xref: /OK3568_Linux_fs/external/rknpu2/examples/RV1106_RV1103/rknn_yolov5_demo/src/main.cc (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 // Copyright (c) 2021 by Rockchip Electronics Co., Ltd. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //     http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 /*-------------------------------------------
16                 Includes
17 -------------------------------------------*/
18 #include "rknn_api.h"
19 
20 #include <float.h>
21 #include <stdio.h>
22 #include <stdlib.h>
23 #include <string.h>
24 #include <sys/time.h>
25 #include <vector>
26 
27 #define STB_IMAGE_IMPLEMENTATION
28 #include "stb/stb_image.h"
29 #define STB_IMAGE_RESIZE_IMPLEMENTATION
30 #include <stb/stb_image_resize.h>
31 
32 #include "postprocess.h"
33 
34 #define PERF_WITH_POST 1
35 
36 /*-------------------------------------------
37                   Functions
38 -------------------------------------------*/
getCurrentTimeUs()39 static inline int64_t getCurrentTimeUs()
40 {
41   struct timeval tv;
42   gettimeofday(&tv, NULL);
43   return tv.tv_sec * 1000000 + tv.tv_usec;
44 }
45 
dump_tensor_attr(rknn_tensor_attr * attr)46 static void dump_tensor_attr(rknn_tensor_attr *attr)
47 {
48   char dims[128] = {0};
49   for (int i = 0; i < attr->n_dims; ++i)
50   {
51     int idx = strlen(dims);
52     sprintf(&dims[idx], "%d%s", attr->dims[i], (i == attr->n_dims - 1) ? "" : ", ");
53   }
54   printf("  index=%d, name=%s, n_dims=%d, dims=[%s], n_elems=%d, size=%d, fmt=%s, type=%s, qnt_type=%s, "
55          "zp=%d, scale=%f\n",
56          attr->index, attr->name, attr->n_dims, dims, attr->n_elems, attr->size, get_format_string(attr->fmt),
57          get_type_string(attr->type), get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale);
58 }
59 
load_file(const char * file_path,size_t * file_size)60 static void *load_file(const char *file_path, size_t *file_size)
61 {
62   FILE *fp = fopen(file_path, "r");
63   if (fp == NULL)
64   {
65     printf("failed to open file: %s\n", file_path);
66     return NULL;
67   }
68 
69   fseek(fp, 0, SEEK_END);
70   size_t size = (size_t)ftell(fp);
71   fseek(fp, 0, SEEK_SET);
72 
73   void *file_data = malloc(size);
74   if (file_data == NULL)
75   {
76     fclose(fp);
77     printf("failed allocate file size: %zu\n", size);
78     return NULL;
79   }
80 
81   if (fread(file_data, 1, size, fp) != size)
82   {
83     fclose(fp);
84     free(file_data);
85     printf("failed to read file data!\n");
86     return NULL;
87   }
88 
89   fclose(fp);
90 
91   *file_size = size;
92 
93   return file_data;
94 }
95 
load_image(const char * image_path,rknn_tensor_attr * input_attr,int * img_height,int * img_width)96 static unsigned char *load_image(const char *image_path, rknn_tensor_attr *input_attr, int *img_height, int *img_width)
97 {
98   int req_height = 0;
99   int req_width = 0;
100   int req_channel = 0;
101 
102   switch (input_attr->fmt)
103   {
104   case RKNN_TENSOR_NHWC:
105     req_height = input_attr->dims[1];
106     req_width = input_attr->dims[2];
107     req_channel = input_attr->dims[3];
108     break;
109   case RKNN_TENSOR_NCHW:
110     req_height = input_attr->dims[2];
111     req_width = input_attr->dims[3];
112     req_channel = input_attr->dims[1];
113     break;
114   default:
115     printf("meet unsupported layout\n");
116     return NULL;
117   }
118 
119   int channel = 0;
120 
121   unsigned char *image_data = stbi_load(image_path, img_width, img_height, &channel, req_channel);
122   if (image_data == NULL)
123   {
124     printf("load image failed!\n");
125     return NULL;
126   }
127 
128   if (*img_width != req_width || *img_height != req_height)
129   {
130     unsigned char *image_resized = (unsigned char *)STBI_MALLOC(req_width * req_height * req_channel);
131     if (!image_resized)
132     {
133       printf("malloc image failed!\n");
134       STBI_FREE(image_data);
135       return NULL;
136     }
137     if (stbir_resize_uint8(image_data, *img_width, *img_height, 0, image_resized, req_width, req_height, 0, channel) != 1)
138     {
139       printf("resize image failed!\n");
140       STBI_FREE(image_data);
141       return NULL;
142     }
143     STBI_FREE(image_data);
144     image_data = image_resized;
145   }
146 
147   return image_data;
148 }
149 
150 // 量化模型的npu输出结果为int8数据类型,后处理要按照int8数据类型处理
151 // 如下提供了int8排布的NC1HWC2转换成int8的nchw转换代码
NC1HWC2_int8_to_NCHW_int8(const int8_t * src,int8_t * dst,int * dims,int channel,int h,int w)152 int NC1HWC2_int8_to_NCHW_int8(const int8_t *src, int8_t *dst, int *dims, int channel, int h, int w)
153 {
154   int batch = dims[0];
155   int C1 = dims[1];
156   int C2 = dims[4];
157   int hw_src = dims[2] * dims[3];
158   int hw_dst = h * w;
159   for (int i = 0; i < batch; i++)
160   {
161     src = src + i * C1 * hw_src * C2;
162     dst = dst + i * channel * hw_dst;
163     for (int c = 0; c < channel; ++c)
164     {
165       int plane = c / C2;
166       const int8_t *src_c = plane * hw_src * C2 + src;
167       int offset = c % C2;
168       for (int cur_h = 0; cur_h < h; ++cur_h)
169         for (int cur_w = 0; cur_w < w; ++cur_w)
170         {
171           int cur_hw = cur_h * w + cur_w;
172           dst[c * hw_dst + cur_h * w + cur_w] = src_c[C2 * cur_hw + offset];
173         }
174     }
175   }
176 
177   return 0;
178 }
179 
180 // 量化模型的npu输出结果为int8数据类型,后处理要按照int8数据类型处理
181 // 如下提供了int8排布的NC1HWC2转换成float的nchw转换代码
NC1HWC2_int8_to_NCHW_float(const int8_t * src,float * dst,int * dims,int channel,int h,int w,int zp,float scale)182 int NC1HWC2_int8_to_NCHW_float(const int8_t *src, float *dst, int *dims, int channel, int h, int w, int zp, float scale)
183 {
184   int batch = dims[0];
185   int C1 = dims[1];
186   int C2 = dims[4];
187   int hw_src = dims[2] * dims[3];
188   int hw_dst = h * w;
189   for (int i = 0; i < batch; i++)
190   {
191     src = src + i * C1 * hw_src * C2;
192     dst = dst + i * channel * hw_dst;
193     for (int c = 0; c < channel; ++c)
194     {
195       int plane = c / C2;
196       const int8_t *src_c = plane * hw_src * C2 + src;
197       int offset = c % C2;
198       for (int cur_h = 0; cur_h < h; ++cur_h)
199         for (int cur_w = 0; cur_w < w; ++cur_w)
200         {
201           int cur_hw = cur_h * w + cur_w;
202           dst[c * hw_dst + cur_h * w + cur_w] = (src_c[C2 * cur_hw + offset] - zp) * scale; // int8-->float
203         }
204     }
205   }
206 
207   return 0;
208 }
209 
210 /*-------------------------------------------
211                   Main Functions
212 -------------------------------------------*/
main(int argc,char * argv[])213 int main(int argc, char *argv[])
214 {
215   if (argc < 3)
216   {
217     printf("Usage:%s model_path input_path [loop_count]\n", argv[0]);
218     return -1;
219   }
220 
221   char *model_path = argv[1];
222   char *input_path = argv[2];
223 
224   int loop_count = 1;
225   if (argc > 3)
226   {
227     loop_count = atoi(argv[3]);
228   }
229 
230   const float nms_threshold = NMS_THRESH;
231   const float box_conf_threshold = BOX_THRESH;
232 
233   int img_width = 0;
234   int img_height = 0;
235 
236   rknn_context ctx = 0;
237 
238   // Load RKNN Model
239 #if 1
240   // Init rknn from model path
241   int ret = rknn_init(&ctx, model_path, 0, 0, NULL);
242 #else
243   // Init rknn from model data
244   size_t model_size;
245   void *model_data = load_file(model_path, &model_size);
246   if (model_data == NULL)
247   {
248     return -1;
249   }
250   int ret = rknn_init(&ctx, model_data, model_size, 0, NULL);
251   free(model_data);
252 #endif
253   if (ret < 0)
254   {
255     printf("rknn_init fail! ret=%d\n", ret);
256     return -1;
257   }
258 
259   // Get sdk and driver version
260   rknn_sdk_version sdk_ver;
261   ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &sdk_ver, sizeof(sdk_ver));
262   if (ret != RKNN_SUCC)
263   {
264     printf("rknn_query fail! ret=%d\n", ret);
265     return -1;
266   }
267   printf("rknn_api/rknnrt version: %s, driver version: %s\n", sdk_ver.api_version, sdk_ver.drv_version);
268 
269   // Get Model Input Output Info
270   rknn_input_output_num io_num;
271   ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
272   if (ret != RKNN_SUCC)
273   {
274     printf("rknn_query fail! ret=%d\n", ret);
275     return -1;
276   }
277   printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output);
278 
279   printf("input tensors:\n");
280   rknn_tensor_attr input_attrs[io_num.n_input];
281   memset(input_attrs, 0, io_num.n_input * sizeof(rknn_tensor_attr));
282   for (uint32_t i = 0; i < io_num.n_input; i++)
283   {
284     input_attrs[i].index = i;
285     // query info
286     ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr));
287     if (ret < 0)
288     {
289       printf("rknn_init error! ret=%d\n", ret);
290       return -1;
291     }
292     dump_tensor_attr(&input_attrs[i]);
293   }
294 
295   printf("output tensors:\n");
296   rknn_tensor_attr output_attrs[io_num.n_output];
297   memset(output_attrs, 0, io_num.n_output * sizeof(rknn_tensor_attr));
298   for (uint32_t i = 0; i < io_num.n_output; i++)
299   {
300     output_attrs[i].index = i;
301     // query info
302     ret = rknn_query(ctx, RKNN_QUERY_NATIVE_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr));
303     if (ret != RKNN_SUCC)
304     {
305       printf("rknn_query fail! ret=%d\n", ret);
306       return -1;
307     }
308     dump_tensor_attr(&output_attrs[i]);
309   }
310 
311   // Get custom string
312   rknn_custom_string custom_string;
313   ret = rknn_query(ctx, RKNN_QUERY_CUSTOM_STRING, &custom_string, sizeof(custom_string));
314   if (ret != RKNN_SUCC)
315   {
316     printf("rknn_query fail! ret=%d\n", ret);
317     return -1;
318   }
319   printf("custom string: %s\n", custom_string.string);
320 
321   unsigned char *input_data = NULL;
322   rknn_tensor_type input_type = RKNN_TENSOR_UINT8;
323   rknn_tensor_format input_layout = RKNN_TENSOR_NHWC;
324 
325   // Load image
326   input_data = load_image(input_path, &input_attrs[0], &img_height, &img_width);
327 
328   if (!input_data)
329   {
330     return -1;
331   }
332 
333   // Create input tensor memory
334   rknn_tensor_mem *input_mems[1];
335   // default input type is int8 (normalize and quantize need compute in outside)
336   // if set uint8, will fuse normalize and quantize to npu
337   input_attrs[0].type = input_type;
338   // default fmt is NHWC, npu only support NHWC in zero copy mode
339   input_attrs[0].fmt = input_layout;
340 
341   input_mems[0] = rknn_create_mem(ctx, input_attrs[0].size_with_stride);
342 
343   // Copy input data to input tensor memory
344   int width = input_attrs[0].dims[2];
345   int stride = input_attrs[0].w_stride;
346 
347   if (width == stride)
348   {
349     memcpy(input_mems[0]->virt_addr, input_data, width * input_attrs[0].dims[1] * input_attrs[0].dims[3]);
350   }
351   else
352   {
353     int height = input_attrs[0].dims[1];
354     int channel = input_attrs[0].dims[3];
355     // copy from src to dst with stride
356     uint8_t *src_ptr = input_data;
357     uint8_t *dst_ptr = (uint8_t *)input_mems[0]->virt_addr;
358     // width-channel elements
359     int src_wc_elems = width * channel;
360     int dst_wc_elems = stride * channel;
361     for (int h = 0; h < height; ++h)
362     {
363       memcpy(dst_ptr, src_ptr, src_wc_elems);
364       src_ptr += src_wc_elems;
365       dst_ptr += dst_wc_elems;
366     }
367   }
368 
369   // Create output tensor memory
370   rknn_tensor_mem *output_mems[io_num.n_output];
371   for (uint32_t i = 0; i < io_num.n_output; ++i)
372   {
373     output_mems[i] = rknn_create_mem(ctx, output_attrs[i].size_with_stride);
374   }
375 
376   // Set input tensor memory
377   ret = rknn_set_io_mem(ctx, input_mems[0], &input_attrs[0]);
378   if (ret < 0)
379   {
380     printf("rknn_set_io_mem fail! ret=%d\n", ret);
381     return -1;
382   }
383 
384   // Set output tensor memory
385   for (uint32_t i = 0; i < io_num.n_output; ++i)
386   {
387     // set output memory and attribute
388     ret = rknn_set_io_mem(ctx, output_mems[i], &output_attrs[i]);
389     if (ret < 0)
390     {
391       printf("rknn_set_io_mem fail! ret=%d\n", ret);
392       return -1;
393     }
394   }
395 
396   // Run
397   printf("Begin perf ...\n");
398   for (int i = 0; i < loop_count; ++i)
399   {
400     int64_t start_us = getCurrentTimeUs();
401     ret = rknn_run(ctx, NULL);
402     int64_t elapse_us = getCurrentTimeUs() - start_us;
403     if (ret < 0)
404     {
405       printf("rknn run error %d\n", ret);
406       return -1;
407     }
408     printf("%4d: Elapse Time = %.2fms, FPS = %.2f\n", i, elapse_us / 1000.f, 1000.f * 1000.f / elapse_us);
409   }
410 
411   printf("output origin tensors:\n");
412   rknn_tensor_attr orig_output_attrs[io_num.n_output];
413   memset(orig_output_attrs, 0, io_num.n_output * sizeof(rknn_tensor_attr));
414   for (uint32_t i = 0; i < io_num.n_output; i++)
415   {
416     orig_output_attrs[i].index = i;
417     // query info
418     ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(orig_output_attrs[i]), sizeof(rknn_tensor_attr));
419     if (ret != RKNN_SUCC)
420     {
421       printf("rknn_query fail! ret=%d\n", ret);
422       return -1;
423     }
424     dump_tensor_attr(&orig_output_attrs[i]);
425   }
426 
427   int8_t *output_mems_nchw[io_num.n_output];
428   for (uint32_t i = 0; i < io_num.n_output; ++i)
429   {
430     int size = orig_output_attrs[i].size_with_stride;
431     output_mems_nchw[i] = (int8_t *)malloc(size);
432   }
433 
434   for (uint32_t i = 0; i < io_num.n_output; i++)
435   {
436     int channel = orig_output_attrs[i].dims[1];
437     int h = orig_output_attrs[i].n_dims > 2 ? orig_output_attrs[i].dims[2] : 1;
438     int w = orig_output_attrs[i].n_dims > 3 ? orig_output_attrs[i].dims[3] : 1;
439     int hw = h * w;
440     NC1HWC2_int8_to_NCHW_int8((int8_t *)output_mems[i]->virt_addr, (int8_t *)output_mems_nchw[i], (int *)output_attrs[i].dims,
441                               channel, h, w);
442   }
443 
444   int model_width = 0;
445   int model_height = 0;
446   if (input_attrs[0].fmt == RKNN_TENSOR_NCHW)
447   {
448     printf("model is NCHW input fmt\n");
449     model_width = input_attrs[0].dims[2];
450     model_height = input_attrs[0].dims[3];
451   }
452   else
453   {
454     printf("model is NHWC input fmt\n");
455     model_width = input_attrs[0].dims[1];
456     model_height = input_attrs[0].dims[2];
457   }
458   // post process
459   float scale_w = (float)model_width / img_width;
460   float scale_h = (float)model_height / img_height;
461 
462   detect_result_group_t detect_result_group;
463   std::vector<float> out_scales;
464   std::vector<int32_t> out_zps;
465   for (int i = 0; i < io_num.n_output; ++i)
466   {
467     out_scales.push_back(output_attrs[i].scale);
468     out_zps.push_back(output_attrs[i].zp);
469   }
470 
471   post_process((int8_t *)output_mems_nchw[0], (int8_t *)output_mems_nchw[1], (int8_t *)output_mems_nchw[2], 640, 640,
472                box_conf_threshold, nms_threshold, scale_w, scale_h, out_zps, out_scales, &detect_result_group);
473 
474   char text[256];
475   for (int i = 0; i < detect_result_group.count; i++)
476   {
477     detect_result_t *det_result = &(detect_result_group.results[i]);
478     sprintf(text, "%s %.1f%%", det_result->name, det_result->prop * 100);
479     printf("%s @ (%d %d %d %d) %f\n",
480            det_result->name,
481            det_result->box.left, det_result->box.top, det_result->box.right, det_result->box.bottom,
482            det_result->prop);
483   }
484 
485   // Destroy rknn memory
486   rknn_destroy_mem(ctx, input_mems[0]);
487   for (uint32_t i = 0; i < io_num.n_output; ++i)
488   {
489     rknn_destroy_mem(ctx, output_mems[i]);
490     free(output_mems_nchw[i]);
491   }
492 
493   // destroy
494   rknn_destroy(ctx);
495 
496   free(input_data);
497 
498   return 0;
499 }
500