xref: /OK3568_Linux_fs/external/rknpu2/examples/rknn_benchmark/src/rknn_benchmark.cpp (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // Copyright (c) 2022 by Rockchip Electronics Co., Ltd. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 /*-------------------------------------------
16                 Includes
17 -------------------------------------------*/
18 #include "rknn_api.h"
19 
20 #include <float.h>
21 #include <stdio.h>
22 #include <stdlib.h>
23 #include <string.h>
24 #include <sys/time.h>
25 
26 #define STB_IMAGE_IMPLEMENTATION
27 #include "stb/stb_image.h"
28 #define STB_IMAGE_RESIZE_IMPLEMENTATION
29 #include <stb/stb_image_resize.h>
30 
31 #include "cnpy/cnpy.h"
32 using namespace cnpy;
33 
34 
35 /*-------------------------------------------
36                   Functions
37 -------------------------------------------*/
getCurrentTimeUs()38 static inline int64_t getCurrentTimeUs()
39 {
40   struct timeval tv;
41   gettimeofday(&tv, NULL);
42   return tv.tv_sec * 1000000 + tv.tv_usec;
43 }
44 
rknn_GetTopN(float * pfProb,float * pfMaxProb,uint32_t * pMaxClass,uint32_t outputCount,uint32_t topNum)45 static int rknn_GetTopN(float* pfProb, float* pfMaxProb, uint32_t* pMaxClass, uint32_t outputCount, uint32_t topNum)
46 {
47   uint32_t i, j;
48   uint32_t top_count = outputCount > topNum ? topNum : outputCount;
49 
50   for (i = 0; i < topNum; ++i) {
51     pfMaxProb[i] = -FLT_MAX;
52     pMaxClass[i] = -1;
53   }
54 
55   for (j = 0; j < top_count; j++) {
56     for (i = 0; i < outputCount; i++) {
57       if ((i == *(pMaxClass + 0)) || (i == *(pMaxClass + 1)) || (i == *(pMaxClass + 2)) || (i == *(pMaxClass + 3)) ||
58           (i == *(pMaxClass + 4))) {
59         continue;
60       }
61 
62       if (pfProb[i] > *(pfMaxProb + j)) {
63         *(pfMaxProb + j) = pfProb[i];
64         *(pMaxClass + j) = i;
65       }
66     }
67   }
68 
69   return 1;
70 }
71 
dump_tensor_attr(rknn_tensor_attr * attr)72 static void dump_tensor_attr(rknn_tensor_attr* attr)
73 {
74   std::string shape_str = attr->n_dims < 1 ? "" : std::to_string(attr->dims[0]);
75   for (int i = 1; i < attr->n_dims; ++i) {
76     shape_str += ", " + std::to_string(attr->dims[i]);
77   }
78 
79   printf("  index=%d, name=%s, n_dims=%d, dims=[%s], n_elems=%d, size=%d, w_stride = %d, size_with_stride=%d, fmt=%s, "
80          "type=%s, qnt_type=%s, "
81          "zp=%d, scale=%f\n",
82          attr->index, attr->name, attr->n_dims, shape_str.c_str(), attr->n_elems, attr->size, attr->w_stride,
83          attr->size_with_stride, get_format_string(attr->fmt), get_type_string(attr->type),
84          get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale);
85 }
86 
load_npy(const char * input_path,rknn_tensor_attr * input_attr,int * input_type,int * input_size)87 static unsigned char* load_npy(const char* input_path, rknn_tensor_attr* input_attr, int* input_type, int* input_size)
88 {
89   int req_height  = 0;
90   int req_width   = 0;
91   int req_channel = 0;
92 
93   printf("Loading %s\n", input_path);
94 
95   switch (input_attr->fmt) {
96   case RKNN_TENSOR_NHWC:
97     req_height  = input_attr->dims[1];
98     req_width   = input_attr->dims[2];
99     req_channel = input_attr->dims[3];
100     break;
101   case RKNN_TENSOR_NCHW:
102     req_height  = input_attr->dims[2];
103     req_width   = input_attr->dims[3];
104     req_channel = input_attr->dims[1];
105     break;
106   case RKNN_TENSOR_UNDEFINED:
107     break;
108   default:
109     printf("meet unsupported layout\n");
110     return NULL;
111   }
112 
113   NpyArray npy_data = npy_load(input_path);
114 
115   int         type_bytes = npy_data.word_size;
116   std::string typeName   = npy_data.typeName;
117 
118   printf("npy data type:%s\n", typeName.c_str());
119 
120   if (typeName == "int8") {
121     *input_type = RKNN_TENSOR_INT8;
122   } else if (typeName == "uint8") {
123     *input_type = RKNN_TENSOR_UINT8;
124   } else if (typeName == "float16") {
125     *input_type = RKNN_TENSOR_FLOAT16;
126   } else if (typeName == "float32") {
127     *input_type = RKNN_TENSOR_FLOAT32;
128   } else if (typeName == "8") {
129     *input_type = RKNN_TENSOR_BOOL;
130   } else if (typeName == "int64") {
131     *input_type = RKNN_TENSOR_INT64;
132   }
133 
134   // npy shape = NHWC
135   int npy_shape[4] = {1, 1, 1, 1};
136 
137   int start = npy_data.shape.size() == 4 ? 0 : 1;
138   for (size_t i = 0; i < npy_data.shape.size() && i < 4; ++i) {
139     npy_shape[start + i] = npy_data.shape[i];
140   }
141 
142   int height  = npy_shape[1];
143   int width   = npy_shape[2];
144   int channel = npy_shape[3];
145 
146   if ((input_attr->fmt != RKNN_TENSOR_UNDEFINED) &&
147       (width != req_width || height != req_height || channel != req_channel)) {
148     printf("npy shape match failed!, (%d, %d, %d) != (%d, %d, %d)\n", height, width, channel, req_height, req_width,
149            req_channel);
150     return NULL;
151   }
152 
153   unsigned char* data = (unsigned char*)malloc(npy_data.num_bytes());
154   if (!data) {
155     return NULL;
156   }
157 
158   // TODO: copy
159   memcpy(data, npy_data.data<unsigned char>(), npy_data.num_bytes());
160 
161   *input_size = npy_data.num_bytes();
162 
163   return data;
164 }
165 
save_npy(const char * output_path,float * output_data,rknn_tensor_attr * output_attr)166 static void save_npy(const char* output_path, float* output_data, rknn_tensor_attr* output_attr)
167 {
168   std::vector<size_t> output_shape;
169 
170   for (uint32_t i = 0; i < output_attr->n_dims; ++i) {
171     output_shape.push_back(output_attr->dims[i]);
172   }
173 
174   npy_save<float>(output_path, output_data, output_shape);
175 }
176 
177 
load_image(const char * image_path,rknn_tensor_attr * input_attr)178 static unsigned char* load_image(const char* image_path, rknn_tensor_attr* input_attr)
179 {
180   int req_height  = 0;
181   int req_width   = 0;
182   int req_channel = 0;
183 
184   switch (input_attr->fmt) {
185   case RKNN_TENSOR_NHWC:
186     req_height  = input_attr->dims[1];
187     req_width   = input_attr->dims[2];
188     req_channel = input_attr->dims[3];
189     break;
190   case RKNN_TENSOR_NCHW:
191     req_height  = input_attr->dims[2];
192     req_width   = input_attr->dims[3];
193     req_channel = input_attr->dims[1];
194     break;
195   default:
196     printf("meet unsupported layout\n");
197     return NULL;
198   }
199 
200   int height  = 0;
201   int width   = 0;
202   int channel = 0;
203 
204   unsigned char* image_data = stbi_load(image_path, &width, &height, &channel, req_channel);
205   if (image_data == NULL) {
206     printf("load image failed!\n");
207     return NULL;
208   }
209 
210   if (width != req_width || height != req_height) {
211     unsigned char* image_resized = (unsigned char*)STBI_MALLOC(req_width * req_height * req_channel);
212     if (!image_resized) {
213       printf("malloc image failed!\n");
214       STBI_FREE(image_data);
215       return NULL;
216     }
217     if (stbir_resize_uint8(image_data, width, height, 0, image_resized, req_width, req_height, 0, channel) != 1) {
218       printf("resize image failed!\n");
219       STBI_FREE(image_data);
220       return NULL;
221     }
222     STBI_FREE(image_data);
223     image_data = image_resized;
224   }
225 
226   return image_data;
227 }
228 
split(const std::string & str,const std::string & pattern)229 static std::vector<std::string> split(const std::string& str, const std::string& pattern)
230 {
231   std::vector<std::string> res;
232   if (str == "")
233     return res;
234   std::string strs = str + pattern;
235   size_t      pos  = strs.find(pattern);
236   while (pos != strs.npos) {
237     std::string temp = strs.substr(0, pos);
238     res.push_back(temp);
239     strs = strs.substr(pos + 1, strs.size());
240     pos  = strs.find(pattern);
241   }
242   return res;
243 }
244 
245 /*-------------------------------------------
246                   Main Functions
247 -------------------------------------------*/
main(int argc,char * argv[])248 int main(int argc, char* argv[])
249 {
250   if (argc < 2) {
251     printf("Usage:%s model_path [input_path] [loop_count] [core_mask]\n", argv[0]);
252     return -1;
253   }
254 
255   char* model_path = argv[1];
256   std::vector<std::string> input_paths_split;
257   int loop_count = 10;
258   uint32_t core_mask = 1;
259   rknn_context ctx = 0;
260   uint32_t topNum = 5;
261   double total_time = 0;
262 
263   if (argc > 2) {
264     char* input_paths = argv[2];
265     input_paths_split = split(input_paths, "#");
266   }
267 
268   if (argc > 3) {
269     loop_count = atoi(argv[3]);
270   }
271 
272   if (argc > 4) {
273     core_mask = strtoul(argv[4], NULL, 10);
274   }
275 
276 
277   // Init rknn from model path
278   int ret = rknn_init(&ctx, model_path, 0, 0, NULL);
279 
280   if (ret < 0) {
281     printf("rknn_init fail! ret=%d\n", ret);
282     return -1;
283   }
284 
285   // Get sdk and driver version
286   rknn_sdk_version sdk_ver;
287   ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &sdk_ver, sizeof(sdk_ver));
288   if (ret != RKNN_SUCC) {
289     printf("rknn_query fail! ret=%d\n", ret);
290     rknn_destroy(ctx);
291     return -1;
292   }
293   printf("rknn_api/rknnrt version: %s, driver version: %s\n", sdk_ver.api_version, sdk_ver.drv_version);
294 
295   // Get weight and internal mem size, dma used size
296   rknn_mem_size mem_size;
297   ret = rknn_query(ctx, RKNN_QUERY_MEM_SIZE, &mem_size, sizeof(mem_size));
298   if (ret != RKNN_SUCC) {
299     printf("rknn_query fail! ret=%d\n", ret);
300     rknn_destroy(ctx);
301     return -1;
302   }
303   printf("total weight size: %d, total internal size: %d\n", mem_size.total_weight_size, mem_size.total_internal_size);
304   printf("total dma used size: %zu\n", (size_t)mem_size.total_dma_allocated_size);
305 
306   // Get Model Input Output Info
307   rknn_input_output_num io_num;
308   ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
309   if (ret != RKNN_SUCC) {
310     printf("rknn_query fail! ret=%d\n", ret);
311     rknn_destroy(ctx);
312     return -1;
313   }
314   printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output);
315 
316   printf("input tensors:\n");
317   rknn_tensor_attr input_attrs[io_num.n_input];
318   memset(input_attrs, 0, io_num.n_input * sizeof(rknn_tensor_attr));
319   for (uint32_t i = 0; i < io_num.n_input; i++) {
320     input_attrs[i].index = i;
321     // query info
322     ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr));
323     if (ret < 0) {
324       printf("rknn_init error! ret=%d\n", ret);
325       rknn_destroy(ctx);
326       return -1;
327     }
328     dump_tensor_attr(&input_attrs[i]);
329   }
330 
331   printf("output tensors:\n");
332   rknn_tensor_attr output_attrs[io_num.n_output];
333   memset(output_attrs, 0, io_num.n_output * sizeof(rknn_tensor_attr));
334   for (uint32_t i = 0; i < io_num.n_output; i++) {
335     output_attrs[i].index = i;
336     // query info
337     ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr));
338     if (ret != RKNN_SUCC) {
339       printf("rknn_query fail! ret=%d\n", ret);
340       rknn_destroy(ctx);
341       return -1;
342     }
343     dump_tensor_attr(&output_attrs[i]);
344   }
345 
346   // Get custom string
347   rknn_custom_string custom_string;
348   ret = rknn_query(ctx, RKNN_QUERY_CUSTOM_STRING, &custom_string, sizeof(custom_string));
349   if (ret != RKNN_SUCC) {
350     printf("rknn_query fail! ret=%d\n", ret);
351     rknn_destroy(ctx);
352     return -1;
353   }
354   printf("custom string: %s\n", custom_string.string);
355 
356   unsigned char* input_data[io_num.n_input];
357   int            input_type[io_num.n_input];
358   int            input_layout[io_num.n_input];
359   int            input_size[io_num.n_input];
360   rknn_input     inputs[io_num.n_input];
361   rknn_output    outputs[io_num.n_output];
362 
363   for (int i = 0; i < io_num.n_input; i++) {
364     input_data[i]   = NULL;
365     input_type[i]   = RKNN_TENSOR_UINT8;
366     input_layout[i] = RKNN_TENSOR_NHWC;
367     input_size[i]   = input_attrs[i].n_elems * sizeof(uint8_t);
368   }
369 
370   if (input_paths_split.size() > 0) {
371     // Load input
372     if (io_num.n_input != input_paths_split.size()) {
373       printf("input missing!, need input number: %d, only get %d inputs\n", io_num.n_input, input_paths_split.size());
374       goto out;
375     }
376     for (int i = 0; i < io_num.n_input; i++) {
377       if (strstr(input_paths_split[i].c_str(), ".npy")) {
378         input_data[i] = load_npy(input_paths_split[i].c_str(), &input_attrs[i], &input_type[i], &input_size[i]);
379       } else {
380         // Load image
381         input_data[i] = load_image(input_paths_split[i].c_str(), &input_attrs[i]);
382       }
383 
384       if (!input_data[i]) {
385         goto out;
386       }
387     }
388   } else {
389     for (int i = 0; i < io_num.n_input; i++) {
390       input_data[i] = (unsigned char*)malloc(input_size[i]);
391       memset(input_data[i], 0x00, input_size[i]);
392     }
393   }
394 
395 
396   memset(inputs, 0, io_num.n_input * sizeof(rknn_input));
397   for (int i = 0; i < io_num.n_input; i++) {
398     inputs[i].index        = i;
399     inputs[i].pass_through = 0;
400     inputs[i].type         = (rknn_tensor_type)input_type[i];
401     inputs[i].fmt          = (rknn_tensor_format)input_layout[i];
402     inputs[i].buf          = input_data[i];
403     inputs[i].size         = input_size[i];
404   }
405 
406   // Set input
407   ret = rknn_inputs_set(ctx, io_num.n_input, inputs);
408   if (ret < 0) {
409     printf("rknn_input_set fail! ret=%d\n", ret);
410     goto out;
411   }
412 
413   rknn_set_core_mask(ctx, (rknn_core_mask)core_mask);
414 
415   // Warmup
416   printf("Warmup ...\n");
417   for (int i = 0; i < 5; ++i) {
418     int64_t start_us  = getCurrentTimeUs();
419     ret               = rknn_run(ctx, NULL);
420     int64_t elapse_us = getCurrentTimeUs() - start_us;
421     if (ret < 0) {
422       printf("rknn run error %d\n", ret);
423       goto out;
424     }
425     printf("%4d: Elapse Time = %.2fms, FPS = %.2f\n", i, elapse_us / 1000.f, 1000.f * 1000.f / elapse_us);
426   }
427 
428 
429   // Run
430   printf("Begin perf ...\n");
431   for (int i = 0; i < loop_count; ++i) {
432     int64_t start_us  = getCurrentTimeUs();
433     ret               = rknn_run(ctx, NULL);
434     int64_t elapse_us = getCurrentTimeUs() - start_us;
435     if (ret < 0) {
436       printf("rknn run error %d\n", ret);
437       return -1;
438     }
439     total_time += elapse_us / 1000.f;
440     printf("%4d: Elapse Time = %.2fms, FPS = %.2f\n", i, elapse_us / 1000.f, 1000.f * 1000.f / elapse_us);
441   }
442   printf("\nAvg Time %.2fms, Avg FPS = %.3f\n\n", total_time/loop_count, loop_count * 1000.f / total_time);
443 
444   // Get output
445   memset(outputs, 0, io_num.n_output * sizeof(rknn_output));
446   for (uint32_t i = 0; i < io_num.n_output; ++i) {
447     outputs[i].want_float  = 1;
448     outputs[i].index       = i;
449     outputs[i].is_prealloc = 0;
450   }
451 
452   ret = rknn_outputs_get(ctx, io_num.n_output, outputs, NULL);
453   if (ret < 0) {
454     printf("rknn_outputs_get fail! ret=%d\n", ret);
455     goto out;
456   }
457 
458   // save output
459   for (uint32_t i = 0; i < io_num.n_output; i++) {
460     char output_path[PATH_MAX];
461     memset(output_path, 0x00, sizeof(output_path));
462     sprintf(output_path, "rt_output%d.npy", i);
463     printf("Save output to %s\n", output_path);
464     save_npy(output_path, (float*)outputs[i].buf, &output_attrs[i]);
465   }
466 
467   // Get top 5
468   for (uint32_t i = 0; i < io_num.n_output; i++) {
469     uint32_t MaxClass[topNum];
470     float    fMaxProb[topNum];
471     float*   buffer    = (float*)outputs[i].buf;
472     uint32_t sz        = outputs[i].size / sizeof(float);
473     int      top_count = sz > topNum ? topNum : sz;
474 
475     rknn_GetTopN(buffer, fMaxProb, MaxClass, sz, topNum);
476 
477     printf("---- Top%d ----\n", top_count);
478     for (int j = 0; j < top_count; j++) {
479       printf("%8.6f - %d\n", fMaxProb[j], MaxClass[j]);
480     }
481   }
482 
483   // release outputs
484   ret = rknn_outputs_release(ctx, io_num.n_output, outputs);
485 
486 out:
487   // destroy
488   rknn_destroy(ctx);
489 
490   for (int i = 0; i < io_num.n_input; i++) {
491     if (input_data[i] != NULL) {
492       free(input_data[i]);
493     }
494   }
495 
496   return 0;
497 }
498