Get sdk and driver version
106   rknn_sdk_version sdk_ver;
107   ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &sdk_ver, sizeof(sdk_ver));
108   if (ret != RKNN_SUCC) {
109     printf("rknn_query fail! ret=%d\n", ret);
110     return -1;
111   }
112   printf("rknn_api/rknnrt version: %s, driver version: %s\n", sdk_ver.api_version, sdk_ver.drv_version);
113 
114   // Get Model Input Output Info
115   rknn_input_output_num io_num;
116   ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
117   if (ret != RKNN_SUCC) {
118     printf("rknn_query fail! ret=%d\n", ret);
119     return -1;
120   }
121   printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output);
122 
123   printf("input tensors:\n");
124   rknn_tensor_attr input_attrs[io_num.n_input];
125   memset(input_attrs, 0, io_num.n_input * sizeof(rknn_tensor_attr));
126   for (uint32_t i = 0; i < io_num.n_input; i++) {
127     input_attrs[i].index = i;
128     // query info
129     ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr));
130     if (ret < 0) {
131       printf("rknn_init error! ret=%d\n", ret);
132       return -1;
133     }
134     dump_tensor_attr(&input_attrs[i]);
135   }
136 
137   printf("output tensors:\n");
138   rknn_tensor_attr output_attrs[io_num.n_output];
139   memset(output_attrs, 0, io_num.n_output * sizeof(rknn_tensor_attr));
140   for (uint32_t i = 0; i < io_num.n_output; i++) {
141     output_attrs[i].index = i;
142     // query info
143     ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr));
144     if (ret != RKNN_SUCC) {
145       printf("rknn_query fail! ret=%d\n", ret);
146       return -1;
147     }
148     dump_tensor_attr(&output_attrs[i]);
149   }
150 
151   // Get custom string
152   rknn_custom_string custom_string;
153   ret = rknn_query(ctx, RKNN_QUERY_CUSTOM_STRING, &custom_string, sizeof(custom_string));
154   if (ret != RKNN_SUCC) {
155     printf("rknn_query fail! ret=%d\n", ret);
156     return -1;
157   }
158   printf("custom string: %s\n", custom_string.string);
159 
160   unsigned char*     input_data   = NULL;
161   rknn_tensor_type   input_type   = RKNN_TENSOR_UINT8;
162   rknn_tensor_format input_layout = RKNN_TENSOR_NHWC;
163 
164   // Load image
165   int req_height  = 0;
166   int req_width   = 0;
167   int req_channel = 0;
168 
169   switch (input_attrs[0].fmt) {
170   case RKNN_TENSOR_NHWC:
171     req_height  = input_attrs[0].dims[1];
172     req_width   = input_attrs[0].dims[2];
173     req_channel = input_attrs[0].dims[3];
174     break;
175   case RKNN_TENSOR_NCHW:
176     req_height  = input_attrs[0].dims[2];
177     req_width   = input_attrs[0].dims[3];
178     req_channel = input_attrs[0].dims[1];
179     break;
180   default:
181     printf("meet unsupported layout\n");
182     return -1;
183   }
184 
185   int height  = 0;
186   int width   = 0;
187   int channel = 0;
188 
189   cv::Mat orig_img = imread(input_path, cv::IMREAD_COLOR);
190   if (!orig_img.data) {
191     printf("cv::imread %s fail!\n", input_path);
192     return -1;
193   }
194 
195   // if origin model is from Caffe, you maybe not need do BGR2RGB.
196   cv::Mat orig_img_rgb;
197   cv::cvtColor(orig_img, orig_img_rgb, cv::COLOR_BGR2RGB);
198 
199   cv::Mat img = orig_img_rgb.clone();
200   if (orig_img.cols != req_width || orig_img.rows != req_height) {
201     printf("resize %d %d to %d %d\n", orig_img.cols, orig_img.rows, req_width, req_height);
202     cv::resize(orig_img_rgb, img, cv::Size(req_width, req_height), 0, 0, cv::INTER_LINEAR);
203   }
204   input_data = img.data;
205   if (!input_data) {
206     return -1;
207   }
208 
209   // Create input tensor memory
210   rknn_tensor_mem* input_mems[1];
211   // default input type is int8 (normalize and quantize need compute in outside)
212   // if set uint8, will fuse normalize and quantize to npu
213   input_attrs[0].type = input_type;
214   // default fmt is NHWC, npu only support NHWC in zero copy mode
215   input_attrs[0].fmt = input_layout;
216 
217   input_mems[0] = rknn_create_mem(ctx, input_attrs[0].size_with_stride);
218 
219   // Copy input data to input tensor memory
220   width      = input_attrs[0].dims[2];
221   int stride = input_attrs[0].w_stride;
222 
223   if (width == stride) {
224     memcpy(input_mems[0]->virt_addr, input_data, width * input_attrs[0].dims[1] * input_attrs[0].dims[3]);
225   } else {
226     int height  = input_attrs[0].dims[1];
227     int channel = input_attrs[0].dims[3];
228     // copy from src to dst with stride
229     uint8_t* src_ptr = input_data;
230     uint8_t* dst_ptr = (uint8_t*)input_mems[0]->virt_addr;
231     // width-channel elements
232     int src_wc_elems = width * channel;
233     int dst_wc_elems = stride * channel;
234     for (int h = 0; h < height; ++h) {
235       memcpy(dst_ptr, src_ptr, src_wc_elems);
236       src_ptr += src_wc_elems;
237       dst_ptr += dst_wc_elems;
238     }
239   }
240 
241   // Create output tensor memory
242   rknn_tensor_mem* output_mems[io_num.n_output];
243   for (uint32_t i = 0; i < io_num.n_output; ++i) {
244     // default output type is depend on model, this require float32 to compute top5
245     // allocate float32 output tensor
246     int output_size = output_attrs[i].n_elems * sizeof(float);
247     output_mems[i]  = rknn_create_mem(ctx, output_size);
248   }
249 
250   // Set input tensor memory
251   ret = rknn_set_io_mem(ctx, input_mems[0], &input_attrs[0]);
252   if (ret < 0) {
253     printf("rknn_set_io_mem fail! ret=%d\n", ret);
254     return -1;
255   }
256 
257   // Set output tensor memory
258   for (uint32_t i = 0; i < io_num.n_output; ++i) {
259     // default output type is depend on model, this require float32 to compute top5
260     output_attrs[i].type = RKNN_TENSOR_FLOAT32;
261     // set output memory and attribute
262     ret = rknn_set_io_mem(ctx, output_mems[i], &output_attrs[i]);
263     if (ret < 0) {
264       printf("rknn_set_io_mem fail! ret=%d\n", ret);
265       return -1;
266     }
267   }
268 
269   // Run
270   printf("Begin perf ...\n");
271   for (int i = 0; i < loop_count; ++i) {
272     int64_t start_us  = getCurrentTimeUs();
273     ret               = rknn_run(ctx, NULL);
274     int64_t elapse_us = getCurrentTimeUs() - start_us;
275     if (ret < 0) {
276       printf("rknn run error %d\n", ret);
277       return -1;
278     }
279     printf("%4d: Elapse Time = %.2fms, FPS = %.2f\n", i, elapse_us / 1000.f, 1000.f * 1000.f / elapse_us);
280   }
281 
282   // Get top 5
283   uint32_t topNum = 5;
284   for (uint32_t i = 0; i < io_num.n_output; i++) {
285     uint32_t MaxClass[topNum];
286     float    fMaxProb[topNum];
287     float*   buffer    = (float*)output_mems[i]->virt_addr;
288     uint32_t sz        = output_attrs[i].n_elems;
289     int      top_count = sz > topNum ? topNum : sz;
290 
291     rknn_GetTopN(buffer, fMaxProb, MaxClass, sz, topNum);
292 
293     printf("---- Top%d ----\n", top_count);
294     for (int j = 0; j < top_count; j++) {
295       printf("%8.6f - %d\n", fMaxProb[j], MaxClass[j]);
296     }
297   }
298 
299   // Destroy rknn memory
300   rknn_destroy_mem(ctx, input_mems[0]);
301   for (uint32_t i = 0; i < io_num.n_output; ++i) {
302     rknn_destroy_mem(ctx, output_mems[i]);
303   }
304 
305   // destroy
306   rknn_destroy(ctx);
307   return 0;
308 }
309