1 // Copyright (c) 2021 by Rockchip Electronics Co., Ltd. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // http://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 /*-------------------------------------------
16 Includes
17 -------------------------------------------*/
18 #include "rknn_api.h"
19
20 #include <float.h>
21 #include <stdio.h>
22 #include <stdlib.h>
23 #include <string.h>
24 #include <sys/time.h>
25 #include <vector>
26
27 #define STB_IMAGE_IMPLEMENTATION
28 #include "stb/stb_image.h"
29 #define STB_IMAGE_RESIZE_IMPLEMENTATION
30 #include <stb/stb_image_resize.h>
31
32 #include "postprocess.h"
33
34 #define PERF_WITH_POST 1
35
36 /*-------------------------------------------
37 Functions
38 -------------------------------------------*/
getCurrentTimeUs()39 static inline int64_t getCurrentTimeUs()
40 {
41 struct timeval tv;
42 gettimeofday(&tv, NULL);
43 return tv.tv_sec * 1000000 + tv.tv_usec;
44 }
45
dump_tensor_attr(rknn_tensor_attr * attr)46 static void dump_tensor_attr(rknn_tensor_attr *attr)
47 {
48 char dims[128] = {0};
49 for (int i = 0; i < attr->n_dims; ++i)
50 {
51 int idx = strlen(dims);
52 sprintf(&dims[idx], "%d%s", attr->dims[i], (i == attr->n_dims - 1) ? "" : ", ");
53 }
54 printf(" index=%d, name=%s, n_dims=%d, dims=[%s], n_elems=%d, size=%d, fmt=%s, type=%s, qnt_type=%s, "
55 "zp=%d, scale=%f\n",
56 attr->index, attr->name, attr->n_dims, dims, attr->n_elems, attr->size, get_format_string(attr->fmt),
57 get_type_string(attr->type), get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale);
58 }
59
load_file(const char * file_path,size_t * file_size)60 static void *load_file(const char *file_path, size_t *file_size)
61 {
62 FILE *fp = fopen(file_path, "r");
63 if (fp == NULL)
64 {
65 printf("failed to open file: %s\n", file_path);
66 return NULL;
67 }
68
69 fseek(fp, 0, SEEK_END);
70 size_t size = (size_t)ftell(fp);
71 fseek(fp, 0, SEEK_SET);
72
73 void *file_data = malloc(size);
74 if (file_data == NULL)
75 {
76 fclose(fp);
77 printf("failed allocate file size: %zu\n", size);
78 return NULL;
79 }
80
81 if (fread(file_data, 1, size, fp) != size)
82 {
83 fclose(fp);
84 free(file_data);
85 printf("failed to read file data!\n");
86 return NULL;
87 }
88
89 fclose(fp);
90
91 *file_size = size;
92
93 return file_data;
94 }
95
load_image(const char * image_path,rknn_tensor_attr * input_attr,int * img_height,int * img_width)96 static unsigned char *load_image(const char *image_path, rknn_tensor_attr *input_attr, int *img_height, int *img_width)
97 {
98 int req_height = 0;
99 int req_width = 0;
100 int req_channel = 0;
101
102 switch (input_attr->fmt)
103 {
104 case RKNN_TENSOR_NHWC:
105 req_height = input_attr->dims[1];
106 req_width = input_attr->dims[2];
107 req_channel = input_attr->dims[3];
108 break;
109 case RKNN_TENSOR_NCHW:
110 req_height = input_attr->dims[2];
111 req_width = input_attr->dims[3];
112 req_channel = input_attr->dims[1];
113 break;
114 default:
115 printf("meet unsupported layout\n");
116 return NULL;
117 }
118
119 int channel = 0;
120
121 unsigned char *image_data = stbi_load(image_path, img_width, img_height, &channel, req_channel);
122 if (image_data == NULL)
123 {
124 printf("load image failed!\n");
125 return NULL;
126 }
127
128 if (*img_width != req_width || *img_height != req_height)
129 {
130 unsigned char *image_resized = (unsigned char *)STBI_MALLOC(req_width * req_height * req_channel);
131 if (!image_resized)
132 {
133 printf("malloc image failed!\n");
134 STBI_FREE(image_data);
135 return NULL;
136 }
137 if (stbir_resize_uint8(image_data, *img_width, *img_height, 0, image_resized, req_width, req_height, 0, channel) != 1)
138 {
139 printf("resize image failed!\n");
140 STBI_FREE(image_data);
141 return NULL;
142 }
143 STBI_FREE(image_data);
144 image_data = image_resized;
145 }
146
147 return image_data;
148 }
149
150 // 量化模型的npu输出结果为int8数据类型,后处理要按照int8数据类型处理
151 // 如下提供了int8排布的NC1HWC2转换成int8的nchw转换代码
NC1HWC2_int8_to_NCHW_int8(const int8_t * src,int8_t * dst,int * dims,int channel,int h,int w)152 int NC1HWC2_int8_to_NCHW_int8(const int8_t *src, int8_t *dst, int *dims, int channel, int h, int w)
153 {
154 int batch = dims[0];
155 int C1 = dims[1];
156 int C2 = dims[4];
157 int hw_src = dims[2] * dims[3];
158 int hw_dst = h * w;
159 for (int i = 0; i < batch; i++)
160 {
161 src = src + i * C1 * hw_src * C2;
162 dst = dst + i * channel * hw_dst;
163 for (int c = 0; c < channel; ++c)
164 {
165 int plane = c / C2;
166 const int8_t *src_c = plane * hw_src * C2 + src;
167 int offset = c % C2;
168 for (int cur_h = 0; cur_h < h; ++cur_h)
169 for (int cur_w = 0; cur_w < w; ++cur_w)
170 {
171 int cur_hw = cur_h * w + cur_w;
172 dst[c * hw_dst + cur_h * w + cur_w] = src_c[C2 * cur_hw + offset];
173 }
174 }
175 }
176
177 return 0;
178 }
179
180 // 量化模型的npu输出结果为int8数据类型,后处理要按照int8数据类型处理
181 // 如下提供了int8排布的NC1HWC2转换成float的nchw转换代码
NC1HWC2_int8_to_NCHW_float(const int8_t * src,float * dst,int * dims,int channel,int h,int w,int zp,float scale)182 int NC1HWC2_int8_to_NCHW_float(const int8_t *src, float *dst, int *dims, int channel, int h, int w, int zp, float scale)
183 {
184 int batch = dims[0];
185 int C1 = dims[1];
186 int C2 = dims[4];
187 int hw_src = dims[2] * dims[3];
188 int hw_dst = h * w;
189 for (int i = 0; i < batch; i++)
190 {
191 src = src + i * C1 * hw_src * C2;
192 dst = dst + i * channel * hw_dst;
193 for (int c = 0; c < channel; ++c)
194 {
195 int plane = c / C2;
196 const int8_t *src_c = plane * hw_src * C2 + src;
197 int offset = c % C2;
198 for (int cur_h = 0; cur_h < h; ++cur_h)
199 for (int cur_w = 0; cur_w < w; ++cur_w)
200 {
201 int cur_hw = cur_h * w + cur_w;
202 dst[c * hw_dst + cur_h * w + cur_w] = (src_c[C2 * cur_hw + offset] - zp) * scale; // int8-->float
203 }
204 }
205 }
206
207 return 0;
208 }
209
210 /*-------------------------------------------
211 Main Functions
212 -------------------------------------------*/
main(int argc,char * argv[])213 int main(int argc, char *argv[])
214 {
215 if (argc < 3)
216 {
217 printf("Usage:%s model_path input_path [loop_count]\n", argv[0]);
218 return -1;
219 }
220
221 char *model_path = argv[1];
222 char *input_path = argv[2];
223
224 int loop_count = 1;
225 if (argc > 3)
226 {
227 loop_count = atoi(argv[3]);
228 }
229
230 const float nms_threshold = NMS_THRESH;
231 const float box_conf_threshold = BOX_THRESH;
232
233 int img_width = 0;
234 int img_height = 0;
235
236 rknn_context ctx = 0;
237
238 // Load RKNN Model
239 #if 1
240 // Init rknn from model path
241 int ret = rknn_init(&ctx, model_path, 0, 0, NULL);
242 #else
243 // Init rknn from model data
244 size_t model_size;
245 void *model_data = load_file(model_path, &model_size);
246 if (model_data == NULL)
247 {
248 return -1;
249 }
250 int ret = rknn_init(&ctx, model_data, model_size, 0, NULL);
251 free(model_data);
252 #endif
253 if (ret < 0)
254 {
255 printf("rknn_init fail! ret=%d\n", ret);
256 return -1;
257 }
258
259 // Get sdk and driver version
260 rknn_sdk_version sdk_ver;
261 ret = rknn_query(ctx, RKNN_QUERY_SDK_VERSION, &sdk_ver, sizeof(sdk_ver));
262 if (ret != RKNN_SUCC)
263 {
264 printf("rknn_query fail! ret=%d\n", ret);
265 return -1;
266 }
267 printf("rknn_api/rknnrt version: %s, driver version: %s\n", sdk_ver.api_version, sdk_ver.drv_version);
268
269 // Get Model Input Output Info
270 rknn_input_output_num io_num;
271 ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
272 if (ret != RKNN_SUCC)
273 {
274 printf("rknn_query fail! ret=%d\n", ret);
275 return -1;
276 }
277 printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output);
278
279 printf("input tensors:\n");
280 rknn_tensor_attr input_attrs[io_num.n_input];
281 memset(input_attrs, 0, io_num.n_input * sizeof(rknn_tensor_attr));
282 for (uint32_t i = 0; i < io_num.n_input; i++)
283 {
284 input_attrs[i].index = i;
285 // query info
286 ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr));
287 if (ret < 0)
288 {
289 printf("rknn_init error! ret=%d\n", ret);
290 return -1;
291 }
292 dump_tensor_attr(&input_attrs[i]);
293 }
294
295 printf("output tensors:\n");
296 rknn_tensor_attr output_attrs[io_num.n_output];
297 memset(output_attrs, 0, io_num.n_output * sizeof(rknn_tensor_attr));
298 for (uint32_t i = 0; i < io_num.n_output; i++)
299 {
300 output_attrs[i].index = i;
301 // query info
302 ret = rknn_query(ctx, RKNN_QUERY_NATIVE_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr));
303 if (ret != RKNN_SUCC)
304 {
305 printf("rknn_query fail! ret=%d\n", ret);
306 return -1;
307 }
308 dump_tensor_attr(&output_attrs[i]);
309 }
310
311 // Get custom string
312 rknn_custom_string custom_string;
313 ret = rknn_query(ctx, RKNN_QUERY_CUSTOM_STRING, &custom_string, sizeof(custom_string));
314 if (ret != RKNN_SUCC)
315 {
316 printf("rknn_query fail! ret=%d\n", ret);
317 return -1;
318 }
319 printf("custom string: %s\n", custom_string.string);
320
321 unsigned char *input_data = NULL;
322 rknn_tensor_type input_type = RKNN_TENSOR_UINT8;
323 rknn_tensor_format input_layout = RKNN_TENSOR_NHWC;
324
325 // Load image
326 input_data = load_image(input_path, &input_attrs[0], &img_height, &img_width);
327
328 if (!input_data)
329 {
330 return -1;
331 }
332
333 // Create input tensor memory
334 rknn_tensor_mem *input_mems[1];
335 // default input type is int8 (normalize and quantize need compute in outside)
336 // if set uint8, will fuse normalize and quantize to npu
337 input_attrs[0].type = input_type;
338 // default fmt is NHWC, npu only support NHWC in zero copy mode
339 input_attrs[0].fmt = input_layout;
340
341 input_mems[0] = rknn_create_mem(ctx, input_attrs[0].size_with_stride);
342
343 // Copy input data to input tensor memory
344 int width = input_attrs[0].dims[2];
345 int stride = input_attrs[0].w_stride;
346
347 if (width == stride)
348 {
349 memcpy(input_mems[0]->virt_addr, input_data, width * input_attrs[0].dims[1] * input_attrs[0].dims[3]);
350 }
351 else
352 {
353 int height = input_attrs[0].dims[1];
354 int channel = input_attrs[0].dims[3];
355 // copy from src to dst with stride
356 uint8_t *src_ptr = input_data;
357 uint8_t *dst_ptr = (uint8_t *)input_mems[0]->virt_addr;
358 // width-channel elements
359 int src_wc_elems = width * channel;
360 int dst_wc_elems = stride * channel;
361 for (int h = 0; h < height; ++h)
362 {
363 memcpy(dst_ptr, src_ptr, src_wc_elems);
364 src_ptr += src_wc_elems;
365 dst_ptr += dst_wc_elems;
366 }
367 }
368
369 // Create output tensor memory
370 rknn_tensor_mem *output_mems[io_num.n_output];
371 for (uint32_t i = 0; i < io_num.n_output; ++i)
372 {
373 output_mems[i] = rknn_create_mem(ctx, output_attrs[i].size_with_stride);
374 }
375
376 // Set input tensor memory
377 ret = rknn_set_io_mem(ctx, input_mems[0], &input_attrs[0]);
378 if (ret < 0)
379 {
380 printf("rknn_set_io_mem fail! ret=%d\n", ret);
381 return -1;
382 }
383
384 // Set output tensor memory
385 for (uint32_t i = 0; i < io_num.n_output; ++i)
386 {
387 // set output memory and attribute
388 ret = rknn_set_io_mem(ctx, output_mems[i], &output_attrs[i]);
389 if (ret < 0)
390 {
391 printf("rknn_set_io_mem fail! ret=%d\n", ret);
392 return -1;
393 }
394 }
395
396 // Run
397 printf("Begin perf ...\n");
398 for (int i = 0; i < loop_count; ++i)
399 {
400 int64_t start_us = getCurrentTimeUs();
401 ret = rknn_run(ctx, NULL);
402 int64_t elapse_us = getCurrentTimeUs() - start_us;
403 if (ret < 0)
404 {
405 printf("rknn run error %d\n", ret);
406 return -1;
407 }
408 printf("%4d: Elapse Time = %.2fms, FPS = %.2f\n", i, elapse_us / 1000.f, 1000.f * 1000.f / elapse_us);
409 }
410
411 printf("output origin tensors:\n");
412 rknn_tensor_attr orig_output_attrs[io_num.n_output];
413 memset(orig_output_attrs, 0, io_num.n_output * sizeof(rknn_tensor_attr));
414 for (uint32_t i = 0; i < io_num.n_output; i++)
415 {
416 orig_output_attrs[i].index = i;
417 // query info
418 ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(orig_output_attrs[i]), sizeof(rknn_tensor_attr));
419 if (ret != RKNN_SUCC)
420 {
421 printf("rknn_query fail! ret=%d\n", ret);
422 return -1;
423 }
424 dump_tensor_attr(&orig_output_attrs[i]);
425 }
426
427 int8_t *output_mems_nchw[io_num.n_output];
428 for (uint32_t i = 0; i < io_num.n_output; ++i)
429 {
430 int size = orig_output_attrs[i].size_with_stride;
431 output_mems_nchw[i] = (int8_t *)malloc(size);
432 }
433
434 for (uint32_t i = 0; i < io_num.n_output; i++)
435 {
436 int channel = orig_output_attrs[i].dims[1];
437 int h = orig_output_attrs[i].n_dims > 2 ? orig_output_attrs[i].dims[2] : 1;
438 int w = orig_output_attrs[i].n_dims > 3 ? orig_output_attrs[i].dims[3] : 1;
439 int hw = h * w;
440 NC1HWC2_int8_to_NCHW_int8((int8_t *)output_mems[i]->virt_addr, (int8_t *)output_mems_nchw[i], (int *)output_attrs[i].dims,
441 channel, h, w);
442 }
443
444 int model_width = 0;
445 int model_height = 0;
446 if (input_attrs[0].fmt == RKNN_TENSOR_NCHW)
447 {
448 printf("model is NCHW input fmt\n");
449 model_width = input_attrs[0].dims[2];
450 model_height = input_attrs[0].dims[3];
451 }
452 else
453 {
454 printf("model is NHWC input fmt\n");
455 model_width = input_attrs[0].dims[1];
456 model_height = input_attrs[0].dims[2];
457 }
458 // post process
459 float scale_w = (float)model_width / img_width;
460 float scale_h = (float)model_height / img_height;
461
462 detect_result_group_t detect_result_group;
463 std::vector<float> out_scales;
464 std::vector<int32_t> out_zps;
465 for (int i = 0; i < io_num.n_output; ++i)
466 {
467 out_scales.push_back(output_attrs[i].scale);
468 out_zps.push_back(output_attrs[i].zp);
469 }
470
471 post_process((int8_t *)output_mems_nchw[0], (int8_t *)output_mems_nchw[1], (int8_t *)output_mems_nchw[2], 640, 640,
472 box_conf_threshold, nms_threshold, scale_w, scale_h, out_zps, out_scales, &detect_result_group);
473
474 char text[256];
475 for (int i = 0; i < detect_result_group.count; i++)
476 {
477 detect_result_t *det_result = &(detect_result_group.results[i]);
478 sprintf(text, "%s %.1f%%", det_result->name, det_result->prop * 100);
479 printf("%s @ (%d %d %d %d) %f\n",
480 det_result->name,
481 det_result->box.left, det_result->box.top, det_result->box.right, det_result->box.bottom,
482 det_result->prop);
483 }
484
485 // Destroy rknn memory
486 rknn_destroy_mem(ctx, input_mems[0]);
487 for (uint32_t i = 0; i < io_num.n_output; ++i)
488 {
489 rknn_destroy_mem(ctx, output_mems[i]);
490 free(output_mems_nchw[i]);
491 }
492
493 // destroy
494 rknn_destroy(ctx);
495
496 free(input_data);
497
498 return 0;
499 }
500