1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                           License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Third party copyrights are property of their respective owners.
16 //
17 // Redistribution and use in source and binary forms, with or without modification,
18 // are permitted provided that the following conditions are met:
19 //
20 //   * Redistribution's of source code must retain the above copyright notice,
21 //     this list of conditions and the following disclaimer.
22 //
23 //   * Redistribution's in binary form must reproduce the above copyright notice,
24 //     this list of conditions and the following disclaimer in the documentation
25 //     and/or other materials provided with the distribution.
26 //
27 //   * The name of the copyright holders may not be used to endorse or promote products
28 //     derived from this software without specific prior written permission.
29 //
30 // This software is provided by the copyright holders and contributors "as is" and
31 // any express or implied warranties, including, but not limited to, the implied
32 // warranties of merchantability and fitness for a particular purpose are disclaimed.
33 // In no event shall the Intel Corporation or contributors be liable for any direct,
34 // indirect, incidental, special, exemplary, or consequential damages
35 // (including, but not limited to, procurement of substitute goods or services;
36 // loss of use, data, or profits; or business interruption) however caused
37 // and on any theory of liability, whether in contract, strict liability,
38 // or tort (including negligence or otherwise) arising in any way out of
39 // the use of this software, even if advised of the possibility of such damage.
40 //
41 //M*/
42 
43 #ifndef OPENCV_FEATURES_2D_HPP
44 #define OPENCV_FEATURES_2D_HPP
45 
46 #include "opencv2/opencv_modules.hpp"
47 #include "opencv2/core.hpp"
48 
49 #ifdef HAVE_OPENCV_FLANN
50 #include "opencv2/flann/miniflann.hpp"
51 #endif
52 
53 /**
54   @defgroup features2d 2D Features Framework
55   @{
56     @defgroup features2d_main Feature Detection and Description
57     @defgroup features2d_match Descriptor Matchers
58 
59 Matchers of keypoint descriptors in OpenCV have wrappers with a common interface that enables you to
60 easily switch between different algorithms solving the same problem. This section is devoted to
61 matching descriptors that are represented as vectors in a multidimensional space. All objects that
62 implement vector descriptor matchers inherit the DescriptorMatcher interface.
63 
64 @note
65    -   An example explaining keypoint matching can be found at
66         opencv_source_code/samples/cpp/descriptor_extractor_matcher.cpp
67     -   An example on descriptor matching evaluation can be found at
68         opencv_source_code/samples/cpp/detector_descriptor_matcher_evaluation.cpp
69     -   An example on one to many image matching can be found at
70         opencv_source_code/samples/cpp/matching_to_many_images.cpp
71 
72     @defgroup features2d_draw Drawing Function of Keypoints and Matches
73     @defgroup features2d_category Object Categorization
74 
75 This section describes approaches based on local 2D features and used to categorize objects.
76 
77 @note
78    -   A complete Bag-Of-Words sample can be found at
79         opencv_source_code/samples/cpp/bagofwords_classification.cpp
80     -   (Python) An example using the features2D framework to perform object categorization can be
81         found at opencv_source_code/samples/python/find_obj.py
82 
83   @}
84  */
85 
86 namespace cv
87 {
88 
89 //! @addtogroup features2d
90 //! @{
91 
92 // //! writes vector of keypoints to the file storage
93 // CV_EXPORTS void write(FileStorage& fs, const String& name, const std::vector<KeyPoint>& keypoints);
94 // //! reads vector of keypoints from the specified file storage node
95 // CV_EXPORTS void read(const FileNode& node, CV_OUT std::vector<KeyPoint>& keypoints);
96 
97 /** @brief A class filters a vector of keypoints.
98 
99  Because now it is difficult to provide a convenient interface for all usage scenarios of the
100  keypoints filter class, it has only several needed by now static methods.
101  */
102 class CV_EXPORTS KeyPointsFilter
103 {
104 public:
KeyPointsFilter()105     KeyPointsFilter(){}
106 
107     /*
108      * Remove keypoints within borderPixels of an image edge.
109      */
110     static void runByImageBorder( std::vector<KeyPoint>& keypoints, Size imageSize, int borderSize );
111     /*
112      * Remove keypoints of sizes out of range.
113      */
114     static void runByKeypointSize( std::vector<KeyPoint>& keypoints, float minSize,
115                                    float maxSize=FLT_MAX );
116     /*
117      * Remove keypoints from some image by mask for pixels of this image.
118      */
119     static void runByPixelsMask( std::vector<KeyPoint>& keypoints, const Mat& mask );
120     /*
121      * Remove duplicated keypoints.
122      */
123     static void removeDuplicated( std::vector<KeyPoint>& keypoints );
124     /*
125      * Remove duplicated keypoints and sort the remaining keypoints
126      */
127     static void removeDuplicatedSorted( std::vector<KeyPoint>& keypoints );
128 
129     /*
130      * Retain the specified number of the best keypoints (according to the response)
131      */
132     static void retainBest( std::vector<KeyPoint>& keypoints, int npoints );
133 };
134 
135 
136 /************************************ Base Classes ************************************/
137 
138 /** @brief Abstract base class for 2D image feature detectors and descriptor extractors
139 */
140 #ifdef __EMSCRIPTEN__
141 class CV_EXPORTS_W Feature2D : public Algorithm
142 #else
143 class CV_EXPORTS_W Feature2D : public virtual Algorithm
144 #endif
145 {
146 public:
147     virtual ~Feature2D();
148 
149     /** @brief Detects keypoints in an image (first variant) or image set (second variant).
150 
151     @param image Image.
152     @param keypoints The detected keypoints. In the second variant of the method keypoints[i] is a set
153     of keypoints detected in images[i] .
154     @param mask Mask specifying where to look for keypoints (optional). It must be a 8-bit integer
155     matrix with non-zero values in the region of interest.
156      */
157     CV_WRAP virtual void detect( InputArray image,
158                                  CV_OUT std::vector<KeyPoint>& keypoints,
159                                  InputArray mask=noArray() );
160 
161     /** @overload
162     @param images Image set.
163     @param keypoints The detected keypoints. In the second variant of the method keypoints[i] is a set
164     of keypoints detected in images[i] .
165     @param masks Masks for each input image specifying where to look for keypoints (optional).
166     masks[i] is a mask for images[i].
167     */
168     CV_WRAP virtual void detect( InputArrayOfArrays images,
169                          CV_OUT std::vector<std::vector<KeyPoint> >& keypoints,
170                          InputArrayOfArrays masks=noArray() );
171 
172     /** @brief Computes the descriptors for a set of keypoints detected in an image (first variant) or image set
173     (second variant).
174 
175     @param image Image.
176     @param keypoints Input collection of keypoints. Keypoints for which a descriptor cannot be
177     computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
178     with several dominant orientations (for each orientation).
179     @param descriptors Computed descriptors. In the second variant of the method descriptors[i] are
180     descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
181     descriptor for keypoint j-th keypoint.
182      */
183     CV_WRAP virtual void compute( InputArray image,
184                                   CV_OUT CV_IN_OUT std::vector<KeyPoint>& keypoints,
185                                   OutputArray descriptors );
186 
187     /** @overload
188 
189     @param images Image set.
190     @param keypoints Input collection of keypoints. Keypoints for which a descriptor cannot be
191     computed are removed. Sometimes new keypoints can be added, for example: SIFT duplicates keypoint
192     with several dominant orientations (for each orientation).
193     @param descriptors Computed descriptors. In the second variant of the method descriptors[i] are
194     descriptors computed for a keypoints[i]. Row j is the keypoints (or keypoints[i]) is the
195     descriptor for keypoint j-th keypoint.
196     */
197     CV_WRAP virtual void compute( InputArrayOfArrays images,
198                           CV_OUT CV_IN_OUT std::vector<std::vector<KeyPoint> >& keypoints,
199                           OutputArrayOfArrays descriptors );
200 
201     /** Detects keypoints and computes the descriptors */
202     CV_WRAP virtual void detectAndCompute( InputArray image, InputArray mask,
203                                            CV_OUT std::vector<KeyPoint>& keypoints,
204                                            OutputArray descriptors,
205                                            bool useProvidedKeypoints=false );
206 
207     CV_WRAP virtual int descriptorSize() const;
208     CV_WRAP virtual int descriptorType() const;
209     CV_WRAP virtual int defaultNorm() const;
210 
211     CV_WRAP void write( const String& fileName ) const;
212 
213     CV_WRAP void read( const String& fileName );
214 
215     virtual void write( FileStorage&) const CV_OVERRIDE;
216 
217     // see corresponding cv::Algorithm method
218     CV_WRAP virtual void read( const FileNode&) CV_OVERRIDE;
219 
220     //! Return true if detector object is empty
221     CV_WRAP virtual bool empty() const CV_OVERRIDE;
222     CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
223 
224     // see corresponding cv::Algorithm method
write(const Ptr<FileStorage> & fs,const String & name=String ()) const225     CV_WRAP inline void write(const Ptr<FileStorage>& fs, const String& name = String()) const { Algorithm::write(fs, name); }
226 };
227 
228 /** Feature detectors in OpenCV have wrappers with a common interface that enables you to easily switch
229 between different algorithms solving the same problem. All objects that implement keypoint detectors
230 inherit the FeatureDetector interface. */
231 typedef Feature2D FeatureDetector;
232 
233 /** Extractors of keypoint descriptors in OpenCV have wrappers with a common interface that enables you
234 to easily switch between different algorithms solving the same problem. This section is devoted to
235 computing descriptors represented as vectors in a multidimensional space. All objects that implement
236 the vector descriptor extractors inherit the DescriptorExtractor interface.
237  */
238 typedef Feature2D DescriptorExtractor;
239 
240 //! @addtogroup features2d_main
241 //! @{
242 
243 /** @brief Class implementing the BRISK keypoint detector and descriptor extractor, described in @cite LCS11 .
244  */
245 class CV_EXPORTS_W BRISK : public Feature2D
246 {
247 public:
248     /** @brief The BRISK constructor
249 
250     @param thresh AGAST detection threshold score.
251     @param octaves detection octaves. Use 0 to do single scale.
252     @param patternScale apply this scale to the pattern used for sampling the neighbourhood of a
253     keypoint.
254      */
255     CV_WRAP static Ptr<BRISK> create(int thresh=30, int octaves=3, float patternScale=1.0f);
256 
257     /** @brief The BRISK constructor for a custom pattern
258 
259     @param radiusList defines the radii (in pixels) where the samples around a keypoint are taken (for
260     keypoint scale 1).
261     @param numberList defines the number of sampling points on the sampling circle. Must be the same
262     size as radiusList..
263     @param dMax threshold for the short pairings used for descriptor formation (in pixels for keypoint
264     scale 1).
265     @param dMin threshold for the long pairings used for orientation determination (in pixels for
266     keypoint scale 1).
267     @param indexChange index remapping of the bits. */
268     CV_WRAP static Ptr<BRISK> create(const std::vector<float> &radiusList, const std::vector<int> &numberList,
269         float dMax=5.85f, float dMin=8.2f, const std::vector<int>& indexChange=std::vector<int>());
270 
271     /** @brief The BRISK constructor for a custom pattern, detection threshold and octaves
272 
273     @param thresh AGAST detection threshold score.
274     @param octaves detection octaves. Use 0 to do single scale.
275     @param radiusList defines the radii (in pixels) where the samples around a keypoint are taken (for
276     keypoint scale 1).
277     @param numberList defines the number of sampling points on the sampling circle. Must be the same
278     size as radiusList..
279     @param dMax threshold for the short pairings used for descriptor formation (in pixels for keypoint
280     scale 1).
281     @param dMin threshold for the long pairings used for orientation determination (in pixels for
282     keypoint scale 1).
283     @param indexChange index remapping of the bits. */
284     CV_WRAP static Ptr<BRISK> create(int thresh, int octaves, const std::vector<float> &radiusList,
285         const std::vector<int> &numberList, float dMax=5.85f, float dMin=8.2f,
286         const std::vector<int>& indexChange=std::vector<int>());
287     CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
288 };
289 
290 /** @brief Class implementing the ORB (*oriented BRIEF*) keypoint detector and descriptor extractor
291 
292 described in @cite RRKB11 . The algorithm uses FAST in pyramids to detect stable keypoints, selects
293 the strongest features using FAST or Harris response, finds their orientation using first-order
294 moments and computes the descriptors using BRIEF (where the coordinates of random point pairs (or
295 k-tuples) are rotated according to the measured orientation).
296  */
297 class CV_EXPORTS_W ORB : public Feature2D
298 {
299 public:
300     enum { kBytes = 32, HARRIS_SCORE=0, FAST_SCORE=1 };
301 
302     /** @brief The ORB constructor
303 
304     @param nfeatures The maximum number of features to retain.
305     @param scaleFactor Pyramid decimation ratio, greater than 1. scaleFactor==2 means the classical
306     pyramid, where each next level has 4x less pixels than the previous, but such a big scale factor
307     will degrade feature matching scores dramatically. On the other hand, too close to 1 scale factor
308     will mean that to cover certain scale range you will need more pyramid levels and so the speed
309     will suffer.
310     @param nlevels The number of pyramid levels. The smallest level will have linear size equal to
311     input_image_linear_size/pow(scaleFactor, nlevels - firstLevel).
312     @param edgeThreshold This is size of the border where the features are not detected. It should
313     roughly match the patchSize parameter.
314     @param firstLevel The level of pyramid to put source image to. Previous layers are filled
315     with upscaled source image.
316     @param WTA_K The number of points that produce each element of the oriented BRIEF descriptor. The
317     default value 2 means the BRIEF where we take a random point pair and compare their brightnesses,
318     so we get 0/1 response. Other possible values are 3 and 4. For example, 3 means that we take 3
319     random points (of course, those point coordinates are random, but they are generated from the
320     pre-defined seed, so each element of BRIEF descriptor is computed deterministically from the pixel
321     rectangle), find point of maximum brightness and output index of the winner (0, 1 or 2). Such
322     output will occupy 2 bits, and therefore it will need a special variant of Hamming distance,
323     denoted as NORM_HAMMING2 (2 bits per bin). When WTA_K=4, we take 4 random points to compute each
324     bin (that will also occupy 2 bits with possible values 0, 1, 2 or 3).
325     @param scoreType The default HARRIS_SCORE means that Harris algorithm is used to rank features
326     (the score is written to KeyPoint::score and is used to retain best nfeatures features);
327     FAST_SCORE is alternative value of the parameter that produces slightly less stable keypoints,
328     but it is a little faster to compute.
329     @param patchSize size of the patch used by the oriented BRIEF descriptor. Of course, on smaller
330     pyramid layers the perceived image area covered by a feature will be larger.
331     @param fastThreshold
332      */
333     CV_WRAP static Ptr<ORB> create(int nfeatures=500, float scaleFactor=1.2f, int nlevels=8, int edgeThreshold=31,
334         int firstLevel=0, int WTA_K=2, int scoreType=ORB::HARRIS_SCORE, int patchSize=31, int fastThreshold=20);
335 
336     CV_WRAP virtual void setMaxFeatures(int maxFeatures) = 0;
337     CV_WRAP virtual int getMaxFeatures() const = 0;
338 
339     CV_WRAP virtual void setScaleFactor(double scaleFactor) = 0;
340     CV_WRAP virtual double getScaleFactor() const = 0;
341 
342     CV_WRAP virtual void setNLevels(int nlevels) = 0;
343     CV_WRAP virtual int getNLevels() const = 0;
344 
345     CV_WRAP virtual void setEdgeThreshold(int edgeThreshold) = 0;
346     CV_WRAP virtual int getEdgeThreshold() const = 0;
347 
348     CV_WRAP virtual void setFirstLevel(int firstLevel) = 0;
349     CV_WRAP virtual int getFirstLevel() const = 0;
350 
351     CV_WRAP virtual void setWTA_K(int wta_k) = 0;
352     CV_WRAP virtual int getWTA_K() const = 0;
353 
354     CV_WRAP virtual void setScoreType(int scoreType) = 0;
355     CV_WRAP virtual int getScoreType() const = 0;
356 
357     CV_WRAP virtual void setPatchSize(int patchSize) = 0;
358     CV_WRAP virtual int getPatchSize() const = 0;
359 
360     CV_WRAP virtual void setFastThreshold(int fastThreshold) = 0;
361     CV_WRAP virtual int getFastThreshold() const = 0;
362     CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
363 };
364 
365 /** @brief Maximally stable extremal region extractor
366 
367 The class encapsulates all the parameters of the %MSER extraction algorithm (see [wiki
368 article](http://en.wikipedia.org/wiki/Maximally_stable_extremal_regions)).
369 
370 - there are two different implementation of %MSER: one for grey image, one for color image
371 
372 - the grey image algorithm is taken from: @cite nister2008linear ;  the paper claims to be faster
373 than union-find method; it actually get 1.5~2m/s on my centrino L7200 1.2GHz laptop.
374 
375 - the color image algorithm is taken from: @cite forssen2007maximally ; it should be much slower
376 than grey image method ( 3~4 times ); the chi_table.h file is taken directly from paper's source
377 code which is distributed under GPL.
378 
379 - (Python) A complete example showing the use of the %MSER detector can be found at samples/python/mser.py
380 */
381 class CV_EXPORTS_W MSER : public Feature2D
382 {
383 public:
384     /** @brief Full consturctor for %MSER detector
385 
386     @param _delta it compares \f$(size_{i}-size_{i-delta})/size_{i-delta}\f$
387     @param _min_area prune the area which smaller than minArea
388     @param _max_area prune the area which bigger than maxArea
389     @param _max_variation prune the area have similar size to its children
390     @param _min_diversity for color image, trace back to cut off mser with diversity less than min_diversity
391     @param _max_evolution  for color image, the evolution steps
392     @param _area_threshold for color image, the area threshold to cause re-initialize
393     @param _min_margin for color image, ignore too small margin
394     @param _edge_blur_size for color image, the aperture size for edge blur
395      */
396     CV_WRAP static Ptr<MSER> create( int _delta=5, int _min_area=60, int _max_area=14400,
397           double _max_variation=0.25, double _min_diversity=.2,
398           int _max_evolution=200, double _area_threshold=1.01,
399           double _min_margin=0.003, int _edge_blur_size=5 );
400 
401     /** @brief Detect %MSER regions
402 
403     @param image input image (8UC1, 8UC3 or 8UC4, must be greater or equal than 3x3)
404     @param msers resulting list of point sets
405     @param bboxes resulting bounding boxes
406     */
407     CV_WRAP virtual void detectRegions( InputArray image,
408                                         CV_OUT std::vector<std::vector<Point> >& msers,
409                                         CV_OUT std::vector<Rect>& bboxes ) = 0;
410 
411     CV_WRAP virtual void setDelta(int delta) = 0;
412     CV_WRAP virtual int getDelta() const = 0;
413 
414     CV_WRAP virtual void setMinArea(int minArea) = 0;
415     CV_WRAP virtual int getMinArea() const = 0;
416 
417     CV_WRAP virtual void setMaxArea(int maxArea) = 0;
418     CV_WRAP virtual int getMaxArea() const = 0;
419 
420     CV_WRAP virtual void setPass2Only(bool f) = 0;
421     CV_WRAP virtual bool getPass2Only() const = 0;
422     CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
423 };
424 
425 /** @overload */
426 CV_EXPORTS void FAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
427                       int threshold, bool nonmaxSuppression=true );
428 
429 /** @brief Detects corners using the FAST algorithm
430 
431 @param image grayscale image where keypoints (corners) are detected.
432 @param keypoints keypoints detected on the image.
433 @param threshold threshold on difference between intensity of the central pixel and pixels of a
434 circle around this pixel.
435 @param nonmaxSuppression if true, non-maximum suppression is applied to detected corners
436 (keypoints).
437 @param type one of the three neighborhoods as defined in the paper:
438 FastFeatureDetector::TYPE_9_16, FastFeatureDetector::TYPE_7_12,
439 FastFeatureDetector::TYPE_5_8
440 
441 Detects corners using the FAST algorithm by @cite Rosten06 .
442 
443 @note In Python API, types are given as cv2.FAST_FEATURE_DETECTOR_TYPE_5_8,
444 cv2.FAST_FEATURE_DETECTOR_TYPE_7_12 and cv2.FAST_FEATURE_DETECTOR_TYPE_9_16. For corner
445 detection, use cv2.FAST.detect() method.
446  */
447 CV_EXPORTS void FAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
448                       int threshold, bool nonmaxSuppression, int type );
449 
450 //! @} features2d_main
451 
452 //! @addtogroup features2d_main
453 //! @{
454 
455 /** @brief Wrapping class for feature detection using the FAST method. :
456  */
457 class CV_EXPORTS_W FastFeatureDetector : public Feature2D
458 {
459 public:
460     enum
461     {
462         TYPE_5_8 = 0, TYPE_7_12 = 1, TYPE_9_16 = 2,
463         THRESHOLD = 10000, NONMAX_SUPPRESSION=10001, FAST_N=10002,
464     };
465 
466     CV_WRAP static Ptr<FastFeatureDetector> create( int threshold=10,
467                                                     bool nonmaxSuppression=true,
468                                                     int type=FastFeatureDetector::TYPE_9_16 );
469 
470     CV_WRAP virtual void setThreshold(int threshold) = 0;
471     CV_WRAP virtual int getThreshold() const = 0;
472 
473     CV_WRAP virtual void setNonmaxSuppression(bool f) = 0;
474     CV_WRAP virtual bool getNonmaxSuppression() const = 0;
475 
476     CV_WRAP virtual void setType(int type) = 0;
477     CV_WRAP virtual int getType() const = 0;
478     CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
479 };
480 
481 /** @overload */
482 CV_EXPORTS void AGAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
483                       int threshold, bool nonmaxSuppression=true );
484 
485 /** @brief Detects corners using the AGAST algorithm
486 
487 @param image grayscale image where keypoints (corners) are detected.
488 @param keypoints keypoints detected on the image.
489 @param threshold threshold on difference between intensity of the central pixel and pixels of a
490 circle around this pixel.
491 @param nonmaxSuppression if true, non-maximum suppression is applied to detected corners
492 (keypoints).
493 @param type one of the four neighborhoods as defined in the paper:
494 AgastFeatureDetector::AGAST_5_8, AgastFeatureDetector::AGAST_7_12d,
495 AgastFeatureDetector::AGAST_7_12s, AgastFeatureDetector::OAST_9_16
496 
497 For non-Intel platforms, there is a tree optimised variant of AGAST with same numerical results.
498 The 32-bit binary tree tables were generated automatically from original code using perl script.
499 The perl script and examples of tree generation are placed in features2d/doc folder.
500 Detects corners using the AGAST algorithm by @cite mair2010_agast .
501 
502  */
503 CV_EXPORTS void AGAST( InputArray image, CV_OUT std::vector<KeyPoint>& keypoints,
504                       int threshold, bool nonmaxSuppression, int type );
505 //! @} features2d_main
506 
507 //! @addtogroup features2d_main
508 //! @{
509 
510 /** @brief Wrapping class for feature detection using the AGAST method. :
511  */
512 class CV_EXPORTS_W AgastFeatureDetector : public Feature2D
513 {
514 public:
515     enum
516     {
517         AGAST_5_8 = 0, AGAST_7_12d = 1, AGAST_7_12s = 2, OAST_9_16 = 3,
518         THRESHOLD = 10000, NONMAX_SUPPRESSION = 10001,
519     };
520 
521     CV_WRAP static Ptr<AgastFeatureDetector> create( int threshold=10,
522                                                      bool nonmaxSuppression=true,
523                                                      int type=AgastFeatureDetector::OAST_9_16 );
524 
525     CV_WRAP virtual void setThreshold(int threshold) = 0;
526     CV_WRAP virtual int getThreshold() const = 0;
527 
528     CV_WRAP virtual void setNonmaxSuppression(bool f) = 0;
529     CV_WRAP virtual bool getNonmaxSuppression() const = 0;
530 
531     CV_WRAP virtual void setType(int type) = 0;
532     CV_WRAP virtual int getType() const = 0;
533     CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
534 };
535 
536 /** @brief Wrapping class for feature detection using the goodFeaturesToTrack function. :
537  */
538 class CV_EXPORTS_W GFTTDetector : public Feature2D
539 {
540 public:
541     CV_WRAP static Ptr<GFTTDetector> create( int maxCorners=1000, double qualityLevel=0.01, double minDistance=1,
542                                              int blockSize=3, bool useHarrisDetector=false, double k=0.04 );
543     CV_WRAP static Ptr<GFTTDetector> create( int maxCorners, double qualityLevel, double minDistance,
544                                              int blockSize, int gradiantSize, bool useHarrisDetector=false, double k=0.04 );
545     CV_WRAP virtual void setMaxFeatures(int maxFeatures) = 0;
546     CV_WRAP virtual int getMaxFeatures() const = 0;
547 
548     CV_WRAP virtual void setQualityLevel(double qlevel) = 0;
549     CV_WRAP virtual double getQualityLevel() const = 0;
550 
551     CV_WRAP virtual void setMinDistance(double minDistance) = 0;
552     CV_WRAP virtual double getMinDistance() const = 0;
553 
554     CV_WRAP virtual void setBlockSize(int blockSize) = 0;
555     CV_WRAP virtual int getBlockSize() const = 0;
556 
557     CV_WRAP virtual void setHarrisDetector(bool val) = 0;
558     CV_WRAP virtual bool getHarrisDetector() const = 0;
559 
560     CV_WRAP virtual void setK(double k) = 0;
561     CV_WRAP virtual double getK() const = 0;
562     CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
563 };
564 
565 /** @brief Class for extracting blobs from an image. :
566 
567 The class implements a simple algorithm for extracting blobs from an image:
568 
569 1.  Convert the source image to binary images by applying thresholding with several thresholds from
570     minThreshold (inclusive) to maxThreshold (exclusive) with distance thresholdStep between
571     neighboring thresholds.
572 2.  Extract connected components from every binary image by findContours and calculate their
573     centers.
574 3.  Group centers from several binary images by their coordinates. Close centers form one group that
575     corresponds to one blob, which is controlled by the minDistBetweenBlobs parameter.
576 4.  From the groups, estimate final centers of blobs and their radiuses and return as locations and
577     sizes of keypoints.
578 
579 This class performs several filtrations of returned blobs. You should set filterBy\* to true/false
580 to turn on/off corresponding filtration. Available filtrations:
581 
582 -   **By color**. This filter compares the intensity of a binary image at the center of a blob to
583 blobColor. If they differ, the blob is filtered out. Use blobColor = 0 to extract dark blobs
584 and blobColor = 255 to extract light blobs.
585 -   **By area**. Extracted blobs have an area between minArea (inclusive) and maxArea (exclusive).
586 -   **By circularity**. Extracted blobs have circularity
587 (\f$\frac{4*\pi*Area}{perimeter * perimeter}\f$) between minCircularity (inclusive) and
588 maxCircularity (exclusive).
589 -   **By ratio of the minimum inertia to maximum inertia**. Extracted blobs have this ratio
590 between minInertiaRatio (inclusive) and maxInertiaRatio (exclusive).
591 -   **By convexity**. Extracted blobs have convexity (area / area of blob convex hull) between
592 minConvexity (inclusive) and maxConvexity (exclusive).
593 
594 Default values of parameters are tuned to extract dark circular blobs.
595  */
596 class CV_EXPORTS_W SimpleBlobDetector : public Feature2D
597 {
598 public:
599   struct CV_EXPORTS_W_SIMPLE Params
600   {
601       CV_WRAP Params();
602       CV_PROP_RW float thresholdStep;
603       CV_PROP_RW float minThreshold;
604       CV_PROP_RW float maxThreshold;
605       CV_PROP_RW size_t minRepeatability;
606       CV_PROP_RW float minDistBetweenBlobs;
607 
608       CV_PROP_RW bool filterByColor;
609       CV_PROP_RW uchar blobColor;
610 
611       CV_PROP_RW bool filterByArea;
612       CV_PROP_RW float minArea, maxArea;
613 
614       CV_PROP_RW bool filterByCircularity;
615       CV_PROP_RW float minCircularity, maxCircularity;
616 
617       CV_PROP_RW bool filterByInertia;
618       CV_PROP_RW float minInertiaRatio, maxInertiaRatio;
619 
620       CV_PROP_RW bool filterByConvexity;
621       CV_PROP_RW float minConvexity, maxConvexity;
622 
623       void read( const FileNode& fn );
624       void write( FileStorage& fs ) const;
625   };
626 
627   CV_WRAP static Ptr<SimpleBlobDetector>
628     create(const SimpleBlobDetector::Params &parameters = SimpleBlobDetector::Params());
629   CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
630 };
631 
632 //! @} features2d_main
633 
634 //! @addtogroup features2d_main
635 //! @{
636 
637 /** @brief Class implementing the KAZE keypoint detector and descriptor extractor, described in @cite ABD12 .
638 
639 @note AKAZE descriptor can only be used with KAZE or AKAZE keypoints .. [ABD12] KAZE Features. Pablo
640 F. Alcantarilla, Adrien Bartoli and Andrew J. Davison. In European Conference on Computer Vision
641 (ECCV), Fiorenze, Italy, October 2012.
642 */
643 class CV_EXPORTS_W KAZE : public Feature2D
644 {
645 public:
646     enum
647     {
648         DIFF_PM_G1 = 0,
649         DIFF_PM_G2 = 1,
650         DIFF_WEICKERT = 2,
651         DIFF_CHARBONNIER = 3
652     };
653 
654     /** @brief The KAZE constructor
655 
656     @param extended Set to enable extraction of extended (128-byte) descriptor.
657     @param upright Set to enable use of upright descriptors (non rotation-invariant).
658     @param threshold Detector response threshold to accept point
659     @param nOctaves Maximum octave evolution of the image
660     @param nOctaveLayers Default number of sublevels per scale level
661     @param diffusivity Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or
662     DIFF_CHARBONNIER
663      */
664     CV_WRAP static Ptr<KAZE> create(bool extended=false, bool upright=false,
665                                     float threshold = 0.001f,
666                                     int nOctaves = 4, int nOctaveLayers = 4,
667                                     int diffusivity = KAZE::DIFF_PM_G2);
668 
669     CV_WRAP virtual void setExtended(bool extended) = 0;
670     CV_WRAP virtual bool getExtended() const = 0;
671 
672     CV_WRAP virtual void setUpright(bool upright) = 0;
673     CV_WRAP virtual bool getUpright() const = 0;
674 
675     CV_WRAP virtual void setThreshold(double threshold) = 0;
676     CV_WRAP virtual double getThreshold() const = 0;
677 
678     CV_WRAP virtual void setNOctaves(int octaves) = 0;
679     CV_WRAP virtual int getNOctaves() const = 0;
680 
681     CV_WRAP virtual void setNOctaveLayers(int octaveLayers) = 0;
682     CV_WRAP virtual int getNOctaveLayers() const = 0;
683 
684     CV_WRAP virtual void setDiffusivity(int diff) = 0;
685     CV_WRAP virtual int getDiffusivity() const = 0;
686     CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
687 };
688 
689 /** @brief Class implementing the AKAZE keypoint detector and descriptor extractor, described in @cite ANB13.
690 
691 @details AKAZE descriptors can only be used with KAZE or AKAZE keypoints. This class is thread-safe.
692 
693 @note When you need descriptors use Feature2D::detectAndCompute, which
694 provides better performance. When using Feature2D::detect followed by
695 Feature2D::compute scale space pyramid is computed twice.
696 
697 @note AKAZE implements T-API. When image is passed as UMat some parts of the algorithm
698 will use OpenCL.
699 
700 @note [ANB13] Fast Explicit Diffusion for Accelerated Features in Nonlinear
701 Scale Spaces. Pablo F. Alcantarilla, Jesús Nuevo and Adrien Bartoli. In
702 British Machine Vision Conference (BMVC), Bristol, UK, September 2013.
703 
704 */
705 class CV_EXPORTS_W AKAZE : public Feature2D
706 {
707 public:
708     // AKAZE descriptor type
709     enum
710     {
711         DESCRIPTOR_KAZE_UPRIGHT = 2, ///< Upright descriptors, not invariant to rotation
712         DESCRIPTOR_KAZE = 3,
713         DESCRIPTOR_MLDB_UPRIGHT = 4, ///< Upright descriptors, not invariant to rotation
714         DESCRIPTOR_MLDB = 5
715     };
716 
717     /** @brief The AKAZE constructor
718 
719     @param descriptor_type Type of the extracted descriptor: DESCRIPTOR_KAZE,
720     DESCRIPTOR_KAZE_UPRIGHT, DESCRIPTOR_MLDB or DESCRIPTOR_MLDB_UPRIGHT.
721     @param descriptor_size Size of the descriptor in bits. 0 -\> Full size
722     @param descriptor_channels Number of channels in the descriptor (1, 2, 3)
723     @param threshold Detector response threshold to accept point
724     @param nOctaves Maximum octave evolution of the image
725     @param nOctaveLayers Default number of sublevels per scale level
726     @param diffusivity Diffusivity type. DIFF_PM_G1, DIFF_PM_G2, DIFF_WEICKERT or
727     DIFF_CHARBONNIER
728      */
729     CV_WRAP static Ptr<AKAZE> create(int descriptor_type=AKAZE::DESCRIPTOR_MLDB,
730                                      int descriptor_size = 0, int descriptor_channels = 3,
731                                      float threshold = 0.001f, int nOctaves = 4,
732                                      int nOctaveLayers = 4, int diffusivity = KAZE::DIFF_PM_G2);
733 
734     CV_WRAP virtual void setDescriptorType(int dtype) = 0;
735     CV_WRAP virtual int getDescriptorType() const = 0;
736 
737     CV_WRAP virtual void setDescriptorSize(int dsize) = 0;
738     CV_WRAP virtual int getDescriptorSize() const = 0;
739 
740     CV_WRAP virtual void setDescriptorChannels(int dch) = 0;
741     CV_WRAP virtual int getDescriptorChannels() const = 0;
742 
743     CV_WRAP virtual void setThreshold(double threshold) = 0;
744     CV_WRAP virtual double getThreshold() const = 0;
745 
746     CV_WRAP virtual void setNOctaves(int octaves) = 0;
747     CV_WRAP virtual int getNOctaves() const = 0;
748 
749     CV_WRAP virtual void setNOctaveLayers(int octaveLayers) = 0;
750     CV_WRAP virtual int getNOctaveLayers() const = 0;
751 
752     CV_WRAP virtual void setDiffusivity(int diff) = 0;
753     CV_WRAP virtual int getDiffusivity() const = 0;
754     CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;
755 };
756 
757 //! @} features2d_main
758 
759 /****************************************************************************************\
760 *                                      Distance                                          *
761 \****************************************************************************************/
762 
763 template<typename T>
764 struct CV_EXPORTS Accumulator
765 {
766     typedef T Type;
767 };
768 
769 template<> struct Accumulator<unsigned char>  { typedef float Type; };
770 template<> struct Accumulator<unsigned short> { typedef float Type; };
771 template<> struct Accumulator<char>   { typedef float Type; };
772 template<> struct Accumulator<short>  { typedef float Type; };
773 
774 /*
775  * Squared Euclidean distance functor
776  */
777 template<class T>
778 struct CV_EXPORTS SL2
779 {
780     enum { normType = NORM_L2SQR };
781     typedef T ValueType;
782     typedef typename Accumulator<T>::Type ResultType;
783 
operator ()cv::SL2784     ResultType operator()( const T* a, const T* b, int size ) const
785     {
786         return normL2Sqr<ValueType, ResultType>(a, b, size);
787     }
788 };
789 
790 /*
791  * Euclidean distance functor
792  */
793 template<class T>
794 struct L2
795 {
796     enum { normType = NORM_L2 };
797     typedef T ValueType;
798     typedef typename Accumulator<T>::Type ResultType;
799 
operator ()cv::L2800     ResultType operator()( const T* a, const T* b, int size ) const
801     {
802         return (ResultType)std::sqrt((double)normL2Sqr<ValueType, ResultType>(a, b, size));
803     }
804 };
805 
806 /*
807  * Manhattan distance (city block distance) functor
808  */
809 template<class T>
810 struct L1
811 {
812     enum { normType = NORM_L1 };
813     typedef T ValueType;
814     typedef typename Accumulator<T>::Type ResultType;
815 
operator ()cv::L1816     ResultType operator()( const T* a, const T* b, int size ) const
817     {
818         return normL1<ValueType, ResultType>(a, b, size);
819     }
820 };
821 
822 /****************************************************************************************\
823 *                                  DescriptorMatcher                                     *
824 \****************************************************************************************/
825 
826 //! @addtogroup features2d_match
827 //! @{
828 
829 /** @brief Abstract base class for matching keypoint descriptors.
830 
831 It has two groups of match methods: for matching descriptors of an image with another image or with
832 an image set.
833  */
834 class CV_EXPORTS_W DescriptorMatcher : public Algorithm
835 {
836 public:
837    enum
838     {
839         FLANNBASED            = 1,
840         BRUTEFORCE            = 2,
841         BRUTEFORCE_L1         = 3,
842         BRUTEFORCE_HAMMING    = 4,
843         BRUTEFORCE_HAMMINGLUT = 5,
844         BRUTEFORCE_SL2        = 6
845     };
846     virtual ~DescriptorMatcher();
847 
848     /** @brief Adds descriptors to train a CPU(trainDescCollectionis) or GPU(utrainDescCollectionis) descriptor
849     collection.
850 
851     If the collection is not empty, the new descriptors are added to existing train descriptors.
852 
853     @param descriptors Descriptors to add. Each descriptors[i] is a set of descriptors from the same
854     train image.
855      */
856     CV_WRAP virtual void add( InputArrayOfArrays descriptors );
857 
858     /** @brief Returns a constant link to the train descriptor collection trainDescCollection .
859      */
860     CV_WRAP const std::vector<Mat>& getTrainDescriptors() const;
861 
862     /** @brief Clears the train descriptor collections.
863      */
864     CV_WRAP virtual void clear() CV_OVERRIDE;
865 
866     /** @brief Returns true if there are no train descriptors in the both collections.
867      */
868     CV_WRAP virtual bool empty() const CV_OVERRIDE;
869 
870     /** @brief Returns true if the descriptor matcher supports masking permissible matches.
871      */
872     CV_WRAP virtual bool isMaskSupported() const = 0;
873 
874     /** @brief Trains a descriptor matcher
875 
876     Trains a descriptor matcher (for example, the flann index). In all methods to match, the method
877     train() is run every time before matching. Some descriptor matchers (for example, BruteForceMatcher)
878     have an empty implementation of this method. Other matchers really train their inner structures (for
879     example, FlannBasedMatcher trains flann::Index ).
880      */
881     CV_WRAP virtual void train();
882 
883     /** @brief Finds the best match for each descriptor from a query set.
884 
885     @param queryDescriptors Query set of descriptors.
886     @param trainDescriptors Train set of descriptors. This set is not added to the train descriptors
887     collection stored in the class object.
888     @param matches Matches. If a query descriptor is masked out in mask , no match is added for this
889     descriptor. So, matches size may be smaller than the query descriptors count.
890     @param mask Mask specifying permissible matches between an input query and train matrices of
891     descriptors.
892 
893     In the first variant of this method, the train descriptors are passed as an input argument. In the
894     second variant of the method, train descriptors collection that was set by DescriptorMatcher::add is
895     used. Optional mask (or masks) can be passed to specify which query and training descriptors can be
896     matched. Namely, queryDescriptors[i] can be matched with trainDescriptors[j] only if
897     mask.at\<uchar\>(i,j) is non-zero.
898      */
899     CV_WRAP void match( InputArray queryDescriptors, InputArray trainDescriptors,
900                 CV_OUT std::vector<DMatch>& matches, InputArray mask=noArray() ) const;
901 
902     /** @brief Finds the k best matches for each descriptor from a query set.
903 
904     @param queryDescriptors Query set of descriptors.
905     @param trainDescriptors Train set of descriptors. This set is not added to the train descriptors
906     collection stored in the class object.
907     @param mask Mask specifying permissible matches between an input query and train matrices of
908     descriptors.
909     @param matches Matches. Each matches[i] is k or less matches for the same query descriptor.
910     @param k Count of best matches found per each query descriptor or less if a query descriptor has
911     less than k possible matches in total.
912     @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
913     false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
914     the matches vector does not contain matches for fully masked-out query descriptors.
915 
916     These extended variants of DescriptorMatcher::match methods find several best matches for each query
917     descriptor. The matches are returned in the distance increasing order. See DescriptorMatcher::match
918     for the details about query and train descriptors.
919      */
920     CV_WRAP void knnMatch( InputArray queryDescriptors, InputArray trainDescriptors,
921                    CV_OUT std::vector<std::vector<DMatch> >& matches, int k,
922                    InputArray mask=noArray(), bool compactResult=false ) const;
923 
924     /** @brief For each query descriptor, finds the training descriptors not farther than the specified distance.
925 
926     @param queryDescriptors Query set of descriptors.
927     @param trainDescriptors Train set of descriptors. This set is not added to the train descriptors
928     collection stored in the class object.
929     @param matches Found matches.
930     @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
931     false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
932     the matches vector does not contain matches for fully masked-out query descriptors.
933     @param maxDistance Threshold for the distance between matched descriptors. Distance means here
934     metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
935     in Pixels)!
936     @param mask Mask specifying permissible matches between an input query and train matrices of
937     descriptors.
938 
939     For each query descriptor, the methods find such training descriptors that the distance between the
940     query descriptor and the training descriptor is equal or smaller than maxDistance. Found matches are
941     returned in the distance increasing order.
942      */
943     CV_WRAP void radiusMatch( InputArray queryDescriptors, InputArray trainDescriptors,
944                       CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance,
945                       InputArray mask=noArray(), bool compactResult=false ) const;
946 
947     /** @overload
948     @param queryDescriptors Query set of descriptors.
949     @param matches Matches. If a query descriptor is masked out in mask , no match is added for this
950     descriptor. So, matches size may be smaller than the query descriptors count.
951     @param masks Set of masks. Each masks[i] specifies permissible matches between the input query
952     descriptors and stored train descriptors from the i-th image trainDescCollection[i].
953     */
954     CV_WRAP void match( InputArray queryDescriptors, CV_OUT std::vector<DMatch>& matches,
955                         InputArrayOfArrays masks=noArray() );
956     /** @overload
957     @param queryDescriptors Query set of descriptors.
958     @param matches Matches. Each matches[i] is k or less matches for the same query descriptor.
959     @param k Count of best matches found per each query descriptor or less if a query descriptor has
960     less than k possible matches in total.
961     @param masks Set of masks. Each masks[i] specifies permissible matches between the input query
962     descriptors and stored train descriptors from the i-th image trainDescCollection[i].
963     @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
964     false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
965     the matches vector does not contain matches for fully masked-out query descriptors.
966     */
967     CV_WRAP void knnMatch( InputArray queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, int k,
968                            InputArrayOfArrays masks=noArray(), bool compactResult=false );
969     /** @overload
970     @param queryDescriptors Query set of descriptors.
971     @param matches Found matches.
972     @param maxDistance Threshold for the distance between matched descriptors. Distance means here
973     metric distance (e.g. Hamming distance), not the distance between coordinates (which is measured
974     in Pixels)!
975     @param masks Set of masks. Each masks[i] specifies permissible matches between the input query
976     descriptors and stored train descriptors from the i-th image trainDescCollection[i].
977     @param compactResult Parameter used when the mask (or masks) is not empty. If compactResult is
978     false, the matches vector has the same size as queryDescriptors rows. If compactResult is true,
979     the matches vector does not contain matches for fully masked-out query descriptors.
980     */
981     CV_WRAP void radiusMatch( InputArray queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, float maxDistance,
982                       InputArrayOfArrays masks=noArray(), bool compactResult=false );
983 
984 
write(const String & fileName) const985     CV_WRAP void write( const String& fileName ) const
986     {
987         FileStorage fs(fileName, FileStorage::WRITE);
988         write(fs);
989     }
990 
read(const String & fileName)991     CV_WRAP void read( const String& fileName )
992     {
993         FileStorage fs(fileName, FileStorage::READ);
994         read(fs.root());
995     }
996     // Reads matcher object from a file node
997     // see corresponding cv::Algorithm method
998     CV_WRAP virtual void read( const FileNode& ) CV_OVERRIDE;
999     // Writes matcher object to a file storage
1000     virtual void write( FileStorage& ) const CV_OVERRIDE;
1001 
1002     /** @brief Clones the matcher.
1003 
1004     @param emptyTrainData If emptyTrainData is false, the method creates a deep copy of the object,
1005     that is, copies both parameters and train data. If emptyTrainData is true, the method creates an
1006     object copy with the current parameters but with empty train data.
1007      */
1008     CV_WRAP virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;
1009 
1010     /** @brief Creates a descriptor matcher of a given type with the default parameters (using default
1011     constructor).
1012 
1013     @param descriptorMatcherType Descriptor matcher type. Now the following matcher types are
1014     supported:
1015     -   `BruteForce` (it uses L2 )
1016     -   `BruteForce-L1`
1017     -   `BruteForce-Hamming`
1018     -   `BruteForce-Hamming(2)`
1019     -   `FlannBased`
1020      */
1021     CV_WRAP static Ptr<DescriptorMatcher> create( const String& descriptorMatcherType );
1022 
1023     CV_WRAP static Ptr<DescriptorMatcher> create( int matcherType );
1024 
1025 
1026     // see corresponding cv::Algorithm method
write(const Ptr<FileStorage> & fs,const String & name=String ()) const1027     CV_WRAP inline void write(const Ptr<FileStorage>& fs, const String& name = String()) const { Algorithm::write(fs, name); }
1028 
1029 protected:
1030     /**
1031      * Class to work with descriptors from several images as with one merged matrix.
1032      * It is used e.g. in FlannBasedMatcher.
1033      */
1034     class CV_EXPORTS DescriptorCollection
1035     {
1036     public:
1037         DescriptorCollection();
1038         DescriptorCollection( const DescriptorCollection& collection );
1039         virtual ~DescriptorCollection();
1040 
1041         // Vector of matrices "descriptors" will be merged to one matrix "mergedDescriptors" here.
1042         void set( const std::vector<Mat>& descriptors );
1043         virtual void clear();
1044 
1045         const Mat& getDescriptors() const;
1046         const Mat getDescriptor( int imgIdx, int localDescIdx ) const;
1047         const Mat getDescriptor( int globalDescIdx ) const;
1048         void getLocalIdx( int globalDescIdx, int& imgIdx, int& localDescIdx ) const;
1049 
1050         int size() const;
1051 
1052     protected:
1053         Mat mergedDescriptors;
1054         std::vector<int> startIdxs;
1055     };
1056 
1057     //! In fact the matching is implemented only by the following two methods. These methods suppose
1058     //! that the class object has been trained already. Public match methods call these methods
1059     //! after calling train().
1060     virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k,
1061         InputArrayOfArrays masks=noArray(), bool compactResult=false ) = 0;
1062     virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
1063         InputArrayOfArrays masks=noArray(), bool compactResult=false ) = 0;
1064 
1065     static bool isPossibleMatch( InputArray mask, int queryIdx, int trainIdx );
1066     static bool isMaskedOut( InputArrayOfArrays masks, int queryIdx );
1067 
clone_op(Mat m)1068     static Mat clone_op( Mat m ) { return m.clone(); }
1069     void checkMasks( InputArrayOfArrays masks, int queryDescriptorsCount ) const;
1070 
1071     //! Collection of descriptors from train images.
1072     std::vector<Mat> trainDescCollection;
1073     std::vector<UMat> utrainDescCollection;
1074 };
1075 
1076 /** @brief Brute-force descriptor matcher.
1077 
1078 For each descriptor in the first set, this matcher finds the closest descriptor in the second set
1079 by trying each one. This descriptor matcher supports masking permissible matches of descriptor
1080 sets.
1081  */
1082 class CV_EXPORTS_W BFMatcher : public DescriptorMatcher
1083 {
1084 public:
1085     /** @brief Brute-force matcher constructor (obsolete). Please use BFMatcher.create()
1086      *
1087      *
1088     */
1089     CV_WRAP BFMatcher( int normType=NORM_L2, bool crossCheck=false );
1090 
~BFMatcher()1091     virtual ~BFMatcher() {}
1092 
isMaskSupported() const1093     virtual bool isMaskSupported() const CV_OVERRIDE { return true; }
1094 
1095     /** @brief Brute-force matcher create method.
1096     @param normType One of NORM_L1, NORM_L2, NORM_HAMMING, NORM_HAMMING2. L1 and L2 norms are
1097     preferable choices for SIFT and SURF descriptors, NORM_HAMMING should be used with ORB, BRISK and
1098     BRIEF, NORM_HAMMING2 should be used with ORB when WTA_K==3 or 4 (see ORB::ORB constructor
1099     description).
1100     @param crossCheck If it is false, this is will be default BFMatcher behaviour when it finds the k
1101     nearest neighbors for each query descriptor. If crossCheck==true, then the knnMatch() method with
1102     k=1 will only return pairs (i,j) such that for i-th query descriptor the j-th descriptor in the
1103     matcher's collection is the nearest and vice versa, i.e. the BFMatcher will only return consistent
1104     pairs. Such technique usually produces best results with minimal number of outliers when there are
1105     enough matches. This is alternative to the ratio test, used by D. Lowe in SIFT paper.
1106      */
1107     CV_WRAP static Ptr<BFMatcher> create( int normType=NORM_L2, bool crossCheck=false ) ;
1108 
1109     virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const CV_OVERRIDE;
1110 protected:
1111     virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k,
1112         InputArrayOfArrays masks=noArray(), bool compactResult=false ) CV_OVERRIDE;
1113     virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
1114         InputArrayOfArrays masks=noArray(), bool compactResult=false ) CV_OVERRIDE;
1115 
1116     int normType;
1117     bool crossCheck;
1118 };
1119 
1120 #if defined(HAVE_OPENCV_FLANN) || defined(CV_DOXYGEN)
1121 
1122 /** @brief Flann-based descriptor matcher.
1123 
1124 This matcher trains cv::flann::Index on a train descriptor collection and calls its nearest search
1125 methods to find the best matches. So, this matcher may be faster when matching a large train
1126 collection than the brute force matcher. FlannBasedMatcher does not support masking permissible
1127 matches of descriptor sets because flann::Index does not support this. :
1128  */
1129 class CV_EXPORTS_W FlannBasedMatcher : public DescriptorMatcher
1130 {
1131 public:
1132     CV_WRAP FlannBasedMatcher( const Ptr<flann::IndexParams>& indexParams=makePtr<flann::KDTreeIndexParams>(),
1133                        const Ptr<flann::SearchParams>& searchParams=makePtr<flann::SearchParams>() );
1134 
1135     virtual void add( InputArrayOfArrays descriptors ) CV_OVERRIDE;
1136     virtual void clear() CV_OVERRIDE;
1137 
1138     // Reads matcher object from a file node
1139     virtual void read( const FileNode& ) CV_OVERRIDE;
1140     // Writes matcher object to a file storage
1141     virtual void write( FileStorage& ) const CV_OVERRIDE;
1142 
1143     virtual void train() CV_OVERRIDE;
1144     virtual bool isMaskSupported() const CV_OVERRIDE;
1145 
1146     CV_WRAP static Ptr<FlannBasedMatcher> create();
1147 
1148     virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const CV_OVERRIDE;
1149 protected:
1150     static void convertToDMatches( const DescriptorCollection& descriptors,
1151                                    const Mat& indices, const Mat& distances,
1152                                    std::vector<std::vector<DMatch> >& matches );
1153 
1154     virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k,
1155         InputArrayOfArrays masks=noArray(), bool compactResult=false ) CV_OVERRIDE;
1156     virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
1157         InputArrayOfArrays masks=noArray(), bool compactResult=false ) CV_OVERRIDE;
1158 
1159     Ptr<flann::IndexParams> indexParams;
1160     Ptr<flann::SearchParams> searchParams;
1161     Ptr<flann::Index> flannIndex;
1162 
1163     DescriptorCollection mergedDescriptors;
1164     int addedDescCount;
1165 };
1166 
1167 #endif
1168 
1169 //! @} features2d_match
1170 
1171 /****************************************************************************************\
1172 *                                   Drawing functions                                    *
1173 \****************************************************************************************/
1174 
1175 //! @addtogroup features2d_draw
1176 //! @{
1177 
1178 struct CV_EXPORTS DrawMatchesFlags
1179 {
1180     enum{ DEFAULT = 0, //!< Output image matrix will be created (Mat::create),
1181                        //!< i.e. existing memory of output image may be reused.
1182                        //!< Two source image, matches and single keypoints will be drawn.
1183                        //!< For each keypoint only the center point will be drawn (without
1184                        //!< the circle around keypoint with keypoint size and orientation).
1185           DRAW_OVER_OUTIMG = 1, //!< Output image matrix will not be created (Mat::create).
1186                                 //!< Matches will be drawn on existing content of output image.
1187           NOT_DRAW_SINGLE_POINTS = 2, //!< Single keypoints will not be drawn.
1188           DRAW_RICH_KEYPOINTS = 4 //!< For each keypoint the circle around keypoint with keypoint size and
1189                                   //!< orientation will be drawn.
1190         };
1191 };
1192 
1193 /** @brief Draws keypoints.
1194 
1195 @param image Source image.
1196 @param keypoints Keypoints from the source image.
1197 @param outImage Output image. Its content depends on the flags value defining what is drawn in the
1198 output image. See possible flags bit values below.
1199 @param color Color of keypoints.
1200 @param flags Flags setting drawing features. Possible flags bit values are defined by
1201 DrawMatchesFlags. See details above in drawMatches .
1202 
1203 @note
1204 For Python API, flags are modified as cv2.DRAW_MATCHES_FLAGS_DEFAULT,
1205 cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS, cv2.DRAW_MATCHES_FLAGS_DRAW_OVER_OUTIMG,
1206 cv2.DRAW_MATCHES_FLAGS_NOT_DRAW_SINGLE_POINTS
1207  */
1208 CV_EXPORTS_W void drawKeypoints( InputArray image, const std::vector<KeyPoint>& keypoints, InputOutputArray outImage,
1209                                const Scalar& color=Scalar::all(-1), int flags=DrawMatchesFlags::DEFAULT );
1210 
1211 /** @brief Draws the found matches of keypoints from two images.
1212 
1213 @param img1 First source image.
1214 @param keypoints1 Keypoints from the first source image.
1215 @param img2 Second source image.
1216 @param keypoints2 Keypoints from the second source image.
1217 @param matches1to2 Matches from the first image to the second one, which means that keypoints1[i]
1218 has a corresponding point in keypoints2[matches[i]] .
1219 @param outImg Output image. Its content depends on the flags value defining what is drawn in the
1220 output image. See possible flags bit values below.
1221 @param matchColor Color of matches (lines and connected keypoints). If matchColor==Scalar::all(-1)
1222 , the color is generated randomly.
1223 @param singlePointColor Color of single keypoints (circles), which means that keypoints do not
1224 have the matches. If singlePointColor==Scalar::all(-1) , the color is generated randomly.
1225 @param matchesMask Mask determining which matches are drawn. If the mask is empty, all matches are
1226 drawn.
1227 @param flags Flags setting drawing features. Possible flags bit values are defined by
1228 DrawMatchesFlags.
1229 
1230 This function draws matches of keypoints from two images in the output image. Match is a line
1231 connecting two keypoints (circles). See cv::DrawMatchesFlags.
1232  */
1233 CV_EXPORTS_W void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1,
1234                              InputArray img2, const std::vector<KeyPoint>& keypoints2,
1235                              const std::vector<DMatch>& matches1to2, InputOutputArray outImg,
1236                              const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
1237                              const std::vector<char>& matchesMask=std::vector<char>(), int flags=DrawMatchesFlags::DEFAULT );
1238 
1239 /** @overload */
1240 CV_EXPORTS_AS(drawMatchesKnn) void drawMatches( InputArray img1, const std::vector<KeyPoint>& keypoints1,
1241                              InputArray img2, const std::vector<KeyPoint>& keypoints2,
1242                              const std::vector<std::vector<DMatch> >& matches1to2, InputOutputArray outImg,
1243                              const Scalar& matchColor=Scalar::all(-1), const Scalar& singlePointColor=Scalar::all(-1),
1244                              const std::vector<std::vector<char> >& matchesMask=std::vector<std::vector<char> >(), int flags=DrawMatchesFlags::DEFAULT );
1245 
1246 //! @} features2d_draw
1247 
1248 /****************************************************************************************\
1249 *   Functions to evaluate the feature detectors and [generic] descriptor extractors      *
1250 \****************************************************************************************/
1251 
1252 CV_EXPORTS void evaluateFeatureDetector( const Mat& img1, const Mat& img2, const Mat& H1to2,
1253                                          std::vector<KeyPoint>* keypoints1, std::vector<KeyPoint>* keypoints2,
1254                                          float& repeatability, int& correspCount,
1255                                          const Ptr<FeatureDetector>& fdetector=Ptr<FeatureDetector>() );
1256 
1257 CV_EXPORTS void computeRecallPrecisionCurve( const std::vector<std::vector<DMatch> >& matches1to2,
1258                                              const std::vector<std::vector<uchar> >& correctMatches1to2Mask,
1259                                              std::vector<Point2f>& recallPrecisionCurve );
1260 
1261 CV_EXPORTS float getRecall( const std::vector<Point2f>& recallPrecisionCurve, float l_precision );
1262 CV_EXPORTS int getNearestPoint( const std::vector<Point2f>& recallPrecisionCurve, float l_precision );
1263 
1264 /****************************************************************************************\
1265 *                                     Bag of visual words                                *
1266 \****************************************************************************************/
1267 
1268 //! @addtogroup features2d_category
1269 //! @{
1270 
1271 /** @brief Abstract base class for training the *bag of visual words* vocabulary from a set of descriptors.
1272 
1273 For details, see, for example, *Visual Categorization with Bags of Keypoints* by Gabriella Csurka,
1274 Christopher R. Dance, Lixin Fan, Jutta Willamowski, Cedric Bray, 2004. :
1275  */
1276 class CV_EXPORTS_W BOWTrainer
1277 {
1278 public:
1279     BOWTrainer();
1280     virtual ~BOWTrainer();
1281 
1282     /** @brief Adds descriptors to a training set.
1283 
1284     @param descriptors Descriptors to add to a training set. Each row of the descriptors matrix is a
1285     descriptor.
1286 
1287     The training set is clustered using clustermethod to construct the vocabulary.
1288      */
1289     CV_WRAP void add( const Mat& descriptors );
1290 
1291     /** @brief Returns a training set of descriptors.
1292     */
1293     CV_WRAP const std::vector<Mat>& getDescriptors() const;
1294 
1295     /** @brief Returns the count of all descriptors stored in the training set.
1296     */
1297     CV_WRAP int descriptorsCount() const;
1298 
1299     CV_WRAP virtual void clear();
1300 
1301     /** @overload */
1302     CV_WRAP virtual Mat cluster() const = 0;
1303 
1304     /** @brief Clusters train descriptors.
1305 
1306     @param descriptors Descriptors to cluster. Each row of the descriptors matrix is a descriptor.
1307     Descriptors are not added to the inner train descriptor set.
1308 
1309     The vocabulary consists of cluster centers. So, this method returns the vocabulary. In the first
1310     variant of the method, train descriptors stored in the object are clustered. In the second variant,
1311     input descriptors are clustered.
1312      */
1313     CV_WRAP virtual Mat cluster( const Mat& descriptors ) const = 0;
1314 
1315 protected:
1316     std::vector<Mat> descriptors;
1317     int size;
1318 };
1319 
1320 /** @brief kmeans -based class to train visual vocabulary using the *bag of visual words* approach. :
1321  */
1322 class CV_EXPORTS_W BOWKMeansTrainer : public BOWTrainer
1323 {
1324 public:
1325     /** @brief The constructor.
1326 
1327     @see cv::kmeans
1328     */
1329     CV_WRAP BOWKMeansTrainer( int clusterCount, const TermCriteria& termcrit=TermCriteria(),
1330                       int attempts=3, int flags=KMEANS_PP_CENTERS );
1331     virtual ~BOWKMeansTrainer();
1332 
1333     // Returns trained vocabulary (i.e. cluster centers).
1334     CV_WRAP virtual Mat cluster() const CV_OVERRIDE;
1335     CV_WRAP virtual Mat cluster( const Mat& descriptors ) const CV_OVERRIDE;
1336 
1337 protected:
1338 
1339     int clusterCount;
1340     TermCriteria termcrit;
1341     int attempts;
1342     int flags;
1343 };
1344 
1345 /** @brief Class to compute an image descriptor using the *bag of visual words*.
1346 
1347 Such a computation consists of the following steps:
1348 
1349 1.  Compute descriptors for a given image and its keypoints set.
1350 2.  Find the nearest visual words from the vocabulary for each keypoint descriptor.
1351 3.  Compute the bag-of-words image descriptor as is a normalized histogram of vocabulary words
1352 encountered in the image. The i-th bin of the histogram is a frequency of i-th word of the
1353 vocabulary in the given image.
1354  */
1355 class CV_EXPORTS_W BOWImgDescriptorExtractor
1356 {
1357 public:
1358     /** @brief The constructor.
1359 
1360     @param dextractor Descriptor extractor that is used to compute descriptors for an input image and
1361     its keypoints.
1362     @param dmatcher Descriptor matcher that is used to find the nearest word of the trained vocabulary
1363     for each keypoint descriptor of the image.
1364      */
1365     CV_WRAP BOWImgDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor,
1366                                const Ptr<DescriptorMatcher>& dmatcher );
1367     /** @overload */
1368     BOWImgDescriptorExtractor( const Ptr<DescriptorMatcher>& dmatcher );
1369     virtual ~BOWImgDescriptorExtractor();
1370 
1371     /** @brief Sets a visual vocabulary.
1372 
1373     @param vocabulary Vocabulary (can be trained using the inheritor of BOWTrainer ). Each row of the
1374     vocabulary is a visual word (cluster center).
1375      */
1376     CV_WRAP void setVocabulary( const Mat& vocabulary );
1377 
1378     /** @brief Returns the set vocabulary.
1379     */
1380     CV_WRAP const Mat& getVocabulary() const;
1381 
1382     /** @brief Computes an image descriptor using the set visual vocabulary.
1383 
1384     @param image Image, for which the descriptor is computed.
1385     @param keypoints Keypoints detected in the input image.
1386     @param imgDescriptor Computed output image descriptor.
1387     @param pointIdxsOfClusters Indices of keypoints that belong to the cluster. This means that
1388     pointIdxsOfClusters[i] are keypoint indices that belong to the i -th cluster (word of vocabulary)
1389     returned if it is non-zero.
1390     @param descriptors Descriptors of the image keypoints that are returned if they are non-zero.
1391      */
1392     void compute( InputArray image, std::vector<KeyPoint>& keypoints, OutputArray imgDescriptor,
1393                   std::vector<std::vector<int> >* pointIdxsOfClusters=0, Mat* descriptors=0 );
1394     /** @overload
1395     @param keypointDescriptors Computed descriptors to match with vocabulary.
1396     @param imgDescriptor Computed output image descriptor.
1397     @param pointIdxsOfClusters Indices of keypoints that belong to the cluster. This means that
1398     pointIdxsOfClusters[i] are keypoint indices that belong to the i -th cluster (word of vocabulary)
1399     returned if it is non-zero.
1400     */
1401     void compute( InputArray keypointDescriptors, OutputArray imgDescriptor,
1402                   std::vector<std::vector<int> >* pointIdxsOfClusters=0 );
1403     // compute() is not constant because DescriptorMatcher::match is not constant
1404 
CV_WRAP_AS(compute)1405     CV_WRAP_AS(compute) void compute2( const Mat& image, std::vector<KeyPoint>& keypoints, CV_OUT Mat& imgDescriptor )
1406     { compute(image,keypoints,imgDescriptor); }
1407 
1408     /** @brief Returns an image descriptor size if the vocabulary is set. Otherwise, it returns 0.
1409     */
1410     CV_WRAP int descriptorSize() const;
1411 
1412     /** @brief Returns an image descriptor type.
1413      */
1414     CV_WRAP int descriptorType() const;
1415 
1416 protected:
1417     Mat vocabulary;
1418     Ptr<DescriptorExtractor> dextractor;
1419     Ptr<DescriptorMatcher> dmatcher;
1420 };
1421 
1422 //! @} features2d_category
1423 
1424 //! @} features2d
1425 
1426 } /* namespace cv */
1427 
1428 #endif
1429