1 // Copyright (c) 2021 by Rockchip Electronics Co., Ltd. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include <stdio.h>
16 #include <stdlib.h>
17 #include <math.h>
18 #include <string.h>
19 #include <sys/time.h>
20 #include <vector>
21 #include <set>
22 #include "postprocess.h"
23 #include <stdint.h>
24 #define LABEL_NALE_TXT_PATH "./model/coco_80_labels_list.txt"
25
26 static char *labels[OBJ_CLASS_NUM];
27
28 const int anchor0[6] = {10, 13, 16, 30, 33, 23};
29 const int anchor1[6] = {30, 61, 62, 45, 59, 119};
30 const int anchor2[6] = {116, 90, 156, 198, 373, 326};
31
clamp(float val,int min,int max)32 inline static int clamp(float val, int min, int max)
33 {
34 return val > min ? (val < max ? val : max) : min;
35 }
36
readLine(FILE * fp,char * buffer,int * len)37 char *readLine(FILE *fp, char *buffer, int *len)
38 {
39 int ch;
40 int i = 0;
41 size_t buff_len = 0;
42
43 buffer = (char *)malloc(buff_len + 1);
44 if (!buffer)
45 return NULL; // Out of memory
46
47 while ((ch = fgetc(fp)) != '\n' && ch != EOF)
48 {
49 buff_len++;
50 void *tmp = realloc(buffer, buff_len + 1);
51 if (tmp == NULL)
52 {
53 free(buffer);
54 return NULL; // Out of memory
55 }
56 buffer = (char *)tmp;
57
58 buffer[i] = (char)ch;
59 i++;
60 }
61 buffer[i] = '\0';
62
63 *len = buff_len;
64
65 // Detect end
66 if (ch == EOF && (i == 0 || ferror(fp)))
67 {
68 free(buffer);
69 return NULL;
70 }
71 return buffer;
72 }
73
readLines(const char * fileName,char * lines[],int max_line)74 int readLines(const char *fileName, char *lines[], int max_line)
75 {
76 FILE *file = fopen(fileName, "r");
77 char *s;
78 int i = 0;
79 int n = 0;
80 while ((s = readLine(file, s, &n)) != NULL)
81 {
82 lines[i++] = s;
83 if (i >= max_line)
84 break;
85 }
86 return i;
87 }
88
loadLabelName(const char * locationFilename,char * label[])89 int loadLabelName(const char *locationFilename, char *label[])
90 {
91 printf("loadLabelName %s\n", locationFilename);
92 readLines(locationFilename, label, OBJ_CLASS_NUM);
93 return 0;
94 }
95
CalculateOverlap(float xmin0,float ymin0,float xmax0,float ymax0,float xmin1,float ymin1,float xmax1,float ymax1)96 static float CalculateOverlap(float xmin0, float ymin0, float xmax0, float ymax0, float xmin1, float ymin1, float xmax1, float ymax1)
97 {
98 float w = fmax(0.f, fmin(xmax0, xmax1) - fmax(xmin0, xmin1) + 1.0);
99 float h = fmax(0.f, fmin(ymax0, ymax1) - fmax(ymin0, ymin1) + 1.0);
100 float i = w * h;
101 float u = (xmax0 - xmin0 + 1.0) * (ymax0 - ymin0 + 1.0) + (xmax1 - xmin1 + 1.0) * (ymax1 - ymin1 + 1.0) - i;
102 return u <= 0.f ? 0.f : (i / u);
103 }
104
nms(int validCount,std::vector<float> & outputLocations,std::vector<int> classIds,std::vector<int> & order,int filterId,float threshold)105 static int nms(int validCount, std::vector<float> &outputLocations, std::vector<int> classIds, std::vector<int> &order,int filterId, float threshold)
106 {
107 for (int i = 0; i < validCount; ++i)
108 {
109 if (order[i] == -1|| classIds[i] != filterId)
110 {
111 continue;
112 }
113 int n = order[i];
114 for (int j = i + 1; j < validCount; ++j)
115 {
116 int m = order[j];
117 if (m == -1 || classIds[i] != filterId)
118 {
119 continue;
120 }
121 float xmin0 = outputLocations[n * 4 + 0];
122 float ymin0 = outputLocations[n * 4 + 1];
123 float xmax0 = outputLocations[n * 4 + 0] + outputLocations[n * 4 + 2];
124 float ymax0 = outputLocations[n * 4 + 1] + outputLocations[n * 4 + 3];
125
126 float xmin1 = outputLocations[m * 4 + 0];
127 float ymin1 = outputLocations[m * 4 + 1];
128 float xmax1 = outputLocations[m * 4 + 0] + outputLocations[m * 4 + 2];
129 float ymax1 = outputLocations[m * 4 + 1] + outputLocations[m * 4 + 3];
130
131 float iou = CalculateOverlap(xmin0, ymin0, xmax0, ymax0, xmin1, ymin1, xmax1, ymax1);
132
133 if (iou > threshold)
134 {
135 order[j] = -1;
136 }
137 }
138 }
139 return 0;
140 }
141
quick_sort_indice_inverse(std::vector<float> & input,int left,int right,std::vector<int> & indices)142 static int quick_sort_indice_inverse(
143 std::vector<float> &input,
144 int left,
145 int right,
146 std::vector<int> &indices)
147 {
148 float key;
149 int key_index;
150 int low = left;
151 int high = right;
152 if (left < right)
153 {
154 key_index = indices[left];
155 key = input[left];
156 while (low < high)
157 {
158 while (low < high && input[high] <= key)
159 {
160 high--;
161 }
162 input[low] = input[high];
163 indices[low] = indices[high];
164 while (low < high && input[low] >= key)
165 {
166 low++;
167 }
168 input[high] = input[low];
169 indices[high] = indices[low];
170 }
171 input[low] = key;
172 indices[low] = key_index;
173 quick_sort_indice_inverse(input, left, low - 1, indices);
174 quick_sort_indice_inverse(input, low + 1, right, indices);
175 }
176 return low;
177 }
178
sigmoid(float x)179 static float sigmoid(float x)
180 {
181 return 1.0 / (1.0 + expf(-x));
182 }
183
unsigmoid(float y)184 static float unsigmoid(float y)
185 {
186 return -1.0 * logf((1.0 / y) - 1.0);
187 }
188
__clip(float val,float min,float max)189 inline static int32_t __clip(float val, float min, float max)
190 {
191 float f = val <= min ? min : (val >= max ? max : val);
192 return f;
193 }
194
qnt_f32_to_affine(float f32,int32_t zp,float scale)195 static int8_t qnt_f32_to_affine(float f32, int32_t zp, float scale)
196 {
197 float dst_val = (f32 / scale) + zp;
198 int8_t res = (int8_t)__clip(dst_val, -128, 127);
199 return res;
200 }
201
deqnt_affine_to_f32(int8_t qnt,int32_t zp,float scale)202 static float deqnt_affine_to_f32(int8_t qnt, int32_t zp, float scale)
203 {
204 return ((float)qnt - (float)zp) * scale;
205 }
206
process(int8_t * input,int * anchor,int grid_h,int grid_w,int height,int width,int stride,std::vector<float> & boxes,std::vector<float> & objProbs,std::vector<int> & classId,float threshold,int32_t zp,float scale)207 static int process(int8_t *input, int *anchor, int grid_h, int grid_w, int height, int width, int stride,
208 std::vector<float> &boxes, std::vector<float> &objProbs, std::vector<int> &classId,
209 float threshold, int32_t zp, float scale)
210 {
211
212 int validCount = 0;
213 int grid_len = grid_h * grid_w;
214 float thres = unsigmoid(threshold);
215 int8_t thres_i8 = qnt_f32_to_affine(thres, zp, scale);
216 for (int a = 0; a < 3; a++)
217 {
218 for (int i = 0; i < grid_h; i++)
219 {
220 for (int j = 0; j < grid_w; j++)
221 {
222 int8_t box_confidence = input[(PROP_BOX_SIZE * a + 4) * grid_len + i * grid_w + j];
223 if (box_confidence >= thres_i8)
224 {
225 int offset = (PROP_BOX_SIZE * a) * grid_len + i * grid_w + j;
226 int8_t *in_ptr = input + offset;
227 float box_x = sigmoid(deqnt_affine_to_f32(*in_ptr, zp, scale)) * 2.0 - 0.5;
228 float box_y = sigmoid(deqnt_affine_to_f32(in_ptr[grid_len], zp, scale)) * 2.0 - 0.5;
229 float box_w = sigmoid(deqnt_affine_to_f32(in_ptr[2 * grid_len], zp, scale)) * 2.0;
230 float box_h = sigmoid(deqnt_affine_to_f32(in_ptr[3 * grid_len], zp, scale)) * 2.0;
231 box_x = (box_x + j) * (float)stride;
232 box_y = (box_y + i) * (float)stride;
233 box_w = box_w * box_w * (float)anchor[a * 2];
234 box_h = box_h * box_h * (float)anchor[a * 2 + 1];
235 box_x -= (box_w / 2.0);
236 box_y -= (box_h / 2.0);
237
238 int8_t maxClassProbs = in_ptr[5 * grid_len];
239 int maxClassId = 0;
240 for (int k = 1; k < OBJ_CLASS_NUM; ++k)
241 {
242 int8_t prob = in_ptr[(5 + k) * grid_len];
243 if (prob > maxClassProbs)
244 {
245 maxClassId = k;
246 maxClassProbs = prob;
247 }
248 }
249 if (maxClassProbs>thres_i8){
250 boxes.push_back(box_x);
251 boxes.push_back(box_y);
252 boxes.push_back(box_w);
253 boxes.push_back(box_h);
254 objProbs.push_back(sigmoid(deqnt_affine_to_f32(maxClassProbs, zp, scale))* sigmoid(deqnt_affine_to_f32(box_confidence, zp, scale)));
255 classId.push_back(maxClassId);
256 validCount++;
257 }
258 }
259 }
260 }
261 }
262 return validCount;
263 }
264
post_process(int8_t * input0,int8_t * input1,int8_t * input2,int model_in_h,int model_in_w,float conf_threshold,float nms_threshold,float scale_w,float scale_h,std::vector<int32_t> & qnt_zps,std::vector<float> & qnt_scales,detect_result_group_t * group)265 int post_process(int8_t *input0, int8_t *input1, int8_t *input2, int model_in_h, int model_in_w,
266 float conf_threshold, float nms_threshold, float scale_w, float scale_h,
267 std::vector<int32_t> &qnt_zps, std::vector<float> &qnt_scales,
268 detect_result_group_t *group)
269 {
270 static int init = -1;
271 if (init == -1)
272 {
273 int ret = 0;
274 ret = loadLabelName(LABEL_NALE_TXT_PATH, labels);
275 if (ret < 0)
276 {
277 return -1;
278 }
279
280 init = 0;
281 }
282 memset(group, 0, sizeof(detect_result_group_t));
283
284 std::vector<float> filterBoxes;
285 std::vector<float> objProbs;
286 std::vector<int> classId;
287
288 // stride 8
289 int stride0 = 8;
290 int grid_h0 = model_in_h / stride0;
291 int grid_w0 = model_in_w / stride0;
292 int validCount0 = 0;
293 validCount0 = process(input0, (int *)anchor0, grid_h0, grid_w0, model_in_h, model_in_w,
294 stride0, filterBoxes, objProbs, classId, conf_threshold, qnt_zps[0], qnt_scales[0]);
295
296 // stride 16
297 int stride1 = 16;
298 int grid_h1 = model_in_h / stride1;
299 int grid_w1 = model_in_w / stride1;
300 int validCount1 = 0;
301 validCount1 = process(input1, (int *)anchor1, grid_h1, grid_w1, model_in_h, model_in_w,
302 stride1, filterBoxes, objProbs, classId, conf_threshold, qnt_zps[1], qnt_scales[1]);
303
304 // stride 32
305 int stride2 = 32;
306 int grid_h2 = model_in_h / stride2;
307 int grid_w2 = model_in_w / stride2;
308 int validCount2 = 0;
309 validCount2 = process(input2, (int *)anchor2, grid_h2, grid_w2, model_in_h, model_in_w,
310 stride2, filterBoxes, objProbs, classId, conf_threshold, qnt_zps[2], qnt_scales[2]);
311
312 int validCount = validCount0 + validCount1 + validCount2;
313 // no object detect
314 if (validCount <= 0)
315 {
316 return 0;
317 }
318
319 std::vector<int> indexArray;
320 for (int i = 0; i < validCount; ++i)
321 {
322 indexArray.push_back(i);
323 }
324
325 quick_sort_indice_inverse(objProbs, 0, validCount - 1, indexArray);
326
327 std::set<int> class_set(std::begin(classId),std::end(classId));
328
329 for(auto c : class_set){
330 nms(validCount, filterBoxes, classId, indexArray, c, nms_threshold);
331 }
332
333 int last_count = 0;
334 group->count = 0;
335 /* box valid detect target */
336 for (int i = 0; i < validCount; ++i)
337 {
338
339 if (indexArray[i] == -1 || last_count >= OBJ_NUMB_MAX_SIZE)
340 {
341 continue;
342 }
343 int n = indexArray[i];
344
345 float x1 = filterBoxes[n * 4 + 0];
346 float y1 = filterBoxes[n * 4 + 1];
347 float x2 = x1 + filterBoxes[n * 4 + 2];
348 float y2 = y1 + filterBoxes[n * 4 + 3];
349 int id = classId[n];
350 float obj_conf = objProbs[i];
351
352 group->results[last_count].box.left = (int)(clamp(x1, 0, model_in_w) / scale_w);
353 group->results[last_count].box.top = (int)(clamp(y1, 0, model_in_h) / scale_h);
354 group->results[last_count].box.right = (int)(clamp(x2, 0, model_in_w) / scale_w);
355 group->results[last_count].box.bottom = (int)(clamp(y2, 0, model_in_h) / scale_h);
356 group->results[last_count].prop = obj_conf;
357 char *label = labels[id];
358 strncpy(group->results[last_count].name, label, OBJ_NAME_MAX_SIZE);
359
360 // printf("result %2d: (%4d, %4d, %4d, %4d), %s\n", i, group->results[last_count].box.left, group->results[last_count].box.top,
361 // group->results[last_count].box.right, group->results[last_count].box.bottom, label);
362 last_count++;
363 }
364 group->count = last_count;
365
366 return 0;
367 }
368