1 /*M/////////////////////////////////////////////////////////////////////////////////////// 2 // 3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 4 // 5 // By downloading, copying, installing or using the software you agree to this license. 6 // If you do not agree to this license, do not download, install, 7 // copy or use the software. 8 // 9 // 10 // License Agreement 11 // For Open Source Computer Vision Library 12 // 13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. 14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved. 15 // Copyright (C) 2013, OpenCV Foundation, all rights reserved. 16 // Third party copyrights are property of their respective owners. 17 // 18 // Redistribution and use in source and binary forms, with or without modification, 19 // are permitted provided that the following conditions are met: 20 // 21 // * Redistribution's of source code must retain the above copyright notice, 22 // this list of conditions and the following disclaimer. 23 // 24 // * Redistribution's in binary form must reproduce the above copyright notice, 25 // this list of conditions and the following disclaimer in the documentation 26 // and/or other materials provided with the distribution. 27 // 28 // * The name of the copyright holders may not be used to endorse or promote products 29 // derived from this software without specific prior written permission. 30 // 31 // This software is provided by the copyright holders and contributors "as is" and 32 // any express or implied warranties, including, but not limited to, the implied 33 // warranties of merchantability and fitness for a particular purpose are disclaimed. 34 // In no event shall the Intel Corporation or contributors be liable for any direct, 35 // indirect, incidental, special, exemplary, or consequential damages 36 // (including, but not limited to, procurement of substitute goods or services; 37 // loss of use, data, or profits; or business interruption) however caused 38 // and on any theory of liability, whether in contract, strict liability, 39 // or tort (including negligence or otherwise) arising in any way out of 40 // the use of this software, even if advised of the possibility of such damage. 41 // 42 //M*/ 43 44 #ifndef OPENCV_CALIB3D_HPP 45 #define OPENCV_CALIB3D_HPP 46 47 #include "opencv2/core.hpp" 48 #include "opencv2/features2d.hpp" 49 #include "opencv2/core/affine.hpp" 50 51 /** 52 @defgroup calib3d Camera Calibration and 3D Reconstruction 53 54 The functions in this section use a so-called pinhole camera model. In this model, a scene view is 55 formed by projecting 3D points into the image plane using a perspective transformation. 56 57 \f[s \; m' = A [R|t] M'\f] 58 59 or 60 61 \f[s \vecthree{u}{v}{1} = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1} 62 \begin{bmatrix} 63 r_{11} & r_{12} & r_{13} & t_1 \\ 64 r_{21} & r_{22} & r_{23} & t_2 \\ 65 r_{31} & r_{32} & r_{33} & t_3 66 \end{bmatrix} 67 \begin{bmatrix} 68 X \\ 69 Y \\ 70 Z \\ 71 1 72 \end{bmatrix}\f] 73 74 where: 75 76 - \f$(X, Y, Z)\f$ are the coordinates of a 3D point in the world coordinate space 77 - \f$(u, v)\f$ are the coordinates of the projection point in pixels 78 - \f$A\f$ is a camera matrix, or a matrix of intrinsic parameters 79 - \f$(cx, cy)\f$ is a principal point that is usually at the image center 80 - \f$fx, fy\f$ are the focal lengths expressed in pixel units. 81 82 Thus, if an image from the camera is scaled by a factor, all of these parameters should be scaled 83 (multiplied/divided, respectively) by the same factor. The matrix of intrinsic parameters does not 84 depend on the scene viewed. So, once estimated, it can be re-used as long as the focal length is 85 fixed (in case of zoom lens). The joint rotation-translation matrix \f$[R|t]\f$ is called a matrix of 86 extrinsic parameters. It is used to describe the camera motion around a static scene, or vice versa, 87 rigid motion of an object in front of a still camera. That is, \f$[R|t]\f$ translates coordinates of a 88 point \f$(X, Y, Z)\f$ to a coordinate system, fixed with respect to the camera. The transformation above 89 is equivalent to the following (when \f$z \ne 0\f$ ): 90 91 \f[\begin{array}{l} 92 \vecthree{x}{y}{z} = R \vecthree{X}{Y}{Z} + t \\ 93 x' = x/z \\ 94 y' = y/z \\ 95 u = f_x*x' + c_x \\ 96 v = f_y*y' + c_y 97 \end{array}\f] 98 99 The following figure illustrates the pinhole camera model. 100 101  102 103 Real lenses usually have some distortion, mostly radial distortion and slight tangential distortion. 104 So, the above model is extended as: 105 106 \f[\begin{array}{l} 107 \vecthree{x}{y}{z} = R \vecthree{X}{Y}{Z} + t \\ 108 x' = x/z \\ 109 y' = y/z \\ 110 x'' = x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + 2 p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4 \\ 111 y'' = y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6} + p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\ 112 \text{where} \quad r^2 = x'^2 + y'^2 \\ 113 u = f_x*x'' + c_x \\ 114 v = f_y*y'' + c_y 115 \end{array}\f] 116 117 \f$k_1\f$, \f$k_2\f$, \f$k_3\f$, \f$k_4\f$, \f$k_5\f$, and \f$k_6\f$ are radial distortion coefficients. \f$p_1\f$ and \f$p_2\f$ are 118 tangential distortion coefficients. \f$s_1\f$, \f$s_2\f$, \f$s_3\f$, and \f$s_4\f$, are the thin prism distortion 119 coefficients. Higher-order coefficients are not considered in OpenCV. 120 121 The next figures show two common types of radial distortion: barrel distortion (typically \f$ k_1 < 0 \f$) and pincushion distortion (typically \f$ k_1 > 0 \f$). 122 123  124  125 126 In some cases the image sensor may be tilted in order to focus an oblique plane in front of the 127 camera (Scheimpfug condition). This can be useful for particle image velocimetry (PIV) or 128 triangulation with a laser fan. The tilt causes a perspective distortion of \f$x''\f$ and 129 \f$y''\f$. This distortion can be modelled in the following way, see e.g. @cite Louhichi07. 130 131 \f[\begin{array}{l} 132 s\vecthree{x'''}{y'''}{1} = 133 \vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}(\tau_x, \tau_y)} 134 {0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)} 135 {0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\ 136 u = f_x*x''' + c_x \\ 137 v = f_y*y''' + c_y 138 \end{array}\f] 139 140 where the matrix \f$R(\tau_x, \tau_y)\f$ is defined by two rotations with angular parameter \f$\tau_x\f$ 141 and \f$\tau_y\f$, respectively, 142 143 \f[ 144 R(\tau_x, \tau_y) = 145 \vecthreethree{\cos(\tau_y)}{0}{-\sin(\tau_y)}{0}{1}{0}{\sin(\tau_y)}{0}{\cos(\tau_y)} 146 \vecthreethree{1}{0}{0}{0}{\cos(\tau_x)}{\sin(\tau_x)}{0}{-\sin(\tau_x)}{\cos(\tau_x)} = 147 \vecthreethree{\cos(\tau_y)}{\sin(\tau_y)\sin(\tau_x)}{-\sin(\tau_y)\cos(\tau_x)} 148 {0}{\cos(\tau_x)}{\sin(\tau_x)} 149 {\sin(\tau_y)}{-\cos(\tau_y)\sin(\tau_x)}{\cos(\tau_y)\cos(\tau_x)}. 150 \f] 151 152 In the functions below the coefficients are passed or returned as 153 154 \f[(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f] 155 156 vector. That is, if the vector contains four elements, it means that \f$k_3=0\f$ . The distortion 157 coefficients do not depend on the scene viewed. Thus, they also belong to the intrinsic camera 158 parameters. And they remain the same regardless of the captured image resolution. If, for example, a 159 camera has been calibrated on images of 320 x 240 resolution, absolutely the same distortion 160 coefficients can be used for 640 x 480 images from the same camera while \f$f_x\f$, \f$f_y\f$, \f$c_x\f$, and 161 \f$c_y\f$ need to be scaled appropriately. 162 163 The functions below use the above model to do the following: 164 165 - Project 3D points to the image plane given intrinsic and extrinsic parameters. 166 - Compute extrinsic parameters given intrinsic parameters, a few 3D points, and their 167 projections. 168 - Estimate intrinsic and extrinsic camera parameters from several views of a known calibration 169 pattern (every view is described by several 3D-2D point correspondences). 170 - Estimate the relative position and orientation of the stereo camera "heads" and compute the 171 *rectification* transformation that makes the camera optical axes parallel. 172 173 @note 174 - A calibration sample for 3 cameras in horizontal position can be found at 175 opencv_source_code/samples/cpp/3calibration.cpp 176 - A calibration sample based on a sequence of images can be found at 177 opencv_source_code/samples/cpp/calibration.cpp 178 - A calibration sample in order to do 3D reconstruction can be found at 179 opencv_source_code/samples/cpp/build3dmodel.cpp 180 - A calibration sample of an artificially generated camera and chessboard patterns can be 181 found at opencv_source_code/samples/cpp/calibration_artificial.cpp 182 - A calibration example on stereo calibration can be found at 183 opencv_source_code/samples/cpp/stereo_calib.cpp 184 - A calibration example on stereo matching can be found at 185 opencv_source_code/samples/cpp/stereo_match.cpp 186 - (Python) A camera calibration sample can be found at 187 opencv_source_code/samples/python/calibrate.py 188 189 @{ 190 @defgroup calib3d_fisheye Fisheye camera model 191 192 Definitions: Let P be a point in 3D of coordinates X in the world reference frame (stored in the 193 matrix X) The coordinate vector of P in the camera reference frame is: 194 195 \f[Xc = R X + T\f] 196 197 where R is the rotation matrix corresponding to the rotation vector om: R = rodrigues(om); call x, y 198 and z the 3 coordinates of Xc: 199 200 \f[x = Xc_1 \\ y = Xc_2 \\ z = Xc_3\f] 201 202 The pinhole projection coordinates of P is [a; b] where 203 204 \f[a = x / z \ and \ b = y / z \\ r^2 = a^2 + b^2 \\ \theta = atan(r)\f] 205 206 Fisheye distortion: 207 208 \f[\theta_d = \theta (1 + k_1 \theta^2 + k_2 \theta^4 + k_3 \theta^6 + k_4 \theta^8)\f] 209 210 The distorted point coordinates are [x'; y'] where 211 212 \f[x' = (\theta_d / r) a \\ y' = (\theta_d / r) b \f] 213 214 Finally, conversion into pixel coordinates: The final pixel coordinates vector [u; v] where: 215 216 \f[u = f_x (x' + \alpha y') + c_x \\ 217 v = f_y y' + c_y\f] 218 219 @defgroup calib3d_c C API 220 221 @} 222 */ 223 224 namespace cv 225 { 226 227 //! @addtogroup calib3d 228 //! @{ 229 230 //! type of the robust estimation algorithm 231 enum { LMEDS = 4, //!< least-median of squares algorithm 232 RANSAC = 8, //!< RANSAC algorithm 233 RHO = 16 //!< RHO algorithm 234 }; 235 236 enum { SOLVEPNP_ITERATIVE = 0, 237 SOLVEPNP_EPNP = 1, //!< EPnP: Efficient Perspective-n-Point Camera Pose Estimation @cite lepetit2009epnp 238 SOLVEPNP_P3P = 2, //!< Complete Solution Classification for the Perspective-Three-Point Problem @cite gao2003complete 239 SOLVEPNP_DLS = 3, //!< A Direct Least-Squares (DLS) Method for PnP @cite hesch2011direct 240 SOLVEPNP_UPNP = 4, //!< Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation @cite penate2013exhaustive 241 SOLVEPNP_AP3P = 5, //!< An Efficient Algebraic Solution to the Perspective-Three-Point Problem @cite Ke17 242 SOLVEPNP_MAX_COUNT //!< Used for count 243 }; 244 245 enum { CALIB_CB_ADAPTIVE_THRESH = 1, 246 CALIB_CB_NORMALIZE_IMAGE = 2, 247 CALIB_CB_FILTER_QUADS = 4, 248 CALIB_CB_FAST_CHECK = 8 249 }; 250 251 enum { CALIB_CB_SYMMETRIC_GRID = 1, 252 CALIB_CB_ASYMMETRIC_GRID = 2, 253 CALIB_CB_CLUSTERING = 4 254 }; 255 256 enum { CALIB_USE_INTRINSIC_GUESS = 0x00001, 257 CALIB_FIX_ASPECT_RATIO = 0x00002, 258 CALIB_FIX_PRINCIPAL_POINT = 0x00004, 259 CALIB_ZERO_TANGENT_DIST = 0x00008, 260 CALIB_FIX_FOCAL_LENGTH = 0x00010, 261 CALIB_FIX_K1 = 0x00020, 262 CALIB_FIX_K2 = 0x00040, 263 CALIB_FIX_K3 = 0x00080, 264 CALIB_FIX_K4 = 0x00800, 265 CALIB_FIX_K5 = 0x01000, 266 CALIB_FIX_K6 = 0x02000, 267 CALIB_RATIONAL_MODEL = 0x04000, 268 CALIB_THIN_PRISM_MODEL = 0x08000, 269 CALIB_FIX_S1_S2_S3_S4 = 0x10000, 270 CALIB_TILTED_MODEL = 0x40000, 271 CALIB_FIX_TAUX_TAUY = 0x80000, 272 CALIB_USE_QR = 0x100000, //!< use QR instead of SVD decomposition for solving. Faster but potentially less precise 273 CALIB_FIX_TANGENT_DIST = 0x200000, 274 // only for stereo 275 CALIB_FIX_INTRINSIC = 0x00100, 276 CALIB_SAME_FOCAL_LENGTH = 0x00200, 277 // for stereo rectification 278 CALIB_ZERO_DISPARITY = 0x00400, 279 CALIB_USE_LU = (1 << 17), //!< use LU instead of SVD decomposition for solving. much faster but potentially less precise 280 CALIB_USE_EXTRINSIC_GUESS = (1 << 22), //!< for stereoCalibrate 281 }; 282 283 //! the algorithm for finding fundamental matrix 284 enum { FM_7POINT = 1, //!< 7-point algorithm 285 FM_8POINT = 2, //!< 8-point algorithm 286 FM_LMEDS = 4, //!< least-median algorithm. 7-point algorithm is used. 287 FM_RANSAC = 8 //!< RANSAC algorithm. It needs at least 15 points. 7-point algorithm is used. 288 }; 289 290 291 292 /** @brief Converts a rotation matrix to a rotation vector or vice versa. 293 294 @param src Input rotation vector (3x1 or 1x3) or rotation matrix (3x3). 295 @param dst Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively. 296 @param jacobian Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial 297 derivatives of the output array components with respect to the input array components. 298 299 \f[\begin{array}{l} \theta \leftarrow norm(r) \\ r \leftarrow r/ \theta \\ R = \cos{\theta} I + (1- \cos{\theta} ) r r^T + \sin{\theta} \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\f] 300 301 Inverse transformation can be also done easily, since 302 303 \f[\sin ( \theta ) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\f] 304 305 A rotation vector is a convenient and most compact representation of a rotation matrix (since any 306 rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry 307 optimization procedures like calibrateCamera, stereoCalibrate, or solvePnP . 308 */ 309 CV_EXPORTS_W void Rodrigues( InputArray src, OutputArray dst, OutputArray jacobian = noArray() ); 310 311 /** @example samples/cpp/tutorial_code/features2D/Homography/pose_from_homography.cpp 312 An example program about pose estimation from coplanar points 313 314 Check @ref tutorial_homography "the corresponding tutorial" for more details 315 */ 316 317 /** @brief Finds a perspective transformation between two planes. 318 319 @param srcPoints Coordinates of the points in the original plane, a matrix of the type CV_32FC2 320 or vector\<Point2f\> . 321 @param dstPoints Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or 322 a vector\<Point2f\> . 323 @param method Method used to compute a homography matrix. The following methods are possible: 324 - **0** - a regular method using all the points, i.e., the least squares method 325 - **RANSAC** - RANSAC-based robust method 326 - **LMEDS** - Least-Median robust method 327 - **RHO** - PROSAC-based robust method 328 @param ransacReprojThreshold Maximum allowed reprojection error to treat a point pair as an inlier 329 (used in the RANSAC and RHO methods only). That is, if 330 \f[\| \texttt{dstPoints} _i - \texttt{convertPointsHomogeneous} ( \texttt{H} * \texttt{srcPoints} _i) \|_2 > \texttt{ransacReprojThreshold}\f] 331 then the point \f$i\f$ is considered as an outlier. If srcPoints and dstPoints are measured in pixels, 332 it usually makes sense to set this parameter somewhere in the range of 1 to 10. 333 @param mask Optional output mask set by a robust method ( RANSAC or LMEDS ). Note that the input 334 mask values are ignored. 335 @param maxIters The maximum number of RANSAC iterations. 336 @param confidence Confidence level, between 0 and 1. 337 338 The function finds and returns the perspective transformation \f$H\f$ between the source and the 339 destination planes: 340 341 \f[s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\f] 342 343 so that the back-projection error 344 345 \f[\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\f] 346 347 is minimized. If the parameter method is set to the default value 0, the function uses all the point 348 pairs to compute an initial homography estimate with a simple least-squares scheme. 349 350 However, if not all of the point pairs ( \f$srcPoints_i\f$, \f$dstPoints_i\f$ ) fit the rigid perspective 351 transformation (that is, there are some outliers), this initial estimate will be poor. In this case, 352 you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different 353 random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix 354 using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the 355 computed homography (which is the number of inliers for RANSAC or the least median re-projection error for 356 LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and 357 the mask of inliers/outliers. 358 359 Regardless of the method, robust or not, the computed homography matrix is refined further (using 360 inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the 361 re-projection error even more. 362 363 The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to 364 distinguish inliers from outliers. The method LMeDS does not need any threshold but it works 365 correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the 366 noise is rather small, use the default method (method=0). 367 368 The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is 369 determined up to a scale. Thus, it is normalized so that \f$h_{33}=1\f$. Note that whenever an \f$H\f$ matrix 370 cannot be estimated, an empty one will be returned. 371 372 @sa 373 getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective, 374 perspectiveTransform 375 */ 376 CV_EXPORTS_W Mat findHomography( InputArray srcPoints, InputArray dstPoints, 377 int method = 0, double ransacReprojThreshold = 3, 378 OutputArray mask=noArray(), const int maxIters = 2000, 379 const double confidence = 0.995); 380 381 /** @overload */ 382 CV_EXPORTS Mat findHomography( InputArray srcPoints, InputArray dstPoints, 383 OutputArray mask, int method = 0, double ransacReprojThreshold = 3 ); 384 385 /** @brief Computes an RQ decomposition of 3x3 matrices. 386 387 @param src 3x3 input matrix. 388 @param mtxR Output 3x3 upper-triangular matrix. 389 @param mtxQ Output 3x3 orthogonal matrix. 390 @param Qx Optional output 3x3 rotation matrix around x-axis. 391 @param Qy Optional output 3x3 rotation matrix around y-axis. 392 @param Qz Optional output 3x3 rotation matrix around z-axis. 393 394 The function computes a RQ decomposition using the given rotations. This function is used in 395 decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera 396 and a rotation matrix. 397 398 It optionally returns three rotation matrices, one for each axis, and the three Euler angles in 399 degrees (as the return value) that could be used in OpenGL. Note, there is always more than one 400 sequence of rotations about the three principal axes that results in the same orientation of an 401 object, e.g. see @cite Slabaugh . Returned tree rotation matrices and corresponding three Euler angles 402 are only one of the possible solutions. 403 */ 404 CV_EXPORTS_W Vec3d RQDecomp3x3( InputArray src, OutputArray mtxR, OutputArray mtxQ, 405 OutputArray Qx = noArray(), 406 OutputArray Qy = noArray(), 407 OutputArray Qz = noArray()); 408 409 /** @brief Decomposes a projection matrix into a rotation matrix and a camera matrix. 410 411 @param projMatrix 3x4 input projection matrix P. 412 @param cameraMatrix Output 3x3 camera matrix K. 413 @param rotMatrix Output 3x3 external rotation matrix R. 414 @param transVect Output 4x1 translation vector T. 415 @param rotMatrixX Optional 3x3 rotation matrix around x-axis. 416 @param rotMatrixY Optional 3x3 rotation matrix around y-axis. 417 @param rotMatrixZ Optional 3x3 rotation matrix around z-axis. 418 @param eulerAngles Optional three-element vector containing three Euler angles of rotation in 419 degrees. 420 421 The function computes a decomposition of a projection matrix into a calibration and a rotation 422 matrix and the position of a camera. 423 424 It optionally returns three rotation matrices, one for each axis, and three Euler angles that could 425 be used in OpenGL. Note, there is always more than one sequence of rotations about the three 426 principal axes that results in the same orientation of an object, e.g. see @cite Slabaugh . Returned 427 tree rotation matrices and corresponding three Euler angles are only one of the possible solutions. 428 429 The function is based on RQDecomp3x3 . 430 */ 431 CV_EXPORTS_W void decomposeProjectionMatrix( InputArray projMatrix, OutputArray cameraMatrix, 432 OutputArray rotMatrix, OutputArray transVect, 433 OutputArray rotMatrixX = noArray(), 434 OutputArray rotMatrixY = noArray(), 435 OutputArray rotMatrixZ = noArray(), 436 OutputArray eulerAngles =noArray() ); 437 438 /** @brief Computes partial derivatives of the matrix product for each multiplied matrix. 439 440 @param A First multiplied matrix. 441 @param B Second multiplied matrix. 442 @param dABdA First output derivative matrix d(A\*B)/dA of size 443 \f$\texttt{A.rows*B.cols} \times {A.rows*A.cols}\f$ . 444 @param dABdB Second output derivative matrix d(A\*B)/dB of size 445 \f$\texttt{A.rows*B.cols} \times {B.rows*B.cols}\f$ . 446 447 The function computes partial derivatives of the elements of the matrix product \f$A*B\f$ with regard to 448 the elements of each of the two input matrices. The function is used to compute the Jacobian 449 matrices in stereoCalibrate but can also be used in any other similar optimization function. 450 */ 451 CV_EXPORTS_W void matMulDeriv( InputArray A, InputArray B, OutputArray dABdA, OutputArray dABdB ); 452 453 /** @brief Combines two rotation-and-shift transformations. 454 455 @param rvec1 First rotation vector. 456 @param tvec1 First translation vector. 457 @param rvec2 Second rotation vector. 458 @param tvec2 Second translation vector. 459 @param rvec3 Output rotation vector of the superposition. 460 @param tvec3 Output translation vector of the superposition. 461 @param dr3dr1 462 @param dr3dt1 463 @param dr3dr2 464 @param dr3dt2 465 @param dt3dr1 466 @param dt3dt1 467 @param dt3dr2 468 @param dt3dt2 Optional output derivatives of rvec3 or tvec3 with regard to rvec1, rvec2, tvec1 and 469 tvec2, respectively. 470 471 The functions compute: 472 473 \f[\begin{array}{l} \texttt{rvec3} = \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right ) \\ \texttt{tvec3} = \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \texttt{tvec1} + \texttt{tvec2} \end{array} ,\f] 474 475 where \f$\mathrm{rodrigues}\f$ denotes a rotation vector to a rotation matrix transformation, and 476 \f$\mathrm{rodrigues}^{-1}\f$ denotes the inverse transformation. See Rodrigues for details. 477 478 Also, the functions can compute the derivatives of the output vectors with regards to the input 479 vectors (see matMulDeriv ). The functions are used inside stereoCalibrate but can also be used in 480 your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a 481 function that contains a matrix multiplication. 482 */ 483 CV_EXPORTS_W void composeRT( InputArray rvec1, InputArray tvec1, 484 InputArray rvec2, InputArray tvec2, 485 OutputArray rvec3, OutputArray tvec3, 486 OutputArray dr3dr1 = noArray(), OutputArray dr3dt1 = noArray(), 487 OutputArray dr3dr2 = noArray(), OutputArray dr3dt2 = noArray(), 488 OutputArray dt3dr1 = noArray(), OutputArray dt3dt1 = noArray(), 489 OutputArray dt3dr2 = noArray(), OutputArray dt3dt2 = noArray() ); 490 491 /** @brief Projects 3D points to an image plane. 492 493 @param objectPoints Array of object points, 3xN/Nx3 1-channel or 1xN/Nx1 3-channel (or 494 vector\<Point3f\> ), where N is the number of points in the view. 495 @param rvec Rotation vector. See Rodrigues for details. 496 @param tvec Translation vector. 497 @param cameraMatrix Camera matrix \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$ . 498 @param distCoeffs Input vector of distortion coefficients 499 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of 500 4, 5, 8, 12 or 14 elements. If the vector is empty, the zero distortion coefficients are assumed. 501 @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or 502 vector\<Point2f\> . 503 @param jacobian Optional output 2Nx(10+\<numDistCoeffs\>) jacobian matrix of derivatives of image 504 points with respect to components of the rotation vector, translation vector, focal lengths, 505 coordinates of the principal point and the distortion coefficients. In the old interface different 506 components of the jacobian are returned via different output parameters. 507 @param aspectRatio Optional "fixed aspect ratio" parameter. If the parameter is not 0, the 508 function assumes that the aspect ratio (*fx/fy*) is fixed and correspondingly adjusts the jacobian 509 matrix. 510 511 The function computes projections of 3D points to the image plane given intrinsic and extrinsic 512 camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of 513 image points coordinates (as functions of all the input parameters) with respect to the particular 514 parameters, intrinsic and/or extrinsic. The Jacobians are used during the global optimization in 515 calibrateCamera, solvePnP, and stereoCalibrate . The function itself can also be used to compute a 516 re-projection error given the current intrinsic and extrinsic parameters. 517 518 @note By setting rvec=tvec=(0,0,0) or by setting cameraMatrix to a 3x3 identity matrix, or by 519 passing zero distortion coefficients, you can get various useful partial cases of the function. This 520 means that you can compute the distorted coordinates for a sparse set of points or apply a 521 perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup. 522 */ 523 CV_EXPORTS_W void projectPoints( InputArray objectPoints, 524 InputArray rvec, InputArray tvec, 525 InputArray cameraMatrix, InputArray distCoeffs, 526 OutputArray imagePoints, 527 OutputArray jacobian = noArray(), 528 double aspectRatio = 0 ); 529 530 /** @example samples/cpp/tutorial_code/features2D/Homography/homography_from_camera_displacement.cpp 531 An example program about homography from the camera displacement 532 533 Check @ref tutorial_homography "the corresponding tutorial" for more details 534 */ 535 536 /** @brief Finds an object pose from 3D-2D point correspondences. 537 538 @param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 539 1xN/Nx1 3-channel, where N is the number of points. vector\<Point3f\> can be also passed here. 540 @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel, 541 where N is the number of points. vector\<Point2f\> can be also passed here. 542 @param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ . 543 @param distCoeffs Input vector of distortion coefficients 544 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of 545 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are 546 assumed. 547 @param rvec Output rotation vector (see @ref Rodrigues ) that, together with tvec , brings points from 548 the model coordinate system to the camera coordinate system. 549 @param tvec Output translation vector. 550 @param useExtrinsicGuess Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses 551 the provided rvec and tvec values as initial approximations of the rotation and translation 552 vectors, respectively, and further optimizes them. 553 @param flags Method for solving a PnP problem: 554 - **SOLVEPNP_ITERATIVE** Iterative method is based on Levenberg-Marquardt optimization. In 555 this case the function finds such a pose that minimizes reprojection error, that is the sum 556 of squared distances between the observed projections imagePoints and the projected (using 557 projectPoints ) objectPoints . 558 - **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang 559 "Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete). 560 In this case the function requires exactly four object and image points. 561 - **SOLVEPNP_AP3P** Method is based on the paper of T. Ke, S. Roumeliotis 562 "An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17). 563 In this case the function requires exactly four object and image points. 564 - **SOLVEPNP_EPNP** Method has been introduced by F.Moreno-Noguer, V.Lepetit and P.Fua in the 565 paper "EPnP: Efficient Perspective-n-Point Camera Pose Estimation" (@cite lepetit2009epnp). 566 - **SOLVEPNP_DLS** Method is based on the paper of Joel A. Hesch and Stergios I. Roumeliotis. 567 "A Direct Least-Squares (DLS) Method for PnP" (@cite hesch2011direct). 568 - **SOLVEPNP_UPNP** Method is based on the paper of A.Penate-Sanchez, J.Andrade-Cetto, 569 F.Moreno-Noguer. "Exhaustive Linearization for Robust Camera Pose and Focal Length 570 Estimation" (@cite penate2013exhaustive). In this case the function also estimates the parameters \f$f_x\f$ and \f$f_y\f$ 571 assuming that both have the same value. Then the cameraMatrix is updated with the estimated 572 focal length. 573 - **SOLVEPNP_AP3P** Method is based on the paper of Tong Ke and Stergios I. Roumeliotis. 574 "An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17). In this case the 575 function requires exactly four object and image points. 576 577 The function estimates the object pose given a set of object points, their corresponding image 578 projections, as well as the camera matrix and the distortion coefficients, see the figure below 579 (more precisely, the X-axis of the camera frame is pointing to the right, the Y-axis downward 580 and the Z-axis forward). 581 582  583 584 Points expressed in the world frame \f$ \bf{X}_w \f$ are projected into the image plane \f$ \left[ u, v \right] \f$ 585 using the perspective projection model \f$ \Pi \f$ and the camera intrinsic parameters matrix \f$ \bf{A} \f$: 586 587 \f[ 588 \begin{align*} 589 \begin{bmatrix} 590 u \\ 591 v \\ 592 1 593 \end{bmatrix} &= 594 \bf{A} \hspace{0.1em} \Pi \hspace{0.2em} ^{c}\bf{M}_w 595 \begin{bmatrix} 596 X_{w} \\ 597 Y_{w} \\ 598 Z_{w} \\ 599 1 600 \end{bmatrix} \\ 601 \begin{bmatrix} 602 u \\ 603 v \\ 604 1 605 \end{bmatrix} &= 606 \begin{bmatrix} 607 f_x & 0 & c_x \\ 608 0 & f_y & c_y \\ 609 0 & 0 & 1 610 \end{bmatrix} 611 \begin{bmatrix} 612 1 & 0 & 0 & 0 \\ 613 0 & 1 & 0 & 0 \\ 614 0 & 0 & 1 & 0 615 \end{bmatrix} 616 \begin{bmatrix} 617 r_{11} & r_{12} & r_{13} & t_x \\ 618 r_{21} & r_{22} & r_{23} & t_y \\ 619 r_{31} & r_{32} & r_{33} & t_z \\ 620 0 & 0 & 0 & 1 621 \end{bmatrix} 622 \begin{bmatrix} 623 X_{w} \\ 624 Y_{w} \\ 625 Z_{w} \\ 626 1 627 \end{bmatrix} 628 \end{align*} 629 \f] 630 631 The estimated pose is thus the rotation (`rvec`) and the translation (`tvec`) vectors that allow to transform 632 a 3D point expressed in the world frame into the camera frame: 633 634 \f[ 635 \begin{align*} 636 \begin{bmatrix} 637 X_c \\ 638 Y_c \\ 639 Z_c \\ 640 1 641 \end{bmatrix} &= 642 \hspace{0.2em} ^{c}\bf{M}_w 643 \begin{bmatrix} 644 X_{w} \\ 645 Y_{w} \\ 646 Z_{w} \\ 647 1 648 \end{bmatrix} \\ 649 \begin{bmatrix} 650 X_c \\ 651 Y_c \\ 652 Z_c \\ 653 1 654 \end{bmatrix} &= 655 \begin{bmatrix} 656 r_{11} & r_{12} & r_{13} & t_x \\ 657 r_{21} & r_{22} & r_{23} & t_y \\ 658 r_{31} & r_{32} & r_{33} & t_z \\ 659 0 & 0 & 0 & 1 660 \end{bmatrix} 661 \begin{bmatrix} 662 X_{w} \\ 663 Y_{w} \\ 664 Z_{w} \\ 665 1 666 \end{bmatrix} 667 \end{align*} 668 \f] 669 670 @note 671 - An example of how to use solvePnP for planar augmented reality can be found at 672 opencv_source_code/samples/python/plane_ar.py 673 - If you are using Python: 674 - Numpy array slices won't work as input because solvePnP requires contiguous 675 arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of 676 modules/calib3d/src/solvepnp.cpp version 2.4.9) 677 - The P3P algorithm requires image points to be in an array of shape (N,1,2) due 678 to its calling of cv::undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9) 679 which requires 2-channel information. 680 - Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of 681 it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints = 682 np.ascontiguousarray(D[:,:2]).reshape((N,1,2)) 683 - The methods **SOLVEPNP_DLS** and **SOLVEPNP_UPNP** cannot be used as the current implementations are 684 unstable and sometimes give completely wrong results. If you pass one of these two 685 flags, **SOLVEPNP_EPNP** method will be used instead. 686 - The minimum number of points is 4 in the general case. In the case of **SOLVEPNP_P3P** and **SOLVEPNP_AP3P** 687 methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions 688 of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error). 689 - With **SOLVEPNP_ITERATIVE** method and `useExtrinsicGuess=true`, the minimum number of points is 3 (3 points 690 are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the 691 global solution to converge. 692 */ 693 CV_EXPORTS_W bool solvePnP( InputArray objectPoints, InputArray imagePoints, 694 InputArray cameraMatrix, InputArray distCoeffs, 695 OutputArray rvec, OutputArray tvec, 696 bool useExtrinsicGuess = false, int flags = SOLVEPNP_ITERATIVE ); 697 698 /** @brief Finds an object pose from 3D-2D point correspondences using the RANSAC scheme. 699 700 @param objectPoints Array of object points in the object coordinate space, Nx3 1-channel or 701 1xN/Nx1 3-channel, where N is the number of points. vector\<Point3f\> can be also passed here. 702 @param imagePoints Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel, 703 where N is the number of points. vector\<Point2f\> can be also passed here. 704 @param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ . 705 @param distCoeffs Input vector of distortion coefficients 706 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of 707 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are 708 assumed. 709 @param rvec Output rotation vector (see Rodrigues ) that, together with tvec , brings points from 710 the model coordinate system to the camera coordinate system. 711 @param tvec Output translation vector. 712 @param useExtrinsicGuess Parameter used for SOLVEPNP_ITERATIVE. If true (1), the function uses 713 the provided rvec and tvec values as initial approximations of the rotation and translation 714 vectors, respectively, and further optimizes them. 715 @param iterationsCount Number of iterations. 716 @param reprojectionError Inlier threshold value used by the RANSAC procedure. The parameter value 717 is the maximum allowed distance between the observed and computed point projections to consider it 718 an inlier. 719 @param confidence The probability that the algorithm produces a useful result. 720 @param inliers Output vector that contains indices of inliers in objectPoints and imagePoints . 721 @param flags Method for solving a PnP problem (see solvePnP ). 722 723 The function estimates an object pose given a set of object points, their corresponding image 724 projections, as well as the camera matrix and the distortion coefficients. This function finds such 725 a pose that minimizes reprojection error, that is, the sum of squared distances between the observed 726 projections imagePoints and the projected (using projectPoints ) objectPoints. The use of RANSAC 727 makes the function resistant to outliers. 728 729 @note 730 - An example of how to use solvePNPRansac for object detection can be found at 731 opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/ 732 - The default method used to estimate the camera pose for the Minimal Sample Sets step 733 is #SOLVEPNP_EPNP. Exceptions are: 734 - if you choose #SOLVEPNP_P3P or #SOLVEPNP_AP3P, these methods will be used. 735 - if the number of input points is equal to 4, #SOLVEPNP_P3P is used. 736 - The method used to estimate the camera pose using all the inliers is defined by the 737 flags parameters unless it is equal to #SOLVEPNP_P3P or #SOLVEPNP_AP3P. In this case, 738 the method #SOLVEPNP_EPNP will be used instead. 739 */ 740 CV_EXPORTS_W bool solvePnPRansac( InputArray objectPoints, InputArray imagePoints, 741 InputArray cameraMatrix, InputArray distCoeffs, 742 OutputArray rvec, OutputArray tvec, 743 bool useExtrinsicGuess = false, int iterationsCount = 100, 744 float reprojectionError = 8.0, double confidence = 0.99, 745 OutputArray inliers = noArray(), int flags = SOLVEPNP_ITERATIVE ); 746 /** @brief Finds an object pose from 3 3D-2D point correspondences. 747 748 @param objectPoints Array of object points in the object coordinate space, 3x3 1-channel or 749 1x3/3x1 3-channel. vector\<Point3f\> can be also passed here. 750 @param imagePoints Array of corresponding image points, 3x2 1-channel or 1x3/3x1 2-channel. 751 vector\<Point2f\> can be also passed here. 752 @param cameraMatrix Input camera matrix \f$A = \vecthreethree{fx}{0}{cx}{0}{fy}{cy}{0}{0}{1}\f$ . 753 @param distCoeffs Input vector of distortion coefficients 754 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of 755 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are 756 assumed. 757 @param rvecs Output rotation vectors (see Rodrigues ) that, together with tvecs , brings points from 758 the model coordinate system to the camera coordinate system. A P3P problem has up to 4 solutions. 759 @param tvecs Output translation vectors. 760 @param flags Method for solving a P3P problem: 761 - **SOLVEPNP_P3P** Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang 762 "Complete Solution Classification for the Perspective-Three-Point Problem" (@cite gao2003complete). 763 - **SOLVEPNP_AP3P** Method is based on the paper of Tong Ke and Stergios I. Roumeliotis. 764 "An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (@cite Ke17). 765 766 The function estimates the object pose given 3 object points, their corresponding image 767 projections, as well as the camera matrix and the distortion coefficients. 768 */ 769 CV_EXPORTS_W int solveP3P( InputArray objectPoints, InputArray imagePoints, 770 InputArray cameraMatrix, InputArray distCoeffs, 771 OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, 772 int flags ); 773 774 /** @brief Finds an initial camera matrix from 3D-2D point correspondences. 775 776 @param objectPoints Vector of vectors of the calibration pattern points in the calibration pattern 777 coordinate space. In the old interface all the per-view vectors are concatenated. See 778 calibrateCamera for details. 779 @param imagePoints Vector of vectors of the projections of the calibration pattern points. In the 780 old interface all the per-view vectors are concatenated. 781 @param imageSize Image size in pixels used to initialize the principal point. 782 @param aspectRatio If it is zero or negative, both \f$f_x\f$ and \f$f_y\f$ are estimated independently. 783 Otherwise, \f$f_x = f_y * \texttt{aspectRatio}\f$ . 784 785 The function estimates and returns an initial camera matrix for the camera calibration process. 786 Currently, the function only supports planar calibration patterns, which are patterns where each 787 object point has z-coordinate =0. 788 */ 789 CV_EXPORTS_W Mat initCameraMatrix2D( InputArrayOfArrays objectPoints, 790 InputArrayOfArrays imagePoints, 791 Size imageSize, double aspectRatio = 1.0 ); 792 793 /** @brief Finds the positions of internal corners of the chessboard. 794 795 @param image Source chessboard view. It must be an 8-bit grayscale or color image. 796 @param patternSize Number of inner corners per a chessboard row and column 797 ( patternSize = cvSize(points_per_row,points_per_colum) = cvSize(columns,rows) ). 798 @param corners Output array of detected corners. 799 @param flags Various operation flags that can be zero or a combination of the following values: 800 - **CALIB_CB_ADAPTIVE_THRESH** Use adaptive thresholding to convert the image to black 801 and white, rather than a fixed threshold level (computed from the average image brightness). 802 - **CALIB_CB_NORMALIZE_IMAGE** Normalize the image gamma with equalizeHist before 803 applying fixed or adaptive thresholding. 804 - **CALIB_CB_FILTER_QUADS** Use additional criteria (like contour area, perimeter, 805 square-like shape) to filter out false quads extracted at the contour retrieval stage. 806 - **CALIB_CB_FAST_CHECK** Run a fast check on the image that looks for chessboard corners, 807 and shortcut the call if none is found. This can drastically speed up the call in the 808 degenerate condition when no chessboard is observed. 809 810 The function attempts to determine whether the input image is a view of the chessboard pattern and 811 locate the internal chessboard corners. The function returns a non-zero value if all of the corners 812 are found and they are placed in a certain order (row by row, left to right in every row). 813 Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example, 814 a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black 815 squares touch each other. The detected coordinates are approximate, and to determine their positions 816 more accurately, the function calls cornerSubPix. You also may use the function cornerSubPix with 817 different parameters if returned coordinates are not accurate enough. 818 819 Sample usage of detecting and drawing chessboard corners: : 820 @code 821 Size patternsize(8,6); //interior number of corners 822 Mat gray = ....; //source image 823 vector<Point2f> corners; //this will be filled by the detected corners 824 825 //CALIB_CB_FAST_CHECK saves a lot of time on images 826 //that do not contain any chessboard corners 827 bool patternfound = findChessboardCorners(gray, patternsize, corners, 828 CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE 829 + CALIB_CB_FAST_CHECK); 830 831 if(patternfound) 832 cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1), 833 TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1)); 834 835 drawChessboardCorners(img, patternsize, Mat(corners), patternfound); 836 @endcode 837 @note The function requires white space (like a square-thick border, the wider the better) around 838 the board to make the detection more robust in various environments. Otherwise, if there is no 839 border and the background is dark, the outer black squares cannot be segmented properly and so the 840 square grouping and ordering algorithm fails. 841 */ 842 CV_EXPORTS_W bool findChessboardCorners( InputArray image, Size patternSize, OutputArray corners, 843 int flags = CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE ); 844 845 //! finds subpixel-accurate positions of the chessboard corners 846 CV_EXPORTS bool find4QuadCornerSubpix( InputArray img, InputOutputArray corners, Size region_size ); 847 848 /** @brief Renders the detected chessboard corners. 849 850 @param image Destination image. It must be an 8-bit color image. 851 @param patternSize Number of inner corners per a chessboard row and column 852 (patternSize = cv::Size(points_per_row,points_per_column)). 853 @param corners Array of detected corners, the output of findChessboardCorners. 854 @param patternWasFound Parameter indicating whether the complete board was found or not. The 855 return value of findChessboardCorners should be passed here. 856 857 The function draws individual chessboard corners detected either as red circles if the board was not 858 found, or as colored corners connected with lines if the board was found. 859 */ 860 CV_EXPORTS_W void drawChessboardCorners( InputOutputArray image, Size patternSize, 861 InputArray corners, bool patternWasFound ); 862 863 /** @brief Draw axes of the world/object coordinate system from pose estimation. @sa solvePnP 864 865 @param image Input/output image. It must have 1 or 3 channels. The number of channels is not altered. 866 @param cameraMatrix Input 3x3 floating-point matrix of camera intrinsic parameters. 867 \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ 868 @param distCoeffs Input vector of distortion coefficients 869 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of 870 4, 5, 8, 12 or 14 elements. If the vector is empty, the zero distortion coefficients are assumed. 871 @param rvec Rotation vector (see @ref Rodrigues ) that, together with tvec , brings points from 872 the model coordinate system to the camera coordinate system. 873 @param tvec Translation vector. 874 @param length Length of the painted axes in the same unit than tvec (usually in meters). 875 @param thickness Line thickness of the painted axes. 876 877 This function draws the axes of the world/object coordinate system w.r.t. to the camera frame. 878 OX is drawn in red, OY in green and OZ in blue. 879 */ 880 CV_EXPORTS_W void drawFrameAxes(InputOutputArray image, InputArray cameraMatrix, InputArray distCoeffs, 881 InputArray rvec, InputArray tvec, float length, int thickness=3); 882 883 struct CV_EXPORTS_W_SIMPLE CirclesGridFinderParameters 884 { 885 CV_WRAP CirclesGridFinderParameters(); 886 CV_PROP_RW cv::Size2f densityNeighborhoodSize; 887 CV_PROP_RW float minDensity; 888 CV_PROP_RW int kmeansAttempts; 889 CV_PROP_RW int minDistanceToAddKeypoint; 890 CV_PROP_RW int keypointScale; 891 CV_PROP_RW float minGraphConfidence; 892 CV_PROP_RW float vertexGain; 893 CV_PROP_RW float vertexPenalty; 894 CV_PROP_RW float existingVertexGain; 895 CV_PROP_RW float edgeGain; 896 CV_PROP_RW float edgePenalty; 897 CV_PROP_RW float convexHullFactor; 898 CV_PROP_RW float minRNGEdgeSwitchDist; 899 900 enum GridType 901 { 902 SYMMETRIC_GRID, ASYMMETRIC_GRID 903 }; 904 GridType gridType; 905 }; 906 907 struct CV_EXPORTS_W_SIMPLE CirclesGridFinderParameters2 : public CirclesGridFinderParameters 908 { 909 CV_WRAP CirclesGridFinderParameters2(); 910 911 CV_PROP_RW float squareSize; //!< Distance between two adjacent points. Used by CALIB_CB_CLUSTERING. 912 CV_PROP_RW float maxRectifiedDistance; //!< Max deviation from predicion. Used by CALIB_CB_CLUSTERING. 913 }; 914 915 /** @brief Finds centers in the grid of circles. 916 917 @param image grid view of input circles; it must be an 8-bit grayscale or color image. 918 @param patternSize number of circles per row and column 919 ( patternSize = Size(points_per_row, points_per_colum) ). 920 @param centers output array of detected centers. 921 @param flags various operation flags that can be one of the following values: 922 - **CALIB_CB_SYMMETRIC_GRID** uses symmetric pattern of circles. 923 - **CALIB_CB_ASYMMETRIC_GRID** uses asymmetric pattern of circles. 924 - **CALIB_CB_CLUSTERING** uses a special algorithm for grid detection. It is more robust to 925 perspective distortions but much more sensitive to background clutter. 926 @param blobDetector feature detector that finds blobs like dark circles on light background. 927 @param parameters struct for finding circles in a grid pattern. 928 929 The function attempts to determine whether the input image contains a grid of circles. If it is, the 930 function locates centers of the circles. The function returns a non-zero value if all of the centers 931 have been found and they have been placed in a certain order (row by row, left to right in every 932 row). Otherwise, if the function fails to find all the corners or reorder them, it returns 0. 933 934 Sample usage of detecting and drawing the centers of circles: : 935 @code 936 Size patternsize(7,7); //number of centers 937 Mat gray = ....; //source image 938 vector<Point2f> centers; //this will be filled by the detected centers 939 940 bool patternfound = findCirclesGrid(gray, patternsize, centers); 941 942 drawChessboardCorners(img, patternsize, Mat(centers), patternfound); 943 @endcode 944 @note The function requires white space (like a square-thick border, the wider the better) around 945 the board to make the detection more robust in various environments. 946 */ 947 CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize, 948 OutputArray centers, int flags, 949 const Ptr<FeatureDetector> &blobDetector, 950 CirclesGridFinderParameters parameters); 951 952 /** @overload */ 953 CV_EXPORTS_W bool findCirclesGrid2( InputArray image, Size patternSize, 954 OutputArray centers, int flags, 955 const Ptr<FeatureDetector> &blobDetector, 956 CirclesGridFinderParameters2 parameters); 957 958 /** @overload */ 959 CV_EXPORTS_W bool findCirclesGrid( InputArray image, Size patternSize, 960 OutputArray centers, int flags = CALIB_CB_SYMMETRIC_GRID, 961 const Ptr<FeatureDetector> &blobDetector = SimpleBlobDetector::create()); 962 963 /** @brief Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern. 964 965 @param objectPoints In the new interface it is a vector of vectors of calibration pattern points in 966 the calibration pattern coordinate space (e.g. std::vector<std::vector<cv::Vec3f>>). The outer 967 vector contains as many elements as the number of the pattern views. If the same calibration pattern 968 is shown in each view and it is fully visible, all the vectors will be the same. Although, it is 969 possible to use partially occluded patterns, or even different patterns in different views. Then, 970 the vectors will be different. The points are 3D, but since they are in a pattern coordinate system, 971 then, if the rig is planar, it may make sense to put the model to a XY coordinate plane so that 972 Z-coordinate of each input object point is 0. 973 In the old interface all the vectors of object points from different views are concatenated 974 together. 975 @param imagePoints In the new interface it is a vector of vectors of the projections of calibration 976 pattern points (e.g. std::vector<std::vector<cv::Vec2f>>). imagePoints.size() and 977 objectPoints.size() and imagePoints[i].size() must be equal to objectPoints[i].size() for each i. 978 In the old interface all the vectors of object points from different views are concatenated 979 together. 980 @param imageSize Size of the image used only to initialize the intrinsic camera matrix. 981 @param cameraMatrix Output 3x3 floating-point camera matrix 982 \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If CV\_CALIB\_USE\_INTRINSIC\_GUESS 983 and/or CALIB_FIX_ASPECT_RATIO are specified, some or all of fx, fy, cx, cy must be 984 initialized before calling the function. 985 @param distCoeffs Output vector of distortion coefficients 986 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of 987 4, 5, 8, 12 or 14 elements. 988 @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view 989 (e.g. std::vector<cv::Mat>>). That is, each k-th rotation vector together with the corresponding 990 k-th translation vector (see the next output parameter description) brings the calibration pattern 991 from the model coordinate space (in which object points are specified) to the world coordinate 992 space, that is, a real position of the calibration pattern in the k-th pattern view (k=0.. *M* -1). 993 @param tvecs Output vector of translation vectors estimated for each pattern view. 994 @param stdDeviationsIntrinsics Output vector of standard deviations estimated for intrinsic parameters. 995 Order of deviations values: 996 \f$(f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3, 997 s_4, \tau_x, \tau_y)\f$ If one of parameters is not estimated, it's deviation is equals to zero. 998 @param stdDeviationsExtrinsics Output vector of standard deviations estimated for extrinsic parameters. 999 Order of deviations values: \f$(R_1, T_1, \dotsc , R_M, T_M)\f$ where M is number of pattern views, 1000 \f$R_i, T_i\f$ are concatenated 1x3 vectors. 1001 @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view. 1002 @param flags Different flags that may be zero or a combination of the following values: 1003 - **CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of 1004 fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image 1005 center ( imageSize is used), and focal distances are computed in a least-squares fashion. 1006 Note, that if intrinsic parameters are known, there is no need to use this function just to 1007 estimate extrinsic parameters. Use solvePnP instead. 1008 - **CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global 1009 optimization. It stays at the center or at a different location specified when 1010 CALIB_USE_INTRINSIC_GUESS is set too. 1011 - **CALIB_FIX_ASPECT_RATIO** The functions considers only fy as a free parameter. The 1012 ratio fx/fy stays the same as in the input cameraMatrix . When 1013 CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are 1014 ignored, only their ratio is computed and used further. 1015 - **CALIB_ZERO_TANGENT_DIST** Tangential distortion coefficients \f$(p_1, p_2)\f$ are set 1016 to zeros and stay zero. 1017 - **CALIB_FIX_K1,...,CALIB_FIX_K6** The corresponding radial distortion 1018 coefficient is not changed during the optimization. If CALIB_USE_INTRINSIC_GUESS is 1019 set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0. 1020 - **CALIB_RATIONAL_MODEL** Coefficients k4, k5, and k6 are enabled. To provide the 1021 backward compatibility, this extra flag should be explicitly specified to make the 1022 calibration function use the rational model and return 8 coefficients. If the flag is not 1023 set, the function computes and returns only 5 distortion coefficients. 1024 - **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the 1025 backward compatibility, this extra flag should be explicitly specified to make the 1026 calibration function use the thin prism model and return 12 coefficients. If the flag is not 1027 set, the function computes and returns only 5 distortion coefficients. 1028 - **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during 1029 the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the 1030 supplied distCoeffs matrix is used. Otherwise, it is set to 0. 1031 - **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the 1032 backward compatibility, this extra flag should be explicitly specified to make the 1033 calibration function use the tilted sensor model and return 14 coefficients. If the flag is not 1034 set, the function computes and returns only 5 distortion coefficients. 1035 - **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during 1036 the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the 1037 supplied distCoeffs matrix is used. Otherwise, it is set to 0. 1038 @param criteria Termination criteria for the iterative optimization algorithm. 1039 1040 @return the overall RMS re-projection error. 1041 1042 The function estimates the intrinsic camera parameters and extrinsic parameters for each of the 1043 views. The algorithm is based on @cite Zhang2000 and @cite BouguetMCT . The coordinates of 3D object 1044 points and their corresponding 2D projections in each view must be specified. That may be achieved 1045 by using an object with a known geometry and easily detectable feature points. Such an object is 1046 called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as 1047 a calibration rig (see findChessboardCorners ). Currently, initialization of intrinsic parameters 1048 (when CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration 1049 patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also 1050 be used as long as initial cameraMatrix is provided. 1051 1052 The algorithm performs the following steps: 1053 1054 - Compute the initial intrinsic parameters (the option only available for planar calibration 1055 patterns) or read them from the input parameters. The distortion coefficients are all set to 1056 zeros initially unless some of CALIB_FIX_K? are specified. 1057 1058 - Estimate the initial camera pose as if the intrinsic parameters have been already known. This is 1059 done using solvePnP . 1060 1061 - Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error, 1062 that is, the total sum of squared distances between the observed feature points imagePoints and 1063 the projected (using the current estimates for camera parameters and the poses) object points 1064 objectPoints. See projectPoints for details. 1065 1066 @note 1067 If you use a non-square (=non-NxN) grid and findChessboardCorners for calibration, and 1068 calibrateCamera returns bad values (zero distortion coefficients, an image center very far from 1069 (w/2-0.5,h/2-0.5), and/or large differences between \f$f_x\f$ and \f$f_y\f$ (ratios of 10:1 or more)), 1070 then you have probably used patternSize=cvSize(rows,cols) instead of using 1071 patternSize=cvSize(cols,rows) in findChessboardCorners . 1072 1073 @sa 1074 findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort 1075 */ 1076 CV_EXPORTS_AS(calibrateCameraExtended) double calibrateCamera( InputArrayOfArrays objectPoints, 1077 InputArrayOfArrays imagePoints, Size imageSize, 1078 InputOutputArray cameraMatrix, InputOutputArray distCoeffs, 1079 OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, 1080 OutputArray stdDeviationsIntrinsics, 1081 OutputArray stdDeviationsExtrinsics, 1082 OutputArray perViewErrors, 1083 int flags = 0, TermCriteria criteria = TermCriteria( 1084 TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) ); 1085 1086 /** @overload double calibrateCamera( InputArrayOfArrays objectPoints, 1087 InputArrayOfArrays imagePoints, Size imageSize, 1088 InputOutputArray cameraMatrix, InputOutputArray distCoeffs, 1089 OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, 1090 OutputArray stdDeviations, OutputArray perViewErrors, 1091 int flags = 0, TermCriteria criteria = TermCriteria( 1092 TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) ) 1093 */ 1094 CV_EXPORTS_W double calibrateCamera( InputArrayOfArrays objectPoints, 1095 InputArrayOfArrays imagePoints, Size imageSize, 1096 InputOutputArray cameraMatrix, InputOutputArray distCoeffs, 1097 OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, 1098 int flags = 0, TermCriteria criteria = TermCriteria( 1099 TermCriteria::COUNT + TermCriteria::EPS, 30, DBL_EPSILON) ); 1100 1101 /** @brief Computes useful camera characteristics from the camera matrix. 1102 1103 @param cameraMatrix Input camera matrix that can be estimated by calibrateCamera or 1104 stereoCalibrate . 1105 @param imageSize Input image size in pixels. 1106 @param apertureWidth Physical width in mm of the sensor. 1107 @param apertureHeight Physical height in mm of the sensor. 1108 @param fovx Output field of view in degrees along the horizontal sensor axis. 1109 @param fovy Output field of view in degrees along the vertical sensor axis. 1110 @param focalLength Focal length of the lens in mm. 1111 @param principalPoint Principal point in mm. 1112 @param aspectRatio \f$f_y/f_x\f$ 1113 1114 The function computes various useful camera characteristics from the previously estimated camera 1115 matrix. 1116 1117 @note 1118 Do keep in mind that the unity measure 'mm' stands for whatever unit of measure one chooses for 1119 the chessboard pitch (it can thus be any value). 1120 */ 1121 CV_EXPORTS_W void calibrationMatrixValues( InputArray cameraMatrix, Size imageSize, 1122 double apertureWidth, double apertureHeight, 1123 CV_OUT double& fovx, CV_OUT double& fovy, 1124 CV_OUT double& focalLength, CV_OUT Point2d& principalPoint, 1125 CV_OUT double& aspectRatio ); 1126 1127 /** @brief Calibrates the stereo camera. 1128 1129 @param objectPoints Vector of vectors of the calibration pattern points. 1130 @param imagePoints1 Vector of vectors of the projections of the calibration pattern points, 1131 observed by the first camera. 1132 @param imagePoints2 Vector of vectors of the projections of the calibration pattern points, 1133 observed by the second camera. 1134 @param cameraMatrix1 Input/output first camera matrix: 1135 \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If 1136 any of CALIB_USE_INTRINSIC_GUESS , CALIB_FIX_ASPECT_RATIO , 1137 CALIB_FIX_INTRINSIC , or CALIB_FIX_FOCAL_LENGTH are specified, some or all of the 1138 matrix components must be initialized. See the flags description for details. 1139 @param distCoeffs1 Input/output vector of distortion coefficients 1140 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of 1141 4, 5, 8, 12 or 14 elements. The output vector length depends on the flags. 1142 @param cameraMatrix2 Input/output second camera matrix. The parameter is similar to cameraMatrix1 1143 @param distCoeffs2 Input/output lens distortion coefficients for the second camera. The parameter 1144 is similar to distCoeffs1 . 1145 @param imageSize Size of the image used only to initialize intrinsic camera matrix. 1146 @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems. 1147 @param T Output translation vector between the coordinate systems of the cameras. 1148 @param E Output essential matrix. 1149 @param F Output fundamental matrix. 1150 @param perViewErrors Output vector of the RMS re-projection error estimated for each pattern view. 1151 @param flags Different flags that may be zero or a combination of the following values: 1152 - **CALIB_FIX_INTRINSIC** Fix cameraMatrix? and distCoeffs? so that only R, T, E , and F 1153 matrices are estimated. 1154 - **CALIB_USE_INTRINSIC_GUESS** Optimize some or all of the intrinsic parameters 1155 according to the specified flags. Initial values are provided by the user. 1156 - **CALIB_USE_EXTRINSIC_GUESS** R, T contain valid initial values that are optimized further. 1157 Otherwise R, T are initialized to the median value of the pattern views (each dimension separately). 1158 - **CALIB_FIX_PRINCIPAL_POINT** Fix the principal points during the optimization. 1159 - **CALIB_FIX_FOCAL_LENGTH** Fix \f$f^{(j)}_x\f$ and \f$f^{(j)}_y\f$ . 1160 - **CALIB_FIX_ASPECT_RATIO** Optimize \f$f^{(j)}_y\f$ . Fix the ratio \f$f^{(j)}_x/f^{(j)}_y\f$ 1161 . 1162 - **CALIB_SAME_FOCAL_LENGTH** Enforce \f$f^{(0)}_x=f^{(1)}_x\f$ and \f$f^{(0)}_y=f^{(1)}_y\f$ . 1163 - **CALIB_ZERO_TANGENT_DIST** Set tangential distortion coefficients for each camera to 1164 zeros and fix there. 1165 - **CALIB_FIX_K1,...,CALIB_FIX_K6** Do not change the corresponding radial 1166 distortion coefficient during the optimization. If CALIB_USE_INTRINSIC_GUESS is set, 1167 the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0. 1168 - **CALIB_RATIONAL_MODEL** Enable coefficients k4, k5, and k6. To provide the backward 1169 compatibility, this extra flag should be explicitly specified to make the calibration 1170 function use the rational model and return 8 coefficients. If the flag is not set, the 1171 function computes and returns only 5 distortion coefficients. 1172 - **CALIB_THIN_PRISM_MODEL** Coefficients s1, s2, s3 and s4 are enabled. To provide the 1173 backward compatibility, this extra flag should be explicitly specified to make the 1174 calibration function use the thin prism model and return 12 coefficients. If the flag is not 1175 set, the function computes and returns only 5 distortion coefficients. 1176 - **CALIB_FIX_S1_S2_S3_S4** The thin prism distortion coefficients are not changed during 1177 the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the 1178 supplied distCoeffs matrix is used. Otherwise, it is set to 0. 1179 - **CALIB_TILTED_MODEL** Coefficients tauX and tauY are enabled. To provide the 1180 backward compatibility, this extra flag should be explicitly specified to make the 1181 calibration function use the tilted sensor model and return 14 coefficients. If the flag is not 1182 set, the function computes and returns only 5 distortion coefficients. 1183 - **CALIB_FIX_TAUX_TAUY** The coefficients of the tilted sensor model are not changed during 1184 the optimization. If CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the 1185 supplied distCoeffs matrix is used. Otherwise, it is set to 0. 1186 @param criteria Termination criteria for the iterative optimization algorithm. 1187 1188 The function estimates transformation between two cameras making a stereo pair. If you have a stereo 1189 camera where the relative position and orientation of two cameras is fixed, and if you computed 1190 poses of an object relative to the first camera and to the second camera, (R1, T1) and (R2, T2), 1191 respectively (this can be done with solvePnP ), then those poses definitely relate to each other. 1192 This means that, given ( \f$R_1\f$,\f$T_1\f$ ), it should be possible to compute ( \f$R_2\f$,\f$T_2\f$ ). You only 1193 need to know the position and orientation of the second camera relative to the first camera. This is 1194 what the described function does. It computes ( \f$R\f$,\f$T\f$ ) so that: 1195 1196 \f[R_2=R*R_1\f] 1197 \f[T_2=R*T_1 + T,\f] 1198 1199 Optionally, it computes the essential matrix E: 1200 1201 \f[E= \vecthreethree{0}{-T_2}{T_1}{T_2}{0}{-T_0}{-T_1}{T_0}{0} *R\f] 1202 1203 where \f$T_i\f$ are components of the translation vector \f$T\f$ : \f$T=[T_0, T_1, T_2]^T\f$ . And the function 1204 can also compute the fundamental matrix F: 1205 1206 \f[F = cameraMatrix2^{-T} E cameraMatrix1^{-1}\f] 1207 1208 Besides the stereo-related information, the function can also perform a full calibration of each of 1209 two cameras. However, due to the high dimensionality of the parameter space and noise in the input 1210 data, the function can diverge from the correct solution. If the intrinsic parameters can be 1211 estimated with high accuracy for each of the cameras individually (for example, using 1212 calibrateCamera ), you are recommended to do so and then pass CALIB_FIX_INTRINSIC flag to the 1213 function along with the computed intrinsic parameters. Otherwise, if all the parameters are 1214 estimated at once, it makes sense to restrict some parameters, for example, pass 1215 CALIB_SAME_FOCAL_LENGTH and CALIB_ZERO_TANGENT_DIST flags, which is usually a 1216 reasonable assumption. 1217 1218 Similarly to calibrateCamera , the function minimizes the total re-projection error for all the 1219 points in all the available views from both cameras. The function returns the final value of the 1220 re-projection error. 1221 */ 1222 CV_EXPORTS_AS(stereoCalibrateExtended) double stereoCalibrate( InputArrayOfArrays objectPoints, 1223 InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2, 1224 InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1, 1225 InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2, 1226 Size imageSize, InputOutputArray R,InputOutputArray T, OutputArray E, OutputArray F, 1227 OutputArray perViewErrors, int flags = CALIB_FIX_INTRINSIC, 1228 TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) ); 1229 1230 /// @overload 1231 CV_EXPORTS_W double stereoCalibrate( InputArrayOfArrays objectPoints, 1232 InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2, 1233 InputOutputArray cameraMatrix1, InputOutputArray distCoeffs1, 1234 InputOutputArray cameraMatrix2, InputOutputArray distCoeffs2, 1235 Size imageSize, OutputArray R,OutputArray T, OutputArray E, OutputArray F, 1236 int flags = CALIB_FIX_INTRINSIC, 1237 TermCriteria criteria = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 1e-6) ); 1238 1239 /** @brief Computes rectification transforms for each head of a calibrated stereo camera. 1240 1241 @param cameraMatrix1 First camera matrix. 1242 @param distCoeffs1 First camera distortion parameters. 1243 @param cameraMatrix2 Second camera matrix. 1244 @param distCoeffs2 Second camera distortion parameters. 1245 @param imageSize Size of the image used for stereo calibration. 1246 @param R Rotation matrix between the coordinate systems of the first and the second cameras. 1247 @param T Translation vector between coordinate systems of the cameras. 1248 @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera. 1249 @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera. 1250 @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first 1251 camera. 1252 @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second 1253 camera. 1254 @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ). 1255 @param flags Operation flags that may be zero or CALIB_ZERO_DISPARITY . If the flag is set, 1256 the function makes the principal points of each camera have the same pixel coordinates in the 1257 rectified views. And if the flag is not set, the function may still shift the images in the 1258 horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the 1259 useful image area. 1260 @param alpha Free scaling parameter. If it is -1 or absent, the function performs the default 1261 scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified 1262 images are zoomed and shifted so that only valid pixels are visible (no black areas after 1263 rectification). alpha=1 means that the rectified image is decimated and shifted so that all the 1264 pixels from the original images from the cameras are retained in the rectified images (no source 1265 image pixels are lost). Obviously, any intermediate value yields an intermediate result between 1266 those two extreme cases. 1267 @param newImageSize New image resolution after rectification. The same size should be passed to 1268 initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0) 1269 is passed (default), it is set to the original imageSize . Setting it to larger value can help you 1270 preserve details in the original image, especially when there is a big radial distortion. 1271 @param validPixROI1 Optional output rectangles inside the rectified images where all the pixels 1272 are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller 1273 (see the picture below). 1274 @param validPixROI2 Optional output rectangles inside the rectified images where all the pixels 1275 are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller 1276 (see the picture below). 1277 1278 The function computes the rotation matrices for each camera that (virtually) make both camera image 1279 planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies 1280 the dense stereo correspondence problem. The function takes the matrices computed by stereoCalibrate 1281 as input. As output, it provides two rotation matrices and also two projection matrices in the new 1282 coordinates. The function distinguishes the following two cases: 1283 1284 - **Horizontal stereo**: the first and the second camera views are shifted relative to each other 1285 mainly along the x axis (with possible small vertical shift). In the rectified images, the 1286 corresponding epipolar lines in the left and right cameras are horizontal and have the same 1287 y-coordinate. P1 and P2 look like: 1288 1289 \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx_1 & 0 \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f] 1290 1291 \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx_2 & T_x*f \\ 0 & f & cy & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f] 1292 1293 where \f$T_x\f$ is a horizontal shift between the cameras and \f$cx_1=cx_2\f$ if 1294 CALIB_ZERO_DISPARITY is set. 1295 1296 - **Vertical stereo**: the first and the second camera views are shifted relative to each other 1297 mainly in vertical direction (and probably a bit in the horizontal direction too). The epipolar 1298 lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like: 1299 1300 \f[\texttt{P1} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}\f] 1301 1302 \f[\texttt{P2} = \begin{bmatrix} f & 0 & cx & 0 \\ 0 & f & cy_2 & T_y*f \\ 0 & 0 & 1 & 0 \end{bmatrix} ,\f] 1303 1304 where \f$T_y\f$ is a vertical shift between the cameras and \f$cy_1=cy_2\f$ if CALIB_ZERO_DISPARITY is 1305 set. 1306 1307 As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera 1308 matrices. The matrices, together with R1 and R2 , can then be passed to initUndistortRectifyMap to 1309 initialize the rectification map for each camera. 1310 1311 See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through 1312 the corresponding image regions. This means that the images are well rectified, which is what most 1313 stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that 1314 their interiors are all valid pixels. 1315 1316  1317 */ 1318 CV_EXPORTS_W void stereoRectify( InputArray cameraMatrix1, InputArray distCoeffs1, 1319 InputArray cameraMatrix2, InputArray distCoeffs2, 1320 Size imageSize, InputArray R, InputArray T, 1321 OutputArray R1, OutputArray R2, 1322 OutputArray P1, OutputArray P2, 1323 OutputArray Q, int flags = CALIB_ZERO_DISPARITY, 1324 double alpha = -1, Size newImageSize = Size(), 1325 CV_OUT Rect* validPixROI1 = 0, CV_OUT Rect* validPixROI2 = 0 ); 1326 1327 /** @brief Computes a rectification transform for an uncalibrated stereo camera. 1328 1329 @param points1 Array of feature points in the first image. 1330 @param points2 The corresponding points in the second image. The same formats as in 1331 findFundamentalMat are supported. 1332 @param F Input fundamental matrix. It can be computed from the same set of point pairs using 1333 findFundamentalMat . 1334 @param imgSize Size of the image. 1335 @param H1 Output rectification homography matrix for the first image. 1336 @param H2 Output rectification homography matrix for the second image. 1337 @param threshold Optional threshold used to filter out the outliers. If the parameter is greater 1338 than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points 1339 for which \f$|\texttt{points2[i]}^T*\texttt{F}*\texttt{points1[i]}|>\texttt{threshold}\f$ ) are 1340 rejected prior to computing the homographies. Otherwise, all the points are considered inliers. 1341 1342 The function computes the rectification transformations without knowing intrinsic parameters of the 1343 cameras and their relative position in the space, which explains the suffix "uncalibrated". Another 1344 related difference from stereoRectify is that the function outputs not the rectification 1345 transformations in the object (3D) space, but the planar perspective transformations encoded by the 1346 homography matrices H1 and H2 . The function implements the algorithm @cite Hartley99 . 1347 1348 @note 1349 While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily 1350 depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion, 1351 it would be better to correct it before computing the fundamental matrix and calling this 1352 function. For example, distortion coefficients can be estimated for each head of stereo camera 1353 separately by using calibrateCamera . Then, the images can be corrected using undistort , or 1354 just the point coordinates can be corrected with undistortPoints . 1355 */ 1356 CV_EXPORTS_W bool stereoRectifyUncalibrated( InputArray points1, InputArray points2, 1357 InputArray F, Size imgSize, 1358 OutputArray H1, OutputArray H2, 1359 double threshold = 5 ); 1360 1361 //! computes the rectification transformations for 3-head camera, where all the heads are on the same line. 1362 CV_EXPORTS_W float rectify3Collinear( InputArray cameraMatrix1, InputArray distCoeffs1, 1363 InputArray cameraMatrix2, InputArray distCoeffs2, 1364 InputArray cameraMatrix3, InputArray distCoeffs3, 1365 InputArrayOfArrays imgpt1, InputArrayOfArrays imgpt3, 1366 Size imageSize, InputArray R12, InputArray T12, 1367 InputArray R13, InputArray T13, 1368 OutputArray R1, OutputArray R2, OutputArray R3, 1369 OutputArray P1, OutputArray P2, OutputArray P3, 1370 OutputArray Q, double alpha, Size newImgSize, 1371 CV_OUT Rect* roi1, CV_OUT Rect* roi2, int flags ); 1372 1373 /** @brief Returns the new camera matrix based on the free scaling parameter. 1374 1375 @param cameraMatrix Input camera matrix. 1376 @param distCoeffs Input vector of distortion coefficients 1377 \f$(k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6 [, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\f$ of 1378 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are 1379 assumed. 1380 @param imageSize Original image size. 1381 @param alpha Free scaling parameter between 0 (when all the pixels in the undistorted image are 1382 valid) and 1 (when all the source image pixels are retained in the undistorted image). See 1383 stereoRectify for details. 1384 @param newImgSize Image size after rectification. By default, it is set to imageSize . 1385 @param validPixROI Optional output rectangle that outlines all-good-pixels region in the 1386 undistorted image. See roi1, roi2 description in stereoRectify . 1387 @param centerPrincipalPoint Optional flag that indicates whether in the new camera matrix the 1388 principal point should be at the image center or not. By default, the principal point is chosen to 1389 best fit a subset of the source image (determined by alpha) to the corrected image. 1390 @return new_camera_matrix Output new camera matrix. 1391 1392 The function computes and returns the optimal new camera matrix based on the free scaling parameter. 1393 By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original 1394 image pixels if there is valuable information in the corners alpha=1 , or get something in between. 1395 When alpha\>0 , the undistorted result is likely to have some black pixels corresponding to 1396 "virtual" pixels outside of the captured distorted image. The original camera matrix, distortion 1397 coefficients, the computed new camera matrix, and newImageSize should be passed to 1398 initUndistortRectifyMap to produce the maps for remap . 1399 */ 1400 CV_EXPORTS_W Mat getOptimalNewCameraMatrix( InputArray cameraMatrix, InputArray distCoeffs, 1401 Size imageSize, double alpha, Size newImgSize = Size(), 1402 CV_OUT Rect* validPixROI = 0, 1403 bool centerPrincipalPoint = false); 1404 1405 /** @brief Converts points from Euclidean to homogeneous space. 1406 1407 @param src Input vector of N-dimensional points. 1408 @param dst Output vector of N+1-dimensional points. 1409 1410 The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of 1411 point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1). 1412 */ 1413 CV_EXPORTS_W void convertPointsToHomogeneous( InputArray src, OutputArray dst ); 1414 1415 /** @brief Converts points from homogeneous to Euclidean space. 1416 1417 @param src Input vector of N-dimensional points. 1418 @param dst Output vector of N-1-dimensional points. 1419 1420 The function converts points homogeneous to Euclidean space using perspective projection. That is, 1421 each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the 1422 output point coordinates will be (0,0,0,...). 1423 */ 1424 CV_EXPORTS_W void convertPointsFromHomogeneous( InputArray src, OutputArray dst ); 1425 1426 /** @brief Converts points to/from homogeneous coordinates. 1427 1428 @param src Input array or vector of 2D, 3D, or 4D points. 1429 @param dst Output vector of 2D, 3D, or 4D points. 1430 1431 The function converts 2D or 3D points from/to homogeneous coordinates by calling either 1432 convertPointsToHomogeneous or convertPointsFromHomogeneous. 1433 1434 @note The function is obsolete. Use one of the previous two functions instead. 1435 */ 1436 CV_EXPORTS void convertPointsHomogeneous( InputArray src, OutputArray dst ); 1437 1438 /** @brief Calculates a fundamental matrix from the corresponding points in two images. 1439 1440 @param points1 Array of N points from the first image. The point coordinates should be 1441 floating-point (single or double precision). 1442 @param points2 Array of the second image points of the same size and format as points1 . 1443 @param method Method for computing a fundamental matrix. 1444 - **CV_FM_7POINT** for a 7-point algorithm. \f$N = 7\f$ 1445 - **CV_FM_8POINT** for an 8-point algorithm. \f$N \ge 8\f$ 1446 - **CV_FM_RANSAC** for the RANSAC algorithm. \f$N \ge 8\f$ 1447 - **CV_FM_LMEDS** for the LMedS algorithm. \f$N \ge 8\f$ 1448 @param ransacReprojThreshold Parameter used only for RANSAC. It is the maximum distance from a point to an epipolar 1449 line in pixels, beyond which the point is considered an outlier and is not used for computing the 1450 final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the 1451 point localization, image resolution, and the image noise. 1452 @param confidence Parameter used for the RANSAC and LMedS methods only. It specifies a desirable level 1453 of confidence (probability) that the estimated matrix is correct. 1454 @param mask 1455 1456 The epipolar geometry is described by the following equation: 1457 1458 \f[[p_2; 1]^T F [p_1; 1] = 0\f] 1459 1460 where \f$F\f$ is a fundamental matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the 1461 second images, respectively. 1462 1463 The function calculates the fundamental matrix using one of four methods listed above and returns 1464 the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point 1465 algorithm, the function may return up to 3 solutions ( \f$9 \times 3\f$ matrix that stores all 3 1466 matrices sequentially). 1467 1468 The calculated fundamental matrix may be passed further to computeCorrespondEpilines that finds the 1469 epipolar lines corresponding to the specified points. It can also be passed to 1470 stereoRectifyUncalibrated to compute the rectification transformation. : 1471 @code 1472 // Example. Estimation of fundamental matrix using the RANSAC algorithm 1473 int point_count = 100; 1474 vector<Point2f> points1(point_count); 1475 vector<Point2f> points2(point_count); 1476 1477 // initialize the points here ... 1478 for( int i = 0; i < point_count; i++ ) 1479 { 1480 points1[i] = ...; 1481 points2[i] = ...; 1482 } 1483 1484 Mat fundamental_matrix = 1485 findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99); 1486 @endcode 1487 */ 1488 CV_EXPORTS_W Mat findFundamentalMat( InputArray points1, InputArray points2, 1489 int method = FM_RANSAC, 1490 double ransacReprojThreshold = 3., double confidence = 0.99, 1491 OutputArray mask = noArray() ); 1492 1493 /** @overload */ 1494 CV_EXPORTS Mat findFundamentalMat( InputArray points1, InputArray points2, 1495 OutputArray mask, int method = FM_RANSAC, 1496 double ransacReprojThreshold = 3., double confidence = 0.99 ); 1497 1498 /** @brief Calculates an essential matrix from the corresponding points in two images. 1499 1500 @param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should 1501 be floating-point (single or double precision). 1502 @param points2 Array of the second image points of the same size and format as points1 . 1503 @param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . 1504 Note that this function assumes that points1 and points2 are feature points from cameras with the 1505 same camera matrix. 1506 @param method Method for computing an essential matrix. 1507 - **RANSAC** for the RANSAC algorithm. 1508 - **LMEDS** for the LMedS algorithm. 1509 @param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of 1510 confidence (probability) that the estimated matrix is correct. 1511 @param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar 1512 line in pixels, beyond which the point is considered an outlier and is not used for computing the 1513 final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the 1514 point localization, image resolution, and the image noise. 1515 @param mask Output array of N elements, every element of which is set to 0 for outliers and to 1 1516 for the other points. The array is computed only in the RANSAC and LMedS methods. 1517 1518 This function estimates essential matrix based on the five-point algorithm solver in @cite Nister03 . 1519 @cite SteweniusCFS is also a related. The epipolar geometry is described by the following equation: 1520 1521 \f[[p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\f] 1522 1523 where \f$E\f$ is an essential matrix, \f$p_1\f$ and \f$p_2\f$ are corresponding points in the first and the 1524 second images, respectively. The result of this function may be passed further to 1525 decomposeEssentialMat or recoverPose to recover the relative pose between cameras. 1526 */ 1527 CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2, 1528 InputArray cameraMatrix, int method = RANSAC, 1529 double prob = 0.999, double threshold = 1.0, 1530 OutputArray mask = noArray() ); 1531 1532 /** @overload 1533 @param points1 Array of N (N \>= 5) 2D points from the first image. The point coordinates should 1534 be floating-point (single or double precision). 1535 @param points2 Array of the second image points of the same size and format as points1 . 1536 @param focal focal length of the camera. Note that this function assumes that points1 and points2 1537 are feature points from cameras with same focal length and principal point. 1538 @param pp principal point of the camera. 1539 @param method Method for computing a fundamental matrix. 1540 - **RANSAC** for the RANSAC algorithm. 1541 - **LMEDS** for the LMedS algorithm. 1542 @param threshold Parameter used for RANSAC. It is the maximum distance from a point to an epipolar 1543 line in pixels, beyond which the point is considered an outlier and is not used for computing the 1544 final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the 1545 point localization, image resolution, and the image noise. 1546 @param prob Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of 1547 confidence (probability) that the estimated matrix is correct. 1548 @param mask Output array of N elements, every element of which is set to 0 for outliers and to 1 1549 for the other points. The array is computed only in the RANSAC and LMedS methods. 1550 1551 This function differs from the one above that it computes camera matrix from focal length and 1552 principal point: 1553 1554 \f[K = 1555 \begin{bmatrix} 1556 f & 0 & x_{pp} \\ 1557 0 & f & y_{pp} \\ 1558 0 & 0 & 1 1559 \end{bmatrix}\f] 1560 */ 1561 CV_EXPORTS_W Mat findEssentialMat( InputArray points1, InputArray points2, 1562 double focal = 1.0, Point2d pp = Point2d(0, 0), 1563 int method = RANSAC, double prob = 0.999, 1564 double threshold = 1.0, OutputArray mask = noArray() ); 1565 1566 /** @brief Decompose an essential matrix to possible rotations and translation. 1567 1568 @param E The input essential matrix. 1569 @param R1 One possible rotation matrix. 1570 @param R2 Another possible rotation matrix. 1571 @param t One possible translation. 1572 1573 This function decompose an essential matrix E using svd decomposition @cite HartleyZ00 . Generally 4 1574 possible poses exists for a given E. They are \f$[R_1, t]\f$, \f$[R_1, -t]\f$, \f$[R_2, t]\f$, \f$[R_2, -t]\f$. By 1575 decomposing E, you can only get the direction of the translation, so the function returns unit t. 1576 */ 1577 CV_EXPORTS_W void decomposeEssentialMat( InputArray E, OutputArray R1, OutputArray R2, OutputArray t ); 1578 1579 /** @brief Recover relative camera rotation and translation from an estimated essential matrix and the 1580 corresponding points in two images, using cheirality check. Returns the number of inliers which pass 1581 the check. 1582 1583 @param E The input essential matrix. 1584 @param points1 Array of N 2D points from the first image. The point coordinates should be 1585 floating-point (single or double precision). 1586 @param points2 Array of the second image points of the same size and format as points1 . 1587 @param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . 1588 Note that this function assumes that points1 and points2 are feature points from cameras with the 1589 same camera matrix. 1590 @param R Recovered relative rotation. 1591 @param t Recovered relative translation. 1592 @param mask Input/output mask for inliers in points1 and points2. 1593 : If it is not empty, then it marks inliers in points1 and points2 for then given essential 1594 matrix E. Only these inliers will be used to recover pose. In the output mask only inliers 1595 which pass the cheirality check. 1596 This function decomposes an essential matrix using decomposeEssentialMat and then verifies possible 1597 pose hypotheses by doing cheirality check. The cheirality check basically means that the 1598 triangulated 3D points should have positive depth. Some details can be found in @cite Nister03 . 1599 1600 This function can be used to process output E and mask from findEssentialMat. In this scenario, 1601 points1 and points2 are the same input for findEssentialMat. : 1602 @code 1603 // Example. Estimation of fundamental matrix using the RANSAC algorithm 1604 int point_count = 100; 1605 vector<Point2f> points1(point_count); 1606 vector<Point2f> points2(point_count); 1607 1608 // initialize the points here ... 1609 for( int i = 0; i < point_count; i++ ) 1610 { 1611 points1[i] = ...; 1612 points2[i] = ...; 1613 } 1614 1615 // cametra matrix with both focal lengths = 1, and principal point = (0, 0) 1616 Mat cameraMatrix = Mat::eye(3, 3, CV_64F); 1617 1618 Mat E, R, t, mask; 1619 1620 E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask); 1621 recoverPose(E, points1, points2, cameraMatrix, R, t, mask); 1622 @endcode 1623 */ 1624 CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2, 1625 InputArray cameraMatrix, OutputArray R, OutputArray t, 1626 InputOutputArray mask = noArray() ); 1627 1628 /** @overload 1629 @param E The input essential matrix. 1630 @param points1 Array of N 2D points from the first image. The point coordinates should be 1631 floating-point (single or double precision). 1632 @param points2 Array of the second image points of the same size and format as points1 . 1633 @param R Recovered relative rotation. 1634 @param t Recovered relative translation. 1635 @param focal Focal length of the camera. Note that this function assumes that points1 and points2 1636 are feature points from cameras with same focal length and principal point. 1637 @param pp principal point of the camera. 1638 @param mask Input/output mask for inliers in points1 and points2. 1639 : If it is not empty, then it marks inliers in points1 and points2 for then given essential 1640 matrix E. Only these inliers will be used to recover pose. In the output mask only inliers 1641 which pass the cheirality check. 1642 1643 This function differs from the one above that it computes camera matrix from focal length and 1644 principal point: 1645 1646 \f[K = 1647 \begin{bmatrix} 1648 f & 0 & x_{pp} \\ 1649 0 & f & y_{pp} \\ 1650 0 & 0 & 1 1651 \end{bmatrix}\f] 1652 */ 1653 CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2, 1654 OutputArray R, OutputArray t, 1655 double focal = 1.0, Point2d pp = Point2d(0, 0), 1656 InputOutputArray mask = noArray() ); 1657 1658 /** @overload 1659 @param E The input essential matrix. 1660 @param points1 Array of N 2D points from the first image. The point coordinates should be 1661 floating-point (single or double precision). 1662 @param points2 Array of the second image points of the same size and format as points1. 1663 @param cameraMatrix Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . 1664 Note that this function assumes that points1 and points2 are feature points from cameras with the 1665 same camera matrix. 1666 @param R Recovered relative rotation. 1667 @param t Recovered relative translation. 1668 @param distanceThresh threshold distance which is used to filter out far away points (i.e. infinite points). 1669 @param mask Input/output mask for inliers in points1 and points2. 1670 : If it is not empty, then it marks inliers in points1 and points2 for then given essential 1671 matrix E. Only these inliers will be used to recover pose. In the output mask only inliers 1672 which pass the cheirality check. 1673 @param triangulatedPoints 3d points which were reconstructed by triangulation. 1674 */ 1675 1676 CV_EXPORTS_W int recoverPose( InputArray E, InputArray points1, InputArray points2, 1677 InputArray cameraMatrix, OutputArray R, OutputArray t, double distanceThresh, InputOutputArray mask = noArray(), 1678 OutputArray triangulatedPoints = noArray()); 1679 1680 /** @brief For points in an image of a stereo pair, computes the corresponding epilines in the other image. 1681 1682 @param points Input points. \f$N \times 1\f$ or \f$1 \times N\f$ matrix of type CV_32FC2 or 1683 vector\<Point2f\> . 1684 @param whichImage Index of the image (1 or 2) that contains the points . 1685 @param F Fundamental matrix that can be estimated using findFundamentalMat or stereoRectify . 1686 @param lines Output vector of the epipolar lines corresponding to the points in the other image. 1687 Each line \f$ax + by + c=0\f$ is encoded by 3 numbers \f$(a, b, c)\f$ . 1688 1689 For every point in one of the two images of a stereo pair, the function finds the equation of the 1690 corresponding epipolar line in the other image. 1691 1692 From the fundamental matrix definition (see findFundamentalMat ), line \f$l^{(2)}_i\f$ in the second 1693 image for the point \f$p^{(1)}_i\f$ in the first image (when whichImage=1 ) is computed as: 1694 1695 \f[l^{(2)}_i = F p^{(1)}_i\f] 1696 1697 And vice versa, when whichImage=2, \f$l^{(1)}_i\f$ is computed from \f$p^{(2)}_i\f$ as: 1698 1699 \f[l^{(1)}_i = F^T p^{(2)}_i\f] 1700 1701 Line coefficients are defined up to a scale. They are normalized so that \f$a_i^2+b_i^2=1\f$ . 1702 */ 1703 CV_EXPORTS_W void computeCorrespondEpilines( InputArray points, int whichImage, 1704 InputArray F, OutputArray lines ); 1705 1706 /** @brief Reconstructs points by triangulation. 1707 1708 @param projMatr1 3x4 projection matrix of the first camera. 1709 @param projMatr2 3x4 projection matrix of the second camera. 1710 @param projPoints1 2xN array of feature points in the first image. In case of c++ version it can 1711 be also a vector of feature points or two-channel matrix of size 1xN or Nx1. 1712 @param projPoints2 2xN array of corresponding points in the second image. In case of c++ version 1713 it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1. 1714 @param points4D 4xN array of reconstructed points in homogeneous coordinates. 1715 1716 The function reconstructs 3-dimensional points (in homogeneous coordinates) by using their 1717 observations with a stereo camera. Projections matrices can be obtained from stereoRectify. 1718 1719 @note 1720 Keep in mind that all input data should be of float type in order for this function to work. 1721 1722 @sa 1723 reprojectImageTo3D 1724 */ 1725 CV_EXPORTS_W void triangulatePoints( InputArray projMatr1, InputArray projMatr2, 1726 InputArray projPoints1, InputArray projPoints2, 1727 OutputArray points4D ); 1728 1729 /** @brief Refines coordinates of corresponding points. 1730 1731 @param F 3x3 fundamental matrix. 1732 @param points1 1xN array containing the first set of points. 1733 @param points2 1xN array containing the second set of points. 1734 @param newPoints1 The optimized points1. 1735 @param newPoints2 The optimized points2. 1736 1737 The function implements the Optimal Triangulation Method (see Multiple View Geometry for details). 1738 For each given point correspondence points1[i] \<-\> points2[i], and a fundamental matrix F, it 1739 computes the corrected correspondences newPoints1[i] \<-\> newPoints2[i] that minimize the geometric 1740 error \f$d(points1[i], newPoints1[i])^2 + d(points2[i],newPoints2[i])^2\f$ (where \f$d(a,b)\f$ is the 1741 geometric distance between points \f$a\f$ and \f$b\f$ ) subject to the epipolar constraint 1742 \f$newPoints2^T * F * newPoints1 = 0\f$ . 1743 */ 1744 CV_EXPORTS_W void correctMatches( InputArray F, InputArray points1, InputArray points2, 1745 OutputArray newPoints1, OutputArray newPoints2 ); 1746 1747 /** @brief Filters off small noise blobs (speckles) in the disparity map 1748 1749 @param img The input 16-bit signed disparity image 1750 @param newVal The disparity value used to paint-off the speckles 1751 @param maxSpeckleSize The maximum speckle size to consider it a speckle. Larger blobs are not 1752 affected by the algorithm 1753 @param maxDiff Maximum difference between neighbor disparity pixels to put them into the same 1754 blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point 1755 disparity map, where disparity values are multiplied by 16, this scale factor should be taken into 1756 account when specifying this parameter value. 1757 @param buf The optional temporary buffer to avoid memory allocation within the function. 1758 */ 1759 CV_EXPORTS_W void filterSpeckles( InputOutputArray img, double newVal, 1760 int maxSpeckleSize, double maxDiff, 1761 InputOutputArray buf = noArray() ); 1762 1763 //! computes valid disparity ROI from the valid ROIs of the rectified images (that are returned by cv::stereoRectify()) 1764 CV_EXPORTS_W Rect getValidDisparityROI( Rect roi1, Rect roi2, 1765 int minDisparity, int numberOfDisparities, 1766 int SADWindowSize ); 1767 1768 //! validates disparity using the left-right check. The matrix "cost" should be computed by the stereo correspondence algorithm 1769 CV_EXPORTS_W void validateDisparity( InputOutputArray disparity, InputArray cost, 1770 int minDisparity, int numberOfDisparities, 1771 int disp12MaxDisp = 1 ); 1772 1773 /** @brief Reprojects a disparity image to 3D space. 1774 1775 @param disparity Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit 1776 floating-point disparity image. If 16-bit signed format is used, the values are assumed to have no 1777 fractional bits. 1778 @param _3dImage Output 3-channel floating-point image of the same size as disparity . Each 1779 element of _3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity 1780 map. 1781 @param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained with stereoRectify. 1782 @param handleMissingValues Indicates, whether the function should handle missing values (i.e. 1783 points where the disparity was not computed). If handleMissingValues=true, then pixels with the 1784 minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed 1785 to 3D points with a very large Z value (currently set to 10000). 1786 @param ddepth The optional output array depth. If it is -1, the output image will have CV_32F 1787 depth. ddepth can also be set to CV_16S, CV_32S or CV_32F. 1788 1789 The function transforms a single-channel disparity map to a 3-channel image representing a 3D 1790 surface. That is, for each pixel (x,y) and the corresponding disparity d=disparity(x,y) , it 1791 computes: 1792 1793 \f[\begin{array}{l} [X \; Y \; Z \; W]^T = \texttt{Q} *[x \; y \; \texttt{disparity} (x,y) \; 1]^T \\ \texttt{\_3dImage} (x,y) = (X/W, \; Y/W, \; Z/W) \end{array}\f] 1794 1795 The matrix Q can be an arbitrary \f$4 \times 4\f$ matrix (for example, the one computed by 1796 stereoRectify). To reproject a sparse set of points {(x,y,d),...} to 3D space, use 1797 perspectiveTransform . 1798 */ 1799 CV_EXPORTS_W void reprojectImageTo3D( InputArray disparity, 1800 OutputArray _3dImage, InputArray Q, 1801 bool handleMissingValues = false, 1802 int ddepth = -1 ); 1803 1804 /** @brief Calculates the Sampson Distance between two points. 1805 1806 The function cv::sampsonDistance calculates and returns the first order approximation of the geometric error as: 1807 \f[ 1808 sd( \texttt{pt1} , \texttt{pt2} )= 1809 \frac{(\texttt{pt2}^t \cdot \texttt{F} \cdot \texttt{pt1})^2} 1810 {((\texttt{F} \cdot \texttt{pt1})(0))^2 + 1811 ((\texttt{F} \cdot \texttt{pt1})(1))^2 + 1812 ((\texttt{F}^t \cdot \texttt{pt2})(0))^2 + 1813 ((\texttt{F}^t \cdot \texttt{pt2})(1))^2} 1814 \f] 1815 The fundamental matrix may be calculated using the cv::findFundamentalMat function. See @cite HartleyZ00 11.4.3 for details. 1816 @param pt1 first homogeneous 2d point 1817 @param pt2 second homogeneous 2d point 1818 @param F fundamental matrix 1819 @return The computed Sampson distance. 1820 */ 1821 CV_EXPORTS_W double sampsonDistance(InputArray pt1, InputArray pt2, InputArray F); 1822 1823 /** @brief Computes an optimal affine transformation between two 3D point sets. 1824 1825 It computes 1826 \f[ 1827 \begin{bmatrix} 1828 x\\ 1829 y\\ 1830 z\\ 1831 \end{bmatrix} 1832 = 1833 \begin{bmatrix} 1834 a_{11} & a_{12} & a_{13}\\ 1835 a_{21} & a_{22} & a_{23}\\ 1836 a_{31} & a_{32} & a_{33}\\ 1837 \end{bmatrix} 1838 \begin{bmatrix} 1839 X\\ 1840 Y\\ 1841 Z\\ 1842 \end{bmatrix} 1843 + 1844 \begin{bmatrix} 1845 b_1\\ 1846 b_2\\ 1847 b_3\\ 1848 \end{bmatrix} 1849 \f] 1850 1851 @param src First input 3D point set containing \f$(X,Y,Z)\f$. 1852 @param dst Second input 3D point set containing \f$(x,y,z)\f$. 1853 @param out Output 3D affine transformation matrix \f$3 \times 4\f$ of the form 1854 \f[ 1855 \begin{bmatrix} 1856 a_{11} & a_{12} & a_{13} & b_1\\ 1857 a_{21} & a_{22} & a_{23} & b_2\\ 1858 a_{31} & a_{32} & a_{33} & b_3\\ 1859 \end{bmatrix} 1860 \f] 1861 @param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier). 1862 @param ransacThreshold Maximum reprojection error in the RANSAC algorithm to consider a point as 1863 an inlier. 1864 @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything 1865 between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation 1866 significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation. 1867 1868 The function estimates an optimal 3D affine transformation between two 3D point sets using the 1869 RANSAC algorithm. 1870 */ 1871 CV_EXPORTS_W int estimateAffine3D(InputArray src, InputArray dst, 1872 OutputArray out, OutputArray inliers, 1873 double ransacThreshold = 3, double confidence = 0.99); 1874 1875 /** @brief Computes an optimal affine transformation between two 2D point sets. 1876 1877 It computes 1878 \f[ 1879 \begin{bmatrix} 1880 x\\ 1881 y\\ 1882 \end{bmatrix} 1883 = 1884 \begin{bmatrix} 1885 a_{11} & a_{12}\\ 1886 a_{21} & a_{22}\\ 1887 \end{bmatrix} 1888 \begin{bmatrix} 1889 X\\ 1890 Y\\ 1891 \end{bmatrix} 1892 + 1893 \begin{bmatrix} 1894 b_1\\ 1895 b_2\\ 1896 \end{bmatrix} 1897 \f] 1898 1899 @param from First input 2D point set containing \f$(X,Y)\f$. 1900 @param to Second input 2D point set containing \f$(x,y)\f$. 1901 @param inliers Output vector indicating which points are inliers (1-inlier, 0-outlier). 1902 @param method Robust method used to compute transformation. The following methods are possible: 1903 - cv::RANSAC - RANSAC-based robust method 1904 - cv::LMEDS - Least-Median robust method 1905 RANSAC is the default method. 1906 @param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider 1907 a point as an inlier. Applies only to RANSAC. 1908 @param maxIters The maximum number of robust method iterations. 1909 @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything 1910 between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation 1911 significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation. 1912 @param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt). 1913 Passing 0 will disable refining, so the output matrix will be output of robust method. 1914 1915 @return Output 2D affine transformation matrix \f$2 \times 3\f$ or empty matrix if transformation 1916 could not be estimated. The returned matrix has the following form: 1917 \f[ 1918 \begin{bmatrix} 1919 a_{11} & a_{12} & b_1\\ 1920 a_{21} & a_{22} & b_2\\ 1921 \end{bmatrix} 1922 \f] 1923 1924 The function estimates an optimal 2D affine transformation between two 2D point sets using the 1925 selected robust algorithm. 1926 1927 The computed transformation is then refined further (using only inliers) with the 1928 Levenberg-Marquardt method to reduce the re-projection error even more. 1929 1930 @note 1931 The RANSAC method can handle practically any ratio of outliers but needs a threshold to 1932 distinguish inliers from outliers. The method LMeDS does not need any threshold but it works 1933 correctly only when there are more than 50% of inliers. 1934 1935 @sa estimateAffinePartial2D, getAffineTransform 1936 */ 1937 CV_EXPORTS_W cv::Mat estimateAffine2D(InputArray from, InputArray to, OutputArray inliers = noArray(), 1938 int method = RANSAC, double ransacReprojThreshold = 3, 1939 size_t maxIters = 2000, double confidence = 0.99, 1940 size_t refineIters = 10); 1941 1942 /** @brief Computes an optimal limited affine transformation with 4 degrees of freedom between 1943 two 2D point sets. 1944 1945 @param from First input 2D point set. 1946 @param to Second input 2D point set. 1947 @param inliers Output vector indicating which points are inliers. 1948 @param method Robust method used to compute transformation. The following methods are possible: 1949 - cv::RANSAC - RANSAC-based robust method 1950 - cv::LMEDS - Least-Median robust method 1951 RANSAC is the default method. 1952 @param ransacReprojThreshold Maximum reprojection error in the RANSAC algorithm to consider 1953 a point as an inlier. Applies only to RANSAC. 1954 @param maxIters The maximum number of robust method iterations. 1955 @param confidence Confidence level, between 0 and 1, for the estimated transformation. Anything 1956 between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation 1957 significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation. 1958 @param refineIters Maximum number of iterations of refining algorithm (Levenberg-Marquardt). 1959 Passing 0 will disable refining, so the output matrix will be output of robust method. 1960 1961 @return Output 2D affine transformation (4 degrees of freedom) matrix \f$2 \times 3\f$ or 1962 empty matrix if transformation could not be estimated. 1963 1964 The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to 1965 combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust 1966 estimation. 1967 1968 The computed transformation is then refined further (using only inliers) with the 1969 Levenberg-Marquardt method to reduce the re-projection error even more. 1970 1971 Estimated transformation matrix is: 1972 \f[ \begin{bmatrix} \cos(\theta) \cdot s & -\sin(\theta) \cdot s & t_x \\ 1973 \sin(\theta) \cdot s & \cos(\theta) \cdot s & t_y 1974 \end{bmatrix} \f] 1975 Where \f$ \theta \f$ is the rotation angle, \f$ s \f$ the scaling factor and \f$ t_x, t_y \f$ are 1976 translations in \f$ x, y \f$ axes respectively. 1977 1978 @note 1979 The RANSAC method can handle practically any ratio of outliers but need a threshold to 1980 distinguish inliers from outliers. The method LMeDS does not need any threshold but it works 1981 correctly only when there are more than 50% of inliers. 1982 1983 @sa estimateAffine2D, getAffineTransform 1984 */ 1985 CV_EXPORTS_W cv::Mat estimateAffinePartial2D(InputArray from, InputArray to, OutputArray inliers = noArray(), 1986 int method = RANSAC, double ransacReprojThreshold = 3, 1987 size_t maxIters = 2000, double confidence = 0.99, 1988 size_t refineIters = 10); 1989 1990 /** @example samples/cpp/tutorial_code/features2D/Homography/decompose_homography.cpp 1991 An example program with homography decomposition. 1992 1993 Check @ref tutorial_homography "the corresponding tutorial" for more details. 1994 */ 1995 1996 /** @brief Decompose a homography matrix to rotation(s), translation(s) and plane normal(s). 1997 1998 @param H The input homography matrix between two images. 1999 @param K The input intrinsic camera calibration matrix. 2000 @param rotations Array of rotation matrices. 2001 @param translations Array of translation matrices. 2002 @param normals Array of plane normal matrices. 2003 2004 This function extracts relative camera motion between two views observing a planar object from the 2005 homography H induced by the plane. The intrinsic camera matrix K must also be provided. The function 2006 may return up to four mathematical solution sets. At least two of the solutions may further be 2007 invalidated if point correspondences are available by applying positive depth constraint (all points 2008 must be in front of the camera). The decomposition method is described in detail in @cite Malis . 2009 */ 2010 CV_EXPORTS_W int decomposeHomographyMat(InputArray H, 2011 InputArray K, 2012 OutputArrayOfArrays rotations, 2013 OutputArrayOfArrays translations, 2014 OutputArrayOfArrays normals); 2015 2016 /** @brief Filters homography decompositions based on additional information. 2017 2018 @param rotations Vector of rotation matrices. 2019 @param normals Vector of plane normal matrices. 2020 @param beforePoints Vector of (rectified) visible reference points before the homography is applied 2021 @param afterPoints Vector of (rectified) visible reference points after the homography is applied 2022 @param possibleSolutions Vector of int indices representing the viable solution set after filtering 2023 @param pointsMask optional Mat/Vector of 8u type representing the mask for the inliers as given by the findHomography function 2024 2025 This function is intended to filter the output of the decomposeHomographyMat based on additional 2026 information as described in @cite Malis . The summary of the method: the decomposeHomographyMat function 2027 returns 2 unique solutions and their "opposites" for a total of 4 solutions. If we have access to the 2028 sets of points visible in the camera frame before and after the homography transformation is applied, 2029 we can determine which are the true potential solutions and which are the opposites by verifying which 2030 homographies are consistent with all visible reference points being in front of the camera. The inputs 2031 are left unchanged; the filtered solution set is returned as indices into the existing one. 2032 2033 */ 2034 CV_EXPORTS_W void filterHomographyDecompByVisibleRefpoints(InputArrayOfArrays rotations, 2035 InputArrayOfArrays normals, 2036 InputArray beforePoints, 2037 InputArray afterPoints, 2038 OutputArray possibleSolutions, 2039 InputArray pointsMask = noArray()); 2040 2041 /** @brief The base class for stereo correspondence algorithms. 2042 */ 2043 class CV_EXPORTS_W StereoMatcher : public Algorithm 2044 { 2045 public: 2046 enum { DISP_SHIFT = 4, 2047 DISP_SCALE = (1 << DISP_SHIFT) 2048 }; 2049 2050 /** @brief Computes disparity map for the specified stereo pair 2051 2052 @param left Left 8-bit single-channel image. 2053 @param right Right image of the same size and the same type as the left one. 2054 @param disparity Output disparity map. It has the same size as the input images. Some algorithms, 2055 like StereoBM or StereoSGBM compute 16-bit fixed-point disparity map (where each disparity value 2056 has 4 fractional bits), whereas other algorithms output 32-bit floating-point disparity map. 2057 */ 2058 CV_WRAP virtual void compute( InputArray left, InputArray right, 2059 OutputArray disparity ) = 0; 2060 2061 CV_WRAP virtual int getMinDisparity() const = 0; 2062 CV_WRAP virtual void setMinDisparity(int minDisparity) = 0; 2063 2064 CV_WRAP virtual int getNumDisparities() const = 0; 2065 CV_WRAP virtual void setNumDisparities(int numDisparities) = 0; 2066 2067 CV_WRAP virtual int getBlockSize() const = 0; 2068 CV_WRAP virtual void setBlockSize(int blockSize) = 0; 2069 2070 CV_WRAP virtual int getSpeckleWindowSize() const = 0; 2071 CV_WRAP virtual void setSpeckleWindowSize(int speckleWindowSize) = 0; 2072 2073 CV_WRAP virtual int getSpeckleRange() const = 0; 2074 CV_WRAP virtual void setSpeckleRange(int speckleRange) = 0; 2075 2076 CV_WRAP virtual int getDisp12MaxDiff() const = 0; 2077 CV_WRAP virtual void setDisp12MaxDiff(int disp12MaxDiff) = 0; 2078 }; 2079 2080 2081 /** @brief Class for computing stereo correspondence using the block matching algorithm, introduced and 2082 contributed to OpenCV by K. Konolige. 2083 */ 2084 class CV_EXPORTS_W StereoBM : public StereoMatcher 2085 { 2086 public: 2087 enum { PREFILTER_NORMALIZED_RESPONSE = 0, 2088 PREFILTER_XSOBEL = 1 2089 }; 2090 2091 CV_WRAP virtual int getPreFilterType() const = 0; 2092 CV_WRAP virtual void setPreFilterType(int preFilterType) = 0; 2093 2094 CV_WRAP virtual int getPreFilterSize() const = 0; 2095 CV_WRAP virtual void setPreFilterSize(int preFilterSize) = 0; 2096 2097 CV_WRAP virtual int getPreFilterCap() const = 0; 2098 CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0; 2099 2100 CV_WRAP virtual int getTextureThreshold() const = 0; 2101 CV_WRAP virtual void setTextureThreshold(int textureThreshold) = 0; 2102 2103 CV_WRAP virtual int getUniquenessRatio() const = 0; 2104 CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0; 2105 2106 CV_WRAP virtual int getSmallerBlockSize() const = 0; 2107 CV_WRAP virtual void setSmallerBlockSize(int blockSize) = 0; 2108 2109 CV_WRAP virtual Rect getROI1() const = 0; 2110 CV_WRAP virtual void setROI1(Rect roi1) = 0; 2111 2112 CV_WRAP virtual Rect getROI2() const = 0; 2113 CV_WRAP virtual void setROI2(Rect roi2) = 0; 2114 2115 /** @brief Creates StereoBM object 2116 2117 @param numDisparities the disparity search range. For each pixel algorithm will find the best 2118 disparity from 0 (default minimum disparity) to numDisparities. The search range can then be 2119 shifted by changing the minimum disparity. 2120 @param blockSize the linear size of the blocks compared by the algorithm. The size should be odd 2121 (as the block is centered at the current pixel). Larger block size implies smoother, though less 2122 accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher 2123 chance for algorithm to find a wrong correspondence. 2124 2125 The function create StereoBM object. You can then call StereoBM::compute() to compute disparity for 2126 a specific stereo pair. 2127 */ 2128 CV_WRAP static Ptr<StereoBM> create(int numDisparities = 0, int blockSize = 21); 2129 }; 2130 2131 /** @brief The class implements the modified H. Hirschmuller algorithm @cite HH08 that differs from the original 2132 one as follows: 2133 2134 - By default, the algorithm is single-pass, which means that you consider only 5 directions 2135 instead of 8. Set mode=StereoSGBM::MODE_HH in createStereoSGBM to run the full variant of the 2136 algorithm but beware that it may consume a lot of memory. 2137 - The algorithm matches blocks, not individual pixels. Though, setting blockSize=1 reduces the 2138 blocks to single pixels. 2139 - Mutual information cost function is not implemented. Instead, a simpler Birchfield-Tomasi 2140 sub-pixel metric from @cite BT98 is used. Though, the color images are supported as well. 2141 - Some pre- and post- processing steps from K. Konolige algorithm StereoBM are included, for 2142 example: pre-filtering (StereoBM::PREFILTER_XSOBEL type) and post-filtering (uniqueness 2143 check, quadratic interpolation and speckle filtering). 2144 2145 @note 2146 - (Python) An example illustrating the use of the StereoSGBM matching algorithm can be found 2147 at opencv_source_code/samples/python/stereo_match.py 2148 */ 2149 class CV_EXPORTS_W StereoSGBM : public StereoMatcher 2150 { 2151 public: 2152 enum 2153 { 2154 MODE_SGBM = 0, 2155 MODE_HH = 1, 2156 MODE_SGBM_3WAY = 2, 2157 MODE_HH4 = 3 2158 }; 2159 2160 CV_WRAP virtual int getPreFilterCap() const = 0; 2161 CV_WRAP virtual void setPreFilterCap(int preFilterCap) = 0; 2162 2163 CV_WRAP virtual int getUniquenessRatio() const = 0; 2164 CV_WRAP virtual void setUniquenessRatio(int uniquenessRatio) = 0; 2165 2166 CV_WRAP virtual int getP1() const = 0; 2167 CV_WRAP virtual void setP1(int P1) = 0; 2168 2169 CV_WRAP virtual int getP2() const = 0; 2170 CV_WRAP virtual void setP2(int P2) = 0; 2171 2172 CV_WRAP virtual int getMode() const = 0; 2173 CV_WRAP virtual void setMode(int mode) = 0; 2174 2175 /** @brief Creates StereoSGBM object 2176 2177 @param minDisparity Minimum possible disparity value. Normally, it is zero but sometimes 2178 rectification algorithms can shift images, so this parameter needs to be adjusted accordingly. 2179 @param numDisparities Maximum disparity minus minimum disparity. The value is always greater than 2180 zero. In the current implementation, this parameter must be divisible by 16. 2181 @param blockSize Matched block size. It must be an odd number \>=1 . Normally, it should be 2182 somewhere in the 3..11 range. 2183 @param P1 The first parameter controlling the disparity smoothness. See below. 2184 @param P2 The second parameter controlling the disparity smoothness. The larger the values are, 2185 the smoother the disparity is. P1 is the penalty on the disparity change by plus or minus 1 2186 between neighbor pixels. P2 is the penalty on the disparity change by more than 1 between neighbor 2187 pixels. The algorithm requires P2 \> P1 . See stereo_match.cpp sample where some reasonably good 2188 P1 and P2 values are shown (like 8\*number_of_image_channels\*SADWindowSize\*SADWindowSize and 2189 32\*number_of_image_channels\*SADWindowSize\*SADWindowSize , respectively). 2190 @param disp12MaxDiff Maximum allowed difference (in integer pixel units) in the left-right 2191 disparity check. Set it to a non-positive value to disable the check. 2192 @param preFilterCap Truncation value for the prefiltered image pixels. The algorithm first 2193 computes x-derivative at each pixel and clips its value by [-preFilterCap, preFilterCap] interval. 2194 The result values are passed to the Birchfield-Tomasi pixel cost function. 2195 @param uniquenessRatio Margin in percentage by which the best (minimum) computed cost function 2196 value should "win" the second best value to consider the found match correct. Normally, a value 2197 within the 5-15 range is good enough. 2198 @param speckleWindowSize Maximum size of smooth disparity regions to consider their noise speckles 2199 and invalidate. Set it to 0 to disable speckle filtering. Otherwise, set it somewhere in the 2200 50-200 range. 2201 @param speckleRange Maximum disparity variation within each connected component. If you do speckle 2202 filtering, set the parameter to a positive value, it will be implicitly multiplied by 16. 2203 Normally, 1 or 2 is good enough. 2204 @param mode Set it to StereoSGBM::MODE_HH to run the full-scale two-pass dynamic programming 2205 algorithm. It will consume O(W\*H\*numDisparities) bytes, which is large for 640x480 stereo and 2206 huge for HD-size pictures. By default, it is set to false . 2207 2208 The first constructor initializes StereoSGBM with all the default parameters. So, you only have to 2209 set StereoSGBM::numDisparities at minimum. The second constructor enables you to set each parameter 2210 to a custom value. 2211 */ 2212 CV_WRAP static Ptr<StereoSGBM> create(int minDisparity = 0, int numDisparities = 16, int blockSize = 3, 2213 int P1 = 0, int P2 = 0, int disp12MaxDiff = 0, 2214 int preFilterCap = 0, int uniquenessRatio = 0, 2215 int speckleWindowSize = 0, int speckleRange = 0, 2216 int mode = StereoSGBM::MODE_SGBM); 2217 }; 2218 2219 //! @} calib3d 2220 2221 /** @brief The methods in this namespace use a so-called fisheye camera model. 2222 @ingroup calib3d_fisheye 2223 */ 2224 namespace fisheye 2225 { 2226 //! @addtogroup calib3d_fisheye 2227 //! @{ 2228 2229 enum{ 2230 CALIB_USE_INTRINSIC_GUESS = 1 << 0, 2231 CALIB_RECOMPUTE_EXTRINSIC = 1 << 1, 2232 CALIB_CHECK_COND = 1 << 2, 2233 CALIB_FIX_SKEW = 1 << 3, 2234 CALIB_FIX_K1 = 1 << 4, 2235 CALIB_FIX_K2 = 1 << 5, 2236 CALIB_FIX_K3 = 1 << 6, 2237 CALIB_FIX_K4 = 1 << 7, 2238 CALIB_FIX_INTRINSIC = 1 << 8, 2239 CALIB_FIX_PRINCIPAL_POINT = 1 << 9 2240 }; 2241 2242 /** @brief Projects points using fisheye model 2243 2244 @param objectPoints Array of object points, 1xN/Nx1 3-channel (or vector\<Point3f\> ), where N is 2245 the number of points in the view. 2246 @param imagePoints Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or 2247 vector\<Point2f\>. 2248 @param affine 2249 @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. 2250 @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. 2251 @param alpha The skew coefficient. 2252 @param jacobian Optional output 2Nx15 jacobian matrix of derivatives of image points with respect 2253 to components of the focal lengths, coordinates of the principal point, distortion coefficients, 2254 rotation vector, translation vector, and the skew. In the old interface different components of 2255 the jacobian are returned via different output parameters. 2256 2257 The function computes projections of 3D points to the image plane given intrinsic and extrinsic 2258 camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of 2259 image points coordinates (as functions of all the input parameters) with respect to the particular 2260 parameters, intrinsic and/or extrinsic. 2261 */ 2262 CV_EXPORTS void projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine, 2263 InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray()); 2264 2265 /** @overload */ 2266 CV_EXPORTS_W void projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec, 2267 InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray()); 2268 2269 /** @brief Distorts 2D points using fisheye model. 2270 2271 @param undistorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is 2272 the number of points in the view. 2273 @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. 2274 @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. 2275 @param alpha The skew coefficient. 2276 @param distorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> . 2277 2278 Note that the function assumes the camera matrix of the undistorted points to be identity. 2279 This means if you want to transform back points undistorted with undistortPoints() you have to 2280 multiply them with \f$P^{-1}\f$. 2281 */ 2282 CV_EXPORTS_W void distortPoints(InputArray undistorted, OutputArray distorted, InputArray K, InputArray D, double alpha = 0); 2283 2284 /** @brief Undistorts 2D points using fisheye model 2285 2286 @param distorted Array of object points, 1xN/Nx1 2-channel (or vector\<Point2f\> ), where N is the 2287 number of points in the view. 2288 @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. 2289 @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. 2290 @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3 2291 1-channel or 1x1 3-channel 2292 @param P New camera matrix (3x3) or new projection matrix (3x4) 2293 @param undistorted Output array of image points, 1xN/Nx1 2-channel, or vector\<Point2f\> . 2294 */ 2295 CV_EXPORTS_W void undistortPoints(InputArray distorted, OutputArray undistorted, 2296 InputArray K, InputArray D, InputArray R = noArray(), InputArray P = noArray()); 2297 2298 /** @brief Computes undistortion and rectification maps for image transform by cv::remap(). If D is empty zero 2299 distortion is used, if R or P is empty identity matrixes are used. 2300 2301 @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. 2302 @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. 2303 @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3 2304 1-channel or 1x1 3-channel 2305 @param P New camera matrix (3x3) or new projection matrix (3x4) 2306 @param size Undistorted image size. 2307 @param m1type Type of the first output map that can be CV_32FC1 or CV_16SC2 . See convertMaps() 2308 for details. 2309 @param map1 The first output map. 2310 @param map2 The second output map. 2311 */ 2312 CV_EXPORTS_W void initUndistortRectifyMap(InputArray K, InputArray D, InputArray R, InputArray P, 2313 const cv::Size& size, int m1type, OutputArray map1, OutputArray map2); 2314 2315 /** @brief Transforms an image to compensate for fisheye lens distortion. 2316 2317 @param distorted image with fisheye lens distortion. 2318 @param undistorted Output image with compensated fisheye lens distortion. 2319 @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. 2320 @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. 2321 @param Knew Camera matrix of the distorted image. By default, it is the identity matrix but you 2322 may additionally scale and shift the result by using a different matrix. 2323 @param new_size 2324 2325 The function transforms an image to compensate radial and tangential lens distortion. 2326 2327 The function is simply a combination of fisheye::initUndistortRectifyMap (with unity R ) and remap 2328 (with bilinear interpolation). See the former function for details of the transformation being 2329 performed. 2330 2331 See below the results of undistortImage. 2332 - a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3, 2333 k_4, k_5, k_6) of distortion were optimized under calibration) 2334 - b\) result of fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2, 2335 k_3, k_4) of fisheye distortion were optimized under calibration) 2336 - c\) original image was captured with fisheye lens 2337 2338 Pictures a) and b) almost the same. But if we consider points of image located far from the center 2339 of image, we can notice that on image a) these points are distorted. 2340 2341  2342 */ 2343 CV_EXPORTS_W void undistortImage(InputArray distorted, OutputArray undistorted, 2344 InputArray K, InputArray D, InputArray Knew = cv::noArray(), const Size& new_size = Size()); 2345 2346 /** @brief Estimates new camera matrix for undistortion or rectification. 2347 2348 @param K Camera matrix \f$K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}\f$. 2349 @param image_size 2350 @param D Input vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. 2351 @param R Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3 2352 1-channel or 1x1 3-channel 2353 @param P New camera matrix (3x3) or new projection matrix (3x4) 2354 @param balance Sets the new focal length in range between the min focal length and the max focal 2355 length. Balance is in range of [0, 1]. 2356 @param new_size 2357 @param fov_scale Divisor for new focal length. 2358 */ 2359 CV_EXPORTS_W void estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R, 2360 OutputArray P, double balance = 0.0, const Size& new_size = Size(), double fov_scale = 1.0); 2361 2362 /** @brief Performs camera calibaration 2363 2364 @param objectPoints vector of vectors of calibration pattern points in the calibration pattern 2365 coordinate space. 2366 @param imagePoints vector of vectors of the projections of calibration pattern points. 2367 imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to 2368 objectPoints[i].size() for each i. 2369 @param image_size Size of the image used only to initialize the intrinsic camera matrix. 2370 @param K Output 3x3 floating-point camera matrix 2371 \f$A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\f$ . If 2372 fisheye::CALIB_USE_INTRINSIC_GUESS/ is specified, some or all of fx, fy, cx, cy must be 2373 initialized before calling the function. 2374 @param D Output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$. 2375 @param rvecs Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view. 2376 That is, each k-th rotation vector together with the corresponding k-th translation vector (see 2377 the next output parameter description) brings the calibration pattern from the model coordinate 2378 space (in which object points are specified) to the world coordinate space, that is, a real 2379 position of the calibration pattern in the k-th pattern view (k=0.. *M* -1). 2380 @param tvecs Output vector of translation vectors estimated for each pattern view. 2381 @param flags Different flags that may be zero or a combination of the following values: 2382 - **fisheye::CALIB_USE_INTRINSIC_GUESS** cameraMatrix contains valid initial values of 2383 fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image 2384 center ( imageSize is used), and focal distances are computed in a least-squares fashion. 2385 - **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration 2386 of intrinsic optimization. 2387 - **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number. 2388 - **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero. 2389 - **fisheye::CALIB_FIX_K1..fisheye::CALIB_FIX_K4** Selected distortion coefficients 2390 are set to zeros and stay zero. 2391 - **fisheye::CALIB_FIX_PRINCIPAL_POINT** The principal point is not changed during the global 2392 optimization. It stays at the center or at a different location specified when CALIB_USE_INTRINSIC_GUESS is set too. 2393 @param criteria Termination criteria for the iterative optimization algorithm. 2394 */ 2395 CV_EXPORTS_W double calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, const Size& image_size, 2396 InputOutputArray K, InputOutputArray D, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = 0, 2397 TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON)); 2398 2399 /** @brief Stereo rectification for fisheye camera model 2400 2401 @param K1 First camera matrix. 2402 @param D1 First camera distortion parameters. 2403 @param K2 Second camera matrix. 2404 @param D2 Second camera distortion parameters. 2405 @param imageSize Size of the image used for stereo calibration. 2406 @param R Rotation matrix between the coordinate systems of the first and the second 2407 cameras. 2408 @param tvec Translation vector between coordinate systems of the cameras. 2409 @param R1 Output 3x3 rectification transform (rotation matrix) for the first camera. 2410 @param R2 Output 3x3 rectification transform (rotation matrix) for the second camera. 2411 @param P1 Output 3x4 projection matrix in the new (rectified) coordinate systems for the first 2412 camera. 2413 @param P2 Output 3x4 projection matrix in the new (rectified) coordinate systems for the second 2414 camera. 2415 @param Q Output \f$4 \times 4\f$ disparity-to-depth mapping matrix (see reprojectImageTo3D ). 2416 @param flags Operation flags that may be zero or CALIB_ZERO_DISPARITY . If the flag is set, 2417 the function makes the principal points of each camera have the same pixel coordinates in the 2418 rectified views. And if the flag is not set, the function may still shift the images in the 2419 horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the 2420 useful image area. 2421 @param newImageSize New image resolution after rectification. The same size should be passed to 2422 initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0) 2423 is passed (default), it is set to the original imageSize . Setting it to larger value can help you 2424 preserve details in the original image, especially when there is a big radial distortion. 2425 @param balance Sets the new focal length in range between the min focal length and the max focal 2426 length. Balance is in range of [0, 1]. 2427 @param fov_scale Divisor for new focal length. 2428 */ 2429 CV_EXPORTS_W void stereoRectify(InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size &imageSize, InputArray R, InputArray tvec, 2430 OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size &newImageSize = Size(), 2431 double balance = 0.0, double fov_scale = 1.0); 2432 2433 /** @brief Performs stereo calibration 2434 2435 @param objectPoints Vector of vectors of the calibration pattern points. 2436 @param imagePoints1 Vector of vectors of the projections of the calibration pattern points, 2437 observed by the first camera. 2438 @param imagePoints2 Vector of vectors of the projections of the calibration pattern points, 2439 observed by the second camera. 2440 @param K1 Input/output first camera matrix: 2441 \f$\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\f$ , \f$j = 0,\, 1\f$ . If 2442 any of fisheye::CALIB_USE_INTRINSIC_GUESS , fisheye::CALIB_FIX_INTRINSIC are specified, 2443 some or all of the matrix components must be initialized. 2444 @param D1 Input/output vector of distortion coefficients \f$(k_1, k_2, k_3, k_4)\f$ of 4 elements. 2445 @param K2 Input/output second camera matrix. The parameter is similar to K1 . 2446 @param D2 Input/output lens distortion coefficients for the second camera. The parameter is 2447 similar to D1 . 2448 @param imageSize Size of the image used only to initialize intrinsic camera matrix. 2449 @param R Output rotation matrix between the 1st and the 2nd camera coordinate systems. 2450 @param T Output translation vector between the coordinate systems of the cameras. 2451 @param flags Different flags that may be zero or a combination of the following values: 2452 - **fisheye::CALIB_FIX_INTRINSIC** Fix K1, K2? and D1, D2? so that only R, T matrices 2453 are estimated. 2454 - **fisheye::CALIB_USE_INTRINSIC_GUESS** K1, K2 contains valid initial values of 2455 fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image 2456 center (imageSize is used), and focal distances are computed in a least-squares fashion. 2457 - **fisheye::CALIB_RECOMPUTE_EXTRINSIC** Extrinsic will be recomputed after each iteration 2458 of intrinsic optimization. 2459 - **fisheye::CALIB_CHECK_COND** The functions will check validity of condition number. 2460 - **fisheye::CALIB_FIX_SKEW** Skew coefficient (alpha) is set to zero and stay zero. 2461 - **fisheye::CALIB_FIX_K1..4** Selected distortion coefficients are set to zeros and stay 2462 zero. 2463 @param criteria Termination criteria for the iterative optimization algorithm. 2464 */ 2465 CV_EXPORTS_W double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2, 2466 InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize, 2467 OutputArray R, OutputArray T, int flags = fisheye::CALIB_FIX_INTRINSIC, 2468 TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON)); 2469 2470 //! @} calib3d_fisheye 2471 } // end namespace fisheye 2472 2473 } //end namespace cv 2474 2475 #ifndef DISABLE_OPENCV_24_COMPATIBILITY 2476 #include "opencv2/calib3d/calib3d_c.h" 2477 #endif 2478 2479 #endif 2480