xref: /OK3568_Linux_fs/external/rknn-toolkit2/examples/functions/mmse/test.py (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1*4882a593Smuzhiyunimport numpy as np
2*4882a593Smuzhiyunimport cv2
3*4882a593Smuzhiyunfrom rknn.api import RKNN
4*4882a593Smuzhiyun
5*4882a593Smuzhiyun
6*4882a593Smuzhiyundef show_outputs(outputs):
7*4882a593Smuzhiyun    output = outputs[0][0]
8*4882a593Smuzhiyun    output_sorted = sorted(output, reverse=True)
9*4882a593Smuzhiyun    top5_str = 'mobilenet_v1\n-----TOP 5-----\n'
10*4882a593Smuzhiyun    for i in range(5):
11*4882a593Smuzhiyun        value = output_sorted[i]
12*4882a593Smuzhiyun        index = np.where(output == value)
13*4882a593Smuzhiyun        for j in range(len(index)):
14*4882a593Smuzhiyun            if (i + j) >= 5:
15*4882a593Smuzhiyun                break
16*4882a593Smuzhiyun            if value > 0:
17*4882a593Smuzhiyun                topi = '{}: {}\n'.format(index[j], value)
18*4882a593Smuzhiyun            else:
19*4882a593Smuzhiyun                topi = '-1: 0.0\n'
20*4882a593Smuzhiyun            top5_str += topi
21*4882a593Smuzhiyun    print(top5_str)
22*4882a593Smuzhiyun
23*4882a593Smuzhiyun
24*4882a593Smuzhiyunif __name__ == '__main__':
25*4882a593Smuzhiyun
26*4882a593Smuzhiyun    # Create RKNN object
27*4882a593Smuzhiyun    rknn = RKNN(verbose=True)
28*4882a593Smuzhiyun
29*4882a593Smuzhiyun    # Pre-process config
30*4882a593Smuzhiyun    print('--> Config model')
31*4882a593Smuzhiyun    rknn.config(mean_values=[128, 128, 128], std_values=[128, 128, 128],
32*4882a593Smuzhiyun                quantized_method='layer', quantized_algorithm='mmse')
33*4882a593Smuzhiyun    print('done')
34*4882a593Smuzhiyun
35*4882a593Smuzhiyun    # Load model
36*4882a593Smuzhiyun    print('--> Loading model')
37*4882a593Smuzhiyun    ret = rknn.load_tensorflow(tf_pb='mobilenet_v1.pb',
38*4882a593Smuzhiyun                               inputs=['input'],
39*4882a593Smuzhiyun                               input_size_list=[[1, 224, 224, 3]],
40*4882a593Smuzhiyun                               outputs=['MobilenetV1/Logits/SpatialSqueeze'])
41*4882a593Smuzhiyun    if ret != 0:
42*4882a593Smuzhiyun        print('Load model failed!')
43*4882a593Smuzhiyun        exit(ret)
44*4882a593Smuzhiyun    print('done')
45*4882a593Smuzhiyun
46*4882a593Smuzhiyun    # Build model
47*4882a593Smuzhiyun    print('--> Building model')
48*4882a593Smuzhiyun    ret = rknn.build(do_quantization=True, dataset='./dataset.txt')
49*4882a593Smuzhiyun    if ret != 0:
50*4882a593Smuzhiyun        print('Build model failed!')
51*4882a593Smuzhiyun        exit(ret)
52*4882a593Smuzhiyun    print('done')
53*4882a593Smuzhiyun
54*4882a593Smuzhiyun    # Accuracy analysis
55*4882a593Smuzhiyun    print('--> Accuracy analysis')
56*4882a593Smuzhiyun    ret = rknn.accuracy_analysis(inputs=['dog_224x224.jpg'], output_dir=None)
57*4882a593Smuzhiyun    if ret != 0:
58*4882a593Smuzhiyun        print('Accuracy analysis failed!')
59*4882a593Smuzhiyun        exit(ret)
60*4882a593Smuzhiyun    print('done')
61*4882a593Smuzhiyun
62*4882a593Smuzhiyun    f = open('./snapshot/error_analysis.txt')
63*4882a593Smuzhiyun    lines = f.readlines()
64*4882a593Smuzhiyun    cos = lines[-1].split()[2]
65*4882a593Smuzhiyun    if float(cos) >= 0.963:
66*4882a593Smuzhiyun        print('cos = {}, mmse work!'.format(cos))
67*4882a593Smuzhiyun    else:
68*4882a593Smuzhiyun        print('cos = {} < 0.963, mmse abnormal!'.format(cos))
69*4882a593Smuzhiyun    f.close()
70*4882a593Smuzhiyun
71*4882a593Smuzhiyun    # Set inputs
72*4882a593Smuzhiyun    img = cv2.imread('./dog_224x224.jpg')
73*4882a593Smuzhiyun    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
74*4882a593Smuzhiyun    img = np.expand_dims(img, 0)
75*4882a593Smuzhiyun
76*4882a593Smuzhiyun    # Init runtime environment
77*4882a593Smuzhiyun    print('--> Init runtime environment')
78*4882a593Smuzhiyun    ret = rknn.init_runtime()
79*4882a593Smuzhiyun    if ret != 0:
80*4882a593Smuzhiyun        print('Init runtime environment failed!')
81*4882a593Smuzhiyun        exit(ret)
82*4882a593Smuzhiyun    print('done')
83*4882a593Smuzhiyun
84*4882a593Smuzhiyun    # Inference
85*4882a593Smuzhiyun    print('--> Running model')
86*4882a593Smuzhiyun    outputs = rknn.inference(inputs=[img])
87*4882a593Smuzhiyun    np.save('./functions_mmse_0.npy', outputs[0])
88*4882a593Smuzhiyun    show_outputs(outputs)
89*4882a593Smuzhiyun    print('done')
90*4882a593Smuzhiyun
91*4882a593Smuzhiyun    rknn.release()
92