1 /*M///////////////////////////////////////////////////////////////////////////////////////
2 //
3 //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
4 //
5 //  By downloading, copying, installing or using the software you agree to this license.
6 //  If you do not agree to this license, do not download, install,
7 //  copy or use the software.
8 //
9 //
10 //                          License Agreement
11 //                For Open Source Computer Vision Library
12 //
13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
15 // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
16 // Third party copyrights are property of their respective owners.
17 //
18 // Redistribution and use in source and binary forms, with or without modification,
19 // are permitted provided that the following conditions are met:
20 //
21 //   * Redistribution's of source code must retain the above copyright notice,
22 //     this list of conditions and the following disclaimer.
23 //
24 //   * Redistribution's in binary form must reproduce the above copyright notice,
25 //     this list of conditions and the following disclaimer in the documentation
26 //     and/or other materials provided with the distribution.
27 //
28 //   * The name of the copyright holders may not be used to endorse or promote products
29 //     derived from this software without specific prior written permission.
30 //
31 // This software is provided by the copyright holders and contributors "as is" and
32 // any express or implied warranties, including, but not limited to, the implied
33 // warranties of merchantability and fitness for a particular purpose are disclaimed.
34 // In no event shall the Intel Corporation or contributors be liable for any direct,
35 // indirect, incidental, special, exemplary, or consequential damages
36 // (including, but not limited to, procurement of substitute goods or services;
37 // loss of use, data, or profits; or business interruption) however caused
38 // and on any theory of liability, whether in contract, strict liability,
39 // or tort (including negligence or otherwise) arising in any way out of
40 // the use of this software, even if advised of the possibility of such damage.
41 //
42 //M*/
43 
44 #ifndef OPENCV_CALIB3D_HPP
45 #define OPENCV_CALIB3D_HPP
46 
47 #include "opencv2/core.hpp"
48 #include "opencv2/features2d.hpp"
49 #include "opencv2/core/affine.hpp"
50 
51 /**
52   @defgroup calib3d Camera Calibration and 3D Reconstruction
53 
54 The functions in this section use a so-called pinhole camera model. In this model, a scene view is
55 formed by projecting 3D points into the image plane using a perspective transformation.
56 
57 \f[s  \; m' = A [R|t] M'\f]
58 
59 or
60 
61 \f[s  \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}
62 \begin{bmatrix}
63 r_{11} & r_{12} & r_{13} & t_1  \\
64 r_{21} & r_{22} & r_{23} & t_2  \\
65 r_{31} & r_{32} & r_{33} & t_3
66 \end{bmatrix}
67 \begin{bmatrix}
68 X \\
69 Y \\
70 Z \\
71 1
72 \end{bmatrix}\f]
73 
74 where:
75 
76 -   \f$(X, Y, Z)\f$ are the coordinates of a 3D point in the world coordinate space
77 -   \f$(u, v)\f$ are the coordinates of the projection point in pixels
78 -   \f$A\f$ is a camera matrix, or a matrix of intrinsic parameters
79 -   \f$(cx, cy)\f$ is a principal point that is usually at the image center
80 -   \f$fx, fy\f$ are the focal lengths expressed in pixel units.
81 
82 Thus, if an image from the camera is scaled by a factor, all of these parameters should be scaled
83 (multiplied/divided, respectively) by the same factor. The matrix of intrinsic parameters does not
84 depend on the scene viewed. So, once estimated, it can be re-used as long as the focal length is
85 fixed (in case of zoom lens). The joint rotation-translation matrix \f$[R|t]\f$ is called a matrix of
86 extrinsic parameters. It is used to describe the camera motion around a static scene, or vice versa,
87 rigid motion of an object in front of a still camera. That is, \f$[R|t]\f$ translates coordinates of a
88 point \f$(X, Y, Z)\f$ to a coordinate system, fixed with respect to the camera. The transformation above
89 is equivalent to the following (when \f$z \ne 0\f$ ):
90 
91 \f[\begin{array}{l}
92 \vecthree{x}{y}{z} = R  \vecthree{X}{Y}{Z} + t \\
93 x' = x/z \\
94 y' = y/z \\
95 u = f_x*x' + c_x \\
96 v = f_y*y' + c_y
97 \end{array}\f]
98 
99 The following figure illustrates the pinhole camera model.
100 
101 ![Pinhole camera model](pics/pinhole_camera_model.png)
102 
103 Real lenses usually have some distortion, mostly radial distortion and slight tangential distortion.
104 So, the above model is extended as:
105 
106 \f[\begin{array}{l}
107 \vecthree{x}{y}{z} = R  \vecthree{X}{Y}{Z} + t \\
108 x' = x/z \\
109 y' = y/z \\
110 x'' = x'  \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + 2 p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4 \\
111 y'' = y'  \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
112 \text{where} \quad r^2 = x'^2 + y'^2  \\
113 u = f_x*x'' + c_x \\
114 v = f_y*y'' + c_y
115 \end{array}\f]
116 
117 \f$k_1\f$, \f$k_2\f$, \f$k_3\f$, \f$k_4\f$, \f$k_5\f$, and \f$k_6\f$ are radial distortion coefficients. \f$p_1\f$ and \f$p_2\f$ are
118 tangential distortion coefficients. \f$s_1\f$, \f$s_2\f$, \f$s_3\f$, and \f$s_4\f$, are the thin prism distortion
119 coefficients. Higher-order coefficients are not considered in OpenCV.
120 
121 The next figures show two common types of radial distortion: barrel distortion (typically \f$ k_1 < 0 \f$) and pincushion distortion (typically \f$ k_1 > 0 \f$).
122 
123 ![](pics/distortion_examples.png)
124 ![](pics/distortion_examples2.png)
125 
126 In some cases the image sensor may be tilted in order to focus an oblique plane in front of the
127 camera (Scheimpfug condition). This can be useful for particle image velocimetry (PIV) or
128 triangulation with a laser fan. The tilt causes a perspective distortion of \f$x''\f$ and
129 \f$y''\f$. This distortion can be modelled in the following way, see e.g. @cite Louhichi07.
130 
131 \f[\begin{array}{l}
132 s\vecthree{x'''}{y'''}{1} =
133 \vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}(\tau_x, \tau_y)}
134 {0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
135 {0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\
136 u = f_x*x''' + c_x \\
137 v = f_y*y''' + c_y
138 \end{array}\f]
139 
140 where the matrix \f$R(\tau_x, \tau_y)\f$ is defined by two rotations with angular parameter \f$\tau_x\f$
141 and \f$\tau_y\f$, respectively,
142 
143 \f[
144 R(\tau_x, \tau_y) =
145 \vecthreethree{\cos(\tau_y)}{0}{-\sin(\tau_y)}{0}{1}{0}{\sin(\tau_y)}{0}{\cos(\tau_y)}
146 \vecthreethree{1}{0}{0}{0}{\cos(\tau_x)}{\sin(\tau_x)}{0}{-\sin(\tau_x)}{\cos(\tau_x)} =
147 \vecthreethree{\cos(\tau_y)}{\sin(\tau_y)\sin(\tau_x)}{-\sin(\tau_y)\cos(\tau_x)}
148 {0}{\cos(\tau_x)}{\sin(\tau_x)}
149 {\sin(\tau_y)}{-\cos(\tau_y)\sin(\tau_x)}{\cos(\tau_y)\cos(\tau_x)}.
150 \f]
151 
152 In the functions below the coefficients are passed or returned as
153 
154 \f[(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f]
155 
156 vector. That is, if the vector contains four elements, it means that \f$k_3=0\f$ . The distortion
157 coefficients do not depend on the scene viewed. Thus, they also belong to the intrinsic camera
158 parameters. And they remain the same regardless of the captured image resolution. If, for example, a
159 camera has been calibrated on images of 320 x 240 resolution, absolutely the same distortion
160 coefficients can be used for 640 x 480 images from the same camera while \f$f_x\f$, \f$f_y\f$, \f$c_x\f$, and
161 \f$c_y\f$ need to be scaled appropriately.
162 
163 The functions below use the above model to do the following:
164 
165 -   Project 3D points to the image plane given intrinsic and extrinsic parameters.
166 -   Compute extrinsic parameters given intrinsic parameters, a few 3D points, and their
167 projections.
168 -   Estimate intrinsic and extrinsic camera parameters from several views of a known calibration
169 pattern (every view is described by several 3D-2D point correspondences).
170 -   Estimate the relative position and orientation of the stereo camera "heads" and compute the
171 *rectification* transformation that makes the camera optical axes parallel.
172 
173 @note
174    -   A calibration sample for 3 cameras in horizontal position can be found at
175         opencv_source_code/samples/cpp/3calibration.cpp
176     -   A calibration sample based on a sequence of images can be found at
177         opencv_source_code/samples/cpp/calibration.cpp
178     -   A calibration sample in order to do 3D reconstruction can be found at
179         opencv_source_code/samples/cpp/build3dmodel.cpp
180     -   A calibration sample of an artificially generated camera and chessboard patterns can be
181         found at opencv_source_code/samples/cpp/calibration_artificial.cpp
182     -   A calibration example on stereo calibration can be found at
183         opencv_source_code/samples/cpp/stereo_calib.cpp
184     -   A calibration example on stereo matching can be found at
185         opencv_source_code/samples/cpp/stereo_match.cpp
186     -   (Python) A camera calibration sample can be found at
187         opencv_source_code/samples/python/calibrate.py
188 
189   @{
190     @defgroup calib3d_fisheye Fisheye camera model
191 
192     Definitions: Let P be a point in 3D of coordinates X in the world reference frame (stored in the
193     matrix X) The coordinate vector of P in the camera reference frame is:
194 
195     \f[Xc = R X + T\f]
196 
197     where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om); call x, y
198     and z the 3 coordinates of Xc:
199 
200     \f[x = Xc_1 \\ y = Xc_2 \\ z = Xc_3\f]
201 
202     The pinhole projection coordinates of P is [a; b] where
203 
204     \f[a = x / z \ and \ b = y / z \\ r^2 = a^2 + b^2 \\ \theta = atan(r)\f]
205 
206     Fisheye distortion:
207 
208     \f[\theta_d = \theta (1 + k_1 \theta^2 + k_2 \theta^4 + k_3 \theta^6 + k_4 \theta^8)\f]
209 
210     The distorted point coordinates are [x'; y'] where
211 
212     \f[x' = (\theta_d / r) a \\ y' = (\theta_d / r) b \f]
213 
214     Finally, conversion into pixel coordinates: The final pixel coordinates vector [u; v] where:
215 
216     \f[u = f_x (x' + \alpha y') + c_x \\
217     v = f_y y' + c_y\f]
218 
219     @defgroup calib3d_c C API
220 
221   @}
222  */
223 
224 namespace cv
225 {
226 
227 //! @addtogroup calib3d
228 //! @{
229 
230 //! type of the robust estimation algorithm
231 enum { LMEDS  = 4, //!< least-median of squares algorithm
232        RANSAC = 8, //!< RANSAC algorithm
233        RHO    = 16 //!< RHO algorithm
234      };
235 
236 enum { SOLVEPNP_ITERATIVE = 0,
237        SOLVEPNP_EPNP      = 1, //!< EPnP: Efficient Perspective-n-Point Camera Pose Estimation @cite lepetit2009epnp
238        SOLVEPNP_P3P       = 2, //!< Complete Solution Classification for the Perspective-Three-Point Problem @cite gao2003complete
239        SOLVEPNP_DLS       = 3, //!< A Direct Least-Squares (DLS) Method for PnP  @cite hesch2011direct
240        SOLVEPNP_UPNP      = 4, //!< Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation @cite penate2013exhaustive
241        SOLVEPNP_AP3P      = 5, //!< An Efficient Algebraic Solution to the Perspective-Three-Point Problem @cite Ke17
242        SOLVEPNP_MAX_COUNT      //!< Used for count
243 };
244 
245 enum { CALIB_CB_ADAPTIVE_THRESH = 1,
246        CALIB_CB_NORMALIZE_IMAGE = 2,
247        CALIB_CB_FILTER_QUADS    = 4,
248        CALIB_CB_FAST_CHECK      = 8
249      };
250 
251 enum { CALIB_CB_SYMMETRIC_GRID  = 1,
252        CALIB_CB_ASYMMETRIC_GRID = 2,
253        CALIB_CB_CLUSTERING      = 4
254      };
255 
256 enum { CALIB_USE_INTRINSIC_GUESS = 0x00001,
257        CALIB_FIX_ASPECT_RATIO    = 0x00002,
258        CALIB_FIX_PRINCIPAL_POINT = 0x00004,
259        CALIB_ZERO_TANGENT_DIST   = 0x00008,
260        CALIB_FIX_FOCAL_LENGTH    = 0x00010,
261        CALIB_FIX_K1              = 0x00020,
262        CALIB_FIX_K2              = 0x00040,
263        CALIB_FIX_K3              = 0x00080,
264        CALIB_FIX_K4              = 0x00800,
265        CALIB_FIX_K5              = 0x01000,
266        CALIB_FIX_K6              = 0x02000,
267        CALIB_RATIONAL_MODEL      = 0x04000,
268        CALIB_THIN_PRISM_MODEL    = 0x08000,
269        CALIB_FIX_S1_S2_S3_S4     = 0x10000,
270        CALIB_TILTED_MODEL        = 0x40000,
271        CALIB_FIX_TAUX_TAUY       = 0x80000,
272        CALIB_USE_QR              = 0x100000, //!< use QR instead of SVD decomposition for solving. Faster but potentially less precise
273        CALIB_FIX_TANGENT_DIST    = 0x200000,
274        // only for stereo
275        CALIB_FIX_INTRINSIC       = 0x00100,
276        CALIB_SAME_FOCAL_LENGTH   = 0x00200,
277        // for stereo rectification
278        CALIB_ZERO_DISPARITY      = 0x00400,
279        CALIB_USE_LU              = (1 << 17), //!< use LU instead of SVD decomposition for solving. much faster but potentially less precise
280        CALIB_USE_EXTRINSIC_GUESS = (1 << 22), //!< for stereoCalibrate
281      };
282 
283 //! the algorithm for finding fundamental matrix
284 enum { FM_7POINT = 1, //!< 7-point algorithm
285        FM_8POINT = 2, //!< 8-point algorithm
286        FM_LMEDS  = 4, //!< least-median algorithm. 7-point algorithm is used.
287        FM_RANSAC = 8  //!< RANSAC algorithm. It needs at least 15 points. 7-point algorithm is used.
288      };
289 
290 
291 
292 /** @brief Converts a rotation matrix to a rotation vector or vice versa.
293 
294 @param src Input rotation vector (3x1 or 1x3) or rotation matrix (3x3).
295 @param dst Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively.
296 @param jacobian Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial
297 derivatives of the output array components with respect to the input array components.
298 
299 \f[\begin{array}{l} \theta \leftarrow norm(r) \\ r  \leftarrow r/ \theta \\ R =  \cos{\theta} I + (1- \cos{\theta} ) r r^T +  \sin{\theta} \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\f]
300 
301 Inverse transformation can be also done easily, since
302 
303 \f[\sin ( \theta ) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\f]
304 
305 A rotation vector is a convenient and most compact representation of a rotation matrix (since any
306 rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry
307 optimization procedures like calibrateCamera, stereoCalibrate, or solvePnP .
308  */
309 CV_EXPORTS_W void Rodrigues( InputArray src, OutputArray dst, OutputArray jacobian = noArray() );
310 
311 /** @example samples/cpp/tutorial_code/features2D/Homography/pose_from_homography.cpp
312 An example program about pose estimation from coplanar points
313 
314 Check @ref tutorial_homography "the corresponding tutorial" for more details
315 */
316 
317 /** @brief Finds a perspective transformation between two planes.
318 
319 @param srcPoints Coordinates of the points in the original plane, a matrix of the type CV_32FC2
320 or vector\<Point2f\> .
321 @param dstPoints Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
322 a vector\<Point2f\> .
323 @param method Method used to compute a homography matrix. The following methods are possible:
324 -   **0** - a regular method using all the points, i.e., the least squares method
325 -   **RANSAC** - RANSAC-based robust method
326 -   **LMEDS** - Least-Median robust method
327 -   **RHO** - PROSAC-based robust method
328 @param ransacReprojThreshold Maximum allowed reprojection error to treat a point pair as an inlier
329 (used in the RANSAC and RHO methods only). That is, if
330 \f[\| \texttt{dstPoints} _i -  \texttt{convertPointsHomogeneous} ( \texttt{H} * \texttt{srcPoints} _i) \|_2  >  \texttt{ransacReprojThreshold}\f]
331 then the point \f$i\f$ is considered as an outlier. If srcPoints and dstPoints are measured in pixels,
332 it usually makes sense to set this parameter somewhere in the range of 1 to 10.
333 @param mask Optional output mask set by a robust method ( RANSAC or LMEDS ). Note that the input
334 mask values are ignored.
335 @param maxIters The maximum number of RANSAC iterations.
336 @param confidence Confidence level, between 0 and 1.
337 
338 The function finds and returns the perspective transformation \f$H\f$ between the source and the
339 destination planes:
340 
341 \f[s_i  \vecthree{x'_i}{y'_i}{1} \sim H  \vecthree{x_i}{y_i}{1}\f]
342 
343 so that the back-projection error
344 
345 \f[\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\f]
346 
347 is minimized. If the parameter method is set to the default value 0, the function uses all the point
348 pairs to compute an initial homography estimate with a simple least-squares scheme.
349 
350 However, if not all of the point pairs ( \f$srcPoints_i\f$, \f$dstPoints_i\f$ ) fit the rigid perspective
351 transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
352 you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
353 random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix
354 using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the
355 computed homography (which is the number of inliers for RANSAC or the least median re-projection error for
356 LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and
357 the mask of inliers/outliers.
358 
359 Regardless of the method, robust or not, the computed homography matrix is refined further (using
360 inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
361 re-projection error even more.
362 
363 The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
364 distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
365 correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
366 noise is rather small, use the default method (method=0).
367 
368 The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
369 determined up to a scale. Thus, it is normalized so that \f$h_{33}=1\f$. Note that whenever an \f$H\f$ matrix
370 cannot be estimated, an empty one will be returned.
371 
372 @sa
373 getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
374 perspectiveTransform
375  */
376 CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints,
377                                  int method = 0, double ransacReprojThreshold = 3,
378                                  OutputArray mask=noArray(), const int maxIters = 2000,
379                                  const double confidence = 0.995);
380 
381 /** @overload */
382 CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints,
383                                OutputArray mask, int method = 0, double ransacReprojThreshold = 3 );
384 
385 /** @brief Computes an RQ decomposition of 3x3 matrices.
386 
387 @param src 3x3 input matrix.
388 @param mtxR Output 3x3 upper-triangular matrix.
389 @param mtxQ Output 3x3 orthogonal matrix.
390 @param Qx Optional output 3x3 rotation matrix around x-axis.
391 @param Qy Optional output 3x3 rotation matrix around y-axis.
392 @param Qz Optional output 3x3 rotation matrix around z-axis.
393 
394 The function computes a RQ decomposition using the given rotations. This function is used in
395 decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera
396 and a rotation matrix.
397 
398 It optionally returns three rotation matrices, one for each axis, and the three Euler angles in
399 degrees (as the return value) that could be used in OpenGL. Note, there is always more than one
400 sequence of rotations about the three principal axes that results in the same orientation of an
401 object, e.g. see @cite Slabaugh . Returned tree rotation matrices and corresponding three Euler angles
402 are only one of the possible solutions.
403  */
404 CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ,
405                                 OutputArray Qx = noArray(),
406                                 OutputArray Qy = noArray(),
407                                 OutputArray Qz = noArray());
408 
409 /** @brief Decomposes a projection matrix into a rotation matrix and a camera matrix.
410 
411 @param projMatrix 3x4 input projection matrix P.
412 @param cameraMatrix Output 3x3 camera matrix K.
413 @param rotMatrix Output 3x3 external rotation matrix R.
414 @param transVect Output 4x1 translation vector T.
415 @param rotMatrixX Optional 3x3 rotation matrix around x-axis.
416 @param rotMatrixY Optional 3x3 rotation matrix around y-axis.
417 @param rotMatrixZ Optional 3x3 rotation matrix around z-axis.
418 @param eulerAngles Optional three-element vector containing three Euler angles of rotation in
419 degrees.
420 
421 The function computes a decomposition of a projection matrix into a calibration and a rotation
422 matrix and the position of a camera.
423 
424 It optionally returns three rotation matrices, one for each axis, and three Euler angles that could
425 be used in OpenGL. Note, there is always more than one sequence of rotations about the three
426 principal axes that results in the same orientation of an object, e.g. see @cite Slabaugh . Returned
427 tree rotation matrices and corresponding three Euler angles are only one of the possible solutions.
428 
429 The function is based on RQDecomp3x3 .
430  */
431 CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray cameraMatrix,
432                                              OutputArray rotMatrix, OutputArray transVect,
433                                              OutputArray rotMatrixX = noArray(),
434                                              OutputArray rotMatrixY = noArray(),
435                                              OutputArray rotMatrixZ = noArray(),
436                                              OutputArray eulerAngles =noArray() );
437 
438 /** @brief Computes partial derivatives of the matrix product for each multiplied matrix.
439 
440 @param A First multiplied matrix.
441 @param B Second multiplied matrix.
442 @param dABdA First output derivative matrix d(A\*B)/dA of size
443 \f$\texttt{A.rows*B.cols} \times {A.rows*A.cols}\f$ .
444 @param dABdB Second output derivative matrix d(A\*B)/dB of size
445 \f$\texttt{A.rows*B.cols} \times {B.rows*B.cols}\f$ .
446 
447 The function computes partial derivatives of the elements of the matrix product \f$A*B\f$ with regard to
448 the elements of each of the two input matrices. The function is used to compute the Jacobian
449 matrices in stereoCalibrate but can also be used in any other similar optimization function.
450  */
451 CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB );
452 
453 /** @brief Combines two rotation-and-shift transformations.
454 
455 @param rvec1 First rotation vector.
456 @param tvec1 First translation vector.
457 @param rvec2 Second rotation vector.
458 @param tvec2 Second translation vector.
459 @param rvec3 Output rotation vector of the superposition.
460 @param tvec3 Output translation vector of the superposition.
461 @param dr3dr1
462 @param dr3dt1
463 @param dr3dr2
464 @param dr3dt2
465 @param dt3dr1
466 @param dt3dt1
467 @param dt3dr2
468 @param dt3dt2 Optional output derivatives of rvec3 or tvec3 with regard to rvec1, rvec2, tvec1 and
469 tvec2, respectively.
470 
471 The functions compute:
472 
473 \f[\begin{array}{l} \texttt{rvec3} =  \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} )  \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right )  \\ \texttt{tvec3} =  \mathrm{rodrigues} ( \texttt{rvec2} )  \cdot \texttt{tvec1} +  \texttt{tvec2} \end{array} ,\f]
474 
475 where \f$\mathrm{rodrigues}\f$ denotes a rotation vector to a rotation matrix transformation, and
476 \f$\mathrm{rodrigues}^{-1}\f$ denotes the inverse transformation. See Rodrigues for details.
477 
478 Also, the functions can compute the derivatives of the output vectors with regards to the input
479 vectors (see matMulDeriv ). The functions are used inside stereoCalibrate but can also be used in
480 your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
481 function that contains a matrix multiplication.
482  */
483 CV_EXPORTS_W void composeRT( InputArray rvec1, InputArray tvec1,
484                              InputArray rvec2, InputArray tvec2,
485                              OutputArray rvec3, OutputArray tvec3,
486                              OutputArray dr3dr1 = noArray(), OutputArray dr3dt1 = noArray(),
487                              OutputArray dr3dr2 = noArray(), OutputArray dr3dt2 = noArray(),
488                              OutputArray dt3dr1 = noArray(), OutputArray dt3dt1 = noArray(),
489                              OutputArray dt3dr2 = noArray(), OutputArray dt3dt2 = noArray() );
490 
491 /** @brief Projects 3D points to an image plane.
492 
493 @param objectPoints Array of object points, 3xN/Nx3 1-channel or 1xN/Nx1 3-channel (or
494 vector\<Point3f\> ), where N is the number of points in the view.
495 @param rvec Rotation vector. See Rodrigues for details.
496 @param tvec Translation vector.
497 @param cameraMatrix Camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$ .
498 @param distCoeffs Input vector of distortion coefficients
499 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
500 4, 5, 8, 12 or 14 elements. If the vector is empty, the zero distortion coefficients are assumed.
501 @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
502 vector\<Point2f\> .
503 @param jacobian Optional output 2Nx(10+\<numDistCoeffs\>) jacobian matrix of derivatives of image
504 points with respect to components of the rotation vector, translation vector, focal lengths,
505 coordinates of the principal point and the distortion coefficients. In the old interface different
506 components of the jacobian are returned via different output parameters.
507 @param aspectRatio Optional "fixed aspect ratio" parameter. If the parameter is not 0, the
508 function assumes that the aspect ratio (*fx/fy*) is fixed and correspondingly adjusts the jacobian
509 matrix.
510 
511 The function computes projections of 3D points to the image plane given intrinsic and extrinsic
512 camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
513 image points coordinates (as functions of all the input parameters) with respect to the particular
514 parameters, intrinsic and/or extrinsic. The Jacobians are used during the global optimization in
515 calibrateCamera, solvePnP, and stereoCalibrate . The function itself can also be used to compute a
516 re-projection error given the current intrinsic and extrinsic parameters.
517 
518 @note By setting rvec=tvec=(0,0,0) or by setting cameraMatrix to a 3x3 identity matrix, or by
519 passing zero distortion coefficients, you can get various useful partial cases of the function. This
520 means that you can compute the distorted coordinates for a sparse set of points or apply a
521 perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup.
522  */
523 CV_EXPORTS_W void projectPoints( InputArray objectPoints,
524                                  InputArray rvec, InputArray tvec,
525                                  InputArray cameraMatrix, InputArray distCoeffs,
526                                  OutputArray imagePoints,
527                                  OutputArray jacobian = noArray(),
528                                  double aspectRatio = 0 );
529 
530 /** @example samples/cpp/tutorial_code/features2D/Homography/homography_from_camera_displacement.cpp
531 An example program about homography from the camera displacement
532 
533 Check @ref tutorial_homography "the corresponding tutorial" for more details
534 */
535 
536 /** @brief Finds an object pose from 3D-2D point correspondences.
537 
538 @param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
539 1xN/Nx1 3-channel, where N is the number of points. vector\<Point3f\> can be also passed here.
540 @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
541 where N is the number of points. vector\<Point2f\> can be also passed here.
542 @param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
543 @param distCoeffs Input vector of distortion coefficients
544 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
545 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
546 assumed.
547 @param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec , brings points from
548 the model coordinate system to the camera coordinate system.
549 @param tvec Output translation vector.
550 @param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
551 the provided rvec and tvec values as initial approximations of the rotation and translation
552 vectors, respectively, and further optimizes them.
553 @param flags Method for solving a PnP problem:
554 -   **SOLVEPNP_ITERATIVE** Iterative method is based on Levenberg-Marquardt optimization. In
555 this case the function finds such a pose that minimizes reprojection error, that is the sum
556 of squared distances between the observed projections imagePoints and the projected (using
557 projectPoints ) objectPoints .
558 -   **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
559 "Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete).
560 In this case the function requires exactly four object and image points.
561 -   **SOLVEPNP_AP3P** Method is based on the paper of T. Ke, S. Roumeliotis
562 "An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17).
563 In this case the function requires exactly four object and image points.
564 -   **SOLVEPNP_EPNP** Method has been introduced by F.Moreno-Noguer, V.Lepetit and P.Fua in the
565 paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation" (@cite lepetit2009epnp).
566 -   **SOLVEPNP_DLS** Method is based on the paper of Joel A. Hesch and Stergios I. Roumeliotis.
567 "A Direct Least-Squares (DLS) Method for PnP" (@cite hesch2011direct).
568 -   **SOLVEPNP_UPNP** Method is based on the paper of A.Penate-Sanchez, J.Andrade-Cetto,
569 F.Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length
570 Estimation" (@cite penate2013exhaustive). In this case the function also estimates the parameters \f$f_x\f$ and \f$f_y\f$
571 assuming that both have the same value. Then the cameraMatrix is updated with the estimated
572 focal length.
573 -   **SOLVEPNP_AP3P** Method is based on the paper of Tong Ke and Stergios I. Roumeliotis.
574 "An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17). In this case the
575 function requires exactly four object and image points.
576 
577 The function estimates the object pose given a set of object points, their corresponding image
578 projections, as well as the camera matrix and the distortion coefficients, see the figure below
579 (more precisely, the X-axis of the camera frame is pointing to the right, the Y-axis downward
580 and the Z-axis forward).
581 
582 ![](pnp.jpg)
583 
584 Points expressed in the world frame \f$ \bf{X}_w \f$ are projected into the image plane \f$ \left[ u, v \right] \f$
585 using the perspective projection model \f$ \Pi \f$ and the camera intrinsic parameters matrix \f$ \bf{A} \f$:
586 
587 \f[
588   \begin{align*}
589   \begin{bmatrix}
590   u \\
591   v \\
592   1
593   \end{bmatrix} &=
594   \bf{A} \hspace{0.1em} \Pi \hspace{0.2em} ^{c}\bf{M}_w
595   \begin{bmatrix}
596   X_{w} \\
597   Y_{w} \\
598   Z_{w} \\
599   1
600   \end{bmatrix} \\
601   \begin{bmatrix}
602   u \\
603   v \\
604   1
605   \end{bmatrix} &=
606   \begin{bmatrix}
607   f_x & 0 & c_x \\
608   0 & f_y & c_y \\
609   0 & 0 & 1
610   \end{bmatrix}
611   \begin{bmatrix}
612   1 & 0 & 0 & 0 \\
613   0 & 1 & 0 & 0 \\
614   0 & 0 & 1 & 0
615   \end{bmatrix}
616   \begin{bmatrix}
617   r_{11} & r_{12} & r_{13} & t_x \\
618   r_{21} & r_{22} & r_{23} & t_y \\
619   r_{31} & r_{32} & r_{33} & t_z \\
620   0 & 0 & 0 & 1
621   \end{bmatrix}
622   \begin{bmatrix}
623   X_{w} \\
624   Y_{w} \\
625   Z_{w} \\
626   1
627   \end{bmatrix}
628   \end{align*}
629 \f]
630 
631 The estimated pose is thus the rotation (`rvec`) and the translation (`tvec`) vectors that allow to transform
632 a 3D point expressed in the world frame into the camera frame:
633 
634 \f[
635   \begin{align*}
636   \begin{bmatrix}
637   X_c \\
638   Y_c \\
639   Z_c \\
640   1
641   \end{bmatrix} &=
642   \hspace{0.2em} ^{c}\bf{M}_w
643   \begin{bmatrix}
644   X_{w} \\
645   Y_{w} \\
646   Z_{w} \\
647   1
648   \end{bmatrix} \\
649   \begin{bmatrix}
650   X_c \\
651   Y_c \\
652   Z_c \\
653   1
654   \end{bmatrix} &=
655   \begin{bmatrix}
656   r_{11} & r_{12} & r_{13} & t_x \\
657   r_{21} & r_{22} & r_{23} & t_y \\
658   r_{31} & r_{32} & r_{33} & t_z \\
659   0 & 0 & 0 & 1
660   \end{bmatrix}
661   \begin{bmatrix}
662   X_{w} \\
663   Y_{w} \\
664   Z_{w} \\
665   1
666   \end{bmatrix}
667   \end{align*}
668 \f]
669 
670 @note
671    -   An example of how to use solvePnP for planar augmented reality can be found at
672         opencv_source_code/samples/python/plane_ar.py
673    -   If you are using Python:
674         - Numpy array slices won't work as input because solvePnP requires contiguous
675         arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
676         modules/calib3d/src/solvepnp.cpp version 2.4.9)
677         - The P3P algorithm requires image points to be in an array of shape (N,1,2) due
678         to its calling of cv::undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
679         which requires 2-channel information.
680         - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
681         it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
682         np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
683    -   The methods **SOLVEPNP_DLS** and **SOLVEPNP_UPNP** cannot be used as the current implementations are
684        unstable and sometimes give completely wrong results. If you pass one of these two
685        flags, **SOLVEPNP_EPNP** method will be used instead.
686    -   The minimum number of points is 4 in the general case. In the case of **SOLVEPNP_P3P** and **SOLVEPNP_AP3P**
687        methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
688        of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
689    -   With **SOLVEPNP_ITERATIVE** method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points
690        are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
691        global solution to converge.
692  */
693 CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints,
694                             InputArray cameraMatrix, InputArray distCoeffs,
695                             OutputArray rvec, OutputArray tvec,
696                             bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE );
697 
698 /** @brief Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
699 
700 @param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or
701 1xN/Nx1 3-channel, where N is the number of points. vector\<Point3f\> can be also passed here.
702 @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
703 where N is the number of points. vector\<Point2f\> can be also passed here.
704 @param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
705 @param distCoeffs Input vector of distortion coefficients
706 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
707 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
708 assumed.
709 @param rvec Output rotation vector (see Rodrigues ) that, together with tvec , brings points from
710 the model coordinate system to the camera coordinate system.
711 @param tvec Output translation vector.
712 @param useExtrinsicGuess Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses
713 the provided rvec and tvec values as initial approximations of the rotation and translation
714 vectors, respectively, and further optimizes them.
715 @param iterationsCount Number of iterations.
716 @param reprojectionError Inlier threshold value used by the RANSAC procedure. The parameter value
717 is the maximum allowed distance between the observed and computed point projections to consider it
718 an inlier.
719 @param confidence The probability that the algorithm produces a useful result.
720 @param inliers Output vector that contains indices of inliers in objectPoints and imagePoints .
721 @param flags Method for solving a PnP problem (see solvePnP ).
722 
723 The function estimates an object pose given a set of object points, their corresponding image
724 projections, as well as the camera matrix and the distortion coefficients. This function finds such
725 a pose that minimizes reprojection error, that is, the sum of squared distances between the observed
726 projections imagePoints and the projected (using projectPoints ) objectPoints. The use of RANSAC
727 makes the function resistant to outliers.
728 
729 @note
730    -   An example of how to use solvePNPRansac for object detection can be found at
731         opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/
732    -   The default method used to estimate the camera pose for the Minimal Sample Sets step
733        is #SOLVEPNP_EPNP. Exceptions are:
734          - if you choose #SOLVEPNP_P3P or #SOLVEPNP_AP3P, these methods will be used.
735          - if the number of input points is equal to 4, #SOLVEPNP_P3P is used.
736    -   The method used to estimate the camera pose using all the inliers is defined by the
737        flags parameters unless it is equal to #SOLVEPNP_P3P or #SOLVEPNP_AP3P. In this case,
738        the method #SOLVEPNP_EPNP will be used instead.
739  */
740 CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints,
741                                   InputArray cameraMatrix, InputArray distCoeffs,
742                                   OutputArray rvec, OutputArray tvec,
743                                   bool useExtrinsicGuess = false, int iterationsCount = 100,
744                                   float reprojectionError = 8.0, double confidence = 0.99,
745                                   OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE );
746 /** @brief Finds an object pose from 3 3D-2D point correspondences.
747 
748 @param objectPoints Array of object points in the object coordinate space, 3x3 1-channel or
749 1x3/3x1 3-channel. vector\<Point3f\> can be also passed here.
750 @param imagePoints Array of corresponding image points, 3x2 1-channel or 1x3/3x1 2-channel.
751  vector\<Point2f\> can be also passed here.
752 @param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ .
753 @param distCoeffs Input vector of distortion coefficients
754 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
755 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
756 assumed.
757 @param rvecs Output rotation vectors (see Rodrigues ) that, together with tvecs , brings points from
758 the model coordinate system to the camera coordinate system. A P3P problem has up to 4 solutions.
759 @param tvecs Output translation vectors.
760 @param flags Method for solving a P3P problem:
761 -   **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
762 "Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete).
763 -   **SOLVEPNP_AP3P** Method is based on the paper of Tong Ke and Stergios I. Roumeliotis.
764 "An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17).
765 
766 The function estimates the object pose given 3 object points, their corresponding image
767 projections, as well as the camera matrix and the distortion coefficients.
768  */
769 CV_EXPORTS_W int solveP3P( InputArray objectPoints, InputArray imagePoints,
770                            InputArray cameraMatrix, InputArray distCoeffs,
771                            OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
772                            int flags );
773 
774 /** @brief Finds an initial camera matrix from 3D-2D point correspondences.
775 
776 @param objectPoints Vector of vectors of the calibration pattern points in the calibration pattern
777 coordinate space. In the old interface all the per-view vectors are concatenated. See
778 calibrateCamera for details.
779 @param imagePoints Vector of vectors of the projections of the calibration pattern points. In the
780 old interface all the per-view vectors are concatenated.
781 @param imageSize Image size in pixels used to initialize the principal point.
782 @param aspectRatio If it is zero or negative, both \f$f_x\f$ and \f$f_y\f$ are estimated independently.
783 Otherwise, \f$f_x = f_y * \texttt{aspectRatio}\f$ .
784 
785 The function estimates and returns an initial camera matrix for the camera calibration process.
786 Currently, the function only supports planar calibration patterns, which are patterns where each
787 object point has z-coordinate =0.
788  */
789 CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints,
790                                      InputArrayOfArrays imagePoints,
791                                      Size imageSize, double aspectRatio = 1.0 );
792 
793 /** @brief Finds the positions of internal corners of the chessboard.
794 
795 @param image Source chessboard view. It must be an 8-bit grayscale or color image.
796 @param patternSize Number of inner corners per a chessboard row and column
797 ( patternSize = cvSize(points_per_row,points_per_colum) = cvSize(columns,rows) ).
798 @param corners Output array of detected corners.
799 @param flags Various operation flags that can be zero or a combination of the following values:
800 -   **CALIB_CB_ADAPTIVE_THRESH** Use adaptive thresholding to convert the image to black
801 and white, rather than a fixed threshold level (computed from the average image brightness).
802 -   **CALIB_CB_NORMALIZE_IMAGE** Normalize the image gamma with equalizeHist before
803 applying fixed or adaptive thresholding.
804 -   **CALIB_CB_FILTER_QUADS** Use additional criteria (like contour area, perimeter,
805 square-like shape) to filter out false quads extracted at the contour retrieval stage.
806 -   **CALIB_CB_FAST_CHECK** Run a fast check on the image that looks for chessboard corners,
807 and shortcut the call if none is found. This can drastically speed up the call in the
808 degenerate condition when no chessboard is observed.
809 
810 The function attempts to determine whether the input image is a view of the chessboard pattern and
811 locate the internal chessboard corners. The function returns a non-zero value if all of the corners
812 are found and they are placed in a certain order (row by row, left to right in every row).
813 Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example,
814 a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black
815 squares touch each other. The detected coordinates are approximate, and to determine their positions
816 more accurately, the function calls cornerSubPix. You also may use the function cornerSubPix with
817 different parameters if returned coordinates are not accurate enough.
818 
819 Sample usage of detecting and drawing chessboard corners: :
820 @code
821     Size patternsize(8,6); //interior number of corners
822     Mat gray = ....; //source image
823     vector<Point2f> corners; //this will be filled by the detected corners
824 
825     //CALIB_CB_FAST_CHECK saves a lot of time on images
826     //that do not contain any chessboard corners
827     bool patternfound = findChessboardCorners(gray, patternsize, corners,
828             CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE
829             + CALIB_CB_FAST_CHECK);
830 
831     if(patternfound)
832       cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1),
833         TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));
834 
835     drawChessboardCorners(img, patternsize, Mat(corners), patternfound);
836 @endcode
837 @note The function requires white space (like a square-thick border, the wider the better) around
838 the board to make the detection more robust in various environments. Otherwise, if there is no
839 border and the background is dark, the outer black squares cannot be segmented properly and so the
840 square grouping and ordering algorithm fails.
841  */
842 CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners,
843                                          int flags = CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE );
844 
845 //! finds subpixel-accurate positions of the chessboard corners
846 CV_EXPORTS bool find4QuadCornerSubpix( InputArray img, InputOutputArray corners, Size region_size );
847 
848 /** @brief Renders the detected chessboard corners.
849 
850 @param image Destination image. It must be an 8-bit color image.
851 @param patternSize Number of inner corners per a chessboard row and column
852 (patternSize = cv::Size(points_per_row,points_per_column)).
853 @param corners Array of detected corners, the output of findChessboardCorners.
854 @param patternWasFound Parameter indicating whether the complete board was found or not. The
855 return value of findChessboardCorners should be passed here.
856 
857 The function draws individual chessboard corners detected either as red circles if the board was not
858 found, or as colored corners connected with lines if the board was found.
859  */
860 CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize,
861                                          InputArray corners, bool patternWasFound );
862 
863 /** @brief Draw axes of the world/object coordinate system from pose estimation. @sa solvePnP
864 
865 @param image Input/output image. It must have 1 or 3 channels. The number of channels is not altered.
866 @param cameraMatrix Input 3x3 floating-point matrix of camera intrinsic parameters.
867 \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$
868 @param distCoeffs Input vector of distortion coefficients
869 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
870 4, 5, 8, 12 or 14 elements. If the vector is empty, the zero distortion coefficients are assumed.
871 @param rvec Rotation vector (see @ref Rodrigues ) that, together with tvec , brings points from
872 the model coordinate system to the camera coordinate system.
873 @param tvec Translation vector.
874 @param length Length of the painted axes in the same unit than tvec (usually in meters).
875 @param thickness Line thickness of the painted axes.
876 
877 This function draws the axes of the world/object coordinate system w.r.t. to the camera frame.
878 OX is drawn in red, OY in green and OZ in blue.
879  */
880 CV_EXPORTS_W void drawFrameAxes(InputOutputArray image, InputArray cameraMatrix, InputArray distCoeffs,
881                                 InputArray rvec, InputArray tvec, float length, int thickness=3);
882 
883 struct CV_EXPORTS_W_SIMPLE CirclesGridFinderParameters
884 {
885     CV_WRAP CirclesGridFinderParameters();
886     CV_PROP_RW cv::Size2f densityNeighborhoodSize;
887     CV_PROP_RW float minDensity;
888     CV_PROP_RW int kmeansAttempts;
889     CV_PROP_RW int minDistanceToAddKeypoint;
890     CV_PROP_RW int keypointScale;
891     CV_PROP_RW float minGraphConfidence;
892     CV_PROP_RW float vertexGain;
893     CV_PROP_RW float vertexPenalty;
894     CV_PROP_RW float existingVertexGain;
895     CV_PROP_RW float edgeGain;
896     CV_PROP_RW float edgePenalty;
897     CV_PROP_RW float convexHullFactor;
898     CV_PROP_RW float minRNGEdgeSwitchDist;
899 
900     enum GridType
901     {
902       SYMMETRIC_GRID, ASYMMETRIC_GRID
903     };
904     GridType gridType;
905 };
906 
907 struct CV_EXPORTS_W_SIMPLE CirclesGridFinderParameters2 : public CirclesGridFinderParameters
908 {
909     CV_WRAP CirclesGridFinderParameters2();
910 
911     CV_PROP_RW float squareSize; //!< Distance between two adjacent points. Used by CALIB_CB_CLUSTERING.
912     CV_PROP_RW float maxRectifiedDistance; //!< Max deviation from predicion. Used by CALIB_CB_CLUSTERING.
913 };
914 
915 /** @brief Finds centers in the grid of circles.
916 
917 @param image grid view of input circles; it must be an 8-bit grayscale or color image.
918 @param patternSize number of circles per row and column
919 ( patternSize = Size(points_per_row, points_per_colum) ).
920 @param centers output array of detected centers.
921 @param flags various operation flags that can be one of the following values:
922 -   **CALIB_CB_SYMMETRIC_GRID** uses symmetric pattern of circles.
923 -   **CALIB_CB_ASYMMETRIC_GRID** uses asymmetric pattern of circles.
924 -   **CALIB_CB_CLUSTERING** uses a special algorithm for grid detection. It is more robust to
925 perspective distortions but much more sensitive to background clutter.
926 @param blobDetector feature detector that finds blobs like dark circles on light background.
927 @param parameters struct for finding circles in a grid pattern.
928 
929 The function attempts to determine whether the input image contains a grid of circles. If it is, the
930 function locates centers of the circles. The function returns a non-zero value if all of the centers
931 have been found and they have been placed in a certain order (row by row, left to right in every
932 row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0.
933 
934 Sample usage of detecting and drawing the centers of circles: :
935 @code
936     Size patternsize(7,7); //number of centers
937     Mat gray = ....; //source image
938     vector<Point2f> centers; //this will be filled by the detected centers
939 
940     bool patternfound = findCirclesGrid(gray, patternsize, centers);
941 
942     drawChessboardCorners(img, patternsize, Mat(centers), patternfound);
943 @endcode
944 @note The function requires white space (like a square-thick border, the wider the better) around
945 the board to make the detection more robust in various environments.
946  */
947 CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
948                                    OutputArray centers, int flags,
949                                    const Ptr<FeatureDetector> &blobDetector,
950                                    CirclesGridFinderParameters parameters);
951 
952 /** @overload */
953 CV_EXPORTS_W bool findCirclesGrid2( InputArray image, Size patternSize,
954                                    OutputArray centers, int flags,
955                                    const Ptr<FeatureDetector> &blobDetector,
956                                    CirclesGridFinderParameters2 parameters);
957 
958 /** @overload */
959 CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize,
960                                    OutputArray centers, int flags = CALIB_CB_SYMMETRIC_GRID,
961                                    const Ptr<FeatureDetector> &blobDetector = SimpleBlobDetector::create());
962 
963 /** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
964 
965 @param objectPoints In the new interface it is a vector of vectors of calibration pattern points in
966 the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer
967 vector contains as many elements as the number of the pattern views. If the same calibration pattern
968 is shown in each view and it is fully visible, all the vectors will be the same. Although, it is
969 possible to use partially occluded patterns, or even different patterns in different views. Then,
970 the vectors will be different. The points are 3D, but since they are in a pattern coordinate system,
971 then, if the rig is planar, it may make sense to put the model to a XY coordinate plane so that
972 Z-coordinate of each input object point is 0.
973 In the old interface all the vectors of object points from different views are concatenated
974 together.
975 @param imagePoints In the new interface it is a vector of vectors of the projections of calibration
976 pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and
977 objectPoints.size() and imagePoints[i].size() must be equal to objectPoints[i].size() for each i.
978 In the old interface all the vectors of object points from different views are concatenated
979 together.
980 @param imageSize Size of the image used only to initialize the intrinsic camera matrix.
981 @param cameraMatrix Output 3x3 floating-point camera matrix
982 \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If CV\_CALIB\_USE\_INTRINSIC\_GUESS
983 and/or CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be
984 initialized before calling the function.
985 @param distCoeffs Output vector of distortion coefficients
986 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
987 4, 5, 8, 12 or 14 elements.
988 @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view
989 (e.g. std::vector<cv::Mat>>). That is, each k-th rotation vector together with the corresponding
990 k-th translation vector (see the next output parameter description) brings the calibration pattern
991 from the model coordinate space (in which object points are specified) to the world coordinate
992 space, that is, a real position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
993 @param tvecs Output vector of translation vectors estimated for each pattern view.
994 @param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters.
995  Order of deviations values:
996 \f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
997  s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero.
998 @param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters.
999  Order of deviations values: \f$(R_1, T_1, \dotsc , R_M, T_M)\f$ where M is number of pattern views,
1000  \f$R_i, T_i\f$ are concatenated 1x3 vectors.
1001  @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
1002 @param flags Different flags that may be zero or a combination of the following values:
1003 -   **CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of
1004 fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
1005 center ( imageSize is used), and focal distances are computed in a least-squares fashion.
1006 Note, that if intrinsic parameters are known, there is no need to use this function just to
1007 estimate extrinsic parameters. Use solvePnP instead.
1008 -   **CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global
1009 optimization. It stays at the center or at a different location specified when
1010 CALIB_USE_INTRINSIC_GUESS is set too.
1011 -   **CALIB_FIX_ASPECT_RATIO** The functions considers only fy as a free parameter. The
1012 ratio fx/fy stays the same as in the input cameraMatrix . When
1013 CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are
1014 ignored, only their ratio is computed and used further.
1015 -   **CALIB_ZERO_TANGENT_DIST** Tangential distortion coefficients \f$(p_1, p_2)\f$ are set
1016 to zeros and stay zero.
1017 -   **CALIB_FIX_K1,...,CALIB_FIX_K6** The corresponding radial distortion
1018 coefficient is not changed during the optimization. If CALIB_USE_INTRINSIC_GUESS is
1019 set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1020 -   **CALIB_RATIONAL_MODEL** Coefficients k4, k5, and k6 are enabled. To provide the
1021 backward compatibility, this extra flag should be explicitly specified to make the
1022 calibration function use the rational model and return 8 coefficients. If the flag is not
1023 set, the function computes and returns only 5 distortion coefficients.
1024 -   **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the
1025 backward compatibility, this extra flag should be explicitly specified to make the
1026 calibration function use the thin prism model and return 12 coefficients. If the flag is not
1027 set, the function computes and returns only 5 distortion coefficients.
1028 -   **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during
1029 the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
1030 supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1031 -   **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the
1032 backward compatibility, this extra flag should be explicitly specified to make the
1033 calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
1034 set, the function computes and returns only 5 distortion coefficients.
1035 -   **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during
1036 the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
1037 supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1038 @param criteria Termination criteria for the iterative optimization algorithm.
1039 
1040 @return the overall RMS re-projection error.
1041 
1042 The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
1043 views. The algorithm is based on @cite Zhang2000 and @cite BouguetMCT . The coordinates of 3D object
1044 points and their corresponding 2D projections in each view must be specified. That may be achieved
1045 by using an object with a known geometry and easily detectable feature points. Such an object is
1046 called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
1047 a calibration rig (see findChessboardCorners ). Currently, initialization of intrinsic parameters
1048 (when CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration
1049 patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
1050 be used as long as initial cameraMatrix is provided.
1051 
1052 The algorithm performs the following steps:
1053 
1054 -   Compute the initial intrinsic parameters (the option only available for planar calibration
1055     patterns) or read them from the input parameters. The distortion coefficients are all set to
1056     zeros initially unless some of CALIB_FIX_K? are specified.
1057 
1058 -   Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
1059     done using solvePnP .
1060 
1061 -   Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error,
1062     that is, the total sum of squared distances between the observed feature points imagePoints and
1063     the projected (using the current estimates for camera parameters and the poses) object points
1064     objectPoints. See projectPoints for details.
1065 
1066 @note
1067    If you use a non-square (=non-NxN) grid and findChessboardCorners for calibration, and
1068     calibrateCamera returns bad values (zero distortion coefficients, an image center very far from
1069     (w/2-0.5,h/2-0.5), and/or large differences between \f$f_x\f$ and \f$f_y\f$ (ratios of 10:1 or more)),
1070     then you have probably used patternSize=cvSize(rows,cols) instead of using
1071     patternSize=cvSize(cols,rows) in findChessboardCorners .
1072 
1073 @sa
1074    findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort
1075  */
1076 CV_EXPORTS_AS(calibrateCameraExtended) double calibrateCamera( InputArrayOfArrays objectPoints,
1077                                      InputArrayOfArrays imagePoints, Size imageSize,
1078                                      InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
1079                                      OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1080                                      OutputArray stdDeviationsIntrinsics,
1081                                      OutputArray stdDeviationsExtrinsics,
1082                                      OutputArray perViewErrors,
1083                                      int flags = 0, TermCriteria criteria = TermCriteria(
1084                                         TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
1085 
1086 /** @overload double calibrateCamera( InputArrayOfArrays objectPoints,
1087                                      InputArrayOfArrays imagePoints, Size imageSize,
1088                                      InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
1089                                      OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1090                                      OutputArray stdDeviations, OutputArray perViewErrors,
1091                                      int flags = 0, TermCriteria criteria = TermCriteria(
1092                                         TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) )
1093  */
1094 CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints,
1095                                      InputArrayOfArrays imagePoints, Size imageSize,
1096                                      InputOutputArray cameraMatrix, InputOutputArray distCoeffs,
1097                                      OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs,
1098                                      int flags = 0, TermCriteria criteria = TermCriteria(
1099                                         TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) );
1100 
1101 /** @brief Computes useful camera characteristics from the camera matrix.
1102 
1103 @param cameraMatrix Input camera matrix that can be estimated by calibrateCamera or
1104 stereoCalibrate .
1105 @param imageSize Input image size in pixels.
1106 @param apertureWidth Physical width in mm of the sensor.
1107 @param apertureHeight Physical height in mm of the sensor.
1108 @param fovx Output field of view in degrees along the horizontal sensor axis.
1109 @param fovy Output field of view in degrees along the vertical sensor axis.
1110 @param focalLength Focal length of the lens in mm.
1111 @param principalPoint Principal point in mm.
1112 @param aspectRatio \f$f_y/f_x\f$
1113 
1114 The function computes various useful camera characteristics from the previously estimated camera
1115 matrix.
1116 
1117 @note
1118    Do keep in mind that the unity measure 'mm' stands for whatever unit of measure one chooses for
1119     the chessboard pitch (it can thus be any value).
1120  */
1121 CV_EXPORTS_W void calibrationMatrixValues( InputArray cameraMatrix, Size imageSize,
1122                                            double apertureWidth, double apertureHeight,
1123                                            CV_OUT double& fovx, CV_OUT double& fovy,
1124                                            CV_OUT double& focalLength, CV_OUT Point2d& principalPoint,
1125                                            CV_OUT double& aspectRatio );
1126 
1127 /** @brief Calibrates the stereo camera.
1128 
1129 @param objectPoints Vector of vectors of the calibration pattern points.
1130 @param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
1131 observed by the first camera.
1132 @param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
1133 observed by the second camera.
1134 @param cameraMatrix1 Input/output first camera matrix:
1135 \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
1136 any of CALIB_USE_INTRINSIC_GUESS , CALIB_FIX_ASPECT_RATIO ,
1137 CALIB_FIX_INTRINSIC , or CALIB_FIX_FOCAL_LENGTH are specified, some or all of the
1138 matrix components must be initialized. See the flags description for details.
1139 @param distCoeffs1 Input/output vector of distortion coefficients
1140 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
1141 4, 5, 8, 12 or 14 elements. The output vector length depends on the flags.
1142 @param cameraMatrix2 Input/output second camera matrix. The parameter is similar to cameraMatrix1
1143 @param distCoeffs2 Input/output lens distortion coefficients for the second camera. The parameter
1144 is similar to distCoeffs1 .
1145 @param imageSize Size of the image used only to initialize intrinsic camera matrix.
1146 @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems.
1147 @param T Output translation vector between the coordinate systems of the cameras.
1148 @param E Output essential matrix.
1149 @param F Output fundamental matrix.
1150 @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view.
1151 @param flags Different flags that may be zero or a combination of the following values:
1152 -   **CALIB_FIX_INTRINSIC** Fix cameraMatrix? and distCoeffs? so that only R, T, E , and F
1153 matrices are estimated.
1154 -   **CALIB_USE_INTRINSIC_GUESS** Optimize some or all of the intrinsic parameters
1155 according to the specified flags. Initial values are provided by the user.
1156 -   **CALIB_USE_EXTRINSIC_GUESS** R, T contain valid initial values that are optimized further.
1157 Otherwise R, T are initialized to the median value of the pattern views (each dimension separately).
1158 -   **CALIB_FIX_PRINCIPAL_POINT** Fix the principal points during the optimization.
1159 -   **CALIB_FIX_FOCAL_LENGTH** Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$ .
1160 -   **CALIB_FIX_ASPECT_RATIO** Optimize \f$f^{(j)}_y\f$ . Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$
1161 .
1162 -   **CALIB_SAME_FOCAL_LENGTH** Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$ .
1163 -   **CALIB_ZERO_TANGENT_DIST** Set tangential distortion coefficients for each camera to
1164 zeros and fix there.
1165 -   **CALIB_FIX_K1,...,CALIB_FIX_K6** Do not change the corresponding radial
1166 distortion coefficient during the optimization. If CALIB_USE_INTRINSIC_GUESS is set,
1167 the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1168 -   **CALIB_RATIONAL_MODEL** Enable coefficients k4, k5, and k6. To provide the backward
1169 compatibility, this extra flag should be explicitly specified to make the calibration
1170 function use the rational model and return 8 coefficients. If the flag is not set, the
1171 function computes and returns only 5 distortion coefficients.
1172 -   **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the
1173 backward compatibility, this extra flag should be explicitly specified to make the
1174 calibration function use the thin prism model and return 12 coefficients. If the flag is not
1175 set, the function computes and returns only 5 distortion coefficients.
1176 -   **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during
1177 the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
1178 supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1179 -   **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the
1180 backward compatibility, this extra flag should be explicitly specified to make the
1181 calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
1182 set, the function computes and returns only 5 distortion coefficients.
1183 -   **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during
1184 the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
1185 supplied distCoeffs matrix is used. Otherwise, it is set to 0.
1186 @param criteria Termination criteria for the iterative optimization algorithm.
1187 
1188 The function estimates transformation between two cameras making a stereo pair. If you have a stereo
1189 camera where the relative position and orientation of two cameras is fixed, and if you computed
1190 poses of an object relative to the first camera and to the second camera, (R1, T1) and (R2, T2),
1191 respectively (this can be done with solvePnP ), then those poses definitely relate to each other.
1192 This means that, given ( \f$R_1\f$,\f$T_1\f$ ), it should be possible to compute ( \f$R_2\f$,\f$T_2\f$ ). You only
1193 need to know the position and orientation of the second camera relative to the first camera. This is
1194 what the described function does. It computes ( \f$R\f$,\f$T\f$ ) so that:
1195 
1196 \f[R_2=R*R_1\f]
1197 \f[T_2=R*T_1 + T,\f]
1198 
1199 Optionally, it computes the essential matrix E:
1200 
1201 \f[E= \vecthreethree{0}{-T_2}{T_1}{T_2}{0}{-T_0}{-T_1}{T_0}{0} *R\f]
1202 
1203 where \f$T_i\f$ are components of the translation vector \f$T\f$ : \f$T=[T_0, T_1, T_2]^T\f$ . And the function
1204 can also compute the fundamental matrix F:
1205 
1206 \f[F = cameraMatrix2^{-T} E cameraMatrix1^{-1}\f]
1207 
1208 Besides the stereo-related information, the function can also perform a full calibration of each of
1209 two cameras. However, due to the high dimensionality of the parameter space and noise in the input
1210 data, the function can diverge from the correct solution. If the intrinsic parameters can be
1211 estimated with high accuracy for each of the cameras individually (for example, using
1212 calibrateCamera ), you are recommended to do so and then pass CALIB_FIX_INTRINSIC flag to the
1213 function along with the computed intrinsic parameters. Otherwise, if all the parameters are
1214 estimated at once, it makes sense to restrict some parameters, for example, pass
1215 CALIB_SAME_FOCAL_LENGTH and CALIB_ZERO_TANGENT_DIST flags, which is usually a
1216 reasonable assumption.
1217 
1218 Similarly to calibrateCamera , the function minimizes the total re-projection error for all the
1219 points in all the available views from both cameras. The function returns the final value of the
1220 re-projection error.
1221  */
1222 CV_EXPORTS_AS(stereoCalibrateExtended) double stereoCalibrate( InputArrayOfArrays objectPoints,
1223                                      InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
1224                                      InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
1225                                      InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
1226                                      Size imageSize, InputOutputArray R,InputOutputArray T, OutputArray E, OutputArray F,
1227                                      OutputArray perViewErrors, int flags = CALIB_FIX_INTRINSIC,
1228                                      TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );
1229 
1230 /// @overload
1231 CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints,
1232                                      InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
1233                                      InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1,
1234                                      InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2,
1235                                      Size imageSize, OutputArray R,OutputArray T, OutputArray E, OutputArray F,
1236                                      int flags = CALIB_FIX_INTRINSIC,
1237                                      TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) );
1238 
1239 /** @brief Computes rectification transforms for each head of a calibrated stereo camera.
1240 
1241 @param cameraMatrix1 First camera matrix.
1242 @param distCoeffs1 First camera distortion parameters.
1243 @param cameraMatrix2 Second camera matrix.
1244 @param distCoeffs2 Second camera distortion parameters.
1245 @param imageSize Size of the image used for stereo calibration.
1246 @param R Rotation matrix between the coordinate systems of the first and the second cameras.
1247 @param T Translation vector between coordinate systems of the cameras.
1248 @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera.
1249 @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera.
1250 @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
1251 camera.
1252 @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
1253 camera.
1254 @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ).
1255 @param flags Operation flags that may be zero or CALIB_ZERO_DISPARITY . If the flag is set,
1256 the function makes the principal points of each camera have the same pixel coordinates in the
1257 rectified views. And if the flag is not set, the function may still shift the images in the
1258 horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
1259 useful image area.
1260 @param alpha Free scaling parameter. If it is -1 or absent, the function performs the default
1261 scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified
1262 images are zoomed and shifted so that only valid pixels are visible (no black areas after
1263 rectification). alpha=1 means that the rectified image is decimated and shifted so that all the
1264 pixels from the original images from the cameras are retained in the rectified images (no source
1265 image pixels are lost). Obviously, any intermediate value yields an intermediate result between
1266 those two extreme cases.
1267 @param newImageSize New image resolution after rectification. The same size should be passed to
1268 initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
1269 is passed (default), it is set to the original imageSize . Setting it to larger value can help you
1270 preserve details in the original image, especially when there is a big radial distortion.
1271 @param validPixROI1 Optional output rectangles inside the rectified images where all the pixels
1272 are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
1273 (see the picture below).
1274 @param validPixROI2 Optional output rectangles inside the rectified images where all the pixels
1275 are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
1276 (see the picture below).
1277 
1278 The function computes the rotation matrices for each camera that (virtually) make both camera image
1279 planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies
1280 the dense stereo correspondence problem. The function takes the matrices computed by stereoCalibrate
1281 as input. As output, it provides two rotation matrices and also two projection matrices in the new
1282 coordinates. The function distinguishes the following two cases:
1283 
1284 -   **Horizontal stereo**: the first and the second camera views are shifted relative to each other
1285     mainly along the x axis (with possible small vertical shift). In the rectified images, the
1286     corresponding epipolar lines in the left and right cameras are horizontal and have the same
1287     y-coordinate. P1 and P2 look like:
1288 
1289     \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx_1 & 0 \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f]
1290 
1291     \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx_2 & T_x*f \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f]
1292 
1293     where \f$T_x\f$ is a horizontal shift between the cameras and \f$cx_1=cx_2\f$ if
1294     CALIB_ZERO_DISPARITY is set.
1295 
1296 -   **Vertical stereo**: the first and the second camera views are shifted relative to each other
1297     mainly in vertical direction (and probably a bit in the horizontal direction too). The epipolar
1298     lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
1299 
1300     \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f]
1301 
1302     \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_2 & T_y*f \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f]
1303 
1304     where \f$T_y\f$ is a vertical shift between the cameras and \f$cy_1=cy_2\f$ if CALIB_ZERO_DISPARITY is
1305     set.
1306 
1307 As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
1308 matrices. The matrices, together with R1 and R2 , can then be passed to initUndistortRectifyMap to
1309 initialize the rectification map for each camera.
1310 
1311 See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
1312 the corresponding image regions. This means that the images are well rectified, which is what most
1313 stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
1314 their interiors are all valid pixels.
1315 
1316 ![image](pics/stereo_undistort.jpg)
1317  */
1318 CV_EXPORTS_W void stereoRectify( InputArray cameraMatrix1, InputArray distCoeffs1,
1319                                  InputArray cameraMatrix2, InputArray distCoeffs2,
1320                                  Size imageSize, InputArray R, InputArray T,
1321                                  OutputArray R1, OutputArray R2,
1322                                  OutputArray P1, OutputArray P2,
1323                                  OutputArray Q, int flags = CALIB_ZERO_DISPARITY,
1324                                  double alpha = -1, Size newImageSize = Size(),
1325                                  CV_OUT Rect* validPixROI1 = 0, CV_OUT Rect* validPixROI2 = 0 );
1326 
1327 /** @brief Computes a rectification transform for an uncalibrated stereo camera.
1328 
1329 @param points1 Array of feature points in the first image.
1330 @param points2 The corresponding points in the second image. The same formats as in
1331 findFundamentalMat are supported.
1332 @param F Input fundamental matrix. It can be computed from the same set of point pairs using
1333 findFundamentalMat .
1334 @param imgSize Size of the image.
1335 @param H1 Output rectification homography matrix for the first image.
1336 @param H2 Output rectification homography matrix for the second image.
1337 @param threshold Optional threshold used to filter out the outliers. If the parameter is greater
1338 than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points
1339 for which \f$|\texttt{points2[i]}^T*\texttt{F}*\texttt{points1[i]}|>\texttt{threshold}\f$ ) are
1340 rejected prior to computing the homographies. Otherwise, all the points are considered inliers.
1341 
1342 The function computes the rectification transformations without knowing intrinsic parameters of the
1343 cameras and their relative position in the space, which explains the suffix "uncalibrated". Another
1344 related difference from stereoRectify is that the function outputs not the rectification
1345 transformations in the object (3D) space, but the planar perspective transformations encoded by the
1346 homography matrices H1 and H2 . The function implements the algorithm @cite Hartley99 .
1347 
1348 @note
1349    While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily
1350     depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion,
1351     it would be better to correct it before computing the fundamental matrix and calling this
1352     function. For example, distortion coefficients can be estimated for each head of stereo camera
1353     separately by using calibrateCamera . Then, the images can be corrected using undistort , or
1354     just the point coordinates can be corrected with undistortPoints .
1355  */
1356 CV_EXPORTS_W bool stereoRectifyUncalibrated( InputArray points1, InputArray points2,
1357                                              InputArray F, Size imgSize,
1358                                              OutputArray H1, OutputArray H2,
1359                                              double threshold = 5 );
1360 
1361 //! computes the rectification transformations for 3-head camera, where all the heads are on the same line.
1362 CV_EXPORTS_W float rectify3Collinear( InputArray cameraMatrix1, InputArray distCoeffs1,
1363                                       InputArray cameraMatrix2, InputArray distCoeffs2,
1364                                       InputArray cameraMatrix3, InputArray distCoeffs3,
1365                                       InputArrayOfArrays imgpt1, InputArrayOfArrays imgpt3,
1366                                       Size imageSize, InputArray R12, InputArray T12,
1367                                       InputArray R13, InputArray T13,
1368                                       OutputArray R1, OutputArray R2, OutputArray R3,
1369                                       OutputArray P1, OutputArray P2, OutputArray P3,
1370                                       OutputArray Q, double alpha, Size newImgSize,
1371                                       CV_OUT Rect* roi1, CV_OUT Rect* roi2, int flags );
1372 
1373 /** @brief Returns the new camera matrix based on the free scaling parameter.
1374 
1375 @param cameraMatrix Input camera matrix.
1376 @param distCoeffs Input vector of distortion coefficients
1377 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of
1378 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are
1379 assumed.
1380 @param imageSize Original image size.
1381 @param alpha Free scaling parameter between 0 (when all the pixels in the undistorted image are
1382 valid) and 1 (when all the source image pixels are retained in the undistorted image). See
1383 stereoRectify for details.
1384 @param newImgSize Image size after rectification. By default, it is set to imageSize .
1385 @param validPixROI Optional output rectangle that outlines all-good-pixels region in the
1386 undistorted image. See roi1, roi2 description in stereoRectify .
1387 @param centerPrincipalPoint Optional flag that indicates whether in the new camera matrix the
1388 principal point should be at the image center or not. By default, the principal point is chosen to
1389 best fit a subset of the source image (determined by alpha) to the corrected image.
1390 @return new_camera_matrix Output new camera matrix.
1391 
1392 The function computes and returns the optimal new camera matrix based on the free scaling parameter.
1393 By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original
1394 image pixels if there is valuable information in the corners alpha=1 , or get something in between.
1395 When alpha\>0 , the undistorted result is likely to have some black pixels corresponding to
1396 "virtual" pixels outside of the captured distorted image. The original camera matrix, distortion
1397 coefficients, the computed new camera matrix, and newImageSize should be passed to
1398 initUndistortRectifyMap to produce the maps for remap .
1399  */
1400 CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray distCoeffs,
1401                                             Size imageSize, double alpha, Size newImgSize = Size(),
1402                                             CV_OUT Rect* validPixROI = 0,
1403                                             bool centerPrincipalPoint = false);
1404 
1405 /** @brief Converts points from Euclidean to homogeneous space.
1406 
1407 @param src Input vector of N-dimensional points.
1408 @param dst Output vector of N+1-dimensional points.
1409 
1410 The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of
1411 point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1).
1412  */
1413 CV_EXPORTS_W void convertPointsToHomogeneous( InputArray src, OutputArray dst );
1414 
1415 /** @brief Converts points from homogeneous to Euclidean space.
1416 
1417 @param src Input vector of N-dimensional points.
1418 @param dst Output vector of N-1-dimensional points.
1419 
1420 The function converts points homogeneous to Euclidean space using perspective projection. That is,
1421 each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the
1422 output point coordinates will be (0,0,0,...).
1423  */
1424 CV_EXPORTS_W void convertPointsFromHomogeneous( InputArray src, OutputArray dst );
1425 
1426 /** @brief Converts points to/from homogeneous coordinates.
1427 
1428 @param src Input array or vector of 2D, 3D, or 4D points.
1429 @param dst Output vector of 2D, 3D, or 4D points.
1430 
1431 The function converts 2D or 3D points from/to homogeneous coordinates by calling either
1432 convertPointsToHomogeneous or convertPointsFromHomogeneous.
1433 
1434 @note The function is obsolete. Use one of the previous two functions instead.
1435  */
1436 CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst );
1437 
1438 /** @brief Calculates a fundamental matrix from the corresponding points in two images.
1439 
1440 @param points1 Array of N points from the first image. The point coordinates should be
1441 floating-point (single or double precision).
1442 @param points2 Array of the second image points of the same size and format as points1 .
1443 @param method Method for computing a fundamental matrix.
1444 -   **CV_FM_7POINT** for a 7-point algorithm. \f$N = 7\f$
1445 -   **CV_FM_8POINT** for an 8-point algorithm. \f$N \ge 8\f$
1446 -   **CV_FM_RANSAC** for the RANSAC algorithm. \f$N \ge 8\f$
1447 -   **CV_FM_LMEDS** for the LMedS algorithm. \f$N \ge 8\f$
1448 @param ransacReprojThreshold Parameter used only for RANSAC. It is the maximum distance from a point to an epipolar
1449 line in pixels, beyond which the point is considered an outlier and is not used for computing the
1450 final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
1451 point localization, image resolution, and the image noise.
1452 @param confidence Parameter used for the RANSAC and LMedS methods only. It specifies a desirable level
1453 of confidence (probability) that the estimated matrix is correct.
1454 @param mask
1455 
1456 The epipolar geometry is described by the following equation:
1457 
1458 \f[[p_2; 1]^T F [p_1; 1] = 0\f]
1459 
1460 where \f$F\f$ is a fundamental matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
1461 second images, respectively.
1462 
1463 The function calculates the fundamental matrix using one of four methods listed above and returns
1464 the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point
1465 algorithm, the function may return up to 3 solutions ( \f$9 \times 3\f$ matrix that stores all 3
1466 matrices sequentially).
1467 
1468 The calculated fundamental matrix may be passed further to computeCorrespondEpilines that finds the
1469 epipolar lines corresponding to the specified points. It can also be passed to
1470 stereoRectifyUncalibrated to compute the rectification transformation. :
1471 @code
1472     // Example. Estimation of fundamental matrix using the RANSAC algorithm
1473     int point_count = 100;
1474     vector<Point2f> points1(point_count);
1475     vector<Point2f> points2(point_count);
1476 
1477     // initialize the points here ...
1478     for( int i = 0; i < point_count; i++ )
1479     {
1480         points1[i] = ...;
1481         points2[i] = ...;
1482     }
1483 
1484     Mat fundamental_matrix =
1485      findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
1486 @endcode
1487  */
1488 CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2,
1489                                      int method = FM_RANSAC,
1490                                      double ransacReprojThreshold = 3., double confidence = 0.99,
1491                                      OutputArray mask = noArray() );
1492 
1493 /** @overload */
1494 CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2,
1495                                    OutputArray mask, int method = FM_RANSAC,
1496                                    double ransacReprojThreshold = 3., double confidence = 0.99 );
1497 
1498 /** @brief Calculates an essential matrix from the corresponding points in two images.
1499 
1500 @param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
1501 be floating-point (single or double precision).
1502 @param points2 Array of the second image points of the same size and format as points1 .
1503 @param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
1504 Note that this function assumes that points1 and points2 are feature points from cameras with the
1505 same camera matrix.
1506 @param method Method for computing an essential matrix.
1507 -   **RANSAC** for the RANSAC algorithm.
1508 -   **LMEDS** for the LMedS algorithm.
1509 @param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
1510 confidence (probability) that the estimated matrix is correct.
1511 @param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
1512 line in pixels, beyond which the point is considered an outlier and is not used for computing the
1513 final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
1514 point localization, image resolution, and the image noise.
1515 @param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
1516 for the other points. The array is computed only in the RANSAC and LMedS methods.
1517 
1518 This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 .
1519 @cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
1520 
1521 \f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f]
1522 
1523 where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the
1524 second images, respectively. The result of this function may be passed further to
1525 decomposeEssentialMat or recoverPose to recover the relative pose between cameras.
1526  */
1527 CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
1528                                  InputArray cameraMatrix, int method = RANSAC,
1529                                  double prob = 0.999, double threshold = 1.0,
1530                                  OutputArray mask = noArray() );
1531 
1532 /** @overload
1533 @param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should
1534 be floating-point (single or double precision).
1535 @param points2 Array of the second image points of the same size and format as points1 .
1536 @param focal focal length of the camera. Note that this function assumes that points1 and points2
1537 are feature points from cameras with same focal length and principal point.
1538 @param pp principal point of the camera.
1539 @param method Method for computing a fundamental matrix.
1540 -   **RANSAC** for the RANSAC algorithm.
1541 -   **LMEDS** for the LMedS algorithm.
1542 @param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
1543 line in pixels, beyond which the point is considered an outlier and is not used for computing the
1544 final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
1545 point localization, image resolution, and the image noise.
1546 @param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
1547 confidence (probability) that the estimated matrix is correct.
1548 @param mask Output array of N elements, every element of which is set to 0 for outliers and to 1
1549 for the other points. The array is computed only in the RANSAC and LMedS methods.
1550 
1551 This function differs from the one above that it computes camera matrix from focal length and
1552 principal point:
1553 
1554 \f[K =
1555 \begin{bmatrix}
1556 f & 0 & x_{pp}  \\
1557 0 & f & y_{pp}  \\
1558 0 & 0 & 1
1559 \end{bmatrix}\f]
1560  */
1561 CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2,
1562                                  double focal = 1.0, Point2d pp = Point2d(0, 0),
1563                                  int method = RANSAC, double prob = 0.999,
1564                                  double threshold = 1.0, OutputArray mask = noArray() );
1565 
1566 /** @brief Decompose an essential matrix to possible rotations and translation.
1567 
1568 @param E The input essential matrix.
1569 @param R1 One possible rotation matrix.
1570 @param R2 Another possible rotation matrix.
1571 @param t One possible translation.
1572 
1573 This function decompose an essential matrix E using svd decomposition @cite HartleyZ00 . Generally 4
1574 possible poses exists for a given E. They are \f$[R_1, t]\f$, \f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$. By
1575 decomposing E, you can only get the direction of the translation, so the function returns unit t.
1576  */
1577 CV_EXPORTS_W void decomposeEssentialMat( InputArray E, OutputArray R1, OutputArray R2, OutputArray t );
1578 
1579 /** @brief Recover relative camera rotation and translation from an estimated essential matrix and the
1580 corresponding points in two images, using cheirality check. Returns the number of inliers which pass
1581 the check.
1582 
1583 @param E The input essential matrix.
1584 @param points1 Array of N 2D points from the first image. The point coordinates should be
1585 floating-point (single or double precision).
1586 @param points2 Array of the second image points of the same size and format as points1 .
1587 @param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
1588 Note that this function assumes that points1 and points2 are feature points from cameras with the
1589 same camera matrix.
1590 @param R Recovered relative rotation.
1591 @param t Recovered relative translation.
1592 @param mask Input/output mask for inliers in points1 and points2.
1593 :   If it is not empty, then it marks inliers in points1 and points2 for then given essential
1594 matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
1595 which pass the cheirality check.
1596 This function decomposes an essential matrix using decomposeEssentialMat and then verifies possible
1597 pose hypotheses by doing cheirality check. The cheirality check basically means that the
1598 triangulated 3D points should have positive depth. Some details can be found in @cite Nister03 .
1599 
1600 This function can be used to process output E and mask from findEssentialMat. In this scenario,
1601 points1 and points2 are the same input for findEssentialMat. :
1602 @code
1603     // Example. Estimation of fundamental matrix using the RANSAC algorithm
1604     int point_count = 100;
1605     vector<Point2f> points1(point_count);
1606     vector<Point2f> points2(point_count);
1607 
1608     // initialize the points here ...
1609     for( int i = 0; i < point_count; i++ )
1610     {
1611         points1[i] = ...;
1612         points2[i] = ...;
1613     }
1614 
1615     // cametra matrix with both focal lengths = 1, and principal point = (0, 0)
1616     Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
1617 
1618     Mat E, R, t, mask;
1619 
1620     E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
1621     recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
1622 @endcode
1623  */
1624 CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
1625                             InputArray cameraMatrix, OutputArray R, OutputArray t,
1626                             InputOutputArray mask = noArray() );
1627 
1628 /** @overload
1629 @param E The input essential matrix.
1630 @param points1 Array of N 2D points from the first image. The point coordinates should be
1631 floating-point (single or double precision).
1632 @param points2 Array of the second image points of the same size and format as points1 .
1633 @param R Recovered relative rotation.
1634 @param t Recovered relative translation.
1635 @param focal Focal length of the camera. Note that this function assumes that points1 and points2
1636 are feature points from cameras with same focal length and principal point.
1637 @param pp principal point of the camera.
1638 @param mask Input/output mask for inliers in points1 and points2.
1639 :   If it is not empty, then it marks inliers in points1 and points2 for then given essential
1640 matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
1641 which pass the cheirality check.
1642 
1643 This function differs from the one above that it computes camera matrix from focal length and
1644 principal point:
1645 
1646 \f[K =
1647 \begin{bmatrix}
1648 f & 0 & x_{pp}  \\
1649 0 & f & y_{pp}  \\
1650 0 & 0 & 1
1651 \end{bmatrix}\f]
1652  */
1653 CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
1654                             OutputArray R, OutputArray t,
1655                             double focal = 1.0, Point2d pp = Point2d(0, 0),
1656                             InputOutputArray mask = noArray() );
1657 
1658 /** @overload
1659 @param E The input essential matrix.
1660 @param points1 Array of N 2D points from the first image. The point coordinates should be
1661 floating-point (single or double precision).
1662 @param points2 Array of the second image points of the same size and format as points1.
1663 @param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ .
1664 Note that this function assumes that points1 and points2 are feature points from cameras with the
1665 same camera matrix.
1666 @param R Recovered relative rotation.
1667 @param t Recovered relative translation.
1668 @param distanceThresh threshold distance which is used to filter out far away points (i.e. infinite points).
1669 @param mask Input/output mask for inliers in points1 and points2.
1670 :   If it is not empty, then it marks inliers in points1 and points2 for then given essential
1671 matrix E. Only these inliers will be used to recover pose. In the output mask only inliers
1672 which pass the cheirality check.
1673 @param triangulatedPoints 3d points which were reconstructed by triangulation.
1674  */
1675 
1676 CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2,
1677                             InputArray cameraMatrix, OutputArray R, OutputArray t, double distanceThresh, InputOutputArray mask = noArray(),
1678                             OutputArray triangulatedPoints = noArray());
1679 
1680 /** @brief For points in an image of a stereo pair, computes the corresponding epilines in the other image.
1681 
1682 @param points Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV_32FC2 or
1683 vector\<Point2f\> .
1684 @param whichImage Index of the image (1 or 2) that contains the points .
1685 @param F Fundamental matrix that can be estimated using findFundamentalMat or stereoRectify .
1686 @param lines Output vector of the epipolar lines corresponding to the points in the other image.
1687 Each line \f$ax + by + c=0\f$ is encoded by 3 numbers \f$(a, b, c)\f$ .
1688 
1689 For every point in one of the two images of a stereo pair, the function finds the equation of the
1690 corresponding epipolar line in the other image.
1691 
1692 From the fundamental matrix definition (see findFundamentalMat ), line \f$l^{(2)}_i\f$ in the second
1693 image for the point \f$p^{(1)}_i\f$ in the first image (when whichImage=1 ) is computed as:
1694 
1695 \f[l^{(2)}_i = F p^{(1)}_i\f]
1696 
1697 And vice versa, when whichImage=2, \f$l^{(1)}_i\f$ is computed from \f$p^{(2)}_i\f$ as:
1698 
1699 \f[l^{(1)}_i = F^T p^{(2)}_i\f]
1700 
1701 Line coefficients are defined up to a scale. They are normalized so that \f$a_i^2+b_i^2=1\f$ .
1702  */
1703 CV_EXPORTS_W void computeCorrespondEpilines( InputArray points, int whichImage,
1704                                              InputArray F, OutputArray lines );
1705 
1706 /** @brief Reconstructs points by triangulation.
1707 
1708 @param projMatr1 3x4 projection matrix of the first camera.
1709 @param projMatr2 3x4 projection matrix of the second camera.
1710 @param projPoints1 2xN array of feature points in the first image. In case of c++ version it can
1711 be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
1712 @param projPoints2 2xN array of corresponding points in the second image. In case of c++ version
1713 it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.
1714 @param points4D 4xN array of reconstructed points in homogeneous coordinates.
1715 
1716 The function reconstructs 3-dimensional points (in homogeneous coordinates) by using their
1717 observations with a stereo camera. Projections matrices can be obtained from stereoRectify.
1718 
1719 @note
1720    Keep in mind that all input data should be of float type in order for this function to work.
1721 
1722 @sa
1723    reprojectImageTo3D
1724  */
1725 CV_EXPORTS_W void triangulatePoints( InputArray projMatr1, InputArray projMatr2,
1726                                      InputArray projPoints1, InputArray projPoints2,
1727                                      OutputArray points4D );
1728 
1729 /** @brief Refines coordinates of corresponding points.
1730 
1731 @param F 3x3 fundamental matrix.
1732 @param points1 1xN array containing the first set of points.
1733 @param points2 1xN array containing the second set of points.
1734 @param newPoints1 The optimized points1.
1735 @param newPoints2 The optimized points2.
1736 
1737 The function implements the Optimal Triangulation Method (see Multiple View Geometry for details).
1738 For each given point correspondence points1[i] \<-\> points2[i], and a fundamental matrix F, it
1739 computes the corrected correspondences newPoints1[i] \<-\> newPoints2[i] that minimize the geometric
1740 error \f$d(points1[i], newPoints1[i])^2 + d(points2[i],newPoints2[i])^2\f$ (where \f$d(a,b)\f$ is the
1741 geometric distance between points \f$a\f$ and \f$b\f$ ) subject to the epipolar constraint
1742 \f$newPoints2^T * F * newPoints1 = 0\f$ .
1743  */
1744 CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2,
1745                                   OutputArray newPoints1, OutputArray newPoints2 );
1746 
1747 /** @brief Filters off small noise blobs (speckles) in the disparity map
1748 
1749 @param img The input 16-bit signed disparity image
1750 @param newVal The disparity value used to paint-off the speckles
1751 @param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not
1752 affected by the algorithm
1753 @param maxDiff Maximum difference between neighbor disparity pixels to put them into the same
1754 blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
1755 disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
1756 account when specifying this parameter value.
1757 @param buf The optional temporary buffer to avoid memory allocation within the function.
1758  */
1759 CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal,
1760                                   int maxSpeckleSize, double maxDiff,
1761                                   InputOutputArray buf = noArray() );
1762 
1763 //! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify())
1764 CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2,
1765                                         int minDisparity, int numberOfDisparities,
1766                                         int SADWindowSize );
1767 
1768 //! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm
1769 CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost,
1770                                      int minDisparity, int numberOfDisparities,
1771                                      int disp12MaxDisp = 1 );
1772 
1773 /** @brief Reprojects a disparity image to 3D space.
1774 
1775 @param disparity Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
1776 floating-point disparity image. If 16-bit signed format is used, the values are assumed to have no
1777 fractional bits.
1778 @param _3dImage Output 3-channel floating-point image of the same size as disparity . Each
1779 element of _3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity
1780 map.
1781 @param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained with stereoRectify.
1782 @param handleMissingValues Indicates, whether the function should handle missing values (i.e.
1783 points where the disparity was not computed). If handleMissingValues=true, then pixels with the
1784 minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed
1785 to 3D points with a very large Z value (currently set to 10000).
1786 @param ddepth The optional output array depth. If it is -1, the output image will have CV_32F
1787 depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.
1788 
1789 The function transforms a single-channel disparity map to a 3-channel image representing a 3D
1790 surface. That is, for each pixel (x,y) and the corresponding disparity d=disparity(x,y) , it
1791 computes:
1792 
1793 \f[\begin{array}{l} [X \; Y \; Z \; W]^T =  \texttt{Q} *[x \; y \; \texttt{disparity} (x,y) \; 1]^T  \\ \texttt{\_3dImage} (x,y) = (X/W, \; Y/W, \; Z/W) \end{array}\f]
1794 
1795 The matrix Q can be an arbitrary \f$4 \times 4\f$ matrix (for example, the one computed by
1796 stereoRectify). To reproject a sparse set of points {(x,y,d),...} to 3D space, use
1797 perspectiveTransform .
1798  */
1799 CV_EXPORTS_W void reprojectImageTo3D( InputArray disparity,
1800                                       OutputArray _3dImage, InputArray Q,
1801                                       bool handleMissingValues = false,
1802                                       int ddepth = -1 );
1803 
1804 /** @brief Calculates the Sampson Distance between two points.
1805 
1806 The function cv::sampsonDistance calculates and returns the first order approximation of the geometric error as:
1807 \f[
1808 sd( \texttt{pt1} , \texttt{pt2} )=
1809 \frac{(\texttt{pt2}^t \cdot \texttt{F} \cdot \texttt{pt1})^2}
1810 {((\texttt{F} \cdot \texttt{pt1})(0))^2 +
1811 ((\texttt{F} \cdot \texttt{pt1})(1))^2 +
1812 ((\texttt{F}^t \cdot \texttt{pt2})(0))^2 +
1813 ((\texttt{F}^t \cdot \texttt{pt2})(1))^2}
1814 \f]
1815 The fundamental matrix may be calculated using the cv::findFundamentalMat function. See @cite HartleyZ00 11.4.3 for details.
1816 @param pt1 first homogeneous 2d point
1817 @param pt2 second homogeneous 2d point
1818 @param F fundamental matrix
1819 @return The computed Sampson distance.
1820 */
1821 CV_EXPORTS_W double sampsonDistance(InputArray pt1, InputArray pt2, InputArray F);
1822 
1823 /** @brief Computes an optimal affine transformation between two 3D point sets.
1824 
1825 It computes
1826 \f[
1827 \begin{bmatrix}
1828 x\\
1829 y\\
1830 z\\
1831 \end{bmatrix}
1832 =
1833 \begin{bmatrix}
1834 a_{11} & a_{12} & a_{13}\\
1835 a_{21} & a_{22} & a_{23}\\
1836 a_{31} & a_{32} & a_{33}\\
1837 \end{bmatrix}
1838 \begin{bmatrix}
1839 X\\
1840 Y\\
1841 Z\\
1842 \end{bmatrix}
1843 +
1844 \begin{bmatrix}
1845 b_1\\
1846 b_2\\
1847 b_3\\
1848 \end{bmatrix}
1849 \f]
1850 
1851 @param src First input 3D point set containing \f$(X,Y,Z)\f$.
1852 @param dst Second input 3D point set containing \f$(x,y,z)\f$.
1853 @param out Output 3D affine transformation matrix \f$3 \times 4\f$ of the form
1854 \f[
1855 \begin{bmatrix}
1856 a_{11} & a_{12} & a_{13} & b_1\\
1857 a_{21} & a_{22} & a_{23} & b_2\\
1858 a_{31} & a_{32} & a_{33} & b_3\\
1859 \end{bmatrix}
1860 \f]
1861 @param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier).
1862 @param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as
1863 an inlier.
1864 @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
1865 between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
1866 significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
1867 
1868 The function estimates an optimal 3D affine transformation between two 3D point sets using the
1869 RANSAC algorithm.
1870  */
1871 CV_EXPORTS_W  int estimateAffine3D(InputArray src, InputArray dst,
1872                                    OutputArray out, OutputArray inliers,
1873                                    double ransacThreshold = 3, double confidence = 0.99);
1874 
1875 /** @brief Computes an optimal affine transformation between two 2D point sets.
1876 
1877 It computes
1878 \f[
1879 \begin{bmatrix}
1880 x\\
1881 y\\
1882 \end{bmatrix}
1883 =
1884 \begin{bmatrix}
1885 a_{11} & a_{12}\\
1886 a_{21} & a_{22}\\
1887 \end{bmatrix}
1888 \begin{bmatrix}
1889 X\\
1890 Y\\
1891 \end{bmatrix}
1892 +
1893 \begin{bmatrix}
1894 b_1\\
1895 b_2\\
1896 \end{bmatrix}
1897 \f]
1898 
1899 @param from First input 2D point set containing \f$(X,Y)\f$.
1900 @param to Second input 2D point set containing \f$(x,y)\f$.
1901 @param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier).
1902 @param method Robust method used to compute transformation. The following methods are possible:
1903 -   cv::RANSAC - RANSAC-based robust method
1904 -   cv::LMEDS - Least-Median robust method
1905 RANSAC is the default method.
1906 @param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
1907 a point as an inlier. Applies only to RANSAC.
1908 @param maxIters The maximum number of robust method iterations.
1909 @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
1910 between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
1911 significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
1912 @param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
1913 Passing 0 will disable refining, so the output matrix will be output of robust method.
1914 
1915 @return Output 2D affine transformation matrix \f$2 \times 3\f$ or empty matrix if transformation
1916 could not be estimated. The returned matrix has the following form:
1917 \f[
1918 \begin{bmatrix}
1919 a_{11} & a_{12} & b_1\\
1920 a_{21} & a_{22} & b_2\\
1921 \end{bmatrix}
1922 \f]
1923 
1924 The function estimates an optimal 2D affine transformation between two 2D point sets using the
1925 selected robust algorithm.
1926 
1927 The computed transformation is then refined further (using only inliers) with the
1928 Levenberg-Marquardt method to reduce the re-projection error even more.
1929 
1930 @note
1931 The RANSAC method can handle practically any ratio of outliers but needs a threshold to
1932 distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
1933 correctly only when there are more than 50% of inliers.
1934 
1935 @sa estimateAffinePartial2D, getAffineTransform
1936 */
1937 CV_EXPORTS_W cv::Mat estimateAffine2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
1938                                   int method = RANSAC, double ransacReprojThreshold = 3,
1939                                   size_t maxIters = 2000, double confidence = 0.99,
1940                                   size_t refineIters = 10);
1941 
1942 /** @brief Computes an optimal limited affine transformation with 4 degrees of freedom between
1943 two 2D point sets.
1944 
1945 @param from First input 2D point set.
1946 @param to Second input 2D point set.
1947 @param inliers Output vector indicating which points are inliers.
1948 @param method Robust method used to compute transformation. The following methods are possible:
1949 -   cv::RANSAC - RANSAC-based robust method
1950 -   cv::LMEDS - Least-Median robust method
1951 RANSAC is the default method.
1952 @param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider
1953 a point as an inlier. Applies only to RANSAC.
1954 @param maxIters The maximum number of robust method iterations.
1955 @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything
1956 between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
1957 significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
1958 @param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
1959 Passing 0 will disable refining, so the output matrix will be output of robust method.
1960 
1961 @return Output 2D affine transformation (4 degrees of freedom) matrix \f$2 \times 3\f$ or
1962 empty matrix if transformation could not be estimated.
1963 
1964 The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
1965 combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
1966 estimation.
1967 
1968 The computed transformation is then refined further (using only inliers) with the
1969 Levenberg-Marquardt method to reduce the re-projection error even more.
1970 
1971 Estimated transformation matrix is:
1972 \f[ \begin{bmatrix} \cos(\theta) \cdot s & -\sin(\theta) \cdot s & t_x \\
1973                 \sin(\theta) \cdot s & \cos(\theta) \cdot s & t_y
1974 \end{bmatrix} \f]
1975 Where \f$ \theta \f$ is the rotation angle, \f$ s \f$ the scaling factor and \f$ t_x, t_y \f$ are
1976 translations in \f$ x, y \f$ axes respectively.
1977 
1978 @note
1979 The RANSAC method can handle practically any ratio of outliers but need a threshold to
1980 distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
1981 correctly only when there are more than 50% of inliers.
1982 
1983 @sa estimateAffine2D, getAffineTransform
1984 */
1985 CV_EXPORTS_W cv::Mat estimateAffinePartial2D(InputArray from, InputArray to, OutputArray inliers = noArray(),
1986                                   int method = RANSAC, double ransacReprojThreshold = 3,
1987                                   size_t maxIters = 2000, double confidence = 0.99,
1988                                   size_t refineIters = 10);
1989 
1990 /** @example samples/cpp/tutorial_code/features2D/Homography/decompose_homography.cpp
1991 An example program with homography decomposition.
1992 
1993 Check @ref tutorial_homography "the corresponding tutorial" for more details.
1994 */
1995 
1996 /** @brief Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).
1997 
1998 @param H The input homography matrix between two images.
1999 @param K The input intrinsic camera calibration matrix.
2000 @param rotations Array of rotation matrices.
2001 @param translations Array of translation matrices.
2002 @param normals Array of plane normal matrices.
2003 
2004 This function extracts relative camera motion between two views observing a planar object from the
2005 homography H induced by the plane. The intrinsic camera matrix K must also be provided. The function
2006 may return up to four mathematical solution sets. At least two of the solutions may further be
2007 invalidated if point correspondences are available by applying positive depth constraint (all points
2008 must be in front of the camera). The decomposition method is described in detail in @cite Malis .
2009  */
2010 CV_EXPORTS_W int decomposeHomographyMat(InputArray H,
2011                                         InputArray K,
2012                                         OutputArrayOfArrays rotations,
2013                                         OutputArrayOfArrays translations,
2014                                         OutputArrayOfArrays normals);
2015 
2016 /** @brief Filters homography decompositions based on additional information.
2017 
2018 @param rotations Vector of rotation matrices.
2019 @param normals Vector of plane normal matrices.
2020 @param beforePoints Vector of (rectified) visible reference points before the homography is applied
2021 @param afterPoints Vector of (rectified) visible reference points after the homography is applied
2022 @param possibleSolutions Vector of int indices representing the viable solution set after filtering
2023 @param pointsMask optional Mat/Vector of 8u type representing the mask for the inliers as given by the findHomography function
2024 
2025 This function is intended to filter the output of the decomposeHomographyMat based on additional
2026 information as described in @cite Malis . The summary of the method: the decomposeHomographyMat function
2027 returns 2 unique solutions and their "opposites" for a total of 4 solutions. If we have access to the
2028 sets of points visible in the camera frame before and after the homography transformation is applied,
2029 we can determine which are the true potential solutions and which are the opposites by verifying which
2030 homographies are consistent with all visible reference points being in front of the camera. The inputs
2031 are left unchanged; the filtered solution set is returned as indices into the existing one.
2032 
2033 */
2034 CV_EXPORTS_W void filterHomographyDecompByVisibleRefpoints(InputArrayOfArrays rotations,
2035                                                            InputArrayOfArrays normals,
2036                                                            InputArray beforePoints,
2037                                                            InputArray afterPoints,
2038                                                            OutputArray possibleSolutions,
2039                                                            InputArray pointsMask = noArray());
2040 
2041 /** @brief The base class for stereo correspondence algorithms.
2042  */
2043 class CV_EXPORTS_W StereoMatcher : public Algorithm
2044 {
2045 public:
2046     enum { DISP_SHIFT = 4,
2047            DISP_SCALE = (1 << DISP_SHIFT)
2048          };
2049 
2050     /** @brief Computes disparity map for the specified stereo pair
2051 
2052     @param left Left 8-bit single-channel image.
2053     @param right Right image of the same size and the same type as the left one.
2054     @param disparity Output disparity map. It has the same size as the input images. Some algorithms,
2055     like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value
2056     has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map.
2057      */
2058     CV_WRAP virtual void compute( InputArray left, InputArray right,
2059                                   OutputArray disparity ) = 0;
2060 
2061     CV_WRAP virtual int getMinDisparity() const = 0;
2062     CV_WRAP virtual void setMinDisparity(int minDisparity) = 0;
2063 
2064     CV_WRAP virtual int getNumDisparities() const = 0;
2065     CV_WRAP virtual void setNumDisparities(int numDisparities) = 0;
2066 
2067     CV_WRAP virtual int getBlockSize() const = 0;
2068     CV_WRAP virtual void setBlockSize(int blockSize) = 0;
2069 
2070     CV_WRAP virtual int getSpeckleWindowSize() const = 0;
2071     CV_WRAP virtual void setSpeckleWindowSize(int speckleWindowSize) = 0;
2072 
2073     CV_WRAP virtual int getSpeckleRange() const = 0;
2074     CV_WRAP virtual void setSpeckleRange(int speckleRange) = 0;
2075 
2076     CV_WRAP virtual int getDisp12MaxDiff() const = 0;
2077     CV_WRAP virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0;
2078 };
2079 
2080 
2081 /** @brief Class for computing stereo correspondence using the block matching algorithm, introduced and
2082 contributed to OpenCV by K. Konolige.
2083  */
2084 class CV_EXPORTS_W StereoBM : public StereoMatcher
2085 {
2086 public:
2087     enum { PREFILTER_NORMALIZED_RESPONSE = 0,
2088            PREFILTER_XSOBEL              = 1
2089          };
2090 
2091     CV_WRAP virtual int getPreFilterType() const = 0;
2092     CV_WRAP virtual void setPreFilterType(int preFilterType) = 0;
2093 
2094     CV_WRAP virtual int getPreFilterSize() const = 0;
2095     CV_WRAP virtual void setPreFilterSize(int preFilterSize) = 0;
2096 
2097     CV_WRAP virtual int getPreFilterCap() const = 0;
2098     CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
2099 
2100     CV_WRAP virtual int getTextureThreshold() const = 0;
2101     CV_WRAP virtual void setTextureThreshold(int textureThreshold) = 0;
2102 
2103     CV_WRAP virtual int getUniquenessRatio() const = 0;
2104     CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
2105 
2106     CV_WRAP virtual int getSmallerBlockSize() const = 0;
2107     CV_WRAP virtual void setSmallerBlockSize(int blockSize) = 0;
2108 
2109     CV_WRAP virtual Rect getROI1() const = 0;
2110     CV_WRAP virtual void setROI1(Rect roi1) = 0;
2111 
2112     CV_WRAP virtual Rect getROI2() const = 0;
2113     CV_WRAP virtual void setROI2(Rect roi2) = 0;
2114 
2115     /** @brief Creates StereoBM object
2116 
2117     @param numDisparities the disparity search range. For each pixel algorithm will find the best
2118     disparity from 0 (default minimum disparity) to numDisparities. The search range can then be
2119     shifted by changing the minimum disparity.
2120     @param blockSize the linear size of the blocks compared by the algorithm. The size should be odd
2121     (as the block is centered at the current pixel). Larger block size implies smoother, though less
2122     accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher
2123     chance for algorithm to find a wrong correspondence.
2124 
2125     The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for
2126     a specific stereo pair.
2127      */
2128     CV_WRAP static Ptr<StereoBM> create(int numDisparities = 0, int blockSize = 21);
2129 };
2130 
2131 /** @brief The class implements the modified H. Hirschmuller algorithm @cite HH08 that differs from the original
2132 one as follows:
2133 
2134 -   By default, the algorithm is single-pass, which means that you consider only 5 directions
2135 instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the
2136 algorithm but beware that it may consume a lot of memory.
2137 -   The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the
2138 blocks to single pixels.
2139 -   Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi
2140 sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well.
2141 -   Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for
2142 example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness
2143 check, quadratic interpolation and speckle filtering).
2144 
2145 @note
2146    -   (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found
2147         at opencv_source_code/samples/python/stereo_match.py
2148  */
2149 class CV_EXPORTS_W StereoSGBM : public StereoMatcher
2150 {
2151 public:
2152     enum
2153     {
2154         MODE_SGBM = 0,
2155         MODE_HH   = 1,
2156         MODE_SGBM_3WAY = 2,
2157         MODE_HH4  = 3
2158     };
2159 
2160     CV_WRAP virtual int getPreFilterCap() const = 0;
2161     CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0;
2162 
2163     CV_WRAP virtual int getUniquenessRatio() const = 0;
2164     CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0;
2165 
2166     CV_WRAP virtual int getP1() const = 0;
2167     CV_WRAP virtual void setP1(int P1) = 0;
2168 
2169     CV_WRAP virtual int getP2() const = 0;
2170     CV_WRAP virtual void setP2(int P2) = 0;
2171 
2172     CV_WRAP virtual int getMode() const = 0;
2173     CV_WRAP virtual void setMode(int mode) = 0;
2174 
2175     /** @brief Creates StereoSGBM object
2176 
2177     @param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes
2178     rectification algorithms can shift images, so this parameter needs to be adjusted accordingly.
2179     @param numDisparities Maximum disparity minus minimum disparity. The value is always greater than
2180     zero. In the current implementation, this parameter must be divisible by 16.
2181     @param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be
2182     somewhere in the 3..11 range.
2183     @param P1 The first parameter controlling the disparity smoothness. See below.
2184     @param P2 The second parameter controlling the disparity smoothness. The larger the values are,
2185     the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1
2186     between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor
2187     pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good
2188     P1 and P2 values are shown (like 8\*number_of_image_channels\*SADWindowSize\*SADWindowSize and
2189     32\*number_of_image_channels\*SADWindowSize\*SADWindowSize , respectively).
2190     @param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right
2191     disparity check. Set it to a non-positive value to disable the check.
2192     @param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first
2193     computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval.
2194     The result values are passed to the Birchfield-Tomasi pixel cost function.
2195     @param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function
2196     value should "win" the second best value to consider the found match correct. Normally, a value
2197     within the 5-15 range is good enough.
2198     @param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles
2199     and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the
2200     50-200 range.
2201     @param speckleRange Maximum disparity variation within each connected component. If you do speckle
2202     filtering, set the parameter to a positive value, it will be implicitly multiplied by 16.
2203     Normally, 1 or 2 is good enough.
2204     @param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming
2205     algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and
2206     huge for HD-size pictures. By default, it is set to false .
2207 
2208     The first constructor initializes StereoSGBM with all the default parameters. So, you only have to
2209     set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter
2210     to a custom value.
2211      */
2212     CV_WRAP static Ptr<StereoSGBM> create(int minDisparity = 0, int numDisparities = 16, int blockSize = 3,
2213                                           int P1 = 0, int P2 = 0, int disp12MaxDiff = 0,
2214                                           int preFilterCap = 0, int uniquenessRatio = 0,
2215                                           int speckleWindowSize = 0, int speckleRange = 0,
2216                                           int mode = StereoSGBM::MODE_SGBM);
2217 };
2218 
2219 //! @} calib3d
2220 
2221 /** @brief The methods in this namespace use a so-called fisheye camera model.
2222   @ingroup calib3d_fisheye
2223 */
2224 namespace fisheye
2225 {
2226 //! @addtogroup calib3d_fisheye
2227 //! @{
2228 
2229     enum{
2230         CALIB_USE_INTRINSIC_GUESS   = 1 << 0,
2231         CALIB_RECOMPUTE_EXTRINSIC   = 1 << 1,
2232         CALIB_CHECK_COND            = 1 << 2,
2233         CALIB_FIX_SKEW              = 1 << 3,
2234         CALIB_FIX_K1                = 1 << 4,
2235         CALIB_FIX_K2                = 1 << 5,
2236         CALIB_FIX_K3                = 1 << 6,
2237         CALIB_FIX_K4                = 1 << 7,
2238         CALIB_FIX_INTRINSIC         = 1 << 8,
2239         CALIB_FIX_PRINCIPAL_POINT   = 1 << 9
2240     };
2241 
2242     /** @brief Projects points using fisheye model
2243 
2244     @param objectPoints Array of object points, 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is
2245     the number of points in the view.
2246     @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or
2247     vector\<Point2f\>.
2248     @param affine
2249     @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
2250     @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
2251     @param alpha The skew coefficient.
2252     @param jacobian Optional output 2Nx15 jacobian matrix of derivatives of image points with respect
2253     to components of the focal lengths, coordinates of the principal point, distortion coefficients,
2254     rotation vector, translation vector, and the skew. In the old interface different components of
2255     the jacobian are returned via different output parameters.
2256 
2257     The function computes projections of 3D points to the image plane given intrinsic and extrinsic
2258     camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of
2259     image points coordinates (as functions of all the input parameters) with respect to the particular
2260     parameters, intrinsic and/or extrinsic.
2261      */
2262     CV_EXPORTS void projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine,
2263         InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
2264 
2265     /** @overload */
2266     CV_EXPORTS_W void projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec,
2267         InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray());
2268 
2269     /** @brief Distorts 2D points using fisheye model.
2270 
2271     @param undistorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is
2272     the number of points in the view.
2273     @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
2274     @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
2275     @param alpha The skew coefficient.
2276     @param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
2277 
2278     Note that the function assumes the camera matrix of the undistorted points to be identity.
2279     This means if you want to transform back points undistorted with undistortPoints() you have to
2280     multiply them with \f$P^{-1}\f$.
2281      */
2282     CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha = 0);
2283 
2284     /** @brief Undistorts 2D points using fisheye model
2285 
2286     @param distorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is the
2287     number of points in the view.
2288     @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
2289     @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
2290     @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
2291     1-channel or 1x1 3-channel
2292     @param P New camera matrix (3x3) or new projection matrix (3x4)
2293     @param undistorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> .
2294      */
2295     CV_EXPORTS_W void undistortPoints(InputArray distorted, OutputArray undistorted,
2296         InputArray K, InputArray D, InputArray R = noArray(), InputArray P  = noArray());
2297 
2298     /** @brief Computes undistortion and rectification maps for image transform by cv::remap(). If D is empty zero
2299     distortion is used, if R or P is empty identity matrixes are used.
2300 
2301     @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
2302     @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
2303     @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
2304     1-channel or 1x1 3-channel
2305     @param P New camera matrix (3x3) or new projection matrix (3x4)
2306     @param size Undistorted image size.
2307     @param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2 . See convertMaps()
2308     for details.
2309     @param map1 The first output map.
2310     @param map2 The second output map.
2311      */
2312     CV_EXPORTS_W void initUndistortRectifyMap(InputArray K, InputArray D, InputArray R, InputArray P,
2313         const cv::Size& size, int m1type, OutputArray map1, OutputArray map2);
2314 
2315     /** @brief Transforms an image to compensate for fisheye lens distortion.
2316 
2317     @param distorted image with fisheye lens distortion.
2318     @param undistorted Output image with compensated fisheye lens distortion.
2319     @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
2320     @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
2321     @param Knew Camera matrix of the distorted image. By default, it is the identity matrix but you
2322     may additionally scale and shift the result by using a different matrix.
2323     @param new_size
2324 
2325     The function transforms an image to compensate radial and tangential lens distortion.
2326 
2327     The function is simply a combination of fisheye::initUndistortRectifyMap (with unity R ) and remap
2328     (with bilinear interpolation). See the former function for details of the transformation being
2329     performed.
2330 
2331     See below the results of undistortImage.
2332        -   a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3,
2333             k_4, k_5, k_6) of distortion were optimized under calibration)
2334         -   b\) result of fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2,
2335             k_3, k_4) of fisheye distortion were optimized under calibration)
2336         -   c\) original image was captured with fisheye lens
2337 
2338     Pictures a) and b) almost the same. But if we consider points of image located far from the center
2339     of image, we can notice that on image a) these points are distorted.
2340 
2341     ![image](pics/fisheye_undistorted.jpg)
2342      */
2343     CV_EXPORTS_W void undistortImage(InputArray distorted, OutputArray undistorted,
2344         InputArray K, InputArray D, InputArray Knew = cv::noArray(), const Size& new_size = Size());
2345 
2346     /** @brief Estimates new camera matrix for undistortion or rectification.
2347 
2348     @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$.
2349     @param image_size
2350     @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
2351     @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
2352     1-channel or 1x1 3-channel
2353     @param P New camera matrix (3x3) or new projection matrix (3x4)
2354     @param balance Sets the new focal length in range between the min focal length and the max focal
2355     length. Balance is in range of [0, 1].
2356     @param new_size
2357     @param fov_scale Divisor for new focal length.
2358      */
2359     CV_EXPORTS_W void estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R,
2360         OutputArray P, double balance = 0.0, const Size& new_size = Size(), double fov_scale = 1.0);
2361 
2362     /** @brief Performs camera calibaration
2363 
2364     @param objectPoints vector of vectors of calibration pattern points in the calibration pattern
2365     coordinate space.
2366     @param imagePoints vector of vectors of the projections of calibration pattern points.
2367     imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to
2368     objectPoints[i].size() for each i.
2369     @param image_size Size of the image used only to initialize the intrinsic camera matrix.
2370     @param K Output 3x3 floating-point camera matrix
2371     \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If
2372     fisheye::CALIB_USE_INTRINSIC_GUESS/ is specified, some or all of fx, fy, cx, cy must be
2373     initialized before calling the function.
2374     @param D Output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$.
2375     @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view.
2376     That is, each k-th rotation vector together with the corresponding k-th translation vector (see
2377     the next output parameter description) brings the calibration pattern from the model coordinate
2378     space (in which object points are specified) to the world coordinate space, that is, a real
2379     position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).
2380     @param tvecs Output vector of translation vectors estimated for each pattern view.
2381     @param flags Different flags that may be zero or a combination of the following values:
2382     -   **fisheye::CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of
2383     fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
2384     center ( imageSize is used), and focal distances are computed in a least-squares fashion.
2385     -   **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration
2386     of intrinsic optimization.
2387     -   **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number.
2388     -   **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero.
2389     -   **fisheye::CALIB_FIX_K1..fisheye::CALIB_FIX_K4** Selected distortion coefficients
2390     are set to zeros and stay zero.
2391     -   **fisheye::CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global
2392 optimization. It stays at the center or at a different location specified when CALIB_USE_INTRINSIC_GUESS is set too.
2393     @param criteria Termination criteria for the iterative optimization algorithm.
2394      */
2395     CV_EXPORTS_W double calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, const Size& image_size,
2396         InputOutputArray K, InputOutputArray D, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = 0,
2397             TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
2398 
2399     /** @brief Stereo rectification for fisheye camera model
2400 
2401     @param K1 First camera matrix.
2402     @param D1 First camera distortion parameters.
2403     @param K2 Second camera matrix.
2404     @param D2 Second camera distortion parameters.
2405     @param imageSize Size of the image used for stereo calibration.
2406     @param R Rotation matrix between the coordinate systems of the first and the second
2407     cameras.
2408     @param tvec Translation vector between coordinate systems of the cameras.
2409     @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera.
2410     @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera.
2411     @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
2412     camera.
2413     @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
2414     camera.
2415     @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ).
2416     @param flags Operation flags that may be zero or CALIB_ZERO_DISPARITY . If the flag is set,
2417     the function makes the principal points of each camera have the same pixel coordinates in the
2418     rectified views. And if the flag is not set, the function may still shift the images in the
2419     horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
2420     useful image area.
2421     @param newImageSize New image resolution after rectification. The same size should be passed to
2422     initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
2423     is passed (default), it is set to the original imageSize . Setting it to larger value can help you
2424     preserve details in the original image, especially when there is a big radial distortion.
2425     @param balance Sets the new focal length in range between the min focal length and the max focal
2426     length. Balance is in range of [0, 1].
2427     @param fov_scale Divisor for new focal length.
2428      */
2429     CV_EXPORTS_W void stereoRectify(InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size &imageSize, InputArray R, InputArray tvec,
2430         OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size &newImageSize = Size(),
2431         double balance = 0.0, double fov_scale = 1.0);
2432 
2433     /** @brief Performs stereo calibration
2434 
2435     @param objectPoints Vector of vectors of the calibration pattern points.
2436     @param imagePoints1 Vector of vectors of the projections of the calibration pattern points,
2437     observed by the first camera.
2438     @param imagePoints2 Vector of vectors of the projections of the calibration pattern points,
2439     observed by the second camera.
2440     @param K1 Input/output first camera matrix:
2441     \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If
2442     any of fisheye::CALIB_USE_INTRINSIC_GUESS , fisheye::CALIB_FIX_INTRINSIC are specified,
2443     some or all of the matrix components must be initialized.
2444     @param D1 Input/output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$ of 4 elements.
2445     @param K2 Input/output second camera matrix. The parameter is similar to K1 .
2446     @param D2 Input/output lens distortion coefficients for the second camera. The parameter is
2447     similar to D1 .
2448     @param imageSize Size of the image used only to initialize intrinsic camera matrix.
2449     @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems.
2450     @param T Output translation vector between the coordinate systems of the cameras.
2451     @param flags Different flags that may be zero or a combination of the following values:
2452     -   **fisheye::CALIB_FIX_INTRINSIC** Fix K1, K2? and D1, D2? so that only R, T matrices
2453     are estimated.
2454     -   **fisheye::CALIB_USE_INTRINSIC_GUESS** K1, K2 contains valid initial values of
2455     fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
2456     center (imageSize is used), and focal distances are computed in a least-squares fashion.
2457     -   **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration
2458     of intrinsic optimization.
2459     -   **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number.
2460     -   **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero.
2461     -   **fisheye::CALIB_FIX_K1..4** Selected distortion coefficients are set to zeros and stay
2462     zero.
2463     @param criteria Termination criteria for the iterative optimization algorithm.
2464      */
2465     CV_EXPORTS_W double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
2466                                   InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize,
2467                                   OutputArray R, OutputArray T, int flags = fisheye::CALIB_FIX_INTRINSIC,
2468                                   TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
2469 
2470 //! @} calib3d_fisheye
2471 } // end namespace fisheye
2472 
2473 } //end namespace cv
2474 
2475 #ifndef DISABLE_OPENCV_24_COMPATIBILITY
2476 #include "opencv2/calib3d/calib3d_c.h"
2477 #endif
2478 
2479 #endif
2480