1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                          License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
16 // Third party copyrights are property of their respective owners.
17 //
18 // Redistribution and use in source and binary forms, with or without modification,
19 // are permitted provided that the following conditions are met:
20 //
21 //   * Redistribution's of source code must retain the above copyright notice,
22 //     this list of conditions and the following disclaimer.
23 //
24 //   * Redistribution's in binary form must reproduce the above copyright notice,
25 //     this list of conditions and the following disclaimer in the documentation
26 //     and/or other materials provided with the distribution.
27 //
28 //   * The name of the copyright holders may not be used to endorse or promote products
29 //     derived from this software without specific prior written permission.
30 //
31 // This software is provided by the copyright holders and contributors "as is" and
32 // any express or implied warranties, including, but not limited to, the implied
33 // warranties of merchantability and fitness for a particular purpose are disclaimed.
34 // In no event shall the Intel Corporation or contributors be liable for any direct,
35 // indirect, incidental, special, exemplary, or consequential damages
36 // (including, but not limited to, procurement of substitute goods or services;
37 // loss of use, data, or profits; or business interruption) however caused
38 // and on any theory of liability, whether in contract, strict liability,
39 // or tort (including negligence or otherwise) arising in any way out of
40 // the use of this software, even if advised of the possibility of such damage.
41 //
42 //M*/
43 
44 #ifndef OPENCV_TRACKING_HPP
45 #define OPENCV_TRACKING_HPP
46 
47 #include "opencv2/core.hpp"
48 #include "opencv2/imgproc.hpp"
49 
50 namespace cv
51 {
52 
53 //! @addtogroup video_track
54 //! @{
55 
56 enum { OPTFLOW_USE_INITIAL_FLOW     = 4,
57        OPTFLOW_LK_GET_MIN_EIGENVALS = 8,
58        OPTFLOW_FARNEBACK_GAUSSIAN   = 256
59      };
60 
61 /** @brief Finds an object center, size, and orientation.
62 
63 @param probImage Back projection of the object histogram. See calcBackProject.
64 @param window Initial search window.
65 @param criteria Stop criteria for the underlying meanShift.
66 returns
67 (in old interfaces) Number of iterations CAMSHIFT took to converge
68 The function implements the CAMSHIFT object tracking algorithm @cite Bradski98 . First, it finds an
69 object center using meanShift and then adjusts the window size and finds the optimal rotation. The
70 function returns the rotated rectangle structure that includes the object position, size, and
71 orientation. The next position of the search window can be obtained with RotatedRect::boundingRect()
72 
73 See the OpenCV sample camshiftdemo.c that tracks colored objects.
74 
75 @note
76 -   (Python) A sample explaining the camshift tracking algorithm can be found at
77     opencv_source_code/samples/python/camshift.py
78  */
79 CV_EXPORTS_W RotatedRect CamShift( InputArray probImage, CV_IN_OUT Rect& window,
80                                    TermCriteria criteria );
81 /** @example samples/cpp/camshiftdemo.cpp
82 An example using the mean-shift tracking algorithm
83 */
84 
85 /** @brief Finds an object on a back projection image.
86 
87 @param probImage Back projection of the object histogram. See calcBackProject for details.
88 @param window Initial search window.
89 @param criteria Stop criteria for the iterative search algorithm.
90 returns
91 :   Number of iterations CAMSHIFT took to converge.
92 The function implements the iterative object search algorithm. It takes the input back projection of
93 an object and the initial position. The mass center in window of the back projection image is
94 computed and the search window center shifts to the mass center. The procedure is repeated until the
95 specified number of iterations criteria.maxCount is done or until the window center shifts by less
96 than criteria.epsilon. The algorithm is used inside CamShift and, unlike CamShift , the search
97 window size or orientation do not change during the search. You can simply pass the output of
98 calcBackProject to this function. But better results can be obtained if you pre-filter the back
99 projection and remove the noise. For example, you can do this by retrieving connected components
100 with findContours , throwing away contours with small area ( contourArea ), and rendering the
101 remaining contours with drawContours.
102 
103  */
104 CV_EXPORTS_W int meanShift( InputArray probImage, CV_IN_OUT Rect& window, TermCriteria criteria );
105 
106 /** @brief Constructs the image pyramid which can be passed to calcOpticalFlowPyrLK.
107 
108 @param img 8-bit input image.
109 @param pyramid output pyramid.
110 @param winSize window size of optical flow algorithm. Must be not less than winSize argument of
111 calcOpticalFlowPyrLK. It is needed to calculate required padding for pyramid levels.
112 @param maxLevel 0-based maximal pyramid level number.
113 @param withDerivatives set to precompute gradients for the every pyramid level. If pyramid is
114 constructed without the gradients then calcOpticalFlowPyrLK will calculate them internally.
115 @param pyrBorder the border mode for pyramid layers.
116 @param derivBorder the border mode for gradients.
117 @param tryReuseInputImage put ROI of input image into the pyramid if possible. You can pass false
118 to force data copying.
119 @return number of levels in constructed pyramid. Can be less than maxLevel.
120  */
121 CV_EXPORTS_W int buildOpticalFlowPyramid( InputArray img, OutputArrayOfArrays pyramid,
122                                           Size winSize, int maxLevel, bool withDerivatives = true,
123                                           int pyrBorder = BORDER_REFLECT_101,
124                                           int derivBorder = BORDER_CONSTANT,
125                                           bool tryReuseInputImage = true );
126 
127 /** @example samples/cpp/lkdemo.cpp
128 An example using the Lucas-Kanade optical flow algorithm
129 */
130 
131 /** @brief Calculates an optical flow for a sparse feature set using the iterative Lucas-Kanade method with
132 pyramids.
133 
134 @param prevImg first 8-bit input image or pyramid constructed by buildOpticalFlowPyramid.
135 @param nextImg second input image or pyramid of the same size and the same type as prevImg.
136 @param prevPts vector of 2D points for which the flow needs to be found; point coordinates must be
137 single-precision floating-point numbers.
138 @param nextPts output vector of 2D points (with single-precision floating-point coordinates)
139 containing the calculated new positions of input features in the second image; when
140 OPTFLOW_USE_INITIAL_FLOW flag is passed, the vector must have the same size as in the input.
141 @param status output status vector (of unsigned chars); each element of the vector is set to 1 if
142 the flow for the corresponding features has been found, otherwise, it is set to 0.
143 @param err output vector of errors; each element of the vector is set to an error for the
144 corresponding feature, type of the error measure can be set in flags parameter; if the flow wasn't
145 found then the error is not defined (use the status parameter to find such cases).
146 @param winSize size of the search window at each pyramid level.
147 @param maxLevel 0-based maximal pyramid level number; if set to 0, pyramids are not used (single
148 level), if set to 1, two levels are used, and so on; if pyramids are passed to input then
149 algorithm will use as many levels as pyramids have but no more than maxLevel.
150 @param criteria parameter, specifying the termination criteria of the iterative search algorithm
151 (after the specified maximum number of iterations criteria.maxCount or when the search window
152 moves by less than criteria.epsilon.
153 @param flags operation flags:
154  -   **OPTFLOW_USE_INITIAL_FLOW** uses initial estimations, stored in nextPts; if the flag is
155      not set, then prevPts is copied to nextPts and is considered the initial estimate.
156  -   **OPTFLOW_LK_GET_MIN_EIGENVALS** use minimum eigen values as an error measure (see
157      minEigThreshold description); if the flag is not set, then L1 distance between patches
158      around the original and a moved point, divided by number of pixels in a window, is used as a
159      error measure.
160 @param minEigThreshold the algorithm calculates the minimum eigen value of a 2x2 normal matrix of
161 optical flow equations (this matrix is called a spatial gradient matrix in @cite Bouguet00), divided
162 by number of pixels in a window; if this value is less than minEigThreshold, then a corresponding
163 feature is filtered out and its flow is not processed, so it allows to remove bad points and get a
164 performance boost.
165 
166 The function implements a sparse iterative version of the Lucas-Kanade optical flow in pyramids. See
167 @cite Bouguet00 . The function is parallelized with the TBB library.
168 
169 @note
170 
171 -   An example using the Lucas-Kanade optical flow algorithm can be found at
172     opencv_source_code/samples/cpp/lkdemo.cpp
173 -   (Python) An example using the Lucas-Kanade optical flow algorithm can be found at
174     opencv_source_code/samples/python/lk_track.py
175 -   (Python) An example using the Lucas-Kanade tracker for homography matching can be found at
176     opencv_source_code/samples/python/lk_homography.py
177  */
178 CV_EXPORTS_W void calcOpticalFlowPyrLK( InputArray prevImg, InputArray nextImg,
179                                         InputArray prevPts, InputOutputArray nextPts,
180                                         OutputArray status, OutputArray err,
181                                         Size winSize = Size(21,21), int maxLevel = 3,
182                                         TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
183                                         int flags = 0, double minEigThreshold = 1e-4 );
184 
185 /** @brief Computes a dense optical flow using the Gunnar Farneback's algorithm.
186 
187 @param prev first 8-bit single-channel input image.
188 @param next second input image of the same size and the same type as prev.
189 @param flow computed flow image that has the same size as prev and type CV_32FC2.
190 @param pyr_scale parameter, specifying the image scale (\<1) to build pyramids for each image;
191 pyr_scale=0.5 means a classical pyramid, where each next layer is twice smaller than the previous
192 one.
193 @param levels number of pyramid layers including the initial image; levels=1 means that no extra
194 layers are created and only the original images are used.
195 @param winsize averaging window size; larger values increase the algorithm robustness to image
196 noise and give more chances for fast motion detection, but yield more blurred motion field.
197 @param iterations number of iterations the algorithm does at each pyramid level.
198 @param poly_n size of the pixel neighborhood used to find polynomial expansion in each pixel;
199 larger values mean that the image will be approximated with smoother surfaces, yielding more
200 robust algorithm and more blurred motion field, typically poly_n =5 or 7.
201 @param poly_sigma standard deviation of the Gaussian that is used to smooth derivatives used as a
202 basis for the polynomial expansion; for poly_n=5, you can set poly_sigma=1.1, for poly_n=7, a
203 good value would be poly_sigma=1.5.
204 @param flags operation flags that can be a combination of the following:
205  -   **OPTFLOW_USE_INITIAL_FLOW** uses the input flow as an initial flow approximation.
206  -   **OPTFLOW_FARNEBACK_GAUSSIAN** uses the Gaussian \f$\texttt{winsize}\times\texttt{winsize}\f$
207      filter instead of a box filter of the same size for optical flow estimation; usually, this
208      option gives z more accurate flow than with a box filter, at the cost of lower speed;
209      normally, winsize for a Gaussian window should be set to a larger value to achieve the same
210      level of robustness.
211 
212 The function finds an optical flow for each prev pixel using the @cite Farneback2003 algorithm so that
213 
214 \f[\texttt{prev} (y,x)  \sim \texttt{next} ( y + \texttt{flow} (y,x)[1],  x + \texttt{flow} (y,x)[0])\f]
215 
216 @note
217 
218 -   An example using the optical flow algorithm described by Gunnar Farneback can be found at
219     opencv_source_code/samples/cpp/fback.cpp
220 -   (Python) An example using the optical flow algorithm described by Gunnar Farneback can be
221     found at opencv_source_code/samples/python/opt_flow.py
222  */
223 CV_EXPORTS_W void calcOpticalFlowFarneback( InputArray prev, InputArray next, InputOutputArray flow,
224                                             double pyr_scale, int levels, int winsize,
225                                             int iterations, int poly_n, double poly_sigma,
226                                             int flags );
227 
228 /** @brief Computes an optimal affine transformation between two 2D point sets.
229 
230 @param src First input 2D point set stored in std::vector or Mat, or an image stored in Mat.
231 @param dst Second input 2D point set of the same size and the same type as A, or another image.
232 @param fullAffine If true, the function finds an optimal affine transformation with no additional
233 restrictions (6 degrees of freedom). Otherwise, the class of transformations to choose from is
234 limited to combinations of translation, rotation, and uniform scaling (4 degrees of freedom).
235 
236 The function finds an optimal affine transform *[A|b]* (a 2 x 3 floating-point matrix) that
237 approximates best the affine transformation between:
238 
239 *   Two point sets
240 *   Two raster images. In this case, the function first finds some features in the src image and
241     finds the corresponding features in dst image. After that, the problem is reduced to the first
242     case.
243 In case of point sets, the problem is formulated as follows: you need to find a 2x2 matrix *A* and
244 2x1 vector *b* so that:
245 
246 \f[[A^*|b^*] = arg  \min _{[A|b]}  \sum _i  \| \texttt{dst}[i] - A { \texttt{src}[i]}^T - b  \| ^2\f]
247 where src[i] and dst[i] are the i-th points in src and dst, respectively
248 \f$[A|b]\f$ can be either arbitrary (when fullAffine=true ) or have a form of
249 \f[\begin{bmatrix} a_{11} & a_{12} & b_1  \\ -a_{12} & a_{11} & b_2  \end{bmatrix}\f]
250 when fullAffine=false.
251 
252 @sa
253 estimateAffine2D, estimateAffinePartial2D, getAffineTransform, getPerspectiveTransform, findHomography
254  */
255 CV_EXPORTS_W Mat estimateRigidTransform( InputArray src, InputArray dst, bool fullAffine);
256 CV_EXPORTS_W Mat estimateRigidTransform( InputArray src, InputArray dst, bool fullAffine, int ransacMaxIters, double ransacGoodRatio,
257                                          int ransacSize0);
258 
259 
260 enum
261 {
262     MOTION_TRANSLATION = 0,
263     MOTION_EUCLIDEAN   = 1,
264     MOTION_AFFINE      = 2,
265     MOTION_HOMOGRAPHY  = 3
266 };
267 
268 /** @example samples/cpp/image_alignment.cpp
269 An example using the image alignment ECC algorithm
270 */
271 
272 /** @brief Finds the geometric transform (warp) between two images in terms of the ECC criterion @cite EP08 .
273 
274 @param templateImage single-channel template image; CV_8U or CV_32F array.
275 @param inputImage single-channel input image which should be warped with the final warpMatrix in
276 order to provide an image similar to templateImage, same type as temlateImage.
277 @param warpMatrix floating-point \f$2\times 3\f$ or \f$3\times 3\f$ mapping matrix (warp).
278 @param motionType parameter, specifying the type of motion:
279  -   **MOTION_TRANSLATION** sets a translational motion model; warpMatrix is \f$2\times 3\f$ with
280      the first \f$2\times 2\f$ part being the unity matrix and the rest two parameters being
281      estimated.
282  -   **MOTION_EUCLIDEAN** sets a Euclidean (rigid) transformation as motion model; three
283      parameters are estimated; warpMatrix is \f$2\times 3\f$.
284  -   **MOTION_AFFINE** sets an affine motion model (DEFAULT); six parameters are estimated;
285      warpMatrix is \f$2\times 3\f$.
286  -   **MOTION_HOMOGRAPHY** sets a homography as a motion model; eight parameters are
287      estimated;\`warpMatrix\` is \f$3\times 3\f$.
288 @param criteria parameter, specifying the termination criteria of the ECC algorithm;
289 criteria.epsilon defines the threshold of the increment in the correlation coefficient between two
290 iterations (a negative criteria.epsilon makes criteria.maxcount the only termination criterion).
291 Default values are shown in the declaration above.
292 @param inputMask An optional mask to indicate valid values of inputImage.
293 
294 The function estimates the optimum transformation (warpMatrix) with respect to ECC criterion
295 (@cite EP08), that is
296 
297 \f[\texttt{warpMatrix} = \texttt{warpMatrix} = \arg\max_{W} \texttt{ECC}(\texttt{templateImage}(x,y),\texttt{inputImage}(x',y'))\f]
298 
299 where
300 
301 \f[\begin{bmatrix} x' \\ y' \end{bmatrix} = W \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}\f]
302 
303 (the equation holds with homogeneous coordinates for homography). It returns the final enhanced
304 correlation coefficient, that is the correlation coefficient between the template image and the
305 final warped input image. When a \f$3\times 3\f$ matrix is given with motionType =0, 1 or 2, the third
306 row is ignored.
307 
308 Unlike findHomography and estimateRigidTransform, the function findTransformECC implements an
309 area-based alignment that builds on intensity similarities. In essence, the function updates the
310 initial transformation that roughly aligns the images. If this information is missing, the identity
311 warp (unity matrix) is used as an initialization. Note that if images undergo strong
312 displacements/rotations, an initial transformation that roughly aligns the images is necessary
313 (e.g., a simple euclidean/similarity transform that allows for the images showing the same image
314 content approximately). Use inverse warping in the second image to take an image close to the first
315 one, i.e. use the flag WARP_INVERSE_MAP with warpAffine or warpPerspective. See also the OpenCV
316 sample image_alignment.cpp that demonstrates the use of the function. Note that the function throws
317 an exception if algorithm does not converges.
318 
319 @sa
320 estimateAffine2D, estimateAffinePartial2D, findHomography
321  */
322 CV_EXPORTS_W double findTransformECC( InputArray templateImage, InputArray inputImage,
323                                       InputOutputArray warpMatrix, int motionType = MOTION_AFFINE,
324                                       TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 50, 0.001),
325                                       InputArray inputMask = noArray());
326 
327 /** @example samples/cpp/kalman.cpp
328 An example using the standard Kalman filter
329 */
330 
331 /** @brief Kalman filter class.
332 
333 The class implements a standard Kalman filter <http://en.wikipedia.org/wiki/Kalman_filter>,
334 @cite Welch95 . However, you can modify transitionMatrix, controlMatrix, and measurementMatrix to get
335 an extended Kalman filter functionality.
336 @note In C API when CvKalman\* kalmanFilter structure is not needed anymore, it should be released
337 with cvReleaseKalman(&kalmanFilter)
338  */
339 class CV_EXPORTS_W KalmanFilter
340 {
341 public:
342     CV_WRAP KalmanFilter();
343     /** @overload
344     @param dynamParams Dimensionality of the state.
345     @param measureParams Dimensionality of the measurement.
346     @param controlParams Dimensionality of the control vector.
347     @param type Type of the created matrices that should be CV_32F or CV_64F.
348     */
349     CV_WRAP KalmanFilter( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
350 
351     /** @brief Re-initializes Kalman filter. The previous content is destroyed.
352 
353     @param dynamParams Dimensionality of the state.
354     @param measureParams Dimensionality of the measurement.
355     @param controlParams Dimensionality of the control vector.
356     @param type Type of the created matrices that should be CV_32F or CV_64F.
357      */
358     void init( int dynamParams, int measureParams, int controlParams = 0, int type = CV_32F );
359 
360     /** @brief Computes a predicted state.
361 
362     @param control The optional input control
363      */
364     CV_WRAP const Mat& predict( const Mat& control = Mat() );
365 
366     /** @brief Updates the predicted state from the measurement.
367 
368     @param measurement The measured system parameters
369      */
370     CV_WRAP const Mat& correct( const Mat& measurement );
371 
372     CV_PROP_RW Mat statePre;           //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
373     CV_PROP_RW Mat statePost;          //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
374     CV_PROP_RW Mat transitionMatrix;   //!< state transition matrix (A)
375     CV_PROP_RW Mat controlMatrix;      //!< control matrix (B) (not used if there is no control)
376     CV_PROP_RW Mat measurementMatrix;  //!< measurement matrix (H)
377     CV_PROP_RW Mat processNoiseCov;    //!< process noise covariance matrix (Q)
378     CV_PROP_RW Mat measurementNoiseCov;//!< measurement noise covariance matrix (R)
379     CV_PROP_RW Mat errorCovPre;        //!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/
380     CV_PROP_RW Mat gain;               //!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
381     CV_PROP_RW Mat errorCovPost;       //!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
382 
383     // temporary matrices
384     Mat temp1;
385     Mat temp2;
386     Mat temp3;
387     Mat temp4;
388     Mat temp5;
389 };
390 
391 
392 class CV_EXPORTS_W DenseOpticalFlow : public Algorithm
393 {
394 public:
395     /** @brief Calculates an optical flow.
396 
397     @param I0 first 8-bit single-channel input image.
398     @param I1 second input image of the same size and the same type as prev.
399     @param flow computed flow image that has the same size as prev and type CV_32FC2.
400      */
401     CV_WRAP virtual void calc( InputArray I0, InputArray I1, InputOutputArray flow ) = 0;
402     /** @brief Releases all inner buffers.
403     */
404     CV_WRAP virtual void collectGarbage() = 0;
405 };
406 
407 /** @brief Base interface for sparse optical flow algorithms.
408  */
409 class CV_EXPORTS_W SparseOpticalFlow : public Algorithm
410 {
411 public:
412     /** @brief Calculates a sparse optical flow.
413 
414     @param prevImg First input image.
415     @param nextImg Second input image of the same size and the same type as prevImg.
416     @param prevPts Vector of 2D points for which the flow needs to be found.
417     @param nextPts Output vector of 2D points containing the calculated new positions of input features in the second image.
418     @param status Output status vector. Each element of the vector is set to 1 if the
419                   flow for the corresponding features has been found. Otherwise, it is set to 0.
420     @param err Optional output vector that contains error response for each point (inverse confidence).
421      */
422     CV_WRAP virtual void calc(InputArray prevImg, InputArray nextImg,
423                       InputArray prevPts, InputOutputArray nextPts,
424                       OutputArray status,
425                       OutputArray err = cv::noArray()) = 0;
426 };
427 
428 /** @brief "Dual TV L1" Optical Flow Algorithm.
429 
430 The class implements the "Dual TV L1" optical flow algorithm described in @cite Zach2007 and
431 @cite Javier2012 .
432 Here are important members of the class that control the algorithm, which you can set after
433 constructing the class instance:
434 
435 -   member double tau
436     Time step of the numerical scheme.
437 
438 -   member double lambda
439     Weight parameter for the data term, attachment parameter. This is the most relevant
440     parameter, which determines the smoothness of the output. The smaller this parameter is,
441     the smoother the solutions we obtain. It depends on the range of motions of the images, so
442     its value should be adapted to each image sequence.
443 
444 -   member double theta
445     Weight parameter for (u - v)\^2, tightness parameter. It serves as a link between the
446     attachment and the regularization terms. In theory, it should have a small value in order
447     to maintain both parts in correspondence. The method is stable for a large range of values
448     of this parameter.
449 
450 -   member int nscales
451     Number of scales used to create the pyramid of images.
452 
453 -   member int warps
454     Number of warpings per scale. Represents the number of times that I1(x+u0) and grad(
455     I1(x+u0) ) are computed per scale. This is a parameter that assures the stability of the
456     method. It also affects the running time, so it is a compromise between speed and
457     accuracy.
458 
459 -   member double epsilon
460     Stopping criterion threshold used in the numerical scheme, which is a trade-off between
461     precision and running time. A small value will yield more accurate solutions at the
462     expense of a slower convergence.
463 
464 -   member int iterations
465     Stopping criterion iterations number used in the numerical scheme.
466 
467 C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
468 Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
469 */
470 class CV_EXPORTS_W DualTVL1OpticalFlow : public DenseOpticalFlow
471 {
472 public:
473     //! @brief Time step of the numerical scheme
474     /** @see setTau */
475     CV_WRAP virtual double getTau() const = 0;
476     /** @copybrief getTau @see getTau */
477     CV_WRAP virtual void setTau(double val) = 0;
478     //! @brief Weight parameter for the data term, attachment parameter
479     /** @see setLambda */
480     CV_WRAP virtual double getLambda() const = 0;
481     /** @copybrief getLambda @see getLambda */
482     CV_WRAP virtual void setLambda(double val) = 0;
483     //! @brief Weight parameter for (u - v)^2, tightness parameter
484     /** @see setTheta */
485     CV_WRAP virtual double getTheta() const = 0;
486     /** @copybrief getTheta @see getTheta */
487     CV_WRAP virtual void setTheta(double val) = 0;
488     //! @brief coefficient for additional illumination variation term
489     /** @see setGamma */
490     CV_WRAP virtual double getGamma() const = 0;
491     /** @copybrief getGamma @see getGamma */
492     CV_WRAP virtual void setGamma(double val) = 0;
493     //! @brief Number of scales used to create the pyramid of images
494     /** @see setScalesNumber */
495     CV_WRAP virtual int getScalesNumber() const = 0;
496     /** @copybrief getScalesNumber @see getScalesNumber */
497     CV_WRAP virtual void setScalesNumber(int val) = 0;
498     //! @brief Number of warpings per scale
499     /** @see setWarpingsNumber */
500     CV_WRAP virtual int getWarpingsNumber() const = 0;
501     /** @copybrief getWarpingsNumber @see getWarpingsNumber */
502     CV_WRAP virtual void setWarpingsNumber(int val) = 0;
503     //! @brief Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time
504     /** @see setEpsilon */
505     CV_WRAP virtual double getEpsilon() const = 0;
506     /** @copybrief getEpsilon @see getEpsilon */
507     CV_WRAP virtual void setEpsilon(double val) = 0;
508     //! @brief Inner iterations (between outlier filtering) used in the numerical scheme
509     /** @see setInnerIterations */
510     CV_WRAP virtual int getInnerIterations() const = 0;
511     /** @copybrief getInnerIterations @see getInnerIterations */
512     CV_WRAP virtual void setInnerIterations(int val) = 0;
513     //! @brief Outer iterations (number of inner loops) used in the numerical scheme
514     /** @see setOuterIterations */
515     CV_WRAP virtual int getOuterIterations() const = 0;
516     /** @copybrief getOuterIterations @see getOuterIterations */
517     CV_WRAP virtual void setOuterIterations(int val) = 0;
518     //! @brief Use initial flow
519     /** @see setUseInitialFlow */
520     CV_WRAP virtual bool getUseInitialFlow() const = 0;
521     /** @copybrief getUseInitialFlow @see getUseInitialFlow */
522     CV_WRAP virtual void setUseInitialFlow(bool val) = 0;
523     //! @brief Step between scales (<1)
524     /** @see setScaleStep */
525     CV_WRAP virtual double getScaleStep() const = 0;
526     /** @copybrief getScaleStep @see getScaleStep */
527     CV_WRAP virtual void setScaleStep(double val) = 0;
528     //! @brief Median filter kernel size (1 = no filter) (3 or 5)
529     /** @see setMedianFiltering */
530     CV_WRAP virtual int getMedianFiltering() const = 0;
531     /** @copybrief getMedianFiltering @see getMedianFiltering */
532     CV_WRAP virtual void setMedianFiltering(int val) = 0;
533 
534     /** @brief Creates instance of cv::DualTVL1OpticalFlow*/
535     CV_WRAP static Ptr<DualTVL1OpticalFlow> create(
536                                             double tau = 0.25,
537                                             double lambda = 0.15,
538                                             double theta = 0.3,
539                                             int nscales = 5,
540                                             int warps = 5,
541                                             double epsilon = 0.01,
542                                             int innnerIterations = 30,
543                                             int outerIterations = 10,
544                                             double scaleStep = 0.8,
545                                             double gamma = 0.0,
546                                             int medianFiltering = 5,
547                                             bool useInitialFlow = false);
548 };
549 
550 /** @brief Creates instance of cv::DenseOpticalFlow
551 */
552 CV_EXPORTS_W Ptr<DualTVL1OpticalFlow> createOptFlow_DualTVL1();
553 
554 /** @brief Class computing a dense optical flow using the Gunnar Farneback's algorithm.
555  */
556 class CV_EXPORTS_W FarnebackOpticalFlow : public DenseOpticalFlow
557 {
558 public:
559     CV_WRAP virtual int getNumLevels() const = 0;
560     CV_WRAP virtual void setNumLevels(int numLevels) = 0;
561 
562     CV_WRAP virtual double getPyrScale() const = 0;
563     CV_WRAP virtual void setPyrScale(double pyrScale) = 0;
564 
565     CV_WRAP virtual bool getFastPyramids() const = 0;
566     CV_WRAP virtual void setFastPyramids(bool fastPyramids) = 0;
567 
568     CV_WRAP virtual int getWinSize() const = 0;
569     CV_WRAP virtual void setWinSize(int winSize) = 0;
570 
571     CV_WRAP virtual int getNumIters() const = 0;
572     CV_WRAP virtual void setNumIters(int numIters) = 0;
573 
574     CV_WRAP virtual int getPolyN() const = 0;
575     CV_WRAP virtual void setPolyN(int polyN) = 0;
576 
577     CV_WRAP virtual double getPolySigma() const = 0;
578     CV_WRAP virtual void setPolySigma(double polySigma) = 0;
579 
580     CV_WRAP virtual int getFlags() const = 0;
581     CV_WRAP virtual void setFlags(int flags) = 0;
582 
583     CV_WRAP static Ptr<FarnebackOpticalFlow> create(
584             int numLevels = 5,
585             double pyrScale = 0.5,
586             bool fastPyramids = false,
587             int winSize = 13,
588             int numIters = 10,
589             int polyN = 5,
590             double polySigma = 1.1,
591             int flags = 0);
592 };
593 
594 
595 /** @brief Class used for calculating a sparse optical flow.
596 
597 The class can calculate an optical flow for a sparse feature set using the
598 iterative Lucas-Kanade method with pyramids.
599 
600 @sa calcOpticalFlowPyrLK
601 
602 */
603 class CV_EXPORTS_W SparsePyrLKOpticalFlow : public SparseOpticalFlow
604 {
605 public:
606     CV_WRAP virtual Size getWinSize() const = 0;
607     CV_WRAP virtual void setWinSize(Size winSize) = 0;
608 
609     CV_WRAP virtual int getMaxLevel() const = 0;
610     CV_WRAP virtual void setMaxLevel(int maxLevel) = 0;
611 
612     CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
613     CV_WRAP virtual void setTermCriteria(TermCriteria& crit) = 0;
614 
615     CV_WRAP virtual int getFlags() const = 0;
616     CV_WRAP virtual void setFlags(int flags) = 0;
617 
618     CV_WRAP virtual double getMinEigThreshold() const = 0;
619     CV_WRAP virtual void setMinEigThreshold(double minEigThreshold) = 0;
620 
621     CV_WRAP static Ptr<SparsePyrLKOpticalFlow> create(
622             Size winSize = Size(21, 21),
623             int maxLevel = 3, TermCriteria crit =
624             TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01),
625             int flags = 0,
626             double minEigThreshold = 1e-4);
627 };
628 
629 //! @} video_track
630 
631 } // cv
632 
633 #endif
634