1<?xml version="1.0" encoding="utf-8"?> 2<matfile> 3 <header type="struct" size="[1 1]"> 4 <code_xml_parse_version index="1" type="char" size="[1 6]"> 5 v1.4.8 6 </code_xml_parse_version> 7 <creation_date index="1" type="char" size="[1 10]"> 8 2021-01-07 9 </creation_date> 10 <creator index="1" type="char" size="[1 5]"> 11 sandy 12 </creator> 13 <sensor_name index="1" type="char" size="[1 7]"> 14 OS04a10 15 </sensor_name> 16 <sample_name index="1" type="char" size="[1 7]"> 17 UNKNOWN 18 </sample_name> 19 <generator_version index="1" type="char" size="[1 6]"> 20 v0.0.1 21 </generator_version> 22 <magic_code_version index="1" type="int" size="[1 1]"> 23 [1170944] 24 </magic_code_version> 25 </header> 26 <sensor type="struct" size="[1 1]"> 27 <AWB index="1" type="struct" size="[1 1]"> 28 <CalibParaV20 index="1" type="cell" size="[1 1]"> 29 <cell index="1" type="struct" size="[1 1]"> 30 <scene index="1" type="char" size="[1 10]"> 31 A0 32 </scene> 33 <Globals index="1" type="struct" size="[1 1]"> 34 <hdrFrameChoose index="1" type="struct" size="[1 1]"> 35 <mode index="1" type="double" size="[1 1]"> 36 [1] 37 </mode> 38 <frameChoose index="1" type="double" size="[1 1]"> 39 [1] 40 </frameChoose> 41 </hdrFrameChoose> 42 <lscBypassEnable index="1" type="double" size="[1 1]"> 43 [0] 44 </lscBypassEnable> 45 <uvDetectionEnable index="1" type="double" size="[1 1]"> 46 [1] 47 </uvDetectionEnable> 48 <xyDetectionEnable index="1" type="double" size="[1 1]"> 49 [1] 50 </xyDetectionEnable> 51 <yuvDetectionEnable index="1" type="double" size="[1 1]"> 52 [1] 53 </yuvDetectionEnable> 54 <wbGainDaylightClipEnable index="1" type="double" size="[1 1]"> 55 [0] 56 </wbGainDaylightClipEnable> 57 <wbGainClipEnable index="1" type="double" size="[1 1]"> 58 [0] 59 </wbGainClipEnable> 60 <lsUsedForYuvDet index="1" type="cell" size="[1 7]"> 61 <cell index="1" type="struct" size="[1 1]"> 62 <name index="1" type="char" size="[1 1]"> 63 A 64 </name> 65 </cell> 66 <cell index="1" type="struct" size="[1 1]"> 67 <name index="1" type="char" size="[1 3]"> 68 CWF 69 </name> 70 </cell> 71 <cell index="1" type="struct" size="[1 1]"> 72 <name index="1" type="char" size="[1 3]"> 73 D65 74 </name> 75 </cell> 76 <cell index="1" type="struct" size="[1 1]"> 77 <name index="1" type="char" size="[1 4]"> 78 TL84 79 </name> 80 </cell> 81 <cell index="1" type="struct" size="[1 1]"> 82 <name index="1" type="char" size="[1 3]"> 83 D50 84 </name> 85 </cell> 86 <cell index="1" type="struct" size="[1 1]"> 87 <name index="1" type="char" size="[1 2]"> 88 HZ 89 </name> 90 </cell> 91 <cell index="1" type="struct" size="[1 1]"> 92 <name index="1" type="char" size="[1 3]"> 93 D75 94 </name> 95 </cell> 96 </lsUsedForYuvDet> 97 <downScaleMode index="1" type="double" size="[1 1]"> 98 [1] 99 </downScaleMode> 100 <blckMeasureMode index="1" type="double" size="[1 1]"> 101 [1] 102 </blckMeasureMode> 103 <measureWindow index="1" type="struct" size="[1 1]"> 104 <mode index="1" type="double" size="[1 1]"> 105 [1] 106 </mode> 107 <resAll index="1" type="cell" size="[1 2]"> 108 <cell index="6" type="struct" size="[1 1]"> 109 <resolution index="1" type="char" size="[1 9]"> 110 1920x1080 111 </resolution> 112 <measureWindowSize index="1" type="double" size="[1 4]"> 113 [0 0 1920 1080] 114 </measureWindowSize> 115 </cell> 116 <cell index="6" type="struct" size="[1 1]"> 117 <resolution index="1" type="char" size="[1 9]"> 118 2560x1440 119 </resolution> 120 <measureWindowSize index="1" type="double" size="[1 4]"> 121 [0 0 2560 1440] 122 </measureWindowSize> 123 </cell> 124 </resAll> 125 </measureWindow> 126 <multiWindowEnable index="1" type="double" size="[1 1]"> 127 [1] 128 </multiWindowEnable> 129 <limitRange index="1" type="struct" size="[1 1]"> 130 <Y index="1" type="double" size="[1 2]"> 131 [9 210] 132 </Y> 133 <R index="1" type="double" size="[1 2]"> 134 [6 230] 135 </R> 136 <G index="1" type="double" size="[1 2]"> 137 [9 230] 138 </G> 139 <B index="1" type="double" size="[1 2]"> 140 [6 230] 141 </B> 142 </limitRange> 143 <pseudoLumWeight index="1" type="double" size="[1 3]"> 144 [0.374556 0.375338 0.250105] 145 </pseudoLumWeight> 146 <rotationMat index="1" type="double" size="[1 9]"> 147 [-0.52139 0.853319 1.200718 0.853319 0.52139 0.602424 0 0 1] 148 </rotationMat> 149 <multiwindow index="1" type="double" size="[8 4]"> 150 [0 0 0 0 151 0 0 0 0 152 0 0 0 0 153 0 0 0 0 154 0 0 0 0 155 0 0 0 0 156 0 0 0 0 157 0 0 0 0] 158 </multiwindow> 159 <excludeRange index="1" type="cell" size="[1 7]"> 160 <cell index="1" type="struct" size="[1 1]"> 161 <Domain index="1" type="double" size="[1 1]"> 162 [0] 163 </Domain> 164 <mode index="1" type="double" size="[1 1]"> 165 [1] 166 </mode> 167 <window index="1" type="double" size="[1 4]"> 168 [0 0 0 0] 169 </window> 170 </cell> 171 <cell index="2" type="struct" size="[1 1]"> 172 <Domain index="1" type="double" size="[1 1]"> 173 [0] 174 </Domain> 175 <mode index="1" type="double" size="[1 1]"> 176 [1] 177 </mode> 178 <window index="1" type="double" size="[1 4]"> 179 [0 0 0 0] 180 </window> 181 </cell> 182 <cell index="3" type="struct" size="[1 1]"> 183 <Domain index="1" type="double" size="[1 1]"> 184 [0] 185 </Domain> 186 <mode index="1" type="double" size="[1 1]"> 187 [1] 188 </mode> 189 <window index="1" type="double" size="[1 4]"> 190 [0 0 0 0] 191 </window> 192 </cell> 193 <cell index="4" type="struct" size="[1 1]"> 194 <Domain index="1" type="double" size="[1 1]"> 195 [0] 196 </Domain> 197 <mode index="1" type="double" size="[1 1]"> 198 [1] 199 </mode> 200 <window index="1" type="double" size="[1 4]"> 201 [0 0 0 0] 202 </window> 203 </cell> 204 <cell index="5" type="struct" size="[1 1]"> 205 <Domain index="1" type="double" size="[1 1]"> 206 [0] 207 </Domain> 208 <mode index="1" type="double" size="[1 1]"> 209 [1] 210 </mode> 211 <window index="1" type="double" size="[1 4]"> 212 [0 0 0 0] 213 </window> 214 </cell> 215 <cell index="6" type="struct" size="[1 1]"> 216 <Domain index="1" type="double" size="[1 1]"> 217 [0] 218 </Domain> 219 <mode index="1" type="double" size="[1 1]"> 220 [1] 221 </mode> 222 <window index="1" type="double" size="[1 4]"> 223 [0 0 0 0] 224 </window> 225 </cell> 226 <cell index="7" type="struct" size="[1 1]"> 227 <Domain index="1" type="double" size="[1 1]"> 228 [0] 229 </Domain> 230 <mode index="1" type="double" size="[1 1]"> 231 [1] 232 </mode> 233 <window index="1" type="double" size="[1 4]"> 234 [0 0 0 0] 235 </window> 236 </cell> 237 </excludeRange> 238 <spatialGain_L index="1" type="double" size="[1 4]"> 239 [1.8823 1 1 2.8817] 240 </spatialGain_L> 241 <spatialGain_H index="1" type="double" size="[1 4]"> 242 [1.9051 1 1 1.9785] 243 </spatialGain_H> 244 <temporalDefaultGain index="1" type="double" size="[1 4]"> 245 [1.327 1 1 3.3143] 246 </temporalDefaultGain> 247 <ca_TargetGain index="1" type="double" size="[1 4]"> 248 [2.1924 1 1 1.4355] 249 </ca_TargetGain> 250 <singleColorProcess index="1" type="struct" size="[1 1]"> 251 <colorBlock index="1" type="cell" size="[1 6]"> 252 <cell index="1" type="struct" size="[1 1]"> 253 <index index="1" type="double" size="[1 1]"> 254 [15] 255 </index> 256 <meanC index="1" type="double" size="[1 1]"> 257 [24.929823] 258 </meanC> 259 <meanH index="1" type="double" size="[1 1]"> 260 [40.110485] 261 </meanH> 262 </cell> 263 <cell index="2" type="struct" size="[1 1]"> 264 <index index="1" type="double" size="[1 1]"> 265 [13] 266 </index> 267 <meanC index="1" type="double" size="[1 1]"> 268 [25.944557] 269 </meanC> 270 <meanH index="1" type="double" size="[1 1]"> 271 [-70.091728] 272 </meanH> 273 </cell> 274 <cell index="3" type="struct" size="[1 1]"> 275 <index index="1" type="double" size="[1 1]"> 276 [5] 277 </index> 278 <meanC index="1" type="double" size="[1 1]"> 279 [12.902067] 280 </meanC> 281 <meanH index="1" type="double" size="[1 1]"> 282 [-65.984444] 283 </meanH> 284 </cell> 285 <cell index="4" type="struct" size="[1 1]"> 286 <index index="1" type="double" size="[1 1]"> 287 [10] 288 </index> 289 <meanC index="1" type="double" size="[1 1]"> 290 [12.256701] 291 </meanC> 292 <meanH index="1" type="double" size="[1 1]"> 293 [-44.413292] 294 </meanH> 295 </cell> 296 <cell index="5" type="struct" size="[1 1]"> 297 <index index="1" type="double" size="[1 1]"> 298 [14] 299 </index> 300 <meanC index="1" type="double" size="[1 1]"> 301 [15.250979] 302 </meanC> 303 <meanH index="1" type="double" size="[1 1]"> 304 [159.265457] 305 </meanH> 306 </cell> 307 <cell index="6" type="struct" size="[1 1]"> 308 <index index="1" type="double" size="[1 1]"> 309 [16] 310 </index> 311 <meanC index="1" type="double" size="[1 1]"> 312 [31.047459] 313 </meanC> 314 <meanH index="1" type="double" size="[1 1]"> 315 [94.917763] 316 </meanH> 317 </cell> 318 </colorBlock> 319 <lsUsedForEstimation index="1" type="cell" size="[1 3]"> 320 <cell index="1" type="struct" size="[1 1]"> 321 <name index="1" type="char" size="[1 1]"> 322 A 323 </name> 324 <RGain index="1" type="double" size="[1 1]"> 325 [1.327034] 326 </RGain> 327 <BGain index="1" type="double" size="[1 1]"> 328 [3.314321] 329 </BGain> 330 </cell> 331 <cell index="2" type="struct" size="[1 1]"> 332 <name index="1" type="char" size="[1 3]"> 333 D50 334 </name> 335 <RGain index="1" type="double" size="[1 1]"> 336 [1.905082] 337 </RGain> 338 <BGain index="1" type="double" size="[1 1]"> 339 [1.978512] 340 </BGain> 341 </cell> 342 <cell index="3" type="struct" size="[1 1]"> 343 <name index="1" type="char" size="[1 4]"> 344 TL84 345 </name> 346 <RGain index="1" type="double" size="[1 1]"> 347 [1.527441] 348 </RGain> 349 <BGain index="1" type="double" size="[1 1]"> 350 [2.603337] 351 </BGain> 352 </cell> 353 </lsUsedForEstimation> 354 <alpha index="1" type="double" size="[1 1]"> 355 [0.9] 356 </alpha> 357 </singleColorProcess> 358 <lineRgBg index="1" type="double" size="[1 3]"> 359 [-0.8777 -0.4792 -2.7529] 360 </lineRgBg> 361 <lineRgProjCCT index="1" type="double" size="[1 3]"> 362 [1 -0.0002 0.638] 363 </lineRgProjCCT> 364 <wbGainDaylightClip index="1" type="struct" size="[1 1]"> 365 <outdoor_cct_min index="1" type="double" size="[1 1]"> 366 [5000] 367 </outdoor_cct_min> 368 </wbGainDaylightClip> 369 <wbGainClip index="1" type="struct" size="[1 1]"> 370 <cct index="1" type="double" size="[1 5]"> 371 [1000 2856 4100 6500 7500] 372 </cct> 373 <cri_bound_up index="1" type="double" size="[1 5]"> 374 [0.091 0.091 0.18 0.12 0.12] 375 </cri_bound_up> 376 <cri_bound_low index="1" type="double" size="[1 5]"> 377 [0.07 0.07 0.16 0.16 0.16] 378 </cri_bound_low> 379 </wbGainClip> 380 </Globals> 381 <LightSources index="1" type="cell" size="[1 7]"> 382 <cell index="1" type="struct" size="[1 1]"> 383 <name index="1" type="char" size="[1 1]"> 384 A 385 </name> 386 <doorType index="1" type="double" size="[1 1]"> 387 [1] 388 </doorType> 389 <standardGainValue index="1" type="double" size="[1 4]"> 390 [1.327 1 1 3.3143] 391 </standardGainValue> 392 <lightURegion index="1" type="double" size="[1 5]"> 393 [122.5 46 53.5 122.5 122.5] 394 </lightURegion> 395 <lightVRegion index="1" type="double" size="[1 5]"> 396 [127.5 114 101 125.5 127.5] 397 </lightVRegion> 398 <lightXYRegion index="1" type="struct" size="[1 1]"> 399 <normal index="1" type="double" size="[1 4]"> 400 [-0.0432 0.2697 0.137 -0.071] 401 </normal> 402 <big index="1" type="double" size="[1 4]"> 403 [-0.0365 0.2693 0.2057 -0.1565] 404 </big> 405 <small index="1" type="double" size="[1 4]"> 406 [-0.0383 0.2715 0.0584 -0.0545] 407 </small> 408 </lightXYRegion> 409 <yuvRegion index="1" type="struct" size="[1 1]"> 410 <k2Set index="1" type="double" size="[1 1]"> 411 [-4759] 412 </k2Set> 413 <b0Set index="1" type="double" size="[1 1]"> 414 [100] 415 </b0Set> 416 <k3Set index="1" type="double" size="[1 1]"> 417 [-3369] 418 </k3Set> 419 <k_ydisSet index="1" type="double" size="[1 1]"> 420 [2696] 421 </k_ydisSet> 422 <b_ydisSet index="1" type="double" size="[1 1]"> 423 [1] 424 </b_ydisSet> 425 <uRefSet index="1" type="double" size="[1 1]"> 426 [128] 427 </uRefSet> 428 <vRefSet index="1" type="double" size="[1 1]"> 429 [128] 430 </vRefSet> 431 <disSet index="1" type="double" size="[1 6]"> 432 [51 115 179 435 563 819] 433 </disSet> 434 <tHSet index="1" type="double" size="[1 6]"> 435 [11 14 17 20 23 26] 436 </tHSet> 437 </yuvRegion> 438 </cell> 439 <cell index="2" type="struct" size="[1 1]"> 440 <name index="1" type="char" size="[1 3]"> 441 CWF 442 </name> 443 <doorType index="1" type="double" size="[1 1]"> 444 [1] 445 </doorType> 446 <standardGainValue index="1" type="double" size="[1 4]"> 447 [1.8823 1 1 2.8817] 448 </standardGainValue> 449 <lightURegion index="1" type="double" size="[1 5]"> 450 [58.5 63 125.5 123 58.5] 451 </lightURegion> 452 <lightVRegion index="1" type="double" size="[1 5]"> 453 [85 76.5 125 125.5 85] 454 </lightVRegion> 455 <lightXYRegion index="1" type="struct" size="[1 1]"> 456 <normal index="1" type="double" size="[1 4]"> 457 [0.2697 0.7467 -0.071 -0.1747] 458 </normal> 459 <big index="1" type="double" size="[1 4]"> 460 [0.2507 0.7627 -0.0707 -0.224] 461 </big> 462 <small index="1" type="double" size="[1 4]"> 463 [0.504 0.7436 -0.0789 -0.1731] 464 </small> 465 </lightXYRegion> 466 <yuvRegion index="1" type="struct" size="[1 1]"> 467 <k2Set index="1" type="double" size="[1 1]"> 468 [-1418] 469 </k2Set> 470 <b0Set index="1" type="double" size="[1 1]"> 471 [35] 472 </b0Set> 473 <k3Set index="1" type="double" size="[1 1]"> 474 [-7776] 475 </k3Set> 476 <k_ydisSet index="1" type="double" size="[1 1]"> 477 [2610] 478 </k_ydisSet> 479 <b_ydisSet index="1" type="double" size="[1 1]"> 480 [0] 481 </b_ydisSet> 482 <uRefSet index="1" type="double" size="[1 1]"> 483 [128] 484 </uRefSet> 485 <vRefSet index="1" type="double" size="[1 1]"> 486 [128] 487 </vRefSet> 488 <disSet index="1" type="double" size="[1 6]"> 489 [58 122 250 506 762 1018] 490 </disSet> 491 <tHSet index="1" type="double" size="[1 6]"> 492 [11 14 17 20 23 26] 493 </tHSet> 494 </yuvRegion> 495 </cell> 496 <cell index="3" type="struct" size="[1 1]"> 497 <name index="1" type="char" size="[1 3]"> 498 D50 499 </name> 500 <doorType index="1" type="double" size="[1 1]"> 501 [2] 502 </doorType> 503 <standardGainValue index="1" type="double" size="[1 4]"> 504 [1.9051 1 1 1.9785] 505 </standardGainValue> 506 <lightURegion index="1" type="double" size="[1 5]"> 507 [63 77.5 126.5 126 63] 508 </lightURegion> 509 <lightVRegion index="1" type="double" size="[1 5]"> 510 [76.5 48 124 125.5 76.5] 511 </lightVRegion> 512 <lightXYRegion index="1" type="struct" size="[1 1]"> 513 <normal index="1" type="double" size="[1 4]"> 514 [0.7494 1.112 0.1759 -0.2217] 515 </normal> 516 <big index="1" type="double" size="[1 4]"> 517 [0.7527 1.117 0.2263 -0.2481] 518 </big> 519 <small index="1" type="double" size="[1 4]"> 520 [0.9445 1.0939 0.0767 -0.0218] 521 </small> 522 </lightXYRegion> 523 <yuvRegion index="1" type="struct" size="[1 1]"> 524 <k2Set index="1" type="double" size="[1 1]"> 525 [-884] 526 </k2Set> 527 <b0Set index="1" type="double" size="[1 1]"> 528 [-21] 529 </b0Set> 530 <k3Set index="1" type="double" size="[1 1]"> 531 [-8106] 532 </k3Set> 533 <k_ydisSet index="1" type="double" size="[1 1]"> 534 [3094] 535 </k_ydisSet> 536 <b_ydisSet index="1" type="double" size="[1 1]"> 537 [1] 538 </b_ydisSet> 539 <uRefSet index="1" type="double" size="[1 1]"> 540 [128] 541 </uRefSet> 542 <vRefSet index="1" type="double" size="[1 1]"> 543 [128] 544 </vRefSet> 545 <disSet index="1" type="double" size="[1 6]"> 546 [45 77 141 269 397 653] 547 </disSet> 548 <tHSet index="1" type="double" size="[1 6]"> 549 [11 14 17 20 30 40] 550 </tHSet> 551 </yuvRegion> 552 </cell> 553 <cell index="4" type="struct" size="[1 1]"> 554 <name index="1" type="char" size="[1 3]"> 555 D65 556 </name> 557 <doorType index="1" type="double" size="[1 1]"> 558 [3] 559 </doorType> 560 <standardGainValue index="1" type="double" size="[1 4]"> 561 [2.2062 1 1 1.704] 562 </standardGainValue> 563 <lightURegion index="1" type="double" size="[1 5]"> 564 [77.5 85.5 126.5 126.5 77.5] 565 </lightURegion> 566 <lightVRegion index="1" type="double" size="[1 5]"> 567 [48 31 123 124 48] 568 </lightVRegion> 569 <lightXYRegion index="1" type="struct" size="[1 1]"> 570 <normal index="1" type="double" size="[1 4]"> 571 [1.117 1.37 0.1168 -0.1657] 572 </normal> 573 <big index="1" type="double" size="[1 4]"> 574 [1.1188 1.37 0.1628 -0.1777] 575 </big> 576 <small index="1" type="double" size="[1 4]"> 577 [1.2699 1.3673 0.0803 -0.1383] 578 </small> 579 </lightXYRegion> 580 <yuvRegion index="1" type="struct" size="[1 1]"> 581 <k2Set index="1" type="double" size="[1 1]"> 582 [-499] 583 </k2Set> 584 <b0Set index="1" type="double" size="[1 1]"> 585 [-135] 586 </b0Set> 587 <k3Set index="1" type="double" size="[1 1]"> 588 [-6453] 589 </k3Set> 590 <k_ydisSet index="1" type="double" size="[1 1]"> 591 [3011] 592 </k_ydisSet> 593 <b_ydisSet index="1" type="double" size="[1 1]"> 594 [4] 595 </b_ydisSet> 596 <uRefSet index="1" type="double" size="[1 1]"> 597 [128] 598 </uRefSet> 599 <vRefSet index="1" type="double" size="[1 1]"> 600 [127] 601 </vRefSet> 602 <disSet index="1" type="double" size="[1 6]"> 603 [58 122 250 378 634 1146] 604 </disSet> 605 <tHSet index="1" type="double" size="[1 6]"> 606 [11 14 17 20 23 26] 607 </tHSet> 608 </yuvRegion> 609 </cell> 610 <cell index="5" type="struct" size="[1 1]"> 611 <name index="1" type="char" size="[1 3]"> 612 D75 613 </name> 614 <doorType index="1" type="double" size="[1 1]"> 615 [3] 616 </doorType> 617 <standardGainValue index="1" type="double" size="[1 4]"> 618 [2.2995 1 1 1.5809] 619 </standardGainValue> 620 <lightURegion index="1" type="double" size="[1 5]"> 621 [127 126.5 85.5 95.5 127] 622 </lightURegion> 623 <lightVRegion index="1" type="double" size="[1 5]"> 624 [122 123 31.5 23 122] 625 </lightVRegion> 626 <lightXYRegion index="1" type="struct" size="[1 1]"> 627 <normal index="1" type="double" size="[1 4]"> 628 [1.3763 1.5271 0.1086 -0.1327] 629 </normal> 630 <big index="1" type="double" size="[1 4]"> 631 [1.37 1.5273 0.1436 -0.1684] 632 </big> 633 <small index="1" type="double" size="[1 4]"> 634 [1.3957 1.4793 0.0917 -0.1157] 635 </small> 636 </lightXYRegion> 637 <yuvRegion index="1" type="struct" size="[1 1]"> 638 <k2Set index="1" type="double" size="[1 1]"> 639 [-373] 640 </k2Set> 641 <b0Set index="1" type="double" size="[1 1]"> 642 [-224] 643 </b0Set> 644 <k3Set index="1" type="double" size="[1 1]"> 645 [-5269] 646 </k3Set> 647 <k_ydisSet index="1" type="double" size="[1 1]"> 648 [2934] 649 </k_ydisSet> 650 <b_ydisSet index="1" type="double" size="[1 1]"> 651 [4] 652 </b_ydisSet> 653 <uRefSet index="1" type="double" size="[1 1]"> 654 [128] 655 </uRefSet> 656 <vRefSet index="1" type="double" size="[1 1]"> 657 [127] 658 </vRefSet> 659 <disSet index="1" type="double" size="[1 6]"> 660 [36 100 164 292 548 804] 661 </disSet> 662 <tHSet index="1" type="double" size="[1 6]"> 663 [11 14 17 20 23 26] 664 </tHSet> 665 </yuvRegion> 666 </cell> 667 <cell index="6" type="struct" size="[1 1]"> 668 <name index="1" type="char" size="[1 2]"> 669 HZ 670 </name> 671 <doorType index="1" type="double" size="[1 1]"> 672 [1] 673 </doorType> 674 <standardGainValue index="1" type="double" size="[1 4]"> 675 [1.1183 1 1 3.6332] 676 </standardGainValue> 677 <lightURegion index="1" type="double" size="[1 5]"> 678 [122 46.5 46 122.5 122] 679 </lightURegion> 680 <lightVRegion index="1" type="double" size="[1 5]"> 681 [128.5 134.5 114.5 127.5 128.5] 682 </lightVRegion> 683 <lightXYRegion index="1" type="struct" size="[1 1]"> 684 <normal index="1" type="double" size="[1 4]"> 685 [-0.2847 -0.0432 0.077 -0.0831] 686 </normal> 687 <big index="1" type="double" size="[1 4]"> 688 [-0.3376 -0.0365 0.1018 -0.162] 689 </big> 690 <small index="1" type="double" size="[1 4]"> 691 [-0.2399 -0.1302 0.0066 -0.06] 692 </small> 693 </lightXYRegion> 694 <yuvRegion index="1" type="struct" size="[1 1]"> 695 <k2Set index="1" type="double" size="[1 1]"> 696 [42296] 697 </k2Set> 698 <b0Set index="1" type="double" size="[1 1]"> 699 [131] 700 </b0Set> 701 <k3Set index="1" type="double" size="[1 1]"> 702 [396] 703 </k3Set> 704 <k_ydisSet index="1" type="double" size="[1 1]"> 705 [2519] 706 </k_ydisSet> 707 <b_ydisSet index="1" type="double" size="[1 1]"> 708 [3] 709 </b_ydisSet> 710 <uRefSet index="1" type="double" size="[1 1]"> 711 [128] 712 </uRefSet> 713 <vRefSet index="1" type="double" size="[1 1]"> 714 [128] 715 </vRefSet> 716 <disSet index="1" type="double" size="[1 6]"> 717 [136 168 232 360 616 872] 718 </disSet> 719 <tHSet index="1" type="double" size="[1 6]"> 720 [11 14 17 20 23 26] 721 </tHSet> 722 </yuvRegion> 723 </cell> 724 <cell index="7" type="struct" size="[1 1]"> 725 <name index="1" type="char" size="[1 4]"> 726 TL84 727 </name> 728 <doorType index="1" type="double" size="[1 1]"> 729 [1] 730 </doorType> 731 <standardGainValue index="1" type="double" size="[1 4]"> 732 [1.5274 1 1 2.6033] 733 </standardGainValue> 734 <lightURegion index="1" type="double" size="[1 5]"> 735 [122.5 53.5 59 123 122.5] 736 </lightURegion> 737 <lightVRegion index="1" type="double" size="[1 5]"> 738 [125.5 100.5 85 125 125.5] 739 </lightVRegion> 740 <lightXYRegion index="1" type="struct" size="[1 1]"> 741 <normal index="1" type="double" size="[1 4]"> 742 [0.272 0.7479 0.1701 -0.0722] 743 </normal> 744 <big index="1" type="double" size="[1 4]"> 745 [0.2733 0.7493 0.2358 -0.0728] 746 </big> 747 <small index="1" type="double" size="[1 4]"> 748 [0.448 0.608 0.0606 -0.0351] 749 </small> 750 </lightXYRegion> 751 <yuvRegion index="1" type="struct" size="[1 1]"> 752 <k2Set index="1" type="double" size="[1 1]"> 753 [-2134] 754 </k2Set> 755 <b0Set index="1" type="double" size="[1 1]"> 756 [66] 757 </b0Set> 758 <k3Set index="1" type="double" size="[1 1]"> 759 [-6390] 760 </k3Set> 761 <k_ydisSet index="1" type="double" size="[1 1]"> 762 [3007] 763 </k_ydisSet> 764 <b_ydisSet index="1" type="double" size="[1 1]"> 765 [0] 766 </b_ydisSet> 767 <uRefSet index="1" type="double" size="[1 1]"> 768 [128] 769 </uRefSet> 770 <vRefSet index="1" type="double" size="[1 1]"> 771 [128] 772 </vRefSet> 773 <disSet index="1" type="double" size="[1 6]"> 774 [58 122 186 442 570 826] 775 </disSet> 776 <tHSet index="1" type="double" size="[1 6]"> 777 [11 14 17 20 23 26] 778 </tHSet> 779 </yuvRegion> 780 </cell> 781 </LightSources> 782 </cell> 783 </CalibParaV20> 784 <CalibParaV21 index="1" type="cell" size="[1 1]"> 785 <cell index="1" type="struct" size="[1 1]"> 786 <scene index="1" type="char" size="[1 10]"> 787 A0 788 </scene> 789 <Globals index="1" type="struct" size="[1 1]"> 790 <hdrFrameChoose index="1" type="struct" size="[1 1]"> 791 <mode index="1" type="double" size="[1 1]"> 792 [0] 793 </mode> 794 <frameChoose index="1" type="double" size="[1 1]"> 795 [1] 796 </frameChoose> 797 </hdrFrameChoose> 798 <lscBypassEnable index="1" type="double" size="[1 1]"> 799 [0] 800 </lscBypassEnable> 801 <uvDetectionEnable index="1" type="double" size="[1 1]"> 802 [1] 803 </uvDetectionEnable> 804 <xyDetectionEnable index="1" type="double" size="[1 1]"> 805 [1] 806 </xyDetectionEnable> 807 <yuvDetectionEnable index="1" type="double" size="[1 1]"> 808 [1] 809 </yuvDetectionEnable> 810 <wbGainDaylightClipEnable index="1" type="double" size="[1 1]"> 811 [0] 812 </wbGainDaylightClipEnable> 813 <wbGainClipEnable index="1" type="double" size="[1 1]"> 814 [0] 815 </wbGainClipEnable> 816 <wpDiffLumaWeiEnable index="1" type="double" size="[1 1]"> 817 [1] 818 </wpDiffLumaWeiEnable> 819 <wpDiffBlkWeiEnable index="1" type="double" size="[1 1]"> 820 [1] 821 </wpDiffBlkWeiEnable> 822 <blkStatisticsEnable index="1" type="double" size="[1 1]"> 823 [1] 824 </blkStatisticsEnable> 825 <lsUsedForYuvDet index="1" type="cell" size="[1 7]"> 826 <cell index="1" type="struct" size="[1 1]"> 827 <name index="1" type="char" size="[1 1]"> 828 A 829 </name> 830 </cell> 831 <cell index="1" type="struct" size="[1 1]"> 832 <name index="1" type="char" size="[1 3]"> 833 CWF 834 </name> 835 </cell> 836 <cell index="1" type="struct" size="[1 1]"> 837 <name index="1" type="char" size="[1 3]"> 838 D65 839 </name> 840 </cell> 841 <cell index="1" type="struct" size="[1 1]"> 842 <name index="1" type="char" size="[1 4]"> 843 TL84 844 </name> 845 </cell> 846 <cell index="1" type="struct" size="[1 1]"> 847 <name index="1" type="char" size="[1 3]"> 848 D50 849 </name> 850 </cell> 851 <cell index="1" type="struct" size="[1 1]"> 852 <name index="1" type="char" size="[1 2]"> 853 HZ 854 </name> 855 </cell> 856 <cell index="1" type="struct" size="[1 1]"> 857 <name index="1" type="char" size="[1 3]"> 858 D75 859 </name> 860 </cell> 861 </lsUsedForYuvDet> 862 <downScaleMode index="1" type="double" size="[1 1]"> 863 [1] 864 </downScaleMode> 865 <blckMeasureMode index="1" type="double" size="[1 1]"> 866 [0] 867 </blckMeasureMode> 868 <measureWindow index="1" type="struct" size="[1 1]"> 869 <mode index="1" type="double" size="[1 1]"> 870 [1] 871 </mode> 872 <resAll index="1" type="cell" size="[1 1]"> 873 <cell index="6" type="struct" size="[1 1]"> 874 <resolution index="1" type="char" size="[1 9]"> 875 1920x1080 876 </resolution> 877 <measureWindowSize index="1" type="double" size="[1 4]"> 878 [0 0 2688 1520] 879 </measureWindowSize> 880 </cell> 881 </resAll> 882 </measureWindow> 883 <multiWindowEnable index="1" type="double" size="[1 1]"> 884 [1] 885 </multiWindowEnable> 886 <limitRange index="1" type="struct" size="[1 1]"> 887 <Y index="1" type="double" size="[1 2]"> 888 [9 210] 889 </Y> 890 <R index="1" type="double" size="[1 2]"> 891 [6 230] 892 </R> 893 <G index="1" type="double" size="[1 2]"> 894 [9 230] 895 </G> 896 <B index="1" type="double" size="[1 2]"> 897 [6 230] 898 </B> 899 </limitRange> 900 <pseudoLumWeight index="1" type="double" size="[1 3]"> 901 [0.374556 0.375338 0.250105] 902 </pseudoLumWeight> 903 <rotationMat index="1" type="double" size="[1 9]"> 904 [-0.52139 0.853319 1.200718 0.853319 0.52139 0.602424 0 0 1] 905 </rotationMat> 906 <rgb2RotationYuvMat index="1" type="double" size="[4 4]"> 907 [0.029297 0.134766 0.013672 38.9375 908 -0.083984 -0.003906 0.068359 137.5625 909 0.048828 -0.050781 0.048828 106.8125 910 0 0 0 1] 911 </rgb2RotationYuvMat> 912 <multiwindow index="1" type="double" size="[8 4]"> 913 [0 0 0 0 914 0 0 0 0 915 0 0 0 0 916 0 0 0 0 917 0 0 0 0 918 0 0 0 0 919 0 0 0 0 920 0 0 0 0] 921 </multiwindow> 922 <excludeRange index="1" type="cell" size="[1 7]"> 923 <cell index="1" type="struct" size="[1 1]"> 924 <Domain index="1" type="double" size="[1 1]"> 925 [0] 926 </Domain> 927 <mode index="1" type="double" size="[1 1]"> 928 [1] 929 </mode> 930 <window index="1" type="double" size="[1 4]"> 931 [244 249 228 211] 932 </window> 933 </cell> 934 <cell index="2" type="struct" size="[1 1]"> 935 <Domain index="1" type="double" size="[1 1]"> 936 [1] 937 </Domain> 938 <mode index="1" type="double" size="[1 1]"> 939 [1] 940 </mode> 941 <window index="1" type="double" size="[1 4]"> 942 [-1096 -985 140 65] 943 </window> 944 </cell> 945 <cell index="3" type="struct" size="[1 1]"> 946 <Domain index="1" type="double" size="[1 1]"> 947 [1] 948 </Domain> 949 <mode index="1" type="double" size="[1 1]"> 950 [1] 951 </mode> 952 <window index="1" type="double" size="[1 4]"> 953 [-40 158 121 16] 954 </window> 955 </cell> 956 <cell index="4" type="struct" size="[1 1]"> 957 <Domain index="1" type="double" size="[1 1]"> 958 [1] 959 </Domain> 960 <mode index="1" type="double" size="[1 1]"> 961 [1] 962 </mode> 963 <window index="1" type="double" size="[1 4]"> 964 [-235 -40 237 80] 965 </window> 966 </cell> 967 <cell index="5" type="struct" size="[1 1]"> 968 <Domain index="1" type="double" size="[1 1]"> 969 [0] 970 </Domain> 971 <mode index="1" type="double" size="[1 1]"> 972 [0] 973 </mode> 974 <window index="1" type="double" size="[1 4]"> 975 [0 0 0 0] 976 </window> 977 </cell> 978 <cell index="6" type="struct" size="[1 1]"> 979 <Domain index="1" type="double" size="[1 1]"> 980 [0] 981 </Domain> 982 <mode index="1" type="double" size="[1 1]"> 983 [0] 984 </mode> 985 <window index="1" type="double" size="[1 4]"> 986 [0 0 0 0] 987 </window> 988 </cell> 989 <cell index="7" type="struct" size="[1 1]"> 990 <Domain index="1" type="double" size="[1 1]"> 991 [0] 992 </Domain> 993 <mode index="1" type="double" size="[1 1]"> 994 [0] 995 </mode> 996 <window index="1" type="double" size="[1 4]"> 997 [0 0 0 0] 998 </window> 999 </cell> 1000 </excludeRange> 1001 <spatialGain_L index="1" type="double" size="[1 4]"> 1002 [1.8823 1 1 2.8817] 1003 </spatialGain_L> 1004 <spatialGain_H index="1" type="double" size="[1 4]"> 1005 [1.9051 1 1 1.9785] 1006 </spatialGain_H> 1007 <temporalDefaultGain index="1" type="double" size="[1 4]"> 1008 [1.327 1 1 3.3143] 1009 </temporalDefaultGain> 1010 <ca_TargetGain index="1" type="double" size="[1 4]"> 1011 [2.1924 1 1 1.4355] 1012 </ca_TargetGain> 1013 <singleColorProcess index="1" type="struct" size="[1 1]"> 1014 <colorBlock index="1" type="cell" size="[1 6]"> 1015 <cell index="1" type="struct" size="[1 1]"> 1016 <index index="1" type="double" size="[1 1]"> 1017 [15] 1018 </index> 1019 <meanC index="1" type="double" size="[1 1]"> 1020 [24.929823] 1021 </meanC> 1022 <meanH index="1" type="double" size="[1 1]"> 1023 [40.110485] 1024 </meanH> 1025 </cell> 1026 <cell index="2" type="struct" size="[1 1]"> 1027 <index index="1" type="double" size="[1 1]"> 1028 [13] 1029 </index> 1030 <meanC index="1" type="double" size="[1 1]"> 1031 [25.944557] 1032 </meanC> 1033 <meanH index="1" type="double" size="[1 1]"> 1034 [-70.091728] 1035 </meanH> 1036 </cell> 1037 <cell index="3" type="struct" size="[1 1]"> 1038 <index index="1" type="double" size="[1 1]"> 1039 [5] 1040 </index> 1041 <meanC index="1" type="double" size="[1 1]"> 1042 [12.902067] 1043 </meanC> 1044 <meanH index="1" type="double" size="[1 1]"> 1045 [-65.984444] 1046 </meanH> 1047 </cell> 1048 <cell index="4" type="struct" size="[1 1]"> 1049 <index index="1" type="double" size="[1 1]"> 1050 [10] 1051 </index> 1052 <meanC index="1" type="double" size="[1 1]"> 1053 [12.256701] 1054 </meanC> 1055 <meanH index="1" type="double" size="[1 1]"> 1056 [-44.413292] 1057 </meanH> 1058 </cell> 1059 <cell index="5" type="struct" size="[1 1]"> 1060 <index index="1" type="double" size="[1 1]"> 1061 [14] 1062 </index> 1063 <meanC index="1" type="double" size="[1 1]"> 1064 [15.250979] 1065 </meanC> 1066 <meanH index="1" type="double" size="[1 1]"> 1067 [159.265457] 1068 </meanH> 1069 </cell> 1070 <cell index="6" type="struct" size="[1 1]"> 1071 <index index="1" type="double" size="[1 1]"> 1072 [16] 1073 </index> 1074 <meanC index="1" type="double" size="[1 1]"> 1075 [31.047459] 1076 </meanC> 1077 <meanH index="1" type="double" size="[1 1]"> 1078 [94.917763] 1079 </meanH> 1080 </cell> 1081 </colorBlock> 1082 <lsUsedForEstimation index="1" type="cell" size="[1 3]"> 1083 <cell index="1" type="struct" size="[1 1]"> 1084 <name index="1" type="char" size="[1 1]"> 1085 A 1086 </name> 1087 <RGain index="1" type="double" size="[1 1]"> 1088 [1.327034] 1089 </RGain> 1090 <BGain index="1" type="double" size="[1 1]"> 1091 [3.314321] 1092 </BGain> 1093 </cell> 1094 <cell index="2" type="struct" size="[1 1]"> 1095 <name index="1" type="char" size="[1 3]"> 1096 D50 1097 </name> 1098 <RGain index="1" type="double" size="[1 1]"> 1099 [1.905082] 1100 </RGain> 1101 <BGain index="1" type="double" size="[1 1]"> 1102 [1.978512] 1103 </BGain> 1104 </cell> 1105 <cell index="3" type="struct" size="[1 1]"> 1106 <name index="1" type="char" size="[1 4]"> 1107 TL84 1108 </name> 1109 <RGain index="1" type="double" size="[1 1]"> 1110 [1.527441] 1111 </RGain> 1112 <BGain index="1" type="double" size="[1 1]"> 1113 [2.603337] 1114 </BGain> 1115 </cell> 1116 </lsUsedForEstimation> 1117 <alpha index="1" type="double" size="[1 1]"> 1118 [0.9] 1119 </alpha> 1120 </singleColorProcess> 1121 <lineRgBg index="1" type="double" size="[1 3]"> 1122 [-0.8777 -0.4792 -2.7529] 1123 </lineRgBg> 1124 <lineRgProjCCT index="1" type="double" size="[1 3]"> 1125 [1 -0.0002 0.638] 1126 </lineRgProjCCT> 1127 <wbGainDaylightClip index="1" type="struct" size="[1 1]"> 1128 <outdoor_cct_min index="1" type="double" size="[1 1]"> 1129 [5000] 1130 </outdoor_cct_min> 1131 </wbGainDaylightClip> 1132 <wbGainClip index="1" type="struct" size="[1 1]"> 1133 <cct index="1" type="double" size="[1 5]"> 1134 [1000 2856 4100 6500 7500] 1135 </cct> 1136 <cri_bound_up index="1" type="double" size="[1 5]"> 1137 [0.091 0.091 0.18 0.12 0.12] 1138 </cri_bound_up> 1139 <cri_bound_low index="1" type="double" size="[1 5]"> 1140 [0.07 0.07 0.16 0.16 0.16] 1141 </cri_bound_low> 1142 </wbGainClip> 1143 <wpDiffLumaWeight index="1" type="struct" size="[1 1]"> 1144 <wpDiffWeiEnableTh index="1" type="struct" size="[1 1]"> 1145 <wpDiffWeiNoTh index="1" type="double" size="[1 1]"> 1146 [0.004] 1147 </wpDiffWeiNoTh> 1148 <wpDiffWeiLvValueTh index="1" type="double" size="[1 1]"> 1149 [64] 1150 </wpDiffWeiLvValueTh> 1151 </wpDiffWeiEnableTh> 1152 <wpDiffwei_y index="1" type="double" size="[1 9]"> 1153 [0 16 32 64 96 128 192 224 240] 1154 </wpDiffwei_y> 1155 <perfectBinConf index="1" type="double" size="[1 8]"> 1156 [0 0 0 1 1 1 1 0] 1157 </perfectBinConf> 1158 <wpDiffWeiLvTh index="1" type="double" size="[1 2]"> 1159 [256 8192] 1160 </wpDiffWeiLvTh> 1161 <wpDiffWeiRatioTh index="1" type="double" size="[1 3]"> 1162 [0 0.01 0.1] 1163 </wpDiffWeiRatioTh> 1164 <wpDiffwei_w_HighLV index="1" type="struct" size="[1 1]"> 1165 <wpRatio1 index="1" type="double" size="[1 9]"> 1166 [1 1 1 1 1 1 1 1 1] 1167 </wpRatio1> 1168 <wpRatio2 index="1" type="double" size="[1 9]"> 1169 [1 1 1 1 1 1 1 1 1] 1170 </wpRatio2> 1171 <wpRatio3 index="1" type="double" size="[1 9]"> 1172 [0 0 0.2 0.5 1 1 1 0.5 0] 1173 </wpRatio3> 1174 </wpDiffwei_w_HighLV> 1175 <wpDiffwei_w_LowLV index="1" type="struct" size="[1 1]"> 1176 <wpRatio1 index="1" type="double" size="[1 9]"> 1177 [1 1 1 1 1 1 1 1 1] 1178 </wpRatio1> 1179 <wpRatio2 index="1" type="double" size="[1 9]"> 1180 [1 1 1 1 1 1 1 1 1] 1181 </wpRatio2> 1182 <wpRatio3 index="1" type="double" size="[1 9]"> 1183 [1 1 1 1 1 1 1 1 1] 1184 </wpRatio3> 1185 </wpDiffwei_w_LowLV> 1186 </wpDiffLumaWeight> 1187 <wpDiffBlkWeight index="1" type="double" size="[15 15]"> 1188 [3 3 3 4 4 4 4 5 4 4 4 4 3 3 3 1189 3 3 4 4 5 5 6 6 6 5 5 4 4 3 3 1190 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 1191 4 4 6 8 11 13 15 16 15 13 11 8 6 4 4 1192 4 5 7 11 14 18 21 23 21 18 14 11 7 5 4 1193 4 5 8 13 18 23 27 29 27 23 18 13 8 5 4 1194 4 6 9 15 21 27 32 32 32 27 21 15 9 6 4 1195 5 6 10 16 23 29 32 32 32 29 23 16 10 6 5 1196 4 6 9 15 21 27 32 32 32 27 21 15 9 6 4 1197 4 5 8 13 18 23 27 29 27 23 18 13 8 5 4 1198 4 5 7 11 14 18 21 23 21 18 14 11 7 5 4 1199 4 4 6 8 11 13 15 16 15 13 11 8 6 4 4 1200 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 1201 3 3 4 4 5 5 6 6 6 5 5 4 4 3 3 1202 3 3 3 4 4 4 4 5 4 4 4 4 3 3 3] 1203 </wpDiffBlkWeight> 1204 </Globals> 1205 <LightSources index="1" type="cell" size="[1 7]"> 1206 <cell index="1" type="struct" size="[1 1]"> 1207 <name index="1" type="char" size="[1 1]"> 1208 A 1209 </name> 1210 <doorType index="1" type="double" size="[1 1]"> 1211 [1] 1212 </doorType> 1213 <standardGainValue index="1" type="double" size="[1 4]"> 1214 [1.327 1 1 3.3143] 1215 </standardGainValue> 1216 <lightURegion index="1" type="double" size="[1 5]"> 1217 [122.5 46 53.5 122.5 122.5] 1218 </lightURegion> 1219 <lightVRegion index="1" type="double" size="[1 5]"> 1220 [127.5 114 101 125.5 127.5] 1221 </lightVRegion> 1222 <smallURegion index="1" type="double" size="[1 5]"> 1223 [123 54 55.5 123.5 123] 1224 </smallURegion> 1225 <smallVRegion index="1" type="double" size="[1 5]"> 1226 [128.5 137 118 127 128.5] 1227 </smallVRegion> 1228 <lightXYRegion index="1" type="struct" size="[1 1]"> 1229 <normal index="1" type="double" size="[1 4]"> 1230 [-0.0432 0.2697 0.137 -0.071] 1231 </normal> 1232 <big index="1" type="double" size="[1 4]"> 1233 [-0.0365 0.2693 0.2057 -0.1565] 1234 </big> 1235 <small index="1" type="double" size="[1 4]"> 1236 [-0.0383 0.2715 0.0584 -0.0545] 1237 </small> 1238 </lightXYRegion> 1239 <rtYuvRegion index="1" type="struct" size="[1 1]"> 1240 <thcurve_u_set index="1" type="double" size="[1 6]"> 1241 [50 54 70 78 110 142] 1242 </thcurve_u_set> 1243 <thcurve_th_set index="1" type="double" size="[1 6]"> 1244 [0.1875 0.1875 0.1875 0.75 1 4] 1245 </thcurve_th_set> 1246 <lineVector index="1" type="double" size="[1 6]"> 1247 [10 183.625 146.3125 95.1875 106.875 107.4375] 1248 </lineVector> 1249 </rtYuvRegion> 1250 </cell> 1251 <cell index="2" type="struct" size="[1 1]"> 1252 <name index="1" type="char" size="[1 3]"> 1253 CWF 1254 </name> 1255 <doorType index="1" type="double" size="[1 1]"> 1256 [1] 1257 </doorType> 1258 <standardGainValue index="1" type="double" size="[1 4]"> 1259 [1.8823 1 1 2.8817] 1260 </standardGainValue> 1261 <lightURegion index="1" type="double" size="[1 5]"> 1262 [58.5 63 125.5 123 58.5] 1263 </lightURegion> 1264 <lightVRegion index="1" type="double" size="[1 5]"> 1265 [85 76.5 125 125.5 85] 1266 </lightVRegion> 1267 <smallURegion index="1" type="double" size="[1 5]"> 1268 [57 63.5 122.5 122.5 57] 1269 </smallURegion> 1270 <smallVRegion index="1" type="double" size="[1 5]"> 1271 [92 79.5 124 125.5 92] 1272 </smallVRegion> 1273 <lightXYRegion index="1" type="struct" size="[1 1]"> 1274 <normal index="1" type="double" size="[1 4]"> 1275 [0.2697 0.7467 -0.071 -0.1747] 1276 </normal> 1277 <big index="1" type="double" size="[1 4]"> 1278 [0.2507 0.7627 -0.0707 -0.224] 1279 </big> 1280 <small index="1" type="double" size="[1 4]"> 1281 [0.504 0.7436 -0.0789 -0.1731] 1282 </small> 1283 </lightXYRegion> 1284 <rtYuvRegion index="1" type="struct" size="[1 1]"> 1285 <thcurve_u_set index="1" type="double" size="[1 6]"> 1286 [50 54 70 78 110 142] 1287 </thcurve_u_set> 1288 <thcurve_th_set index="1" type="double" size="[1 6]"> 1289 [0.125 0.1875 0.1875 0.75 1 4] 1290 </thcurve_th_set> 1291 <lineVector index="1" type="double" size="[1 6]"> 1292 [10 188.4375 142.5 113.25 108.25 99.5] 1293 </lineVector> 1294 </rtYuvRegion> 1295 </cell> 1296 <cell index="3" type="struct" size="[1 1]"> 1297 <name index="1" type="char" size="[1 3]"> 1298 D50 1299 </name> 1300 <doorType index="1" type="double" size="[1 1]"> 1301 [2] 1302 </doorType> 1303 <standardGainValue index="1" type="double" size="[1 4]"> 1304 [1.9051 1 1 1.9785] 1305 </standardGainValue> 1306 <lightURegion index="1" type="double" size="[1 5]"> 1307 [63 77.5 126.5 126 63] 1308 </lightURegion> 1309 <lightVRegion index="1" type="double" size="[1 5]"> 1310 [76.5 48 124 125.5 76.5] 1311 </lightVRegion> 1312 <smallURegion index="1" type="double" size="[1 5]"> 1313 [63 84.5 125 121.5 63] 1314 </smallURegion> 1315 <smallVRegion index="1" type="double" size="[1 5]"> 1316 [79.5 65 123 126.5 79.5] 1317 </smallVRegion> 1318 <lightXYRegion index="1" type="struct" size="[1 1]"> 1319 <normal index="1" type="double" size="[1 4]"> 1320 [0.7494 1.112 0.1759 -0.2217] 1321 </normal> 1322 <big index="1" type="double" size="[1 4]"> 1323 [0.7527 1.117 0.2263 -0.2481] 1324 </big> 1325 <small index="1" type="double" size="[1 4]"> 1326 [0.9445 1.0939 0.0767 -0.0218] 1327 </small> 1328 </lightXYRegion> 1329 <rtYuvRegion index="1" type="struct" size="[1 1]"> 1330 <thcurve_u_set index="1" type="double" size="[1 6]"> 1331 [50 54 70 78 110 142] 1332 </thcurve_u_set> 1333 <thcurve_th_set index="1" type="double" size="[1 6]"> 1334 [0.1875 0.3125 0.375 0.75 1 4] 1335 </thcurve_th_set> 1336 <lineVector index="1" type="double" size="[1 6]"> 1337 [10 190.3125 140.25 124.3125 107.25 106] 1338 </lineVector> 1339 </rtYuvRegion> 1340 </cell> 1341 <cell index="4" type="struct" size="[1 1]"> 1342 <name index="1" type="char" size="[1 3]"> 1343 D65 1344 </name> 1345 <doorType index="1" type="double" size="[1 1]"> 1346 [3] 1347 </doorType> 1348 <standardGainValue index="1" type="double" size="[1 4]"> 1349 [2.2062 1 1 1.704] 1350 </standardGainValue> 1351 <lightURegion index="1" type="double" size="[1 5]"> 1352 [77.5 85.5 126.5 126.5 77.5] 1353 </lightURegion> 1354 <lightVRegion index="1" type="double" size="[1 5]"> 1355 [48 31 123 124 48] 1356 </lightVRegion> 1357 <smallURegion index="1" type="double" size="[1 5]"> 1358 [84.5 103.5 126 125 84.5] 1359 </smallURegion> 1360 <smallVRegion index="1" type="double" size="[1 5]"> 1361 [65 47.5 117.5 123 65] 1362 </smallVRegion> 1363 <lightXYRegion index="1" type="struct" size="[1 1]"> 1364 <normal index="1" type="double" size="[1 4]"> 1365 [1.117 1.37 0.1168 -0.1657] 1366 </normal> 1367 <big index="1" type="double" size="[1 4]"> 1368 [1.1188 1.37 0.1628 -0.1777] 1369 </big> 1370 <small index="1" type="double" size="[1 4]"> 1371 [1.2699 1.3673 0.0803 -0.1383] 1372 </small> 1373 </lightXYRegion> 1374 <rtYuvRegion index="1" type="struct" size="[1 1]"> 1375 <thcurve_u_set index="1" type="double" size="[1 6]"> 1376 [50 54 70 78 110 142] 1377 </thcurve_u_set> 1378 <thcurve_th_set index="1" type="double" size="[1 6]"> 1379 [0.1875 0.5 0.5 0.8125 1 4] 1380 </thcurve_th_set> 1381 <lineVector index="1" type="double" size="[1 6]"> 1382 [10 191 138.125 135.625 107.0625 106.875] 1383 </lineVector> 1384 </rtYuvRegion> 1385 </cell> 1386 <cell index="5" type="struct" size="[1 1]"> 1387 <name index="1" type="char" size="[1 3]"> 1388 D75 1389 </name> 1390 <doorType index="1" type="double" size="[1 1]"> 1391 [3] 1392 </doorType> 1393 <standardGainValue index="1" type="double" size="[1 4]"> 1394 [2.2995 1 1 1.5809] 1395 </standardGainValue> 1396 <lightURegion index="1" type="double" size="[1 5]"> 1397 [127 126.5 85.5 95.5 127] 1398 </lightURegion> 1399 <lightVRegion index="1" type="double" size="[1 5]"> 1400 [122 123 31.5 23 122] 1401 </lightVRegion> 1402 <smallURegion index="1" type="double" size="[1 5]"> 1403 [126 125.5 103.5 113 126] 1404 </smallURegion> 1405 <smallVRegion index="1" type="double" size="[1 5]"> 1406 [114 116.5 47 54 114] 1407 </smallVRegion> 1408 <lightXYRegion index="1" type="struct" size="[1 1]"> 1409 <normal index="1" type="double" size="[1 4]"> 1410 [1.3763 1.5271 0.1086 -0.1327] 1411 </normal> 1412 <big index="1" type="double" size="[1 4]"> 1413 [1.37 1.5273 0.1436 -0.1684] 1414 </big> 1415 <small index="1" type="double" size="[1 4]"> 1416 [1.3957 1.4793 0.0917 -0.1157] 1417 </small> 1418 </lightXYRegion> 1419 <rtYuvRegion index="1" type="struct" size="[1 1]"> 1420 <thcurve_u_set index="1" type="double" size="[1 6]"> 1421 [50 54 70 78 110 142] 1422 </thcurve_u_set> 1423 <thcurve_th_set index="1" type="double" size="[1 6]"> 1424 [0.1875 0.3125 0.5 0.75 1 4] 1425 </thcurve_th_set> 1426 <lineVector index="1" type="double" size="[1 6]"> 1427 [10 191 137.0625 140.3125 107.125 107.625] 1428 </lineVector> 1429 </rtYuvRegion> 1430 </cell> 1431 <cell index="6" type="struct" size="[1 1]"> 1432 <name index="1" type="char" size="[1 2]"> 1433 HZ 1434 </name> 1435 <doorType index="1" type="double" size="[1 1]"> 1436 [1] 1437 </doorType> 1438 <standardGainValue index="1" type="double" size="[1 4]"> 1439 [1.1183 1 1 3.6332] 1440 </standardGainValue> 1441 <lightURegion index="1" type="double" size="[1 5]"> 1442 [122 46.5 46 122.5 122] 1443 </lightURegion> 1444 <lightVRegion index="1" type="double" size="[1 5]"> 1445 [128.5 134.5 114.5 127.5 128.5] 1446 </lightVRegion> 1447 <smallURegion index="1" type="double" size="[1 5]"> 1448 [121 54 54 123 121] 1449 </smallURegion> 1450 <smallVRegion index="1" type="double" size="[1 5]"> 1451 [132 150.5 136.5 129 132] 1452 </smallVRegion> 1453 <lightXYRegion index="1" type="struct" size="[1 1]"> 1454 <normal index="1" type="double" size="[1 4]"> 1455 [-0.2847 -0.0432 0.077 -0.0831] 1456 </normal> 1457 <big index="1" type="double" size="[1 4]"> 1458 [-0.3376 -0.0365 0.1018 -0.162] 1459 </big> 1460 <small index="1" type="double" size="[1 4]"> 1461 [-0.2399 -0.1302 0.0066 -0.06] 1462 </small> 1463 </lightXYRegion> 1464 <rtYuvRegion index="1" type="struct" size="[1 1]"> 1465 <thcurve_u_set index="1" type="double" size="[1 6]"> 1466 [50 54 70 78 110 142] 1467 </thcurve_u_set> 1468 <thcurve_th_set index="1" type="double" size="[1 6]"> 1469 [0.1875 0.3125 0.3125 0.75 1 4] 1470 </thcurve_th_set> 1471 <lineVector index="1" type="double" size="[1 6]"> 1472 [10 179.1875 149.125 85 106.125 112] 1473 </lineVector> 1474 </rtYuvRegion> 1475 </cell> 1476 <cell index="7" type="struct" size="[1 1]"> 1477 <name index="1" type="char" size="[1 4]"> 1478 TL84 1479 </name> 1480 <doorType index="1" type="double" size="[1 1]"> 1481 [1] 1482 </doorType> 1483 <standardGainValue index="1" type="double" size="[1 4]"> 1484 [1.5274 1 1 2.6033] 1485 </standardGainValue> 1486 <lightURegion index="1" type="double" size="[1 5]"> 1487 [122.5 53.5 59 123 122.5] 1488 </lightURegion> 1489 <lightVRegion index="1" type="double" size="[1 5]"> 1490 [125.5 100.5 85 125 125.5] 1491 </lightVRegion> 1492 <smallURegion index="1" type="double" size="[1 5]"> 1493 [123.5 56 57 124 123.5] 1494 </smallURegion> 1495 <smallVRegion index="1" type="double" size="[1 5]"> 1496 [127 117.5 92 125.5 127] 1497 </smallVRegion> 1498 <lightXYRegion index="1" type="struct" size="[1 1]"> 1499 <normal index="1" type="double" size="[1 4]"> 1500 [0.272 0.7479 0.1701 -0.0722] 1501 </normal> 1502 <big index="1" type="double" size="[1 4]"> 1503 [0.2733 0.7493 0.2358 -0.0728] 1504 </big> 1505 <small index="1" type="double" size="[1 4]"> 1506 [0.448 0.608 0.0606 -0.0351] 1507 </small> 1508 </lightXYRegion> 1509 <rtYuvRegion index="1" type="struct" size="[1 1]"> 1510 <thcurve_u_set index="1" type="double" size="[1 6]"> 1511 [50 54 70 78 110 142] 1512 </thcurve_u_set> 1513 <thcurve_th_set index="1" type="double" size="[1 6]"> 1514 [0.1875 0.1875 0.3125 0.75 1 4] 1515 </thcurve_th_set> 1516 <lineVector index="1" type="double" size="[1 6]"> 1517 [10 187.1875 143.8125 106.6875 106.8125 106.9375] 1518 </lineVector> 1519 </rtYuvRegion> 1520 </cell> 1521 </LightSources> 1522 </cell> 1523 </CalibParaV21> 1524 <TuningPara index="1" type="cell" size="[1 1]"> 1525 <cell index="1" type="struct" size="[1 1]"> 1526 <scene index="1" type="char" size="[1 10]"> 1527 A0 1528 </scene> 1529 <Globals index="1" type="struct" size="[1 1]"> 1530 <wbBypass index="1" type="double" size="[1 1]"> 1531 [0] 1532 </wbBypass> 1533 <awbEnable index="1" type="double" size="[1 1]"> 1534 [1] 1535 </awbEnable> 1536 <wbGainAdjustEnable index="1" type="double" size="[1 1]"> 1537 [0] 1538 </wbGainAdjustEnable> 1539 <lightSourceForFirstFrame index="1" type="char" size="[1 3]"> 1540 D50 1541 </lightSourceForFirstFrame> 1542 <uvRangeSmallEnable index="1" type="double" size="[1 1]"> 1543 [0] 1544 </uvRangeSmallEnable> 1545 <ca_Enable index="1" type="double" size="[1 1]"> 1546 [0] 1547 </ca_Enable> 1548 <tolerance index="1" type="struct" size="[1 1]"> 1549 <LV index="1" type="double" size="[1 4]"> 1550 [256 512 32768 131072] 1551 </LV> 1552 <value index="1" type="double" size="[1 4]"> 1553 [0 0 0 0] 1554 </value> 1555 </tolerance> 1556 <runInterval index="1" type="struct" size="[1 1]"> 1557 <LV index="1" type="double" size="[1 4]"> 1558 [256 512 32768 131072] 1559 </LV> 1560 <value index="1" type="double" size="[1 4]"> 1561 [0 0 0 0] 1562 </value> 1563 </runInterval> 1564 <multiwindowMode index="1" type="double" size="[1 1]"> 1565 [0] 1566 </multiwindowMode> 1567 <dampFactor index="1" type="struct" size="[1 1]"> 1568 <dFStep index="1" type="double" size="[1 1]"> 1569 [0.05] 1570 </dFStep> 1571 <dFMin index="1" type="double" size="[1 1]"> 1572 [0.7] 1573 </dFMin> 1574 <dFMax index="1" type="double" size="[1 1]"> 1575 [0.9] 1576 </dFMax> 1577 <LvIIRsize index="1" type="double" size="[1 1]"> 1578 [4] 1579 </LvIIRsize> 1580 <LvVarTh index="1" type="double" size="[1 1]"> 1581 [0.04] 1582 </LvVarTh> 1583 </dampFactor> 1584 <LVMatrix index="1" type="double" size="[1 16]"> 1585 [0 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536 131072 262144] 1586 </LVMatrix> 1587 <LV_THL index="1" type="double" size="[1 1]"> 1588 [110] 1589 </LV_THL> 1590 <LV_THL2 index="1" type="double" size="[1 1]"> 1591 [200] 1592 </LV_THL2> 1593 <LV_THH index="1" type="double" size="[1 1]"> 1594 [65536] 1595 </LV_THH> 1596 <LV_THH2 index="1" type="double" size="[1 1]"> 1597 [65600] 1598 </LV_THH2> 1599 <WP_THL index="1" type="double" size="[1 1]"> 1600 [150] 1601 </WP_THL> 1602 <WP_THH index="1" type="double" size="[1 1]"> 1603 [216] 1604 </WP_THH> 1605 <proDis_THL index="1" type="double" size="[1 1]"> 1606 [0.0269] 1607 </proDis_THL> 1608 <proDis_THH index="1" type="double" size="[1 1]"> 1609 [4.6124] 1610 </proDis_THH> 1611 <proLV_Indoor_THL index="1" type="double" size="[1 1]"> 1612 [64] 1613 </proLV_Indoor_THL> 1614 <proLV_Indoor_THH index="1" type="double" size="[1 1]"> 1615 [256] 1616 </proLV_Indoor_THH> 1617 <proLV_Outdoor_THL index="1" type="double" size="[1 1]"> 1618 [30000] 1619 </proLV_Outdoor_THL> 1620 <proLV_Outdoor_THH index="1" type="double" size="[1 1]"> 1621 [45745] 1622 </proLV_Outdoor_THH> 1623 <temporalCalGainSetSize index="1" type="double" size="[1 1]"> 1624 [4] 1625 </temporalCalGainSetSize> 1626 <temporalGainSetWeight index="1" type="double" size="[1 4]"> 1627 [25 25 25 25] 1628 </temporalGainSetWeight> 1629 <wpNumPercTh index="1" type="double" size="[1 1]"> 1630 [0.0031] 1631 </wpNumPercTh> 1632 <tempWeigth index="1" type="double" size="[1 16]"> 1633 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 1634 </tempWeigth> 1635 <ca_LACalcFactor index="1" type="double" size="[1 1]"> 1636 [40] 1637 </ca_LACalcFactor> 1638 <convergedVarTh index="1" type="double" size="[1 1]"> 1639 [0.005] 1640 </convergedVarTh> 1641 <xyRegionStableSelection index="1" type="struct" size="[1 1]"> 1642 <xyRegionSize index="1" type="double" size="[1 1]"> 1643 [50] 1644 </xyRegionSize> 1645 <LvVarTh index="1" type="double" size="[1 1]"> 1646 [0.06] 1647 </LvVarTh> 1648 </xyRegionStableSelection> 1649 <wbGainAdjust index="1" type="struct" size="[1 1]"> 1650 <ct_grid_num index="1" type="double" size="[1 1]"> 1651 [7] 1652 </ct_grid_num> 1653 <ct_in_range index="1" type="double" size="[1 2]"> 1654 [2000 8000] 1655 </ct_in_range> 1656 <cri_grid_num index="1" type="double" size="[1 1]"> 1657 [9] 1658 </cri_grid_num> 1659 <cri_in_range index="1" type="double" size="[1 2]"> 1660 [-1 1] 1661 </cri_in_range> 1662 <lutAll index="1" type="cell" size="[1 3]"> 1663 <cell index="1" type="struct" size="[1 5]"> 1664 <LvValue index="1" type="double" size="[1 1]"> 1665 [128] 1666 </LvValue> 1667 <ct_out index="1" type="double" size="[9 7]"> 1668 [2000 3000 4000 5000 6000 7000 8000 1669 2000 3000 4000 5000 6000 7000 8000 1670 2000 3000 4000 5000 6000 7000 8000 1671 2000 3000 4000 5000 6000 7000 8000 1672 2000 3000 4000 5000 6000 7000 8000 1673 2000 3000 4000 5000 6000 7000 8000 1674 2000 3000 4000 5000 6000 7000 8000 1675 2000 3000 4000 5000 6000 7000 8000 1676 2000 3000 4000 5000 6000 7000 8000] 1677 </ct_out> 1678 <cri_out index="1" type="double" size="[9 7]"> 1679 [-1 -1 -1 -1 -1 -1 -1 1680 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 1681 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 1682 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 1683 0 0 0 0 0 0 0 1684 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1685 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1686 0.75 0.75 0.75 0.75 0.75 0.75 0.75 1687 1 1 1 1 1 1 1] 1688 </cri_out> 1689 </cell> 1690 <cell index="1" type="struct" size="[1 5]"> 1691 <LvValue index="1" type="double" size="[1 1]"> 1692 [8192] 1693 </LvValue> 1694 <ct_out index="1" type="double" size="[9 7]"> 1695 [2000 3000 4000 5000 6000 7000 8000 1696 2000 3000 4000 5000 6000 7000 8000 1697 2000 3000 4000 5000 6000 7000 8000 1698 2000 3000 4000 5000 6000 7000 8000 1699 2000 3000 4000 5000 6000 7000 8000 1700 2000 3000 4000 5000 6000 7000 8000 1701 2000 3000 4000 5000 6000 7000 8000 1702 2000 3000 4000 5000 6000 7000 8000 1703 2000 3000 4000 5000 6000 7000 8000] 1704 </ct_out> 1705 <cri_out index="1" type="double" size="[9 7]"> 1706 [-1 -1 -1 -1 -1 -1 -1 1707 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 1708 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 1709 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 1710 0 0 0 0 0 0 0 1711 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1712 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1713 0.75 0.75 0.75 0.75 0.75 0.75 0.75 1714 1 1 1 1 1 1 1] 1715 </cri_out> 1716 </cell> 1717 <cell index="1" type="struct" size="[1 5]"> 1718 <LvValue index="1" type="double" size="[1 1]"> 1719 [65536] 1720 </LvValue> 1721 <ct_out index="1" type="double" size="[9 7]"> 1722 [2000 3000 4000 5000 6000 7000 8000 1723 2000 3000 4000 5000 6000 7000 8000 1724 2000 3000 4000 5000 6000 7000 8000 1725 2000 3000 4000 5000 6000 7000 8000 1726 2000 3000 4000 5000 6000 7000 8000 1727 2000 3000 4000 5000 6000 7000 8000 1728 2000 3000 4000 5000 6000 7000 8000 1729 2000 3000 4000 5000 6000 7000 8000 1730 2000 3000 4000 5000 6000 7000 8000] 1731 </ct_out> 1732 <cri_out index="1" type="double" size="[9 7]"> 1733 [-1 -1 -1 -1 -1 -1 -1 1734 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 -0.75 1735 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5 1736 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 -0.25 1737 0 0 0 0 0 0 0 1738 0.25 0.25 0.25 0.25 0.25 0.25 0.25 1739 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1740 0.75 0.75 0.75 0.75 0.75 0.75 0.75 1741 1 1 1 1 1 1 1] 1742 </cri_out> 1743 </cell> 1744 </lutAll> 1745 </wbGainAdjust> 1746 <RemosaicPara index="1" type="struct" size="[1 1]"> 1747 <enable index="1" type="double" size="[1 1]"> 1748 [0] 1749 </enable> 1750 <sensorWbGain index="1" type="double" size="[1 4]"> 1751 [1 1 1 1] 1752 </sensorWbGain> 1753 </RemosaicPara> 1754 </Globals> 1755 <LightSources index="1" type="cell" size="[1 7]"> 1756 <cell index="1" type="struct" size="[1 1]"> 1757 <name index="1" type="char" size="[1 1]"> 1758 A 1759 </name> 1760 <staWeigthSet index="1" type="double" size="[1 16]"> 1761 [100 100 100 100 100 100 100 100 100 100 100 100 100 100 90 75] 1762 </staWeigthSet> 1763 <spatialGain_LV_THSet index="1" type="double" size="[1 2]"> 1764 [1024 8192] 1765 </spatialGain_LV_THSet> 1766 <xyType2Enable index="1" type="double" size="[1 1]"> 1767 [1] 1768 </xyType2Enable> 1769 <weightCurve_ratio index="1" type="double" size="[1 4]"> 1770 [0.2 0.4 0.8 1] 1771 </weightCurve_ratio> 1772 <weightCurve_weight index="1" type="double" size="[1 4]"> 1773 [0.2 0.4 0.8 1] 1774 </weightCurve_weight> 1775 </cell> 1776 <cell index="2" type="struct" size="[1 1]"> 1777 <name index="1" type="char" size="[1 3]"> 1778 CWF 1779 </name> 1780 <staWeigthSet index="1" type="double" size="[1 16]"> 1781 [100 100 100 100 100 100 100 100 100 100 100 100 70 60 50 40] 1782 </staWeigthSet> 1783 <spatialGain_LV_THSet index="1" type="double" size="[1 2]"> 1784 [1024 8192] 1785 </spatialGain_LV_THSet> 1786 <xyType2Enable index="1" type="double" size="[1 1]"> 1787 [1] 1788 </xyType2Enable> 1789 <weightCurve_ratio index="1" type="double" size="[1 4]"> 1790 [0.2 0.4 0.8 1] 1791 </weightCurve_ratio> 1792 <weightCurve_weight index="1" type="double" size="[1 4]"> 1793 [0.2 0.4 0.8 1] 1794 </weightCurve_weight> 1795 </cell> 1796 <cell index="3" type="struct" size="[1 1]"> 1797 <name index="1" type="char" size="[1 3]"> 1798 D50 1799 </name> 1800 <staWeigthSet index="1" type="double" size="[1 16]"> 1801 [100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100] 1802 </staWeigthSet> 1803 <spatialGain_LV_THSet index="1" type="double" size="[1 2]"> 1804 [1024 8192] 1805 </spatialGain_LV_THSet> 1806 <xyType2Enable index="1" type="double" size="[1 1]"> 1807 [1] 1808 </xyType2Enable> 1809 <weightCurve_ratio index="1" type="double" size="[1 4]"> 1810 [0.2 0.4 0.8 1] 1811 </weightCurve_ratio> 1812 <weightCurve_weight index="1" type="double" size="[1 4]"> 1813 [0.2 0.4 0.8 1] 1814 </weightCurve_weight> 1815 </cell> 1816 <cell index="4" type="struct" size="[1 1]"> 1817 <name index="1" type="char" size="[1 3]"> 1818 D65 1819 </name> 1820 <staWeigthSet index="1" type="double" size="[1 16]"> 1821 [100 100 100 100 100 100 100 100 100 100 100 100 100 90 80 70] 1822 </staWeigthSet> 1823 <spatialGain_LV_THSet index="1" type="double" size="[1 2]"> 1824 [1024 8192] 1825 </spatialGain_LV_THSet> 1826 <xyType2Enable index="1" type="double" size="[1 1]"> 1827 [1] 1828 </xyType2Enable> 1829 <weightCurve_ratio index="1" type="double" size="[1 4]"> 1830 [0.2 0.4 0.8 1] 1831 </weightCurve_ratio> 1832 <weightCurve_weight index="1" type="double" size="[1 4]"> 1833 [0.2 0.4 0.8 1] 1834 </weightCurve_weight> 1835 </cell> 1836 <cell index="5" type="struct" size="[1 1]"> 1837 <name index="1" type="char" size="[1 3]"> 1838 D75 1839 </name> 1840 <staWeigthSet index="1" type="double" size="[1 16]"> 1841 [100 100 100 100 100 100 100 100 100 100 100 100 90 80 70 50] 1842 </staWeigthSet> 1843 <spatialGain_LV_THSet index="1" type="double" size="[1 2]"> 1844 [1024 8192] 1845 </spatialGain_LV_THSet> 1846 <xyType2Enable index="1" type="double" size="[1 1]"> 1847 [1] 1848 </xyType2Enable> 1849 <weightCurve_ratio index="1" type="double" size="[1 4]"> 1850 [0.2 0.4 0.8 1] 1851 </weightCurve_ratio> 1852 <weightCurve_weight index="1" type="double" size="[1 4]"> 1853 [0.2 0.4 0.8 1] 1854 </weightCurve_weight> 1855 </cell> 1856 <cell index="6" type="struct" size="[1 1]"> 1857 <name index="1" type="char" size="[1 2]"> 1858 HZ 1859 </name> 1860 <staWeigthSet index="1" type="double" size="[1 16]"> 1861 [100 100 100 100 100 100 100 100 100 100 100 100 100 90 75 50] 1862 </staWeigthSet> 1863 <spatialGain_LV_THSet index="1" type="double" size="[1 2]"> 1864 [1024 8192] 1865 </spatialGain_LV_THSet> 1866 <xyType2Enable index="1" type="double" size="[1 1]"> 1867 [1] 1868 </xyType2Enable> 1869 <weightCurve_ratio index="1" type="double" size="[1 4]"> 1870 [0.2 0.4 0.8 1] 1871 </weightCurve_ratio> 1872 <weightCurve_weight index="1" type="double" size="[1 4]"> 1873 [0.2 0.4 0.8 1] 1874 </weightCurve_weight> 1875 </cell> 1876 <cell index="7" type="struct" size="[1 1]"> 1877 <name index="1" type="char" size="[1 4]"> 1878 TL84 1879 </name> 1880 <staWeigthSet index="1" type="double" size="[1 16]"> 1881 [100 100 100 100 100 100 100 100 100 100 100 90 80 70 60 60] 1882 </staWeigthSet> 1883 <spatialGain_LV_THSet index="1" type="double" size="[1 2]"> 1884 [1024 8192] 1885 </spatialGain_LV_THSet> 1886 <xyType2Enable index="1" type="double" size="[1 1]"> 1887 [1] 1888 </xyType2Enable> 1889 <weightCurve_ratio index="1" type="double" size="[1 4]"> 1890 [0.2 0.4 0.8 1] 1891 </weightCurve_ratio> 1892 <weightCurve_weight index="1" type="double" size="[1 4]"> 1893 [0.2 0.4 0.8 1] 1894 </weightCurve_weight> 1895 </cell> 1896 </LightSources> 1897 </cell> 1898 </TuningPara> 1899 </AWB> 1900 <AEC index="1" type="struct" size="[1 1]"> 1901 <Enable index="1" type="double" size="[1 1]"> 1902 [1 ] 1903 </Enable> 1904 <AecRunInterval index="1" type="double" size="[1 1]"> 1905 [0 ] 1906 </AecRunInterval> 1907 <AecOpType index="1" type="char" size="[1 6]">AUTO</AecOpType> 1908 <HistStatsMode index="1" type="char" size="[1 3]">Y</HistStatsMode> 1909 <RawStatsMode index="1" type="char" size="[1 3]">Y</RawStatsMode> 1910 <YRangeMode index="1" type="char" size="[1 10]">FULL</YRangeMode> 1911 <AecSyncTest index="1" type="struct" size="[1 1]"> 1912 <Enable index="1" type="double" size="[1 1]"> 1913 [0] 1914 </Enable> 1915 <IntervalFrm index="1" type="double" size="[1 1]"> 1916 [60] 1917 </IntervalFrm> 1918 <AlterExp index="1" type="struct" size="[1 1]"> 1919 <LinearAE index="1" type="cell" size="[1 2]"> 1920 <cell index="1" type="struct" size="[1 1]"> 1921 <TimeValue index="1" type="double" size="[1 1]"> 1922 [0.02] 1923 </TimeValue> 1924 <GainValue index="1" type="double" size="[1 1]"> 1925 [1] 1926 </GainValue> 1927 <IspDgainValue index="1" type="double" size="[1 1]"> 1928 [1] 1929 </IspDgainValue> 1930 <DcgMode index="1" type="double" size="[1 1]"> 1931 [0] 1932 </DcgMode> 1933 <PIrisGainValue index="1" type="double" size="[1 1]"> 1934 [1] 1935 </PIrisGainValue> 1936 </cell> 1937 <cell index="1" type="struct" size="[1 1]"> 1938 <TimeValue index="1" type="double" size="[1 1]"> 1939 [0.020] 1940 </TimeValue> 1941 <GainValue index="1" type="double" size="[1 1]"> 1942 [6] 1943 </GainValue> 1944 <IspDgainValue index="1" type="double" size="[1 1]"> 1945 [1] 1946 </IspDgainValue> 1947 <DcgMode index="1" type="double" size="[1 1]"> 1948 [0] 1949 </DcgMode> 1950 <PIrisGainValue index="1" type="double" size="[1 1]"> 1951 [29] 1952 </PIrisGainValue> 1953 </cell> 1954 </LinearAE> 1955 <HdrAE index="1" type="cell" size="[1 2]"> 1956 <cell index="1" type="struct" size="[1 1]"> 1957 <TimeValue index="1" type="double" size="[1 3]"> 1958 [0.01 0.02 0.03] 1959 </TimeValue> 1960 <GainValue index="1" type="double" size="[1 3]"> 1961 [1 1 1] 1962 </GainValue> 1963 <IspDgainValue index="1" type="double" size="[1 3]"> 1964 [1 1 1] 1965 </IspDgainValue> 1966 <DcgMode index="1" type="double" size="[1 3]"> 1967 [0 0 0] 1968 </DcgMode> 1969 <PIrisGainValue index="1" type="double" size="[1 1]"> 1970 [1] 1971 </PIrisGainValue> 1972 </cell> 1973 <cell index="1" type="struct" size="[1 1]"> 1974 <TimeValue index="1" type="double" size="[1 3]"> 1975 [0.01 0.02 0.03] 1976 </TimeValue> 1977 <GainValue index="1" type="double" size="[1 3]"> 1978 [6 6 1] 1979 </GainValue> 1980 <IspDgainValue index="1" type="double" size="[1 3]"> 1981 [1 1 1] 1982 </IspDgainValue> 1983 <DcgMode index="1" type="double" size="[1 3]"> 1984 [0 0 0] 1985 </DcgMode> 1986 <PIrisGainValue index="1" type="double" size="[1 1]"> 1987 [29] 1988 </PIrisGainValue> 1989 </cell> 1990 </HdrAE> 1991 </AlterExp> 1992 </AecSyncTest> 1993 <AecSpeed index="1" type="struct" size="[1 1]"> 1994 <DampOver index="1" type="double" size="[1 1]"> 1995 [0.1500 ] 1996 </DampOver> 1997 <DampUnder index="1" type="double" size="[1 1]"> 1998 [0.4500 ] 1999 </DampUnder> 2000 <DampDark2Bright index="1" type="double" size="[1 1]"> 2001 [0.1500 ] 2002 </DampDark2Bright> 2003 <DampBright2Dark index="1" type="double" size="[1 1]"> 2004 [0.4500 ] 2005 </DampBright2Dark> 2006 </AecSpeed> 2007 <AecDelayFrmNum index="1" type="struct" size="[1 1]"> 2008 <BlackDelay index="1" type="double" size="[1 1]"> 2009 [2 ] 2010 </BlackDelay> 2011 <WhiteDelay index="1" type="double" size="[1 1]"> 2012 [2 ] 2013 </WhiteDelay> 2014 </AecDelayFrmNum> 2015 <AecFrameRateMode index="1" type="struct" size="[1 1]"> 2016 <isFpsFix index="1" type="double" size="[1 1]"> 2017 [1 ] 2018 </isFpsFix> 2019 <FpsValue index="1" type="double" size="[1 1]"> 2020 [0 ] 2021 </FpsValue> 2022 </AecFrameRateMode> 2023 <AecAntiFlicker index="1" type="struct" size="[1 1]"> 2024 <enable index="1" type="double" size="[1 1]"> 2025 [1 ] 2026 </enable> 2027 <Frequency index="1" type="char" size="[1 15]">FLICKER_50HZ</Frequency> 2028 <Mode index="1" type="char" size="[1 10]">AUTO</Mode> 2029 </AecAntiFlicker> 2030 <AecInitValue index="1" type="struct" size="[1 1]"> 2031 <LinearAE index="1" type="struct" size="[1 1]"> 2032 <InitTimeValue index="1" type="double" size="[1 1]"> 2033 [0.0030 ] 2034 </InitTimeValue> 2035 <InitGainValue index="1" type="double" size="[1 1]"> 2036 [1.0000 ] 2037 </InitGainValue> 2038 <InitIspDgainValue index="1" type="double" size="[1 1]"> 2039 [1.0000 ] 2040 </InitIspDgainValue> 2041 <InitPIrisGainValue index="1" type="double" size="[1 1]"> 2042 [512 ] 2043 </InitPIrisGainValue> 2044 <InitDCIrisDutyValue index="1" type="double" size="[1 1]"> 2045 [100] 2046 </InitDCIrisDutyValue> 2047 </LinearAE> 2048 <HdrAE index="1" type="struct" size="[1 1]"> 2049 <InitTimeValue index="1" type="double" size="[1 3]"> 2050 [0.0005 0.0030 0.0030 ] 2051 </InitTimeValue> 2052 <InitGainValue index="1" type="double" size="[1 3]"> 2053 [1.0000 1.0000 1.0000 ] 2054 </InitGainValue> 2055 <InitIspDgainValue index="1" type="double" size="[1 3]"> 2056 [1.0000 1.0000 1.0000 ] 2057 </InitIspDgainValue> 2058 <InitPIrisGainValue index="1" type="double" size="[1 1]"> 2059 [512 ] 2060 </InitPIrisGainValue> 2061 <InitDCIrisDutyValue index="1" type="double" size="[1 1]"> 2062 [100] 2063 </InitDCIrisDutyValue> 2064 </HdrAE> 2065 </AecInitValue> 2066 <AecGridWeight index="1" type="struct" size="[1 1]"> 2067 <DayGridWeights index="1" type="double" size="[5 5]"> 2068 [3 5 2 0 0 2069 3 5 2 0 0 2070 3 5 2 0 0 2071 3 5 2 0 0 2072 3 5 2 0 0 ] 2073 </DayGridWeights> 2074 <NightGridWeights index="1" type="double" size="[5 5]"> 2075 [0 2 5 2 0 2076 2 7 10 7 2 2077 3 10 14 10 3 2078 2 7 10 7 2 2079 0 5 8 5 0 ] 2080 </NightGridWeights> 2081 </AecGridWeight> 2082 <AecRoute index="1" type="struct" size="[1 1]"> 2083 <LinearAE index="1" type="cell" size="[1 2]"> 2084 <cell index="1" type="struct" size="[1 1]"> 2085 <name index="1" type="char" size="[1 3]"> 2086 DAY 2087 </name> 2088 <TimeDot index="1" type="double" size="[1 6]"> 2089 [0.0000 0.0300 0.0300 0.0300 0.0300 0.0300 ] 2090 </TimeDot> 2091 <GainDot index="1" type="double" size="[1 6]"> 2092 [1.0000 4.0000 8.0000 16.0000 32.0000 128.00000 ] 2093 </GainDot> 2094 <IspDGainDot index="1" type="double" size="[1 6]"> 2095 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 2096 </IspDGainDot> 2097 <PIrisDot index="1" type="double" size="[1 6]"> 2098 [512 512 512 512 512 512] 2099 </PIrisDot> 2100 </cell> 2101 <cell index="2" type="struct" size="[1 1]"> 2102 <name index="1" type="char" size="[1 5]"> 2103 NIGHT 2104 </name> 2105 <TimeDot index="1" type="double" size="[1 6]"> 2106 [0.0000 0.0100 0.0100 0.0200 0.0200 0.0200 ] 2107 </TimeDot> 2108 <GainDot index="1" type="double" size="[1 6]"> 2109 [1.0000 1.0000 4.0000 8.0000 12.0000 15.5000 ] 2110 </GainDot> 2111 <IspDGainDot index="1" type="double" size="[1 6]"> 2112 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 2113 </IspDGainDot> 2114 <PIrisDot index="1" type="double" size="[1 6]"> 2115 [512 512 512 512 512 512] 2116 </PIrisDot> 2117 </cell> 2118 </LinearAE> 2119 <HdrAE index="1" type="cell" size="[1 2]"> 2120 <cell index="1" type="struct" size="[1 1]"> 2121 <name index="1" type="char" size="[1 3]"> 2122 DAY 2123 </name> 2124 <LTimeDot index="1" type="double" size="[1 6]"> 2125 [0.0000 0.0300 0.0300 0.0300 0.0300 0.0300 ] 2126 </LTimeDot> 2127 <MTimeDot index="1" type="double" size="[1 6]"> 2128 [0.0000 0.0300 0.0300 0.0300 0.0300 0.0300 ] 2129 </MTimeDot> 2130 <STimeDot index="1" type="double" size="[1 6]"> 2131 [0.0000 0.0030 0.0030 0.0030 0.0030 0.0030 ] 2132 </STimeDot> 2133 <LGainDot index="1" type="double" size="[1 6]"> 2134 [1.0000 1.0000 4.0000 8.0000 15.5000 64.0000 ] 2135 </LGainDot> 2136 <MGainDot index="1" type="double" size="[1 6]"> 2137 [1.0000 1.0000 4.0000 8.0000 15.5000 64.0000 ] 2138 </MGainDot> 2139 <SGainDot index="1" type="double" size="[1 6]"> 2140 [1.0000 1.0000 4.0000 8.0000 15.5000 64.0000 ] 2141 </SGainDot> 2142 <LIspDGainDot index="1" type="double" size="[1 6]"> 2143 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 2144 </LIspDGainDot> 2145 <MIspDGainDot index="1" type="double" size="[1 6]"> 2146 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 2147 </MIspDGainDot> 2148 <SIspDGainDot index="1" type="double" size="[1 6]"> 2149 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 2150 </SIspDGainDot> 2151 <PIrisDot index="1" type="double" size="[1 6]"> 2152 [512 512 512 512 512 512] 2153 </PIrisDot> 2154 </cell> 2155 <cell index="2" type="struct" size="[1 1]"> 2156 <name index="1" type="char" size="[1 5]"> 2157 NIGHT 2158 </name> 2159 <LTimeDot index="1" type="double" size="[1 6]"> 2160 [0.0000 0.0100 0.0100 0.0100 0.0100 0.0100 ] 2161 </LTimeDot> 2162 <MTimeDot index="1" type="double" size="[1 6]"> 2163 [0.0000 0.0100 0.0100 0.0100 0.0100 0.0100 ] 2164 </MTimeDot> 2165 <STimeDot index="1" type="double" size="[1 6]"> 2166 [0.0000 0.0090 0.0090 0.0090 0.0090 0.0090 ] 2167 </STimeDot> 2168 <LGainDot index="1" type="double" size="[1 6]"> 2169 [1.0000 1.0000 4.0000 8.0000 12.0000 15.5000 ] 2170 </LGainDot> 2171 <MGainDot index="1" type="double" size="[1 6]"> 2172 [1.0000 1.0000 4.0000 8.0000 12.0000 15.5000 ] 2173 </MGainDot> 2174 <SGainDot index="1" type="double" size="[1 6]"> 2175 [1.0000 1.0000 4.0000 8.0000 12.0000 15.5000 ] 2176 </SGainDot> 2177 <LIspDGainDot index="1" type="double" size="[1 6]"> 2178 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 2179 </LIspDGainDot> 2180 <MIspDGainDot index="1" type="double" size="[1 6]"> 2181 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 2182 </MIspDGainDot> 2183 <SIspDGainDot index="1" type="double" size="[1 6]"> 2184 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 2185 </SIspDGainDot> 2186 <PIrisDot index="1" type="double" size="[1 6]"> 2187 [512 512 512 512 512 512] 2188 </PIrisDot> 2189 </cell> 2190 </HdrAE> 2191 </AecRoute> 2192 <AecDNSwitch index="1" type="struct" size="[1 1]"> 2193 <DNTrigger index="1" type="double" size="[1 1]"> 2194 [0 ] 2195 </DNTrigger> 2196 <DNMode index="1" type="char" size="[1 8]">DAY</DNMode> 2197 <FillLightMode index="1" type="double" size="[1 1]"> 2198 [1 ] 2199 </FillLightMode> 2200 <D2NFacTh index="1" type="double" size="[1 1]"> 2201 [0.1500 ] 2202 </D2NFacTh> 2203 <D2NFrmCnt index="1" type="double" size="[1 1]"> 2204 [15 ] 2205 </D2NFrmCnt> 2206 <VBNightMode index="1" type="struct" size="[1 1]"> 2207 <Enable index="1" type="double" size="[1 1]"> 2208 [0 ] 2209 </Enable> 2210 <N2DFrmCnt index="1" type="double" size="[1 1]"> 2211 [15 ] 2212 </N2DFrmCnt> 2213 <N2DFacTh index="1" type="double" size="[1 1]"> 2214 [0.3000 ] 2215 </N2DFacTh> 2216 </VBNightMode> 2217 <IRNightMode index="1" type="struct" size="[1 1]"> 2218 <Enable index="1" type="double" size="[1 1]"> 2219 [0 ] 2220 </Enable> 2221 <IR_rg index="1" type="double" size="[1 1]"> 2222 [1.0000 ] 2223 </IR_rg> 2224 <IR_bg index="1" type="double" size="[1 1]"> 2225 [1.0000 ] 2226 </IR_bg> 2227 <Max_Dis index="1" type="double" size="[1 1]"> 2228 [0.8000 ] 2229 </Max_Dis> 2230 <N2DFrmCnt index="1" type="double" size="[1 1]"> 2231 [15 ] 2232 </N2DFrmCnt> 2233 <N2DFacTh index="1" type="double" size="[1 1]"> 2234 [0.3000 ] 2235 </N2DFacTh> 2236 <VBPercent index="1" type="double" size="[1 1]"> 2237 [0.1500 ] 2238 </VBPercent> 2239 </IRNightMode> 2240 </AecDNSwitch> 2241 <AecEnvLvCalib index="1" type="struct" size="[1 1]"> 2242 <CalibFNumber index="1" type="double" size="[1 1]"> 2243 [1.6] 2244 </CalibFNumber> 2245 <CurveCoeff index="1" type="double" size="[1 2]"> 2246 [0.02859 0.5972] 2247 </CurveCoeff> 2248 </AecEnvLvCalib> 2249 <AecIrisCtrl index="1" type="struct" size="[1 1]"> 2250 <Enable index="1" type="double" size="[1 1]"> 2251 [0] 2252 </Enable> 2253 <IrisType index="1" type="char" size="[1 3]"> 2254 DC 2255 </IrisType> 2256 <PIrisAttr index="1" type="struct" size="[1 1]"> 2257 <TotalStep index="1" type="double" size="[1 1]"> 2258 [81] 2259 </TotalStep> 2260 <EffcStep index="1" type="double" size="[1 1]"> 2261 [44] 2262 </EffcStep> 2263 <ZeroIsMax index="1" type="double" size="[1 1]"> 2264 [1] 2265 </ZeroIsMax> 2266 <StepTable index="1" type="double" size="[1 81]"> 2267 [512 511 506 499 491 483 474 465 456 2268 446 437 427 417 408 398 388 378 368 2269 359 349 339 329 319 309 300 290 280 2270 271 261 252 242 233 224 214 205 196 2271 187 178 170 161 153 144 136 128 120 2272 112 105 98 90 83 77 70 64 58 2273 52 46 41 36 31 27 23 19 16 2274 13 10 8 6 4 3 1 1 0 2275 0 0 0 0 0 0 0 0 0] 2276 </StepTable> 2277 </PIrisAttr> 2278 <DCIrisAttr index="1" type="struct" size="[1 1]"> 2279 <Kp index="1" type="double" size="[1 1]"> 2280 [0.5] 2281 </Kp> 2282 <Ki index="1" type="double" size="[1 1]"> 2283 [0.2] 2284 </Ki> 2285 <Kd index="1" type="double" size="[1 1]"> 2286 [0.3] 2287 </Kd> 2288 <MinPwmDuty index="1" type="double" size="[1 1]"> 2289 [0] 2290 </MinPwmDuty> 2291 <MaxPwmDuty index="1" type="double" size="[1 1]"> 2292 [100] 2293 </MaxPwmDuty> 2294 <OpenPwmDuty index="1" type="double" size="[1 1]"> 2295 [40] 2296 </OpenPwmDuty> 2297 <ClosePwmDuty index="1" type="double" size="[1 1]"> 2298 [22] 2299 </ClosePwmDuty> 2300 </DCIrisAttr> 2301 </AecIrisCtrl> 2302 <AecManualCtrl index="1" type="struct" size="[1 1]"> 2303 <LinearAE index="1" type="struct" size="[1 1]"> 2304 <ManualTimeEn index="1" type="double" size="[1 1]"> 2305 [1 ] 2306 </ManualTimeEn> 2307 <ManualGainEn index="1" type="double" size="[1 1]"> 2308 [1 ] 2309 </ManualGainEn> 2310 <ManualIspDgainEn index="1" type="double" size="[1 1]"> 2311 [1 ] 2312 </ManualIspDgainEn> 2313 <ManualIrisEn index="1" type="double" size="[1 1]"> 2314 [1 ] 2315 </ManualIrisEn> 2316 <TimeValue index="1" type="double" size="[1 1]"> 2317 [0.0100 ] 2318 </TimeValue> 2319 <GainValue index="1" type="double" size="[1 1]"> 2320 [1.0000 ] 2321 </GainValue> 2322 <IspDGainValue index="1" type="double" size="[1 1]"> 2323 [1.0000 ] 2324 </IspDGainValue> 2325 <PIrisGainValue index="1" type="double" size="[1 1]"> 2326 [1.4000 ] 2327 </PIrisGainValue> 2328 <DCIrisValue index="1" type="double" size="[1 1]"> 2329 [30] 2330 </DCIrisValue> 2331 </LinearAE> 2332 <HdrAE index="1" type="struct" size="[1 1]"> 2333 <ManualTimeEn index="1" type="double" size="[1 1]"> 2334 [1 ] 2335 </ManualTimeEn> 2336 <ManualGainEn index="1" type="double" size="[1 1]"> 2337 [1 ] 2338 </ManualGainEn> 2339 <ManualIspDgainEn index="1" type="double" size="[1 1]"> 2340 [1 ] 2341 </ManualIspDgainEn> 2342 <ManualIrisEn index="1" type="double" size="[1 1]"> 2343 [1 ] 2344 </ManualIrisEn> 2345 <TimeValue index="1" type="double" size="[1 3]"> 2346 [0.0100 0.0200 0.0300 ] 2347 </TimeValue> 2348 <GainValue index="1" type="double" size="[1 3]"> 2349 [1.0000 1.0000 1.0000 ] 2350 </GainValue> 2351 <IspDGainValue index="1" type="double" size="[1 3]"> 2352 [1.0000 1.0000 1.0000 ] 2353 </IspDGainValue> 2354 <PIrisGainValue index="1" type="double" size="[1 1]"> 2355 [1.4000 ] 2356 </PIrisGainValue> 2357 <DCIrisValue index="1" type="double" size="[1 1]"> 2358 [30] 2359 </DCIrisValue> 2360 </HdrAE> 2361 </AecManualCtrl> 2362 <LinearAECtrl index="1" type="struct" size="[1 1]"> 2363 <RawStatsEn index="1" type="double" size="[1 1]"> 2364 [1] 2365 </RawStatsEn> 2366 <SetPoint index="1" type="double" size="[1 1]"> 2367 [55.0000 ] 2368 </SetPoint> 2369 <NightSetpoint index="1" type="double" size="[1 1]"> 2370 [35.0000 ] 2371 </NightSetpoint> 2372 <DySetPointEn index="1" type="double" size="[1 1]"> 2373 [1 ] 2374 </DySetPointEn> 2375 <DynamicSetpoint index="1" type="cell" size="[1 2]"> 2376 <cell index="1" type="struct" size="[1 1]"> 2377 <name index="1" type="char" size="[1 3]"> 2378 DAY 2379 </name> 2380 <ExpLevel index="1" type="double" size="[1 6]"> 2381 [0.0000 0.1500 0.3500 0.5000 0.7500 1.0000 ] 2382 </ExpLevel> 2383 <DySetpoint index="1" type="double" size="[1 6]"> 2384 [40.0000 40.0000 40.0000 40.0000 40.0000 40.0000 ] 2385 </DySetpoint> 2386 </cell> 2387 <cell index="2" type="struct" size="[1 1]"> 2388 <name index="1" type="char" size="[1 3]"> 2389 NIGHT 2390 </name> 2391 <ExpLevel index="1" type="double" size="[1 6]"> 2392 [0.0000 0.1500 0.3500 0.5000 0.7500 1.0000 ] 2393 </ExpLevel> 2394 <DySetpoint index="1" type="double" size="[1 6]"> 2395 [45.0000 45.0000 40.0000 40.0000 35.0000 35.0000 ] 2396 </DySetpoint> 2397 </cell> 2398 </DynamicSetpoint> 2399 <Evbias index="1" type="double" size="[1 1]"> 2400 [0.0000 ] 2401 </Evbias> 2402 <ToleranceIn index="1" type="double" size="[1 1]"> 2403 [10.0000 ] 2404 </ToleranceIn> 2405 <ToleranceOut index="1" type="double" size="[1 1]"> 2406 [15.0000 ] 2407 </ToleranceOut> 2408 <StrategyMode index="1" type="char" size="[1 20]">LOWLIGHT_PRIOR</StrategyMode> 2409 <BackLightCtrl index="1" type="struct" size="[1 1]"> 2410 <Enable index="1" type="double" size="[1 1]"> 2411 [1] 2412 </Enable> 2413 <MeasArea index="1" type="char" size="[1 8]"> 2414 AUTO 2415 </MeasArea> 2416 <LumaDistTh index="1" type="double" size="[1 1]"> 2417 [10] 2418 </LumaDistTh> 2419 <OEROILowTh index="1" type="double" size="[1 1]"> 2420 [150] 2421 </OEROILowTh> 2422 <LvHighTh index="1" type="double" size="[1 1]"> 2423 [7.5] 2424 </LvHighTh> 2425 <LvLowTh index="1" type="double" size="[1 1]"> 2426 [0.3125] 2427 </LvLowTh> 2428 <ExpLevel index="1" type="double" size="[1 6]"> 2429 [0.05 0.1 0.2 0.3 0.5 0.7] 2430 </ExpLevel> 2431 <NonOEPdfTh index="1" type="double" size="[1 6]"> 2432 [0.4 0.45 0.55 0.65 0.75 1] 2433 </NonOEPdfTh> 2434 <LowLightPdfTh index="1" type="double" size="[1 6]"> 2435 [0.20 0.20 0.22 0.25 0.3 0.35] 2436 </LowLightPdfTh> 2437 <TargetLLLuma index="1" type="double" size="[1 6]"> 2438 [40 40 40 40 40 40] 2439 </TargetLLLuma> 2440 </BackLightCtrl> 2441 <OverExpCtrl index="1" type="struct" size="[1 1]"> 2442 <Enable index="1" type="double" size="[1 1]"> 2443 [0] 2444 </Enable> 2445 <HighLightTh index="1" type="double" size="[1 1]"> 2446 [150] 2447 </HighLightTh> 2448 <LowLightTh index="1" type="double" size="[1 1]"> 2449 [30] 2450 </LowLightTh> 2451 <MaxWeight index="1" type="double" size="[1 1]"> 2452 [8] 2453 </MaxWeight> 2454 <OEpdf index="1" type="double" size="[1 6]"> 2455 [0.01 0.02 0.03 0.04 0.05 0.07] 2456 </OEpdf> 2457 <HighLightWeight index="1" type="double" size="[1 6]"> 2458 [4 3 3 3 2 2] 2459 </HighLightWeight> 2460 <LowLightWeight index="1" type="double" size="[1 6]"> 2461 [1 1 1 1 1 1] 2462 </LowLightWeight> 2463 </OverExpCtrl> 2464 </LinearAECtrl> 2465 <HdrAECtrl index="1" type="struct" size="[1 1]"> 2466 <Evbias index="1" type="double" size="[1 1]"> 2467 [0.0000 ] 2468 </Evbias> 2469 <ToleranceIn index="1" type="double" size="[1 1]"> 2470 [10.0000 ] 2471 </ToleranceIn> 2472 <ToleranceOut index="1" type="double" size="[1 1]"> 2473 [15.0000 ] 2474 </ToleranceOut> 2475 <LongFrmMode index="1" type="struct" size="[1 1]"> 2476 <mode index="1" type="char" size="[1 20]"> 2477 NORMAL 2478 </mode> 2479 <SfrmMinLine index="1" type="double" size="[1 1]"> 2480 [2 ] 2481 </SfrmMinLine> 2482 <LfrmModeExpTh index="1" type="double" size="[1 1]"> 2483 [0.6200 ] 2484 </LfrmModeExpTh> 2485 </LongFrmMode> 2486 <StrategyMode index="1" type="char" size="[1 20]">LOWLIGHT_PRIOR</StrategyMode> 2487 <ExpRatioCtrl index="1" type="struct" size="[1 1]"> 2488 <ExpRatioType index="1" type="char" size="[1 8]">AUTO</ExpRatioType> 2489 <RatioExpDot index="1" type="double" size="[1 6]"> 2490 [0.0000 0.1000 0.3000 0.5000 0.7000 1.0000 ] 2491 </RatioExpDot> 2492 <M2SRatioFix index="1" type="double" size="[1 6]"> 2493 [4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 ] 2494 </M2SRatioFix> 2495 <L2MRatioFix index="1" type="double" size="[1 6]"> 2496 [4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 ] 2497 </L2MRatioFix> 2498 <M2SRatioMax index="1" type="double" size="[1 6]"> 2499 [64.0000 64.0000 64.0000 64.0000 64.0000 64.0000 ] 2500 </M2SRatioMax> 2501 <L2MRatioMax index="1" type="double" size="[1 6]"> 2502 [32.0000 32.0000 30.0000 28.0000 26.0000 24.0000 ] 2503 </L2MRatioMax> 2504 </ExpRatioCtrl> 2505 <LumaDistTh index="1" type="double" size="[1 1]"> 2506 [10.0000 ] 2507 </LumaDistTh> 2508 <LframeCtrl index="1" type="struct" size="[1 1]"> 2509 <OEROILowTh index="1" type="double" size="[1 1]"> 2510 [150.0000 ] 2511 </OEROILowTh> 2512 <LvHighTh index="1" type="double" size="[1 1]"> 2513 [7.5000 ] 2514 </LvHighTh> 2515 <LvLowTh index="1" type="double" size="[1 1]"> 2516 [0.3125 ] 2517 </LvLowTh> 2518 <LExpLevel index="1" type="double" size="[1 6]"> 2519 [0.0000 0.0100 0.0300 0.0500 0.1000 0.2000 ] 2520 </LExpLevel> 2521 <LSetPoint index="1" type="double" size="[1 6]"> 2522 [75.0000 70.0000 65.0000 60.0000 50.0000 40.0000 ] 2523 </LSetPoint> 2524 <TargetLLLuma index="1" type="double" size="[1 6]"> 2525 [38.0000 35.0000 32.0000 30.0000 25.0000 20.0000 ] 2526 </TargetLLLuma> 2527 <NonOEPdfTh index="1" type="double" size="[1 6]"> 2528 [0.4000 0.4500 0.5500 0.6500 0.7500 1.0000 ] 2529 </NonOEPdfTh> 2530 <LowLightPdfTh index="1" type="double" size="[1 6]"> 2531 [0.2000 0.2200 0.2500 0.3000 0.3500 0.4000 ] 2532 </LowLightPdfTh> 2533 </LframeCtrl> 2534 <MframeCtrl index="1" type="struct" size="[1 1]"> 2535 <MExpLevel index="1" type="double" size="[1 6]"> 2536 [0.0500 0.1000 0.2000 0.5000 0.7000 1.0000 ] 2537 </MExpLevel> 2538 <MSetPoint index="1" type="double" size="[1 6]"> 2539 [60.0000 60.0000 55.0000 50.0000 45.0000 40.0000 ] 2540 </MSetPoint> 2541 </MframeCtrl> 2542 <SframeCtrl index="1" type="struct" size="[1 1]"> 2543 <SExpLevel index="1" type="double" size="[1 6]"> 2544 [0.0000 0.0500 0.1500 0.2500 0.4000 0.6000 ] 2545 </SExpLevel> 2546 <TargetHLLuma index="1" type="double" size="[1 6]"> 2547 [100.0000 100.0000 100.0000 90.0000 80.0000 70.0000 ] 2548 </TargetHLLuma> 2549 <SSetPoint index="1" type="double" size="[1 6]"> 2550 [18.0000 18.0000 15.0000 12.0000 12.0000 12.0000 ] 2551 </SSetPoint> 2552 <HLLumaTolerance index="1" type="double" size="[1 1]"> 2553 [12.0000 ] 2554 </HLLumaTolerance> 2555 <HLROIExpandEn index="1" type="double" size="[1 1]"> 2556 [0 ] 2557 </HLROIExpandEn> 2558 </SframeCtrl> 2559 </HdrAECtrl> 2560 </AEC> 2561 <AF index="1" type="struct" size="[1 1]"> 2562 <Window index="1" type="struct" size="[1 1]"> 2563 <h_offs index="1" type="double" size="[1 1]"> 2564 [0 ] 2565 </h_offs> 2566 <v_offs index="1" type="double" size="[1 1]"> 2567 [0 ] 2568 </v_offs> 2569 <h_size index="1" type="double" size="[1 1]"> 2570 [0 ] 2571 </h_size> 2572 <v_size index="1" type="double" size="[1 1]"> 2573 [0 ] 2574 </v_size> 2575 </Window> 2576 <afmeas_iso index="1" type="cell" size="[1 13]"> 2577 <cell index="1" type="struct" size="[1 1]"> 2578 <iso index="1" type="double" size="[1 1]"> 2579 [50] 2580 </iso> 2581 <afmThres index="1" type="double" size="[1 1]"> 2582 [4] 2583 </afmThres> 2584 <gammaY index="1" type="double" size="[1 17]"> 2585 [0 45 108 179 245 344 409 459 500 567 622 676 759 833 896 962 1023] 2586 </gammaY> 2587 <gaussWeight index="1" type="double" size="[1 3]"> 2588 [32 16 8] 2589 </gaussWeight> 2590 </cell> 2591 <cell index="2" type="struct" size="[1 1]"> 2592 <iso index="1" type="double" size="[1 1]"> 2593 [100] 2594 </iso> 2595 <afmThres index="1" type="double" size="[1 1]"> 2596 [4] 2597 </afmThres> 2598 <gammaY index="1" type="double" size="[1 17]"> 2599 [0 45 108 179 245 344 409 459 500 567 622 676 759 833 896 962 1023] 2600 </gammaY> 2601 <gaussWeight index="1" type="double" size="[1 3]"> 2602 [32 16 8] 2603 </gaussWeight> 2604 </cell> 2605 <cell index="3" type="struct" size="[1 1]"> 2606 <iso index="1" type="double" size="[1 1]"> 2607 [200] 2608 </iso> 2609 <afmThres index="1" type="double" size="[1 1]"> 2610 [4] 2611 </afmThres> 2612 <gammaY index="1" type="double" size="[1 17]"> 2613 [0 45 108 179 245 344 409 459 500 567 622 676 759 833 896 962 1023] 2614 </gammaY> 2615 <gaussWeight index="1" type="double" size="[1 3]"> 2616 [32 16 8] 2617 </gaussWeight> 2618 </cell> 2619 <cell index="4" type="struct" size="[1 1]"> 2620 <iso index="1" type="double" size="[1 1]"> 2621 [400] 2622 </iso> 2623 <afmThres index="1" type="double" size="[1 1]"> 2624 [4] 2625 </afmThres> 2626 <gammaY index="1" type="double" size="[1 17]"> 2627 [0 45 108 179 245 344 409 459 500 567 622 676 759 833 896 962 1023] 2628 </gammaY> 2629 <gaussWeight index="1" type="double" size="[1 3]"> 2630 [32 16 8] 2631 </gaussWeight> 2632 </cell> 2633 <cell index="5" type="struct" size="[1 1]"> 2634 <iso index="1" type="double" size="[1 1]"> 2635 [800] 2636 </iso> 2637 <afmThres index="1" type="double" size="[1 1]"> 2638 [4] 2639 </afmThres> 2640 <gammaY index="1" type="double" size="[1 17]"> 2641 [0 45 108 179 245 344 409 459 500 567 622 676 759 833 896 962 1023] 2642 </gammaY> 2643 <gaussWeight index="1" type="double" size="[1 3]"> 2644 [32 16 8] 2645 </gaussWeight> 2646 </cell> 2647 <cell index="6" type="struct" size="[1 1]"> 2648 <iso index="1" type="double" size="[1 1]"> 2649 [1600] 2650 </iso> 2651 <afmThres index="1" type="double" size="[1 1]"> 2652 [4] 2653 </afmThres> 2654 <gammaY index="1" type="double" size="[1 17]"> 2655 [0 45 108 179 245 344 409 459 500 567 622 676 759 833 896 962 1023] 2656 </gammaY> 2657 <gaussWeight index="1" type="double" size="[1 3]"> 2658 [32 16 8] 2659 </gaussWeight> 2660 </cell> 2661 <cell index="7" type="struct" size="[1 1]"> 2662 <iso index="1" type="double" size="[1 1]"> 2663 [3200] 2664 </iso> 2665 <afmThres index="1" type="double" size="[1 1]"> 2666 [4] 2667 </afmThres> 2668 <gammaY index="1" type="double" size="[1 17]"> 2669 [0 45 108 179 245 344 409 459 500 567 622 676 759 833 896 962 1023] 2670 </gammaY> 2671 <gaussWeight index="1" type="double" size="[1 3]"> 2672 [32 16 8] 2673 </gaussWeight> 2674 </cell> 2675 <cell index="8" type="struct" size="[1 1]"> 2676 <iso index="1" type="double" size="[1 1]"> 2677 [6400] 2678 </iso> 2679 <afmThres index="1" type="double" size="[1 1]"> 2680 [4] 2681 </afmThres> 2682 <gammaY index="1" type="double" size="[1 17]"> 2683 [0 45 108 179 245 344 409 459 500 567 622 676 759 833 896 962 1023] 2684 </gammaY> 2685 <gaussWeight index="1" type="double" size="[1 3]"> 2686 [32 16 8] 2687 </gaussWeight> 2688 </cell> 2689 <cell index="9" type="struct" size="[1 1]"> 2690 <iso index="1" type="double" size="[1 1]"> 2691 [12800] 2692 </iso> 2693 <afmThres index="1" type="double" size="[1 1]"> 2694 [4] 2695 </afmThres> 2696 <gammaY index="1" type="double" size="[1 17]"> 2697 [0 45 108 179 245 344 409 459 500 567 622 676 759 833 896 962 1023] 2698 </gammaY> 2699 <gaussWeight index="1" type="double" size="[1 3]"> 2700 [32 16 8] 2701 </gaussWeight> 2702 </cell> 2703 <cell index="10" type="struct" size="[1 1]"> 2704 <iso index="1" type="double" size="[1 1]"> 2705 [25600] 2706 </iso> 2707 <afmThres index="1" type="double" size="[1 1]"> 2708 [4] 2709 </afmThres> 2710 <gammaY index="1" type="double" size="[1 17]"> 2711 [0 45 108 179 245 344 409 459 500 567 622 676 759 833 896 962 1023] 2712 </gammaY> 2713 <gaussWeight index="1" type="double" size="[1 3]"> 2714 [32 16 8] 2715 </gaussWeight> 2716 </cell> 2717 <cell index="11" type="struct" size="[1 1]"> 2718 <iso index="1" type="double" size="[1 1]"> 2719 [51200] 2720 </iso> 2721 <afmThres index="1" type="double" size="[1 1]"> 2722 [4] 2723 </afmThres> 2724 <gammaY index="1" type="double" size="[1 17]"> 2725 [0 45 108 179 245 344 409 459 500 567 622 676 759 833 896 962 1023] 2726 </gammaY> 2727 <gaussWeight index="1" type="double" size="[1 3]"> 2728 [32 16 8] 2729 </gaussWeight> 2730 </cell> 2731 <cell index="12" type="struct" size="[1 1]"> 2732 <iso index="1" type="double" size="[1 1]"> 2733 [102400] 2734 </iso> 2735 <afmThres index="1" type="double" size="[1 1]"> 2736 [4] 2737 </afmThres> 2738 <gammaY index="1" type="double" size="[1 17]"> 2739 [0 45 108 179 245 344 409 459 500 567 622 676 759 833 896 962 1023] 2740 </gammaY> 2741 <gaussWeight index="1" type="double" size="[1 3]"> 2742 [32 16 8] 2743 </gaussWeight> 2744 </cell> 2745 <cell index="13" type="struct" size="[1 1]"> 2746 <iso index="1" type="double" size="[1 1]"> 2747 [204800] 2748 </iso> 2749 <afmThres index="1" type="double" size="[1 1]"> 2750 [4] 2751 </afmThres> 2752 <gammaY index="1" type="double" size="[1 17]"> 2753 [0 45 108 179 245 344 409 459 500 567 622 676 759 833 896 962 1023] 2754 </gammaY> 2755 <gaussWeight index="1" type="double" size="[1 3]"> 2756 [32 16 8] 2757 </gaussWeight> 2758 </cell> 2759 </afmeas_iso> 2760 <fixed_mode index="1" type="struct" size="[1 1]"> 2761 <code index="1" type="double" size="[1 1]"> 2762 [8 ] 2763 </code> 2764 </fixed_mode> 2765 <macro_mode index="1" type="struct" size="[1 1]"> 2766 <code index="1" type="double" size="[1 1]"> 2767 [32 ] 2768 </code> 2769 </macro_mode> 2770 <infinity_mode index="1" type="struct" size="[1 1]"> 2771 <code index="1" type="double" size="[1 1]"> 2772 [32 ] 2773 </code> 2774 </infinity_mode> 2775 <contrast_af index="1" type="struct" size="[1 1]"> 2776 <enable index="1" type="double" size="[1 1]"> 2777 [1 ] 2778 </enable> 2779 <AfSearchStrategy index="1" type="char" size="[1 14]"> 2780 ADAPTIVE_RANGE</AfSearchStrategy> 2781 <FullDir index="1" type="char" size="[1 8]"> 2782 ADAPTIVE</FullDir> 2783 <FullRangeTbl index="1" type="double" size="[1 9]"> 2784 [0 8 16 24 32 40 48 56 64 ] 2785 </FullRangeTbl> 2786 <AdaptiveDir index="1" type="char" size="[1 8]"> 2787 ADAPTIVE</AdaptiveDir> 2788 <AdaptRangeTbl index="1" type="double" size="[1 9]"> 2789 [0 8 16 24 32 40 48 56 64 ] 2790 </AdaptRangeTbl> 2791 <TrigThers index="1" type="double" size="[1 1]"> 2792 [0.0750 ] 2793 </TrigThers> 2794 <StableThers index="1" type="double" size="[1 1]"> 2795 [0.0200 ] 2796 </StableThers> 2797 <StableFrames index="1" type="double" size="[1 1]"> 2798 [3 ] 2799 </StableFrames> 2800 <StableTime index="1" type="double" size="[1 1]"> 2801 [200 ] 2802 </StableTime> 2803 <SceneDiffEnable index="1" type="double" size="[1 1]"> 2804 [0 ] 2805 </SceneDiffEnable> 2806 <SceneDiffThers index="1" type="double" size="[1 1]"> 2807 [0.0900 ] 2808 </SceneDiffThers> 2809 <SceneDiffBlkThers index="1" type="double" size="[1 1]"> 2810 [180 ] 2811 </SceneDiffBlkThers> 2812 <CenterSceneDiffThers index="1" type="double" size="[1 1]"> 2813 [0.1200 ] 2814 </CenterSceneDiffThers> 2815 <ValidMaxMinRatio index="1" type="double" size="[1 1]"> 2816 [0 ] 2817 </ValidMaxMinRatio> 2818 <ValidValueThers index="1" type="double" size="[1 1]"> 2819 [0 ] 2820 </ValidValueThers> 2821 <OutFocusValue index="1" type="double" size="[1 1]"> 2822 [50.0000 ] 2823 </OutFocusValue> 2824 <OutFocusPos index="1" type="double" size="[1 1]"> 2825 [30 ] 2826 </OutFocusPos> 2827 <WeightEnable index="1" type="double" size="[1 1]"> 2828 [0] 2829 </WeightEnable> 2830 <WeightMatrix index="1" type="double" size="[1 225]"> 2831 [1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2832 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2833 1 2 4 4 4 4 4 4 4 4 4 4 4 2 1 2834 1 2 4 8 8 8 8 8 8 8 8 8 4 2 1 2835 1 2 4 8 16 16 16 16 16 16 16 8 4 2 1 2836 1 2 4 8 16 32 32 32 32 32 16 8 4 2 1 2837 1 2 4 8 16 32 64 64 64 32 16 8 4 2 1 2838 1 2 4 8 16 32 64 128 64 32 16 8 4 2 1 2839 1 2 4 8 16 32 64 64 64 32 16 8 4 2 1 2840 1 2 4 8 16 32 32 32 32 32 16 8 4 2 1 2841 1 2 4 8 16 16 16 16 16 16 16 8 4 2 1 2842 1 2 4 8 8 8 8 8 8 8 8 8 4 2 1 2843 1 2 4 4 4 4 4 4 4 4 4 4 4 2 1 2844 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2845 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] 2846 </WeightMatrix> 2847 </contrast_af> 2848 <laser_af index="1" type="struct" size="[1 3]"> 2849 <enable index="1" type="double" size="[1 1]"> 2850 [0 ] 2851 </enable> 2852 <vcmDot index="1" type="double" size="[1 7]"> 2853 [0 16 32 40 48 56 64] 2854 </vcmDot> 2855 <distanceDot index="1" type="double" size="[1 7]"> 2856 [0.2000 0.2400 0.3400 0.4000 0.6600 1.0000 3.0000 ] 2857 </distanceDot> 2858 </laser_af> 2859 <pdaf index="1" type="struct" size="[1 1]"> 2860 <enable index="1" type="double" size="[1 1]"> 2861 [0 ] 2862 </enable> 2863 </pdaf> 2864 <vcmConfig index="1" type="struct" size="[1 1]"> 2865 <startCurrent index="1" type="double" size="[1 1]"> 2866 [-1] 2867 </startCurrent> 2868 <ratedCurrent index="1" type="double" size="[1 1]"> 2869 [-1] 2870 </ratedCurrent> 2871 <stepMode index="1" type="double" size="[1 1]"> 2872 [-1] 2873 </stepMode> 2874 <extraDelay index="1" type="double" size="[1 1]"> 2875 [0] 2876 </extraDelay> 2877 </vcmConfig> 2878 <zoomfocus_tbl index="1" type="struct" size="[1 1]"> 2879 <focusLength index="1" type="double" size="[1 8]"> 2880 [12.03 14.06 16.62 19.88 24.08 29.52 36.52 45.61] 2881 </focusLength> 2882 <zoomPosition index="1" type="double" size="[1 8]"> 2883 [0 1000 2000 3000 4000 5000 6000 7000] 2884 </zoomPosition> 2885 <focusInfPosition index="1" type="double" size="[1 8]"> 2886 [2400 3400 5200 6000 6500 6200 5600 3000] 2887 </focusInfPosition> 2888 <focusMacroPosition index="1" type="double" size="[1 8]"> 2889 [2700 4000 4800 5500 6200 7500 7500 6500] 2890 </focusMacroPosition> 2891 </zoomfocus_tbl> 2892 </AF> 2893 <MERGE index="1" type="struct" size="[1 1]"> 2894 <EnvLv index="1" type="double" size="[1 13]"> 2895 [0 0.005 0.01 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.8 1.0] 2896 </EnvLv> 2897 <OECurve_smooth index="1" type="double" size="[1 13]"> 2898 [0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4] 2899 </OECurve_smooth> 2900 <OECurve_offset index="1" type="double" size="[1 13]"> 2901 [210 210 210 210 210 210 210 210 210 210 210 210 210] 2902 </OECurve_offset> 2903 <MoveCoef index="1" type="double" size="[1 13]"> 2904 [0 0.005 0.01 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.8 1.0] 2905 </MoveCoef> 2906 <MDCurveLM_smooth index="1" type="double" size="[1 13]"> 2907 [0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4] 2908 </MDCurveLM_smooth> 2909 <MDCurveLM_offset index="1" type="double" size="[1 13]"> 2910 [0.3800 0.3800 0.3800 0.3800 0.3800 0.3800 0.3800 0.3800 0.3800 0.3800 0.3800 0.3800 0.38] 2911 </MDCurveLM_offset> 2912 <MDCurveMS_smooth index="1" type="double" size="[1 13]"> 2913 [0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4000 0.4] 2914 </MDCurveMS_smooth> 2915 <MDCurveMS_offset index="1" type="double" size="[1 13]"> 2916 [0.3800 0.3800 0.3800 0.3800 0.3800 0.3800 0.3800 0.3800 0.3800 0.3800 0.3800 0.3800 0.38] 2917 </MDCurveMS_offset> 2918 <OECurve_damp index="1" type="double" size="[1 1]"> 2919 [0.3000 ] 2920 </OECurve_damp> 2921 <MDCurveLM_damp index="1" type="double" size="[1 1]"> 2922 [0.3000 ] 2923 </MDCurveLM_damp> 2924 <MDCurveMS_damp index="1" type="double" size="[1 1]"> 2925 [0.3000 ] 2926 </MDCurveMS_damp> 2927 </MERGE> 2928 <TMO index="1" type="struct" size="[1 1]"> 2929 <Enable index="1" type="cell" size="[1 3]"> 2930 <cell index="1" type="struct" size="[1 1]"> 2931 <Name index="1" type="char" size="[1 8]"> 2932 normal 2933 </Name> 2934 <En index="1" type="double" size="[1 1]"> 2935 [1.0000 ] 2936 </En> 2937 </cell> 2938 <cell index="2" type="struct" size="[1 1]"> 2939 <Name index="1" type="char" size="[1 8]"> 2940 HDR 2941 </Name> 2942 <En index="1" type="double" size="[1 1]"> 2943 [1.0000 ] 2944 </En> 2945 </cell> 2946 <cell index="3" type="struct" size="[1 1]"> 2947 <Name index="1" type="char" size="[1 8]"> 2948 night 2949 </Name> 2950 <En index="1" type="double" size="[1 1]"> 2951 [0 ] 2952 </En> 2953 </cell> 2954 </Enable> 2955 <GlobalLuma index="1" type="cell" size="[1 3]"> 2956 <cell index="1" type="struct" size="[1 1]"> 2957 <Name index="1" type="char" size="[1 8]"> 2958 normal 2959 </Name> 2960 <GlobalLumaMode index="1" type="double" size="[1 1]"> 2961 [1.0000 ] 2962 </GlobalLumaMode> 2963 <EnvLv index="1" type="double" size="[1 13]"> 2964 [0 0.005 0.01 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.8 1.0] 2965 </EnvLv> 2966 <ISO index="1" type="double" size="[1 13]"> 2967 [50 100 200 400 800 1600 3200 6400 12800 25600 51200 102400 204800] 2968 </ISO> 2969 <Tolerance index="1" type="double" size="[1 1]"> 2970 [0.0000 ] 2971 </Tolerance> 2972 <GlobalLuma index="1" type="double" size="[1 13]"> 2973 [0.2500 0.2500 0.2500 0.2500 0.1700 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1] 2974 </GlobalLuma> 2975 </cell> 2976 <cell index="2" type="struct" size="[1 1]"> 2977 <Name index="1" type="char" size="[1 8]"> 2978 HDR 2979 </Name> 2980 <GlobalLumaMode index="1" type="double" size="[1 1]"> 2981 [1.0000 ] 2982 </GlobalLumaMode> 2983 <EnvLv index="1" type="double" size="[1 13]"> 2984 [0 0.005 0.01 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.8 1.0] 2985 </EnvLv> 2986 <ISO index="1" type="double" size="[1 13]"> 2987 [50 100 200 400 800 1600 3200 6400 12800 25600 51200 102400 204800] 2988 </ISO> 2989 <Tolerance index="1" type="double" size="[1 1]"> 2990 [0.0000 ] 2991 </Tolerance> 2992 <GlobalLuma index="1" type="double" size="[1 13]"> 2993 [0.2500 0.2500 0.2500 0.2500 0.1700 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1] 2994 </GlobalLuma> 2995 </cell> 2996 <cell index="3" type="struct" size="[1 1]"> 2997 <Name index="1" type="char" size="[1 8]"> 2998 night 2999 </Name> 3000 <GlobalLumaMode index="1" type="double" size="[1 1]"> 3001 [1.0000 ] 3002 </GlobalLumaMode> 3003 <EnvLv index="1" type="double" size="[1 13]"> 3004 [0 0.005 0.01 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.8 1.0] 3005 </EnvLv> 3006 <ISO index="1" type="double" size="[1 13]"> 3007 [50 100 200 400 800 1600 3200 6400 12800 25600 51200 102400 204800] 3008 </ISO> 3009 <Tolerance index="1" type="double" size="[1 1]"> 3010 [0.0000 ] 3011 </Tolerance> 3012 <GlobalLuma index="1" type="double" size="[1 13]"> 3013 [0.2500 0.2500 0.2500 0.2500 0.1700 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1] 3014 </GlobalLuma> 3015 </cell> 3016 </GlobalLuma> 3017 <DetailsHighLight index="1" type="cell" size="[1 3]"> 3018 <cell index="1" type="struct" size="[1 1]"> 3019 <Name index="1" type="char" size="[1 8]"> 3020 normal 3021 </Name> 3022 <DetailsHighLightMode index="1" type="double" size="[1 1]"> 3023 [0.0000 ] 3024 </DetailsHighLightMode> 3025 <OEPdf index="1" type="double" size="[1 13]"> 3026 [0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.8 1] 3027 </OEPdf> 3028 <EnvLv index="1" type="double" size="[1 13]"> 3029 [0 0.005 0.01 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.8 1.0] 3030 </EnvLv> 3031 <Tolerance index="1" type="double" size="[1 1]"> 3032 [0.0000 ] 3033 </Tolerance> 3034 <DetailsHighLight index="1" type="double" size="[1 13]"> 3035 [0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5] 3036 </DetailsHighLight> 3037 </cell> 3038 <cell index="2" type="struct" size="[1 1]"> 3039 <Name index="1" type="char" size="[1 8]"> 3040 HDR 3041 </Name> 3042 <DetailsHighLightMode index="1" type="double" size="[1 1]"> 3043 [0.0000 ] 3044 </DetailsHighLightMode> 3045 <OEPdf index="1" type="double" size="[1 13]"> 3046 [0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.8 1] 3047 </OEPdf> 3048 <EnvLv index="1" type="double" size="[1 13]"> 3049 [0 0.005 0.01 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.8 1.0] 3050 </EnvLv> 3051 <Tolerance index="1" type="double" size="[1 1]"> 3052 [0.0000 ] 3053 </Tolerance> 3054 <DetailsHighLight index="1" type="double" size="[1 13]"> 3055 [0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5] 3056 </DetailsHighLight> 3057 </cell> 3058 <cell index="3" type="struct" size="[1 1]"> 3059 <Name index="1" type="char" size="[1 8]"> 3060 night 3061 </Name> 3062 <DetailsHighLightMode index="1" type="double" size="[1 1]"> 3063 [0.0000 ] 3064 </DetailsHighLightMode> 3065 <OEPdf index="1" type="double" size="[1 13]"> 3066 [0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.8 1] 3067 </OEPdf> 3068 <EnvLv index="1" type="double" size="[1 13]"> 3069 [0 0.005 0.01 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.8 1.0] 3070 </EnvLv> 3071 <Tolerance index="1" type="double" size="[1 1]"> 3072 [0.0000 ] 3073 </Tolerance> 3074 <DetailsHighLight index="1" type="double" size="[1 13]"> 3075 [0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5] 3076 </DetailsHighLight> 3077 </cell> 3078 </DetailsHighLight> 3079 <DetailsLowLight index="1" type="cell" size="[1 3]"> 3080 <cell index="1" type="struct" size="[1 1]"> 3081 <Name index="1" type="char" size="[1 8]"> 3082 normal 3083 </Name> 3084 <DetailsLowLightMode index="1" type="double" size="[1 1]"> 3085 [2.0000 ] 3086 </DetailsLowLightMode> 3087 <FocusLuma index="1" type="double" size="[1 13]"> 3088 [1 15 20 25 30 35 40 50 60 70 80 90 100] 3089 </FocusLuma> 3090 <DarkPdf index="1" type="double" size="[1 13]"> 3091 [0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.8 1] 3092 </DarkPdf> 3093 <ISO index="1" type="double" size="[1 13]"> 3094 [50 100 200 400 800 1600 3200 6400 12800 25600 51200 102400 204800] 3095 </ISO> 3096 <Tolerance index="1" type="double" size="[1 1]"> 3097 [0.0000 ] 3098 </Tolerance> 3099 <DetailsLowLight index="1" type="double" size="[1 13]"> 3100 [1 1 1 1 1 1 1 1 1 1 1 1 1] 3101 </DetailsLowLight> 3102 </cell> 3103 <cell index="2" type="struct" size="[1 1]"> 3104 <Name index="1" type="char" size="[1 8]"> 3105 HDR 3106 </Name> 3107 <DetailsLowLightMode index="1" type="double" size="[1 1]"> 3108 [2.0000 ] 3109 </DetailsLowLightMode> 3110 <FocusLuma index="1" type="double" size="[1 13]"> 3111 [1 15 20 25 30 35 40 50 60 70 80 90 100] 3112 </FocusLuma> 3113 <DarkPdf index="1" type="double" size="[1 13]"> 3114 [0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.8 1] 3115 </DarkPdf> 3116 <ISO index="1" type="double" size="[1 13]"> 3117 [50 100 200 400 800 1600 3200 6400 12800 25600 51200 102400 204800] 3118 </ISO> 3119 <Tolerance index="1" type="double" size="[1 1]"> 3120 [0.0000 ] 3121 </Tolerance> 3122 <DetailsLowLight index="1" type="double" size="[1 13]"> 3123 [1 1 1 1 1 1 1 1 1 1 1 1 1] 3124 </DetailsLowLight> 3125 </cell> 3126 <cell index="3" type="struct" size="[1 1]"> 3127 <Name index="1" type="char" size="[1 8]"> 3128 night 3129 </Name> 3130 <DetailsLowLightMode index="1" type="double" size="[1 1]"> 3131 [2.0000 ] 3132 </DetailsLowLightMode> 3133 <FocusLuma index="1" type="double" size="[1 13]"> 3134 [1 15 20 25 30 35 40 50 60 70 80 90 100] 3135 </FocusLuma> 3136 <DarkPdf index="1" type="double" size="[1 13]"> 3137 [0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.8 1] 3138 </DarkPdf> 3139 <ISO index="1" type="double" size="[1 13]"> 3140 [50 100 200 400 800 1600 3200 6400 12800 25600 51200 102400 204800] 3141 </ISO> 3142 <Tolerance index="1" type="double" size="[1 1]"> 3143 [0.0000 ] 3144 </Tolerance> 3145 <DetailsLowLight index="1" type="double" size="[1 13]"> 3146 [1 1 1 1 1 1 1 1 1 1 1 1 1] 3147 </DetailsLowLight> 3148 </cell> 3149 </DetailsLowLight> 3150 <GlobalTMO index="1" type="cell" size="[1 3]"> 3151 <cell index="1" type="struct" size="[1 1]"> 3152 <Name index="1" type="char" size="[1 8]"> 3153 normal 3154 </Name> 3155 <Enable index="1" type="double" size="[1 1]"> 3156 [0] 3157 </Enable> 3158 <IIR index="1" type="double" size="[1 1]"> 3159 [64] 3160 </IIR> 3161 <Mode index="1" type="double" size="[1 1]"> 3162 [0] 3163 </Mode> 3164 <DynamicRange index="1" type="double" size="[1 13]"> 3165 [1 20 30 44 48 55 60 66 68 72 78 80 84] 3166 </DynamicRange> 3167 <EnvLv index="1" type="double" size="[1 13]"> 3168 [0 0.005 0.01 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.8 1.0] 3169 </EnvLv> 3170 <Tolerance index="1" type="double" size="[1 1]"> 3171 [0] 3172 </Tolerance> 3173 <GlobalTMOStrength index="1" type="double" size="[1 13]"> 3174 [0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5] 3175 </GlobalTMOStrength> 3176 </cell> 3177 <cell index="2" type="struct" size="[1 1]"> 3178 <Name index="1" type="char" size="[1 8]"> 3179 HDR 3180 </Name> 3181 <Enable index="1" type="double" size="[1 1]"> 3182 [0] 3183 </Enable> 3184 <IIR index="1" type="double" size="[1 1]"> 3185 [64] 3186 </IIR> 3187 <Mode index="1" type="double" size="[1 1]"> 3188 [0] 3189 </Mode> 3190 <DynamicRange index="1" type="double" size="[1 13]"> 3191 [1 20 30 44 48 55 60 66 68 72 78 80 84] 3192 </DynamicRange> 3193 <EnvLv index="1" type="double" size="[1 13]"> 3194 [0 0.005 0.01 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.8 1.0] 3195 </EnvLv> 3196 <Tolerance index="1" type="double" size="[1 1]"> 3197 [0] 3198 </Tolerance> 3199 <GlobalTMOStrength index="1" type="double" size="[1 13]"> 3200 [0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5] 3201 </GlobalTMOStrength> 3202 </cell> 3203 <cell index="3" type="struct" size="[1 1]"> 3204 <Name index="1" type="char" size="[1 8]"> 3205 night 3206 </Name> 3207 <Enable index="1" type="double" size="[1 1]"> 3208 [0] 3209 </Enable> 3210 <IIR index="1" type="double" size="[1 1]"> 3211 [64] 3212 </IIR> 3213 <Mode index="1" type="double" size="[1 1]"> 3214 [0] 3215 </Mode> 3216 <DynamicRange index="1" type="double" size="[1 13]"> 3217 [1 20 30 44 48 55 60 66 68 72 78 80 84] 3218 </DynamicRange> 3219 <EnvLv index="1" type="double" size="[1 13]"> 3220 [0 0.005 0.01 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.8 1.0] 3221 </EnvLv> 3222 <Tolerance index="1" type="double" size="[1 1]"> 3223 [0] 3224 </Tolerance> 3225 <GlobalTMOStrength index="1" type="double" size="[1 13]"> 3226 [0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5] 3227 </GlobalTMOStrength> 3228 </cell> 3229 </GlobalTMO> 3230 <LocalTMO index="1" type="cell" size="[1 3]"> 3231 <cell index="1" type="struct" size="[1 1]"> 3232 <Name index="1" type="char" size="[1 8]"> 3233 normal 3234 </Name> 3235 <LocalTMOMode index="1" type="double" size="[1 1]"> 3236 [0] 3237 </LocalTMOMode> 3238 <DynamicRange index="1" type="double" size="[1 13]"> 3239 [1 20 30 44 48 55 60 66 68 72 78 80 84] 3240 </DynamicRange> 3241 <EnvLv index="1" type="double" size="[1 13]"> 3242 [0 0.005 0.01 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.8 1.0] 3243 </EnvLv> 3244 <Tolerance index="1" type="double" size="[1 1]"> 3245 [0] 3246 </Tolerance> 3247 <LocalTMOStrength index="1" type="double" size="[1 13]"> 3248 [0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3] 3249 </LocalTMOStrength> 3250 </cell> 3251 <cell index="2" type="struct" size="[1 1]"> 3252 <Name index="1" type="char" size="[1 8]"> 3253 HDR 3254 </Name> 3255 <LocalTMOMode index="1" type="double" size="[1 1]"> 3256 [0] 3257 </LocalTMOMode> 3258 <DynamicRange index="1" type="double" size="[1 13]"> 3259 [1 20 30 44 48 55 60 66 68 72 78 80 84] 3260 </DynamicRange> 3261 <EnvLv index="1" type="double" size="[1 13]"> 3262 [0 0.005 0.01 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.8 1.0] 3263 </EnvLv> 3264 <Tolerance index="1" type="double" size="[1 1]"> 3265 [0] 3266 </Tolerance> 3267 <LocalTMOStrength index="1" type="double" size="[1 13]"> 3268 [0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3] 3269 </LocalTMOStrength> 3270 </cell> 3271 <cell index="3" type="struct" size="[1 1]"> 3272 <Name index="1" type="char" size="[1 8]"> 3273 night 3274 </Name> 3275 <LocalTMOMode index="1" type="double" size="[1 1]"> 3276 [0] 3277 </LocalTMOMode> 3278 <DynamicRange index="1" type="double" size="[1 13]"> 3279 [1 20 30 44 48 55 60 66 68 72 78 80 84] 3280 </DynamicRange> 3281 <EnvLv index="1" type="double" size="[1 13]"> 3282 [0 0.005 0.01 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.8 1.0] 3283 </EnvLv> 3284 <Tolerance index="1" type="double" size="[1 1]"> 3285 [0] 3286 </Tolerance> 3287 <LocalTMOStrength index="1" type="double" size="[1 13]"> 3288 [0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3] 3289 </LocalTMOStrength> 3290 </cell> 3291 </LocalTMO> 3292 <Damp index="1" type="double" size="[1 1]"> 3293 [0.3] 3294 </Damp> 3295 </TMO> 3296 <BLC index="1" type="struct" size="[1 1]"> 3297 <Enable index="1" type="double" size="[1 1]"> 3298 [1 ] 3299 </Enable> 3300 <Mode index="1" type="cell" size="[1 2]"> 3301 <cell index="1" type="struct" size="[1 1]"> 3302 <Name index="1" type="char" size="[1 13]"> 3303 normal 3304 </Name> 3305 <ISO index="1" type="double" size="[1 13]"> 3306 [50.0000 100.0000 200.0000 400.0000 800.0000 1600.0000 3200.0000 10000.0000 12800.0000 25600.0000 51200.0000 102400.0000 204800.0000 ] 3307 </ISO> 3308 <black_level index="1" type="double" size="[4 13]"> 3309 [256.0000 256.6250 256.8125 256.8750 256.8750 256.2500 254.5625 252.0000 256.0000 256.0000 256.0000 256.0000 256.0000 3310 256.0000 256.7500 256.8125 256.8750 256.7500 256.4375 254.3750 252.2500 256.0000 256.0000 256.0000 256.0000 256.0000 3311 256.0000 256.5000 256.5625 256.5625 256.6250 255.8125 256.7500 255.4375 256.0000 256.0000 256.0000 256.0000 256.0000 3312 256.0000 256.5000 256.5625 256.2500 256.8125 256.3125 255.6250 253.7500 256.0000 256.0000 256.0000 256.0000 256.0000 ] 3313 </black_level> 3314 </cell> 3315 <cell index="1" type="struct" size="[1 1]"> 3316 <Name index="1" type="char" size="[1 13]"> 3317 hdr 3318 </Name> 3319 <ISO index="1" type="double" size="[1 13]"> 3320 [50.0000 100.0000 200.0000 400.0000 800.0000 1600.0000 3200.0000 10000.0000 12800.0000 25600.0000 51200.0000 102400.0000 204800.0000 ] 3321 </ISO> 3322 <black_level index="1" type="double" size="[4 13]"> 3323 [256.0000 256.6250 256.8125 256.8750 256.8750 256.2500 254.5625 252.0000 256.0000 256.0000 256.0000 256.0000 256.0000 3324 256.0000 256.7500 256.8125 256.8750 256.7500 256.4375 254.3750 252.2500 256.0000 256.0000 256.0000 256.0000 256.0000 3325 256.0000 256.5000 256.5625 256.5625 256.6250 255.8125 256.7500 255.4375 256.0000 256.0000 256.0000 256.0000 256.0000 3326 256.0000 256.5000 256.5625 256.2500 256.8125 256.3125 255.6250 253.7500 256.0000 256.0000 256.0000 256.0000 256.0000 ] 3327 </black_level> 3328 </cell> 3329 </Mode> 3330 </BLC> 3331 <DPCC index="1" type="struct" size="[1 1]"> 3332 <Enable index="1" type="double" size="[1 1]"> 3333 [1 ] 3334 </Enable> 3335 <Version index="1" type="char" size="[1 2]"> 3336 V1 3337 </Version> 3338 <Fast_mode index="1" type="struct" size="[1 1]"> 3339 <Fast_mode_enable index="1" type="double" size="[1 1]"> 3340 [0] 3341 </Fast_mode_enable> 3342 <ISO index="1" type="double" size="[1 13]"> 3343 [50 100 200 400 800 1600 3200 6400 12800 25600 51200 102400 204800] 3344 </ISO> 3345 <Single_enable index="1" type="double" size="[1 1]"> 3346 [0] 3347 </Single_enable> 3348 <Single_level index="1" type="double" size="[1 13]"> 3349 [0 0 0 0 0 0 0 0 0 0 0 0 0] 3350 </Single_level> 3351 <Double_enable index="1" type="double" size="[1 1]"> 3352 [0] 3353 </Double_enable> 3354 <Double_level index="1" type="double" size="[1 13]"> 3355 [0 0 0 0 0 0 0 0 0 0 0 0 0] 3356 </Double_level> 3357 <Triple_enable index="1" type="double" size="[1 1]"> 3358 [0] 3359 </Triple_enable> 3360 <Triple_level index="1" type="double" size="[1 13]"> 3361 [0 0 0 0 0 0 0 0 0 0 0 0 0] 3362 </Triple_level> 3363 </Fast_mode> 3364 <Expert_mode index="1" type="struct" size="[1 1]"> 3365 <ISO index="1" type="double" size="[1 13]"> 3366 [50.0000 100.0000 200.0000 400.0000 800.0000 1500.0000 1507.0000 1510.0000 3200.0000 6400.0000 12800.0000 102400.0000 204800.0000 ] 3367 </ISO> 3368 <Stage1_enable index="1" type="double" size="[1 13]"> 3369 [1 1 1 1 1 1 1 1 1 1 1 1 1 ] 3370 </Stage1_enable> 3371 <grayscale_mode index="1" type="double" size="[1 1]"> 3372 [0 ] 3373 </grayscale_mode> 3374 <rk_out_sel index="1" type="double" size="[1 13]"> 3375 [1 1 1 1 1 1 1 1 1 1 1 1 1 ] 3376 </rk_out_sel> 3377 <dpcc_out_sel index="1" type="double" size="[1 13]"> 3378 [1 1 1 1 1 1 1 1 1 1 1 1 1 ] 3379 </dpcc_out_sel> 3380 <stage1_rb_3x3 index="1" type="double" size="[1 13]"> 3381 [0 0 0 0 0 0 0 1 1 1 0 0 0 ] 3382 </stage1_rb_3x3> 3383 <stage1_g_3x3 index="1" type="double" size="[1 13]"> 3384 [0 0 0 0 0 0 0 1 1 1 0 0 0 ] 3385 </stage1_g_3x3> 3386 <stage1_inc_rb_center index="1" type="double" size="[1 13]"> 3387 [1 1 1 1 1 1 1 1 1 1 1 1 1 ] 3388 </stage1_inc_rb_center> 3389 <stage1_inc_g_center index="1" type="double" size="[1 13]"> 3390 [1 1 1 1 1 1 1 1 1 1 1 1 1 ] 3391 </stage1_inc_g_center> 3392 <stage1_use_fix_set index="1" type="double" size="[1 13]"> 3393 [1 1 1 1 1 1 1 1 1 1 1 1 1] 3394 </stage1_use_fix_set> 3395 <stage1_use_set1 index="1" type="double" size="[1 13]"> 3396 [1 1 1 1 1 1 1 1 1 1 1 1 1] 3397 </stage1_use_set1> 3398 <stage1_use_set2 index="1" type="double" size="[1 13]"> 3399 [0 0 0 0 0 0 0 0 0 0 0 0 0] 3400 </stage1_use_set2> 3401 <stage1_use_set3 index="1" type="double" size="[1 13]"> 3402 [0 0 0 0 0 0 0 0 0 0 0 0 0] 3403 </stage1_use_set3> 3404 <set_cell index="1" type="cell" size="[1 3]"> 3405 <cell index="1" type="struct" size="[1 1]"> 3406 <RK index="1" type="struct" size="[1 1]"> 3407 <RK_red_blue_enable index="1" type="double" size="[1 13]"> 3408 [1 1 1 1 1 1 1 1 1 1 1 1 1 ] 3409 </RK_red_blue_enable> 3410 <RK_green_enable index="1" type="double" size="[1 13]"> 3411 [1 1 1 1 1 1 1 1 1 1 1 1 1 ] 3412 </RK_green_enable> 3413 <rb_sw_mindis index="1" type="double" size="[1 13]"> 3414 [0 0 0 0 0 0 0 0 0 0 0 0 0 ] 3415 </rb_sw_mindis> 3416 <g_sw_mindis index="1" type="double" size="[1 13]"> 3417 [0 0 0 0 0 0 0 0 0 0 0 0 0 ] 3418 </g_sw_mindis> 3419 <sw_dis_scale_min index="1" type="double" size="[1 13]"> 3420 [0 0 0 0 0 0 0 0 0 0 0 0 0 ] 3421 </sw_dis_scale_min> 3422 <sw_dis_scale_max index="1" type="double" size="[1 13]"> 3423 [0 0 0 0 0 0 0 0 0 0 0 0 0 ] 3424 </sw_dis_scale_max> 3425 </RK> 3426 <LC index="1" type="struct" size="[1 1]"> 3427 <LC_red_blue_enable index="1" type="double" size="[1 13]"> 3428 [1 1 1 1 1 1 1 1 1 1 1 1 1 ] 3429 </LC_red_blue_enable> 3430 <LC_green_enable index="1" type="double" size="[1 13]"> 3431 [1 1 1 1 1 1 1 1 1 1 1 1 1 ] 3432 </LC_green_enable> 3433 <rb_line_thr index="1" type="double" size="[1 13]"> 3434 [8 8 8 8 8 8 8 8 8 8 8 8 8 ] 3435 </rb_line_thr> 3436 <g_line_thr index="1" type="double" size="[1 13]"> 3437 [8 8 8 8 8 8 8 8 8 8 8 8 8 ] 3438 </g_line_thr> 3439 <rb_line_mad_fac index="1" type="double" size="[1 13]"> 3440 [4 4 4 4 4 4 4 4 4 4 4 4 4] 3441 </rb_line_mad_fac> 3442 <g_line_mad_fac index="1" type="double" size="[1 13]"> 3443 [4 4 4 4 4 4 4 4 4 4 4 4 4 ] 3444 </g_line_mad_fac> 3445 </LC> 3446 <PG index="1" type="struct" size="[1 1]"> 3447 <PG_red_blue_enable index="1" type="double" size="[1 13]"> 3448 [1 1 1 1 1 1 1 1 1 1 1 1 1 ] 3449 </PG_red_blue_enable> 3450 <PG_green_enable index="1" type="double" size="[1 13]"> 3451 [1 1 1 1 1 1 1 1 1 1 1 1 1] 3452 </PG_green_enable> 3453 <rb_pg_fac index="1" type="double" size="[1 13]"> 3454 [4 4 4 4 4 4 4 4 4 4 4 4 4 ] 3455 </rb_pg_fac> 3456 <g_pg_fac index="1" type="double" size="[1 13]"> 3457 [3 3 3 3 3 3 3 3 3 3 3 3 3 ] 3458 </g_pg_fac> 3459 </PG> 3460 <RND index="1" type="struct" size="[1 1]"> 3461 <RND_red_blue_enable index="1" type="double" size="[1 13]"> 3462 [1 1 1 1 1 1 1 1 1 1 1 1 1 ] 3463 </RND_red_blue_enable> 3464 <RND_green_enable index="1" type="double" size="[1 13]"> 3465 [1 1 1 1 1 1 1 1 1 1 1 1 1 ] 3466 </RND_green_enable> 3467 <rb_rnd_thr index="1" type="double" size="[1 13]"> 3468 [10 10 10 10 10 10 10 10 10 10 10 10 10 ] 3469 </rb_rnd_thr> 3470 <g_rnd_thr index="1" type="double" size="[1 13]"> 3471 [10 10 10 10 10 10 10 10 10 10 10 10 10 ] 3472 </g_rnd_thr> 3473 <rb_rnd_offs index="1" type="double" size="[1 13]"> 3474 [3 3 3 3 3 3 3 3 3 3 3 3 3 ] 3475 </rb_rnd_offs> 3476 <g_rnd_offs index="1" type="double" size="[1 13]"> 3477 [3 3 3 3 3 3 3 3 3 3 3 3 3 ] 3478 </g_rnd_offs> 3479 </RND> 3480 <RG index="1" type="struct" size="[1 1]"> 3481 <RG_red_blue_enable index="1" type="double" size="[1 13]"> 3482 [1 1 1 1 1 1 1 1 1 1 1 1 1 ] 3483 </RG_red_blue_enable> 3484 <RG_green_enable index="1" type="double" size="[1 13]"> 3485 [1 1 1 1 1 1 1 1 1 1 1 1 1 ] 3486 </RG_green_enable> 3487 <rb_rg_fac index="1" type="double" size="[1 13]"> 3488 [32 32 32 32 32 32 32 32 32 32 32 32 32 ] 3489 </rb_rg_fac> 3490 <g_rg_fac index="1" type="double" size="[1 13]"> 3491 [32 32 32 32 32 32 32 32 32 32 32 32 32 ] 3492 </g_rg_fac> 3493 </RG> 3494 <RO index="1" type="struct" size="[1 1]"> 3495 <RO_red_blue_enable index="1" type="double" size="[1 13]"> 3496 [1 1 1 1 1 1 1 1 1 1 1 1 1 ] 3497 </RO_red_blue_enable> 3498 <RO_green_enable index="1" type="double" size="[1 13]"> 3499 [1 1 1 1 1 1 1 1 1 1 1 1 1 ] 3500 </RO_green_enable> 3501 <rb_ro_lim index="1" type="double" size="[1 13]"> 3502 [2 2 2 2 2 2 2 2 2 2 2 2 2 ] 3503 </rb_ro_lim> 3504 <g_ro_lim index="1" type="double" size="[1 13]"> 3505 [2 2 2 2 2 2 2 2 2 2 2 2 2 ] 3506 </g_ro_lim> 3507 </RO> 3508 </cell> 3509 <cell index="2" type="struct" size="[1 1]"> 3510 <RK index="1" type="struct" size="[1 1]"> 3511 <RK_red_blue_enable index="1" type="double" size="[1 13]"> 3512 [ 0 0 0 0 0 0 0 0 0 0 0 0 0 ] 3513 </RK_red_blue_enable> 3514 <RK_green_enable index="1" type="double" size="[1 13]"> 3515 [0 0 0 0 0 0 0 0 0 0 0 0 0 ] 3516 </RK_green_enable> 3517 <rb_sw_mindis index="1" type="double" size="[1 13]"> 3518 [0 0 0 0 0 0 0 0 0 0 0 0 0 ] 3519 </rb_sw_mindis> 3520 <g_sw_mindis index="1" type="double" size="[1 13]"> 3521 [0 0 0 0 0 0 0 0 0 0 0 0 0 ] 3522 </g_sw_mindis> 3523 <sw_dis_scale_min index="1" type="double" size="[1 13]"> 3524 [0 0 0 0 0 0 0 0 0 0 0 0 0 ] 3525 </sw_dis_scale_min> 3526 <sw_dis_scale_max index="1" type="double" size="[1 13]"> 3527 [0 0 0 0 0 0 0 0 0 0 0 0 0 ] 3528 </sw_dis_scale_max> 3529 </RK> 3530 <LC index="1" type="struct" size="[1 1]"> 3531 <LC_red_blue_enable index="1" type="double" size="[1 13]"> 3532 [0 0 0 0 0 0 0 0 0 0 0 0 0 ] 3533 </LC_red_blue_enable> 3534 <LC_green_enable index="1" type="double" size="[1 13]"> 3535 [0 0 0 0 0 0 0 0 0 0 0 0 0 ] 3536 </LC_green_enable> 3537 <rb_line_thr index="1" type="double" size="[1 13]"> 3538 [16 16 16 16 16 16 16 16 16 16 16 16 16] 3539 </rb_line_thr> 3540 <g_line_thr index="1" type="double" size="[1 13]"> 3541 [24 24 24 24 24 24 24 24 24 24 24 24 24 ] 3542 </g_line_thr> 3543 <rb_line_mad_fac index="1" type="double" size="[1 13]"> 3544 [16 16 16 16 16 16 16 16 16 16 16 16 16] 3545 </rb_line_mad_fac> 3546 <g_line_mad_fac index="1" type="double" size="[1 13]"> 3547 [12 12 8 1 1 1 1 1 1 1 1 1 1 ] 3548 </g_line_mad_fac> 3549 </LC> 3550 <PG index="1" type="struct" size="[1 1]"> 3551 <PG_red_blue_enable index="1" type="double" size="[1 13]"> 3552 [1 1 1 1 1 1 1 1 1 1 1 1 1] 3553 </PG_red_blue_enable> 3554 <PG_green_enable index="1" type="double" size="[1 13]"> 3555 [1 1 1 1 1 1 1 1 1 1 1 1 1] 3556 </PG_green_enable> 3557 <rb_pg_fac index="1" type="double" size="[1 13]"> 3558 [4 4 4 4 4 4 4 4 4 4 4 4 4 ] 3559 </rb_pg_fac> 3560 <g_pg_fac index="1" type="double" size="[1 13]"> 3561 [3 3 3 3 3 3 3 3 3 3 3 3 3 ] 3562 </g_pg_fac> 3563 </PG> 3564 <RND index="1" type="struct" size="[1 1]"> 3565 <RND_red_blue_enable index="1" type="double" size="[1 13]"> 3566 [1 1 1 1 1 1 1 1 1 1 1 1 1] 3567 </RND_red_blue_enable> 3568 <RND_green_enable index="1" type="double" size="[1 13]"> 3569 [1 1 1 1 1 1 1 1 1 1 1 1 1] 3570 </RND_green_enable> 3571 <rb_rnd_thr index="1" type="double" size="[1 13]"> 3572 [8 8 8 8 8 8 8 8 8 8 8 8 8] 3573 </rb_rnd_thr> 3574 <g_rnd_thr index="1" type="double" size="[1 13]"> 3575 [8 8 8 8 8 8 8 8 8 8 8 8 8] 3576 </g_rnd_thr> 3577 <rb_rnd_offs index="1" type="double" size="[1 13]"> 3578 [0 0 0 0 0 0 0 0 0 0 0 0 0 ] 3579 </rb_rnd_offs> 3580 <g_rnd_offs index="1" type="double" size="[1 13]"> 3581 [0 0 0 0 0 0 0 0 0 0 0 0 0 ] 3582 </g_rnd_offs> 3583 </RND> 3584 <RG index="1" type="struct" size="[1 1]"> 3585 <RG_red_blue_enable index="1" type="double" size="[1 13]"> 3586 [1 1 1 1 1 1 1 1 1 1 1 1 1] 3587 </RG_red_blue_enable> 3588 <RG_green_enable index="1" type="double" size="[1 13]"> 3589 [1 1 1 1 1 1 1 1 1 1 1 1 1 ] 3590 </RG_green_enable> 3591 <rb_rg_fac index="1" type="double" size="[1 13]"> 3592 [8 8 8 8 8 8 8 8 8 8 8 8 8] 3593 </rb_rg_fac> 3594 <g_rg_fac index="1" type="double" size="[1 13]"> 3595 [8 8 8 8 8 8 8 8 8 8 8 8 8] 3596 </g_rg_fac> 3597 </RG> 3598 <RO index="1" type="struct" size="[1 1]"> 3599 <RO_red_blue_enable index="1" type="double" size="[1 13]"> 3600 [1 1 1 1 1 1 1 1 1 1 1 1 1 ] 3601 </RO_red_blue_enable> 3602 <RO_green_enable index="1" type="double" size="[1 13]"> 3603 [1 1 1 1 1 1 1 1 1 1 1 1 1] 3604 </RO_green_enable> 3605 <rb_ro_lim index="1" type="double" size="[1 13]"> 3606 [0 0 0 0 0 0 0 0 0 0 0 0 0] 3607 </rb_ro_lim> 3608 <g_ro_lim index="1" type="double" size="[1 13]"> 3609 [0 0 0 0 0 0 0 0 0 0 0 0 0 ] 3610 </g_ro_lim> 3611 </RO> 3612 </cell> 3613 <cell index="3" type="struct" size="[1 1]"> 3614 <RK index="1" type="struct" size="[1 1]"> 3615 <RK_red_blue_enable index="1" type="double" size="[1 13]"> 3616 [ 0 0 0 0 0 0 0 0 0 0 0 0 0 ] 3617 </RK_red_blue_enable> 3618 <RK_green_enable index="1" type="double" size="[1 13]"> 3619 [0 0 0 0 0 0 0 0 0 0 0 0 0 ] 3620 </RK_green_enable> 3621 <rb_sw_mindis index="1" type="double" size="[1 13]"> 3622 [0 0 0 0 0 0 0 0 0 0 0 0 0 ] 3623 </rb_sw_mindis> 3624 <g_sw_mindis index="1" type="double" size="[1 13]"> 3625 [0 0 0 0 0 0 0 0 0 0 0 0 0 ] 3626 </g_sw_mindis> 3627 <sw_dis_scale_min index="1" type="double" size="[1 13]"> 3628 [0 0 0 0 0 0 0 0 0 0 0 0 0] 3629 </sw_dis_scale_min> 3630 <sw_dis_scale_max index="1" type="double" size="[1 13]"> 3631 [0 0 0 0 0 0 0 0 0 0 0 0 0 ] 3632 </sw_dis_scale_max> 3633 </RK> 3634 <LC index="1" type="struct" size="[1 1]"> 3635 <LC_red_blue_enable index="1" type="double" size="[1 13]"> 3636 [1 1 1 1 1 1 1 1 1 1 1 1 1] 3637 </LC_red_blue_enable> 3638 <LC_green_enable index="1" type="double" size="[1 13]"> 3639 [1 1 1 1 1 1 1 1 1 1 1 1 1] 3640 </LC_green_enable> 3641 <rb_line_thr index="1" type="double" size="[1 13]"> 3642 [32 32 32 32 32 32 32 32 32 32 32 32 32 ] 3643 </rb_line_thr> 3644 <g_line_thr index="1" type="double" size="[1 13]"> 3645 [32 32 32 32 32 32 32 32 32 32 32 32 32 ] 3646 </g_line_thr> 3647 <rb_line_mad_fac index="1" type="double" size="[1 13]"> 3648 [4 4 4 4 4 4 4 4 4 4 4 4 4 ] 3649 </rb_line_mad_fac> 3650 <g_line_mad_fac index="1" type="double" size="[1 13]"> 3651 [4 4 4 4 4 4 4 4 4 4 4 4 4 ] 3652 </g_line_mad_fac> 3653 </LC> 3654 <PG index="1" type="struct" size="[1 1]"> 3655 <PG_red_blue_enable index="1" type="double" size="[1 13]"> 3656 [1 1 1 1 1 1 1 1 1 1 1 1 1 ] 3657 </PG_red_blue_enable> 3658 <PG_green_enable index="1" type="double" size="[1 13]"> 3659 [1 1 1 1 1 1 1 1 1 1 1 1 1 ] 3660 </PG_green_enable> 3661 <rb_pg_fac index="1" type="double" size="[1 13]"> 3662 [4 4 4 4 4 4 4 4 4 4 4 4 4 ] 3663 </rb_pg_fac> 3664 <g_pg_fac index="1" type="double" size="[1 13]"> 3665 [3 3 3 3 3 3 3 3 3 3 3 3 3 ] 3666 </g_pg_fac> 3667 </PG> 3668 <RND index="1" type="struct" size="[1 1]"> 3669 <RND_red_blue_enable index="1" type="double" size="[1 13]"> 3670 [0 0 0 0 0 0 0 0 0 0 0 0 0 ] 3671 </RND_red_blue_enable> 3672 <RND_green_enable index="1" type="double" size="[1 13]"> 3673 [0 0 0 0 0 0 0 0 0 0 0 0 0 ] 3674 </RND_green_enable> 3675 <rb_rnd_thr index="1" type="double" size="[1 13]"> 3676 [8 8 8 8 8 8 8 8 8 8 8 8 8 ] 3677 </rb_rnd_thr> 3678 <g_rnd_thr index="1" type="double" size="[1 13]"> 3679 [6 6 6 6 6 6 6 6 6 6 6 6 6] 3680 </g_rnd_thr> 3681 <rb_rnd_offs index="1" type="double" size="[1 13]"> 3682 [3 3 3 3 3 3 3 3 3 3 3 3 3] 3683 </rb_rnd_offs> 3684 <g_rnd_offs index="1" type="double" size="[1 13]"> 3685 [3 3 3 3 3 3 3 3 3 3 3 3 3 ] 3686 </g_rnd_offs> 3687 </RND> 3688 <RG index="1" type="struct" size="[1 1]"> 3689 <RG_red_blue_enable index="1" type="double" size="[1 13]"> 3690 [0 0 0 0 0 0 0 0 0 0 0 0 0 ] 3691 </RG_red_blue_enable> 3692 <RG_green_enable index="1" type="double" size="[1 13]"> 3693 [0 0 0 0 0 0 0 0 0 0 0 0 0 ] 3694 </RG_green_enable> 3695 <rb_rg_fac index="1" type="double" size="[1 13]"> 3696 [4 4 4 4 4 4 4 4 4 4 4 4 4 ] 3697 </rb_rg_fac> 3698 <g_rg_fac index="1" type="double" size="[1 13]"> 3699 [4 4 4 4 4 4 4 4 4 4 4 4 4] 3700 </g_rg_fac> 3701 </RG> 3702 <RO index="1" type="struct" size="[1 1]"> 3703 <RO_red_blue_enable index="1" type="double" size="[1 13]"> 3704 [1 1 1 1 1 1 1 1 1 1 1 1 1 ] 3705 </RO_red_blue_enable> 3706 <RO_green_enable index="1" type="double" size="[1 13]"> 3707 [1 1 1 1 1 1 1 1 1 1 1 1 1 ] 3708 </RO_green_enable> 3709 <rb_ro_lim index="1" type="double" size="[1 13]"> 3710 [2 2 2 2 2 2 2 2 2 2 2 2 2] 3711 </rb_ro_lim> 3712 <g_ro_lim index="1" type="double" size="[1 13]"> 3713 [2 2 2 2 2 2 2 2 2 2 2 2 2] 3714 </g_ro_lim> 3715 </RO> 3716 </cell> 3717 </set_cell> 3718 </Expert_mode> 3719 <dpcc_pdaf index="1" type="struct" size="[1 1]"> 3720 <pdaf_en index="1" type="double" size="[1 1]"> 3721 [0] 3722 </pdaf_en> 3723 <pdaf_point_en index="1" type="double" size="[1 16]"> 3724 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 3725 </pdaf_point_en> 3726 <pdaf_offsetx index="1" type="double" size="[1 1]"> 3727 [0] 3728 </pdaf_offsetx> 3729 <pdaf_offsety index="1" type="double" size="[1 1]"> 3730 [0] 3731 </pdaf_offsety> 3732 <pdaf_wrapx_num index="1" type="double" size="[1 1]"> 3733 [0] 3734 </pdaf_wrapx_num> 3735 <pdaf_wrapy_num index="1" type="double" size="[1 1]"> 3736 [0] 3737 </pdaf_wrapy_num> 3738 <point_x index="1" type="double" size="[1 16]"> 3739 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 3740 </point_x> 3741 <point_y index="1" type="double" size="[1 16]"> 3742 [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] 3743 </point_y> 3744 <point_forword_med index="1" type="double" size="[1 1]"> 3745 [0] 3746 </point_forword_med> 3747 </dpcc_pdaf> 3748 <sensor_dpcc index="1" type="struct" size="[1 1]"> 3749 <sensor_dpcc_auto_en index="1" type="double" size="[1 1]"> 3750 [0] 3751 </sensor_dpcc_auto_en> 3752 <max_level index="1" type="double" size="[1 1]"> 3753 [20] 3754 </max_level> 3755 <ISO index="1" type="double" size="[1 13]"> 3756 [50 100 200 400 800 1500 1507 1510 3200 6400 12800 102400 204800] 3757 </ISO> 3758 <level_single index="1" type="double" size="[1 13]"> 3759 [19 19 19 19 19 19 19 19 19 19 19 19 19] 3760 </level_single> 3761 <level_multiple index="1" type="double" size="[1 13]"> 3762 [19 19 19 19 19 19 19 19 19 19 19 19 19] 3763 </level_multiple> 3764 </sensor_dpcc> 3765 </DPCC> 3766 <BAYERNR index="1" type="struct" size="[1 1]"> 3767 <Enable index="1" type="double" size="[1 1]"> 3768 [1 ] 3769 </Enable> 3770 <Version index="1" type="char" size="[1 2]"> 3771 V1 3772 </Version> 3773 <Mode index="1" type="cell" size="[1 3]"> 3774 <cell index="1" type="struct" size="[1 1]"> 3775 <Name index="1" type="char" size="[1 8]"> 3776 normal 3777 </Name> 3778 <Setting index="1" type="cell" size="[1 2]"> 3779 <cell index="1" type="struct" size="[1 1]"> 3780 <SNR_Mode index="1" type="char" size="[1 4]"> 3781 LSNR 3782 </SNR_Mode> 3783 <Sensor_Mode index="1" type="char" size="[1 3]"> 3784 lcg 3785 </Sensor_Mode> 3786 <ISO index="1" type="double" size="[1 13]"> 3787 [50.0000 100.0000 200.0000 400.0000 800.0000 1600.0000 3200.0000 6400.0000 12800.0000 25600.0000 51200.0000 102400.0000 204800.0000 ] 3788 </ISO> 3789 <filtPara index="1" type="double" size="[1 13]"> 3790 [0.050 0.050 0.100 0.100 0.1500 0.200 0.200 0.4000 0.4000 0.3000 0.3000 0.3000 0.3000 ] 3791 </filtPara> 3792 <luLevel index="1" type="double" size="[1 8]"> 3793 [16.0000 32.0000 48.0000 80.0000 112.0000 144.0000 208.0000 255.0000 ] 3794 </luLevel> 3795 <luLevelVal index="1" type="double" size="[1 8]"> 3796 [16.0000 32.0000 48.0000 80.0000 112.0000 144.0000 208.0000 255.0000 ] 3797 </luLevelVal> 3798 <luRatio index="1" type="double" size="[8 13]"> 3799 [1.5000 1.5000 1.5000 1.5000 1.5000 1.4000 1.2000 1.0000 1.5000 1.5000 1.5000 1.5000 1.5000 3800 1.1619 1.1643 1.1843 1.2109 1.1900 1.1107 1.0000 1.0000 1.3807 1.3807 1.3807 1.3807 1.3807 3801 1.0409 1.0428 1.0597 1.0845 1.0634 1.0000 1.0000 1.0000 1.3071 1.3071 1.3071 1.3071 1.3071 3802 1.0000 1.0000 1.0000 1.0067 1.0000 1.0000 1.0000 1.0000 1.2170 1.2170 1.2170 1.2170 1.2170 3803 1.0169 1.0162 1.0057 1.0000 1.0077 1.0000 1.0000 1.0000 1.1587 1.1587 1.1587 1.1587 1.1587 3804 1.0298 1.0298 1.0167 1.0070 1.0245 1.0000 1.0000 1.0000 1.1138 1.1138 1.1138 1.1138 1.1138 3805 1.0222 1.0259 1.0201 1.0164 1.0419 1.0000 1.0000 1.0000 1.0429 1.0429 1.0429 1.0429 1.0429 3806 1.0015 1.0089 1.0111 1.0148 1.0406 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 3807 </luRatio> 3808 <lamda index="1" type="double" size="[1 1]"> 3809 [307.0000 ] 3810 </lamda> 3811 <fixW index="1" type="double" size="[4 13]"> 3812 [0.7000 0.6000 0.5000 0.4000 0.3000 0.2000 0.2000 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 3813 0.6000 0.5000 0.4000 0.3000 0.3000 0.3000 0.3000 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 3814 0.6000 0.5000 0.4000 0.3000 0.3000 0.2000 0.2000 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 3815 0.4000 0.3000 0.2500 0.2000 0.2000 0.2000 0.2000 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 ] 3816 </fixW> 3817 <gauss_en index="1" type="char" size="[1 1]"> 3818 [1 ] 3819 </gauss_en> 3820 <RGainOff index="1" type="double" size="[1 1]"> 3821 [0.0000 ] 3822 </RGainOff> 3823 <RGainFilp index="1" type="double" size="[1 1]"> 3824 [0.0000 ] 3825 </RGainFilp> 3826 <BGainOff index="1" type="double" size="[1 1]"> 3827 [0.0000 ] 3828 </BGainOff> 3829 <BGainFilp index="1" type="double" size="[1 1]"> 3830 [0.0000 ] 3831 </BGainFilp> 3832 <edgeSoftness index="1" type="double" size="[1 1]"> 3833 [1.6000 ] 3834 </edgeSoftness> 3835 <gaussWeight0 index="1" type="double" size="[1 1]"> 3836 [0.2100 ] 3837 </gaussWeight0> 3838 <gaussWeight1 index="1" type="double" size="[1 1]"> 3839 [0.5600 ] 3840 </gaussWeight1> 3841 <bilEdgeFilter index="1" type="double" size="[1 1]"> 3842 [1.0000 ] 3843 </bilEdgeFilter> 3844 <bilFilterStreng index="1" type="double" size="[1 13]"> 3845 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 3846 </bilFilterStreng> 3847 <bilEdgeSoft index="1" type="double" size="[1 1]"> 3848 [2.0000 ] 3849 </bilEdgeSoft> 3850 <bilEdgeSoftRatio index="1" type="double" size="[1 1]"> 3851 [0.0000 ] 3852 </bilEdgeSoftRatio> 3853 <bilRegWgt index="1" type="double" size="[1 1]"> 3854 [0.0000 ] 3855 </bilRegWgt> 3856 </cell> 3857 <cell index="2" type="struct" size="[1 1]"> 3858 <SNR_Mode index="1" type="char" size="[1 4]"> 3859 HSNR 3860 </SNR_Mode> 3861 <Sensor_Mode index="1" type="char" size="[1 3]"> 3862 hcg 3863 </Sensor_Mode> 3864 <ISO index="1" type="double" size="[1 13]"> 3865 [50.0000 100.0000 200.0000 400.0000 800.0000 1600.0000 3200.0000 6400.0000 12800.0000 25600.0000 51200.0000 102400.0000 204800.0000 ] 3866 </ISO> 3867 <filtPara index="1" type="double" size="[1 13]"> 3868 [0.0500 0.0500 0.0500 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3000 0.3000 0.3000 0.3000 ] 3869 </filtPara> 3870 <luLevel index="1" type="double" size="[1 8]"> 3871 [0.0000 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 ] 3872 </luLevel> 3873 <luLevelVal index="1" type="double" size="[1 8]"> 3874 [16.0000 32.0000 48.0000 80.0000 112.0000 144.0000 208.0000 255.0000 ] 3875 </luLevelVal> 3876 <luRatio index="1" type="double" size="[8 13]"> 3877 [1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 3878 1.5000 1.5000 1.4967 1.4089 1.3807 1.3807 1.3807 1.3807 1.3807 1.3807 1.3807 1.3807 1.3807 3879 1.4972 1.4991 1.4681 1.3510 1.3071 1.3071 1.3071 1.3071 1.3071 1.3071 1.3071 1.3071 1.3071 3880 1.4202 1.4353 1.3798 1.2722 1.2170 1.2170 1.2170 1.2170 1.2170 1.2170 1.2170 1.2170 1.2170 3881 1.3173 1.3389 1.2893 1.2114 1.1587 1.1587 1.1587 1.1587 1.1587 1.1587 1.1587 1.1587 1.1587 3882 1.2229 1.2445 1.2081 1.1575 1.1138 1.1138 1.1138 1.1138 1.1138 1.1138 1.1138 1.1138 1.1138 3883 1.0769 1.0880 1.0762 1.0618 1.0429 1.0429 1.0429 1.0429 1.0429 1.0429 1.0429 1.0429 1.0429 3884 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 3885 </luRatio> 3886 <lamda index="1" type="double" size="[1 1]"> 3887 [307.0000 ] 3888 </lamda> 3889 <fixW index="1" type="double" size="[4 13]"> 3890 [0.7000 0.6000 0.5000 0.4000 0.3000 0.2000 0.2000 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 3891 0.6000 0.5000 0.4000 0.3000 0.3000 0.3000 0.3000 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 3892 0.6000 0.5000 0.4000 0.3000 0.3000 0.2000 0.2000 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 3893 0.4000 0.3000 0.2500 0.2000 0.2000 0.2000 0.2000 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 ] 3894 </fixW> 3895 <gauss_en index="1" type="char" size="[1 1]"> 3896 [1 ] 3897 </gauss_en> 3898 <RGainOff index="1" type="double" size="[1 1]"> 3899 [0.0000 ] 3900 </RGainOff> 3901 <RGainFilp index="1" type="double" size="[1 1]"> 3902 [0.0000 ] 3903 </RGainFilp> 3904 <BGainOff index="1" type="double" size="[1 1]"> 3905 [0.0000 ] 3906 </BGainOff> 3907 <BGainFilp index="1" type="double" size="[1 1]"> 3908 [0.0000 ] 3909 </BGainFilp> 3910 <edgeSoftness index="1" type="double" size="[1 1]"> 3911 [1.6000 ] 3912 </edgeSoftness> 3913 <gaussWeight0 index="1" type="double" size="[1 1]"> 3914 [0.2100 ] 3915 </gaussWeight0> 3916 <gaussWeight1 index="1" type="double" size="[1 1]"> 3917 [0.5600 ] 3918 </gaussWeight1> 3919 <bilEdgeFilter index="1" type="double" size="[1 1]"> 3920 [1.0000 ] 3921 </bilEdgeFilter> 3922 <bilFilterStreng index="1" type="double" size="[1 13]"> 3923 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 3924 </bilFilterStreng> 3925 <bilEdgeSoft index="1" type="double" size="[1 1]"> 3926 [2.0000 ] 3927 </bilEdgeSoft> 3928 <bilEdgeSoftRatio index="1" type="double" size="[1 1]"> 3929 [0.0000 ] 3930 </bilEdgeSoftRatio> 3931 <bilRegWgt index="1" type="double" size="[1 1]"> 3932 [0.0000 ] 3933 </bilRegWgt> 3934 </cell> 3935 </Setting> 3936 </cell> 3937 <cell index="1" type="struct" size="[1 1]"> 3938 <Name index="1" type="char" size="[1 8]"> 3939 hdr 3940 </Name> 3941 <Setting index="1" type="cell" size="[1 2]"> 3942 <cell index="1" type="struct" size="[1 1]"> 3943 <SNR_Mode index="1" type="char" size="[1 4]"> 3944 LSNR 3945 </SNR_Mode> 3946 <Sensor_Mode index="1" type="char" size="[1 3]"> 3947 lcg 3948 </Sensor_Mode> 3949 <ISO index="1" type="double" size="[1 13]"> 3950 [50.0000 100.0000 200.0000 400.0000 800.0000 1600.0000 3200.0000 6400.0000 12800.0000 25600.0000 51200.0000 102400.0000 204800.0000 ] 3951 </ISO> 3952 <filtPara index="1" type="double" size="[1 13]"> 3953 [0.050 0.050 0.100 0.100 0.1500 0.200 0.200 0.4000 0.4000 0.3000 0.3000 0.3000 0.3000 ] 3954 </filtPara> 3955 <luLevel index="1" type="double" size="[1 8]"> 3956 [16.0000 32.0000 48.0000 80.0000 112.0000 144.0000 208.0000 255.0000 ] 3957 </luLevel> 3958 <luLevelVal index="1" type="double" size="[1 8]"> 3959 [16.0000 32.0000 48.0000 80.0000 112.0000 144.0000 208.0000 255.0000 ] 3960 </luLevelVal> 3961 <luRatio index="1" type="double" size="[8 13]"> 3962 [1.5000 1.5000 1.5000 1.5000 1.5000 1.4000 1.2000 1.0000 1.5000 1.5000 1.5000 1.5000 1.5000 3963 1.1619 1.1643 1.1843 1.2109 1.1900 1.1107 1.0000 1.0000 1.3807 1.3807 1.3807 1.3807 1.3807 3964 1.0409 1.0428 1.0597 1.0845 1.0634 1.0000 1.0000 1.0000 1.3071 1.3071 1.3071 1.3071 1.3071 3965 1.0000 1.0000 1.0000 1.0067 1.0000 1.0000 1.0000 1.0000 1.2170 1.2170 1.2170 1.2170 1.2170 3966 1.0169 1.0162 1.0057 1.0000 1.0077 1.0000 1.0000 1.0000 1.1587 1.1587 1.1587 1.1587 1.1587 3967 1.0298 1.0298 1.0167 1.0070 1.0245 1.0000 1.0000 1.0000 1.1138 1.1138 1.1138 1.1138 1.1138 3968 1.0222 1.0259 1.0201 1.0164 1.0419 1.0000 1.0000 1.0000 1.0429 1.0429 1.0429 1.0429 1.0429 3969 1.0015 1.0089 1.0111 1.0148 1.0406 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 3970 </luRatio> 3971 <lamda index="1" type="double" size="[1 1]"> 3972 [307.0000 ] 3973 </lamda> 3974 <fixW index="1" type="double" size="[4 13]"> 3975 [0.7000 0.6000 0.5000 0.4000 0.3000 0.2000 0.2000 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 3976 0.6000 0.5000 0.4000 0.3000 0.3000 0.3000 0.3000 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 3977 0.6000 0.5000 0.4000 0.3000 0.3000 0.2000 0.2000 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 3978 0.4000 0.3000 0.2500 0.2000 0.2000 0.2000 0.2000 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 ] 3979 </fixW> 3980 <gauss_en index="1" type="char" size="[1 1]"> 3981 [1 ] 3982 </gauss_en> 3983 <RGainOff index="1" type="double" size="[1 1]"> 3984 [0.0000 ] 3985 </RGainOff> 3986 <RGainFilp index="1" type="double" size="[1 1]"> 3987 [0.0000 ] 3988 </RGainFilp> 3989 <BGainOff index="1" type="double" size="[1 1]"> 3990 [0.0000 ] 3991 </BGainOff> 3992 <BGainFilp index="1" type="double" size="[1 1]"> 3993 [0.0000 ] 3994 </BGainFilp> 3995 <edgeSoftness index="1" type="double" size="[1 1]"> 3996 [1.6000 ] 3997 </edgeSoftness> 3998 <gaussWeight0 index="1" type="double" size="[1 1]"> 3999 [0.2100 ] 4000 </gaussWeight0> 4001 <gaussWeight1 index="1" type="double" size="[1 1]"> 4002 [0.5600 ] 4003 </gaussWeight1> 4004 <bilEdgeFilter index="1" type="double" size="[1 1]"> 4005 [1.0000 ] 4006 </bilEdgeFilter> 4007 <bilFilterStreng index="1" type="double" size="[1 13]"> 4008 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 4009 </bilFilterStreng> 4010 <bilEdgeSoft index="1" type="double" size="[1 1]"> 4011 [2.0000 ] 4012 </bilEdgeSoft> 4013 <bilEdgeSoftRatio index="1" type="double" size="[1 1]"> 4014 [0.0000 ] 4015 </bilEdgeSoftRatio> 4016 <bilRegWgt index="1" type="double" size="[1 1]"> 4017 [0.0000 ] 4018 </bilRegWgt> 4019 </cell> 4020 <cell index="2" type="struct" size="[1 1]"> 4021 <SNR_Mode index="1" type="char" size="[1 4]"> 4022 HSNR 4023 </SNR_Mode> 4024 <Sensor_Mode index="1" type="char" size="[1 3]"> 4025 hcg 4026 </Sensor_Mode> 4027 <ISO index="1" type="double" size="[1 13]"> 4028 [50.0000 100.0000 200.0000 400.0000 800.0000 1600.0000 3200.0000 6400.0000 12800.0000 25600.0000 51200.0000 102400.0000 204800.0000 ] 4029 </ISO> 4030 <filtPara index="1" type="double" size="[1 13]"> 4031 [0.0500 0.0500 0.0500 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3000 0.3000 0.3000 0.3000 ] 4032 </filtPara> 4033 <luLevel index="1" type="double" size="[1 8]"> 4034 [0.0000 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 ] 4035 </luLevel> 4036 <luLevelVal index="1" type="double" size="[1 8]"> 4037 [16.0000 32.0000 48.0000 80.0000 112.0000 144.0000 208.0000 255.0000 ] 4038 </luLevelVal> 4039 <luRatio index="1" type="double" size="[8 13]"> 4040 [1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 4041 1.5000 1.5000 1.4967 1.4089 1.3807 1.3807 1.3807 1.3807 1.3807 1.3807 1.3807 1.3807 1.3807 4042 1.4972 1.4991 1.4681 1.3510 1.3071 1.3071 1.3071 1.3071 1.3071 1.3071 1.3071 1.3071 1.3071 4043 1.4202 1.4353 1.3798 1.2722 1.2170 1.2170 1.2170 1.2170 1.2170 1.2170 1.2170 1.2170 1.2170 4044 1.3173 1.3389 1.2893 1.2114 1.1587 1.1587 1.1587 1.1587 1.1587 1.1587 1.1587 1.1587 1.1587 4045 1.2229 1.2445 1.2081 1.1575 1.1138 1.1138 1.1138 1.1138 1.1138 1.1138 1.1138 1.1138 1.1138 4046 1.0769 1.0880 1.0762 1.0618 1.0429 1.0429 1.0429 1.0429 1.0429 1.0429 1.0429 1.0429 1.0429 4047 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 4048 </luRatio> 4049 <lamda index="1" type="double" size="[1 1]"> 4050 [307.0000 ] 4051 </lamda> 4052 <fixW index="1" type="double" size="[4 13]"> 4053 [0.7000 0.6000 0.5000 0.4000 0.3000 0.2000 0.2000 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 4054 0.6000 0.5000 0.4000 0.3000 0.3000 0.3000 0.3000 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 4055 0.6000 0.5000 0.4000 0.3000 0.3000 0.2000 0.2000 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 4056 0.4000 0.3000 0.2500 0.2000 0.2000 0.2000 0.2000 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 ] 4057 </fixW> 4058 <gauss_en index="1" type="char" size="[1 1]"> 4059 [1 ] 4060 </gauss_en> 4061 <RGainOff index="1" type="double" size="[1 1]"> 4062 [0.0000 ] 4063 </RGainOff> 4064 <RGainFilp index="1" type="double" size="[1 1]"> 4065 [0.0000 ] 4066 </RGainFilp> 4067 <BGainOff index="1" type="double" size="[1 1]"> 4068 [0.0000 ] 4069 </BGainOff> 4070 <BGainFilp index="1" type="double" size="[1 1]"> 4071 [0.0000 ] 4072 </BGainFilp> 4073 <edgeSoftness index="1" type="double" size="[1 1]"> 4074 [1.6000 ] 4075 </edgeSoftness> 4076 <gaussWeight0 index="1" type="double" size="[1 1]"> 4077 [0.2100 ] 4078 </gaussWeight0> 4079 <gaussWeight1 index="1" type="double" size="[1 1]"> 4080 [0.5600 ] 4081 </gaussWeight1> 4082 <bilEdgeFilter index="1" type="double" size="[1 1]"> 4083 [1.0000 ] 4084 </bilEdgeFilter> 4085 <bilFilterStreng index="1" type="double" size="[1 13]"> 4086 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 4087 </bilFilterStreng> 4088 <bilEdgeSoft index="1" type="double" size="[1 1]"> 4089 [2.0000 ] 4090 </bilEdgeSoft> 4091 <bilEdgeSoftRatio index="1" type="double" size="[1 1]"> 4092 [0.0000 ] 4093 </bilEdgeSoftRatio> 4094 <bilRegWgt index="1" type="double" size="[1 1]"> 4095 [0.0000 ] 4096 </bilRegWgt> 4097 </cell> 4098 </Setting> 4099 </cell> 4100 <cell index="1" type="struct" size="[1 1]"> 4101 <Name index="1" type="char" size="[1 8]"> 4102 gray 4103 </Name> 4104 <Setting index="1" type="cell" size="[1 2]"> 4105 <cell index="1" type="struct" size="[1 1]"> 4106 <SNR_Mode index="1" type="char" size="[1 4]"> 4107 LSNR 4108 </SNR_Mode> 4109 <Sensor_Mode index="1" type="char" size="[1 3]"> 4110 lcg 4111 </Sensor_Mode> 4112 <ISO index="1" type="double" size="[1 13]"> 4113 [50.0000 100.0000 200.0000 400.0000 800.0000 1600.0000 3200.0000 6400.0000 12800.0000 25600.0000 51200.0000 102400.0000 204800.0000 ] 4114 </ISO> 4115 <filtPara index="1" type="double" size="[1 13]"> 4116 [0.050 0.050 0.100 0.100 0.1500 0.200 0.200 0.4000 0.4000 0.3000 0.3000 0.3000 0.3000 ] 4117 </filtPara> 4118 <luLevel index="1" type="double" size="[1 8]"> 4119 [16.0000 32.0000 48.0000 80.0000 112.0000 144.0000 208.0000 255.0000 ] 4120 </luLevel> 4121 <luLevelVal index="1" type="double" size="[1 8]"> 4122 [16.0000 32.0000 48.0000 80.0000 112.0000 144.0000 208.0000 255.0000 ] 4123 </luLevelVal> 4124 <luRatio index="1" type="double" size="[8 13]"> 4125 [1.5000 1.5000 1.5000 1.5000 1.5000 1.4000 1.2000 1.0000 1.5000 1.5000 1.5000 1.5000 1.5000 4126 1.1619 1.1643 1.1843 1.2109 1.1900 1.1107 1.0000 1.0000 1.3807 1.3807 1.3807 1.3807 1.3807 4127 1.0409 1.0428 1.0597 1.0845 1.0634 1.0000 1.0000 1.0000 1.3071 1.3071 1.3071 1.3071 1.3071 4128 1.0000 1.0000 1.0000 1.0067 1.0000 1.0000 1.0000 1.0000 1.2170 1.2170 1.2170 1.2170 1.2170 4129 1.0169 1.0162 1.0057 1.0000 1.0077 1.0000 1.0000 1.0000 1.1587 1.1587 1.1587 1.1587 1.1587 4130 1.0298 1.0298 1.0167 1.0070 1.0245 1.0000 1.0000 1.0000 1.1138 1.1138 1.1138 1.1138 1.1138 4131 1.0222 1.0259 1.0201 1.0164 1.0419 1.0000 1.0000 1.0000 1.0429 1.0429 1.0429 1.0429 1.0429 4132 1.0015 1.0089 1.0111 1.0148 1.0406 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 4133 </luRatio> 4134 <lamda index="1" type="double" size="[1 1]"> 4135 [307.0000 ] 4136 </lamda> 4137 <fixW index="1" type="double" size="[4 13]"> 4138 [0.7000 0.6000 0.5000 0.4000 0.3000 0.2000 0.2000 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 4139 0.6000 0.5000 0.4000 0.3000 0.3000 0.3000 0.3000 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 4140 0.6000 0.5000 0.4000 0.3000 0.3000 0.2000 0.2000 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 4141 0.4000 0.3000 0.2500 0.2000 0.2000 0.2000 0.2000 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 ] 4142 </fixW> 4143 <gauss_en index="1" type="char" size="[1 1]"> 4144 [1 ] 4145 </gauss_en> 4146 <RGainOff index="1" type="double" size="[1 1]"> 4147 [0.0000 ] 4148 </RGainOff> 4149 <RGainFilp index="1" type="double" size="[1 1]"> 4150 [0.0000 ] 4151 </RGainFilp> 4152 <BGainOff index="1" type="double" size="[1 1]"> 4153 [0.0000 ] 4154 </BGainOff> 4155 <BGainFilp index="1" type="double" size="[1 1]"> 4156 [0.0000 ] 4157 </BGainFilp> 4158 <edgeSoftness index="1" type="double" size="[1 1]"> 4159 [1.6000 ] 4160 </edgeSoftness> 4161 <gaussWeight0 index="1" type="double" size="[1 1]"> 4162 [0.2100 ] 4163 </gaussWeight0> 4164 <gaussWeight1 index="1" type="double" size="[1 1]"> 4165 [0.5600 ] 4166 </gaussWeight1> 4167 <bilEdgeFilter index="1" type="double" size="[1 1]"> 4168 [1.0000 ] 4169 </bilEdgeFilter> 4170 <bilFilterStreng index="1" type="double" size="[1 13]"> 4171 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 4172 </bilFilterStreng> 4173 <bilEdgeSoft index="1" type="double" size="[1 1]"> 4174 [2.0000 ] 4175 </bilEdgeSoft> 4176 <bilEdgeSoftRatio index="1" type="double" size="[1 1]"> 4177 [0.0000 ] 4178 </bilEdgeSoftRatio> 4179 <bilRegWgt index="1" type="double" size="[1 1]"> 4180 [0.0000 ] 4181 </bilRegWgt> 4182 </cell> 4183 <cell index="2" type="struct" size="[1 1]"> 4184 <SNR_Mode index="1" type="char" size="[1 4]"> 4185 HSNR 4186 </SNR_Mode> 4187 <Sensor_Mode index="1" type="char" size="[1 3]"> 4188 hcg 4189 </Sensor_Mode> 4190 <ISO index="1" type="double" size="[1 13]"> 4191 [50.0000 100.0000 200.0000 400.0000 800.0000 1600.0000 3200.0000 6400.0000 12800.0000 25600.0000 51200.0000 102400.0000 204800.0000 ] 4192 </ISO> 4193 <filtPara index="1" type="double" size="[1 13]"> 4194 [0.0500 0.0500 0.0500 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3000 0.3000 0.3000 0.3000 ] 4195 </filtPara> 4196 <luLevel index="1" type="double" size="[1 8]"> 4197 [0.0000 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000 ] 4198 </luLevel> 4199 <luLevelVal index="1" type="double" size="[1 8]"> 4200 [16.0000 32.0000 48.0000 80.0000 112.0000 144.0000 208.0000 255.0000 ] 4201 </luLevelVal> 4202 <luRatio index="1" type="double" size="[8 13]"> 4203 [1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 4204 1.5000 1.5000 1.4967 1.4089 1.3807 1.3807 1.3807 1.3807 1.3807 1.3807 1.3807 1.3807 1.3807 4205 1.4972 1.4991 1.4681 1.3510 1.3071 1.3071 1.3071 1.3071 1.3071 1.3071 1.3071 1.3071 1.3071 4206 1.4202 1.4353 1.3798 1.2722 1.2170 1.2170 1.2170 1.2170 1.2170 1.2170 1.2170 1.2170 1.2170 4207 1.3173 1.3389 1.2893 1.2114 1.1587 1.1587 1.1587 1.1587 1.1587 1.1587 1.1587 1.1587 1.1587 4208 1.2229 1.2445 1.2081 1.1575 1.1138 1.1138 1.1138 1.1138 1.1138 1.1138 1.1138 1.1138 1.1138 4209 1.0769 1.0880 1.0762 1.0618 1.0429 1.0429 1.0429 1.0429 1.0429 1.0429 1.0429 1.0429 1.0429 4210 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 4211 </luRatio> 4212 <lamda index="1" type="double" size="[1 1]"> 4213 [307.0000 ] 4214 </lamda> 4215 <fixW index="1" type="double" size="[4 13]"> 4216 [0.7000 0.6000 0.5000 0.4000 0.3000 0.2000 0.2000 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 4217 0.6000 0.5000 0.4000 0.3000 0.3000 0.3000 0.3000 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 4218 0.6000 0.5000 0.4000 0.3000 0.3000 0.2000 0.2000 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 4219 0.4000 0.3000 0.2500 0.2000 0.2000 0.2000 0.2000 0.2000 0.1000 0.1000 0.1000 0.1000 0.1000 ] 4220 </fixW> 4221 <gauss_en index="1" type="char" size="[1 1]"> 4222 [1 ] 4223 </gauss_en> 4224 <RGainOff index="1" type="double" size="[1 1]"> 4225 [0.0000 ] 4226 </RGainOff> 4227 <RGainFilp index="1" type="double" size="[1 1]"> 4228 [0.0000 ] 4229 </RGainFilp> 4230 <BGainOff index="1" type="double" size="[1 1]"> 4231 [0.0000 ] 4232 </BGainOff> 4233 <BGainFilp index="1" type="double" size="[1 1]"> 4234 [0.0000 ] 4235 </BGainFilp> 4236 <edgeSoftness index="1" type="double" size="[1 1]"> 4237 [1.6000 ] 4238 </edgeSoftness> 4239 <gaussWeight0 index="1" type="double" size="[1 1]"> 4240 [0.2100 ] 4241 </gaussWeight0> 4242 <gaussWeight1 index="1" type="double" size="[1 1]"> 4243 [0.5600 ] 4244 </gaussWeight1> 4245 <bilEdgeFilter index="1" type="double" size="[1 1]"> 4246 [1.0000 ] 4247 </bilEdgeFilter> 4248 <bilFilterStreng index="1" type="double" size="[1 13]"> 4249 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 4250 </bilFilterStreng> 4251 <bilEdgeSoft index="1" type="double" size="[1 1]"> 4252 [2.0000 ] 4253 </bilEdgeSoft> 4254 <bilEdgeSoftRatio index="1" type="double" size="[1 1]"> 4255 [0.0000 ] 4256 </bilEdgeSoftRatio> 4257 <bilRegWgt index="1" type="double" size="[1 1]"> 4258 [0.0000 ] 4259 </bilRegWgt> 4260 </cell> 4261 </Setting> 4262 </cell> 4263 </Mode> 4264 </BAYERNR> 4265 <LSC index="1" type="struct" size="[1 1]"> 4266 <enable index="1" type="char" size="[1 1]"> 4267 [1 ] 4268 </enable> 4269 <damp_enable index="1" type="char" size="[1 1]"> 4270 [1 ] 4271 </damp_enable> 4272 <alscCoef index="1" type="struct" size="[1 1]"> 4273 <resolutionAlll index="1" type="cell" size="[1 2]"> 4274 <cell index="1" type="struct" size="[1 1]"> 4275 <name index="1" type="char" size="[1 9]"> 4276 1920x1080 4277 </name> 4278 </cell> 4279 <cell index="1" type="struct" size="[1 1]"> 4280 <name index="1" type="char" size="[1 9]"> 4281 2560x1440 4282 </name> 4283 </cell> 4284 </resolutionAlll> 4285 <illAll index="1" type="cell" size="[1 8]"> 4286 <cell index="1" type="struct" size="[1 1]"> 4287 <usedForCase index="1" type="double" size="[1 1]"> 4288 [0 ] 4289 </usedForCase> 4290 <name index="1" type="char" size="[1 1]"> 4291 A 4292 </name> 4293 <wbGain index="1" type="double" size="[1 2]"> 4294 [1.3271 3.3148 ] 4295 </wbGain> 4296 <tableUsed index="1" type="char" size="[1 10]"> 4297 A_100 A_70 4298 </tableUsed> 4299 <gains index="1" type="double" size="[1 4]"> 4300 [1.0000 4.0000 6.0000 8.0000 ] 4301 </gains> 4302 <vig index="1" type="double" size="[1 4]"> 4303 [100.0000 100.0000 90.0000 70.0000 ] 4304 </vig> 4305 </cell> 4306 <cell index="5" type="struct" size="[1 1]"> 4307 <usedForCase index="1" type="double" size="[1 1]"> 4308 [0 ] 4309 </usedForCase> 4310 <name index="1" type="char" size="[1 3]"> 4311 CWF 4312 </name> 4313 <wbGain index="1" type="double" size="[1 2]"> 4314 [1.8823 2.8817 ] 4315 </wbGain> 4316 <tableUsed index="1" type="char" size="[1 14]"> 4317 CWF_100 CWF_70 4318 </tableUsed> 4319 <gains index="1" type="double" size="[1 4]"> 4320 [1.0000 4.0000 6.0000 8.0000 ] 4321 </gains> 4322 <vig index="1" type="double" size="[1 4]"> 4323 [100.0000 100.0000 90.0000 70.0000 ] 4324 </vig> 4325 </cell> 4326 <cell index="2" type="struct" size="[1 1]"> 4327 <usedForCase index="1" type="double" size="[1 1]"> 4328 [0 ] 4329 </usedForCase> 4330 <name index="1" type="char" size="[1 3]"> 4331 D50 4332 </name> 4333 <wbGain index="1" type="double" size="[1 2]"> 4334 [1.9051 1.9785 ] 4335 </wbGain> 4336 <tableUsed index="1" type="char" size="[1 14]"> 4337 D50_100 D50_70 4338 </tableUsed> 4339 <gains index="1" type="double" size="[1 4]"> 4340 [1.0000 4.0000 6.0000 8.0000 ] 4341 </gains> 4342 <vig index="1" type="double" size="[1 4]"> 4343 [100.0000 100.0000 90.0000 70.0000 ] 4344 </vig> 4345 </cell> 4346 <cell index="3" type="struct" size="[1 1]"> 4347 <usedForCase index="1" type="double" size="[1 1]"> 4348 [0 ] 4349 </usedForCase> 4350 <name index="1" type="char" size="[1 3]"> 4351 D65 4352 </name> 4353 <wbGain index="1" type="double" size="[1 2]"> 4354 [0.9944 0.9667 ] 4355 </wbGain> 4356 <tableUsed index="1" type="char" size="[1 14]"> 4357 D65_100 D65_70 4358 </tableUsed> 4359 <gains index="1" type="double" size="[1 4]"> 4360 [1.0000 4.0000 6.0000 8.0000 ] 4361 </gains> 4362 <vig index="1" type="double" size="[1 4]"> 4363 [100.0000 100.0000 90.0000 70.0000 ] 4364 </vig> 4365 </cell> 4366 <cell index="4" type="struct" size="[1 1]"> 4367 <usedForCase index="1" type="double" size="[1 1]"> 4368 [0 ] 4369 </usedForCase> 4370 <name index="1" type="char" size="[1 3]"> 4371 D75 4372 </name> 4373 <wbGain index="1" type="double" size="[1 2]"> 4374 [2.2996 1.5809 ] 4375 </wbGain> 4376 <tableUsed index="1" type="char" size="[1 14]"> 4377 D75_100 D75_70 4378 </tableUsed> 4379 <gains index="1" type="double" size="[1 4]"> 4380 [1.0000 4.0000 6.0000 8.0000 ] 4381 </gains> 4382 <vig index="1" type="double" size="[1 4]"> 4383 [100.0000 100.0000 90.0000 70.0000 ] 4384 </vig> 4385 </cell> 4386 <cell index="4" type="struct" size="[1 1]"> 4387 <usedForCase index="1" type="double" size="[1 1]"> 4388 [0 ] 4389 </usedForCase> 4390 <name index="1" type="char" size="[1 2]"> 4391 HZ 4392 </name> 4393 <wbGain index="1" type="double" size="[1 2]"> 4394 [1.1183 3.6332 ] 4395 </wbGain> 4396 <tableUsed index="1" type="char" size="[1 12]"> 4397 HZ_100 HZ_70 4398 </tableUsed> 4399 <gains index="1" type="double" size="[1 4]"> 4400 [1.0000 4.0000 6.0000 8.0000 ] 4401 </gains> 4402 <vig index="1" type="double" size="[1 4]"> 4403 [100.0000 100.0000 90.0000 70.0000 ] 4404 </vig> 4405 </cell> 4406 <cell index="6" type="struct" size="[1 1]"> 4407 <usedForCase index="1" type="double" size="[1 1]"> 4408 [0 ] 4409 </usedForCase> 4410 <name index="1" type="char" size="[1 4]"> 4411 TL84 4412 </name> 4413 <wbGain index="1" type="double" size="[1 2]"> 4414 [1.5274 2.6033 ] 4415 </wbGain> 4416 <tableUsed index="1" type="char" size="[1 16]"> 4417 TL84_100 TL84_70 4418 </tableUsed> 4419 <gains index="1" type="double" size="[1 4]"> 4420 [1.0000 4.0000 6.0000 8.0000 ] 4421 </gains> 4422 <vig index="1" type="double" size="[1 4]"> 4423 [100.0000 100.0000 90.0000 70.0000 ] 4424 </vig> 4425 </cell> 4426 <cell index="6" type="struct" size="[1 1]"> 4427 <usedForCase index="1" type="double" size="[1 1]"> 4428 [2 ] 4429 </usedForCase> 4430 <name index="1" type="char" size="[1 4]"> 4431 GRAY 4432 </name> 4433 <wbGain index="1" type="double" size="[1 2]"> 4434 [0.9944 0.9667 ] 4435 </wbGain> 4436 <tableUsed index="1" type="char" size="[1 16]"> 4437 GRAY_100 GRAY_70 4438 </tableUsed> 4439 <gains index="1" type="double" size="[1 4]"> 4440 [1.0000 10.0000 31.0000 64.0000 ] 4441 </gains> 4442 <vig index="1" type="double" size="[1 4]"> 4443 [90.0000 60.0000 25.0000 0.0000 ] 4444 </vig> 4445 </cell> 4446 </illAll> 4447 </alscCoef> 4448 <tableAll index="1" type="cell" size="[1 32]"> 4449 <cell index="1" type="struct" size="[1 1]"> 4450 <name index="1" type="char" size="[1 15]"> 4451 2560x1440_A_100 4452 </name> 4453 <resolution index="1" type="char" size="[1 9]"> 4454 2560x1440 4455 </resolution> 4456 <illumination index="1" type="char" size="[1 1]"> 4457 A 4458 </illumination> 4459 <LSC_sectors index="1" type="double" size="[1 1]"> 4460 [16 ] 4461 </LSC_sectors> 4462 <LSC_No index="1" type="double" size="[1 1]"> 4463 [10 ] 4464 </LSC_No> 4465 <LSC_Xo index="1" type="double" size="[1 1]"> 4466 [15 ] 4467 </LSC_Xo> 4468 <LSC_Yo index="1" type="double" size="[1 1]"> 4469 [15 ] 4470 </LSC_Yo> 4471 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 4472 [160 160 160 160 160 160 160 160 ] 4473 </LSC_SECT_SIZE_X> 4474 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 4475 [90 90 90 90 90 90 90 90 ] 4476 </LSC_SECT_SIZE_Y> 4477 <vignetting index="1" type="double" size="[1 1]"> 4478 [100.0000 ] 4479 </vignetting> 4480 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 4481 [3488 2679 2181 1892 1691 1543 1456 1392 1384 1404 1450 1536 1674 1871 2153 2690 3470 4482 3220 2499 2048 1776 1606 1459 1381 1318 1303 1316 1370 1456 1579 1772 2036 2480 3189 4483 2990 2342 1947 1717 1532 1395 1311 1271 1238 1254 1313 1392 1522 1695 1947 2333 2990 4484 2862 2247 1886 1654 1478 1358 1261 1213 1196 1211 1259 1347 1469 1645 1865 2225 2814 4485 2711 2153 1825 1598 1434 1305 1229 1175 1155 1167 1215 1303 1428 1595 1820 2140 2711 4486 2596 2086 1772 1561 1389 1273 1185 1129 1109 1126 1177 1261 1384 1547 1776 2080 2586 4487 2537 2023 1722 1512 1353 1238 1149 1098 1072 1092 1139 1229 1350 1508 1730 2036 2508 4488 2480 1987 1691 1485 1326 1207 1116 1063 1046 1060 1112 1198 1321 1475 1678 1976 2444 4489 2435 1952 1658 1462 1293 1183 1096 1038 1024 1043 1091 1175 1293 1453 1658 1936 2400 4490 2392 1936 1649 1446 1293 1173 1091 1032 1012 1030 1085 1165 1285 1443 1654 1924 2392 4491 2444 1941 1658 1456 1295 1181 1098 1035 1019 1038 1087 1175 1298 1450 1645 1930 2418 4492 2480 1976 1687 1482 1329 1209 1122 1070 1051 1065 1107 1200 1316 1475 1683 1993 2453 4493 2606 2054 1735 1515 1367 1249 1165 1101 1085 1103 1151 1236 1361 1519 1739 2054 2556 4494 2711 2146 1810 1587 1419 1300 1209 1159 1133 1153 1200 1288 1416 1576 1815 2140 2733 4495 2912 2270 1892 1662 1492 1367 1273 1218 1202 1202 1266 1361 1482 1658 1897 2278 2899 4496 3115 2418 1999 1758 1576 1434 1345 1293 1268 1290 1347 1440 1572 1758 2005 2409 3115 4497 3332 2596 2140 1840 1666 1505 1413 1356 1326 1361 1416 1529 1658 1840 2119 2606 3332 ] 4498 </LSC_SAMPLES_red> 4499 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 4500 [3272 2528 2064 1807 1629 1497 1416 1370 1361 1356 1418 1508 1632 1799 2059 2504 3233 4501 2994 2359 1950 1715 1557 1428 1352 1300 1283 1294 1343 1431 1548 1711 1950 2338 2973 4502 2818 2229 1873 1659 1499 1375 1292 1242 1225 1240 1287 1370 1477 1652 1869 2217 2798 4503 2660 2146 1803 1597 1446 1330 1244 1200 1184 1200 1250 1325 1443 1606 1815 2118 2652 4504 2592 2054 1752 1557 1406 1298 1209 1169 1147 1160 1205 1289 1401 1554 1760 2054 2568 4505 2481 2013 1715 1525 1370 1252 1177 1122 1105 1119 1175 1254 1365 1522 1719 2003 2451 4506 2408 1955 1683 1480 1336 1223 1144 1092 1076 1083 1137 1216 1336 1488 1690 1964 2400 4507 2345 1918 1652 1454 1304 1198 1117 1063 1045 1064 1111 1196 1298 1451 1649 1909 2325 4508 2311 1891 1616 1428 1287 1174 1097 1045 1024 1044 1086 1170 1285 1428 1616 1882 2298 4509 2305 1873 1609 1421 1281 1169 1092 1036 1020 1033 1083 1167 1273 1418 1606 1882 2298 4510 2305 1873 1616 1431 1285 1170 1097 1046 1027 1040 1095 1170 1287 1431 1613 1891 2318 4511 2393 1918 1642 1464 1315 1209 1125 1074 1056 1077 1113 1193 1312 1454 1652 1918 2359 4512 2474 1988 1693 1505 1356 1240 1160 1111 1090 1113 1160 1236 1356 1499 1704 1988 2474 4513 2609 2080 1775 1563 1413 1298 1214 1164 1144 1165 1214 1294 1416 1563 1771 2080 2634 4514 2779 2217 1856 1652 1483 1368 1281 1233 1211 1220 1271 1356 1480 1645 1861 2199 2760 4515 3017 2359 1964 1726 1563 1446 1354 1296 1277 1306 1352 1436 1563 1730 1964 2359 2983 4516 3195 2512 2064 1795 1635 1505 1418 1363 1352 1372 1425 1505 1635 1807 2075 2497 3170 ] 4517 </LSC_SAMPLES_greenR> 4518 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 4519 [3228 2512 2093 1814 1629 1503 1412 1363 1360 1372 1420 1495 1633 1810 2062 2512 3280 4520 3002 2353 1948 1722 1558 1435 1345 1308 1285 1298 1349 1432 1552 1715 1953 2339 3002 4521 2826 2237 1864 1652 1489 1376 1296 1244 1227 1246 1291 1372 1489 1659 1877 2225 2796 4522 2668 2132 1802 1601 1450 1334 1256 1202 1190 1198 1248 1331 1447 1607 1822 2137 2668 4523 2568 2067 1759 1570 1402 1293 1213 1166 1148 1164 1213 1285 1402 1561 1767 2062 2568 4524 2489 2001 1726 1523 1374 1254 1181 1129 1106 1123 1176 1256 1369 1523 1737 2021 2482 4525 2401 1953 1694 1484 1340 1225 1146 1094 1071 1091 1140 1227 1340 1487 1694 1962 2401 4526 2339 1916 1642 1445 1314 1193 1120 1064 1045 1065 1115 1197 1310 1455 1649 1921 2353 4527 2313 1885 1616 1435 1291 1176 1098 1038 1024 1046 1091 1178 1285 1427 1623 1890 2300 4528 2306 1877 1607 1424 1279 1174 1090 1036 1018 1036 1090 1171 1275 1424 1616 1872 2300 4529 2313 1890 1620 1435 1291 1178 1100 1046 1023 1038 1087 1176 1289 1429 1616 1894 2326 4530 2380 1930 1649 1465 1323 1198 1127 1072 1057 1072 1112 1200 1308 1458 1652 1925 2373 4531 2489 1981 1701 1509 1360 1239 1163 1107 1094 1115 1161 1244 1351 1503 1711 1986 2467 4532 2634 2083 1759 1576 1415 1291 1216 1159 1146 1161 1211 1291 1415 1564 1771 2077 2609 4533 2796 2201 1851 1642 1487 1363 1285 1229 1215 1224 1275 1360 1479 1639 1860 2207 2787 4534 2991 2380 1953 1733 1564 1429 1351 1300 1281 1300 1349 1437 1564 1722 1958 2360 3002 4535 3178 2544 2072 1822 1639 1506 1417 1354 1345 1363 1427 1509 1636 1826 2093 2520 3215 ] 4536 </LSC_SAMPLES_greenB> 4537 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 4538 [3141 2447 1987 1722 1592 1453 1392 1351 1321 1336 1384 1471 1592 1788 2039 2447 3141 4539 2870 2257 1905 1684 1519 1417 1336 1299 1277 1284 1336 1409 1529 1709 1921 2301 2870 4540 2735 2172 1830 1626 1471 1359 1291 1243 1223 1243 1291 1367 1490 1660 1860 2214 2735 4541 2583 2075 1774 1571 1435 1321 1243 1198 1180 1198 1256 1328 1453 1603 1816 2113 2612 4542 2447 2057 1735 1550 1392 1291 1217 1168 1151 1162 1223 1299 1417 1581 1774 2094 2554 4543 2396 1987 1697 1519 1367 1263 1186 1134 1107 1128 1168 1277 1400 1560 1748 2021 2447 4544 2324 1905 1660 1490 1336 1230 1151 1096 1071 1102 1134 1230 1351 1509 1709 1970 2372 4545 2257 1890 1637 1444 1313 1198 1112 1076 1047 1066 1118 1211 1306 1481 1660 1937 2372 4546 2193 1830 1614 1435 1291 1174 1096 1052 1024 1042 1091 1180 1299 1453 1626 1875 2301 4547 2193 1816 1592 1426 1284 1162 1086 1024 1015 1038 1091 1168 1291 1426 1626 1875 2301 4548 2214 1845 1603 1417 1284 1162 1096 1038 1015 1033 1076 1180 1284 1435 1637 1890 2257 4549 2279 1875 1637 1435 1313 1192 1128 1071 1047 1066 1107 1192 1313 1462 1672 1921 2324 4550 2324 1937 1684 1490 1336 1236 1156 1091 1076 1096 1162 1236 1375 1500 1722 1987 2421 4551 2499 2039 1722 1550 1400 1277 1204 1134 1118 1151 1192 1277 1426 1571 1788 2094 2554 4552 2641 2152 1802 1626 1471 1336 1256 1204 1192 1180 1243 1351 1481 1649 1860 2172 2672 4553 2801 2279 1905 1684 1509 1409 1321 1277 1250 1277 1336 1435 1571 1722 1953 2324 2942 4554 3059 2421 2039 1774 1603 1471 1384 1306 1299 1336 1417 1519 1637 1816 2057 2473 3059 ] 4555 </LSC_SAMPLES_blue> 4556 </cell> 4557 <cell index="2" type="struct" size="[1 1]"> 4558 <name index="1" type="char" size="[1 14]"> 4559 2560x1440_A_70 4560 </name> 4561 <resolution index="1" type="char" size="[1 9]"> 4562 2560x1440 4563 </resolution> 4564 <illumination index="1" type="char" size="[1 1]"> 4565 A 4566 </illumination> 4567 <LSC_sectors index="1" type="double" size="[1 1]"> 4568 [16 ] 4569 </LSC_sectors> 4570 <LSC_No index="1" type="double" size="[1 1]"> 4571 [10 ] 4572 </LSC_No> 4573 <LSC_Xo index="1" type="double" size="[1 1]"> 4574 [15 ] 4575 </LSC_Xo> 4576 <LSC_Yo index="1" type="double" size="[1 1]"> 4577 [15 ] 4578 </LSC_Yo> 4579 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 4580 [160 160 160 160 160 160 160 160 ] 4581 </LSC_SECT_SIZE_X> 4582 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 4583 [90 90 90 90 90 90 90 90 ] 4584 </LSC_SECT_SIZE_Y> 4585 <vignetting index="1" type="double" size="[1 1]"> 4586 [70.0000 ] 4587 </vignetting> 4588 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 4589 [2442 2000 1709 1541 1421 1328 1275 1231 1228 1242 1269 1322 1407 1524 1687 2008 2429 4590 2343 1926 1653 1490 1389 1292 1244 1199 1189 1197 1234 1290 1366 1486 1643 1911 2321 4591 2239 1853 1612 1477 1359 1267 1210 1185 1158 1169 1212 1264 1350 1458 1612 1846 2239 4592 2193 1818 1596 1452 1338 1259 1188 1155 1142 1152 1186 1249 1330 1445 1578 1799 2157 4593 2117 1773 1571 1428 1320 1230 1177 1137 1121 1129 1165 1228 1315 1425 1567 1761 2117 4594 2055 1741 1546 1413 1296 1216 1151 1107 1091 1103 1142 1204 1291 1400 1550 1736 2047 4595 2029 1705 1516 1382 1274 1193 1125 1086 1064 1081 1116 1184 1271 1378 1524 1715 2006 4596 1995 1684 1498 1365 1256 1169 1100 1058 1044 1054 1096 1161 1251 1356 1487 1674 1966 4597 1963 1658 1471 1346 1227 1149 1082 1035 1024 1040 1076 1141 1227 1338 1471 1644 1935 4598 1924 1640 1461 1329 1224 1137 1075 1027 1010 1025 1069 1129 1217 1326 1465 1631 1924 4599 1955 1636 1460 1330 1220 1138 1076 1024 1012 1027 1065 1132 1222 1325 1449 1626 1933 4600 1964 1649 1472 1341 1240 1154 1089 1049 1034 1044 1074 1146 1227 1335 1468 1663 1942 4601 2034 1691 1493 1354 1258 1178 1116 1066 1054 1068 1103 1164 1253 1357 1497 1691 1995 4602 2078 1736 1531 1394 1285 1205 1139 1103 1082 1097 1131 1193 1282 1384 1536 1730 2095 4603 2180 1796 1567 1429 1323 1241 1175 1135 1125 1121 1169 1236 1314 1426 1571 1802 2171 4604 2267 1863 1614 1474 1363 1270 1211 1176 1158 1174 1214 1276 1360 1474 1619 1856 2267 4605 2332 1938 1676 1499 1400 1295 1237 1199 1177 1204 1240 1316 1393 1499 1660 1946 2332 ] 4606 </LSC_SAMPLES_red> 4607 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 4608 [2291 1887 1617 1472 1369 1288 1239 1212 1208 1200 1242 1298 1372 1465 1613 1870 2263 4609 2179 1818 1574 1439 1347 1265 1218 1183 1172 1177 1210 1267 1339 1436 1574 1802 2163 4610 2110 1764 1552 1427 1329 1248 1192 1158 1146 1156 1188 1244 1310 1421 1548 1754 2095 4611 2039 1736 1525 1402 1309 1232 1172 1142 1130 1142 1178 1228 1307 1411 1535 1713 2032 4612 2024 1691 1508 1391 1294 1223 1158 1131 1114 1123 1155 1215 1290 1388 1515 1691 2005 4613 1965 1680 1496 1380 1278 1195 1143 1100 1087 1097 1141 1197 1274 1378 1499 1672 1941 4614 1925 1647 1482 1353 1258 1179 1121 1080 1068 1071 1114 1172 1258 1360 1488 1655 1920 4615 1887 1625 1463 1336 1235 1161 1101 1058 1043 1059 1094 1159 1229 1334 1460 1618 1870 4616 1863 1606 1434 1315 1221 1140 1083 1042 1024 1040 1072 1136 1219 1315 1434 1598 1853 4617 1854 1588 1426 1305 1213 1133 1075 1030 1018 1028 1067 1131 1206 1303 1423 1595 1849 4618 1843 1579 1423 1307 1210 1128 1075 1035 1019 1029 1072 1128 1212 1307 1420 1593 1854 4619 1895 1600 1433 1325 1226 1154 1092 1053 1039 1056 1080 1139 1224 1316 1441 1600 1867 4620 1931 1637 1458 1345 1249 1169 1112 1075 1058 1077 1112 1165 1249 1340 1467 1637 1931 4621 2000 1682 1502 1373 1279 1203 1144 1107 1092 1109 1144 1199 1282 1373 1499 1682 2019 4622 2081 1754 1537 1421 1315 1242 1183 1149 1132 1137 1173 1231 1312 1415 1541 1740 2067 4623 2195 1818 1586 1448 1352 1281 1220 1179 1166 1188 1218 1272 1352 1451 1586 1818 2171 4624 2237 1876 1617 1462 1374 1295 1242 1206 1200 1214 1248 1295 1374 1472 1626 1864 2219 ] 4625 </LSC_SAMPLES_greenR> 4626 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 4627 [2260 1876 1640 1478 1369 1294 1236 1205 1207 1213 1243 1287 1372 1475 1615 1876 2296 4628 2185 1813 1573 1445 1348 1271 1211 1190 1173 1181 1215 1268 1342 1439 1577 1803 2185 4629 2116 1770 1544 1421 1321 1249 1196 1160 1148 1162 1192 1245 1321 1427 1554 1760 2094 4630 2045 1724 1525 1406 1313 1236 1183 1144 1136 1141 1176 1234 1310 1411 1542 1728 2045 4631 2004 1701 1514 1402 1291 1219 1162 1128 1114 1127 1162 1211 1291 1394 1521 1697 2004 4632 1971 1670 1506 1379 1282 1197 1147 1107 1088 1101 1142 1199 1278 1379 1515 1686 1965 4633 1920 1646 1492 1356 1262 1181 1123 1082 1063 1080 1117 1183 1262 1359 1492 1654 1920 4634 1882 1624 1455 1328 1245 1156 1103 1059 1043 1060 1098 1160 1241 1337 1461 1628 1893 4635 1864 1601 1434 1321 1225 1142 1084 1035 1024 1043 1077 1143 1219 1314 1440 1605 1854 4636 1855 1590 1423 1309 1211 1138 1073 1030 1016 1030 1073 1135 1208 1309 1432 1587 1850 4637 1850 1592 1426 1311 1216 1135 1078 1035 1015 1027 1065 1133 1214 1306 1424 1596 1860 4638 1885 1611 1439 1327 1234 1144 1094 1051 1040 1051 1079 1146 1220 1320 1442 1607 1879 4639 1943 1631 1464 1348 1253 1167 1114 1072 1062 1079 1112 1173 1244 1343 1473 1635 1926 4640 2019 1684 1488 1384 1281 1197 1146 1103 1094 1105 1141 1197 1281 1373 1498 1680 1999 4641 2094 1741 1533 1413 1318 1237 1186 1146 1136 1141 1177 1235 1311 1410 1540 1746 2087 4642 2177 1834 1577 1454 1353 1266 1217 1183 1170 1183 1215 1273 1353 1445 1581 1818 2185 4643 2224 1899 1623 1484 1378 1296 1241 1197 1193 1205 1249 1299 1375 1488 1640 1882 2251 ] 4644 </LSC_SAMPLES_greenB> 4645 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 4646 [2199 1827 1557 1403 1338 1251 1219 1195 1172 1182 1211 1266 1338 1457 1598 1827 2199 4647 2088 1739 1538 1413 1314 1255 1203 1182 1166 1168 1203 1248 1323 1434 1551 1774 2088 4648 2048 1719 1516 1398 1305 1234 1192 1159 1144 1159 1192 1241 1321 1428 1540 1752 2048 4649 1979 1679 1501 1379 1299 1224 1171 1140 1127 1140 1184 1231 1315 1408 1536 1709 2002 4650 1910 1693 1493 1385 1282 1217 1166 1130 1117 1125 1172 1224 1305 1413 1527 1724 1994 4651 1897 1658 1480 1375 1276 1206 1151 1112 1089 1106 1134 1219 1306 1412 1525 1687 1937 4652 1859 1605 1462 1362 1258 1185 1127 1085 1063 1090 1111 1185 1273 1379 1505 1660 1897 4653 1816 1602 1450 1327 1244 1161 1096 1071 1045 1061 1101 1173 1237 1361 1471 1642 1908 4654 1768 1554 1433 1321 1225 1140 1082 1048 1024 1039 1077 1146 1232 1338 1443 1592 1855 4655 1764 1539 1410 1311 1216 1126 1070 1019 1013 1032 1075 1132 1223 1311 1440 1589 1852 4656 1770 1554 1412 1295 1209 1120 1074 1027 1008 1022 1054 1137 1209 1311 1442 1592 1805 4657 1804 1564 1428 1299 1225 1138 1095 1050 1030 1045 1074 1138 1225 1324 1459 1603 1840 4658 1815 1595 1450 1331 1230 1165 1108 1056 1045 1061 1114 1165 1266 1340 1482 1635 1890 4659 1916 1649 1457 1361 1268 1184 1135 1079 1067 1095 1123 1184 1291 1379 1513 1694 1958 4660 1978 1703 1492 1398 1305 1213 1160 1123 1115 1100 1147 1227 1313 1418 1540 1719 2001 4661 2038 1756 1538 1413 1306 1248 1190 1162 1141 1162 1203 1271 1359 1444 1577 1791 2141 4662 2141 1808 1598 1446 1347 1266 1211 1155 1152 1182 1241 1308 1376 1479 1612 1847 2141 ] 4663 </LSC_SAMPLES_blue> 4664 </cell> 4665 <cell index="3" type="struct" size="[1 1]"> 4666 <name index="1" type="char" size="[1 17]"> 4667 2560x1440_D50_100 4668 </name> 4669 <resolution index="1" type="char" size="[1 9]"> 4670 2560x1440 4671 </resolution> 4672 <illumination index="1" type="char" size="[1 3]"> 4673 D50 4674 </illumination> 4675 <LSC_sectors index="1" type="double" size="[1 1]"> 4676 [16 ] 4677 </LSC_sectors> 4678 <LSC_No index="1" type="double" size="[1 1]"> 4679 [10 ] 4680 </LSC_No> 4681 <LSC_Xo index="1" type="double" size="[1 1]"> 4682 [15 ] 4683 </LSC_Xo> 4684 <LSC_Yo index="1" type="double" size="[1 1]"> 4685 [15 ] 4686 </LSC_Yo> 4687 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 4688 [160 160 160 160 160 160 160 160 ] 4689 </LSC_SECT_SIZE_X> 4690 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 4691 [90 90 90 90 90 90 90 90 ] 4692 </LSC_SECT_SIZE_Y> 4693 <vignetting index="1" type="double" size="[1 1]"> 4694 [100.0000 ] 4695 </vignetting> 4696 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 4697 [2554 2063 1760 1586 1496 1387 1342 1330 1317 1342 1396 1480 1649 1805 2084 2538 3298 4698 2421 1939 1669 1512 1387 1330 1273 1250 1239 1265 1317 1420 1529 1703 1939 2366 3057 4699 2240 1829 1592 1454 1338 1265 1221 1200 1186 1210 1258 1351 1470 1630 1853 2216 2811 4700 2126 1752 1551 1415 1313 1239 1186 1154 1147 1167 1214 1301 1405 1563 1790 2126 2685 4701 2014 1716 1507 1378 1293 1207 1163 1123 1111 1132 1170 1261 1378 1534 1745 2073 2585 4702 1966 1682 1480 1364 1273 1190 1129 1094 1077 1099 1154 1228 1351 1512 1716 2004 2493 4703 1921 1636 1475 1347 1250 1183 1111 1068 1060 1077 1123 1203 1325 1470 1682 1966 2421 4704 1887 1611 1454 1330 1239 1157 1091 1044 1034 1050 1102 1193 1305 1454 1649 1930 2393 4705 1837 1599 1434 1321 1228 1141 1074 1027 1024 1039 1082 1167 1281 1429 1623 1912 2353 4706 1805 1586 1429 1317 1232 1141 1068 1022 1009 1024 1079 1144 1269 1410 1617 1878 2314 4707 1829 1586 1434 1325 1228 1144 1068 1022 1007 1027 1071 1147 1265 1415 1611 1870 2327 4708 1837 1605 1464 1355 1246 1160 1094 1047 1032 1047 1096 1170 1285 1434 1623 1895 2366 4709 1895 1655 1507 1382 1285 1193 1123 1071 1063 1082 1123 1207 1313 1464 1669 1966 2478 4710 1976 1716 1580 1439 1325 1239 1176 1132 1117 1132 1173 1254 1373 1529 1745 2063 2538 4711 2115 1821 1662 1523 1396 1293 1235 1186 1170 1190 1243 1321 1449 1605 1829 2159 2737 4712 2252 1957 1752 1617 1490 1382 1317 1265 1250 1261 1305 1396 1517 1703 1939 2327 2970 4713 2435 2126 1853 1703 1574 1470 1387 1347 1325 1342 1405 1496 1611 1805 2043 2508 3247 ] 4714 </LSC_SAMPLES_red> 4715 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 4716 [2770 2189 1851 1648 1522 1429 1361 1336 1323 1346 1393 1460 1593 1761 2012 2475 3119 4717 2563 2052 1748 1562 1431 1348 1295 1263 1248 1272 1321 1398 1519 1663 1900 2272 2893 4718 2409 1941 1663 1503 1382 1300 1237 1206 1190 1208 1254 1333 1452 1607 1805 2163 2708 4719 2279 1870 1618 1460 1346 1261 1196 1159 1146 1171 1212 1295 1403 1552 1752 2058 2563 4720 2156 1814 1589 1431 1321 1231 1172 1130 1114 1139 1182 1256 1374 1522 1727 1995 2467 4721 2106 1782 1562 1417 1302 1210 1148 1106 1089 1102 1156 1233 1348 1491 1694 1962 2417 4722 2081 1752 1538 1398 1281 1192 1127 1076 1066 1079 1134 1208 1323 1469 1667 1941 2377 4723 2052 1714 1522 1382 1272 1178 1106 1060 1045 1062 1114 1194 1295 1452 1644 1900 2308 4724 1995 1690 1503 1364 1256 1163 1086 1042 1024 1048 1091 1172 1279 1426 1622 1865 2251 4725 1989 1674 1494 1361 1246 1157 1087 1034 1021 1033 1079 1159 1270 1412 1593 1846 2258 4726 1989 1674 1497 1366 1250 1159 1083 1039 1021 1039 1084 1157 1272 1406 1593 1861 2265 4727 2017 1706 1509 1387 1270 1172 1104 1056 1040 1056 1104 1180 1290 1423 1604 1870 2316 4728 2081 1765 1562 1423 1300 1210 1139 1096 1081 1096 1139 1210 1326 1457 1651 1915 2377 4729 2209 1846 1629 1475 1364 1267 1196 1146 1134 1139 1190 1265 1377 1522 1718 2012 2527 4730 2316 1946 1718 1562 1429 1323 1254 1214 1196 1212 1256 1333 1440 1604 1796 2124 2688 4731 2510 2100 1828 1648 1509 1406 1333 1286 1265 1283 1331 1414 1529 1686 1905 2265 2905 4732 2688 2272 1941 1739 1589 1488 1414 1356 1348 1364 1412 1494 1625 1787 2034 2467 3132 ] 4733 </LSC_SAMPLES_greenR> 4734 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 4735 [2748 2180 1848 1629 1519 1414 1350 1323 1318 1332 1395 1472 1586 1779 1997 2431 3146 4736 2534 2037 1732 1548 1425 1342 1280 1251 1242 1260 1301 1392 1503 1663 1877 2255 2881 4737 2367 1922 1652 1490 1371 1292 1227 1193 1181 1207 1253 1323 1442 1593 1801 2128 2696 4738 2241 1848 1597 1451 1332 1258 1183 1149 1136 1160 1215 1282 1392 1542 1753 2049 2561 4739 2166 1784 1562 1425 1313 1221 1160 1118 1110 1127 1166 1258 1358 1506 1711 1997 2439 4740 2115 1766 1552 1400 1292 1207 1136 1101 1084 1094 1149 1230 1342 1487 1691 1938 2407 4741 2072 1736 1525 1387 1278 1185 1118 1067 1051 1075 1127 1203 1313 1460 1652 1927 2336 4742 2031 1703 1516 1376 1258 1171 1098 1046 1036 1051 1106 1187 1292 1434 1629 1887 2306 4743 1964 1667 1494 1353 1247 1152 1080 1028 1024 1037 1088 1167 1276 1417 1604 1858 2262 4744 1959 1660 1481 1353 1232 1145 1068 1020 1014 1027 1076 1152 1267 1406 1590 1834 2262 4745 1970 1671 1475 1355 1238 1147 1073 1027 1014 1028 1075 1151 1267 1400 1583 1843 2277 4746 1992 1695 1509 1371 1260 1164 1091 1051 1034 1051 1094 1175 1282 1417 1597 1867 2277 4747 2061 1732 1545 1414 1287 1199 1124 1081 1070 1081 1127 1209 1313 1451 1641 1917 2375 4748 2180 1815 1615 1466 1342 1251 1179 1136 1120 1134 1179 1255 1368 1506 1699 2009 2490 4749 2313 1927 1703 1545 1414 1318 1245 1205 1185 1201 1245 1328 1428 1586 1797 2128 2666 4750 2456 2084 1806 1629 1500 1389 1325 1273 1258 1278 1320 1400 1506 1679 1897 2269 2869 4751 2647 2248 1922 1723 1586 1472 1389 1348 1337 1350 1403 1472 1600 1766 2003 2448 3119 ] 4752 </LSC_SAMPLES_greenB> 4753 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 4754 [2354 1909 1637 1486 1421 1333 1270 1275 1275 1301 1350 1453 1566 1716 1943 2389 2987 4755 2194 1792 1558 1427 1322 1265 1236 1226 1231 1231 1290 1355 1486 1646 1865 2209 2781 4756 2029 1698 1493 1373 1285 1231 1190 1173 1173 1195 1236 1317 1434 1589 1782 2095 2601 4757 1920 1654 1466 1344 1265 1208 1169 1132 1132 1156 1208 1280 1384 1522 1734 2003 2444 4758 1843 1605 1440 1338 1250 1195 1144 1116 1105 1124 1173 1250 1367 1507 1698 1955 2444 4759 1822 1597 1434 1327 1241 1177 1128 1090 1086 1101 1144 1231 1333 1486 1671 1931 2354 4760 1772 1566 1427 1317 1236 1164 1112 1068 1061 1086 1128 1213 1311 1460 1646 1886 2304 4761 1772 1551 1409 1301 1231 1148 1101 1058 1041 1065 1112 1190 1290 1440 1621 1875 2256 4762 1707 1507 1390 1306 1222 1140 1072 1031 1024 1044 1090 1164 1285 1427 1597 1843 2240 4763 1680 1493 1373 1290 1213 1132 1068 1024 1011 1034 1075 1156 1260 1409 1589 1833 2194 4764 1689 1493 1378 1301 1213 1132 1068 1031 1021 1027 1079 1156 1255 1390 1573 1802 2179 4765 1716 1529 1415 1322 1241 1156 1086 1041 1034 1047 1090 1173 1275 1409 1589 1833 2240 4766 1763 1558 1453 1350 1255 1190 1120 1082 1072 1079 1124 1204 1311 1453 1629 1875 2288 4767 1833 1629 1514 1415 1322 1241 1169 1136 1120 1132 1177 1241 1361 1507 1680 1979 2425 4768 1955 1725 1605 1486 1378 1295 1236 1199 1182 1190 1241 1311 1434 1581 1782 2095 2580 4769 2042 1854 1698 1573 1453 1361 1311 1270 1245 1265 1317 1390 1507 1663 1886 2225 2829 4770 2225 2003 1812 1671 1543 1440 1384 1350 1317 1355 1390 1460 1605 1763 1991 2425 3015 ] 4771 </LSC_SAMPLES_blue> 4772 </cell> 4773 <cell index="4" type="struct" size="[1 1]"> 4774 <name index="1" type="char" size="[1 16]"> 4775 2560x1440_D50_70 4776 </name> 4777 <resolution index="1" type="char" size="[1 9]"> 4778 2560x1440 4779 </resolution> 4780 <illumination index="1" type="char" size="[1 3]"> 4781 D50 4782 </illumination> 4783 <LSC_sectors index="1" type="double" size="[1 1]"> 4784 [16 ] 4785 </LSC_sectors> 4786 <LSC_No index="1" type="double" size="[1 1]"> 4787 [10 ] 4788 </LSC_No> 4789 <LSC_Xo index="1" type="double" size="[1 1]"> 4790 [15 ] 4791 </LSC_Xo> 4792 <LSC_Yo index="1" type="double" size="[1 1]"> 4793 [15 ] 4794 </LSC_Yo> 4795 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 4796 [160 160 160 160 160 160 160 160 ] 4797 </LSC_SECT_SIZE_X> 4798 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 4799 [90 90 90 90 90 90 90 90 ] 4800 </LSC_SECT_SIZE_Y> 4801 <vignetting index="1" type="double" size="[1 1]"> 4802 [70.0000 ] 4803 </vignetting> 4804 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 4805 [1788 1541 1379 1292 1257 1194 1175 1176 1169 1187 1222 1274 1386 1471 1633 1895 2308 4806 1762 1494 1347 1268 1200 1178 1147 1138 1131 1151 1186 1258 1322 1428 1565 1823 2225 4807 1677 1447 1319 1251 1186 1149 1127 1119 1110 1129 1161 1226 1303 1402 1535 1753 2105 4808 1629 1417 1312 1243 1189 1148 1118 1098 1096 1110 1144 1205 1272 1373 1514 1719 2058 4809 1572 1413 1297 1231 1190 1137 1115 1087 1079 1095 1121 1189 1269 1371 1502 1707 2018 4810 1557 1404 1291 1235 1188 1136 1096 1072 1059 1078 1120 1173 1260 1369 1497 1672 1974 4811 1536 1379 1299 1231 1177 1140 1088 1057 1053 1065 1100 1160 1248 1343 1481 1657 1936 4812 1518 1365 1288 1222 1173 1121 1074 1039 1032 1044 1086 1156 1235 1336 1461 1636 1925 4813 1481 1357 1273 1216 1165 1108 1060 1023 1024 1036 1068 1133 1215 1316 1441 1624 1897 4814 1452 1345 1266 1210 1166 1106 1053 1016 1007 1019 1063 1109 1202 1296 1432 1592 1862 4815 1463 1337 1263 1211 1157 1103 1047 1011 999 1016 1049 1106 1191 1293 1419 1575 1861 4816 1454 1339 1278 1227 1163 1108 1061 1026 1015 1026 1064 1117 1199 1298 1416 1581 1874 4817 1479 1363 1297 1235 1183 1125 1076 1037 1032 1047 1076 1137 1209 1308 1436 1619 1935 4818 1514 1388 1337 1264 1200 1148 1108 1077 1066 1077 1105 1162 1243 1343 1476 1669 1945 4819 1584 1441 1376 1310 1238 1173 1140 1106 1094 1109 1147 1199 1285 1380 1515 1708 2050 4820 1639 1508 1415 1356 1289 1224 1186 1151 1141 1148 1175 1237 1313 1428 1565 1793 2161 4821 1704 1587 1452 1387 1323 1265 1214 1191 1176 1187 1231 1288 1354 1471 1601 1873 2273 ] 4822 </LSC_SAMPLES_red> 4823 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 4824 [1939 1635 1450 1342 1279 1230 1192 1181 1174 1190 1219 1257 1339 1434 1576 1848 2183 4825 1865 1581 1411 1310 1238 1194 1166 1149 1139 1157 1190 1238 1314 1395 1534 1751 2105 4826 1804 1536 1377 1293 1225 1180 1142 1124 1113 1126 1158 1210 1287 1382 1495 1711 2028 4827 1747 1513 1369 1283 1218 1168 1127 1103 1095 1114 1142 1200 1271 1363 1482 1664 1964 4828 1683 1493 1368 1279 1216 1160 1123 1094 1082 1102 1133 1184 1265 1360 1486 1642 1926 4829 1667 1487 1363 1283 1215 1155 1114 1084 1071 1081 1122 1177 1258 1350 1478 1637 1914 4830 1665 1476 1355 1278 1206 1149 1104 1065 1059 1068 1111 1164 1246 1343 1468 1636 1901 4831 1651 1453 1348 1270 1204 1142 1089 1055 1043 1056 1098 1157 1226 1334 1456 1610 1857 4832 1608 1435 1334 1256 1192 1129 1072 1038 1024 1044 1077 1138 1213 1313 1439 1584 1814 4833 1600 1419 1323 1251 1179 1122 1071 1029 1019 1028 1063 1123 1202 1297 1411 1565 1816 4834 1591 1411 1318 1248 1177 1117 1061 1028 1014 1028 1062 1115 1198 1285 1403 1568 1811 4835 1597 1424 1317 1256 1185 1119 1072 1035 1023 1035 1072 1127 1204 1288 1399 1561 1834 4836 1625 1453 1344 1271 1197 1140 1091 1060 1049 1060 1091 1140 1221 1302 1422 1577 1856 4837 1693 1493 1378 1296 1234 1175 1127 1091 1082 1084 1121 1173 1246 1337 1454 1627 1937 4838 1734 1540 1423 1343 1267 1201 1158 1132 1119 1130 1160 1210 1277 1379 1487 1681 2013 4839 1826 1618 1476 1382 1306 1246 1201 1170 1155 1168 1199 1253 1322 1414 1538 1745 2114 4840 1881 1696 1521 1417 1336 1281 1238 1199 1196 1206 1236 1286 1366 1456 1594 1842 2193 ] 4841 </LSC_SAMPLES_greenR> 4842 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 4843 [1924 1628 1448 1327 1277 1217 1182 1170 1169 1179 1221 1267 1333 1449 1565 1815 2202 4844 1844 1570 1398 1299 1233 1189 1153 1138 1134 1146 1172 1233 1300 1395 1515 1738 2096 4845 1772 1521 1368 1282 1215 1173 1133 1112 1105 1125 1157 1201 1279 1370 1492 1684 2019 4846 1717 1495 1351 1275 1206 1165 1115 1093 1085 1104 1145 1188 1260 1354 1483 1657 1963 4847 1691 1468 1345 1273 1209 1151 1111 1082 1077 1091 1117 1185 1250 1346 1473 1644 1904 4848 1675 1474 1354 1268 1205 1152 1103 1079 1067 1073 1115 1174 1252 1347 1475 1617 1905 4849 1657 1463 1343 1267 1203 1142 1096 1055 1043 1063 1104 1159 1236 1334 1455 1624 1868 4850 1634 1443 1343 1265 1191 1135 1081 1041 1034 1046 1090 1150 1223 1318 1443 1599 1855 4851 1584 1416 1325 1245 1183 1119 1065 1025 1024 1034 1074 1133 1210 1305 1423 1577 1824 4852 1576 1407 1312 1243 1166 1110 1052 1014 1012 1022 1060 1117 1199 1292 1408 1554 1820 4853 1575 1408 1299 1238 1166 1105 1051 1016 1006 1018 1053 1109 1193 1280 1394 1553 1821 4854 1577 1414 1317 1241 1175 1111 1059 1030 1017 1030 1062 1122 1196 1283 1393 1558 1803 4855 1609 1426 1330 1263 1185 1130 1077 1046 1039 1046 1080 1139 1209 1297 1412 1578 1854 4856 1670 1468 1366 1288 1215 1159 1111 1081 1069 1079 1111 1163 1239 1323 1437 1624 1908 4857 1732 1525 1410 1329 1254 1196 1149 1123 1108 1119 1149 1205 1266 1364 1488 1684 1997 4858 1787 1606 1458 1367 1297 1231 1194 1159 1148 1163 1189 1240 1303 1408 1531 1749 2088 4859 1853 1679 1506 1404 1333 1267 1216 1192 1187 1194 1228 1267 1345 1439 1569 1828 2183 ] 4860 </LSC_SAMPLES_greenB> 4861 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 4862 [1648 1425 1283 1211 1194 1147 1112 1128 1131 1150 1182 1251 1316 1398 1522 1784 2091 4863 1597 1381 1258 1197 1144 1120 1113 1116 1124 1120 1162 1200 1286 1380 1505 1703 2023 4864 1519 1343 1237 1181 1139 1118 1099 1094 1097 1114 1141 1195 1271 1367 1476 1657 1948 4865 1471 1338 1240 1180 1145 1120 1101 1077 1081 1100 1138 1186 1253 1336 1467 1620 1873 4866 1439 1321 1240 1196 1151 1126 1096 1080 1072 1088 1124 1178 1258 1347 1461 1609 1908 4867 1443 1333 1251 1202 1157 1124 1095 1068 1068 1079 1110 1175 1243 1346 1458 1612 1864 4868 1417 1319 1257 1203 1164 1122 1090 1057 1053 1075 1105 1169 1235 1334 1449 1589 1843 4869 1426 1314 1248 1195 1166 1112 1085 1052 1039 1059 1096 1153 1222 1323 1436 1589 1815 4870 1376 1280 1234 1202 1159 1107 1058 1027 1024 1040 1076 1131 1219 1314 1417 1565 1806 4871 1352 1266 1216 1186 1148 1097 1052 1019 1009 1029 1059 1120 1193 1295 1407 1553 1765 4872 1351 1258 1214 1189 1142 1091 1046 1020 1013 1016 1057 1114 1182 1271 1386 1518 1743 4873 1358 1276 1234 1197 1157 1104 1054 1020 1017 1027 1058 1120 1189 1275 1386 1529 1774 4874 1376 1283 1251 1206 1156 1122 1073 1047 1040 1044 1077 1134 1207 1298 1402 1544 1786 4875 1405 1318 1281 1243 1197 1150 1101 1081 1069 1077 1109 1150 1232 1324 1421 1600 1859 4876 1464 1365 1329 1278 1222 1176 1141 1118 1105 1110 1145 1190 1271 1360 1476 1657 1932 4877 1486 1429 1371 1320 1257 1206 1181 1155 1137 1151 1186 1232 1304 1395 1523 1714 2059 4878 1557 1496 1420 1362 1297 1240 1212 1194 1168 1199 1217 1256 1349 1436 1560 1811 2110 ] 4879 </LSC_SAMPLES_blue> 4880 </cell> 4881 <cell index="5" type="struct" size="[1 1]"> 4882 <name index="1" type="char" size="[1 17]"> 4883 2560x1440_D65_100 4884 </name> 4885 <resolution index="1" type="char" size="[1 9]"> 4886 2560x1440 4887 </resolution> 4888 <illumination index="1" type="char" size="[1 3]"> 4889 D65 4890 </illumination> 4891 <LSC_sectors index="1" type="double" size="[1 1]"> 4892 [16 ] 4893 </LSC_sectors> 4894 <LSC_No index="1" type="double" size="[1 1]"> 4895 [10 ] 4896 </LSC_No> 4897 <LSC_Xo index="1" type="double" size="[1 1]"> 4898 [15 ] 4899 </LSC_Xo> 4900 <LSC_Yo index="1" type="double" size="[1 1]"> 4901 [15 ] 4902 </LSC_Yo> 4903 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 4904 [160 160 160 160 160 160 160 160 ] 4905 </LSC_SECT_SIZE_X> 4906 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 4907 [90 90 90 90 90 90 90 90 ] 4908 </LSC_SECT_SIZE_Y> 4909 <vignetting index="1" type="double" size="[1 1]"> 4910 [100.0000 ] 4911 </vignetting> 4912 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 4913 [3452 2627 2158 1878 1686 1562 1456 1394 1378 1394 1438 1530 1655 1869 2132 2608 3388 4914 3125 2466 2014 1768 1590 1468 1373 1323 1295 1313 1368 1450 1549 1751 1992 2417 3125 4915 2923 2294 1898 1678 1510 1389 1309 1263 1237 1246 1299 1368 1492 1678 1888 2266 2877 4916 2746 2171 1831 1618 1444 1333 1241 1200 1185 1200 1246 1323 1427 1611 1840 2158 2788 4917 2589 2095 1777 1556 1405 1281 1204 1147 1129 1147 1185 1272 1389 1549 1751 2083 2589 4918 2483 2025 1710 1510 1353 1233 1158 1109 1085 1098 1147 1246 1343 1492 1710 2003 2483 4919 2466 1949 1678 1474 1323 1208 1129 1076 1057 1072 1126 1204 1318 1474 1663 1938 2417 4920 2385 1938 1655 1462 1313 1189 1112 1051 1036 1054 1098 1181 1285 1444 1633 1928 2417 4921 2385 1918 1640 1438 1290 1189 1092 1042 1024 1045 1092 1173 1281 1427 1640 1918 2354 4922 2354 1908 1648 1450 1285 1185 1098 1045 1027 1036 1092 1173 1272 1422 1626 1908 2354 4923 2369 1938 1655 1468 1304 1192 1109 1057 1030 1054 1098 1173 1290 1450 1648 1918 2369 4924 2466 1970 1702 1486 1323 1216 1129 1076 1060 1072 1122 1196 1318 1474 1663 1970 2449 4925 2553 2014 1734 1517 1368 1241 1162 1109 1095 1102 1154 1233 1343 1504 1726 2014 2500 4926 2665 2095 1777 1556 1405 1285 1204 1151 1136 1158 1200 1276 1400 1556 1768 2095 2646 4927 2810 2210 1849 1633 1468 1343 1259 1208 1192 1204 1246 1338 1433 1611 1840 2171 2788 4928 2971 2339 1949 1726 1536 1405 1328 1281 1254 1267 1323 1400 1530 1702 1938 2324 2971 4929 3237 2517 2071 1812 1611 1492 1405 1338 1323 1343 1394 1498 1626 1795 2071 2500 3295 ] 4930 </LSC_SAMPLES_red> 4931 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 4932 [3205 2502 2052 1799 1634 1496 1426 1380 1347 1370 1426 1496 1608 1781 2052 2485 3177 4933 2958 2349 1932 1706 1544 1423 1340 1304 1279 1295 1340 1429 1534 1706 1922 2311 2899 4934 2757 2187 1821 1616 1475 1357 1281 1227 1219 1229 1268 1357 1469 1619 1821 2187 2746 4935 2590 2087 1764 1560 1418 1297 1229 1180 1165 1181 1217 1304 1402 1557 1760 2057 2572 4936 2502 2006 1710 1518 1370 1257 1180 1132 1110 1127 1174 1252 1362 1509 1706 1985 2451 4937 2372 1942 1663 1475 1335 1223 1146 1096 1075 1086 1141 1219 1323 1463 1663 1932 2372 4938 2341 1897 1634 1440 1302 1189 1113 1066 1048 1057 1111 1185 1295 1432 1630 1882 2311 4939 2275 1858 1608 1423 1283 1185 1093 1046 1025 1045 1090 1172 1277 1418 1605 1858 2283 4940 2268 1849 1591 1418 1277 1163 1080 1033 1024 1030 1082 1161 1263 1407 1601 1840 2247 4941 2275 1840 1601 1418 1274 1168 1088 1039 1023 1036 1082 1159 1274 1399 1598 1844 2283 4942 2319 1873 1619 1426 1288 1181 1105 1058 1033 1046 1095 1174 1277 1412 1616 1868 2283 4943 2372 1907 1637 1455 1316 1203 1130 1080 1061 1074 1118 1203 1306 1452 1637 1897 2341 4944 2451 1958 1675 1496 1352 1242 1159 1115 1098 1111 1152 1229 1337 1484 1671 1942 2403 4945 2563 2040 1743 1541 1391 1281 1205 1159 1139 1152 1201 1274 1391 1531 1726 2023 2510 4946 2716 2148 1799 1616 1452 1337 1257 1207 1195 1207 1250 1330 1437 1588 1790 2136 2686 4947 2888 2290 1902 1671 1521 1402 1325 1277 1257 1265 1311 1402 1515 1667 1897 2254 2865 4948 3109 2451 2023 1768 1608 1472 1394 1342 1311 1342 1375 1460 1581 1743 2018 2419 3122 ] 4949 </LSC_SAMPLES_greenR> 4950 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 4951 [3208 2518 2072 1812 1642 1508 1426 1386 1371 1383 1437 1505 1614 1808 2083 2526 3222 4952 2975 2342 1946 1711 1559 1437 1353 1312 1289 1305 1348 1437 1549 1711 1941 2334 2963 4953 2763 2195 1839 1635 1487 1376 1289 1235 1223 1243 1291 1368 1481 1639 1848 2202 2763 4954 2616 2083 1760 1576 1421 1312 1235 1191 1168 1187 1233 1307 1418 1566 1777 2083 2625 4955 2492 2010 1723 1520 1381 1267 1183 1140 1126 1136 1187 1263 1365 1517 1719 1999 2475 4956 2403 1946 1668 1490 1333 1229 1150 1104 1086 1102 1148 1223 1336 1478 1668 1946 2411 4957 2334 1896 1631 1457 1317 1203 1124 1072 1050 1073 1124 1195 1303 1454 1653 1896 2334 4958 2284 1867 1617 1432 1294 1189 1102 1053 1040 1055 1100 1180 1287 1426 1631 1881 2298 4959 2298 1872 1610 1426 1287 1182 1096 1041 1024 1044 1087 1168 1276 1410 1614 1862 2284 4960 2284 1867 1610 1429 1294 1176 1099 1049 1028 1046 1086 1170 1278 1418 1607 1872 2284 4961 2305 1891 1617 1437 1294 1183 1114 1056 1036 1058 1100 1180 1287 1435 1624 1891 2320 4962 2372 1926 1646 1466 1321 1215 1134 1079 1064 1076 1131 1203 1312 1466 1657 1921 2372 4963 2451 1983 1688 1508 1353 1245 1167 1119 1102 1115 1163 1233 1346 1499 1691 1977 2451 4964 2597 2054 1748 1549 1405 1291 1211 1168 1143 1161 1209 1282 1394 1543 1752 2054 2570 4965 2732 2169 1825 1610 1463 1346 1265 1215 1193 1217 1260 1343 1452 1600 1812 2144 2683 4966 2916 2298 1911 1695 1533 1407 1333 1285 1263 1278 1317 1405 1520 1688 1896 2277 2893 4967 3167 2475 2032 1790 1603 1478 1402 1350 1331 1350 1399 1475 1596 1764 2026 2442 3087 ] 4968 </LSC_SAMPLES_greenB> 4969 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 4970 [3089 2394 1995 1749 1596 1484 1403 1353 1358 1358 1398 1496 1596 1757 2016 2439 3064 4971 2837 2280 1896 1695 1526 1418 1344 1294 1285 1289 1334 1418 1526 1695 1896 2280 2858 4972 2641 2128 1815 1630 1456 1353 1277 1231 1224 1235 1281 1353 1467 1616 1824 2128 2660 4973 2520 2070 1757 1551 1424 1303 1224 1178 1171 1182 1231 1303 1408 1551 1749 2048 2520 4974 2379 1984 1687 1520 1368 1268 1189 1147 1126 1136 1189 1268 1363 1514 1702 1984 2394 4975 2335 1905 1651 1462 1330 1224 1150 1104 1088 1101 1150 1220 1330 1473 1658 1934 2321 4976 2253 1868 1616 1456 1312 1197 1120 1067 1052 1079 1126 1201 1303 1451 1630 1887 2280 4977 2266 1832 1596 1424 1294 1189 1110 1049 1035 1052 1104 1178 1281 1434 1609 1859 2240 4978 2227 1832 1589 1424 1285 1178 1097 1044 1024 1046 1088 1164 1277 1418 1602 1841 2227 4979 2201 1832 1596 1418 1289 1175 1094 1046 1035 1046 1091 1171 1277 1413 1602 1850 2253 4980 2253 1850 1602 1424 1303 1189 1113 1058 1041 1061 1104 1186 1289 1434 1616 1868 2240 4981 2293 1887 1630 1462 1325 1212 1133 1088 1070 1076 1130 1212 1325 1456 1651 1905 2321 4982 2350 1944 1672 1496 1344 1243 1168 1120 1104 1117 1171 1243 1349 1484 1680 1964 2394 4983 2503 2026 1733 1538 1408 1285 1212 1171 1143 1161 1197 1298 1393 1544 1725 2026 2503 4984 2623 2128 1798 1602 1451 1334 1264 1216 1201 1216 1252 1334 1445 1596 1806 2116 2641 4985 2795 2253 1887 1687 1520 1403 1325 1281 1260 1272 1316 1393 1514 1680 1887 2240 2795 4986 2992 2424 2016 1757 1596 1479 1388 1349 1334 1349 1383 1473 1609 1749 2016 2424 3016 ] 4987 </LSC_SAMPLES_blue> 4988 </cell> 4989 <cell index="6" type="struct" size="[1 1]"> 4990 <name index="1" type="char" size="[1 16]"> 4991 2560x1440_D65_70 4992 </name> 4993 <resolution index="1" type="char" size="[1 9]"> 4994 2560x1440 4995 </resolution> 4996 <illumination index="1" type="char" size="[1 3]"> 4997 D65 4998 </illumination> 4999 <LSC_sectors index="1" type="double" size="[1 1]"> 5000 [16 ] 5001 </LSC_sectors> 5002 <LSC_No index="1" type="double" size="[1 1]"> 5003 [10 ] 5004 </LSC_No> 5005 <LSC_Xo index="1" type="double" size="[1 1]"> 5006 [15 ] 5007 </LSC_Xo> 5008 <LSC_Yo index="1" type="double" size="[1 1]"> 5009 [15 ] 5010 </LSC_Yo> 5011 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 5012 [160 160 160 160 160 160 160 160 ] 5013 </LSC_SECT_SIZE_X> 5014 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 5015 [90 90 90 90 90 90 90 90 ] 5016 </LSC_SECT_SIZE_Y> 5017 <vignetting index="1" type="double" size="[1 1]"> 5018 [70.0000 ] 5019 </vignetting> 5020 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 5021 [2417 1961 1691 1530 1417 1345 1275 1233 1223 1233 1259 1317 1391 1522 1671 1947 2371 5022 2274 1900 1626 1483 1375 1300 1237 1204 1182 1195 1232 1284 1340 1469 1608 1862 2274 5023 2189 1815 1572 1443 1339 1261 1208 1178 1157 1161 1199 1242 1323 1443 1564 1793 2154 5024 2105 1756 1549 1421 1307 1235 1170 1142 1131 1142 1174 1226 1292 1415 1557 1745 2137 5025 2021 1725 1530 1390 1294 1207 1154 1110 1096 1110 1135 1199 1279 1384 1507 1715 2021 5026 1966 1690 1492 1367 1262 1177 1124 1087 1067 1077 1113 1189 1252 1351 1492 1671 1966 5027 1972 1642 1478 1347 1246 1164 1106 1064 1049 1061 1103 1161 1241 1347 1465 1633 1933 5028 1919 1643 1466 1343 1244 1152 1095 1045 1034 1048 1082 1144 1217 1327 1446 1634 1944 5029 1922 1629 1456 1324 1224 1154 1078 1038 1024 1041 1078 1139 1215 1314 1456 1629 1897 5030 1894 1617 1459 1333 1217 1148 1082 1039 1025 1030 1076 1137 1204 1306 1440 1617 1894 5031 1895 1633 1458 1341 1228 1149 1086 1046 1022 1043 1076 1131 1215 1325 1451 1616 1895 5032 1953 1644 1485 1345 1234 1161 1096 1054 1042 1051 1089 1142 1230 1334 1451 1644 1939 5033 1993 1658 1493 1355 1260 1170 1113 1073 1063 1066 1106 1162 1236 1344 1486 1658 1952 5034 2043 1695 1503 1366 1272 1191 1135 1095 1085 1102 1131 1183 1267 1366 1496 1695 2028 5035 2104 1749 1532 1404 1301 1219 1162 1127 1115 1123 1150 1214 1270 1386 1524 1718 2088 5036 2162 1802 1573 1448 1329 1245 1196 1165 1145 1153 1192 1240 1323 1428 1565 1791 2162 5037 2266 1880 1623 1477 1354 1284 1230 1183 1174 1187 1221 1289 1366 1462 1623 1867 2307 ] 5038 </LSC_SAMPLES_red> 5039 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 5040 [2243 1868 1607 1465 1373 1288 1249 1221 1196 1212 1249 1288 1352 1451 1607 1855 2224 5041 2152 1810 1560 1431 1335 1261 1207 1186 1167 1178 1207 1266 1327 1431 1552 1781 2110 5042 2064 1730 1508 1390 1308 1232 1182 1144 1140 1146 1170 1232 1303 1393 1508 1730 2057 5043 1985 1688 1492 1371 1284 1202 1158 1123 1112 1124 1147 1208 1269 1368 1489 1664 1971 5044 1953 1652 1472 1356 1261 1184 1130 1095 1077 1090 1125 1180 1254 1348 1469 1634 1914 5045 1878 1621 1451 1336 1245 1168 1113 1075 1058 1065 1107 1164 1234 1325 1451 1612 1878 5046 1872 1598 1439 1316 1226 1146 1090 1055 1040 1045 1089 1142 1219 1308 1436 1586 1849 5047 1831 1575 1425 1308 1215 1149 1077 1041 1024 1039 1074 1136 1209 1303 1422 1575 1836 5048 1829 1570 1412 1306 1211 1129 1066 1029 1024 1026 1068 1127 1198 1295 1421 1562 1812 5049 1831 1559 1419 1303 1207 1132 1072 1033 1021 1030 1066 1123 1207 1286 1415 1563 1836 5050 1854 1578 1426 1303 1213 1139 1082 1047 1025 1035 1072 1131 1202 1291 1423 1574 1825 5051 1878 1591 1428 1317 1227 1149 1097 1059 1044 1053 1085 1149 1219 1314 1428 1583 1854 5052 1914 1612 1442 1337 1245 1170 1110 1079 1066 1075 1103 1158 1231 1326 1439 1599 1876 5053 1964 1650 1475 1353 1259 1187 1135 1103 1088 1096 1132 1181 1259 1345 1461 1636 1924 5054 2034 1700 1490 1390 1287 1214 1160 1125 1118 1125 1154 1207 1275 1365 1482 1690 2011 5055 2101 1765 1536 1402 1316 1241 1194 1161 1147 1151 1181 1241 1311 1399 1532 1737 2085 5056 2176 1830 1585 1441 1352 1267 1220 1187 1163 1187 1204 1257 1328 1420 1581 1806 2186 ] 5057 </LSC_SAMPLES_greenR> 5058 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 5059 [2246 1880 1623 1476 1380 1298 1249 1226 1216 1224 1259 1295 1356 1472 1632 1886 2255 5060 2165 1805 1571 1435 1349 1273 1219 1194 1177 1187 1214 1273 1340 1435 1567 1799 2156 5061 2069 1737 1523 1406 1318 1249 1190 1151 1144 1159 1192 1242 1313 1409 1531 1742 2069 5062 2005 1685 1489 1384 1286 1216 1164 1134 1116 1130 1162 1212 1284 1375 1503 1685 2012 5063 1945 1654 1483 1358 1271 1194 1134 1103 1093 1099 1138 1190 1257 1356 1480 1645 1932 5064 1902 1624 1456 1349 1244 1173 1117 1082 1068 1080 1115 1167 1246 1338 1456 1624 1909 5065 1867 1598 1437 1332 1240 1159 1101 1060 1043 1062 1101 1152 1227 1329 1456 1598 1867 5066 1837 1582 1432 1316 1225 1152 1086 1048 1038 1049 1084 1143 1219 1311 1445 1594 1849 5067 1852 1589 1429 1313 1221 1147 1081 1038 1024 1041 1073 1134 1210 1298 1432 1581 1841 5068 1837 1582 1426 1313 1225 1140 1082 1043 1026 1040 1070 1134 1210 1303 1423 1586 1837 5069 1843 1593 1424 1314 1218 1141 1091 1045 1028 1047 1078 1137 1212 1311 1431 1593 1855 5070 1878 1607 1436 1327 1233 1160 1101 1058 1046 1055 1098 1148 1224 1327 1446 1603 1878 5071 1913 1632 1453 1347 1246 1174 1118 1083 1070 1079 1114 1162 1239 1339 1456 1628 1913 5072 1991 1662 1479 1361 1272 1197 1141 1112 1091 1105 1139 1188 1262 1355 1482 1662 1970 5073 2046 1716 1512 1385 1297 1221 1167 1132 1116 1134 1163 1219 1287 1376 1501 1697 2009 5074 2122 1771 1543 1422 1326 1246 1201 1169 1153 1163 1186 1244 1315 1416 1531 1754 2105 5075 2217 1848 1592 1458 1347 1272 1227 1194 1181 1194 1225 1270 1341 1437 1587 1824 2161 ] 5076 </LSC_SAMPLES_greenB> 5077 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 5078 [2162 1787 1563 1425 1341 1278 1228 1197 1205 1201 1224 1288 1341 1431 1579 1821 2145 5079 2064 1757 1531 1421 1320 1256 1210 1177 1173 1173 1202 1256 1320 1421 1531 1757 2080 5080 1978 1684 1503 1402 1291 1228 1178 1148 1145 1152 1182 1228 1301 1390 1510 1684 1992 5081 1931 1674 1486 1362 1289 1207 1153 1121 1118 1125 1160 1207 1275 1362 1480 1656 1931 5082 1857 1634 1452 1358 1259 1195 1140 1110 1094 1100 1140 1195 1255 1352 1465 1634 1869 5083 1849 1590 1440 1323 1241 1168 1116 1082 1070 1079 1116 1165 1241 1334 1446 1614 1838 5084 1802 1574 1423 1331 1235 1153 1097 1055 1044 1067 1104 1157 1227 1326 1435 1590 1823 5085 1823 1553 1413 1308 1225 1153 1094 1044 1033 1047 1087 1142 1213 1318 1425 1576 1802 5086 1795 1556 1410 1311 1219 1144 1083 1040 1024 1043 1074 1130 1211 1306 1422 1563 1795 5087 1771 1553 1413 1304 1221 1138 1078 1041 1033 1041 1075 1135 1209 1299 1419 1568 1812 5088 1802 1559 1411 1301 1227 1146 1091 1047 1033 1050 1081 1143 1214 1311 1423 1574 1791 5089 1816 1574 1422 1323 1236 1157 1100 1067 1052 1055 1097 1157 1236 1318 1440 1590 1838 5090 1834 1600 1440 1337 1237 1172 1119 1084 1072 1080 1122 1172 1242 1326 1446 1617 1869 5091 1918 1639 1466 1351 1275 1191 1142 1115 1092 1104 1128 1203 1261 1356 1460 1639 1918 5092 1964 1684 1489 1378 1286 1211 1167 1134 1123 1134 1155 1211 1281 1372 1496 1674 1978 5093 2034 1736 1523 1415 1315 1243 1194 1165 1150 1158 1185 1234 1309 1409 1523 1726 2034 5094 2094 1810 1579 1431 1341 1273 1215 1193 1184 1193 1211 1268 1352 1425 1579 1810 2111 ] 5095 </LSC_SAMPLES_blue> 5096 </cell> 5097 <cell index="7" type="struct" size="[1 1]"> 5098 <name index="1" type="char" size="[1 17]"> 5099 2560x1440_D75_100 5100 </name> 5101 <resolution index="1" type="char" size="[1 9]"> 5102 2560x1440 5103 </resolution> 5104 <illumination index="1" type="char" size="[1 3]"> 5105 D75 5106 </illumination> 5107 <LSC_sectors index="1" type="double" size="[1 1]"> 5108 [16 ] 5109 </LSC_sectors> 5110 <LSC_No index="1" type="double" size="[1 1]"> 5111 [10 ] 5112 </LSC_No> 5113 <LSC_Xo index="1" type="double" size="[1 1]"> 5114 [15 ] 5115 </LSC_Xo> 5116 <LSC_Yo index="1" type="double" size="[1 1]"> 5117 [15 ] 5118 </LSC_Yo> 5119 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 5120 [160 160 160 160 160 160 160 160 ] 5121 </LSC_SECT_SIZE_X> 5122 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 5123 [90 90 90 90 90 90 90 90 ] 5124 </LSC_SECT_SIZE_Y> 5125 <vignetting index="1" type="double" size="[1 1]"> 5126 [100.0000 ] 5127 </vignetting> 5128 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 5129 [3439 2661 2209 1889 1688 1545 1452 1397 1376 1391 1408 1506 1613 1805 2048 2480 3255 5130 3170 2480 2037 1787 1606 1458 1376 1311 1293 1302 1340 1413 1538 1688 1929 2293 2964 5131 2940 2307 1939 1688 1525 1397 1307 1253 1223 1232 1275 1340 1452 1606 1805 2132 2741 5132 2783 2196 1860 1627 1458 1326 1244 1187 1168 1168 1211 1279 1386 1538 1736 2037 2567 5133 2642 2107 1787 1565 1402 1270 1191 1132 1111 1118 1168 1236 1345 1470 1665 1960 2447 5134 2567 2048 1736 1538 1360 1244 1146 1095 1069 1079 1125 1191 1302 1441 1620 1879 2337 5135 2532 2003 1696 1500 1345 1211 1136 1066 1042 1051 1098 1176 1275 1402 1599 1850 2278 5136 2480 1981 1696 1482 1326 1211 1111 1057 1036 1039 1085 1150 1261 1397 1585 1832 2223 5137 2480 1981 1703 1470 1326 1207 1108 1045 1024 1039 1075 1154 1253 1402 1565 1832 2250 5138 2497 2025 1703 1494 1316 1191 1108 1045 1024 1039 1075 1146 1257 1402 1565 1814 2250 5139 2532 2003 1711 1506 1330 1207 1122 1057 1033 1042 1082 1165 1261 1397 1571 1823 2278 5140 2567 2048 1744 1513 1350 1227 1125 1075 1048 1060 1098 1168 1275 1418 1606 1850 2278 5141 2642 2095 1753 1532 1376 1240 1154 1098 1075 1082 1118 1191 1293 1430 1613 1879 2337 5142 2762 2170 1814 1585 1408 1288 1191 1136 1118 1118 1157 1219 1335 1470 1657 1939 2430 5143 2916 2264 1899 1657 1464 1326 1248 1176 1165 1161 1207 1270 1370 1532 1703 2025 2514 5144 3143 2414 1981 1728 1532 1391 1302 1244 1219 1227 1266 1335 1447 1578 1796 2157 2720 5145 3344 2642 2132 1832 1613 1470 1386 1311 1279 1293 1330 1418 1513 1680 1909 2278 2940 ] 5146 </LSC_SAMPLES_red> 5147 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 5148 [3236 2580 2116 1849 1659 1531 1438 1391 1372 1381 1432 1490 1604 1760 2017 2404 3082 5149 3046 2389 1976 1741 1565 1443 1360 1307 1287 1294 1332 1411 1516 1662 1884 2231 2804 5150 2824 2238 1862 1659 1493 1364 1289 1238 1213 1224 1260 1332 1438 1584 1773 2093 2615 5151 2641 2116 1789 1584 1424 1307 1228 1171 1153 1164 1203 1273 1376 1504 1699 1981 2450 5152 2538 2038 1729 1519 1374 1256 1173 1123 1104 1117 1153 1221 1329 1454 1641 1884 2339 5153 2481 1976 1688 1496 1343 1234 1147 1084 1066 1077 1120 1189 1287 1417 1591 1844 2238 5154 2434 1956 1662 1465 1320 1205 1117 1062 1040 1049 1098 1167 1268 1394 1578 1806 2181 5155 2412 1936 1659 1462 1309 1196 1106 1050 1028 1040 1086 1155 1256 1389 1553 1797 2175 5156 2397 1936 1670 1459 1309 1192 1098 1042 1024 1038 1081 1150 1254 1379 1540 1785 2163 5157 2427 1946 1670 1465 1313 1191 1110 1048 1029 1034 1077 1155 1252 1376 1556 1781 2175 5158 2457 1961 1677 1476 1320 1196 1118 1055 1035 1048 1084 1162 1262 1386 1553 1797 2169 5159 2481 2001 1703 1493 1334 1217 1130 1071 1055 1062 1103 1167 1268 1396 1572 1810 2206 5160 2555 2049 1725 1519 1360 1234 1155 1101 1077 1087 1127 1191 1298 1422 1588 1840 2257 5161 2706 2110 1785 1556 1396 1277 1181 1135 1112 1118 1157 1224 1325 1456 1631 1898 2353 5162 2804 2212 1853 1617 1446 1322 1238 1185 1162 1173 1200 1264 1369 1507 1684 1971 2473 5163 3022 2375 1946 1695 1516 1384 1298 1242 1221 1219 1256 1327 1427 1565 1757 2082 2624 5164 3264 2546 2071 1789 1597 1465 1364 1300 1279 1296 1325 1394 1490 1652 1857 2251 2824 ] 5165 </LSC_SAMPLES_greenR> 5166 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 5167 [3245 2570 2110 1840 1656 1532 1444 1395 1368 1380 1433 1508 1618 1777 2017 2418 3066 5168 3054 2410 1976 1741 1566 1449 1363 1304 1289 1302 1340 1415 1526 1667 1889 2244 2852 5169 2821 2237 1876 1646 1488 1365 1286 1233 1216 1224 1263 1335 1433 1595 1777 2087 2622 5170 2658 2121 1794 1576 1423 1306 1222 1169 1155 1163 1203 1270 1375 1508 1707 1981 2464 5171 2545 2043 1726 1523 1373 1259 1179 1126 1098 1113 1156 1222 1326 1460 1639 1913 2338 5172 2464 1981 1692 1488 1340 1218 1141 1087 1063 1081 1121 1188 1297 1423 1595 1845 2270 5173 2418 1946 1667 1474 1324 1203 1115 1066 1036 1053 1096 1169 1268 1402 1582 1827 2199 5174 2403 1941 1653 1469 1308 1186 1112 1049 1034 1042 1084 1158 1257 1387 1560 1798 2193 5175 2396 1951 1667 1455 1302 1188 1105 1043 1024 1038 1076 1153 1255 1382 1547 1798 2163 5176 2403 1961 1656 1463 1308 1194 1105 1046 1027 1036 1076 1153 1259 1380 1560 1794 2187 5177 2441 1971 1674 1477 1315 1201 1117 1059 1029 1040 1088 1158 1261 1397 1560 1794 2199 5178 2496 2006 1700 1488 1337 1212 1130 1070 1049 1060 1101 1176 1272 1397 1572 1815 2237 5179 2578 2038 1730 1520 1361 1241 1150 1099 1076 1088 1131 1197 1286 1418 1602 1858 2263 5180 2658 2110 1781 1554 1397 1272 1190 1135 1118 1118 1155 1230 1326 1463 1635 1903 2345 5181 2771 2218 1827 1612 1447 1319 1231 1179 1153 1165 1199 1268 1368 1503 1689 1976 2472 5182 2995 2352 1936 1692 1511 1385 1299 1237 1212 1222 1261 1328 1423 1560 1765 2098 2622 5183 3259 2528 2060 1798 1592 1460 1361 1302 1274 1284 1319 1390 1503 1639 1871 2244 2821 ] 5184 </LSC_SAMPLES_greenB> 5185 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 5186 [3131 2533 2048 1789 1641 1496 1437 1374 1344 1361 1396 1481 1577 1732 1965 2382 2961 5187 2902 2331 1939 1725 1549 1437 1353 1304 1278 1297 1332 1391 1506 1666 1849 2191 2739 5188 2739 2191 1841 1635 1481 1361 1289 1228 1211 1217 1263 1328 1418 1565 1746 2038 2504 5189 2548 2077 1774 1549 1423 1304 1228 1178 1144 1166 1194 1259 1370 1491 1679 1948 2356 5190 2462 1992 1699 1517 1370 1256 1178 1124 1107 1115 1147 1221 1320 1446 1617 1873 2295 5191 2382 1939 1666 1491 1336 1217 1147 1090 1074 1077 1124 1191 1281 1405 1582 1819 2180 5192 2344 1914 1660 1476 1324 1204 1115 1064 1044 1054 1096 1166 1263 1396 1549 1767 2138 5193 2307 1906 1648 1456 1312 1194 1107 1054 1034 1048 1090 1156 1256 1378 1538 1774 2097 5194 2344 1931 1654 1451 1316 1185 1104 1051 1024 1039 1082 1156 1252 1383 1532 1767 2128 5195 2331 1922 1648 1461 1320 1194 1107 1046 1031 1044 1090 1163 1256 1383 1538 1767 2107 5196 2382 1939 1654 1466 1324 1204 1118 1061 1031 1048 1082 1156 1263 1387 1543 1782 2138 5197 2382 1957 1673 1496 1328 1217 1130 1072 1051 1061 1101 1166 1270 1391 1549 1782 2148 5198 2448 2001 1712 1501 1353 1231 1153 1098 1079 1082 1124 1194 1281 1405 1571 1819 2191 5199 2563 2067 1753 1554 1387 1274 1181 1132 1112 1118 1153 1221 1316 1446 1611 1857 2271 5200 2656 2170 1811 1600 1428 1312 1224 1172 1153 1153 1191 1263 1357 1486 1641 1939 2382 5201 2846 2307 1897 1666 1486 1374 1293 1224 1197 1204 1252 1316 1405 1538 1732 2038 2533 5202 3086 2435 2010 1767 1577 1442 1340 1301 1270 1274 1308 1396 1481 1629 1826 2170 2656 ] 5203 </LSC_SAMPLES_blue> 5204 </cell> 5205 <cell index="8" type="struct" size="[1 1]"> 5206 <name index="1" type="char" size="[1 16]"> 5207 2560x1440_D75_70 5208 </name> 5209 <resolution index="1" type="char" size="[1 9]"> 5210 2560x1440 5211 </resolution> 5212 <illumination index="1" type="char" size="[1 3]"> 5213 D75 5214 </illumination> 5215 <LSC_sectors index="1" type="double" size="[1 1]"> 5216 [16 ] 5217 </LSC_sectors> 5218 <LSC_No index="1" type="double" size="[1 1]"> 5219 [10 ] 5220 </LSC_No> 5221 <LSC_Xo index="1" type="double" size="[1 1]"> 5222 [15 ] 5223 </LSC_Xo> 5224 <LSC_Yo index="1" type="double" size="[1 1]"> 5225 [15 ] 5226 </LSC_Yo> 5227 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 5228 [160 160 160 160 160 160 160 160 ] 5229 </LSC_SECT_SIZE_X> 5230 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 5231 [90 90 90 90 90 90 90 90 ] 5232 </LSC_SECT_SIZE_Y> 5233 <vignetting index="1" type="double" size="[1 1]"> 5234 [70.0000 ] 5235 </vignetting> 5236 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 5237 [2407 1987 1731 1539 1418 1330 1272 1235 1221 1231 1232 1297 1356 1470 1605 1852 2278 5238 2307 1911 1644 1499 1389 1292 1239 1193 1180 1185 1207 1252 1331 1416 1557 1767 2157 5239 2202 1826 1606 1452 1352 1268 1206 1168 1144 1148 1177 1217 1288 1381 1495 1687 2053 5240 2133 1776 1574 1429 1320 1228 1172 1130 1116 1112 1141 1185 1255 1351 1469 1647 1968 5241 2062 1735 1538 1398 1291 1197 1141 1096 1079 1082 1120 1165 1239 1313 1433 1613 1910 5242 2033 1709 1514 1393 1269 1188 1113 1073 1051 1057 1092 1137 1215 1304 1413 1568 1850 5243 2025 1688 1493 1371 1267 1167 1113 1055 1034 1039 1076 1133 1200 1281 1408 1559 1822 5244 1995 1679 1502 1362 1255 1174 1095 1051 1034 1033 1069 1114 1194 1284 1404 1553 1788 5245 1999 1682 1512 1353 1258 1172 1094 1041 1024 1035 1061 1120 1188 1291 1388 1556 1814 5246 2009 1716 1509 1373 1246 1154 1092 1039 1022 1033 1059 1111 1190 1289 1386 1537 1810 5247 2025 1688 1507 1377 1253 1163 1099 1045 1025 1031 1060 1122 1188 1276 1384 1536 1822 5248 2033 1709 1522 1369 1260 1172 1092 1054 1030 1039 1066 1116 1189 1284 1401 1544 1804 5249 2062 1725 1509 1368 1267 1169 1105 1063 1044 1047 1071 1123 1190 1277 1389 1547 1824 5250 2117 1755 1534 1392 1274 1194 1123 1081 1068 1064 1090 1130 1209 1291 1402 1568 1863 5251 2184 1792 1573 1425 1298 1203 1152 1096 1089 1082 1114 1153 1215 1317 1411 1602 1883 5252 2287 1860 1600 1449 1325 1232 1173 1132 1113 1117 1140 1183 1251 1324 1450 1662 1980 5253 2341 1973 1670 1492 1356 1265 1214 1160 1135 1143 1165 1221 1271 1369 1495 1701 2058 ] 5254 </LSC_SAMPLES_red> 5255 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 5256 [2266 1927 1658 1506 1394 1318 1259 1230 1217 1222 1254 1283 1348 1434 1580 1795 2158 5257 2216 1841 1595 1460 1354 1278 1225 1189 1175 1177 1199 1250 1312 1394 1521 1720 2040 5258 2115 1771 1542 1427 1324 1238 1190 1154 1135 1141 1163 1209 1275 1363 1468 1656 1958 5259 2024 1711 1514 1392 1290 1211 1157 1114 1101 1107 1134 1179 1246 1321 1437 1602 1877 5260 1981 1678 1488 1357 1265 1184 1123 1087 1072 1081 1105 1150 1224 1299 1413 1551 1826 5261 1964 1649 1472 1354 1253 1178 1113 1063 1049 1055 1087 1135 1201 1282 1388 1539 1772 5262 1947 1648 1464 1339 1243 1162 1094 1051 1033 1038 1076 1125 1194 1274 1390 1521 1744 5263 1940 1641 1469 1344 1240 1159 1089 1045 1026 1035 1069 1119 1189 1276 1375 1523 1750 5264 1932 1644 1482 1344 1242 1158 1084 1038 1024 1034 1067 1116 1190 1270 1367 1516 1744 5265 1952 1649 1479 1346 1244 1154 1094 1042 1028 1028 1061 1119 1186 1265 1378 1509 1750 5266 1965 1652 1477 1349 1243 1153 1096 1043 1027 1036 1062 1120 1189 1267 1367 1514 1735 5267 1964 1670 1485 1352 1244 1162 1097 1050 1037 1041 1070 1114 1183 1264 1371 1510 1747 5268 1994 1686 1485 1357 1252 1163 1107 1065 1045 1052 1079 1122 1195 1270 1367 1515 1762 5269 2074 1706 1510 1366 1264 1183 1113 1080 1062 1064 1090 1135 1199 1279 1380 1535 1803 5270 2100 1750 1535 1391 1282 1200 1143 1105 1087 1093 1107 1148 1214 1296 1395 1559 1852 5271 2199 1830 1571 1422 1312 1226 1169 1130 1114 1109 1131 1175 1234 1313 1418 1604 1909 5272 2285 1901 1622 1457 1343 1261 1194 1150 1135 1146 1160 1200 1252 1346 1455 1681 1977 ] 5273 </LSC_SAMPLES_greenR> 5274 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 5275 [2271 1919 1653 1499 1392 1319 1264 1234 1214 1221 1255 1299 1360 1448 1580 1806 2146 5276 2222 1858 1595 1461 1355 1284 1228 1186 1176 1184 1207 1254 1320 1398 1525 1729 2076 5277 2113 1770 1554 1415 1320 1240 1187 1150 1138 1141 1166 1212 1271 1372 1472 1651 1963 5278 2037 1716 1518 1384 1288 1210 1151 1112 1103 1107 1133 1177 1245 1325 1444 1602 1888 5279 1986 1682 1486 1361 1264 1187 1130 1090 1066 1077 1108 1151 1221 1305 1411 1575 1825 5280 1951 1653 1476 1347 1250 1163 1108 1066 1046 1060 1089 1134 1210 1288 1392 1539 1797 5281 1934 1640 1468 1347 1246 1159 1092 1055 1029 1042 1074 1126 1194 1282 1393 1540 1759 5282 1933 1645 1464 1350 1239 1150 1095 1043 1032 1037 1068 1122 1191 1275 1382 1524 1764 5283 1931 1657 1479 1340 1235 1154 1091 1040 1024 1034 1062 1119 1191 1273 1373 1527 1743 5284 1933 1662 1467 1345 1239 1157 1089 1041 1025 1031 1060 1117 1193 1268 1382 1520 1759 5285 1952 1661 1474 1350 1238 1157 1094 1048 1022 1029 1066 1116 1188 1277 1374 1511 1759 5286 1976 1674 1483 1347 1248 1157 1096 1049 1032 1039 1069 1122 1186 1265 1372 1514 1771 5287 2013 1678 1489 1358 1253 1170 1101 1064 1045 1053 1084 1128 1185 1267 1379 1529 1767 5288 2037 1706 1507 1365 1265 1179 1121 1080 1068 1064 1088 1139 1200 1285 1384 1539 1797 5289 2075 1755 1513 1386 1283 1198 1137 1099 1079 1086 1107 1151 1213 1292 1398 1563 1851 5290 2179 1813 1563 1419 1307 1227 1170 1126 1107 1112 1136 1176 1231 1308 1425 1617 1908 5291 2281 1888 1614 1465 1338 1257 1191 1151 1130 1136 1155 1196 1263 1335 1466 1675 1975 ] 5292 </LSC_SAMPLES_greenB> 5293 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 5294 [2191 1892 1605 1457 1380 1288 1258 1215 1193 1204 1222 1275 1325 1411 1540 1779 2073 5295 2112 1797 1566 1447 1340 1273 1218 1187 1166 1180 1200 1232 1303 1398 1493 1689 1993 5296 2051 1734 1525 1407 1313 1236 1190 1145 1133 1135 1166 1206 1258 1346 1446 1613 1875 5297 1953 1680 1501 1360 1288 1209 1157 1121 1093 1109 1125 1167 1240 1309 1421 1575 1806 5298 1922 1640 1462 1355 1261 1183 1129 1087 1075 1079 1099 1151 1215 1292 1392 1542 1791 5299 1886 1618 1454 1350 1247 1162 1114 1069 1057 1056 1091 1137 1196 1272 1380 1518 1726 5300 1874 1613 1462 1349 1247 1160 1093 1052 1036 1042 1073 1123 1189 1276 1364 1489 1710 5301 1856 1615 1459 1338 1243 1157 1090 1048 1032 1043 1074 1121 1189 1267 1362 1504 1687 5302 1889 1639 1468 1336 1249 1150 1090 1048 1024 1035 1068 1123 1188 1273 1360 1501 1715 5303 1876 1629 1459 1343 1250 1157 1090 1041 1029 1038 1074 1127 1189 1271 1362 1498 1695 5304 1905 1634 1457 1340 1247 1160 1095 1050 1024 1037 1060 1114 1189 1267 1359 1501 1710 5305 1886 1633 1459 1354 1239 1162 1096 1050 1034 1040 1069 1113 1185 1260 1351 1487 1701 5306 1911 1647 1474 1341 1246 1160 1105 1063 1048 1047 1077 1125 1180 1255 1352 1497 1711 5307 1964 1672 1483 1365 1256 1181 1113 1078 1062 1064 1087 1131 1192 1270 1363 1502 1740 5308 1989 1717 1500 1376 1266 1191 1130 1093 1079 1075 1099 1147 1203 1278 1359 1534 1784 5309 2071 1778 1532 1398 1285 1217 1165 1114 1093 1096 1128 1166 1215 1290 1399 1571 1843 5310 2160 1818 1575 1440 1325 1241 1173 1150 1127 1127 1145 1202 1244 1327 1431 1620 1859 ] 5311 </LSC_SAMPLES_blue> 5312 </cell> 5313 <cell index="9" type="struct" size="[1 1]"> 5314 <name index="1" type="char" size="[1 17]"> 5315 2560x1440_CWF_100 5316 </name> 5317 <resolution index="1" type="char" size="[1 9]"> 5318 2560x1440 5319 </resolution> 5320 <illumination index="1" type="char" size="[1 3]"> 5321 CWF 5322 </illumination> 5323 <LSC_sectors index="1" type="double" size="[1 1]"> 5324 [16 ] 5325 </LSC_sectors> 5326 <LSC_No index="1" type="double" size="[1 1]"> 5327 [10 ] 5328 </LSC_No> 5329 <LSC_Xo index="1" type="double" size="[1 1]"> 5330 [15 ] 5331 </LSC_Xo> 5332 <LSC_Yo index="1" type="double" size="[1 1]"> 5333 [15 ] 5334 </LSC_Yo> 5335 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 5336 [160 160 160 160 160 160 160 160 ] 5337 </LSC_SECT_SIZE_X> 5338 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 5339 [90 90 90 90 90 90 90 90 ] 5340 </LSC_SECT_SIZE_Y> 5341 <vignetting index="1" type="double" size="[1 1]"> 5342 [100.0000 ] 5343 </vignetting> 5344 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 5345 [3350 2619 2129 1847 1649 1532 1450 1389 1363 1372 1417 1516 1631 1831 2098 2572 3350 5346 3065 2414 1982 1742 1560 1436 1359 1302 1298 1302 1350 1436 1554 1729 1964 2374 3087 5347 2900 2262 1879 1656 1500 1376 1294 1249 1228 1242 1282 1367 1485 1643 1855 2239 2806 5348 2701 2161 1808 1595 1436 1313 1231 1181 1162 1181 1228 1309 1421 1566 1808 2108 2684 5349 2572 2048 1742 1538 1385 1253 1181 1137 1111 1137 1177 1264 1372 1527 1735 2038 2512 5350 2483 1973 1681 1485 1330 1228 1149 1100 1080 1091 1140 1221 1334 1475 1675 1947 2428 5351 2387 1921 1656 1465 1313 1207 1117 1064 1044 1064 1111 1194 1309 1455 1643 1921 2336 5352 2349 1904 1643 1440 1294 1174 1097 1046 1031 1044 1091 1171 1282 1421 1631 1895 2299 5353 2323 1895 1618 1436 1286 1171 1086 1034 1024 1034 1091 1171 1282 1421 1625 1871 2323 5354 2336 1895 1637 1440 1286 1177 1091 1039 1029 1034 1088 1165 1278 1417 1625 1887 2323 5355 2374 1921 1643 1440 1306 1184 1105 1046 1036 1054 1097 1181 1290 1440 1625 1912 2336 5356 2455 1955 1668 1465 1317 1204 1125 1078 1057 1072 1122 1197 1306 1475 1662 1929 2387 5357 2512 2010 1695 1506 1346 1235 1159 1108 1094 1102 1162 1235 1346 1500 1695 1982 2483 5358 2619 2098 1757 1554 1394 1278 1200 1152 1131 1149 1194 1282 1389 1543 1750 2068 2603 5359 2788 2171 1816 1618 1455 1330 1253 1214 1187 1204 1253 1334 1445 1606 1808 2161 2735 5360 2980 2299 1921 1675 1527 1403 1317 1267 1253 1264 1309 1389 1516 1688 1904 2299 2960 5361 3225 2498 2048 1793 1625 1470 1394 1350 1317 1326 1385 1460 1595 1764 2019 2455 3177 ] 5362 </LSC_SAMPLES_red> 5363 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 5364 [3236 2531 2079 1804 1637 1513 1427 1379 1367 1372 1427 1493 1631 1800 2062 2499 3170 5365 2999 2355 1939 1702 1546 1425 1344 1303 1284 1299 1344 1420 1546 1706 1934 2334 2976 5366 2795 2196 1843 1627 1473 1353 1288 1225 1221 1233 1278 1355 1462 1620 1825 2184 2755 5367 2608 2084 1763 1559 1414 1297 1225 1175 1158 1168 1214 1292 1402 1562 1756 2073 2565 5368 2499 1989 1702 1505 1360 1251 1174 1126 1107 1125 1175 1249 1353 1502 1698 1983 2452 5369 2414 1939 1655 1468 1325 1218 1138 1088 1070 1085 1131 1210 1325 1465 1648 1925 2377 5370 2341 1892 1634 1438 1297 1184 1110 1060 1040 1059 1105 1181 1290 1435 1624 1883 2313 5371 2306 1869 1610 1422 1280 1174 1098 1040 1024 1045 1087 1165 1275 1412 1600 1865 2293 5372 2293 1874 1604 1417 1271 1172 1087 1035 1024 1035 1084 1161 1267 1409 1594 1851 2247 5373 2300 1869 1610 1417 1278 1174 1093 1040 1023 1038 1087 1165 1271 1407 1604 1865 2266 5374 2327 1878 1620 1438 1288 1188 1102 1053 1035 1047 1096 1183 1288 1427 1600 1883 2313 5375 2384 1920 1655 1457 1314 1210 1129 1079 1065 1078 1120 1201 1308 1457 1637 1897 2362 5376 2467 1978 1687 1496 1348 1237 1151 1112 1096 1107 1155 1235 1346 1485 1683 1954 2444 5377 2565 2051 1744 1543 1394 1282 1203 1153 1143 1156 1197 1275 1397 1528 1728 2030 2556 5378 2726 2165 1804 1610 1449 1339 1253 1206 1195 1201 1247 1330 1438 1594 1800 2124 2698 5379 2942 2293 1892 1673 1516 1397 1321 1267 1249 1269 1319 1387 1510 1669 1892 2253 2867 5380 3170 2459 2009 1771 1594 1471 1389 1339 1325 1332 1384 1471 1578 1732 1999 2436 3107 ] 5381 </LSC_SAMPLES_greenR> 5382 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 5383 [3248 2543 2090 1819 1637 1514 1431 1383 1361 1380 1439 1511 1633 1810 2068 2519 3208 5384 3011 2381 1959 1719 1559 1439 1354 1309 1290 1305 1354 1436 1562 1715 1949 2345 2988 5385 2797 2220 1853 1643 1477 1368 1283 1237 1223 1241 1286 1354 1474 1637 1853 2176 2757 5386 2619 2101 1773 1571 1418 1305 1231 1179 1164 1179 1223 1303 1418 1565 1769 2090 2593 5387 2519 2004 1715 1516 1371 1259 1179 1132 1114 1132 1176 1253 1361 1514 1715 2009 2463 5388 2403 1954 1675 1474 1329 1223 1145 1095 1073 1095 1142 1220 1329 1477 1675 1940 2410 5389 2345 1912 1643 1449 1309 1196 1119 1066 1047 1066 1113 1194 1296 1447 1637 1912 2332 5390 2304 1871 1623 1426 1292 1183 1106 1049 1040 1051 1097 1178 1283 1423 1616 1879 2284 5391 2304 1879 1603 1433 1283 1176 1092 1040 1024 1042 1089 1172 1279 1423 1613 1884 2264 5392 2318 1884 1613 1433 1290 1178 1098 1040 1031 1046 1097 1176 1283 1431 1610 1875 2291 5393 2345 1902 1630 1441 1298 1192 1114 1057 1042 1057 1106 1188 1298 1441 1630 1889 2325 5394 2374 1926 1643 1468 1327 1210 1130 1083 1064 1080 1128 1208 1318 1460 1657 1935 2374 5395 2456 1989 1697 1505 1359 1241 1164 1120 1103 1119 1155 1241 1350 1493 1689 1969 2463 5396 2576 2068 1746 1549 1400 1292 1208 1158 1143 1157 1207 1281 1400 1540 1746 2051 2560 5397 2738 2164 1814 1613 1447 1347 1261 1212 1194 1212 1259 1336 1444 1597 1814 2147 2682 5398 2921 2304 1912 1679 1519 1408 1325 1277 1257 1273 1314 1403 1514 1675 1902 2271 2868 5399 3208 2471 2025 1769 1613 1479 1390 1345 1322 1340 1390 1474 1593 1765 2009 2440 3144 ] 5400 </LSC_SAMPLES_greenB> 5401 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 5402 [3153 2496 2066 1788 1608 1498 1401 1354 1346 1361 1426 1479 1608 1775 2084 2470 3112 5403 2958 2372 1964 1712 1546 1426 1346 1295 1275 1295 1354 1418 1536 1699 1948 2282 2922 5404 2754 2178 1843 1641 1488 1354 1281 1248 1216 1235 1281 1361 1470 1619 1829 2159 2692 5405 2577 2102 1775 1566 1410 1295 1229 1180 1163 1180 1229 1295 1418 1556 1762 2066 2522 5406 2470 2014 1712 1526 1377 1255 1180 1136 1120 1136 1180 1248 1361 1507 1712 1980 2420 5407 2372 1948 1664 1470 1324 1223 1146 1094 1089 1099 1146 1223 1317 1488 1653 1917 2372 5408 2304 1917 1630 1470 1309 1204 1114 1070 1051 1075 1120 1192 1302 1443 1641 1887 2282 5409 2261 1857 1619 1426 1288 1192 1109 1046 1037 1060 1104 1180 1295 1435 1608 1857 2219 5410 2282 1857 1619 1435 1288 1180 1094 1046 1024 1051 1094 1175 1288 1426 1608 1857 2239 5411 2282 1857 1608 1443 1295 1186 1099 1046 1033 1056 1104 1180 1288 1426 1619 1887 2282 5412 2282 1917 1641 1452 1302 1198 1109 1065 1046 1060 1114 1198 1302 1443 1619 1887 2304 5413 2326 1932 1664 1470 1331 1223 1146 1089 1075 1084 1130 1216 1324 1470 1653 1917 2349 5414 2470 1997 1687 1507 1361 1248 1158 1120 1109 1130 1158 1261 1354 1498 1676 1964 2396 5415 2549 2066 1749 1546 1401 1288 1216 1163 1146 1158 1210 1281 1401 1546 1749 2031 2522 5416 2662 2139 1815 1619 1452 1339 1255 1210 1186 1210 1255 1339 1452 1566 1802 2120 2633 5417 2853 2282 1887 1664 1517 1385 1331 1275 1255 1275 1309 1393 1507 1664 1887 2282 2853 5418 3072 2420 2014 1762 1587 1470 1410 1346 1302 1331 1401 1488 1587 1762 2014 2420 3072 ] 5419 </LSC_SAMPLES_blue> 5420 </cell> 5421 <cell index="10" type="struct" size="[1 1]"> 5422 <name index="1" type="char" size="[1 16]"> 5423 2560x1440_CWF_70 5424 </name> 5425 <resolution index="1" type="char" size="[1 9]"> 5426 2560x1440 5427 </resolution> 5428 <illumination index="1" type="char" size="[1 3]"> 5429 CWF 5430 </illumination> 5431 <LSC_sectors index="1" type="double" size="[1 1]"> 5432 [16 ] 5433 </LSC_sectors> 5434 <LSC_No index="1" type="double" size="[1 1]"> 5435 [10 ] 5436 </LSC_No> 5437 <LSC_Xo index="1" type="double" size="[1 1]"> 5438 [15 ] 5439 </LSC_Xo> 5440 <LSC_Yo index="1" type="double" size="[1 1]"> 5441 [15 ] 5442 </LSC_Yo> 5443 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 5444 [160 160 160 160 160 160 160 160 ] 5445 </LSC_SECT_SIZE_X> 5446 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 5447 [90 90 90 90 90 90 90 90 ] 5448 </LSC_SECT_SIZE_Y> 5449 <vignetting index="1" type="double" size="[1 1]"> 5450 [70.0000 ] 5451 </vignetting> 5452 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 5453 [2345 1956 1668 1504 1386 1319 1270 1229 1210 1213 1240 1305 1370 1492 1644 1921 2345 5454 2230 1860 1600 1462 1349 1272 1224 1184 1185 1184 1216 1272 1345 1450 1586 1830 2246 5455 2172 1790 1556 1424 1330 1249 1194 1164 1148 1158 1184 1241 1317 1413 1536 1772 2101 5456 2070 1747 1530 1401 1300 1217 1160 1124 1109 1124 1157 1214 1287 1375 1530 1705 2057 5457 2008 1686 1500 1374 1275 1180 1131 1100 1079 1100 1128 1191 1263 1364 1494 1678 1961 5458 1966 1647 1467 1344 1240 1172 1116 1078 1063 1070 1107 1166 1244 1335 1461 1624 1922 5459 1909 1618 1458 1339 1237 1163 1094 1053 1036 1053 1088 1150 1233 1330 1447 1618 1868 5460 1889 1613 1455 1324 1225 1138 1080 1041 1029 1038 1075 1135 1214 1306 1444 1606 1849 5461 1873 1609 1436 1322 1220 1137 1072 1030 1024 1030 1077 1137 1216 1309 1442 1588 1873 5462 1879 1606 1450 1324 1218 1141 1075 1033 1027 1029 1072 1129 1211 1302 1439 1599 1869 5463 1899 1618 1447 1316 1229 1141 1083 1035 1029 1043 1075 1138 1215 1316 1431 1611 1868 5464 1944 1632 1456 1326 1229 1149 1092 1056 1039 1051 1089 1143 1218 1335 1450 1610 1890 5465 1961 1655 1459 1345 1240 1164 1110 1072 1062 1067 1113 1164 1240 1341 1459 1632 1939 5466 2007 1697 1486 1365 1262 1185 1131 1097 1080 1094 1125 1188 1258 1356 1480 1672 1995 5467 2088 1718 1504 1392 1290 1207 1156 1132 1110 1122 1156 1211 1281 1382 1497 1710 2048 5468 2169 1771 1551 1405 1321 1243 1187 1153 1143 1150 1180 1231 1312 1416 1537 1771 2154 5469 2257 1865 1605 1461 1365 1265 1220 1194 1169 1172 1213 1257 1340 1437 1582 1833 2224 ] 5470 </LSC_SAMPLES_red> 5471 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 5472 [2265 1890 1629 1470 1376 1303 1250 1220 1213 1214 1250 1285 1370 1466 1616 1866 2219 5473 2182 1815 1565 1428 1338 1262 1210 1186 1172 1182 1210 1257 1338 1431 1562 1799 2166 5474 2093 1738 1526 1400 1306 1228 1189 1142 1143 1150 1179 1230 1297 1394 1512 1728 2063 5475 1998 1686 1492 1369 1281 1202 1155 1119 1106 1112 1144 1198 1269 1372 1485 1677 1966 5476 1951 1637 1465 1344 1252 1179 1125 1090 1075 1088 1126 1177 1246 1342 1462 1633 1914 5477 1911 1618 1444 1329 1236 1163 1104 1067 1053 1064 1098 1155 1236 1326 1438 1606 1882 5478 1872 1594 1439 1314 1221 1141 1088 1049 1033 1048 1083 1138 1215 1312 1430 1586 1850 5479 1856 1584 1426 1307 1212 1137 1081 1035 1022 1039 1071 1129 1208 1298 1418 1580 1845 5480 1848 1591 1423 1305 1206 1138 1073 1031 1024 1031 1070 1128 1202 1298 1414 1572 1811 5481 1850 1584 1426 1302 1210 1137 1077 1035 1021 1032 1071 1129 1204 1293 1421 1580 1823 5482 1861 1583 1427 1314 1213 1145 1080 1042 1027 1036 1074 1140 1213 1304 1410 1586 1850 5483 1888 1602 1444 1319 1226 1155 1096 1058 1047 1057 1087 1146 1220 1319 1429 1583 1871 5484 1926 1629 1452 1337 1242 1166 1103 1076 1064 1071 1106 1164 1239 1326 1449 1608 1908 5485 1966 1659 1475 1356 1262 1188 1133 1097 1091 1100 1128 1182 1264 1342 1462 1642 1959 5486 2042 1713 1494 1385 1285 1216 1157 1125 1118 1120 1151 1207 1275 1371 1491 1681 2020 5487 2141 1767 1527 1403 1312 1237 1190 1153 1140 1155 1188 1228 1307 1400 1527 1736 2086 5488 2219 1836 1574 1443 1340 1266 1216 1184 1176 1178 1212 1266 1326 1411 1566 1819 2175 ] 5489 </LSC_SAMPLES_greenR> 5490 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 5491 [2273 1899 1637 1481 1375 1303 1253 1223 1208 1221 1260 1300 1373 1475 1620 1881 2246 5492 2191 1835 1582 1442 1348 1274 1220 1191 1177 1187 1220 1272 1351 1439 1574 1807 2174 5493 2094 1756 1535 1413 1309 1242 1185 1153 1144 1157 1187 1229 1307 1408 1535 1722 2065 5494 2007 1699 1500 1380 1284 1209 1160 1122 1111 1122 1153 1207 1284 1374 1497 1690 1988 5495 1966 1650 1477 1355 1262 1186 1130 1095 1082 1095 1127 1181 1253 1352 1477 1654 1923 5496 1903 1631 1461 1334 1240 1168 1111 1074 1055 1074 1108 1165 1240 1337 1461 1619 1908 5497 1876 1611 1447 1324 1233 1152 1096 1054 1040 1054 1090 1150 1221 1322 1441 1611 1865 5498 1854 1585 1438 1310 1223 1146 1090 1043 1038 1046 1081 1141 1215 1308 1432 1593 1838 5499 1857 1596 1423 1320 1218 1142 1078 1037 1024 1038 1075 1138 1214 1310 1431 1600 1825 5500 1865 1597 1429 1317 1221 1141 1082 1035 1029 1040 1081 1139 1215 1315 1426 1589 1843 5501 1876 1603 1435 1317 1223 1149 1091 1046 1034 1046 1084 1145 1223 1317 1435 1591 1859 5502 1880 1607 1434 1329 1238 1156 1097 1062 1047 1059 1095 1154 1229 1322 1446 1615 1880 5503 1917 1637 1461 1344 1251 1169 1115 1084 1071 1083 1107 1169 1243 1334 1454 1621 1923 5504 1975 1672 1477 1361 1268 1197 1139 1102 1092 1101 1137 1187 1268 1353 1477 1659 1962 5505 2050 1713 1503 1387 1283 1223 1164 1130 1117 1130 1162 1213 1280 1373 1503 1699 2008 5506 2126 1776 1543 1408 1314 1247 1193 1162 1147 1158 1183 1242 1309 1405 1536 1750 2087 5507 2246 1845 1586 1441 1356 1273 1217 1190 1174 1186 1217 1269 1339 1438 1574 1822 2201 ] 5508 </LSC_SAMPLES_greenB> 5509 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 5510 [2207 1864 1618 1457 1352 1289 1227 1197 1195 1204 1249 1273 1352 1446 1632 1845 2178 5511 2153 1828 1586 1436 1337 1263 1213 1178 1164 1178 1219 1256 1329 1426 1573 1759 2126 5512 2063 1724 1527 1412 1320 1229 1183 1164 1138 1152 1183 1236 1303 1393 1515 1708 2016 5513 1975 1700 1502 1376 1276 1200 1158 1123 1111 1123 1158 1200 1284 1367 1491 1671 1933 5514 1928 1658 1473 1364 1268 1182 1131 1099 1087 1099 1131 1176 1254 1346 1473 1630 1890 5515 1878 1626 1452 1331 1235 1167 1113 1073 1071 1078 1113 1167 1228 1347 1442 1600 1878 5516 1843 1615 1436 1343 1233 1160 1092 1058 1043 1063 1097 1149 1226 1319 1445 1590 1825 5517 1819 1574 1434 1311 1220 1155 1093 1041 1035 1055 1088 1144 1226 1319 1424 1574 1785 5518 1840 1577 1437 1321 1222 1146 1080 1043 1024 1048 1080 1140 1222 1313 1427 1577 1805 5519 1836 1574 1424 1327 1226 1150 1083 1041 1031 1050 1088 1144 1220 1311 1434 1599 1836 5520 1825 1615 1445 1327 1226 1155 1087 1054 1039 1049 1092 1155 1226 1319 1426 1590 1843 5521 1842 1613 1452 1331 1242 1167 1113 1068 1057 1063 1097 1161 1235 1331 1442 1600 1860 5522 1928 1644 1453 1346 1254 1176 1109 1084 1077 1094 1109 1189 1246 1338 1442 1617 1871 5523 1954 1671 1480 1358 1269 1194 1146 1107 1095 1102 1140 1187 1269 1358 1480 1642 1933 5524 1994 1693 1503 1393 1288 1215 1158 1128 1110 1128 1158 1215 1288 1347 1492 1678 1972 5525 2076 1759 1523 1396 1312 1227 1199 1160 1145 1160 1179 1234 1304 1396 1523 1759 2076 5526 2150 1807 1578 1435 1334 1265 1234 1191 1156 1177 1227 1281 1334 1435 1578 1807 2150 ] 5527 </LSC_SAMPLES_blue> 5528 </cell> 5529 <cell index="11" type="struct" size="[1 1]"> 5530 <name index="1" type="char" size="[1 18]"> 5531 2560x1440_TL84_100 5532 </name> 5533 <resolution index="1" type="char" size="[1 9]"> 5534 2560x1440 5535 </resolution> 5536 <illumination index="1" type="char" size="[1 4]"> 5537 TL84 5538 </illumination> 5539 <LSC_sectors index="1" type="double" size="[1 1]"> 5540 [16 ] 5541 </LSC_sectors> 5542 <LSC_No index="1" type="double" size="[1 1]"> 5543 [10 ] 5544 </LSC_No> 5545 <LSC_Xo index="1" type="double" size="[1 1]"> 5546 [15 ] 5547 </LSC_Xo> 5548 <LSC_Yo index="1" type="double" size="[1 1]"> 5549 [15 ] 5550 </LSC_Yo> 5551 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 5552 [160 160 160 160 160 160 160 160 ] 5553 </LSC_SECT_SIZE_X> 5554 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 5555 [90 90 90 90 90 90 90 90 ] 5556 </LSC_SECT_SIZE_Y> 5557 <vignetting index="1" type="double" size="[1 1]"> 5558 [100.0000 ] 5559 </vignetting> 5560 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 5561 [3341 2591 2107 1834 1644 1530 1423 1369 1358 1373 1427 1503 1623 1795 2107 2502 3277 5562 3078 2362 1976 1733 1563 1443 1358 1306 1296 1302 1347 1431 1548 1716 1953 2341 3005 5563 2886 2257 1881 1654 1498 1380 1296 1242 1230 1236 1289 1365 1485 1633 1860 2189 2791 5564 2702 2125 1807 1592 1431 1319 1239 1195 1178 1187 1224 1316 1423 1587 1776 2107 2645 5565 2578 2048 1751 1539 1392 1276 1198 1147 1126 1136 1187 1270 1376 1534 1733 2024 2527 5566 2478 2000 1693 1507 1351 1239 1144 1104 1085 1102 1149 1227 1333 1489 1676 1953 2407 5567 2385 1946 1654 1476 1316 1192 1121 1078 1049 1072 1116 1201 1306 1455 1644 1909 2341 5568 2351 1902 1633 1443 1292 1178 1104 1047 1037 1049 1099 1178 1279 1427 1623 1874 2330 5569 2298 1881 1612 1423 1286 1170 1085 1039 1024 1047 1088 1165 1270 1419 1618 1867 2288 5570 2298 1895 1618 1435 1279 1170 1092 1039 1024 1039 1090 1162 1273 1407 1612 1867 2278 5571 2351 1895 1633 1439 1289 1189 1107 1047 1034 1054 1099 1181 1289 1431 1623 1881 2309 5572 2396 1931 1665 1459 1319 1218 1131 1078 1063 1076 1124 1206 1309 1451 1649 1931 2362 5573 2478 2000 1710 1512 1358 1248 1168 1114 1095 1116 1168 1248 1347 1494 1693 1992 2454 5574 2605 2082 1764 1563 1407 1292 1218 1168 1154 1170 1212 1286 1392 1553 1751 2056 2578 5575 2760 2199 1840 1633 1459 1351 1270 1215 1204 1227 1267 1340 1459 1612 1834 2161 2760 5576 2988 2330 1946 1710 1539 1415 1340 1279 1260 1286 1330 1411 1525 1699 1924 2298 2919 5577 3235 2490 2048 1788 1607 1494 1403 1358 1340 1347 1407 1481 1607 1788 2032 2454 3215 ] 5578 </LSC_SAMPLES_red> 5579 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 5580 [3279 2544 2095 1803 1642 1520 1426 1391 1360 1371 1429 1511 1635 1794 2072 2518 3208 5581 3024 2364 1956 1727 1556 1437 1360 1305 1289 1307 1346 1432 1549 1695 1931 2334 2963 5582 2805 2228 1867 1653 1487 1371 1289 1241 1227 1237 1294 1363 1484 1635 1848 2208 2763 5583 2663 2119 1786 1586 1432 1317 1243 1183 1170 1187 1229 1307 1421 1576 1777 2072 2607 5584 2526 2043 1727 1527 1383 1269 1191 1141 1122 1136 1187 1263 1373 1520 1715 2004 2509 5585 2442 1967 1676 1496 1346 1239 1157 1105 1084 1096 1148 1227 1331 1481 1688 1946 2403 5586 2379 1926 1650 1452 1310 1205 1121 1070 1053 1073 1121 1197 1303 1449 1646 1906 2327 5587 2320 1896 1628 1440 1298 1180 1105 1052 1037 1050 1102 1180 1282 1432 1628 1867 2270 5588 2305 1881 1617 1429 1291 1174 1096 1038 1024 1044 1084 1167 1276 1418 1603 1867 2277 5589 2334 1886 1617 1437 1285 1174 1096 1044 1028 1044 1086 1163 1276 1413 1607 1867 2312 5590 2334 1896 1635 1443 1298 1187 1110 1058 1041 1055 1104 1180 1287 1426 1624 1886 2327 5591 2387 1941 1665 1472 1331 1207 1136 1087 1069 1086 1129 1209 1312 1463 1657 1916 2357 5592 2492 2004 1711 1502 1368 1254 1168 1124 1107 1122 1168 1243 1350 1493 1699 1977 2467 5593 2616 2083 1764 1569 1415 1298 1219 1167 1157 1172 1221 1294 1407 1552 1748 2060 2597 5594 2763 2202 1844 1628 1472 1348 1280 1225 1207 1225 1267 1350 1457 1610 1830 2157 2712 5595 2975 2342 1936 1707 1536 1421 1343 1289 1271 1285 1331 1415 1520 1688 1911 2284 2951 5596 3208 2501 2043 1773 1614 1493 1415 1360 1341 1360 1407 1481 1593 1773 2043 2451 3140 ] 5597 </LSC_SAMPLES_greenR> 5598 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 5599 [3317 2535 2116 1816 1657 1515 1436 1383 1372 1375 1425 1522 1632 1811 2074 2501 3216 5600 3020 2373 1975 1723 1577 1445 1357 1319 1298 1309 1362 1439 1560 1715 1959 2358 2983 5601 2835 2244 1875 1661 1500 1380 1303 1246 1231 1244 1296 1372 1491 1650 1866 2197 2793 5602 2662 2122 1798 1593 1439 1323 1246 1194 1173 1192 1237 1316 1425 1570 1789 2110 2625 5603 2518 2046 1735 1534 1393 1271 1196 1142 1127 1147 1190 1265 1380 1531 1723 2024 2493 5604 2451 1975 1695 1503 1350 1235 1158 1108 1087 1102 1149 1233 1338 1494 1688 1965 2412 5605 2388 1924 1657 1470 1321 1213 1130 1079 1055 1078 1121 1197 1312 1456 1654 1909 2343 5606 2336 1894 1636 1450 1303 1186 1110 1056 1041 1056 1103 1186 1289 1436 1628 1890 2292 5607 2321 1890 1621 1436 1285 1177 1100 1041 1024 1047 1095 1177 1280 1425 1614 1885 2307 5608 2343 1880 1625 1431 1289 1178 1100 1047 1033 1044 1093 1175 1285 1422 1618 1866 2307 5609 2350 1919 1632 1447 1307 1194 1111 1061 1046 1055 1110 1190 1293 1442 1628 1909 2321 5610 2427 1934 1672 1473 1333 1223 1142 1085 1070 1090 1135 1207 1321 1467 1657 1939 2373 5611 2501 2007 1715 1512 1370 1252 1175 1123 1113 1128 1175 1246 1352 1509 1711 1991 2468 5612 2615 2098 1764 1570 1406 1298 1223 1177 1160 1171 1223 1291 1409 1557 1772 2074 2606 5613 2782 2191 1852 1632 1473 1355 1274 1229 1213 1233 1276 1352 1467 1625 1843 2165 2741 5614 2972 2328 1934 1715 1547 1422 1343 1293 1280 1293 1340 1417 1544 1707 1929 2328 2972 5615 3244 2501 2063 1798 1625 1491 1417 1352 1343 1350 1412 1470 1614 1789 2035 2509 3202 ] 5616 </LSC_SAMPLES_greenB> 5617 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 5618 [3085 2493 2006 1775 1613 1478 1402 1349 1349 1363 1410 1469 1582 1750 2023 2443 3164 5619 2938 2350 1943 1702 1533 1418 1341 1292 1279 1299 1341 1426 1523 1714 1928 2285 2870 5620 2742 2203 1828 1645 1487 1371 1285 1246 1228 1234 1292 1356 1469 1624 1842 2165 2742 5621 2571 2109 1763 1582 1435 1313 1234 1192 1181 1186 1228 1306 1418 1582 1775 2091 2544 5622 2493 2023 1750 1533 1379 1266 1198 1148 1127 1137 1186 1266 1363 1505 1714 1990 2443 5623 2350 1928 1679 1487 1334 1240 1153 1102 1082 1097 1148 1216 1334 1478 1656 1943 2350 5624 2306 1898 1634 1460 1313 1198 1122 1073 1055 1078 1122 1198 1313 1443 1634 1884 2285 5625 2264 1884 1613 1435 1292 1181 1102 1050 1028 1050 1102 1181 1279 1418 1602 1884 2264 5626 2264 1856 1602 1410 1279 1170 1092 1041 1024 1046 1082 1175 1272 1418 1592 1856 2243 5627 2243 1870 1613 1435 1292 1181 1102 1037 1033 1041 1092 1159 1272 1418 1613 1856 2264 5628 2285 1870 1634 1460 1306 1186 1102 1064 1041 1059 1107 1181 1292 1435 1624 1870 2264 5629 2373 1943 1656 1469 1341 1210 1137 1078 1073 1082 1132 1222 1313 1452 1645 1898 2306 5630 2443 1990 1702 1505 1356 1253 1164 1127 1107 1122 1164 1253 1349 1496 1690 1959 2419 5631 2571 2074 1763 1552 1418 1292 1216 1170 1153 1159 1210 1279 1386 1542 1738 2023 2493 5632 2712 2165 1828 1624 1469 1349 1272 1228 1210 1222 1259 1341 1443 1592 1828 2146 2654 5633 2870 2285 1928 1714 1523 1402 1327 1279 1259 1285 1327 1402 1505 1667 1913 2264 2837 5634 3085 2468 2023 1775 1602 1487 1402 1349 1341 1349 1394 1487 1602 1763 1990 2443 3124 ] 5635 </LSC_SAMPLES_blue> 5636 </cell> 5637 <cell index="12" type="struct" size="[1 1]"> 5638 <name index="1" type="char" size="[1 17]"> 5639 2560x1440_TL84_70 5640 </name> 5641 <resolution index="1" type="char" size="[1 9]"> 5642 2560x1440 5643 </resolution> 5644 <illumination index="1" type="char" size="[1 4]"> 5645 TL84 5646 </illumination> 5647 <LSC_sectors index="1" type="double" size="[1 1]"> 5648 [16 ] 5649 </LSC_sectors> 5650 <LSC_No index="1" type="double" size="[1 1]"> 5651 [10 ] 5652 </LSC_No> 5653 <LSC_Xo index="1" type="double" size="[1 1]"> 5654 [15 ] 5655 </LSC_Xo> 5656 <LSC_Yo index="1" type="double" size="[1 1]"> 5657 [15 ] 5658 </LSC_Yo> 5659 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 5660 [160 160 160 160 160 160 160 160 ] 5661 </LSC_SECT_SIZE_X> 5662 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 5663 [90 90 90 90 90 90 90 90 ] 5664 </LSC_SECT_SIZE_Y> 5665 <vignetting index="1" type="double" size="[1 1]"> 5666 [70.0000 ] 5667 </vignetting> 5668 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 5669 [2339 1935 1651 1494 1381 1317 1246 1211 1205 1214 1249 1294 1364 1462 1651 1868 2294 5670 2240 1820 1596 1454 1352 1278 1223 1188 1183 1185 1214 1267 1339 1439 1577 1804 2187 5671 2161 1786 1558 1423 1328 1253 1196 1158 1150 1152 1190 1239 1317 1405 1541 1732 2090 5672 2071 1719 1529 1398 1295 1223 1167 1137 1125 1129 1153 1219 1288 1394 1503 1704 2027 5673 2013 1686 1508 1375 1281 1203 1148 1109 1093 1100 1137 1197 1267 1371 1492 1666 1973 5674 1962 1669 1477 1364 1260 1183 1110 1082 1067 1080 1115 1171 1244 1348 1462 1630 1906 5675 1907 1640 1457 1349 1239 1149 1098 1067 1042 1060 1094 1157 1229 1330 1448 1609 1872 5676 1892 1612 1447 1326 1224 1142 1088 1042 1035 1044 1083 1142 1211 1311 1437 1588 1874 5677 1853 1597 1431 1310 1220 1136 1071 1035 1024 1044 1073 1131 1205 1306 1435 1586 1844 5678 1849 1606 1433 1319 1211 1134 1076 1033 1022 1033 1074 1126 1205 1293 1428 1583 1832 5679 1880 1597 1438 1315 1214 1146 1084 1036 1027 1043 1077 1138 1214 1307 1429 1585 1846 5680 1897 1612 1453 1321 1231 1163 1098 1057 1045 1055 1091 1152 1221 1314 1439 1612 1870 5681 1934 1646 1472 1351 1250 1176 1119 1078 1063 1080 1119 1176 1240 1335 1457 1640 1915 5682 1996 1684 1492 1373 1274 1198 1148 1111 1102 1114 1142 1192 1260 1364 1482 1663 1976 5683 2067 1740 1524 1405 1294 1226 1172 1133 1126 1144 1169 1217 1294 1387 1519 1710 2067 5684 2174 1795 1571 1434 1331 1253 1207 1164 1151 1170 1198 1250 1319 1425 1553 1771 2124 5685 2265 1859 1605 1457 1351 1286 1228 1201 1189 1192 1232 1275 1351 1457 1592 1832 2250 ] 5686 </LSC_SAMPLES_red> 5687 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 5688 [2296 1899 1642 1469 1380 1309 1249 1231 1207 1212 1251 1301 1374 1462 1623 1880 2246 5689 2200 1822 1579 1449 1346 1273 1225 1187 1177 1190 1212 1268 1340 1422 1559 1799 2156 5690 2101 1763 1546 1422 1318 1244 1190 1157 1148 1153 1194 1237 1316 1406 1531 1747 2069 5691 2041 1714 1511 1393 1296 1220 1172 1126 1117 1130 1158 1212 1286 1384 1503 1676 1998 5692 1972 1682 1487 1364 1274 1196 1141 1104 1090 1099 1138 1190 1264 1358 1476 1650 1959 5693 1934 1641 1462 1354 1255 1183 1124 1084 1066 1074 1115 1171 1242 1341 1472 1624 1902 5694 1903 1623 1453 1327 1233 1161 1098 1059 1046 1062 1098 1154 1227 1324 1450 1606 1861 5695 1866 1607 1442 1324 1229 1143 1089 1046 1035 1045 1086 1143 1214 1316 1442 1582 1826 5696 1858 1598 1435 1316 1225 1140 1081 1035 1024 1041 1070 1133 1210 1306 1423 1585 1835 5697 1878 1599 1432 1321 1216 1138 1079 1039 1026 1039 1070 1127 1208 1298 1423 1582 1860 5698 1867 1598 1440 1319 1222 1144 1088 1047 1034 1044 1081 1137 1212 1303 1431 1589 1861 5699 1890 1620 1452 1332 1242 1152 1103 1066 1051 1064 1096 1154 1224 1325 1446 1599 1866 5700 1945 1650 1473 1342 1260 1182 1120 1088 1075 1086 1120 1172 1243 1334 1463 1628 1926 5701 2005 1685 1493 1378 1281 1203 1148 1110 1105 1116 1150 1199 1274 1364 1479 1666 1991 5702 2069 1742 1527 1400 1305 1224 1182 1142 1129 1142 1169 1226 1292 1385 1516 1706 2031 5703 2165 1805 1563 1432 1329 1258 1210 1173 1161 1169 1199 1254 1315 1416 1543 1760 2147 5704 2246 1867 1601 1444 1356 1285 1239 1203 1190 1203 1232 1275 1339 1444 1601 1830 2198 ] 5705 </LSC_SAMPLES_greenR> 5706 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 5707 [2322 1893 1658 1479 1393 1304 1257 1223 1218 1216 1248 1310 1372 1475 1625 1867 2251 5708 2198 1829 1595 1445 1364 1280 1223 1200 1185 1191 1227 1275 1349 1439 1582 1817 2171 5709 2123 1775 1553 1429 1330 1253 1202 1161 1152 1159 1196 1246 1322 1419 1545 1739 2091 5710 2040 1716 1521 1400 1303 1226 1174 1136 1120 1134 1166 1220 1290 1379 1514 1706 2012 5711 1966 1684 1494 1371 1283 1198 1146 1105 1094 1110 1140 1192 1271 1368 1483 1666 1946 5712 1941 1648 1479 1361 1259 1180 1124 1086 1069 1080 1116 1178 1248 1353 1472 1639 1909 5713 1910 1621 1460 1344 1244 1169 1107 1068 1047 1066 1099 1154 1235 1331 1457 1609 1874 5714 1879 1606 1449 1333 1233 1149 1093 1051 1039 1051 1087 1149 1221 1320 1442 1601 1844 5715 1871 1605 1439 1322 1219 1142 1086 1038 1024 1044 1081 1142 1214 1312 1433 1600 1859 5716 1885 1593 1439 1315 1221 1142 1084 1042 1031 1039 1077 1138 1216 1307 1433 1581 1856 5717 1880 1617 1437 1323 1231 1150 1089 1049 1038 1043 1087 1147 1218 1318 1434 1609 1856 5718 1922 1614 1459 1334 1244 1168 1109 1064 1052 1069 1102 1153 1232 1328 1446 1618 1879 5719 1952 1652 1476 1351 1261 1180 1126 1087 1081 1092 1126 1174 1245 1348 1473 1639 1926 5720 2004 1697 1492 1379 1273 1203 1152 1120 1108 1114 1152 1197 1276 1367 1499 1678 1997 5721 2083 1734 1534 1404 1306 1230 1176 1146 1135 1150 1178 1228 1301 1397 1526 1713 2053 5722 2162 1794 1561 1439 1338 1260 1209 1177 1169 1177 1207 1255 1335 1432 1557 1794 2162 5723 2271 1867 1616 1465 1366 1283 1241 1196 1192 1194 1236 1266 1357 1458 1594 1874 2242 ] 5724 </LSC_SAMPLES_greenB> 5725 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 5726 [2159 1861 1572 1446 1356 1272 1228 1193 1197 1206 1235 1264 1330 1426 1585 1825 2215 5727 2138 1811 1569 1428 1326 1256 1208 1176 1167 1182 1208 1264 1318 1438 1557 1761 2088 5728 2053 1743 1514 1415 1318 1245 1186 1162 1148 1150 1193 1231 1303 1396 1525 1713 2053 5729 1970 1706 1491 1389 1299 1216 1163 1135 1127 1129 1157 1210 1284 1389 1502 1691 1950 5730 1946 1665 1507 1369 1269 1193 1148 1111 1094 1100 1137 1193 1255 1344 1475 1638 1908 5731 1861 1609 1465 1346 1244 1184 1119 1080 1065 1075 1114 1161 1244 1338 1445 1622 1861 5732 1844 1600 1439 1334 1236 1154 1099 1062 1047 1066 1099 1154 1236 1319 1439 1587 1827 5733 1821 1597 1429 1319 1223 1144 1085 1045 1026 1045 1085 1144 1211 1303 1419 1597 1821 5734 1825 1576 1422 1298 1213 1136 1078 1038 1024 1042 1068 1141 1207 1306 1413 1576 1809 5735 1805 1584 1429 1319 1223 1144 1085 1032 1031 1036 1076 1123 1205 1303 1429 1573 1821 5736 1827 1575 1439 1334 1230 1143 1079 1052 1034 1048 1084 1138 1217 1311 1430 1575 1811 5737 1879 1622 1445 1330 1251 1155 1104 1056 1055 1061 1099 1166 1225 1314 1435 1584 1826 5738 1908 1638 1465 1344 1249 1181 1115 1090 1074 1085 1115 1181 1242 1336 1455 1612 1889 5739 1970 1677 1491 1363 1284 1197 1145 1113 1101 1103 1140 1185 1255 1355 1470 1636 1910 5740 2031 1713 1514 1396 1303 1224 1174 1145 1132 1139 1162 1218 1280 1369 1514 1698 1987 5741 2088 1761 1557 1438 1318 1242 1195 1163 1149 1169 1195 1242 1302 1399 1545 1745 2064 5742 2159 1843 1585 1446 1347 1280 1228 1193 1190 1193 1221 1280 1347 1436 1559 1825 2187 ] 5743 </LSC_SAMPLES_blue> 5744 </cell> 5745 <cell index="13" type="struct" size="[1 1]"> 5746 <name index="1" type="char" size="[1 16]"> 5747 2560x1440_HZ_100 5748 </name> 5749 <resolution index="1" type="char" size="[1 9]"> 5750 2560x1440 5751 </resolution> 5752 <illumination index="1" type="char" size="[1 2]"> 5753 HZ 5754 </illumination> 5755 <LSC_sectors index="1" type="double" size="[1 1]"> 5756 [16 ] 5757 </LSC_sectors> 5758 <LSC_No index="1" type="double" size="[1 1]"> 5759 [10 ] 5760 </LSC_No> 5761 <LSC_Xo index="1" type="double" size="[1 1]"> 5762 [15 ] 5763 </LSC_Xo> 5764 <LSC_Yo index="1" type="double" size="[1 1]"> 5765 [15 ] 5766 </LSC_Yo> 5767 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 5768 [160 160 160 160 160 160 160 160 ] 5769 </LSC_SECT_SIZE_X> 5770 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 5771 [90 90 90 90 90 90 90 90 ] 5772 </LSC_SECT_SIZE_Y> 5773 <vignetting index="1" type="double" size="[1 1]"> 5774 [100.0000 ] 5775 </vignetting> 5776 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 5777 [3288 2526 2095 1803 1640 1507 1426 1380 1374 1394 1443 1548 1697 1925 2195 2695 3524 5778 3014 2361 1958 1718 1541 1434 1345 1301 1296 1311 1358 1453 1609 1799 2070 2499 3241 5779 2782 2195 1857 1632 1462 1358 1277 1236 1225 1243 1299 1383 1517 1709 1958 2353 2987 5780 2653 2095 1780 1562 1408 1296 1216 1171 1161 1191 1240 1337 1462 1640 1872 2209 2782 5781 2490 2003 1701 1500 1353 1249 1169 1136 1123 1134 1183 1275 1405 1583 1808 2134 2695 5782 2411 1919 1648 1459 1311 1212 1130 1087 1082 1098 1153 1243 1363 1527 1753 2063 2545 5783 2321 1872 1609 1428 1284 1179 1110 1062 1047 1070 1115 1212 1334 1497 1709 1997 2490 5784 2283 1847 1598 1402 1263 1163 1089 1044 1032 1049 1103 1193 1319 1478 1680 1974 2419 5785 2260 1837 1572 1394 1254 1145 1079 1032 1024 1043 1087 1181 1304 1465 1672 1952 2419 5786 2253 1832 1583 1388 1258 1153 1080 1030 1022 1041 1096 1175 1311 1459 1680 1958 2428 5787 2268 1847 1591 1399 1270 1159 1089 1047 1029 1055 1106 1189 1314 1474 1684 1974 2454 5788 2306 1882 1613 1426 1294 1183 1115 1075 1059 1075 1125 1214 1345 1500 1705 2015 2499 5789 2386 1919 1648 1462 1319 1212 1141 1101 1087 1112 1161 1252 1369 1530 1753 2057 2583 5790 2445 1980 1688 1510 1355 1252 1181 1139 1132 1151 1205 1289 1423 1583 1813 2134 2674 5791 2603 2076 1753 1562 1414 1304 1229 1191 1187 1191 1249 1339 1465 1648 1872 2238 2828 5792 2748 2188 1832 1628 1484 1366 1294 1247 1245 1263 1326 1414 1548 1726 1952 2369 3054 5793 2899 2329 1936 1697 1548 1434 1366 1311 1304 1334 1383 1497 1644 1813 2095 2554 3335 ] 5794 </LSC_SAMPLES_red> 5795 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 5796 [3088 2404 2001 1763 1604 1471 1408 1361 1354 1359 1423 1513 1646 1832 2105 2563 3217 5797 2847 2248 1877 1657 1510 1403 1323 1283 1281 1300 1343 1429 1560 1736 1984 2355 3008 5798 2672 2111 1781 1589 1435 1333 1258 1222 1212 1225 1274 1370 1497 1657 1887 2233 2836 5799 2499 2013 1710 1533 1378 1276 1210 1161 1157 1177 1229 1313 1432 1585 1794 2111 2651 5800 2379 1929 1653 1471 1330 1238 1161 1120 1111 1134 1175 1267 1378 1536 1740 2031 2526 5801 2308 1867 1607 1438 1293 1197 1127 1076 1070 1090 1148 1229 1338 1500 1702 1979 2429 5802 2233 1818 1585 1400 1272 1169 1104 1055 1044 1063 1109 1197 1320 1465 1669 1935 2331 5803 2191 1799 1557 1394 1258 1157 1081 1041 1026 1052 1107 1189 1300 1447 1646 1908 2331 5804 2177 1799 1550 1380 1249 1150 1076 1033 1024 1046 1092 1175 1295 1441 1626 1913 2315 5805 2164 1794 1553 1378 1249 1146 1080 1042 1026 1044 1093 1169 1295 1444 1626 1887 2308 5806 2184 1809 1560 1389 1269 1161 1097 1046 1032 1057 1109 1189 1303 1459 1638 1913 2347 5807 2248 1832 1585 1417 1286 1183 1118 1081 1060 1078 1122 1210 1330 1462 1673 1929 2404 5808 2300 1882 1619 1441 1318 1212 1146 1107 1090 1113 1163 1249 1364 1506 1706 1984 2481 5809 2387 1945 1677 1484 1354 1258 1187 1142 1140 1155 1203 1288 1403 1568 1754 2067 2592 5810 2499 2013 1727 1547 1403 1305 1238 1199 1185 1203 1253 1340 1453 1615 1823 2164 2724 5811 2703 2137 1799 1604 1471 1364 1298 1262 1249 1269 1313 1411 1523 1690 1913 2292 2907 5812 2859 2270 1908 1686 1533 1441 1370 1323 1325 1333 1386 1484 1607 1790 2031 2463 3102 ] 5813 </LSC_SAMPLES_greenR> 5814 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 5815 [3092 2431 2014 1753 1605 1487 1412 1365 1358 1384 1432 1532 1666 1850 2142 2573 3295 5816 2843 2259 1894 1658 1506 1409 1334 1290 1288 1302 1355 1441 1580 1753 1996 2422 3026 5817 2660 2129 1789 1587 1441 1350 1265 1230 1223 1238 1288 1382 1509 1674 1900 2259 2831 5818 2500 2014 1719 1532 1387 1286 1213 1172 1166 1182 1236 1319 1438 1616 1812 2129 2640 5819 2406 1936 1654 1477 1345 1243 1168 1124 1120 1136 1186 1274 1395 1559 1757 2067 2536 5820 2303 1869 1620 1441 1305 1202 1136 1087 1084 1097 1153 1243 1360 1509 1723 1996 2465 5821 2245 1821 1587 1409 1283 1182 1106 1061 1053 1074 1124 1202 1332 1480 1682 1941 2414 5822 2203 1802 1562 1404 1270 1161 1094 1044 1041 1055 1106 1198 1315 1465 1662 1936 2342 5823 2182 1798 1559 1387 1256 1159 1087 1041 1024 1048 1106 1186 1302 1450 1666 1926 2326 5824 2189 1798 1562 1390 1265 1157 1086 1045 1035 1047 1110 1190 1305 1456 1654 1926 2342 5825 2209 1821 1566 1401 1274 1165 1103 1056 1038 1063 1111 1198 1322 1471 1658 1926 2381 5826 2245 1835 1598 1421 1298 1194 1124 1087 1066 1087 1135 1219 1340 1493 1690 1963 2447 5827 2288 1874 1620 1453 1324 1223 1153 1113 1103 1118 1174 1254 1376 1532 1736 2025 2500 5828 2414 1963 1670 1493 1360 1263 1194 1151 1142 1163 1213 1298 1412 1580 1780 2091 2620 5829 2526 2025 1731 1545 1421 1317 1247 1206 1194 1209 1263 1352 1468 1631 1850 2189 2754 5830 2691 2136 1802 1620 1480 1371 1302 1272 1256 1279 1329 1415 1542 1702 1931 2326 2937 5831 2854 2281 1884 1698 1545 1429 1373 1327 1312 1342 1401 1493 1620 1789 2049 2482 3205 ] 5832 </LSC_SAMPLES_greenB> 5833 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 5834 [2546 2014 1729 1527 1466 1338 1273 1255 1282 1319 1368 1490 1637 1833 2107 2477 3107 5835 2350 1929 1651 1455 1348 1309 1238 1214 1222 1247 1300 1389 1580 1762 1971 2350 2909 5836 2235 1815 1580 1421 1300 1255 1190 1167 1175 1198 1255 1358 1527 1697 1909 2263 2736 5837 2083 1729 1540 1389 1264 1190 1146 1111 1131 1160 1214 1319 1466 1637 1851 2156 2656 5838 2014 1651 1478 1358 1222 1160 1104 1085 1098 1125 1167 1273 1421 1580 1797 2083 2511 5839 1909 1622 1466 1328 1190 1131 1078 1047 1072 1078 1138 1247 1389 1567 1746 1992 2380 5840 1909 1594 1432 1282 1190 1111 1072 1024 1041 1066 1098 1214 1368 1527 1746 1992 2350 5841 1870 1580 1410 1273 1183 1091 1047 1024 1030 1053 1118 1222 1348 1502 1697 1971 2320 5842 1833 1567 1389 1264 1183 1085 1041 1018 1024 1047 1104 1198 1348 1502 1713 1929 2320 5843 1815 1567 1389 1273 1183 1098 1047 1018 1018 1047 1111 1206 1338 1490 1713 1950 2320 5844 1851 1580 1432 1282 1190 1111 1060 1036 1041 1060 1125 1214 1348 1502 1713 1971 2412 5845 1851 1594 1421 1291 1206 1125 1085 1047 1060 1085 1131 1230 1368 1527 1713 1992 2380 5846 1890 1608 1443 1309 1222 1153 1104 1098 1098 1118 1183 1291 1421 1580 1746 2060 2444 5847 1909 1637 1455 1348 1255 1183 1138 1125 1118 1146 1214 1319 1443 1608 1815 2107 2546 5848 2014 1697 1502 1378 1291 1222 1198 1160 1175 1183 1255 1368 1478 1637 1890 2182 2656 5849 2083 1762 1553 1432 1328 1264 1230 1214 1222 1255 1328 1443 1553 1729 1950 2291 2820 5850 2182 1833 1622 1478 1389 1309 1300 1273 1282 1309 1410 1490 1637 1797 2060 2444 3107 ] 5851 </LSC_SAMPLES_blue> 5852 </cell> 5853 <cell index="14" type="struct" size="[1 1]"> 5854 <name index="1" type="char" size="[1 15]"> 5855 2560x1440_HZ_70 5856 </name> 5857 <resolution index="1" type="char" size="[1 9]"> 5858 2560x1440 5859 </resolution> 5860 <illumination index="1" type="char" size="[1 2]"> 5861 HZ 5862 </illumination> 5863 <LSC_sectors index="1" type="double" size="[1 1]"> 5864 [16 ] 5865 </LSC_sectors> 5866 <LSC_No index="1" type="double" size="[1 1]"> 5867 [10 ] 5868 </LSC_No> 5869 <LSC_Xo index="1" type="double" size="[1 1]"> 5870 [15 ] 5871 </LSC_Xo> 5872 <LSC_Yo index="1" type="double" size="[1 1]"> 5873 [15 ] 5874 </LSC_Yo> 5875 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 5876 [160 160 160 160 160 160 160 160 ] 5877 </LSC_SECT_SIZE_X> 5878 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 5879 [90 90 90 90 90 90 90 90 ] 5880 </LSC_SECT_SIZE_Y> 5881 <vignetting index="1" type="double" size="[1 1]"> 5882 [70.0000 ] 5883 </vignetting> 5884 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 5885 [2301 1886 1641 1469 1378 1297 1248 1220 1220 1233 1264 1332 1426 1568 1720 2012 2467 5886 2193 1820 1580 1441 1333 1271 1211 1184 1184 1193 1223 1287 1392 1509 1671 1925 2358 5887 2083 1737 1538 1404 1296 1233 1179 1152 1146 1158 1199 1255 1345 1470 1621 1862 2237 5888 2033 1694 1506 1372 1275 1201 1146 1114 1108 1133 1169 1239 1324 1440 1584 1787 2132 5889 1943 1649 1464 1340 1245 1177 1120 1099 1090 1097 1133 1201 1294 1414 1557 1757 2104 5890 1909 1602 1437 1321 1223 1157 1097 1066 1064 1076 1119 1186 1272 1382 1529 1722 2015 5891 1856 1578 1417 1305 1209 1136 1087 1051 1040 1059 1093 1168 1256 1368 1505 1683 1991 5892 1836 1565 1415 1289 1196 1127 1073 1039 1030 1044 1087 1156 1249 1358 1488 1673 1946 5893 1822 1560 1395 1283 1190 1112 1065 1028 1024 1039 1073 1146 1237 1349 1484 1658 1950 5894 1812 1553 1402 1276 1192 1117 1064 1025 1021 1036 1080 1138 1242 1341 1488 1659 1953 5895 1814 1556 1401 1279 1196 1117 1067 1036 1021 1044 1084 1146 1237 1347 1483 1664 1963 5896 1826 1571 1407 1291 1207 1129 1083 1054 1041 1054 1092 1159 1254 1358 1487 1681 1978 5897 1863 1580 1418 1306 1214 1142 1094 1066 1056 1076 1112 1180 1260 1367 1509 1693 2017 5898 1874 1601 1428 1326 1227 1160 1112 1084 1081 1095 1136 1195 1288 1391 1534 1726 2049 5899 1949 1643 1452 1343 1254 1184 1135 1110 1110 1110 1153 1216 1299 1417 1551 1771 2117 5900 2000 1686 1479 1366 1284 1210 1166 1135 1136 1149 1195 1252 1339 1448 1576 1826 2222 5901 2029 1739 1516 1382 1301 1235 1196 1160 1157 1180 1210 1289 1382 1477 1641 1907 2335 ] 5902 </LSC_SAMPLES_red> 5903 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 5904 [2162 1795 1568 1436 1348 1266 1233 1204 1201 1202 1246 1302 1383 1493 1649 1914 2252 5905 2072 1732 1515 1390 1306 1243 1191 1168 1170 1183 1210 1266 1350 1456 1602 1815 2189 5906 2001 1670 1475 1367 1272 1210 1161 1140 1133 1142 1176 1243 1327 1425 1563 1767 2123 5907 1915 1628 1447 1346 1247 1183 1140 1105 1105 1120 1158 1216 1296 1393 1518 1707 2032 5908 1857 1588 1423 1314 1225 1166 1112 1084 1079 1098 1126 1194 1269 1373 1498 1672 1972 5909 1827 1558 1402 1302 1206 1143 1094 1055 1052 1068 1114 1173 1248 1358 1485 1651 1923 5910 1786 1532 1396 1279 1197 1126 1081 1044 1036 1052 1087 1154 1243 1339 1470 1630 1864 5911 1763 1525 1379 1281 1191 1121 1065 1036 1024 1047 1091 1152 1231 1329 1458 1617 1875 5912 1755 1528 1376 1271 1185 1116 1062 1030 1024 1042 1077 1141 1229 1326 1443 1625 1866 5913 1741 1521 1376 1266 1183 1110 1064 1037 1024 1039 1077 1133 1227 1327 1441 1599 1857 5914 1747 1524 1374 1269 1195 1119 1075 1035 1024 1046 1087 1146 1227 1333 1442 1612 1877 5915 1780 1529 1383 1283 1200 1129 1085 1060 1043 1057 1089 1155 1241 1323 1460 1610 1903 5916 1796 1549 1393 1287 1213 1142 1098 1072 1058 1077 1114 1177 1256 1346 1469 1633 1937 5917 1829 1573 1419 1303 1225 1166 1118 1087 1089 1099 1134 1194 1270 1377 1484 1672 1987 5918 1871 1593 1431 1330 1244 1185 1142 1118 1108 1122 1157 1217 1288 1389 1510 1712 2040 5919 1967 1647 1453 1345 1273 1208 1169 1149 1140 1155 1182 1250 1317 1417 1545 1767 2115 5920 2001 1695 1495 1373 1288 1240 1199 1170 1176 1179 1213 1277 1351 1458 1591 1839 2171 ] 5921 </LSC_SAMPLES_greenR> 5922 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 5923 [2165 1815 1578 1428 1349 1280 1236 1208 1205 1224 1254 1319 1400 1507 1678 1921 2306 5924 2068 1741 1529 1391 1302 1248 1202 1174 1176 1185 1221 1276 1367 1470 1612 1867 2202 5925 1992 1685 1481 1365 1278 1225 1168 1146 1144 1154 1189 1254 1338 1440 1573 1787 2120 5926 1916 1629 1454 1345 1256 1192 1143 1116 1114 1125 1165 1223 1302 1420 1533 1722 2023 5927 1878 1594 1424 1320 1238 1171 1120 1087 1087 1100 1136 1201 1285 1393 1513 1701 1979 5928 1824 1560 1413 1305 1217 1148 1103 1066 1066 1076 1119 1186 1269 1366 1503 1666 1951 5929 1795 1534 1398 1288 1208 1139 1084 1050 1045 1063 1101 1159 1254 1353 1481 1636 1930 5930 1772 1527 1384 1290 1202 1125 1078 1038 1039 1049 1090 1161 1245 1346 1472 1641 1884 5931 1759 1527 1383 1277 1191 1125 1073 1037 1024 1045 1092 1152 1236 1335 1478 1635 1875 5932 1761 1524 1384 1277 1198 1121 1069 1040 1033 1041 1093 1153 1236 1338 1465 1632 1884 5933 1767 1534 1379 1280 1200 1122 1080 1045 1030 1051 1089 1155 1245 1344 1460 1622 1904 5934 1777 1531 1394 1286 1211 1140 1091 1066 1048 1066 1101 1164 1250 1352 1474 1638 1938 5935 1786 1543 1394 1298 1219 1153 1105 1077 1070 1082 1125 1182 1267 1369 1494 1667 1951 5936 1850 1588 1413 1311 1231 1170 1125 1096 1090 1106 1143 1202 1278 1388 1506 1691 2008 5937 1892 1602 1434 1329 1260 1196 1151 1125 1117 1127 1166 1228 1302 1403 1532 1732 2062 5938 1958 1646 1455 1359 1281 1214 1173 1157 1147 1163 1198 1253 1334 1428 1559 1793 2138 5939 1998 1703 1476 1383 1299 1230 1203 1174 1164 1187 1226 1285 1361 1457 1605 1853 2243 ] 5940 </LSC_SAMPLES_greenB> 5941 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 5942 [1782 1504 1355 1244 1232 1152 1114 1110 1138 1166 1198 1283 1375 1493 1651 1850 2175 5943 1710 1487 1333 1220 1166 1160 1116 1104 1116 1135 1171 1230 1367 1478 1591 1811 2117 5944 1674 1436 1309 1222 1153 1140 1099 1088 1099 1117 1159 1233 1354 1460 1581 1791 2049 5945 1596 1399 1303 1220 1144 1103 1079 1057 1080 1104 1144 1222 1328 1437 1566 1744 2036 5946 1572 1359 1272 1213 1125 1093 1058 1050 1066 1088 1119 1200 1308 1412 1547 1715 1960 5947 1512 1354 1279 1202 1110 1080 1047 1027 1054 1057 1105 1191 1295 1418 1523 1663 1885 5948 1527 1343 1261 1171 1121 1071 1050 1013 1034 1054 1075 1170 1288 1396 1537 1679 1879 5949 1505 1339 1249 1170 1120 1057 1032 1019 1028 1048 1101 1184 1276 1381 1503 1670 1867 5950 1478 1330 1232 1164 1122 1053 1028 1015 1024 1044 1090 1163 1279 1383 1520 1638 1870 5951 1460 1328 1230 1170 1120 1064 1032 1013 1016 1042 1094 1169 1267 1370 1517 1653 1867 5952 1481 1331 1261 1171 1121 1071 1038 1025 1034 1048 1102 1170 1269 1373 1509 1661 1929 5953 1466 1330 1240 1169 1125 1074 1053 1027 1042 1063 1098 1175 1276 1383 1494 1663 1885 5954 1475 1324 1242 1170 1125 1086 1058 1062 1066 1082 1133 1217 1308 1412 1503 1695 1908 5955 1463 1324 1231 1184 1137 1096 1073 1070 1067 1090 1144 1222 1307 1412 1535 1704 1951 5956 1508 1343 1244 1185 1145 1109 1106 1082 1099 1103 1159 1242 1311 1408 1565 1727 1989 5957 1516 1358 1254 1201 1149 1120 1108 1104 1116 1142 1196 1278 1344 1451 1574 1766 2052 5958 1527 1369 1271 1204 1167 1127 1138 1126 1138 1158 1234 1283 1375 1464 1614 1825 2175 ] 5959 </LSC_SAMPLES_blue> 5960 </cell> 5961 <cell index="1" type="struct" size="[1 1]"> 5962 <name index="1" type="char" size="[1 15]"> 5963 1920x1080_A_100 5964 </name> 5965 <resolution index="1" type="char" size="[1 9]"> 5966 1920x1080 5967 </resolution> 5968 <illumination index="1" type="char" size="[1 1]"> 5969 A 5970 </illumination> 5971 <LSC_sectors index="1" type="double" size="[1 1]"> 5972 [16 ] 5973 </LSC_sectors> 5974 <LSC_No index="1" type="double" size="[1 1]"> 5975 [10 ] 5976 </LSC_No> 5977 <LSC_Xo index="1" type="double" size="[1 1]"> 5978 [15 ] 5979 </LSC_Xo> 5980 <LSC_Yo index="1" type="double" size="[1 1]"> 5981 [15 ] 5982 </LSC_Yo> 5983 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 5984 [120 120 120 120 120 120 120 120 ] 5985 </LSC_SECT_SIZE_X> 5986 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 5987 [67 68 67 68 67 68 67 68 ] 5988 </LSC_SECT_SIZE_Y> 5989 <vignetting index="1" type="double" size="[1 1]"> 5990 [100.0000 ] 5991 </vignetting> 5992 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 5993 [3005 2199 1823 1616 1466 1375 1314 1275 1251 1278 1311 1365 1484 1625 1829 2223 3051 5994 2658 2007 1709 1518 1388 1297 1225 1194 1184 1201 1230 1309 1391 1526 1728 2041 2682 5995 2411 1869 1608 1431 1311 1223 1161 1128 1114 1133 1170 1228 1323 1444 1629 1905 2441 5996 2240 1775 1549 1375 1256 1177 1120 1081 1070 1087 1126 1184 1278 1391 1561 1812 2283 5997 2167 1733 1518 1362 1248 1161 1097 1058 1044 1066 1105 1159 1248 1378 1526 1769 2167 5998 2121 1718 1510 1359 1241 1152 1087 1045 1035 1053 1097 1166 1246 1362 1522 1754 2143 5999 2091 1738 1526 1356 1241 1159 1091 1045 1028 1042 1089 1161 1259 1375 1533 1769 2143 6000 2106 1738 1522 1368 1246 1159 1091 1045 1028 1047 1095 1166 1262 1381 1541 1785 2151 6001 2084 1743 1522 1372 1246 1154 1089 1045 1024 1045 1099 1166 1264 1378 1537 1769 2151 6002 2113 1733 1514 1365 1248 1159 1089 1038 1024 1047 1087 1166 1267 1384 1537 1775 2128 6003 2113 1723 1514 1362 1243 1152 1085 1045 1028 1042 1087 1161 1256 1372 1537 1775 2128 6004 2136 1738 1514 1365 1241 1154 1089 1049 1036 1053 1097 1161 1251 1375 1533 1780 2159 6005 2167 1743 1529 1365 1251 1157 1099 1064 1051 1066 1109 1170 1264 1381 1541 1796 2207 6006 2257 1796 1561 1391 1270 1194 1126 1095 1078 1089 1137 1198 1292 1407 1578 1834 2300 6007 2431 1886 1629 1448 1326 1241 1177 1141 1128 1137 1180 1251 1341 1462 1643 1935 2492 6008 2694 2062 1749 1537 1404 1317 1251 1213 1201 1213 1254 1320 1424 1557 1754 2091 2756 6009 3051 2265 1875 1657 1506 1394 1329 1297 1292 1297 1338 1397 1506 1661 1898 2300 3131 ] 6010 </LSC_SAMPLES_red> 6011 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 6012 [2821 2073 1744 1545 1421 1334 1277 1246 1236 1250 1290 1360 1432 1571 1761 2102 2885 6013 2521 1892 1625 1454 1338 1265 1210 1178 1162 1176 1220 1271 1355 1471 1657 1941 2521 6014 2265 1769 1530 1375 1275 1195 1141 1119 1104 1121 1153 1206 1286 1400 1565 1820 2306 6015 2108 1682 1473 1327 1232 1153 1098 1070 1066 1075 1113 1162 1248 1350 1506 1736 2150 6016 2018 1653 1454 1311 1212 1138 1089 1045 1035 1058 1090 1151 1234 1336 1488 1690 2056 6017 1992 1642 1437 1313 1210 1139 1079 1039 1028 1042 1087 1146 1236 1334 1473 1686 2034 6018 1971 1639 1459 1320 1220 1136 1079 1042 1025 1048 1092 1155 1234 1345 1488 1694 2034 6019 1976 1657 1462 1329 1222 1143 1082 1047 1024 1045 1095 1155 1244 1353 1497 1705 2034 6020 1992 1657 1456 1327 1228 1151 1084 1042 1024 1039 1095 1158 1246 1355 1497 1705 2045 6021 1981 1653 1459 1320 1224 1138 1079 1039 1021 1042 1090 1153 1238 1353 1500 1701 2029 6022 1997 1639 1454 1320 1216 1141 1078 1042 1027 1044 1090 1155 1234 1343 1488 1698 2040 6023 2013 1646 1445 1315 1208 1141 1084 1045 1030 1052 1089 1150 1230 1338 1488 1698 2040 6024 2029 1657 1454 1317 1216 1144 1093 1058 1047 1060 1097 1151 1240 1343 1491 1717 2090 6025 2125 1694 1485 1343 1236 1158 1114 1081 1064 1082 1118 1175 1254 1362 1524 1744 2168 6026 2306 1781 1549 1385 1280 1210 1157 1127 1119 1129 1166 1222 1306 1418 1581 1842 2342 6027 2538 1946 1657 1482 1362 1280 1228 1195 1176 1197 1236 1295 1377 1509 1686 1986 2616 6028 2896 2137 1785 1591 1440 1350 1308 1267 1260 1271 1315 1372 1468 1601 1802 2180 2964 ] 6029 </LSC_SAMPLES_greenR> 6030 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 6031 [2901 2084 1738 1573 1408 1338 1282 1245 1238 1249 1293 1348 1448 1579 1778 2125 2912 6032 2534 1898 1623 1461 1336 1267 1211 1181 1166 1177 1215 1278 1367 1478 1669 1941 2551 6033 2270 1762 1541 1385 1269 1196 1145 1114 1109 1117 1154 1207 1293 1408 1576 1812 2319 6034 2102 1688 1478 1329 1221 1156 1101 1073 1064 1076 1107 1170 1253 1353 1514 1726 2173 6035 2024 1655 1456 1313 1211 1145 1084 1051 1037 1052 1096 1154 1232 1336 1490 1699 2084 6036 1992 1644 1453 1315 1213 1134 1081 1044 1027 1042 1085 1151 1228 1336 1481 1695 2040 6037 1987 1651 1461 1324 1219 1145 1082 1042 1028 1045 1090 1156 1242 1348 1493 1703 2040 6038 1987 1662 1473 1334 1226 1145 1084 1044 1025 1049 1093 1158 1247 1360 1499 1714 2045 6039 1992 1673 1470 1336 1226 1152 1088 1039 1024 1045 1090 1165 1249 1355 1505 1710 2029 6040 1982 1669 1464 1327 1226 1139 1082 1038 1027 1046 1095 1158 1242 1350 1496 1707 2024 6041 1987 1644 1459 1320 1219 1142 1076 1038 1020 1046 1090 1151 1240 1353 1496 1703 2040 6042 2008 1651 1450 1315 1215 1140 1078 1048 1030 1052 1090 1147 1232 1345 1487 1707 2051 6043 2045 1655 1464 1318 1223 1145 1095 1057 1045 1058 1101 1158 1238 1348 1505 1714 2084 6044 2119 1699 1493 1343 1238 1163 1114 1079 1068 1084 1117 1170 1251 1362 1523 1746 2167 6045 2284 1787 1560 1395 1291 1209 1156 1129 1110 1125 1161 1221 1304 1431 1586 1829 2362 6046 2518 1936 1662 1484 1360 1276 1225 1192 1181 1190 1232 1291 1372 1499 1684 1982 2649 6047 2890 2131 1778 1583 1450 1355 1306 1265 1255 1269 1309 1367 1467 1606 1821 2180 2980 ] 6048 </LSC_SAMPLES_greenB> 6049 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 6050 [2658 1958 1691 1519 1378 1305 1254 1207 1200 1227 1240 1313 1395 1529 1704 2029 2722 6051 2325 1800 1583 1422 1305 1233 1181 1145 1151 1163 1194 1240 1337 1459 1606 1860 2375 6052 2067 1691 1488 1345 1254 1175 1127 1105 1094 1100 1139 1194 1268 1378 1540 1744 2232 6053 1976 1629 1450 1313 1207 1139 1089 1053 1053 1063 1100 1151 1240 1337 1478 1666 2086 6054 1892 1595 1422 1298 1200 1133 1084 1043 1033 1053 1094 1151 1213 1337 1478 1654 2011 6055 1924 1595 1431 1290 1200 1127 1078 1043 1024 1043 1089 1145 1213 1345 1459 1641 1976 6056 1876 1606 1450 1313 1220 1133 1073 1033 1029 1048 1094 1163 1233 1337 1478 1641 1958 6057 1908 1606 1459 1321 1213 1139 1089 1038 1019 1048 1100 1169 1254 1361 1488 1691 2011 6058 1908 1618 1459 1321 1220 1139 1089 1043 1024 1048 1094 1169 1254 1337 1488 1691 1993 6059 1860 1629 1450 1313 1207 1139 1089 1038 1024 1043 1094 1157 1254 1345 1478 1666 1993 6060 1892 1618 1431 1298 1200 1139 1078 1038 1019 1033 1094 1151 1240 1337 1469 1666 1993 6061 1892 1606 1431 1305 1207 1122 1078 1043 1033 1053 1089 1157 1233 1337 1459 1654 2011 6062 1941 1606 1431 1305 1207 1139 1084 1043 1043 1058 1084 1163 1227 1337 1459 1666 2029 6063 2011 1641 1459 1313 1227 1145 1105 1068 1058 1073 1111 1169 1240 1345 1488 1691 2106 6064 2189 1704 1519 1353 1247 1181 1139 1105 1094 1105 1151 1213 1276 1387 1550 1772 2255 6065 2350 1830 1606 1450 1321 1247 1194 1163 1157 1169 1200 1268 1353 1488 1618 1908 2480 6066 2626 2029 1704 1540 1422 1321 1283 1254 1247 1254 1298 1353 1413 1583 1772 2106 2756 ] 6067 </LSC_SAMPLES_blue> 6068 </cell> 6069 <cell index="2" type="struct" size="[1 1]"> 6070 <name index="1" type="char" size="[1 14]"> 6071 1920x1080_A_70 6072 </name> 6073 <resolution index="1" type="char" size="[1 9]"> 6074 1920x1080 6075 </resolution> 6076 <illumination index="1" type="char" size="[1 1]"> 6077 A 6078 </illumination> 6079 <LSC_sectors index="1" type="double" size="[1 1]"> 6080 [16 ] 6081 </LSC_sectors> 6082 <LSC_No index="1" type="double" size="[1 1]"> 6083 [10 ] 6084 </LSC_No> 6085 <LSC_Xo index="1" type="double" size="[1 1]"> 6086 [15 ] 6087 </LSC_Xo> 6088 <LSC_Yo index="1" type="double" size="[1 1]"> 6089 [15 ] 6090 </LSC_Yo> 6091 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 6092 [120 120 120 120 120 120 120 120 ] 6093 </LSC_SECT_SIZE_X> 6094 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 6095 [67 68 67 68 67 68 67 68 ] 6096 </LSC_SECT_SIZE_Y> 6097 <vignetting index="1" type="double" size="[1 1]"> 6098 [70.0000 ] 6099 </vignetting> 6100 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 6101 [2104 1642 1428 1317 1232 1183 1151 1128 1110 1130 1148 1175 1247 1324 1433 1660 2136 6102 1934 1546 1379 1273 1200 1149 1104 1086 1081 1093 1108 1159 1203 1280 1395 1573 1951 6103 1806 1479 1331 1230 1163 1110 1072 1052 1042 1056 1080 1115 1173 1242 1350 1507 1828 6104 1717 1435 1311 1207 1137 1091 1055 1029 1021 1035 1061 1097 1157 1222 1321 1466 1749 6105 1692 1427 1307 1217 1150 1094 1051 1024 1013 1032 1059 1092 1150 1231 1313 1456 1692 6106 1679 1434 1317 1230 1157 1100 1055 1025 1018 1032 1065 1113 1162 1233 1328 1463 1697 6107 1672 1465 1344 1239 1168 1117 1069 1034 1020 1031 1067 1119 1186 1256 1351 1491 1714 6108 1694 1473 1348 1258 1180 1123 1075 1040 1026 1042 1079 1130 1195 1269 1365 1513 1731 6109 1680 1480 1350 1263 1182 1121 1075 1042 1024 1042 1085 1132 1199 1269 1364 1502 1734 6110 1700 1469 1341 1255 1182 1123 1073 1033 1022 1042 1071 1130 1200 1272 1362 1504 1712 6111 1690 1452 1333 1245 1171 1110 1063 1034 1020 1031 1065 1119 1183 1253 1354 1495 1702 6112 1691 1451 1321 1236 1157 1102 1057 1028 1019 1032 1065 1109 1167 1245 1338 1485 1709 6113 1692 1435 1317 1220 1152 1090 1053 1030 1020 1032 1063 1103 1164 1234 1327 1478 1723 6114 1729 1452 1321 1222 1149 1106 1061 1042 1029 1037 1071 1111 1169 1236 1335 1484 1763 6115 1820 1493 1350 1245 1176 1126 1087 1064 1055 1060 1089 1136 1189 1258 1361 1531 1866 6116 1960 1589 1412 1290 1214 1167 1127 1104 1096 1104 1129 1169 1232 1306 1416 1611 2005 6117 2136 1691 1469 1349 1266 1200 1164 1147 1146 1147 1171 1203 1266 1353 1487 1717 2192 ] 6118 </LSC_SAMPLES_red> 6119 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 6120 [1975 1548 1367 1259 1194 1148 1118 1102 1097 1106 1130 1171 1203 1280 1379 1570 2020 6121 1834 1458 1312 1219 1158 1120 1090 1072 1061 1070 1099 1126 1172 1234 1338 1496 1834 6122 1696 1400 1267 1182 1131 1085 1053 1043 1033 1045 1064 1095 1140 1204 1296 1440 1727 6123 1615 1361 1247 1165 1115 1069 1035 1018 1018 1023 1048 1077 1130 1186 1274 1404 1647 6124 1575 1361 1251 1171 1116 1072 1043 1011 1005 1024 1045 1085 1136 1194 1281 1391 1605 6125 1577 1371 1254 1188 1129 1088 1048 1019 1011 1022 1055 1094 1153 1207 1285 1407 1611 6126 1576 1381 1285 1206 1149 1095 1057 1031 1018 1037 1070 1113 1162 1229 1310 1427 1627 6127 1590 1404 1295 1221 1157 1107 1066 1041 1022 1040 1079 1119 1178 1243 1326 1445 1637 6128 1605 1407 1292 1221 1165 1118 1070 1039 1024 1036 1081 1125 1182 1248 1328 1448 1649 6129 1594 1401 1293 1213 1159 1102 1063 1034 1019 1037 1074 1118 1172 1243 1328 1442 1632 6130 1597 1381 1280 1206 1145 1100 1056 1031 1019 1033 1068 1113 1162 1227 1310 1430 1631 6131 1594 1374 1261 1191 1127 1089 1052 1025 1013 1032 1057 1098 1147 1212 1298 1417 1615 6132 1584 1364 1251 1177 1120 1079 1048 1024 1016 1026 1051 1085 1142 1200 1283 1413 1632 6133 1629 1370 1256 1180 1119 1074 1050 1029 1016 1030 1053 1089 1135 1197 1289 1411 1662 6134 1727 1409 1283 1191 1135 1099 1068 1051 1047 1053 1076 1109 1158 1220 1309 1457 1754 6135 1847 1499 1338 1243 1178 1133 1106 1087 1074 1089 1113 1147 1191 1265 1361 1531 1904 6136 2027 1596 1399 1296 1210 1162 1145 1120 1119 1124 1151 1181 1234 1304 1412 1628 2075 ] 6137 </LSC_SAMPLES_greenR> 6138 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 6139 [2030 1556 1362 1281 1183 1152 1123 1101 1099 1104 1132 1160 1217 1287 1393 1587 2038 6140 1844 1462 1310 1226 1156 1122 1091 1074 1065 1071 1094 1132 1183 1240 1348 1496 1857 6141 1700 1394 1276 1191 1126 1085 1057 1038 1037 1041 1065 1096 1147 1211 1305 1434 1736 6142 1611 1365 1251 1167 1105 1071 1037 1021 1016 1024 1043 1084 1134 1188 1281 1396 1666 6143 1580 1362 1253 1173 1115 1080 1038 1017 1006 1018 1050 1088 1135 1194 1283 1399 1627 6144 1577 1372 1268 1191 1131 1082 1049 1023 1010 1022 1053 1099 1146 1210 1292 1415 1615 6145 1589 1391 1287 1210 1148 1104 1060 1031 1021 1034 1068 1114 1170 1232 1315 1435 1631 6146 1598 1409 1305 1226 1161 1110 1068 1038 1023 1044 1077 1122 1180 1250 1328 1453 1645 6147 1606 1421 1304 1230 1164 1119 1074 1036 1024 1042 1076 1131 1185 1248 1335 1452 1636 6148 1594 1415 1297 1219 1161 1103 1066 1033 1025 1041 1078 1122 1177 1241 1325 1446 1628 6149 1589 1385 1285 1206 1148 1101 1054 1027 1012 1035 1068 1109 1168 1236 1317 1435 1631 6150 1590 1378 1265 1191 1133 1089 1046 1027 1013 1032 1058 1095 1150 1218 1297 1424 1624 6151 1597 1362 1260 1177 1126 1080 1049 1022 1015 1024 1055 1091 1140 1204 1295 1411 1627 6152 1624 1374 1263 1180 1121 1078 1049 1027 1020 1031 1052 1084 1132 1197 1288 1412 1661 6153 1710 1414 1292 1200 1145 1098 1067 1052 1039 1049 1072 1108 1156 1231 1314 1448 1769 6154 1832 1492 1342 1245 1176 1130 1103 1085 1078 1083 1110 1143 1187 1257 1360 1527 1928 6155 2023 1591 1393 1289 1219 1166 1144 1119 1114 1123 1146 1177 1233 1308 1427 1628 2086 ] 6156 </LSC_SAMPLES_greenB> 6157 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 6158 [1860 1462 1325 1237 1158 1124 1098 1067 1065 1085 1086 1130 1173 1246 1335 1515 1906 6159 1692 1387 1278 1193 1129 1092 1064 1042 1050 1058 1075 1099 1156 1224 1297 1434 1728 6160 1548 1338 1233 1157 1112 1067 1041 1030 1024 1025 1051 1084 1125 1185 1275 1380 1672 6161 1514 1318 1226 1153 1092 1055 1026 1002 1005 1012 1036 1066 1123 1174 1251 1347 1599 6162 1477 1313 1224 1160 1105 1068 1038 1009 1003 1019 1048 1084 1117 1194 1273 1361 1570 6163 1524 1331 1248 1168 1120 1076 1047 1023 1007 1023 1057 1093 1132 1217 1273 1370 1564 6164 1500 1353 1277 1200 1149 1092 1051 1023 1021 1037 1072 1120 1161 1222 1302 1383 1566 6165 1535 1361 1292 1214 1149 1104 1073 1033 1017 1043 1083 1133 1188 1251 1318 1433 1618 6166 1538 1374 1295 1216 1157 1106 1075 1040 1024 1045 1080 1135 1190 1231 1321 1436 1607 6167 1497 1381 1284 1207 1143 1104 1073 1033 1022 1038 1078 1121 1188 1236 1309 1412 1604 6168 1513 1363 1260 1186 1130 1098 1057 1027 1012 1023 1072 1109 1168 1222 1293 1404 1594 6169 1498 1340 1248 1182 1126 1071 1047 1023 1016 1032 1057 1104 1151 1210 1273 1380 1592 6170 1515 1322 1232 1166 1111 1073 1038 1009 1013 1024 1038 1096 1129 1194 1256 1371 1584 6171 1541 1328 1234 1153 1110 1061 1041 1016 1010 1021 1046 1083 1123 1181 1259 1368 1614 6172 1639 1348 1258 1164 1106 1072 1051 1030 1024 1030 1062 1101 1131 1193 1284 1402 1689 6173 1710 1410 1297 1216 1143 1105 1075 1058 1056 1063 1081 1123 1170 1248 1306 1470 1805 6174 1838 1515 1335 1254 1195 1137 1123 1109 1107 1109 1136 1165 1187 1290 1388 1573 1929 ] 6175 </LSC_SAMPLES_blue> 6176 </cell> 6177 <cell index="3" type="struct" size="[1 1]"> 6178 <name index="1" type="char" size="[1 17]"> 6179 1920x1080_D50_100 6180 </name> 6181 <resolution index="1" type="char" size="[1 9]"> 6182 1920x1080 6183 </resolution> 6184 <illumination index="1" type="char" size="[1 3]"> 6185 D50 6186 </illumination> 6187 <LSC_sectors index="1" type="double" size="[1 1]"> 6188 [16 ] 6189 </LSC_sectors> 6190 <LSC_No index="1" type="double" size="[1 1]"> 6191 [10 ] 6192 </LSC_No> 6193 <LSC_Xo index="1" type="double" size="[1 1]"> 6194 [15 ] 6195 </LSC_Xo> 6196 <LSC_Yo index="1" type="double" size="[1 1]"> 6197 [15 ] 6198 </LSC_Yo> 6199 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 6200 [120 120 120 120 120 120 120 120 ] 6201 </LSC_SECT_SIZE_X> 6202 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 6203 [67 68 67 68 67 68 67 68 ] 6204 </LSC_SECT_SIZE_Y> 6205 <vignetting index="1" type="double" size="[1 1]"> 6206 [100.0000 ] 6207 </vignetting> 6208 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 6209 [3040 2329 1938 1699 1544 1458 1369 1343 1319 1349 1395 1437 1544 1699 1925 2329 3072 6210 2831 2139 1828 1631 1473 1382 1325 1283 1283 1289 1325 1395 1488 1631 1828 2155 2888 6211 2578 2019 1729 1544 1423 1325 1261 1224 1208 1229 1278 1356 1437 1553 1761 2048 2602 6212 2348 1900 1650 1488 1369 1278 1213 1169 1155 1174 1224 1289 1375 1496 1669 1938 2387 6213 2256 1828 1587 1430 1325 1229 1160 1137 1111 1119 1164 1239 1319 1444 1613 1851 2256 6214 2171 1772 1544 1388 1272 1193 1119 1077 1066 1077 1128 1188 1278 1395 1561 1783 2171 6215 2077 1709 1512 1362 1256 1160 1098 1046 1031 1050 1094 1155 1261 1369 1512 1740 2123 6216 2077 1689 1496 1356 1239 1146 1090 1035 1017 1039 1086 1150 1250 1349 1504 1729 2077 6217 2063 1729 1512 1356 1250 1155 1086 1039 1024 1042 1094 1174 1261 1369 1528 1761 2093 6218 2093 1761 1536 1395 1272 1174 1115 1062 1046 1066 1115 1188 1278 1382 1561 1794 2139 6219 2171 1794 1587 1423 1301 1203 1132 1090 1077 1098 1141 1213 1313 1430 1595 1828 2221 6220 2256 1839 1622 1444 1325 1234 1174 1128 1111 1124 1183 1234 1337 1481 1631 1863 2292 6221 2329 1875 1641 1466 1356 1267 1198 1160 1141 1155 1208 1267 1369 1496 1669 1925 2329 6222 2447 1912 1679 1512 1388 1295 1229 1193 1164 1188 1234 1295 1395 1512 1679 1964 2468 6223 2578 1992 1719 1544 1409 1319 1261 1229 1203 1224 1267 1331 1423 1553 1740 2034 2578 6224 2777 2093 1794 1604 1458 1343 1301 1261 1250 1261 1307 1369 1466 1604 1794 2108 2831 6225 3040 2256 1887 1650 1504 1416 1349 1301 1301 1313 1337 1423 1528 1669 1875 2310 3072 ] 6226 </LSC_SAMPLES_red> 6227 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 6228 [3072 2234 1837 1670 1518 1430 1355 1334 1330 1344 1365 1422 1531 1659 1870 2225 3054 6229 2745 2064 1767 1583 1466 1380 1313 1284 1268 1290 1323 1380 1470 1603 1792 2081 2760 6230 2505 1940 1698 1518 1410 1323 1262 1232 1220 1229 1265 1323 1414 1536 1703 1970 2518 6231 2294 1843 1623 1458 1344 1271 1211 1178 1165 1181 1217 1281 1362 1475 1638 1870 2325 6232 2159 1761 1550 1410 1297 1223 1165 1120 1112 1129 1170 1226 1313 1414 1569 1805 2187 6233 2048 1698 1500 1358 1256 1178 1122 1077 1064 1082 1127 1189 1271 1373 1518 1738 2081 6234 2016 1659 1462 1327 1229 1152 1082 1053 1030 1051 1100 1155 1244 1341 1483 1692 2024 6235 1962 1644 1450 1320 1214 1134 1077 1034 1016 1036 1087 1147 1229 1334 1475 1670 1993 6236 1977 1649 1466 1334 1226 1147 1084 1047 1024 1045 1096 1152 1244 1355 1487 1692 2024 6237 2016 1692 1492 1362 1256 1176 1108 1066 1051 1071 1120 1181 1262 1376 1527 1732 2064 6238 2107 1749 1531 1391 1290 1203 1144 1098 1082 1103 1147 1211 1297 1414 1559 1767 2124 6239 2159 1780 1559 1422 1317 1238 1170 1139 1117 1137 1181 1241 1323 1438 1593 1811 2196 6240 2254 1811 1593 1454 1344 1262 1203 1162 1149 1165 1206 1268 1358 1479 1618 1870 2284 6241 2335 1863 1638 1479 1362 1287 1235 1195 1181 1189 1232 1297 1380 1500 1665 1897 2367 6242 2481 1926 1670 1505 1384 1303 1262 1220 1206 1223 1262 1313 1414 1522 1698 1970 2481 6243 2647 2032 1738 1541 1418 1337 1287 1253 1235 1253 1287 1355 1438 1573 1755 2056 2716 6244 2949 2150 1805 1593 1454 1376 1327 1290 1284 1293 1320 1399 1470 1618 1817 2196 2949 ] 6245 </LSC_SAMPLES_greenR> 6246 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 6247 [3054 2238 1854 1659 1527 1418 1366 1328 1324 1335 1373 1430 1518 1675 1854 2257 3036 6248 2747 2068 1784 1588 1467 1377 1321 1295 1279 1288 1321 1396 1488 1617 1790 2102 2747 6249 2472 1959 1697 1522 1411 1328 1272 1230 1224 1236 1272 1342 1426 1536 1725 1967 2508 6250 2297 1854 1617 1475 1352 1269 1210 1175 1164 1180 1222 1282 1366 1483 1643 1881 2349 6251 2163 1778 1573 1411 1298 1227 1167 1121 1112 1136 1177 1236 1311 1422 1588 1809 2219 6252 2060 1708 1509 1363 1266 1185 1124 1084 1073 1088 1129 1196 1276 1377 1527 1742 2085 6253 1997 1659 1471 1331 1227 1154 1093 1053 1028 1057 1098 1167 1248 1345 1488 1686 2020 6254 1982 1648 1458 1321 1227 1141 1082 1038 1020 1043 1084 1156 1242 1345 1483 1691 2012 6255 1982 1675 1479 1324 1239 1151 1093 1045 1024 1049 1098 1161 1248 1359 1500 1713 2020 6256 2020 1697 1496 1363 1257 1175 1116 1066 1055 1077 1119 1180 1269 1384 1522 1731 2068 6257 2077 1742 1536 1399 1288 1207 1144 1102 1086 1102 1154 1210 1301 1422 1564 1784 2136 6258 2181 1784 1568 1426 1314 1227 1183 1134 1119 1139 1180 1245 1338 1454 1593 1815 2209 6259 2247 1835 1597 1458 1345 1260 1205 1167 1151 1167 1210 1269 1359 1479 1633 1861 2267 6260 2339 1881 1643 1488 1363 1291 1230 1191 1185 1193 1239 1291 1381 1492 1664 1930 2371 6261 2472 1930 1680 1514 1396 1318 1257 1219 1210 1227 1260 1324 1407 1527 1697 1967 2520 6262 2662 2028 1736 1554 1434 1338 1285 1251 1239 1257 1301 1352 1442 1568 1748 2060 2747 6263 2950 2172 1815 1597 1479 1381 1338 1295 1282 1288 1338 1399 1483 1633 1822 2200 3036 ] 6264 </LSC_SAMPLES_greenB> 6265 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 6266 [2848 2155 1849 1630 1520 1400 1347 1311 1311 1332 1354 1432 1511 1652 1836 2174 2915 6267 2609 1998 1745 1578 1449 1354 1311 1277 1258 1297 1311 1369 1475 1589 1758 2031 2665 6268 2383 1892 1674 1502 1408 1318 1258 1239 1221 1233 1264 1325 1424 1530 1697 1936 2454 6269 2213 1809 1599 1449 1347 1271 1221 1174 1163 1186 1215 1277 1377 1475 1630 1849 2295 6270 2065 1745 1539 1400 1311 1227 1169 1137 1126 1132 1180 1239 1318 1424 1578 1783 2136 6271 1982 1674 1502 1332 1252 1180 1116 1077 1073 1092 1132 1197 1271 1377 1502 1697 2048 6272 1906 1620 1441 1325 1233 1158 1087 1041 1037 1055 1106 1153 1245 1340 1466 1652 1967 6273 1906 1620 1449 1311 1215 1142 1082 1041 1024 1033 1092 1137 1233 1325 1458 1663 1936 6274 1892 1630 1449 1332 1233 1153 1092 1041 1024 1055 1101 1163 1252 1362 1484 1663 1967 6275 1951 1663 1484 1354 1264 1169 1116 1073 1059 1077 1126 1197 1277 1377 1520 1721 1998 6276 1982 1709 1530 1384 1291 1203 1142 1106 1087 1111 1158 1221 1318 1416 1559 1770 2118 6277 2100 1745 1568 1424 1325 1239 1186 1142 1132 1147 1197 1258 1340 1441 1599 1796 2118 6278 2136 1796 1599 1458 1340 1258 1209 1169 1158 1174 1209 1277 1354 1484 1630 1836 2253 6279 2253 1822 1630 1475 1354 1277 1227 1191 1186 1197 1239 1297 1392 1502 1663 1892 2316 6280 2360 1892 1663 1493 1384 1297 1245 1215 1209 1215 1264 1318 1392 1520 1686 1936 2454 6281 2503 1951 1686 1520 1384 1311 1271 1239 1227 1245 1284 1325 1416 1549 1709 1998 2609 6282 2784 2082 1733 1559 1441 1354 1304 1271 1271 1277 1304 1369 1466 1599 1783 2118 2915 ] 6283 </LSC_SAMPLES_blue> 6284 </cell> 6285 <cell index="4" type="struct" size="[1 1]"> 6286 <name index="1" type="char" size="[1 16]"> 6287 1920x1080_D50_70 6288 </name> 6289 <resolution index="1" type="char" size="[1 9]"> 6290 1920x1080 6291 </resolution> 6292 <illumination index="1" type="char" size="[1 3]"> 6293 D50 6294 </illumination> 6295 <LSC_sectors index="1" type="double" size="[1 1]"> 6296 [16 ] 6297 </LSC_sectors> 6298 <LSC_No index="1" type="double" size="[1 1]"> 6299 [10 ] 6300 </LSC_No> 6301 <LSC_Xo index="1" type="double" size="[1 1]"> 6302 [15 ] 6303 </LSC_Xo> 6304 <LSC_Yo index="1" type="double" size="[1 1]"> 6305 [15 ] 6306 </LSC_Yo> 6307 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 6308 [120 120 120 120 120 120 120 120 ] 6309 </LSC_SECT_SIZE_X> 6310 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 6311 [67 68 67 68 67 68 67 68 ] 6312 </LSC_SECT_SIZE_Y> 6313 <vignetting index="1" type="double" size="[1 1]"> 6314 [70.0000 ] 6315 </vignetting> 6316 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 6317 [2128 1739 1518 1384 1298 1255 1198 1188 1170 1193 1221 1237 1298 1384 1508 1739 2150 6318 2060 1648 1476 1369 1274 1224 1193 1168 1172 1173 1193 1236 1288 1369 1476 1661 2101 6319 1931 1598 1432 1328 1261 1202 1164 1141 1130 1146 1179 1231 1274 1335 1458 1620 1948 6320 1799 1536 1396 1307 1239 1184 1143 1113 1103 1117 1153 1195 1245 1314 1412 1567 1829 6321 1761 1505 1366 1277 1220 1158 1111 1100 1078 1083 1116 1168 1214 1290 1389 1524 1761 6322 1719 1478 1347 1257 1187 1139 1086 1056 1048 1056 1095 1135 1192 1263 1362 1488 1719 6323 1661 1440 1332 1245 1182 1118 1076 1035 1024 1039 1072 1113 1187 1251 1332 1466 1698 6324 1671 1431 1325 1246 1174 1110 1074 1030 1015 1033 1069 1115 1184 1240 1332 1465 1671 6325 1663 1468 1342 1248 1186 1121 1071 1035 1024 1039 1080 1140 1196 1260 1356 1495 1687 6326 1683 1492 1361 1282 1205 1138 1098 1056 1044 1060 1098 1152 1210 1270 1383 1520 1721 6327 1736 1511 1397 1300 1225 1160 1109 1078 1070 1086 1118 1169 1236 1306 1405 1540 1776 6328 1786 1535 1415 1307 1236 1178 1139 1106 1092 1101 1149 1178 1247 1341 1423 1555 1815 6329 1818 1544 1412 1310 1248 1194 1148 1122 1108 1118 1158 1194 1260 1337 1437 1585 1818 6330 1876 1547 1420 1328 1257 1200 1158 1136 1112 1131 1163 1200 1263 1328 1420 1589 1892 6331 1931 1576 1424 1328 1249 1197 1164 1146 1125 1141 1169 1208 1261 1335 1441 1609 1931 6332 2020 1613 1448 1346 1262 1190 1172 1147 1141 1147 1177 1212 1268 1346 1448 1624 2060 6333 2128 1685 1479 1344 1264 1219 1181 1150 1154 1161 1171 1225 1284 1360 1469 1725 2150 ] 6334 </LSC_SAMPLES_red> 6335 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 6336 [2150 1668 1439 1361 1276 1231 1186 1180 1180 1189 1195 1224 1287 1352 1465 1661 2138 6337 1998 1591 1427 1328 1268 1222 1183 1168 1158 1174 1192 1222 1272 1344 1447 1604 2008 6338 1876 1535 1406 1306 1250 1201 1165 1148 1141 1146 1168 1201 1254 1321 1411 1559 1885 6339 1758 1491 1373 1281 1217 1178 1142 1121 1112 1124 1147 1187 1233 1295 1386 1512 1782 6340 1686 1450 1334 1260 1194 1153 1116 1083 1080 1093 1121 1155 1209 1263 1350 1485 1707 6341 1622 1417 1309 1230 1171 1125 1089 1056 1047 1061 1094 1135 1186 1243 1324 1450 1648 6342 1612 1398 1288 1212 1157 1110 1060 1042 1023 1040 1078 1113 1171 1225 1306 1426 1619 6343 1579 1393 1284 1213 1150 1099 1061 1029 1014 1031 1070 1111 1164 1226 1306 1416 1603 6344 1594 1400 1301 1228 1163 1113 1070 1043 1024 1041 1081 1118 1180 1247 1320 1437 1631 6345 1622 1434 1321 1251 1189 1139 1091 1061 1049 1065 1103 1144 1195 1265 1352 1468 1661 6346 1685 1474 1349 1271 1215 1159 1121 1086 1074 1091 1124 1168 1221 1292 1373 1489 1699 6347 1710 1485 1360 1287 1228 1182 1136 1117 1099 1114 1146 1185 1235 1301 1390 1511 1739 6348 1759 1491 1371 1299 1237 1189 1153 1125 1116 1127 1155 1195 1251 1321 1393 1539 1783 6349 1790 1507 1386 1299 1233 1193 1163 1137 1128 1132 1161 1202 1249 1318 1409 1535 1814 6350 1858 1524 1383 1294 1227 1183 1165 1138 1128 1140 1165 1192 1254 1309 1406 1559 1858 6351 1926 1566 1403 1292 1226 1184 1159 1140 1127 1140 1159 1200 1244 1320 1417 1585 1977 6352 2064 1606 1414 1298 1222 1185 1162 1141 1139 1144 1156 1204 1236 1318 1424 1640 2064 ] 6353 </LSC_SAMPLES_greenR> 6354 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 6355 [2138 1671 1453 1351 1283 1221 1196 1174 1175 1180 1203 1231 1276 1364 1453 1686 2125 6356 1999 1594 1440 1332 1269 1220 1190 1178 1167 1172 1190 1236 1287 1357 1445 1620 1999 6357 1851 1550 1405 1309 1251 1205 1175 1147 1145 1152 1175 1218 1265 1321 1429 1556 1878 6358 1761 1500 1368 1295 1224 1176 1140 1118 1111 1123 1151 1188 1237 1303 1390 1521 1800 6359 1689 1464 1354 1260 1195 1157 1118 1085 1079 1099 1128 1165 1207 1271 1367 1489 1732 6360 1631 1425 1317 1234 1181 1132 1091 1063 1055 1067 1096 1142 1190 1247 1332 1454 1651 6361 1597 1398 1295 1217 1156 1112 1071 1042 1021 1046 1075 1124 1175 1229 1310 1420 1616 6362 1594 1397 1292 1214 1162 1106 1066 1033 1018 1037 1068 1121 1176 1236 1314 1433 1619 6363 1597 1422 1313 1219 1175 1118 1079 1041 1024 1045 1083 1128 1184 1251 1332 1455 1628 6364 1625 1438 1325 1252 1190 1138 1100 1061 1053 1072 1102 1143 1202 1272 1349 1467 1664 6365 1661 1468 1353 1279 1213 1164 1120 1091 1078 1091 1130 1166 1225 1300 1377 1503 1709 6366 1727 1489 1368 1291 1226 1172 1148 1111 1100 1116 1145 1189 1248 1317 1389 1515 1749 6367 1755 1510 1375 1303 1238 1188 1154 1129 1118 1129 1160 1196 1251 1321 1405 1532 1770 6368 1792 1521 1390 1307 1234 1197 1159 1133 1132 1136 1167 1197 1250 1310 1408 1561 1817 6369 1851 1527 1392 1302 1237 1196 1160 1136 1132 1144 1163 1202 1248 1313 1405 1556 1887 6370 1937 1563 1402 1304 1241 1185 1158 1138 1131 1144 1172 1198 1247 1316 1411 1588 1999 6371 2065 1622 1422 1301 1243 1189 1172 1145 1138 1139 1172 1205 1247 1330 1427 1643 2125 ] 6372 </LSC_SAMPLES_greenB> 6373 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 6374 [1994 1609 1449 1328 1278 1205 1179 1160 1164 1178 1186 1233 1270 1346 1438 1623 2041 6375 1898 1540 1409 1324 1254 1199 1181 1162 1148 1180 1181 1213 1276 1332 1419 1565 1939 6376 1784 1497 1387 1292 1248 1197 1161 1155 1142 1149 1167 1203 1263 1316 1406 1532 1837 6377 1696 1463 1353 1273 1219 1178 1150 1118 1111 1128 1145 1184 1246 1296 1379 1496 1759 6378 1612 1437 1325 1251 1207 1156 1120 1100 1094 1095 1131 1168 1214 1272 1359 1468 1668 6379 1570 1397 1310 1206 1168 1127 1084 1056 1055 1070 1098 1143 1186 1246 1310 1416 1622 6380 1524 1365 1269 1211 1161 1116 1065 1030 1029 1043 1084 1111 1173 1224 1291 1392 1573 6381 1534 1373 1284 1205 1150 1107 1066 1036 1022 1027 1075 1102 1167 1218 1291 1410 1558 6382 1525 1384 1286 1227 1170 1119 1077 1038 1024 1051 1087 1130 1187 1254 1317 1412 1585 6383 1570 1410 1314 1245 1197 1133 1100 1067 1057 1072 1110 1160 1210 1265 1347 1458 1608 6384 1585 1440 1347 1265 1215 1159 1119 1095 1079 1099 1134 1176 1241 1294 1373 1491 1694 6385 1663 1456 1368 1289 1236 1183 1151 1119 1113 1125 1162 1201 1250 1304 1395 1499 1677 6386 1668 1478 1376 1302 1233 1185 1158 1131 1124 1136 1158 1204 1247 1326 1403 1511 1759 6387 1727 1474 1379 1296 1226 1184 1156 1134 1132 1139 1167 1202 1260 1319 1407 1530 1775 6388 1767 1497 1377 1284 1228 1178 1149 1133 1131 1133 1167 1197 1234 1308 1396 1532 1837 6389 1821 1504 1361 1275 1198 1161 1145 1127 1120 1133 1157 1174 1225 1299 1380 1540 1898 6390 1949 1555 1358 1270 1211 1166 1142 1124 1128 1130 1142 1179 1232 1302 1397 1582 2041 ] 6391 </LSC_SAMPLES_blue> 6392 </cell> 6393 <cell index="5" type="struct" size="[1 1]"> 6394 <name index="1" type="char" size="[1 17]"> 6395 1920x1080_D65_100 6396 </name> 6397 <resolution index="1" type="char" size="[1 9]"> 6398 1920x1080 6399 </resolution> 6400 <illumination index="1" type="char" size="[1 3]"> 6401 D65 6402 </illumination> 6403 <LSC_sectors index="1" type="double" size="[1 1]"> 6404 [16 ] 6405 </LSC_sectors> 6406 <LSC_No index="1" type="double" size="[1 1]"> 6407 [10 ] 6408 </LSC_No> 6409 <LSC_Xo index="1" type="double" size="[1 1]"> 6410 [15 ] 6411 </LSC_Xo> 6412 <LSC_Yo index="1" type="double" size="[1 1]"> 6413 [15 ] 6414 </LSC_Yo> 6415 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 6416 [120 120 120 120 120 120 120 120 ] 6417 </LSC_SECT_SIZE_X> 6418 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 6419 [67 68 67 68 67 68 67 68 ] 6420 </LSC_SECT_SIZE_Y> 6421 <vignetting index="1" type="double" size="[1 1]"> 6422 [100.0000 ] 6423 </vignetting> 6424 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 6425 [3148 2327 1910 1707 1567 1449 1381 1347 1329 1343 1396 1471 1548 1722 1930 2341 3200 6426 2824 2145 1829 1627 1488 1391 1333 1293 1272 1297 1338 1396 1494 1634 1837 2157 2887 6427 2577 2000 1745 1555 1417 1333 1272 1231 1215 1235 1267 1338 1433 1561 1753 2021 2595 6428 2370 1901 1655 1488 1367 1272 1204 1178 1160 1178 1223 1289 1371 1506 1670 1939 2415 6429 2246 1803 1607 1433 1315 1231 1167 1133 1113 1126 1174 1243 1329 1444 1607 1855 2286 6430 2145 1745 1548 1386 1280 1185 1120 1076 1064 1082 1136 1196 1289 1396 1561 1803 2182 6431 2087 1722 1518 1362 1243 1160 1091 1049 1035 1049 1097 1171 1263 1386 1542 1745 2133 6432 2053 1707 1506 1347 1239 1153 1079 1046 1024 1038 1091 1164 1255 1362 1518 1745 2098 6433 2076 1722 1512 1362 1243 1164 1091 1052 1024 1049 1100 1164 1251 1376 1524 1770 2122 6434 2122 1761 1536 1386 1272 1178 1110 1064 1058 1073 1116 1193 1276 1396 1561 1786 2157 6435 2157 1786 1574 1433 1297 1208 1139 1097 1076 1094 1143 1223 1315 1433 1593 1829 2207 6436 2259 1829 1607 1444 1329 1239 1171 1133 1110 1133 1174 1259 1343 1455 1620 1873 2299 6437 2299 1873 1641 1483 1352 1267 1204 1157 1143 1160 1208 1272 1367 1488 1662 1920 2400 6438 2415 1920 1684 1500 1371 1293 1235 1189 1164 1189 1235 1297 1386 1518 1692 1969 2494 6439 2543 1969 1722 1542 1417 1320 1263 1215 1200 1215 1263 1338 1417 1555 1753 2021 2630 6440 2763 2087 1794 1600 1438 1352 1302 1263 1247 1259 1306 1362 1455 1607 1803 2145 2844 6441 3097 2259 1873 1662 1506 1417 1343 1315 1306 1306 1357 1428 1530 1699 1901 2272 3122 ] 6442 </LSC_SAMPLES_red> 6443 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 6444 [3037 2191 1835 1650 1516 1404 1354 1321 1319 1321 1361 1427 1519 1650 1860 2240 3049 6445 2718 2061 1754 1575 1450 1368 1310 1273 1275 1283 1323 1380 1463 1597 1790 2088 2736 6446 2452 1918 1677 1507 1392 1310 1261 1222 1211 1224 1265 1321 1412 1524 1702 1970 2529 6447 2284 1839 1594 1447 1343 1257 1208 1176 1162 1172 1217 1275 1354 1466 1636 1887 2317 6448 2138 1754 1539 1394 1293 1215 1155 1115 1104 1128 1167 1228 1308 1414 1572 1786 2179 6449 2051 1688 1488 1348 1243 1176 1115 1070 1063 1076 1121 1179 1259 1373 1507 1724 2099 6450 1970 1650 1460 1321 1219 1150 1086 1043 1029 1047 1091 1152 1239 1341 1485 1692 2020 6451 1956 1633 1445 1308 1219 1129 1076 1033 1020 1035 1082 1150 1232 1334 1477 1674 1999 6452 1965 1643 1455 1323 1228 1147 1081 1037 1024 1043 1095 1154 1237 1345 1488 1702 2015 6453 2004 1677 1493 1348 1251 1169 1107 1059 1048 1070 1115 1179 1263 1375 1516 1735 2077 6454 2066 1717 1519 1382 1279 1197 1132 1089 1075 1094 1142 1209 1291 1404 1551 1766 2127 6455 2144 1770 1557 1409 1306 1226 1164 1126 1111 1131 1177 1235 1323 1442 1585 1814 2185 6456 2227 1806 1591 1442 1330 1253 1193 1154 1145 1154 1202 1259 1354 1460 1613 1865 2284 6457 2304 1856 1626 1466 1354 1273 1222 1186 1165 1186 1222 1283 1373 1488 1663 1891 2365 6458 2430 1904 1660 1499 1380 1295 1245 1211 1195 1213 1257 1312 1397 1524 1692 1960 2506 6459 2637 1995 1706 1533 1414 1325 1275 1239 1232 1239 1281 1339 1424 1557 1747 2056 2691 6460 2926 2132 1790 1594 1453 1373 1310 1275 1265 1277 1323 1387 1468 1613 1822 2197 3003 ] 6461 </LSC_SAMPLES_greenR> 6462 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 6463 [3018 2196 1844 1651 1509 1426 1361 1330 1321 1334 1368 1434 1518 1665 1874 2264 3041 6464 2732 2061 1767 1590 1460 1366 1313 1277 1265 1287 1317 1385 1473 1602 1791 2110 2779 6465 2480 1933 1679 1515 1397 1313 1263 1230 1221 1232 1271 1330 1419 1538 1715 1985 2550 6466 2309 1844 1609 1457 1341 1261 1210 1173 1168 1176 1214 1273 1364 1473 1641 1883 2343 6467 2155 1763 1547 1397 1291 1217 1161 1127 1113 1127 1175 1230 1310 1421 1574 1803 2202 6468 2056 1689 1490 1354 1257 1173 1112 1075 1066 1076 1129 1187 1267 1373 1529 1733 2077 6469 1970 1658 1457 1328 1227 1153 1083 1047 1035 1049 1099 1156 1242 1345 1490 1700 2020 6470 1956 1638 1447 1319 1216 1137 1079 1037 1014 1039 1082 1151 1232 1339 1479 1682 2005 6471 1961 1655 1457 1323 1227 1151 1088 1039 1024 1048 1095 1163 1251 1357 1495 1700 2030 6472 2015 1679 1498 1352 1246 1173 1107 1062 1051 1069 1119 1178 1271 1375 1526 1733 2072 6473 2072 1729 1529 1389 1283 1199 1133 1093 1077 1099 1140 1206 1302 1404 1553 1783 2115 6474 2143 1767 1568 1414 1306 1223 1170 1132 1110 1129 1178 1240 1325 1442 1596 1819 2196 6475 2245 1803 1590 1437 1332 1257 1190 1156 1138 1163 1201 1269 1352 1468 1622 1865 2283 6476 2322 1857 1625 1473 1361 1277 1225 1190 1171 1185 1223 1296 1375 1498 1669 1905 2384 6477 2450 1923 1662 1495 1382 1300 1248 1217 1199 1214 1255 1310 1406 1526 1707 1966 2511 6478 2642 2015 1711 1535 1424 1334 1273 1240 1232 1246 1287 1341 1434 1562 1752 2072 2741 6479 2931 2138 1787 1605 1452 1373 1315 1275 1273 1283 1325 1387 1484 1618 1819 2202 2974 ] 6480 </LSC_SAMPLES_greenB> 6481 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 6482 [2879 2142 1795 1612 1473 1394 1340 1304 1304 1312 1344 1408 1493 1624 1817 2173 2956 6483 2608 1988 1725 1545 1430 1356 1293 1267 1260 1270 1304 1368 1454 1584 1753 2034 2655 6484 2346 1895 1654 1493 1386 1304 1253 1225 1208 1228 1267 1320 1408 1524 1686 1928 2450 6485 2184 1795 1589 1440 1332 1253 1205 1173 1161 1173 1218 1267 1352 1463 1624 1840 2251 6486 2072 1719 1534 1390 1278 1208 1155 1120 1111 1120 1167 1225 1312 1412 1550 1767 2152 6487 1962 1648 1468 1344 1242 1173 1111 1068 1058 1084 1123 1182 1260 1364 1498 1705 2034 6488 1895 1612 1440 1316 1218 1140 1081 1038 1024 1046 1087 1152 1239 1332 1468 1648 1971 6489 1887 1612 1426 1308 1195 1125 1071 1024 1012 1029 1079 1146 1225 1332 1468 1636 1971 6490 1903 1618 1444 1316 1215 1137 1081 1041 1024 1038 1095 1155 1239 1344 1483 1654 1979 6491 1936 1648 1473 1348 1249 1167 1111 1058 1043 1071 1111 1186 1263 1364 1503 1699 2006 6492 2006 1692 1508 1377 1267 1189 1134 1089 1076 1095 1155 1215 1296 1408 1556 1753 2091 6493 2053 1759 1556 1408 1296 1232 1170 1123 1120 1128 1182 1242 1332 1440 1578 1788 2142 6494 2163 1774 1572 1435 1332 1256 1198 1158 1152 1161 1202 1270 1352 1459 1618 1840 2239 6495 2217 1825 1618 1459 1340 1263 1221 1186 1170 1182 1225 1281 1373 1488 1648 1879 2309 6496 2358 1847 1636 1468 1364 1278 1239 1198 1189 1208 1242 1296 1381 1503 1673 1911 2423 6497 2491 1936 1673 1503 1386 1304 1263 1225 1215 1221 1263 1324 1399 1534 1699 2006 2639 6498 2771 2053 1739 1545 1417 1332 1293 1256 1242 1267 1293 1356 1449 1584 1781 2132 2898 ] 6499 </LSC_SAMPLES_blue> 6500 </cell> 6501 <cell index="6" type="struct" size="[1 1]"> 6502 <name index="1" type="char" size="[1 16]"> 6503 1920x1080_D65_70 6504 </name> 6505 <resolution index="1" type="char" size="[1 9]"> 6506 1920x1080 6507 </resolution> 6508 <illumination index="1" type="char" size="[1 3]"> 6509 D65 6510 </illumination> 6511 <LSC_sectors index="1" type="double" size="[1 1]"> 6512 [16 ] 6513 </LSC_sectors> 6514 <LSC_No index="1" type="double" size="[1 1]"> 6515 [10 ] 6516 </LSC_No> 6517 <LSC_Xo index="1" type="double" size="[1 1]"> 6518 [15 ] 6519 </LSC_Xo> 6520 <LSC_Yo index="1" type="double" size="[1 1]"> 6521 [15 ] 6522 </LSC_Yo> 6523 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 6524 [120 120 120 120 120 120 120 120 ] 6525 </LSC_SECT_SIZE_X> 6526 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 6527 [67 68 67 68 67 68 67 68 ] 6528 </LSC_SECT_SIZE_Y> 6529 <vignetting index="1" type="double" size="[1 1]"> 6530 [70.0000 ] 6531 </vignetting> 6532 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 6533 [2203 1738 1497 1390 1317 1247 1209 1192 1179 1188 1223 1266 1301 1403 1512 1748 2240 6534 2055 1653 1476 1365 1287 1232 1201 1176 1161 1180 1205 1237 1293 1371 1483 1662 2101 6535 1930 1583 1446 1337 1256 1210 1174 1147 1137 1151 1170 1215 1270 1343 1452 1599 1943 6536 1817 1537 1400 1307 1237 1178 1134 1121 1108 1121 1152 1194 1242 1323 1413 1569 1851 6537 1753 1484 1383 1280 1211 1160 1118 1096 1081 1090 1125 1171 1223 1290 1383 1527 1784 6538 1699 1457 1351 1255 1194 1132 1087 1054 1046 1060 1103 1142 1202 1264 1362 1504 1728 6539 1669 1451 1337 1244 1170 1118 1069 1038 1027 1038 1075 1128 1189 1267 1358 1471 1706 6540 1652 1446 1334 1238 1173 1117 1063 1041 1022 1033 1075 1128 1188 1251 1344 1479 1688 6541 1673 1462 1342 1254 1179 1130 1077 1049 1024 1046 1086 1130 1187 1267 1352 1503 1710 6542 1707 1493 1361 1274 1204 1141 1093 1058 1056 1067 1100 1156 1208 1283 1383 1514 1736 6543 1725 1505 1386 1309 1222 1164 1116 1086 1068 1082 1120 1179 1238 1309 1403 1541 1765 6544 1788 1526 1402 1307 1240 1183 1136 1110 1092 1110 1140 1202 1253 1317 1414 1563 1821 6545 1795 1542 1413 1325 1245 1194 1153 1119 1110 1123 1157 1198 1258 1330 1431 1581 1874 6546 1851 1553 1425 1317 1242 1198 1163 1131 1111 1131 1163 1202 1255 1333 1431 1593 1911 6547 1904 1558 1426 1326 1256 1198 1166 1133 1123 1133 1166 1215 1256 1337 1452 1599 1970 6548 2010 1608 1449 1342 1244 1198 1173 1149 1138 1146 1177 1206 1258 1348 1456 1653 2070 6549 2168 1687 1468 1354 1266 1220 1176 1163 1159 1155 1188 1229 1286 1384 1489 1697 2185 ] 6550 </LSC_SAMPLES_red> 6551 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 6552 [2126 1636 1438 1344 1274 1209 1186 1168 1170 1168 1192 1228 1276 1344 1458 1672 2134 6553 1978 1588 1416 1321 1254 1212 1180 1158 1164 1167 1192 1222 1266 1340 1445 1609 1991 6554 1836 1518 1389 1296 1234 1189 1164 1140 1133 1141 1167 1199 1252 1311 1410 1559 1894 6555 1751 1487 1349 1271 1216 1165 1138 1119 1109 1116 1146 1181 1226 1287 1384 1526 1776 6556 1669 1444 1325 1246 1191 1145 1107 1079 1072 1091 1118 1157 1204 1263 1353 1470 1701 6557 1624 1409 1298 1220 1160 1122 1082 1049 1046 1055 1089 1126 1174 1243 1315 1439 1662 6558 1575 1390 1286 1207 1147 1109 1064 1032 1022 1036 1069 1110 1167 1225 1308 1425 1615 6559 1573 1384 1280 1202 1154 1094 1060 1028 1018 1029 1066 1115 1166 1226 1308 1419 1609 6560 1584 1395 1291 1218 1165 1114 1067 1034 1024 1039 1081 1120 1174 1239 1320 1446 1624 6561 1613 1422 1323 1238 1184 1133 1091 1054 1046 1065 1099 1143 1196 1264 1343 1471 1671 6562 1653 1447 1337 1263 1204 1153 1109 1078 1067 1082 1119 1165 1216 1283 1366 1488 1701 6563 1697 1477 1358 1276 1218 1171 1130 1104 1092 1109 1143 1180 1234 1306 1382 1514 1730 6564 1739 1487 1369 1288 1224 1181 1143 1116 1112 1116 1152 1186 1247 1305 1389 1535 1783 6565 1766 1501 1376 1287 1226 1179 1152 1129 1113 1129 1152 1189 1243 1307 1407 1529 1813 6566 1819 1507 1375 1289 1224 1176 1149 1129 1118 1131 1160 1191 1239 1311 1401 1551 1876 6567 1919 1537 1377 1286 1223 1174 1148 1128 1124 1128 1154 1186 1232 1306 1410 1584 1958 6568 2048 1592 1402 1299 1221 1182 1147 1127 1122 1129 1158 1194 1234 1314 1428 1640 2102 ] 6569 </LSC_SAMPLES_greenR> 6570 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 6571 [2113 1640 1445 1345 1268 1228 1192 1176 1172 1180 1198 1234 1276 1356 1468 1690 2129 6572 1988 1588 1427 1333 1263 1210 1182 1162 1155 1171 1186 1227 1274 1344 1446 1626 2022 6573 1857 1529 1391 1303 1238 1191 1166 1147 1142 1149 1173 1207 1258 1323 1420 1571 1910 6574 1770 1491 1361 1280 1214 1169 1140 1116 1115 1120 1144 1180 1234 1294 1389 1523 1795 6575 1682 1452 1332 1248 1189 1147 1113 1091 1081 1091 1126 1160 1207 1270 1355 1484 1719 6576 1628 1410 1300 1226 1173 1120 1079 1053 1048 1055 1096 1133 1182 1243 1334 1446 1645 6577 1576 1397 1284 1213 1155 1111 1061 1036 1027 1038 1077 1114 1169 1230 1312 1433 1615 6578 1574 1388 1282 1212 1151 1102 1063 1032 1012 1033 1066 1116 1167 1230 1310 1426 1613 6579 1581 1405 1293 1218 1164 1118 1073 1035 1024 1045 1081 1129 1187 1249 1327 1444 1636 6580 1621 1423 1327 1243 1179 1137 1091 1056 1049 1063 1103 1142 1204 1264 1352 1469 1667 6581 1657 1457 1347 1270 1208 1156 1110 1082 1069 1088 1117 1163 1226 1283 1368 1502 1692 6582 1697 1475 1368 1280 1218 1168 1135 1110 1092 1106 1144 1184 1237 1305 1392 1518 1739 6583 1752 1484 1368 1283 1226 1185 1141 1119 1105 1125 1151 1196 1245 1311 1396 1536 1782 6584 1780 1502 1375 1294 1232 1184 1154 1133 1118 1128 1152 1201 1245 1316 1412 1541 1827 6585 1834 1522 1376 1286 1226 1180 1152 1135 1122 1132 1159 1190 1247 1313 1414 1555 1880 6586 1923 1553 1381 1288 1232 1182 1147 1128 1125 1133 1160 1188 1240 1310 1414 1597 1995 6587 2051 1596 1400 1308 1220 1182 1151 1128 1130 1135 1161 1194 1247 1318 1425 1644 2082 ] 6588 </LSC_SAMPLES_greenB> 6589 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 6590 [2015 1599 1406 1313 1238 1200 1173 1153 1157 1160 1176 1212 1255 1323 1424 1623 2069 6591 1898 1532 1393 1296 1237 1201 1164 1153 1150 1156 1175 1212 1258 1328 1415 1567 1932 6592 1757 1499 1370 1284 1229 1184 1156 1142 1130 1145 1169 1198 1248 1310 1396 1525 1834 6593 1674 1452 1345 1264 1205 1161 1135 1116 1108 1116 1148 1174 1224 1285 1374 1488 1725 6594 1617 1415 1321 1242 1177 1139 1106 1083 1079 1083 1118 1154 1208 1262 1335 1454 1680 6595 1553 1376 1281 1216 1159 1120 1079 1047 1041 1063 1090 1129 1175 1235 1307 1423 1610 6596 1515 1359 1268 1202 1147 1098 1059 1027 1016 1035 1065 1110 1166 1217 1293 1389 1576 6597 1518 1366 1263 1202 1132 1091 1055 1019 1010 1023 1063 1110 1160 1224 1300 1387 1585 6598 1534 1374 1282 1211 1152 1104 1067 1037 1024 1035 1081 1121 1175 1237 1316 1405 1596 6599 1558 1397 1305 1239 1183 1131 1095 1053 1041 1066 1095 1149 1196 1254 1331 1440 1614 6600 1605 1426 1328 1258 1193 1146 1111 1078 1068 1083 1131 1171 1221 1286 1370 1477 1673 6601 1625 1468 1357 1274 1209 1176 1136 1100 1101 1106 1148 1186 1242 1303 1377 1492 1696 6602 1689 1460 1353 1282 1226 1184 1148 1120 1118 1123 1151 1197 1245 1303 1393 1515 1748 6603 1699 1476 1369 1281 1213 1171 1151 1128 1117 1125 1154 1188 1243 1307 1395 1520 1770 6604 1766 1462 1355 1263 1210 1160 1143 1117 1112 1126 1146 1177 1225 1293 1386 1512 1814 6605 1813 1492 1351 1261 1199 1155 1138 1114 1109 1111 1138 1172 1210 1287 1372 1546 1921 6606 1940 1533 1362 1259 1191 1146 1132 1111 1102 1120 1132 1167 1218 1290 1395 1592 2029 ] 6607 </LSC_SAMPLES_blue> 6608 </cell> 6609 <cell index="7" type="struct" size="[1 1]"> 6610 <name index="1" type="char" size="[1 17]"> 6611 1920x1080_D75_100 6612 </name> 6613 <resolution index="1" type="char" size="[1 9]"> 6614 1920x1080 6615 </resolution> 6616 <illumination index="1" type="char" size="[1 3]"> 6617 D75 6618 </illumination> 6619 <LSC_sectors index="1" type="double" size="[1 1]"> 6620 [16 ] 6621 </LSC_sectors> 6622 <LSC_No index="1" type="double" size="[1 1]"> 6623 [10 ] 6624 </LSC_No> 6625 <LSC_Xo index="1" type="double" size="[1 1]"> 6626 [15 ] 6627 </LSC_Xo> 6628 <LSC_Yo index="1" type="double" size="[1 1]"> 6629 [15 ] 6630 </LSC_Yo> 6631 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 6632 [120 120 120 120 120 120 120 120 ] 6633 </LSC_SECT_SIZE_X> 6634 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 6635 [67 68 67 68 67 68 67 68 ] 6636 </LSC_SECT_SIZE_Y> 6637 <vignetting index="1" type="double" size="[1 1]"> 6638 [100.0000 ] 6639 </vignetting> 6640 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 6641 [3099 2235 1890 1672 1519 1426 1367 1336 1321 1336 1384 1426 1550 1697 1905 2279 3059 6642 2703 2094 1774 1603 1453 1359 1313 1270 1256 1270 1306 1375 1462 1603 1802 2094 2735 6643 2554 1953 1697 1529 1392 1306 1250 1204 1198 1217 1250 1321 1417 1539 1709 1987 2583 6644 2372 1860 1626 1444 1336 1250 1198 1151 1151 1162 1204 1256 1351 1471 1637 1875 2348 6645 2193 1788 1560 1409 1306 1211 1156 1112 1096 1118 1151 1223 1306 1417 1581 1816 2235 6646 2057 1722 1509 1359 1256 1180 1107 1071 1047 1071 1118 1180 1263 1384 1529 1735 2133 6647 2021 1697 1481 1336 1236 1139 1086 1038 1029 1042 1086 1156 1236 1351 1500 1709 2094 6648 2004 1672 1471 1328 1223 1139 1066 1033 1020 1029 1076 1156 1243 1359 1500 1722 2039 6649 2039 1697 1500 1367 1236 1151 1081 1038 1024 1042 1086 1156 1263 1367 1519 1761 2094 6650 2075 1709 1529 1384 1263 1180 1112 1057 1042 1066 1118 1192 1277 1409 1550 1774 2113 6651 2152 1761 1550 1409 1299 1198 1139 1091 1081 1091 1139 1211 1299 1426 1581 1802 2214 6652 2193 1802 1571 1435 1313 1223 1162 1123 1102 1134 1174 1243 1328 1453 1603 1875 2235 6653 2301 1830 1592 1462 1328 1250 1186 1145 1128 1145 1198 1256 1359 1462 1649 1860 2324 6654 2396 1860 1660 1481 1351 1277 1211 1168 1151 1168 1217 1277 1367 1490 1672 1921 2372 6655 2447 1937 1684 1500 1375 1299 1243 1198 1186 1204 1243 1321 1400 1529 1697 2004 2527 6656 2672 2039 1748 1560 1435 1336 1270 1243 1230 1243 1291 1351 1444 1571 1761 2075 2735 6657 2906 2214 1860 1626 1490 1384 1336 1313 1291 1306 1336 1426 1509 1637 1845 2214 3019 ] 6658 </LSC_SAMPLES_red> 6659 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 6660 [3029 2199 1826 1637 1501 1405 1356 1314 1317 1324 1371 1425 1528 1659 1853 2228 3029 6661 2691 2032 1750 1561 1441 1356 1304 1268 1261 1271 1311 1363 1454 1581 1769 2065 2720 6662 2444 1902 1659 1492 1390 1300 1249 1210 1202 1219 1261 1311 1397 1515 1686 1953 2480 6663 2248 1820 1586 1429 1324 1252 1193 1163 1144 1168 1202 1258 1342 1458 1606 1853 2268 6664 2134 1732 1515 1378 1281 1199 1144 1104 1097 1117 1152 1216 1294 1397 1547 1756 2153 6665 2015 1669 1483 1338 1237 1160 1100 1065 1049 1067 1107 1168 1249 1349 1492 1703 2040 6666 1946 1627 1437 1311 1216 1137 1074 1032 1024 1043 1083 1142 1228 1331 1471 1664 1984 6667 1946 1632 1445 1307 1210 1134 1074 1030 1016 1032 1086 1144 1228 1335 1466 1675 1992 6668 1961 1642 1462 1328 1216 1147 1086 1037 1024 1041 1088 1147 1243 1360 1479 1692 1999 6669 2007 1681 1483 1345 1252 1163 1109 1060 1047 1065 1112 1182 1258 1371 1506 1715 2056 6670 2056 1715 1528 1382 1277 1199 1129 1086 1069 1095 1142 1207 1287 1397 1542 1781 2108 6671 2117 1763 1547 1405 1307 1225 1163 1124 1107 1124 1163 1234 1321 1429 1571 1807 2162 6672 2209 1794 1576 1421 1321 1246 1193 1144 1132 1147 1193 1258 1335 1449 1601 1839 2228 6673 2279 1826 1606 1445 1342 1261 1202 1171 1166 1168 1216 1281 1353 1471 1642 1867 2299 6674 2420 1888 1642 1479 1356 1287 1234 1204 1187 1204 1243 1300 1375 1497 1675 1931 2492 6675 2608 1976 1703 1519 1397 1311 1261 1234 1228 1231 1268 1324 1417 1547 1721 2032 2662 6676 2874 2117 1769 1581 1441 1356 1304 1268 1258 1271 1304 1371 1462 1596 1787 2143 2976 ] 6677 </LSC_SAMPLES_greenR> 6678 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 6679 [3029 2222 1851 1647 1515 1418 1354 1318 1315 1318 1368 1434 1542 1663 1857 2262 3029 6680 2736 2060 1755 1576 1450 1364 1302 1279 1263 1282 1318 1375 1467 1590 1779 2077 2751 6681 2459 1928 1669 1501 1391 1308 1250 1215 1215 1223 1260 1322 1410 1533 1702 1973 2495 6682 2292 1818 1590 1450 1329 1250 1192 1167 1149 1173 1206 1263 1346 1454 1616 1864 2303 6683 2121 1737 1533 1394 1279 1203 1154 1114 1097 1116 1159 1220 1298 1402 1571 1779 2147 6684 2028 1674 1484 1343 1247 1162 1104 1067 1056 1069 1114 1175 1260 1364 1510 1702 2060 6685 1973 1631 1458 1315 1209 1139 1078 1041 1026 1045 1094 1151 1232 1339 1475 1680 2012 6686 1935 1642 1446 1315 1212 1139 1076 1032 1014 1039 1081 1149 1235 1336 1479 1674 2004 6687 1957 1658 1458 1332 1232 1144 1083 1041 1024 1041 1097 1162 1247 1354 1488 1696 2020 6688 2020 1685 1497 1357 1257 1175 1109 1060 1047 1071 1121 1186 1272 1383 1515 1737 2044 6689 2060 1737 1533 1387 1288 1203 1139 1102 1083 1104 1149 1212 1302 1406 1556 1779 2103 6690 2129 1761 1556 1410 1295 1226 1165 1126 1109 1131 1175 1235 1325 1438 1590 1818 2184 6691 2232 1805 1576 1434 1322 1247 1189 1154 1144 1151 1195 1263 1346 1458 1605 1851 2252 6692 2292 1837 1605 1458 1346 1269 1212 1170 1162 1175 1223 1285 1361 1471 1647 1885 2356 6693 2423 1885 1663 1488 1368 1292 1241 1197 1192 1203 1238 1295 1391 1510 1674 1942 2471 6694 2597 1988 1714 1519 1406 1315 1266 1235 1223 1244 1276 1339 1422 1542 1731 2028 2693 6695 2892 2121 1767 1595 1454 1361 1305 1279 1263 1272 1315 1375 1467 1605 1792 2194 2942 ] 6696 </LSC_SAMPLES_greenB> 6697 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 6698 [2867 2091 1792 1601 1476 1400 1332 1309 1303 1309 1344 1407 1490 1636 1814 2150 2895 6699 2530 1981 1701 1536 1434 1356 1292 1260 1249 1265 1303 1350 1440 1560 1740 2021 2618 6700 2334 1870 1636 1476 1368 1292 1244 1214 1199 1214 1244 1315 1394 1513 1663 1918 2408 6701 2135 1771 1568 1427 1320 1244 1181 1158 1145 1162 1204 1254 1338 1447 1593 1803 2247 6702 2048 1691 1505 1362 1270 1195 1149 1111 1091 1115 1149 1204 1287 1394 1544 1730 2105 6703 1930 1636 1454 1332 1229 1158 1091 1056 1045 1068 1099 1167 1239 1344 1476 1673 2007 6704 1882 1593 1427 1309 1204 1132 1071 1031 1017 1035 1071 1145 1219 1326 1447 1645 1905 6705 1847 1585 1434 1287 1209 1123 1068 1017 1007 1031 1071 1145 1219 1320 1440 1627 1942 6706 1905 1610 1440 1309 1224 1136 1083 1038 1024 1042 1087 1158 1244 1344 1461 1663 1955 6707 1942 1654 1469 1344 1239 1171 1103 1068 1053 1064 1107 1176 1276 1368 1490 1701 1994 6708 1994 1691 1498 1368 1276 1199 1128 1091 1079 1099 1149 1204 1292 1387 1536 1730 2034 6709 2034 1740 1528 1387 1303 1219 1162 1123 1119 1132 1176 1239 1320 1427 1568 1761 2120 6710 2120 1750 1560 1413 1320 1249 1185 1153 1128 1149 1195 1249 1338 1454 1593 1803 2197 6711 2166 1792 1576 1440 1326 1260 1214 1167 1149 1176 1209 1260 1356 1469 1619 1836 2247 6712 2334 1825 1610 1461 1338 1270 1209 1190 1171 1195 1229 1281 1356 1476 1663 1870 2389 6713 2448 1893 1645 1490 1368 1287 1239 1209 1204 1219 1254 1309 1387 1513 1682 1955 2551 6714 2688 2021 1711 1552 1407 1338 1270 1254 1234 1239 1276 1338 1434 1568 1761 2076 2814 ] 6715 </LSC_SAMPLES_blue> 6716 </cell> 6717 <cell index="8" type="struct" size="[1 1]"> 6718 <name index="1" type="char" size="[1 16]"> 6719 1920x1080_D75_70 6720 </name> 6721 <resolution index="1" type="char" size="[1 9]"> 6722 1920x1080 6723 </resolution> 6724 <illumination index="1" type="char" size="[1 3]"> 6725 D75 6726 </illumination> 6727 <LSC_sectors index="1" type="double" size="[1 1]"> 6728 [16 ] 6729 </LSC_sectors> 6730 <LSC_No index="1" type="double" size="[1 1]"> 6731 [10 ] 6732 </LSC_No> 6733 <LSC_Xo index="1" type="double" size="[1 1]"> 6734 [15 ] 6735 </LSC_Xo> 6736 <LSC_Yo index="1" type="double" size="[1 1]"> 6737 [15 ] 6738 </LSC_Yo> 6739 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 6740 [120 120 120 120 120 120 120 120 ] 6741 </LSC_SECT_SIZE_X> 6742 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 6743 [67 68 67 68 67 68 67 68 ] 6744 </LSC_SECT_SIZE_Y> 6745 <vignetting index="1" type="double" size="[1 1]"> 6746 [70.0000 ] 6747 </vignetting> 6748 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 6749 [2170 1669 1481 1362 1277 1228 1197 1182 1172 1182 1211 1228 1302 1382 1493 1702 2141 6750 1967 1614 1433 1345 1257 1204 1183 1156 1147 1156 1176 1218 1265 1345 1455 1614 1990 6751 1913 1546 1405 1315 1234 1185 1154 1123 1121 1135 1154 1199 1257 1324 1416 1572 1934 6752 1818 1504 1375 1268 1209 1158 1129 1095 1099 1106 1135 1164 1223 1292 1385 1516 1799 6753 1712 1472 1343 1259 1202 1141 1108 1076 1065 1081 1103 1153 1202 1266 1361 1495 1745 6754 1629 1437 1317 1231 1172 1127 1074 1050 1030 1050 1085 1127 1179 1253 1334 1448 1689 6755 1616 1430 1304 1221 1164 1098 1064 1027 1021 1031 1064 1114 1164 1235 1321 1440 1675 6756 1612 1417 1303 1221 1158 1104 1050 1028 1018 1023 1060 1121 1177 1249 1328 1459 1640 6757 1644 1441 1331 1259 1173 1117 1067 1034 1024 1039 1072 1123 1198 1259 1348 1495 1688 6758 1670 1449 1355 1272 1196 1143 1096 1051 1040 1061 1101 1155 1209 1295 1373 1504 1700 6759 1721 1484 1365 1287 1223 1155 1116 1080 1073 1080 1116 1167 1223 1303 1393 1518 1770 6760 1736 1504 1370 1299 1225 1168 1128 1101 1084 1112 1140 1187 1239 1315 1399 1564 1770 6761 1797 1507 1371 1306 1223 1178 1136 1108 1096 1108 1148 1184 1252 1306 1419 1531 1815 6762 1837 1504 1405 1300 1223 1184 1141 1112 1099 1112 1147 1184 1238 1309 1415 1554 1818 6763 1832 1533 1395 1290 1220 1179 1147 1117 1109 1123 1147 1199 1242 1315 1405 1586 1892 6764 1944 1571 1411 1309 1241 1183 1144 1131 1123 1131 1163 1197 1249 1317 1422 1599 1990 6765 2034 1653 1457 1324 1252 1191 1170 1162 1146 1155 1170 1228 1269 1334 1445 1653 2113 ] 6766 </LSC_SAMPLES_red> 6767 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 6768 [2120 1642 1431 1334 1262 1210 1187 1162 1169 1171 1200 1227 1284 1351 1452 1664 2120 6769 1958 1566 1413 1310 1247 1201 1174 1154 1152 1156 1180 1208 1257 1326 1428 1591 1979 6770 1830 1505 1374 1283 1232 1180 1153 1128 1124 1136 1164 1190 1239 1303 1397 1545 1857 6771 1723 1472 1342 1255 1199 1160 1124 1107 1093 1112 1132 1166 1215 1280 1359 1499 1739 6772 1666 1426 1304 1231 1179 1130 1097 1069 1065 1081 1104 1146 1191 1248 1332 1446 1680 6773 1596 1393 1294 1212 1154 1108 1067 1044 1032 1046 1074 1115 1165 1221 1302 1421 1615 6774 1556 1371 1266 1198 1145 1095 1052 1021 1016 1032 1061 1100 1156 1217 1295 1402 1586 6775 1565 1383 1280 1201 1146 1099 1058 1025 1014 1027 1069 1109 1163 1227 1299 1420 1602 6776 1581 1395 1297 1222 1154 1114 1071 1033 1024 1037 1074 1114 1179 1252 1313 1437 1612 6777 1615 1424 1314 1236 1186 1127 1093 1055 1045 1060 1095 1145 1192 1260 1334 1453 1654 6778 1645 1445 1346 1263 1203 1155 1106 1074 1062 1083 1119 1163 1212 1277 1358 1501 1686 6779 1676 1471 1350 1272 1219 1169 1129 1102 1089 1102 1129 1178 1232 1294 1371 1508 1712 6780 1724 1477 1357 1270 1216 1174 1143 1107 1099 1110 1143 1186 1229 1295 1378 1514 1740 6781 1746 1477 1359 1269 1215 1169 1132 1114 1113 1112 1146 1187 1224 1292 1390 1510 1762 6782 1813 1494 1360 1272 1203 1168 1139 1123 1111 1123 1147 1180 1219 1287 1387 1528 1866 6783 1897 1523 1375 1274 1209 1161 1136 1123 1121 1120 1142 1173 1226 1298 1389 1566 1937 6784 2012 1580 1386 1288 1211 1167 1141 1121 1117 1124 1141 1180 1229 1300 1400 1601 2083 ] 6785 </LSC_SAMPLES_greenR> 6786 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 6787 [2121 1659 1450 1342 1273 1220 1185 1166 1167 1166 1198 1234 1296 1355 1455 1689 2121 6788 1991 1588 1417 1322 1254 1209 1172 1163 1153 1166 1188 1218 1269 1334 1437 1601 2002 6789 1841 1525 1382 1291 1233 1188 1154 1132 1136 1141 1163 1200 1250 1318 1410 1561 1868 6790 1757 1470 1346 1274 1203 1159 1123 1111 1097 1116 1136 1170 1219 1277 1367 1508 1765 6791 1655 1430 1320 1246 1177 1134 1106 1078 1065 1080 1111 1150 1195 1253 1352 1465 1676 6792 1605 1397 1294 1216 1164 1109 1072 1046 1038 1048 1081 1122 1175 1235 1317 1420 1631 6793 1578 1374 1284 1202 1138 1097 1056 1030 1019 1034 1072 1110 1160 1224 1299 1415 1609 6794 1557 1391 1281 1209 1147 1103 1060 1027 1012 1033 1064 1113 1170 1228 1310 1419 1612 6795 1578 1408 1294 1227 1169 1110 1069 1037 1024 1037 1083 1128 1183 1246 1321 1441 1628 6796 1625 1428 1326 1247 1190 1139 1092 1055 1045 1066 1104 1150 1205 1271 1342 1472 1644 6797 1648 1464 1350 1267 1213 1159 1115 1090 1075 1092 1125 1168 1226 1285 1371 1499 1682 6798 1686 1470 1358 1276 1208 1171 1130 1104 1091 1109 1141 1179 1236 1302 1387 1517 1729 6799 1743 1486 1356 1281 1217 1176 1139 1117 1110 1114 1145 1190 1240 1303 1382 1523 1758 6800 1757 1486 1358 1281 1219 1176 1142 1113 1109 1119 1153 1191 1232 1292 1393 1524 1806 6801 1815 1491 1377 1280 1213 1173 1146 1116 1115 1122 1143 1176 1233 1299 1387 1537 1850 6802 1889 1532 1383 1274 1216 1165 1140 1124 1117 1132 1149 1186 1230 1294 1398 1563 1959 6803 2024 1583 1385 1300 1222 1171 1143 1131 1121 1125 1151 1184 1233 1308 1404 1638 2059 ] 6804 </LSC_SAMPLES_greenB> 6805 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 6806 [2007 1561 1404 1305 1240 1205 1166 1158 1157 1158 1177 1211 1253 1333 1421 1606 2026 6807 1841 1526 1373 1288 1240 1201 1164 1146 1140 1151 1174 1196 1246 1308 1405 1557 1905 6808 1748 1480 1355 1269 1213 1173 1148 1132 1122 1132 1148 1193 1236 1301 1378 1517 1804 6809 1636 1432 1327 1253 1195 1153 1112 1102 1093 1106 1135 1162 1211 1271 1348 1458 1722 6810 1599 1392 1296 1217 1170 1126 1101 1075 1059 1079 1101 1135 1185 1245 1329 1424 1644 6811 1528 1365 1269 1206 1146 1106 1059 1036 1028 1047 1067 1114 1156 1217 1287 1396 1589 6812 1505 1342 1257 1196 1134 1091 1050 1020 1010 1024 1050 1103 1148 1212 1275 1386 1524 6813 1486 1343 1270 1182 1145 1089 1052 1012 1005 1026 1055 1109 1154 1214 1276 1379 1563 6814 1536 1367 1278 1205 1161 1103 1069 1035 1024 1038 1073 1124 1180 1237 1297 1412 1576 6815 1563 1402 1301 1235 1173 1135 1086 1062 1051 1058 1090 1140 1208 1258 1320 1442 1604 6816 1594 1425 1319 1251 1201 1156 1105 1079 1071 1087 1126 1161 1217 1268 1353 1458 1627 6817 1611 1452 1333 1256 1216 1164 1128 1101 1101 1109 1142 1183 1232 1292 1368 1469 1679 6818 1655 1441 1343 1263 1216 1177 1136 1116 1095 1112 1145 1177 1232 1299 1371 1484 1716 6819 1660 1449 1334 1265 1201 1167 1144 1110 1097 1119 1139 1167 1228 1290 1369 1485 1722 6820 1748 1444 1333 1257 1186 1153 1116 1109 1096 1114 1134 1163 1202 1269 1378 1480 1789 6821 1781 1459 1328 1250 1184 1140 1116 1100 1099 1109 1130 1159 1200 1269 1358 1507 1857 6822 1882 1509 1340 1264 1182 1152 1112 1109 1095 1096 1117 1152 1205 1277 1379 1550 1970 ] 6823 </LSC_SAMPLES_blue> 6824 </cell> 6825 <cell index="9" type="struct" size="[1 1]"> 6826 <name index="1" type="char" size="[1 17]"> 6827 1920x1080_CWF_100 6828 </name> 6829 <resolution index="1" type="char" size="[1 9]"> 6830 1920x1080 6831 </resolution> 6832 <illumination index="1" type="char" size="[1 3]"> 6833 CWF 6834 </illumination> 6835 <LSC_sectors index="1" type="double" size="[1 1]"> 6836 [16 ] 6837 </LSC_sectors> 6838 <LSC_No index="1" type="double" size="[1 1]"> 6839 [10 ] 6840 </LSC_No> 6841 <LSC_Xo index="1" type="double" size="[1 1]"> 6842 [15 ] 6843 </LSC_Xo> 6844 <LSC_Yo index="1" type="double" size="[1 1]"> 6845 [15 ] 6846 </LSC_Yo> 6847 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 6848 [120 120 120 120 120 120 120 120 ] 6849 </LSC_SECT_SIZE_X> 6850 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 6851 [67 68 67 68 67 68 67 68 ] 6852 </LSC_SECT_SIZE_Y> 6853 <vignetting index="1" type="double" size="[1 1]"> 6854 [100.0000 ] 6855 </vignetting> 6856 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 6857 [3015 2200 1834 1627 1492 1386 1339 1295 1283 1287 1339 1395 1502 1645 1858 2234 3015 6858 2711 2043 1745 1556 1423 1339 1283 1242 1225 1242 1268 1347 1432 1568 1760 2063 2763 6859 2463 1933 1664 1507 1373 1295 1228 1194 1184 1201 1235 1302 1391 1513 1691 1987 2506 6860 2318 1842 1615 1461 1331 1246 1184 1156 1137 1162 1198 1264 1356 1461 1639 1883 2356 6861 2234 1796 1579 1423 1306 1218 1153 1120 1111 1123 1171 1228 1314 1432 1585 1834 2257 6862 2134 1731 1540 1391 1283 1194 1134 1089 1075 1094 1144 1208 1291 1409 1568 1789 2177 6863 2073 1731 1518 1364 1264 1178 1103 1070 1051 1067 1117 1184 1275 1382 1529 1760 2103 6864 2053 1697 1502 1360 1250 1159 1089 1054 1031 1059 1105 1175 1261 1373 1529 1745 2093 6865 2034 1691 1492 1356 1246 1159 1089 1044 1024 1051 1100 1168 1257 1373 1507 1738 2083 6866 2043 1704 1502 1360 1246 1156 1097 1049 1034 1049 1100 1171 1261 1373 1513 1752 2113 6867 2083 1724 1518 1373 1257 1162 1103 1057 1051 1067 1117 1181 1275 1382 1534 1745 2124 6868 2145 1745 1540 1386 1275 1194 1132 1086 1075 1086 1137 1198 1279 1400 1556 1781 2177 6869 2245 1789 1573 1413 1306 1214 1156 1126 1105 1123 1171 1228 1314 1423 1579 1834 2269 6870 2330 1858 1609 1456 1339 1257 1191 1159 1150 1156 1204 1272 1347 1471 1652 1916 2382 6871 2506 1951 1684 1513 1386 1299 1242 1204 1194 1204 1246 1302 1400 1518 1704 1987 2581 6872 2711 2083 1767 1568 1442 1347 1291 1264 1242 1261 1295 1364 1461 1585 1781 2103 2818 6873 3079 2257 1850 1664 1518 1409 1356 1322 1299 1314 1369 1413 1518 1664 1908 2293 3170 ] 6874 </LSC_SAMPLES_red> 6875 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 6876 [2956 2150 1781 1606 1461 1374 1323 1290 1261 1292 1334 1388 1481 1619 1819 2204 2978 6877 2654 1991 1707 1527 1403 1332 1269 1248 1231 1239 1279 1338 1429 1557 1742 2032 2663 6878 2438 1880 1643 1478 1362 1283 1229 1193 1188 1202 1235 1294 1383 1503 1667 1927 2477 6879 2268 1810 1592 1434 1327 1246 1195 1161 1146 1163 1204 1261 1343 1456 1619 1871 2302 6880 2161 1769 1551 1403 1298 1215 1156 1124 1113 1131 1173 1223 1311 1424 1580 1802 2223 6881 2081 1719 1518 1374 1275 1191 1129 1094 1078 1096 1137 1199 1283 1401 1542 1765 2115 6882 2001 1682 1475 1350 1250 1166 1110 1067 1054 1070 1121 1182 1269 1371 1518 1719 2075 6883 1975 1657 1469 1329 1235 1153 1090 1049 1038 1053 1097 1165 1248 1359 1498 1707 2032 6884 1980 1650 1464 1325 1227 1146 1082 1039 1024 1045 1096 1163 1244 1350 1492 1700 2027 6885 1996 1657 1467 1329 1235 1146 1088 1050 1028 1053 1097 1161 1248 1350 1498 1700 2043 6886 2021 1667 1472 1343 1241 1161 1101 1066 1046 1063 1113 1177 1259 1369 1518 1722 2053 6887 2070 1715 1501 1371 1261 1182 1129 1085 1076 1094 1134 1195 1279 1396 1539 1757 2132 6888 2155 1753 1542 1396 1290 1214 1161 1121 1104 1126 1168 1225 1309 1416 1564 1806 2210 6889 2288 1832 1606 1440 1329 1252 1191 1159 1149 1163 1202 1263 1348 1464 1632 1871 2336 6890 2461 1908 1650 1489 1376 1296 1241 1204 1193 1208 1254 1311 1388 1515 1696 1961 2525 6891 2709 2037 1742 1564 1432 1341 1294 1257 1239 1261 1294 1357 1448 1573 1769 2092 2757 6892 3001 2217 1815 1619 1478 1388 1345 1300 1290 1309 1352 1401 1512 1643 1853 2249 3072 ] 6893 </LSC_SAMPLES_greenR> 6894 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 6895 [2956 2132 1777 1589 1461 1367 1320 1279 1275 1285 1311 1391 1478 1612 1810 2186 2978 6896 2672 1991 1711 1530 1401 1323 1265 1237 1223 1237 1277 1336 1426 1545 1734 2032 2691 6897 2408 1885 1632 1472 1357 1277 1221 1193 1182 1195 1233 1285 1379 1495 1671 1936 2469 6898 2249 1810 1586 1432 1325 1244 1188 1158 1147 1159 1199 1261 1341 1450 1616 1853 2315 6899 2161 1757 1542 1396 1290 1217 1161 1118 1105 1129 1168 1235 1307 1421 1583 1794 2210 6900 2075 1711 1509 1371 1267 1189 1128 1088 1075 1094 1136 1200 1292 1396 1542 1753 2098 6901 2011 1682 1483 1345 1248 1165 1102 1067 1053 1070 1113 1179 1259 1367 1512 1722 2075 6902 1985 1657 1464 1334 1233 1153 1093 1046 1032 1054 1096 1166 1248 1352 1501 1707 2032 6903 1991 1653 1458 1325 1227 1149 1084 1039 1024 1046 1093 1158 1244 1352 1492 1696 2021 6904 1991 1643 1458 1332 1227 1149 1088 1047 1029 1043 1097 1163 1241 1350 1489 1704 2016 6905 1996 1671 1481 1341 1241 1163 1099 1059 1047 1066 1112 1175 1263 1357 1509 1726 2070 6906 2070 1704 1509 1357 1254 1186 1124 1084 1069 1091 1131 1197 1279 1386 1539 1746 2115 6907 2180 1750 1542 1396 1294 1212 1154 1121 1107 1121 1163 1229 1314 1429 1573 1806 2217 6908 2282 1819 1596 1440 1325 1250 1199 1163 1149 1159 1200 1259 1348 1461 1626 1867 2329 6909 2446 1894 1664 1492 1371 1292 1237 1200 1186 1206 1244 1305 1383 1512 1693 1946 2477 6910 2709 2032 1730 1557 1424 1341 1285 1250 1235 1250 1285 1348 1434 1564 1761 2070 2757 6911 2978 2192 1823 1626 1478 1388 1341 1303 1288 1314 1332 1416 1501 1643 1840 2242 3048 ] 6912 </LSC_SAMPLES_greenB> 6913 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 6914 [2813 2116 1766 1571 1430 1354 1313 1255 1249 1267 1306 1362 1438 1580 1766 2133 2876 6915 2535 1954 1695 1515 1399 1299 1261 1219 1225 1231 1267 1326 1430 1542 1730 1969 2639 6916 2327 1855 1641 1480 1369 1280 1231 1202 1191 1202 1249 1306 1391 1488 1662 1896 2462 6917 2226 1803 1600 1446 1320 1255 1202 1174 1153 1169 1219 1274 1354 1480 1631 1855 2286 6918 2098 1753 1561 1430 1306 1231 1174 1133 1133 1148 1196 1249 1333 1438 1600 1803 2188 6919 2016 1718 1515 1376 1280 1208 1138 1103 1085 1099 1153 1219 1299 1407 1561 1753 2116 6920 1969 1673 1497 1354 1249 1169 1118 1071 1045 1071 1118 1191 1267 1376 1515 1684 2048 6921 1925 1652 1471 1320 1231 1153 1094 1041 1032 1062 1108 1169 1249 1354 1497 1695 2000 6922 1925 1641 1455 1326 1219 1143 1089 1036 1024 1045 1094 1153 1243 1354 1497 1673 2000 6923 1925 1641 1446 1320 1225 1153 1089 1049 1032 1049 1094 1169 1255 1340 1480 1684 2000 6924 1939 1662 1463 1340 1249 1158 1099 1058 1041 1062 1113 1174 1261 1376 1488 1718 2032 6925 2000 1695 1515 1362 1255 1196 1123 1089 1080 1099 1138 1196 1293 1399 1533 1730 2116 6926 2116 1741 1552 1407 1299 1225 1158 1133 1113 1133 1174 1249 1320 1422 1590 1790 2188 6927 2246 1829 1590 1455 1340 1261 1196 1164 1153 1169 1219 1267 1369 1480 1641 1869 2327 6928 2415 1896 1652 1480 1376 1286 1231 1213 1196 1213 1249 1306 1399 1515 1684 1939 2485 6929 2639 2000 1718 1542 1422 1326 1280 1237 1231 1255 1286 1333 1446 1571 1718 2032 2695 6930 2876 2133 1803 1600 1471 1362 1313 1293 1274 1299 1347 1407 1488 1631 1842 2169 3012 ] 6931 </LSC_SAMPLES_blue> 6932 </cell> 6933 <cell index="10" type="struct" size="[1 1]"> 6934 <name index="1" type="char" size="[1 16]"> 6935 1920x1080_CWF_70 6936 </name> 6937 <resolution index="1" type="char" size="[1 9]"> 6938 1920x1080 6939 </resolution> 6940 <illumination index="1" type="char" size="[1 3]"> 6941 CWF 6942 </illumination> 6943 <LSC_sectors index="1" type="double" size="[1 1]"> 6944 [16 ] 6945 </LSC_sectors> 6946 <LSC_No index="1" type="double" size="[1 1]"> 6947 [10 ] 6948 </LSC_No> 6949 <LSC_Xo index="1" type="double" size="[1 1]"> 6950 [15 ] 6951 </LSC_Xo> 6952 <LSC_Yo index="1" type="double" size="[1 1]"> 6953 [15 ] 6954 </LSC_Yo> 6955 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 6956 [120 120 120 120 120 120 120 120 ] 6957 </LSC_SECT_SIZE_X> 6958 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 6959 [67 68 67 68 67 68 67 68 ] 6960 </LSC_SECT_SIZE_Y> 6961 <vignetting index="1" type="double" size="[1 1]"> 6962 [70.0000 ] 6963 </vignetting> 6964 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 6965 [2110 1642 1437 1325 1254 1193 1172 1145 1139 1138 1172 1201 1262 1340 1456 1668 2110 6966 1973 1575 1409 1305 1231 1186 1156 1130 1118 1130 1142 1193 1239 1315 1421 1590 2011 6967 1845 1530 1379 1296 1217 1175 1134 1113 1108 1120 1140 1182 1233 1301 1400 1572 1877 6968 1776 1490 1366 1284 1205 1155 1116 1100 1086 1106 1128 1172 1227 1284 1387 1523 1805 6969 1744 1479 1359 1271 1203 1148 1104 1084 1079 1086 1122 1158 1210 1280 1364 1510 1762 6970 1690 1445 1343 1259 1197 1140 1101 1067 1057 1073 1110 1153 1204 1275 1368 1493 1724 6971 1658 1459 1337 1247 1190 1135 1080 1058 1044 1056 1094 1141 1201 1263 1346 1483 1682 6972 1652 1438 1331 1250 1183 1123 1072 1049 1029 1054 1089 1138 1194 1262 1354 1479 1684 6973 1639 1436 1324 1248 1182 1125 1074 1040 1024 1048 1085 1134 1192 1264 1338 1476 1679 6974 1644 1444 1331 1250 1180 1120 1081 1044 1032 1044 1083 1135 1194 1262 1340 1485 1700 6975 1666 1453 1337 1255 1184 1120 1080 1045 1044 1056 1094 1138 1201 1263 1351 1471 1698 6976 1698 1457 1343 1255 1190 1140 1098 1065 1057 1065 1104 1143 1193 1267 1358 1487 1724 6977 1753 1473 1354 1263 1203 1144 1107 1089 1073 1086 1122 1158 1210 1271 1359 1510 1771 6978 1786 1503 1361 1279 1212 1165 1122 1103 1098 1100 1135 1179 1220 1292 1397 1550 1825 6979 1877 1543 1395 1301 1229 1179 1147 1123 1117 1123 1150 1182 1241 1306 1411 1572 1933 6980 1973 1605 1426 1315 1247 1193 1163 1150 1134 1147 1166 1208 1264 1329 1438 1621 2050 6981 2156 1685 1450 1356 1276 1213 1187 1170 1152 1162 1198 1217 1276 1356 1495 1712 2219 ] 6982 </LSC_SAMPLES_red> 6983 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 6984 [2069 1605 1396 1308 1228 1183 1158 1141 1119 1143 1168 1195 1244 1319 1425 1646 2085 6985 1931 1534 1378 1281 1214 1179 1143 1136 1124 1127 1152 1186 1236 1306 1406 1566 1938 6986 1826 1488 1361 1271 1207 1165 1134 1112 1111 1121 1140 1175 1227 1293 1381 1524 1855 6987 1738 1464 1347 1260 1201 1155 1126 1105 1094 1107 1135 1168 1216 1279 1370 1513 1764 6988 1687 1457 1335 1254 1195 1145 1108 1088 1081 1094 1124 1153 1207 1272 1360 1483 1735 6989 1648 1434 1324 1244 1189 1137 1096 1073 1060 1074 1104 1144 1197 1268 1345 1473 1674 6990 1600 1417 1299 1234 1177 1124 1087 1056 1047 1059 1098 1139 1195 1253 1337 1448 1660 6991 1589 1404 1302 1222 1169 1117 1074 1043 1036 1048 1081 1129 1182 1249 1327 1447 1635 6992 1596 1401 1299 1220 1164 1112 1068 1036 1024 1041 1082 1129 1181 1243 1324 1444 1634 6993 1606 1404 1299 1222 1169 1110 1072 1045 1026 1048 1081 1125 1182 1241 1327 1441 1643 6994 1617 1405 1297 1227 1168 1119 1078 1055 1038 1052 1091 1134 1185 1251 1337 1451 1642 6995 1639 1431 1309 1241 1176 1129 1096 1064 1059 1073 1101 1141 1193 1264 1343 1467 1688 6996 1683 1443 1327 1247 1188 1144 1113 1085 1072 1090 1119 1154 1205 1265 1346 1487 1726 6997 1754 1481 1358 1264 1203 1161 1122 1103 1097 1107 1133 1170 1220 1286 1381 1513 1790 6998 1843 1510 1366 1281 1220 1177 1145 1123 1116 1126 1158 1190 1231 1303 1405 1551 1891 6999 1972 1570 1406 1312 1238 1188 1166 1143 1131 1147 1166 1202 1252 1320 1428 1612 2006 7000 2101 1655 1422 1319 1242 1195 1178 1150 1145 1158 1184 1206 1271 1338 1452 1679 2150 ] 7001 </LSC_SAMPLES_greenR> 7002 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 7003 [2069 1592 1393 1295 1228 1176 1156 1131 1131 1137 1148 1197 1242 1313 1418 1632 2085 7004 1945 1534 1382 1283 1212 1171 1139 1125 1117 1125 1150 1183 1234 1296 1400 1566 1958 7005 1803 1491 1352 1266 1203 1159 1127 1112 1106 1114 1138 1167 1222 1286 1384 1532 1849 7006 1723 1464 1342 1258 1199 1153 1119 1102 1096 1103 1129 1168 1214 1274 1367 1499 1775 7007 1687 1447 1327 1247 1188 1147 1113 1082 1073 1093 1119 1164 1203 1270 1362 1477 1726 7008 1643 1428 1317 1241 1182 1136 1095 1067 1057 1073 1102 1146 1205 1264 1345 1463 1661 7009 1608 1417 1307 1229 1176 1122 1080 1056 1045 1059 1091 1136 1185 1249 1332 1451 1660 7010 1597 1404 1297 1226 1167 1117 1077 1041 1030 1049 1080 1130 1182 1243 1329 1447 1635 7011 1605 1404 1294 1220 1164 1116 1070 1036 1024 1043 1079 1124 1181 1245 1324 1440 1630 7012 1601 1392 1292 1224 1162 1114 1072 1042 1028 1038 1081 1127 1175 1241 1319 1444 1622 7013 1596 1408 1304 1225 1168 1121 1077 1048 1040 1055 1089 1132 1189 1240 1329 1455 1655 7014 1639 1422 1317 1229 1170 1132 1091 1062 1051 1070 1098 1143 1193 1255 1343 1457 1674 7015 1702 1440 1327 1247 1191 1142 1106 1085 1075 1085 1114 1158 1210 1277 1354 1487 1731 7016 1749 1471 1350 1264 1199 1159 1129 1107 1097 1103 1131 1166 1220 1283 1375 1510 1785 7017 1832 1499 1378 1283 1216 1173 1141 1119 1109 1124 1149 1185 1227 1301 1402 1540 1855 7018 1972 1566 1397 1306 1232 1188 1158 1138 1127 1138 1158 1194 1241 1312 1422 1595 2006 7019 2085 1637 1428 1324 1242 1195 1174 1152 1143 1162 1166 1219 1261 1338 1442 1674 2134 ] 7020 </LSC_SAMPLES_greenB> 7021 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 7022 [1969 1580 1383 1279 1202 1166 1149 1110 1108 1121 1144 1172 1209 1287 1383 1593 2013 7023 1844 1506 1369 1271 1210 1151 1136 1109 1118 1120 1142 1175 1237 1294 1396 1518 1920 7024 1743 1468 1359 1273 1214 1162 1136 1121 1114 1121 1153 1186 1234 1280 1377 1500 1843 7025 1706 1458 1354 1270 1195 1163 1132 1118 1101 1112 1149 1180 1226 1300 1380 1500 1752 7026 1638 1443 1344 1278 1203 1160 1125 1096 1100 1111 1146 1177 1228 1285 1377 1484 1708 7027 1596 1434 1322 1246 1194 1153 1104 1082 1067 1077 1119 1164 1212 1273 1362 1463 1675 7028 1575 1410 1319 1238 1176 1127 1095 1060 1037 1060 1095 1147 1193 1258 1334 1419 1638 7029 1549 1400 1303 1213 1165 1117 1078 1035 1030 1057 1092 1133 1183 1245 1326 1437 1609 7030 1552 1393 1291 1221 1157 1110 1075 1033 1024 1041 1080 1120 1179 1247 1329 1421 1612 7031 1549 1391 1281 1213 1160 1117 1073 1044 1030 1044 1078 1133 1188 1232 1311 1427 1609 7032 1551 1401 1288 1225 1176 1116 1076 1047 1033 1051 1090 1132 1187 1258 1311 1448 1625 7033 1584 1415 1322 1233 1171 1142 1090 1068 1062 1077 1104 1142 1206 1266 1337 1443 1675 7034 1652 1434 1336 1257 1197 1154 1110 1096 1081 1096 1125 1177 1215 1271 1369 1474 1708 7035 1721 1479 1345 1278 1213 1169 1127 1107 1101 1112 1149 1174 1239 1300 1388 1511 1784 7036 1809 1500 1368 1273 1220 1168 1136 1131 1119 1131 1153 1186 1240 1303 1395 1535 1861 7037 1920 1541 1387 1294 1230 1175 1153 1125 1124 1142 1159 1181 1251 1317 1387 1566 1961 7038 2013 1593 1412 1303 1237 1172 1149 1144 1130 1149 1180 1211 1251 1328 1443 1620 2108 ] 7039 </LSC_SAMPLES_blue> 7040 </cell> 7041 <cell index="11" type="struct" size="[1 1]"> 7042 <name index="1" type="char" size="[1 18]"> 7043 1920x1080_TL84_100 7044 </name> 7045 <resolution index="1" type="char" size="[1 9]"> 7046 1920x1080 7047 </resolution> 7048 <illumination index="1" type="char" size="[1 4]"> 7049 TL84 7050 </illumination> 7051 <LSC_sectors index="1" type="double" size="[1 1]"> 7052 [16 ] 7053 </LSC_sectors> 7054 <LSC_No index="1" type="double" size="[1 1]"> 7055 [10 ] 7056 </LSC_No> 7057 <LSC_Xo index="1" type="double" size="[1 1]"> 7058 [15 ] 7059 </LSC_Xo> 7060 <LSC_Yo index="1" type="double" size="[1 1]"> 7061 [15 ] 7062 </LSC_Yo> 7063 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 7064 [120 120 120 120 120 120 120 120 ] 7065 </LSC_SECT_SIZE_X> 7066 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 7067 [67 68 67 68 67 68 67 68 ] 7068 </LSC_SECT_SIZE_Y> 7069 <vignetting index="1" type="double" size="[1 1]"> 7070 [100.0000 ] 7071 </vignetting> 7072 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 7073 [2941 2153 1775 1571 1458 1360 1311 1261 1249 1261 1307 1371 1475 1601 1800 2171 2941 7074 2621 1968 1681 1501 1378 1287 1237 1202 1193 1210 1243 1304 1397 1515 1709 2007 2648 7075 2409 1846 1601 1441 1324 1246 1187 1155 1139 1158 1196 1252 1342 1458 1627 1881 2420 7076 2219 1775 1552 1397 1287 1202 1147 1109 1104 1119 1150 1216 1300 1409 1576 1820 2248 7077 2117 1732 1519 1371 1261 1182 1129 1086 1074 1090 1132 1187 1281 1382 1542 1763 2180 7078 2048 1698 1488 1367 1243 1168 1102 1065 1052 1069 1119 1176 1261 1367 1524 1744 2099 7079 2023 1681 1488 1349 1237 1158 1095 1052 1041 1058 1102 1171 1255 1363 1510 1732 2065 7080 2007 1681 1475 1335 1234 1147 1083 1049 1028 1045 1093 1166 1246 1367 1506 1726 2065 7081 2007 1669 1475 1338 1228 1150 1086 1039 1024 1043 1090 1155 1249 1353 1506 1715 2056 7082 2007 1675 1471 1338 1225 1144 1081 1043 1022 1043 1097 1152 1243 1360 1497 1721 2048 7083 2040 1686 1483 1335 1228 1144 1081 1043 1032 1049 1090 1166 1240 1353 1510 1721 2065 7084 2065 1698 1488 1345 1237 1160 1102 1063 1049 1065 1112 1174 1258 1363 1515 1744 2117 7085 2117 1721 1515 1367 1255 1174 1119 1086 1072 1088 1127 1190 1274 1390 1533 1763 2171 7086 2258 1787 1552 1397 1284 1202 1155 1112 1104 1114 1160 1219 1304 1409 1576 1813 2279 7087 2397 1860 1611 1445 1321 1240 1190 1163 1155 1168 1196 1265 1342 1475 1637 1916 2444 7088 2662 1984 1715 1524 1397 1317 1258 1219 1210 1216 1261 1321 1413 1533 1726 2040 2691 7089 2958 2199 1826 1601 1466 1367 1314 1284 1268 1281 1324 1386 1488 1616 1839 2219 3029 ] 7090 </LSC_SAMPLES_red> 7091 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 7092 [2941 2134 1758 1564 1456 1352 1309 1264 1258 1273 1300 1367 1459 1591 1792 2152 2918 7093 2581 1958 1670 1510 1385 1298 1245 1212 1204 1216 1251 1307 1390 1516 1689 1985 2637 7094 2374 1841 1595 1436 1328 1251 1193 1166 1154 1168 1206 1253 1340 1456 1641 1883 2389 7095 2197 1766 1545 1388 1284 1208 1154 1127 1117 1129 1166 1224 1302 1412 1568 1801 2231 7096 2097 1717 1501 1370 1260 1179 1129 1099 1079 1102 1139 1195 1282 1393 1545 1745 2134 7097 2040 1678 1486 1338 1241 1172 1109 1068 1058 1072 1122 1179 1264 1370 1513 1729 2080 7098 1995 1667 1471 1338 1231 1166 1100 1056 1040 1059 1104 1165 1253 1357 1507 1701 2040 7099 1974 1667 1462 1330 1222 1148 1091 1049 1028 1049 1099 1161 1243 1352 1501 1697 2040 7100 1974 1648 1448 1323 1226 1146 1086 1038 1024 1043 1095 1159 1247 1347 1498 1705 2028 7101 1985 1655 1462 1323 1228 1143 1086 1041 1023 1046 1099 1159 1241 1350 1492 1701 2023 7102 2012 1663 1468 1330 1228 1154 1095 1049 1038 1064 1104 1172 1249 1352 1495 1721 2040 7103 2045 1689 1474 1347 1245 1166 1110 1068 1058 1076 1117 1178 1260 1362 1516 1741 2097 7104 2115 1717 1513 1362 1258 1187 1136 1091 1086 1097 1139 1200 1284 1383 1538 1766 2159 7105 2244 1779 1554 1396 1293 1216 1163 1132 1110 1131 1172 1226 1309 1417 1584 1810 2258 7106 2382 1855 1612 1448 1335 1258 1212 1170 1161 1172 1216 1266 1355 1477 1648 1908 2453 7107 2627 1995 1701 1513 1390 1316 1258 1224 1214 1224 1262 1326 1414 1545 1717 2034 2685 7108 2953 2146 1796 1591 1465 1365 1318 1273 1275 1286 1326 1388 1486 1623 1832 2224 3013 ] 7109 </LSC_SAMPLES_greenR> 7110 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 7111 [2934 2125 1748 1576 1430 1357 1302 1268 1249 1268 1304 1367 1453 1604 1794 2137 2957 7112 2585 1946 1673 1500 1379 1295 1238 1208 1198 1212 1249 1309 1395 1515 1700 1993 2622 7113 2340 1839 1593 1433 1327 1247 1192 1162 1150 1161 1206 1262 1344 1458 1628 1881 2400 7114 2174 1765 1547 1392 1281 1206 1152 1120 1112 1127 1164 1220 1309 1411 1573 1808 2247 7115 2083 1707 1509 1359 1257 1187 1129 1094 1075 1099 1136 1192 1275 1387 1534 1756 2155 7116 2042 1684 1485 1342 1240 1170 1105 1067 1056 1070 1115 1174 1262 1374 1512 1727 2077 7117 1993 1658 1473 1335 1230 1153 1092 1052 1038 1056 1103 1166 1251 1359 1500 1711 2031 7118 1972 1658 1458 1327 1224 1144 1081 1043 1025 1052 1094 1161 1247 1349 1497 1700 2031 7119 1972 1658 1455 1325 1222 1152 1082 1038 1024 1044 1089 1157 1243 1357 1491 1700 2015 7120 1956 1647 1464 1323 1222 1141 1084 1035 1025 1041 1094 1157 1243 1354 1485 1700 2009 7121 1987 1669 1464 1332 1232 1146 1089 1049 1037 1056 1100 1162 1247 1354 1494 1704 2048 7122 2037 1673 1476 1344 1243 1162 1105 1065 1049 1071 1117 1179 1262 1367 1512 1731 2083 7123 2118 1711 1503 1364 1257 1179 1132 1090 1076 1094 1141 1198 1277 1382 1540 1756 2168 7124 2227 1765 1540 1395 1295 1214 1159 1122 1112 1127 1168 1222 1306 1419 1583 1803 2268 7125 2377 1853 1607 1441 1327 1243 1202 1175 1161 1168 1208 1268 1347 1461 1636 1891 2408 7126 2603 1972 1696 1512 1387 1304 1255 1218 1204 1224 1264 1316 1403 1543 1707 2042 2698 7127 2957 2149 1786 1600 1470 1369 1311 1275 1262 1275 1316 1372 1485 1614 1817 2220 3043 ] 7128 </LSC_SAMPLES_greenB> 7129 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 7130 [2778 2056 1752 1545 1411 1339 1274 1243 1238 1261 1280 1346 1443 1573 1764 2056 2901 7131 2487 1920 1653 1475 1346 1268 1232 1203 1187 1203 1232 1293 1389 1501 1685 1934 2535 7132 2232 1813 1583 1435 1312 1249 1198 1161 1145 1161 1203 1255 1339 1459 1612 1865 2331 7133 2140 1776 1545 1382 1286 1215 1155 1126 1111 1135 1176 1232 1319 1427 1564 1788 2232 7134 2072 1696 1518 1367 1261 1198 1135 1106 1097 1116 1155 1220 1286 1396 1573 1741 2140 7135 1993 1685 1501 1360 1249 1182 1121 1083 1075 1093 1130 1198 1280 1389 1527 1741 2106 7136 1993 1674 1484 1353 1249 1166 1111 1057 1053 1075 1116 1182 1268 1374 1536 1696 2024 7137 1934 1642 1484 1346 1232 1150 1088 1057 1036 1053 1106 1176 1268 1367 1501 1696 2024 7138 1949 1663 1459 1332 1226 1155 1088 1049 1024 1053 1097 1161 1249 1367 1492 1685 1993 7139 1920 1632 1451 1332 1226 1145 1083 1040 1024 1049 1102 1166 1243 1360 1492 1685 1993 7140 1949 1632 1451 1332 1226 1150 1093 1053 1036 1057 1111 1161 1261 1367 1501 1696 2024 7141 1978 1642 1484 1346 1243 1166 1106 1070 1057 1083 1116 1176 1268 1367 1509 1718 2056 7142 2056 1707 1492 1360 1261 1176 1135 1106 1088 1102 1145 1192 1293 1404 1545 1741 2140 7143 2140 1764 1545 1404 1286 1220 1166 1130 1116 1135 1182 1232 1312 1427 1573 1801 2232 7144 2331 1826 1592 1435 1325 1243 1192 1176 1161 1166 1215 1261 1346 1467 1622 1879 2374 7145 2535 1963 1674 1509 1382 1293 1243 1215 1203 1215 1249 1319 1404 1536 1718 1993 2611 7146 2901 2140 1801 1583 1459 1360 1306 1286 1268 1274 1306 1382 1492 1622 1839 2158 2967 ] 7147 </LSC_SAMPLES_blue> 7148 </cell> 7149 <cell index="12" type="struct" size="[1 1]"> 7150 <name index="1" type="char" size="[1 17]"> 7151 1920x1080_TL84_70 7152 </name> 7153 <resolution index="1" type="char" size="[1 9]"> 7154 1920x1080 7155 </resolution> 7156 <illumination index="1" type="char" size="[1 4]"> 7157 TL84 7158 </illumination> 7159 <LSC_sectors index="1" type="double" size="[1 1]"> 7160 [16 ] 7161 </LSC_sectors> 7162 <LSC_No index="1" type="double" size="[1 1]"> 7163 [10 ] 7164 </LSC_No> 7165 <LSC_Xo index="1" type="double" size="[1 1]"> 7166 [15 ] 7167 </LSC_Xo> 7168 <LSC_Yo index="1" type="double" size="[1 1]"> 7169 [15 ] 7170 </LSC_Yo> 7171 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 7172 [120 120 120 120 120 120 120 120 ] 7173 </LSC_SECT_SIZE_X> 7174 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 7175 [67 68 67 68 67 68 67 68 ] 7176 </LSC_SECT_SIZE_Y> 7177 <vignetting index="1" type="double" size="[1 1]"> 7178 [70.0000 ] 7179 </vignetting> 7180 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 7181 [2059 1607 1391 1280 1225 1171 1147 1116 1108 1116 1144 1180 1239 1304 1410 1621 2059 7182 1907 1517 1357 1259 1192 1140 1114 1093 1089 1101 1120 1155 1209 1270 1380 1547 1927 7183 1804 1461 1326 1240 1174 1131 1096 1077 1066 1079 1104 1137 1190 1254 1347 1488 1813 7184 1700 1436 1313 1227 1165 1114 1081 1056 1055 1065 1083 1127 1177 1238 1333 1472 1723 7185 1652 1426 1308 1225 1162 1114 1082 1050 1043 1055 1084 1119 1179 1235 1328 1451 1702 7186 1622 1417 1298 1238 1159 1115 1070 1044 1034 1048 1086 1123 1177 1238 1329 1456 1662 7187 1618 1416 1310 1233 1165 1116 1073 1041 1033 1047 1080 1128 1182 1246 1330 1460 1651 7188 1615 1424 1306 1227 1168 1112 1067 1044 1026 1040 1076 1130 1180 1256 1334 1463 1661 7189 1618 1418 1309 1232 1165 1116 1071 1035 1024 1040 1076 1121 1185 1245 1336 1456 1658 7190 1615 1420 1303 1230 1160 1109 1065 1038 1020 1038 1081 1117 1177 1250 1326 1458 1648 7191 1631 1421 1307 1220 1156 1103 1059 1032 1025 1038 1068 1123 1167 1236 1330 1450 1651 7192 1635 1417 1298 1218 1154 1108 1070 1042 1032 1044 1079 1121 1174 1234 1321 1456 1676 7193 1652 1416 1304 1221 1156 1106 1072 1050 1041 1053 1079 1122 1173 1242 1320 1451 1695 7194 1731 1446 1313 1227 1162 1114 1088 1058 1055 1060 1093 1130 1180 1238 1333 1466 1746 7195 1795 1472 1334 1243 1171 1126 1099 1084 1080 1089 1104 1148 1190 1268 1356 1516 1830 7196 1937 1529 1384 1278 1209 1167 1133 1109 1105 1106 1136 1170 1222 1286 1394 1572 1958 7197 2071 1642 1431 1304 1232 1177 1150 1136 1125 1133 1159 1193 1250 1317 1441 1657 2120 ] 7198 </LSC_SAMPLES_red> 7199 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 7200 [2059 1593 1377 1274 1224 1164 1146 1118 1116 1126 1138 1177 1226 1296 1404 1607 2043 7201 1878 1509 1349 1266 1198 1149 1121 1103 1100 1107 1127 1157 1203 1272 1364 1529 1919 7202 1778 1457 1321 1235 1177 1136 1101 1087 1079 1089 1114 1138 1188 1252 1359 1490 1789 7203 1684 1429 1307 1219 1162 1120 1087 1073 1066 1074 1099 1135 1179 1240 1326 1456 1709 7204 1637 1413 1292 1224 1160 1112 1082 1063 1048 1066 1092 1126 1180 1245 1330 1437 1666 7205 1615 1400 1296 1211 1158 1119 1076 1047 1040 1050 1089 1126 1179 1240 1320 1443 1647 7206 1596 1404 1295 1222 1159 1124 1078 1045 1032 1048 1081 1122 1180 1240 1327 1433 1631 7207 1588 1412 1295 1223 1157 1113 1074 1043 1026 1043 1082 1125 1177 1243 1329 1438 1641 7208 1591 1399 1285 1218 1163 1113 1072 1035 1024 1039 1081 1125 1183 1241 1329 1448 1635 7209 1597 1403 1295 1216 1163 1108 1070 1036 1021 1040 1082 1123 1175 1240 1321 1442 1627 7210 1609 1401 1293 1216 1157 1112 1073 1038 1031 1053 1081 1129 1176 1236 1316 1450 1631 7211 1619 1410 1286 1220 1161 1114 1078 1047 1040 1055 1084 1124 1175 1233 1323 1453 1661 7212 1652 1413 1302 1217 1158 1119 1088 1055 1054 1062 1092 1131 1182 1235 1324 1454 1685 7213 1720 1439 1315 1226 1171 1127 1096 1078 1060 1076 1104 1137 1185 1245 1340 1464 1730 7214 1783 1468 1335 1245 1184 1142 1119 1091 1086 1093 1123 1150 1201 1270 1365 1510 1837 7215 1912 1538 1373 1269 1203 1166 1133 1114 1109 1114 1137 1174 1223 1296 1386 1567 1954 7216 2067 1603 1407 1296 1231 1175 1154 1126 1132 1138 1161 1195 1249 1322 1435 1661 2109 ] 7217 </LSC_SAMPLES_greenR> 7218 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 7219 [2054 1586 1369 1284 1202 1168 1140 1122 1108 1122 1142 1176 1221 1306 1406 1596 2070 7220 1881 1499 1350 1258 1193 1147 1116 1099 1094 1103 1125 1159 1207 1271 1372 1536 1908 7221 1752 1455 1320 1232 1177 1132 1101 1084 1076 1082 1113 1145 1192 1254 1349 1489 1798 7222 1667 1427 1309 1223 1160 1118 1085 1066 1062 1073 1097 1131 1185 1239 1331 1462 1722 7223 1626 1406 1299 1214 1158 1118 1082 1058 1043 1063 1088 1124 1174 1239 1320 1446 1683 7224 1617 1405 1295 1215 1157 1117 1073 1046 1039 1049 1082 1120 1177 1244 1319 1442 1644 7225 1594 1397 1297 1220 1158 1112 1070 1041 1031 1045 1081 1124 1178 1242 1321 1442 1624 7226 1586 1405 1292 1220 1159 1109 1065 1037 1024 1046 1077 1125 1181 1240 1326 1440 1634 7227 1589 1408 1292 1220 1159 1118 1068 1035 1024 1041 1075 1123 1179 1249 1323 1443 1624 7228 1574 1396 1297 1216 1157 1106 1068 1030 1024 1036 1077 1121 1177 1244 1315 1440 1616 7229 1589 1406 1289 1217 1160 1105 1067 1038 1029 1045 1078 1120 1174 1237 1315 1435 1638 7230 1613 1396 1287 1217 1159 1110 1073 1044 1031 1050 1084 1126 1177 1237 1319 1445 1649 7231 1654 1409 1294 1219 1158 1111 1085 1055 1045 1058 1093 1129 1176 1235 1326 1446 1693 7232 1707 1427 1303 1225 1172 1125 1092 1068 1062 1073 1101 1132 1183 1246 1339 1458 1738 7233 1780 1466 1331 1240 1177 1128 1110 1096 1086 1089 1115 1151 1194 1257 1355 1496 1803 7234 1894 1519 1369 1268 1200 1155 1131 1108 1099 1114 1138 1165 1214 1295 1379 1574 1963 7235 2070 1605 1399 1304 1235 1179 1148 1127 1120 1127 1152 1181 1248 1315 1423 1658 2130 ] 7236 </LSC_SAMPLES_greenB> 7237 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 7238 [1945 1535 1373 1259 1186 1153 1115 1100 1098 1116 1121 1159 1212 1281 1382 1535 2031 7239 1810 1480 1334 1237 1164 1123 1109 1095 1084 1095 1109 1145 1201 1259 1360 1491 1845 7240 1671 1435 1311 1234 1163 1134 1106 1082 1071 1082 1111 1140 1187 1255 1335 1476 1746 7241 1640 1437 1307 1213 1165 1126 1089 1071 1061 1080 1108 1141 1194 1253 1323 1446 1710 7242 1618 1396 1307 1221 1161 1129 1088 1071 1065 1080 1107 1150 1184 1248 1354 1433 1671 7243 1578 1406 1309 1231 1166 1128 1088 1062 1057 1071 1097 1144 1194 1257 1332 1453 1667 7244 1594 1410 1307 1236 1176 1123 1089 1046 1045 1063 1093 1139 1194 1256 1353 1429 1619 7245 1556 1392 1314 1237 1166 1115 1072 1052 1034 1048 1090 1140 1200 1256 1329 1437 1628 7246 1571 1412 1295 1227 1163 1122 1074 1045 1024 1049 1083 1127 1185 1259 1324 1431 1607 7247 1545 1383 1285 1224 1161 1110 1067 1035 1022 1043 1085 1130 1177 1250 1322 1428 1604 7248 1558 1375 1278 1218 1154 1109 1070 1042 1029 1046 1089 1118 1188 1249 1322 1429 1619 7249 1566 1370 1294 1219 1160 1113 1074 1049 1040 1062 1083 1123 1183 1238 1317 1434 1628 7250 1605 1405 1284 1215 1161 1109 1088 1071 1056 1066 1097 1124 1190 1254 1330 1433 1671 7251 1640 1427 1307 1233 1165 1131 1098 1076 1065 1080 1113 1141 1188 1253 1331 1456 1710 7252 1746 1445 1319 1234 1175 1129 1101 1097 1086 1087 1121 1145 1193 1262 1343 1486 1778 7253 1845 1513 1351 1266 1195 1145 1120 1105 1099 1105 1125 1168 1214 1288 1387 1536 1900 7254 2031 1598 1411 1289 1226 1171 1143 1138 1125 1127 1143 1189 1254 1321 1441 1611 2077 ] 7255 </LSC_SAMPLES_blue> 7256 </cell> 7257 <cell index="13" type="struct" size="[1 1]"> 7258 <name index="1" type="char" size="[1 16]"> 7259 1920x1080_HZ_100 7260 </name> 7261 <resolution index="1" type="char" size="[1 9]"> 7262 1920x1080 7263 </resolution> 7264 <illumination index="1" type="char" size="[1 2]"> 7265 HZ 7266 </illumination> 7267 <LSC_sectors index="1" type="double" size="[1 1]"> 7268 [16 ] 7269 </LSC_sectors> 7270 <LSC_No index="1" type="double" size="[1 1]"> 7271 [10 ] 7272 </LSC_No> 7273 <LSC_Xo index="1" type="double" size="[1 1]"> 7274 [15 ] 7275 </LSC_Xo> 7276 <LSC_Yo index="1" type="double" size="[1 1]"> 7277 [15 ] 7278 </LSC_Yo> 7279 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 7280 [120 120 120 120 120 120 120 120 ] 7281 </LSC_SECT_SIZE_X> 7282 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 7283 [67 68 67 68 67 68 67 68 ] 7284 </LSC_SECT_SIZE_Y> 7285 <vignetting index="1" type="double" size="[1 1]"> 7286 [100.0000 ] 7287 </vignetting> 7288 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 7289 [2957 2214 1861 1618 1484 1410 1334 1287 1278 1295 1339 1405 1501 1651 1887 2252 3096 7290 2678 2032 1738 1554 1420 1321 1254 1216 1205 1231 1258 1325 1425 1560 1753 2097 2696 7291 2461 1905 1644 1479 1353 1262 1205 1162 1159 1172 1212 1274 1362 1495 1686 1952 2508 7292 2291 1818 1592 1425 1304 1212 1159 1119 1107 1116 1159 1223 1312 1436 1618 1852 2345 7293 2177 1777 1554 1395 1278 1179 1129 1086 1077 1092 1142 1197 1299 1410 1592 1818 2226 7294 2131 1746 1530 1376 1258 1169 1107 1062 1046 1065 1116 1176 1278 1390 1554 1785 2166 7295 2097 1731 1524 1362 1258 1162 1089 1048 1029 1051 1098 1166 1266 1376 1548 1777 2119 7296 2097 1731 1530 1367 1242 1162 1092 1037 1024 1048 1095 1166 1266 1376 1536 1769 2154 7297 2108 1738 1513 1367 1254 1159 1095 1040 1024 1048 1095 1169 1262 1381 1554 1785 2131 7298 2086 1731 1524 1367 1238 1162 1092 1046 1027 1051 1092 1166 1262 1381 1542 1785 2131 7299 2131 1753 1524 1362 1254 1169 1098 1057 1040 1057 1107 1172 1266 1390 1554 1785 2177 7300 2154 1761 1536 1386 1262 1172 1119 1071 1054 1074 1123 1190 1282 1410 1579 1818 2202 7301 2226 1785 1566 1415 1274 1197 1142 1095 1080 1098 1139 1216 1295 1431 1592 1835 2239 7302 2304 1852 1611 1441 1308 1227 1162 1123 1113 1123 1172 1242 1334 1452 1631 1878 2345 7303 2492 1914 1686 1490 1362 1274 1208 1176 1166 1176 1212 1282 1371 1518 1686 1991 2540 7304 2696 2075 1777 1566 1441 1339 1274 1242 1231 1246 1282 1343 1436 1598 1793 2108 2811 7305 3072 2265 1896 1672 1513 1431 1357 1312 1299 1321 1362 1425 1524 1679 1887 2304 3145 ] 7306 </LSC_SAMPLES_red> 7307 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 7308 [2858 2115 1762 1590 1438 1360 1305 1278 1251 1274 1309 1364 1463 1608 1784 2180 2897 7309 2563 1931 1646 1489 1373 1297 1233 1205 1195 1208 1244 1305 1391 1527 1692 1976 2595 7310 2324 1823 1584 1429 1313 1240 1181 1152 1143 1155 1198 1251 1338 1438 1620 1880 2376 7311 2191 1740 1516 1378 1270 1191 1143 1107 1101 1116 1152 1215 1289 1400 1561 1792 2226 7312 2094 1698 1489 1360 1244 1165 1110 1071 1071 1082 1134 1185 1266 1378 1521 1740 2136 7313 2004 1658 1463 1330 1226 1159 1090 1060 1039 1068 1107 1175 1255 1364 1500 1712 2063 7314 1995 1646 1474 1326 1229 1146 1090 1042 1031 1049 1098 1159 1244 1351 1494 1719 2033 7315 1967 1658 1463 1326 1222 1146 1076 1037 1031 1044 1090 1159 1248 1360 1500 1705 2063 7316 1967 1646 1463 1330 1215 1140 1084 1042 1024 1044 1090 1159 1244 1355 1494 1698 2033 7317 1976 1646 1468 1330 1229 1143 1087 1042 1026 1049 1090 1162 1251 1351 1510 1712 2033 7318 1995 1646 1458 1334 1237 1149 1096 1052 1029 1052 1101 1165 1251 1364 1505 1712 2043 7319 2033 1672 1474 1334 1237 1165 1107 1065 1052 1068 1119 1175 1255 1373 1521 1733 2094 7320 2104 1705 1500 1360 1255 1178 1125 1087 1084 1084 1137 1191 1282 1387 1538 1755 2158 7321 2191 1770 1532 1387 1289 1201 1149 1119 1110 1122 1162 1219 1297 1410 1584 1807 2250 7322 2337 1839 1596 1434 1330 1244 1195 1165 1152 1162 1201 1266 1343 1463 1646 1888 2403 7323 2595 1967 1685 1516 1382 1313 1259 1219 1205 1222 1259 1317 1405 1538 1719 2024 2694 7324 2937 2115 1800 1590 1453 1373 1322 1282 1266 1282 1326 1391 1479 1633 1823 2214 2999 ] 7325 </LSC_SAMPLES_greenR> 7326 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 7327 [2919 2124 1766 1595 1454 1375 1320 1277 1273 1285 1320 1384 1480 1595 1826 2178 2919 7328 2569 1959 1676 1505 1389 1304 1251 1219 1215 1222 1262 1320 1411 1538 1703 2024 2648 7329 2332 1834 1595 1445 1324 1247 1195 1160 1156 1172 1209 1266 1349 1469 1638 1898 2410 7330 2167 1766 1538 1389 1277 1209 1160 1112 1112 1126 1163 1219 1308 1421 1572 1810 2235 7331 2063 1709 1505 1358 1266 1185 1135 1092 1075 1100 1129 1198 1273 1389 1538 1751 2124 7332 2043 1689 1490 1345 1247 1169 1106 1070 1057 1073 1120 1185 1269 1375 1516 1744 2093 7333 2005 1669 1480 1341 1240 1156 1097 1057 1046 1062 1100 1169 1269 1366 1516 1716 2083 7334 2005 1663 1474 1341 1233 1156 1092 1046 1034 1057 1109 1169 1262 1366 1516 1723 2073 7335 1986 1663 1474 1337 1236 1160 1092 1046 1024 1054 1097 1175 1262 1371 1511 1730 2033 7336 1996 1669 1480 1341 1233 1156 1097 1049 1036 1059 1100 1172 1255 1380 1521 1723 2073 7337 1986 1676 1474 1349 1236 1163 1100 1052 1044 1067 1114 1175 1262 1375 1527 1737 2063 7338 2043 1696 1495 1349 1251 1172 1112 1078 1062 1083 1129 1189 1273 1384 1538 1751 2135 7339 2135 1716 1511 1371 1258 1189 1132 1100 1086 1100 1138 1209 1288 1402 1560 1773 2189 7340 2223 1766 1555 1393 1296 1212 1156 1129 1114 1132 1172 1233 1320 1430 1601 1826 2258 7341 2345 1865 1607 1454 1345 1262 1212 1172 1156 1169 1212 1266 1353 1480 1657 1924 2466 7342 2554 1977 1689 1511 1407 1312 1262 1233 1219 1233 1269 1337 1416 1549 1723 2053 2682 7343 2880 2167 1795 1613 1459 1375 1332 1296 1277 1300 1337 1402 1521 1631 1834 2235 3022 ] 7344 </LSC_SAMPLES_greenB> 7345 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 7346 [2594 1946 1692 1516 1424 1327 1269 1242 1242 1255 1269 1342 1441 1536 1717 2013 2715 7347 2289 1796 1556 1441 1327 1255 1229 1216 1191 1179 1229 1283 1373 1478 1621 1853 2335 7348 2122 1692 1536 1390 1297 1216 1167 1144 1144 1144 1179 1242 1327 1441 1578 1769 2203 7349 2048 1668 1478 1373 1255 1191 1144 1091 1101 1112 1167 1216 1297 1390 1536 1717 2048 7350 1883 1599 1459 1342 1229 1156 1122 1091 1071 1081 1133 1179 1269 1373 1497 1692 2013 7351 1883 1599 1441 1327 1229 1156 1101 1061 1052 1061 1112 1179 1242 1357 1478 1668 1979 7352 1883 1556 1441 1312 1229 1167 1101 1061 1033 1071 1101 1156 1255 1357 1478 1644 1946 7353 1824 1599 1424 1327 1216 1144 1091 1052 1024 1061 1101 1167 1269 1357 1497 1644 1979 7354 1883 1578 1459 1312 1216 1144 1081 1042 1024 1052 1101 1179 1255 1357 1497 1668 1946 7355 1883 1599 1441 1312 1216 1144 1091 1042 1024 1061 1101 1179 1255 1357 1497 1644 1979 7356 1853 1599 1424 1312 1216 1156 1091 1052 1052 1061 1112 1167 1242 1357 1497 1668 2013 7357 1883 1599 1441 1342 1242 1167 1112 1071 1061 1081 1122 1191 1269 1373 1536 1668 2013 7358 1946 1644 1459 1342 1242 1191 1133 1101 1081 1091 1144 1203 1283 1390 1516 1692 2085 7359 2048 1668 1497 1357 1269 1203 1144 1122 1112 1112 1167 1229 1297 1406 1556 1742 2162 7360 2122 1742 1516 1406 1312 1242 1191 1167 1144 1167 1203 1242 1327 1441 1621 1796 2289 7361 2289 1796 1599 1459 1327 1269 1242 1216 1191 1203 1255 1312 1373 1516 1668 1883 2484 7362 2484 1979 1692 1516 1424 1327 1312 1242 1269 1283 1297 1373 1459 1599 1769 2048 2715 ] 7363 </LSC_SAMPLES_blue> 7364 </cell> 7365 <cell index="14" type="struct" size="[1 1]"> 7366 <name index="1" type="char" size="[1 15]"> 7367 1920x1080_HZ_70 7368 </name> 7369 <resolution index="1" type="char" size="[1 9]"> 7370 1920x1080 7371 </resolution> 7372 <illumination index="1" type="char" size="[1 2]"> 7373 HZ 7374 </illumination> 7375 <LSC_sectors index="1" type="double" size="[1 1]"> 7376 [16 ] 7377 </LSC_sectors> 7378 <LSC_No index="1" type="double" size="[1 1]"> 7379 [10 ] 7380 </LSC_No> 7381 <LSC_Xo index="1" type="double" size="[1 1]"> 7382 [15 ] 7383 </LSC_Xo> 7384 <LSC_Yo index="1" type="double" size="[1 1]"> 7385 [15 ] 7386 </LSC_Yo> 7387 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 7388 [120 120 120 120 120 120 120 120 ] 7389 </LSC_SECT_SIZE_X> 7390 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 7391 [67 68 67 68 67 68 67 68 ] 7392 </LSC_SECT_SIZE_Y> 7393 <vignetting index="1" type="double" size="[1 1]"> 7394 [70.0000 ] 7395 </vignetting> 7396 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 7397 [2070 1653 1458 1318 1247 1214 1168 1138 1134 1145 1172 1210 1262 1345 1479 1681 2167 7398 1948 1566 1403 1304 1229 1170 1130 1106 1100 1120 1133 1174 1233 1309 1416 1616 1962 7399 1843 1508 1362 1272 1199 1146 1112 1083 1084 1093 1119 1157 1208 1286 1397 1545 1878 7400 1756 1470 1347 1252 1180 1123 1092 1065 1057 1062 1092 1133 1188 1261 1369 1498 1797 7401 1700 1463 1338 1247 1177 1112 1082 1051 1046 1056 1094 1128 1196 1260 1370 1496 1738 7402 1687 1457 1335 1246 1174 1116 1074 1042 1028 1044 1084 1123 1193 1259 1356 1490 1715 7403 1677 1458 1342 1245 1185 1120 1067 1037 1022 1040 1075 1123 1192 1257 1363 1497 1695 7404 1687 1467 1355 1256 1176 1126 1075 1032 1022 1043 1078 1130 1199 1265 1361 1499 1733 7405 1699 1476 1342 1258 1190 1125 1080 1037 1024 1045 1080 1135 1197 1271 1379 1516 1717 7406 1678 1467 1350 1256 1173 1126 1075 1040 1025 1046 1075 1130 1195 1269 1366 1513 1714 7407 1704 1478 1342 1245 1181 1127 1075 1046 1032 1046 1084 1130 1192 1271 1369 1504 1741 7408 1705 1470 1340 1254 1177 1119 1087 1050 1037 1053 1090 1136 1196 1277 1377 1517 1743 7409 1738 1469 1348 1264 1173 1128 1094 1059 1048 1062 1091 1146 1192 1278 1370 1510 1748 7410 1766 1498 1363 1266 1184 1137 1095 1068 1063 1068 1105 1151 1208 1275 1380 1519 1797 7411 1866 1515 1397 1281 1208 1157 1115 1096 1090 1096 1119 1164 1216 1306 1397 1576 1902 7412 1962 1599 1435 1314 1247 1186 1148 1130 1124 1134 1155 1190 1242 1340 1448 1624 2045 7413 2150 1691 1486 1362 1271 1232 1188 1161 1153 1168 1192 1227 1281 1368 1479 1720 2202 ] 7414 </LSC_SAMPLES_red> 7415 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 7416 [2000 1579 1381 1295 1209 1171 1143 1130 1110 1127 1146 1174 1230 1310 1398 1628 2028 7417 1865 1488 1329 1249 1188 1149 1111 1096 1091 1099 1120 1156 1203 1281 1366 1523 1888 7418 1740 1442 1312 1229 1165 1126 1090 1074 1069 1077 1106 1136 1187 1237 1342 1487 1779 7419 1679 1408 1282 1210 1150 1104 1077 1054 1052 1062 1086 1126 1167 1230 1320 1449 1706 7420 1634 1398 1282 1215 1145 1098 1064 1036 1039 1047 1086 1116 1166 1231 1310 1433 1667 7421 1587 1384 1277 1204 1144 1106 1058 1039 1022 1047 1075 1122 1171 1235 1308 1429 1633 7422 1595 1387 1298 1212 1158 1104 1068 1031 1024 1038 1076 1117 1171 1235 1316 1449 1626 7423 1583 1406 1296 1218 1157 1111 1060 1031 1030 1039 1074 1123 1181 1250 1328 1445 1660 7424 1586 1397 1299 1225 1153 1107 1070 1038 1024 1041 1076 1125 1180 1248 1326 1442 1639 7425 1590 1395 1301 1222 1164 1108 1071 1036 1025 1044 1074 1126 1185 1242 1338 1451 1636 7426 1595 1387 1284 1219 1164 1108 1073 1041 1021 1041 1079 1123 1178 1247 1326 1443 1634 7427 1610 1395 1286 1208 1154 1112 1075 1044 1035 1047 1086 1122 1171 1243 1327 1446 1658 7428 1643 1404 1291 1215 1155 1110 1078 1052 1053 1049 1089 1123 1180 1239 1324 1445 1684 7429 1679 1431 1296 1218 1167 1113 1083 1065 1060 1068 1095 1129 1174 1238 1340 1462 1724 7430 1750 1455 1322 1233 1179 1129 1103 1086 1078 1083 1109 1149 1190 1259 1363 1494 1799 7431 1888 1516 1360 1272 1196 1163 1134 1109 1100 1112 1134 1167 1215 1290 1388 1559 1960 7432 2056 1579 1410 1295 1221 1182 1157 1133 1124 1133 1161 1198 1243 1330 1428 1653 2100 ] 7433 </LSC_SAMPLES_greenR> 7434 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 7435 [2043 1586 1383 1299 1222 1184 1156 1129 1130 1136 1156 1191 1243 1299 1430 1626 2043 7436 1870 1510 1353 1263 1201 1155 1127 1109 1110 1112 1137 1169 1221 1290 1375 1560 1927 7437 1746 1451 1321 1243 1174 1132 1103 1081 1082 1093 1116 1149 1196 1264 1356 1502 1805 7438 1661 1428 1301 1220 1156 1120 1093 1058 1061 1072 1096 1130 1184 1248 1330 1464 1713 7439 1610 1407 1296 1213 1165 1117 1088 1056 1044 1065 1082 1129 1172 1241 1324 1442 1658 7440 1618 1410 1300 1218 1164 1116 1073 1049 1039 1052 1087 1132 1184 1245 1323 1455 1657 7441 1603 1407 1303 1225 1168 1115 1075 1046 1039 1051 1078 1127 1195 1249 1335 1446 1666 7442 1613 1409 1306 1232 1167 1121 1076 1041 1032 1051 1092 1133 1195 1256 1343 1460 1668 7443 1601 1412 1308 1231 1173 1126 1078 1043 1024 1051 1083 1141 1197 1262 1341 1469 1639 7444 1605 1415 1310 1232 1167 1121 1081 1044 1034 1054 1084 1136 1188 1268 1348 1460 1668 7445 1589 1412 1299 1233 1164 1121 1078 1040 1036 1056 1092 1133 1188 1257 1345 1464 1650 7446 1618 1415 1304 1221 1167 1119 1079 1057 1045 1062 1096 1135 1188 1253 1342 1461 1690 7447 1666 1413 1300 1225 1159 1120 1085 1065 1055 1065 1090 1139 1186 1253 1343 1460 1709 7448 1704 1428 1315 1224 1174 1123 1090 1074 1064 1077 1105 1143 1195 1256 1355 1477 1731 7449 1756 1476 1331 1251 1193 1146 1119 1093 1082 1090 1119 1149 1200 1272 1372 1522 1847 7450 1858 1524 1364 1267 1217 1162 1137 1122 1113 1122 1143 1184 1225 1299 1391 1582 1951 7451 2016 1618 1407 1314 1227 1184 1167 1146 1133 1150 1170 1207 1279 1329 1437 1669 2115 ] 7452 </LSC_SAMPLES_greenB> 7453 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 7454 [1816 1453 1326 1235 1196 1142 1111 1098 1102 1110 1111 1155 1211 1251 1345 1503 1900 7455 1666 1384 1257 1209 1148 1112 1107 1106 1087 1073 1107 1136 1188 1240 1309 1428 1699 7456 1589 1339 1272 1195 1150 1104 1078 1067 1071 1067 1088 1127 1176 1240 1307 1400 1649 7457 1570 1349 1250 1206 1136 1104 1078 1038 1051 1058 1100 1127 1174 1221 1300 1388 1570 7458 1470 1316 1256 1199 1131 1089 1075 1056 1040 1046 1086 1111 1168 1227 1288 1393 1571 7459 1491 1334 1257 1201 1146 1104 1069 1040 1034 1040 1079 1126 1159 1229 1289 1392 1567 7460 1506 1312 1269 1199 1157 1125 1079 1050 1025 1060 1079 1114 1182 1240 1301 1385 1556 7461 1467 1355 1261 1219 1151 1109 1075 1046 1022 1056 1085 1131 1202 1247 1326 1393 1592 7462 1518 1340 1295 1208 1154 1111 1067 1039 1024 1048 1087 1145 1191 1250 1328 1416 1568 7463 1515 1355 1277 1205 1151 1109 1075 1037 1022 1056 1085 1143 1189 1247 1326 1393 1592 7464 1482 1347 1254 1199 1145 1114 1069 1041 1044 1050 1089 1125 1169 1240 1318 1405 1610 7465 1491 1334 1257 1215 1159 1115 1079 1050 1044 1060 1090 1137 1184 1243 1340 1392 1594 7466 1519 1353 1256 1199 1143 1123 1086 1066 1049 1056 1097 1134 1181 1242 1305 1393 1627 7467 1570 1349 1266 1192 1149 1115 1078 1068 1062 1058 1100 1139 1174 1235 1317 1409 1657 7468 1589 1379 1256 1210 1163 1127 1100 1088 1071 1088 1111 1127 1176 1240 1343 1421 1714 7469 1666 1384 1291 1224 1148 1124 1119 1106 1087 1095 1131 1162 1188 1272 1346 1451 1807 7470 1739 1477 1326 1235 1196 1142 1148 1098 1126 1135 1136 1182 1226 1303 1386 1529 1900 ] 7471 </LSC_SAMPLES_blue> 7472 </cell> 7473 <cell index="15" type="struct" size="[1 1]"> 7474 <name index="1" type="char" size="[1 18]"> 7475 1920x1080_GRAY_100 7476 </name> 7477 <resolution index="1" type="char" size="[1 9]"> 7478 1920x1080 7479 </resolution> 7480 <illumination index="1" type="char" size="[1 4]"> 7481 GRAY 7482 </illumination> 7483 <LSC_sectors index="1" type="double" size="[1 1]"> 7484 [16 ] 7485 </LSC_sectors> 7486 <LSC_No index="1" type="double" size="[1 1]"> 7487 [10 ] 7488 </LSC_No> 7489 <LSC_Xo index="1" type="double" size="[1 1]"> 7490 [15 ] 7491 </LSC_Xo> 7492 <LSC_Yo index="1" type="double" size="[1 1]"> 7493 [15 ] 7494 </LSC_Yo> 7495 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 7496 [120 120 120 120 120 120 120 120 ] 7497 </LSC_SECT_SIZE_X> 7498 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 7499 [67 68 67 68 67 68 67 68 ] 7500 </LSC_SECT_SIZE_Y> 7501 <vignetting index="1" type="double" size="[1 1]"> 7502 [100.0000 ] 7503 </vignetting> 7504 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 7505 [2945 2589 2261 2058 1866 1731 1642 1589 1543 1558 1601 1672 1779 1940 2126 2378 2686 7506 2841 2451 2169 1934 1783 1642 1555 1497 1466 1476 1507 1585 1703 1824 2019 2285 2518 7507 2664 2360 2085 1834 1694 1562 1463 1402 1378 1393 1424 1493 1593 1745 1922 2162 2432 7508 2498 2229 1988 1769 1609 1479 1381 1318 1305 1313 1340 1411 1514 1650 1824 2051 2343 7509 2405 2155 1911 1703 1525 1408 1321 1261 1237 1239 1274 1343 1433 1577 1745 1969 2214 7510 2318 2071 1829 1655 1479 1335 1266 1189 1176 1189 1214 1282 1390 1521 1703 1922 2191 7511 2245 2038 1779 1574 1427 1297 1214 1157 1126 1136 1174 1235 1332 1466 1646 1850 2078 7512 2214 1969 1749 1543 1378 1266 1169 1109 1081 1092 1130 1189 1289 1430 1593 1819 2019 7513 2199 1951 1703 1514 1357 1230 1132 1077 1049 1061 1094 1165 1261 1396 1555 1764 1982 7514 2169 1928 1699 1497 1346 1218 1122 1059 1039 1039 1075 1142 1239 1372 1547 1749 1975 7515 2155 1917 1685 1490 1332 1207 1111 1056 1024 1031 1068 1134 1235 1372 1543 1735 1963 7516 2169 1922 1681 1479 1327 1211 1105 1047 1032 1034 1068 1134 1235 1375 1532 1721 1988 7517 2155 1969 1721 1507 1332 1228 1111 1056 1039 1049 1090 1151 1254 1369 1555 1754 2000 7518 2214 1975 1721 1518 1360 1242 1151 1085 1058 1065 1105 1176 1276 1408 1574 1774 2013 7519 2261 2013 1749 1551 1396 1276 1169 1120 1092 1099 1142 1200 1308 1446 1609 1814 2051 7520 2343 2085 1809 1593 1440 1316 1225 1159 1136 1138 1182 1235 1349 1479 1638 1845 2098 7521 2343 2112 1845 1646 1476 1349 1252 1198 1178 1174 1216 1287 1393 1518 1694 1894 2184 ] 7522 </LSC_SAMPLES_red> 7523 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 7524 [2935 2488 2219 2003 1852 1698 1600 1561 1527 1509 1561 1625 1703 1879 2068 2283 2589 7525 2699 2368 2102 1907 1745 1617 1550 1468 1454 1468 1492 1565 1654 1794 1972 2189 2469 7526 2579 2267 2028 1835 1667 1542 1441 1394 1361 1364 1397 1471 1577 1703 1873 2095 2291 7527 2413 2189 1948 1755 1584 1471 1376 1319 1292 1295 1341 1400 1495 1629 1794 2016 2267 7528 2350 2088 1873 1672 1520 1403 1308 1244 1223 1237 1266 1324 1428 1554 1726 1936 2174 7529 2299 2061 1804 1617 1471 1344 1251 1199 1171 1177 1206 1276 1373 1502 1659 1873 2088 7530 2235 1990 1764 1569 1422 1297 1206 1146 1125 1131 1162 1232 1327 1454 1608 1820 2061 7531 2204 1960 1703 1535 1373 1261 1164 1112 1076 1083 1129 1188 1292 1415 1588 1779 2016 7532 2116 1913 1689 1506 1352 1230 1129 1083 1049 1065 1098 1160 1264 1385 1550 1740 1960 7533 2102 1873 1676 1488 1344 1209 1121 1055 1037 1039 1074 1146 1237 1367 1535 1731 1930 7534 2102 1901 1659 1478 1330 1204 1108 1048 1024 1032 1076 1131 1234 1364 1517 1717 1960 7535 2116 1896 1663 1478 1324 1197 1108 1048 1029 1031 1076 1133 1237 1364 1527 1717 1936 7536 2123 1907 1676 1502 1341 1209 1117 1062 1044 1041 1080 1154 1254 1370 1539 1731 1936 7537 2159 1924 1694 1513 1367 1227 1139 1080 1058 1070 1102 1164 1269 1403 1554 1759 1997 7538 2212 1978 1726 1550 1388 1274 1177 1114 1085 1100 1133 1204 1305 1435 1592 1764 2022 7539 2275 2016 1764 1588 1419 1297 1218 1162 1131 1131 1171 1237 1341 1474 1625 1825 2035 7540 2325 2081 1804 1621 1478 1338 1266 1195 1186 1186 1220 1284 1379 1506 1667 1868 2095 ] 7541 </LSC_SAMPLES_greenR> 7542 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 7543 [2918 2486 2173 1984 1852 1727 1626 1562 1543 1536 1605 1655 1751 1896 2081 2332 2673 7544 2754 2367 2137 1913 1770 1643 1536 1483 1472 1462 1511 1589 1677 1815 1978 2203 2486 7545 2566 2274 2022 1831 1668 1551 1456 1398 1383 1380 1420 1483 1582 1718 1874 2116 2332 7546 2439 2173 1925 1746 1586 1469 1386 1320 1296 1304 1354 1404 1511 1634 1780 2009 2242 7547 2324 2102 1863 1690 1518 1401 1312 1253 1231 1250 1286 1342 1429 1555 1722 1902 2173 7548 2290 2041 1810 1630 1472 1340 1260 1203 1177 1183 1226 1275 1380 1500 1673 1868 2102 7549 2226 1978 1755 1574 1417 1301 1208 1164 1121 1135 1168 1238 1328 1466 1605 1815 2035 7550 2173 1925 1718 1532 1380 1258 1168 1104 1085 1090 1123 1199 1291 1417 1566 1765 1984 7551 2130 1896 1677 1500 1351 1231 1135 1078 1054 1063 1094 1166 1258 1389 1540 1727 1984 7552 2116 1874 1660 1476 1328 1210 1121 1058 1037 1041 1081 1149 1248 1368 1521 1699 1913 7553 2088 1879 1668 1466 1312 1208 1105 1051 1024 1039 1068 1127 1234 1357 1514 1708 1930 7554 2123 1879 1647 1476 1320 1201 1100 1056 1027 1036 1076 1135 1231 1351 1514 1708 1925 7555 2123 1890 1677 1493 1326 1212 1121 1065 1046 1049 1089 1147 1253 1380 1543 1722 1942 7556 2159 1919 1690 1503 1362 1234 1139 1078 1061 1074 1102 1166 1273 1404 1551 1751 1960 7557 2173 1954 1727 1543 1377 1260 1172 1113 1092 1100 1135 1206 1296 1436 1578 1775 2009 7558 2242 2003 1760 1578 1436 1312 1212 1162 1125 1137 1175 1231 1348 1469 1634 1815 2075 7559 2258 2068 1800 1630 1469 1354 1278 1199 1166 1190 1229 1293 1401 1507 1668 1879 2102 ] 7560 </LSC_SAMPLES_greenB> 7561 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 7562 [2827 2441 2198 1986 1838 1705 1617 1549 1524 1514 1564 1613 1718 1843 2035 2242 2525 7563 2711 2346 2107 1890 1755 1625 1528 1467 1463 1447 1503 1556 1641 1769 1929 2155 2397 7564 2554 2250 2011 1798 1658 1560 1454 1393 1364 1358 1396 1463 1571 1687 1838 2054 2242 7565 2423 2155 1940 1723 1579 1467 1375 1318 1284 1305 1334 1396 1487 1609 1759 1975 2190 7566 2281 2067 1869 1670 1510 1393 1307 1248 1230 1225 1270 1323 1432 1531 1687 1901 2113 7567 2227 2011 1802 1617 1463 1347 1248 1196 1165 1183 1205 1267 1381 1497 1633 1832 2067 7568 2176 1969 1736 1564 1413 1297 1207 1146 1117 1131 1159 1218 1315 1429 1579 1783 2005 7569 2134 1923 1687 1528 1375 1250 1175 1108 1070 1084 1121 1185 1277 1393 1549 1741 1946 7570 2120 1874 1666 1477 1342 1223 1135 1076 1058 1055 1095 1156 1255 1375 1524 1700 1912 7571 2120 1858 1662 1467 1328 1207 1116 1052 1030 1034 1076 1142 1230 1350 1514 1705 1917 7572 2067 1879 1658 1463 1323 1205 1117 1047 1030 1032 1067 1139 1227 1350 1500 1687 1895 7573 2087 1863 1650 1470 1318 1198 1112 1052 1024 1030 1069 1129 1223 1350 1514 1683 1901 7574 2113 1890 1662 1487 1320 1216 1121 1064 1035 1048 1079 1144 1243 1358 1514 1696 1912 7575 2127 1912 1675 1497 1353 1232 1133 1079 1050 1065 1097 1165 1255 1393 1542 1705 1929 7576 2148 1940 1705 1535 1387 1265 1173 1116 1088 1097 1133 1194 1287 1423 1556 1741 1963 7577 2212 1986 1745 1564 1410 1295 1220 1152 1129 1135 1165 1220 1326 1457 1606 1793 1981 7578 2198 1992 1802 1606 1444 1347 1260 1203 1192 1183 1216 1279 1356 1487 1662 1817 2067 ] 7579 </LSC_SAMPLES_blue> 7580 </cell> 7581 <cell index="16" type="struct" size="[1 1]"> 7582 <name index="1" type="char" size="[1 17]"> 7583 1920x1080_GRAY_70 7584 </name> 7585 <resolution index="1" type="char" size="[1 9]"> 7586 1920x1080 7587 </resolution> 7588 <illumination index="1" type="char" size="[1 4]"> 7589 GRAY 7590 </illumination> 7591 <LSC_sectors index="1" type="double" size="[1 1]"> 7592 [16 ] 7593 </LSC_sectors> 7594 <LSC_No index="1" type="double" size="[1 1]"> 7595 [10 ] 7596 </LSC_No> 7597 <LSC_Xo index="1" type="double" size="[1 1]"> 7598 [15 ] 7599 </LSC_Xo> 7600 <LSC_Yo index="1" type="double" size="[1 1]"> 7601 [15 ] 7602 </LSC_Yo> 7603 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 7604 [120 120 120 120 120 120 120 120 ] 7605 </LSC_SECT_SIZE_X> 7606 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 7607 [67 68 67 68 67 68 67 68 ] 7608 </LSC_SECT_SIZE_Y> 7609 <vignetting index="1" type="double" size="[1 1]"> 7610 [70.0000 ] 7611 </vignetting> 7612 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 7613 [2062 1954 1805 1719 1617 1543 1493 1462 1425 1433 1456 1490 1542 1621 1697 1795 1880 7614 2043 1889 1766 1647 1575 1491 1441 1403 1380 1384 1396 1440 1504 1554 1644 1761 1811 7615 1955 1851 1727 1588 1521 1442 1378 1336 1318 1327 1341 1378 1430 1511 1592 1696 1785 7616 1863 1774 1670 1554 1465 1384 1318 1273 1265 1268 1279 1321 1378 1449 1532 1633 1747 7617 1817 1736 1624 1513 1404 1333 1275 1232 1213 1210 1230 1271 1319 1401 1483 1586 1672 7618 1768 1684 1568 1483 1374 1275 1233 1171 1163 1171 1182 1224 1291 1363 1460 1563 1671 7619 1724 1668 1535 1420 1334 1246 1189 1147 1120 1126 1150 1187 1245 1322 1421 1514 1596 7620 1708 1618 1515 1397 1293 1221 1150 1103 1080 1086 1111 1147 1209 1295 1380 1495 1557 7621 1698 1605 1477 1372 1275 1188 1115 1073 1049 1057 1077 1125 1185 1265 1349 1451 1531 7622 1673 1584 1472 1355 1263 1175 1103 1054 1038 1034 1057 1101 1162 1242 1340 1437 1523 7623 1655 1569 1454 1344 1245 1160 1088 1047 1019 1022 1046 1089 1154 1237 1332 1420 1508 7624 1654 1563 1442 1326 1233 1156 1076 1031 1021 1019 1040 1083 1147 1232 1314 1399 1516 7625 1628 1586 1463 1339 1226 1162 1072 1031 1019 1025 1052 1089 1155 1216 1322 1413 1511 7626 1651 1572 1446 1333 1238 1162 1099 1048 1026 1029 1055 1101 1162 1237 1322 1412 1501 7627 1659 1579 1449 1343 1253 1178 1101 1067 1045 1047 1075 1108 1174 1252 1333 1423 1505 7628 1685 1607 1473 1357 1272 1195 1135 1087 1069 1067 1095 1122 1192 1260 1334 1422 1509 7629 1640 1594 1473 1375 1279 1202 1138 1102 1088 1080 1106 1147 1207 1268 1352 1429 1529 ] 7630 </LSC_SAMPLES_red> 7631 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 7632 [2055 1878 1771 1674 1605 1513 1455 1436 1411 1388 1419 1448 1476 1570 1651 1723 1812 7633 1941 1825 1712 1624 1541 1469 1436 1376 1368 1376 1382 1421 1461 1528 1606 1687 1776 7634 1892 1778 1680 1589 1497 1424 1357 1328 1302 1300 1315 1358 1416 1475 1551 1643 1681 7635 1799 1743 1637 1541 1442 1377 1313 1274 1253 1251 1280 1310 1361 1431 1507 1605 1691 7636 1775 1682 1592 1485 1400 1328 1263 1215 1199 1208 1222 1253 1315 1381 1467 1560 1642 7637 1754 1676 1547 1449 1366 1283 1218 1181 1158 1160 1174 1218 1275 1346 1423 1523 1593 7638 1717 1629 1522 1415 1329 1246 1182 1136 1119 1121 1138 1184 1240 1311 1388 1490 1583 7639 1700 1610 1475 1390 1288 1216 1145 1106 1075 1077 1110 1146 1212 1281 1376 1462 1555 7640 1634 1574 1465 1365 1270 1188 1112 1079 1049 1061 1081 1120 1187 1255 1345 1432 1514 7641 1621 1539 1452 1347 1261 1166 1102 1050 1036 1034 1056 1105 1161 1238 1330 1422 1489 7642 1614 1556 1432 1333 1243 1157 1086 1039 1019 1023 1054 1087 1153 1230 1309 1405 1505 7643 1614 1542 1426 1325 1230 1143 1079 1032 1018 1016 1048 1082 1149 1223 1310 1396 1477 7644 1604 1536 1424 1334 1235 1144 1078 1037 1024 1017 1042 1092 1155 1217 1308 1395 1462 7645 1610 1532 1423 1329 1245 1148 1087 1043 1026 1033 1052 1089 1155 1232 1306 1400 1489 7646 1623 1552 1429 1342 1246 1176 1108 1061 1038 1048 1067 1112 1172 1243 1319 1384 1484 7647 1636 1554 1436 1353 1253 1178 1128 1089 1064 1060 1085 1124 1184 1256 1323 1406 1464 7648 1628 1571 1440 1354 1281 1193 1151 1099 1096 1091 1109 1144 1195 1258 1331 1410 1467 ] 7649 </LSC_SAMPLES_greenR> 7650 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 7651 [2043 1876 1735 1658 1605 1539 1478 1437 1425 1413 1459 1475 1517 1584 1661 1760 1871 7652 1981 1824 1740 1630 1563 1492 1423 1390 1385 1371 1400 1443 1481 1546 1611 1698 1788 7653 1883 1784 1675 1586 1498 1432 1371 1332 1323 1315 1337 1369 1421 1488 1552 1660 1711 7654 1819 1730 1617 1534 1444 1375 1323 1275 1257 1259 1292 1314 1376 1435 1495 1599 1672 7655 1755 1693 1583 1501 1398 1326 1266 1224 1207 1221 1241 1270 1316 1381 1464 1532 1641 7656 1747 1660 1552 1461 1367 1279 1227 1185 1164 1165 1194 1217 1282 1344 1435 1519 1603 7657 1710 1619 1515 1420 1324 1250 1183 1154 1115 1125 1144 1189 1241 1322 1385 1485 1563 7658 1676 1582 1488 1387 1295 1213 1149 1098 1084 1084 1104 1156 1211 1283 1357 1450 1530 7659 1645 1560 1455 1360 1269 1189 1117 1074 1054 1059 1077 1126 1182 1259 1336 1421 1532 7660 1632 1540 1438 1336 1246 1167 1102 1053 1036 1036 1063 1108 1171 1239 1318 1396 1475 7661 1604 1538 1440 1322 1226 1161 1083 1042 1019 1030 1046 1083 1153 1224 1307 1398 1482 7662 1619 1528 1412 1323 1226 1147 1071 1040 1016 1021 1048 1084 1143 1211 1298 1389 1468 7663 1604 1523 1425 1326 1221 1147 1082 1040 1026 1025 1051 1086 1154 1226 1311 1387 1467 7664 1610 1528 1420 1320 1240 1155 1087 1041 1029 1037 1052 1091 1159 1233 1303 1394 1462 7665 1595 1533 1430 1336 1236 1163 1104 1060 1045 1048 1069 1113 1164 1244 1307 1392 1474 7666 1613 1544 1433 1344 1268 1192 1123 1089 1059 1066 1089 1118 1191 1251 1331 1399 1492 7667 1581 1561 1437 1362 1273 1207 1162 1103 1077 1095 1117 1152 1214 1259 1332 1418 1471 ] 7668 </LSC_SAMPLES_greenB> 7669 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 7670 [1979 1842 1755 1659 1593 1520 1470 1425 1408 1393 1422 1438 1489 1540 1624 1692 1768 7671 1950 1808 1716 1610 1550 1476 1416 1375 1377 1357 1392 1413 1449 1507 1571 1661 1724 7672 1874 1765 1666 1557 1489 1440 1369 1327 1305 1294 1314 1351 1411 1461 1522 1611 1645 7673 1807 1716 1630 1513 1438 1373 1313 1273 1245 1260 1273 1307 1354 1413 1478 1572 1633 7674 1723 1665 1588 1484 1390 1319 1262 1219 1206 1196 1226 1252 1319 1360 1434 1532 1596 7675 1699 1635 1545 1449 1359 1286 1215 1178 1152 1165 1173 1210 1283 1342 1400 1490 1577 7676 1671 1612 1498 1411 1321 1246 1182 1136 1112 1121 1135 1170 1229 1289 1363 1459 1540 7677 1646 1580 1462 1383 1290 1205 1155 1102 1069 1078 1102 1143 1198 1261 1342 1431 1501 7678 1637 1542 1445 1339 1261 1181 1117 1072 1058 1051 1078 1116 1179 1246 1322 1399 1477 7679 1635 1527 1440 1328 1246 1164 1097 1047 1029 1029 1058 1101 1154 1222 1312 1401 1478 7680 1588 1538 1431 1320 1237 1158 1094 1038 1025 1023 1045 1094 1147 1218 1295 1381 1456 7681 1592 1515 1415 1318 1224 1144 1083 1036 1013 1015 1041 1078 1136 1210 1298 1368 1450 7682 1596 1523 1413 1321 1215 1151 1082 1039 1015 1024 1042 1083 1145 1206 1287 1366 1444 7683 1586 1522 1407 1315 1232 1153 1082 1042 1018 1029 1047 1090 1143 1224 1295 1357 1438 7684 1576 1522 1412 1329 1245 1168 1104 1063 1041 1045 1067 1102 1156 1232 1289 1366 1440 7685 1591 1530 1421 1332 1245 1176 1130 1080 1063 1064 1079 1108 1171 1241 1308 1382 1425 7686 1539 1503 1438 1342 1251 1201 1146 1107 1101 1088 1106 1140 1175 1242 1327 1371 1447 ] 7687 </LSC_SAMPLES_blue> 7688 </cell> 7689 <cell index="17" type="struct" size="[1 1]"> 7690 <name index="1" type="char" size="[1 18]"> 7691 2560x1440_GRAY_100 7692 </name> 7693 <resolution index="1" type="char" size="[1 9]"> 7694 2560x1440 7695 </resolution> 7696 <illumination index="1" type="char" size="[1 4]"> 7697 GRAY 7698 </illumination> 7699 <LSC_sectors index="1" type="double" size="[1 1]"> 7700 [16 ] 7701 </LSC_sectors> 7702 <LSC_No index="1" type="double" size="[1 1]"> 7703 [10 ] 7704 </LSC_No> 7705 <LSC_Xo index="1" type="double" size="[1 1]"> 7706 [15 ] 7707 </LSC_Xo> 7708 <LSC_Yo index="1" type="double" size="[1 1]"> 7709 [15 ] 7710 </LSC_Yo> 7711 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 7712 [160 160 160 160 160 160 160 160 ] 7713 </LSC_SECT_SIZE_X> 7714 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 7715 [90 90 90 90 90 90 90 90 ] 7716 </LSC_SECT_SIZE_Y> 7717 <vignetting index="1" type="double" size="[1 1]"> 7718 [100.0000 ] 7719 </vignetting> 7720 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 7721 [1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7722 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7723 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7724 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7725 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7726 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7727 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7728 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7729 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7730 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7731 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7732 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7733 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7734 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7735 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7736 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7737 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 ] 7738 </LSC_SAMPLES_red> 7739 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 7740 [1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7741 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7742 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7743 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7744 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7745 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7746 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7747 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7748 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7749 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7750 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7751 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7752 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7753 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7754 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7755 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7756 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 ] 7757 </LSC_SAMPLES_greenR> 7758 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 7759 [1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7760 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7761 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7762 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7763 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7764 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7765 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7766 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7767 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7768 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7769 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7770 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7771 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7772 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7773 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7774 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7775 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 ] 7776 </LSC_SAMPLES_greenB> 7777 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 7778 [1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7779 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7780 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7781 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7782 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7783 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7784 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7785 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7786 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7787 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7788 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7789 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7790 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7791 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7792 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7793 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7794 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 ] 7795 </LSC_SAMPLES_blue> 7796 </cell> 7797 <cell index="18" type="struct" size="[1 1]"> 7798 <name index="1" type="char" size="[1 17]"> 7799 2560x1440_GRAY_70 7800 </name> 7801 <resolution index="1" type="char" size="[1 9]"> 7802 2560x1440 7803 </resolution> 7804 <illumination index="1" type="char" size="[1 4]"> 7805 GRAY 7806 </illumination> 7807 <LSC_sectors index="1" type="double" size="[1 1]"> 7808 [16 ] 7809 </LSC_sectors> 7810 <LSC_No index="1" type="double" size="[1 1]"> 7811 [10 ] 7812 </LSC_No> 7813 <LSC_Xo index="1" type="double" size="[1 1]"> 7814 [15 ] 7815 </LSC_Xo> 7816 <LSC_Yo index="1" type="double" size="[1 1]"> 7817 [15 ] 7818 </LSC_Yo> 7819 <LSC_SECT_SIZE_X index="1" type="double" size="[1 8]"> 7820 [160 160 160 160 160 160 160 160 ] 7821 </LSC_SECT_SIZE_X> 7822 <LSC_SECT_SIZE_Y index="1" type="double" size="[1 8]"> 7823 [90 90 90 90 90 90 90 90 ] 7824 </LSC_SECT_SIZE_Y> 7825 <vignetting index="1" type="double" size="[1 1]"> 7826 [70.0000 ] 7827 </vignetting> 7828 <LSC_SAMPLES_red index="1" type="double" size="[17 17]"> 7829 [1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7830 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7831 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7832 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7833 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7834 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7835 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7836 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7837 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7838 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7839 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7840 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7841 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7842 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7843 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7844 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7845 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 ] 7846 </LSC_SAMPLES_red> 7847 <LSC_SAMPLES_greenR index="1" type="double" size="[17 17]"> 7848 [1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7849 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7850 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7851 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7852 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7853 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7854 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7855 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7856 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7857 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7858 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7859 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7860 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7861 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7862 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7863 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7864 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 ] 7865 </LSC_SAMPLES_greenR> 7866 <LSC_SAMPLES_greenB index="1" type="double" size="[17 17]"> 7867 [1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7868 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7869 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7870 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7871 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7872 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7873 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7874 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7875 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7876 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7877 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7878 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7879 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7880 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7881 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7882 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7883 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 ] 7884 </LSC_SAMPLES_greenB> 7885 <LSC_SAMPLES_blue index="1" type="double" size="[17 17]"> 7886 [1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7887 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7888 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7889 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7890 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7891 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7892 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7893 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7894 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7895 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7896 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7897 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7898 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7899 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7900 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7901 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 7902 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 ] 7903 </LSC_SAMPLES_blue> 7904 </cell> 7905 </tableAll> 7906 </LSC> 7907 <RKDM index="1" type="struct" size="[1 1]"> 7908 <enable index="1" type="char" size="[1 1]"> 7909 [1 ] 7910 </enable> 7911 <debayer_filter1 index="1" type="double" size="[1 5]"> 7912 [2 -6 0 6 -2 ] 7913 </debayer_filter1> 7914 <debayer_filter2 index="1" type="double" size="[1 5]"> 7915 [2 -4 4 -4 2 ] 7916 </debayer_filter2> 7917 <debayer_gain_offset index="1" type="double" size="[1 1]"> 7918 [4 ] 7919 </debayer_gain_offset> 7920 <ISO index="1" type="double" size="[1 9]"> 7921 [50 100 200 400 800 1600 3200 6400 12800 ] 7922 </ISO> 7923 <sharp_strength index="1" type="double" size="[1 9]"> 7924 [4 4 4 4 4 4 4 4 4 ] 7925 </sharp_strength> 7926 <debayer_hf_offset index="1" type="double" size="[1 9]"> 7927 [1 1 1 1 1 1 1 1 1 ] 7928 </debayer_hf_offset> 7929 <debayer_offset index="1" type="double" size="[1 1]"> 7930 [1 ] 7931 </debayer_offset> 7932 <debayer_clip_en index="1" type="char" size="[1 1]"> 7933 [1 ] 7934 </debayer_clip_en> 7935 <debayer_filter_g_en index="1" type="char" size="[1 1]"> 7936 [1 ] 7937 </debayer_filter_g_en> 7938 <debayer_filter_c_en index="1" type="char" size="[1 1]"> 7939 [1 ] 7940 </debayer_filter_c_en> 7941 <debayer_thed0 index="1" type="char" size="[1 1]"> 7942 [3 ] 7943 </debayer_thed0> 7944 <debayer_thed1 index="1" type="char" size="[1 1]"> 7945 [6 ] 7946 </debayer_thed1> 7947 <debayer_dist_scale index="1" type="char" size="[1 1]"> 7948 [8 ] 7949 </debayer_dist_scale> 7950 <debayer_cnr_strength index="1" type="char" size="[1 1]"> 7951 [5 ] 7952 </debayer_cnr_strength> 7953 <debayer_shift_num index="1" type="char" size="[1 1]"> 7954 [2 ] 7955 </debayer_shift_num> 7956 </RKDM> 7957 <CCM index="1" type="struct" size="[1 1]"> 7958 <enable index="1" type="char" size="[1 1]"> 7959 [0] 7960 </enable> 7961 <Mode index="1" type="cell" size="[1 2]"> 7962 <cell index="1" type="struct" size="[1 1]"> 7963 <Name index="1" type="char" size="[1 13]"> 7964 normal 7965 </Name> 7966 <damp_enable index="1" type="char" size="[1 1]"> 7967 [1 ] 7968 </damp_enable> 7969 <lumaCCM index="1" type="struct" size="[1 1]"> 7970 <RGB2Y_para index="1" type="double" size="[1 3]"> 7971 [38.0000 75.0000 15.0000 ] 7972 </RGB2Y_para> 7973 <low_bound_pos_bit index="1" type="double" size="[1 1]"> 7974 [8.0000 ] 7975 </low_bound_pos_bit> 7976 <y_alpha_curve index="1" type="double" size="[1 17]"> 7977 [0.0000 64.0000 128.0000 192.0000 256.0000 320.0000 384.0000 448.0000 512.0000 576.0000 640.0000 704.0000 768.0000 832.0000 896.0000 960.0000 1024.0000 ] 7978 </y_alpha_curve> 7979 <gain_alphaScale_curve index="1" type="struct" size="[1 1]"> 7980 <gain index="1" type="double" size="[1 9]"> 7981 [1.0000 2.0000 4.0000 8.0000 16.0000 32.0000 64.0000 128.0000 256.0000 ] 7982 </gain> 7983 <scale index="1" type="double" size="[1 9]"> 7984 [1.0000 0.8000 0.8000 0.9000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 7985 </scale> 7986 </gain_alphaScale_curve> 7987 </lumaCCM> 7988 <aCcmCof index="1" type="cell" size="[1 4]"> 7989 <illAll index="1" type="cell" size="[1 7]"> 7990 <cell index="1" type="struct" size="[1 1]"> 7991 <name index="1" type="char" size="[1 1]"> 7992 A 7993 </name> 7994 <wbGain index="1" type="double" size="[1 2]"> 7995 [1.3271 3.3148 ] 7996 </wbGain> 7997 <matrixUsed index="1" type="char" size="[1 10]"> 7998 A_100 A_74 7999 </matrixUsed> 8000 <gains index="1" type="double" size="[1 4]"> 8001 [1.0000 4.0000 6.0000 16.0000 ] 8002 </gains> 8003 <sat index="1" type="double" size="[1 4]"> 8004 [100.0000 100.0000 90.0000 50.0000 ] 8005 </sat> 8006 </cell> 8007 <cell index="5" type="struct" size="[1 1]"> 8008 <name index="1" type="char" size="[1 3]"> 8009 CWF 8010 </name> 8011 <wbGain index="1" type="double" size="[1 2]"> 8012 [1.8823 2.8817 ] 8013 </wbGain> 8014 <matrixUsed index="1" type="char" size="[1 14]"> 8015 CWF_100 CWF_74 8016 </matrixUsed> 8017 <gains index="1" type="double" size="[1 4]"> 8018 [1.0000 4.0000 6.0000 16.0000 ] 8019 </gains> 8020 <sat index="1" type="double" size="[1 4]"> 8021 [100.0000 100.0000 90.0000 50.0000 ] 8022 </sat> 8023 </cell> 8024 <cell index="2" type="struct" size="[1 1]"> 8025 <name index="1" type="char" size="[1 3]"> 8026 D50 8027 </name> 8028 <wbGain index="1" type="double" size="[1 2]"> 8029 [1.9051 1.9785 ] 8030 </wbGain> 8031 <matrixUsed index="1" type="char" size="[1 14]"> 8032 D50_100 D50_74 8033 </matrixUsed> 8034 <gains index="1" type="double" size="[1 4]"> 8035 [1.0000 4.0000 6.0000 16.0000 ] 8036 </gains> 8037 <sat index="1" type="double" size="[1 4]"> 8038 [100.0000 100.0000 90.0000 50.0000 ] 8039 </sat> 8040 </cell> 8041 <cell index="3" type="struct" size="[1 1]"> 8042 <name index="1" type="char" size="[1 3]"> 8043 D65 8044 </name> 8045 <wbGain index="1" type="double" size="[1 2]"> 8046 [2.2062 1.7040 ] 8047 </wbGain> 8048 <matrixUsed index="1" type="char" size="[1 14]"> 8049 D65_100 D65_74 8050 </matrixUsed> 8051 <gains index="1" type="double" size="[1 4]"> 8052 [1.0000 4.0000 6.0000 16.0000 ] 8053 </gains> 8054 <sat index="1" type="double" size="[1 4]"> 8055 [100.0000 100.0000 90.0000 50.0000 ] 8056 </sat> 8057 </cell> 8058 <cell index="4" type="struct" size="[1 1]"> 8059 <name index="1" type="char" size="[1 3]"> 8060 D75 8061 </name> 8062 <wbGain index="1" type="double" size="[1 2]"> 8063 [2.2996 1.5809 ] 8064 </wbGain> 8065 <matrixUsed index="1" type="char" size="[1 14]"> 8066 D75_100 D75_74 8067 </matrixUsed> 8068 <gains index="1" type="double" size="[1 4]"> 8069 [1.0000 4.0000 6.0000 16.0000 ] 8070 </gains> 8071 <sat index="1" type="double" size="[1 4]"> 8072 [100.0000 100.0000 90.0000 50.0000 ] 8073 </sat> 8074 </cell> 8075 <cell index="4" type="struct" size="[1 1]"> 8076 <name index="1" type="char" size="[1 2]"> 8077 HZ 8078 </name> 8079 <wbGain index="1" type="double" size="[1 2]"> 8080 [1.1183 3.6332 ] 8081 </wbGain> 8082 <matrixUsed index="1" type="char" size="[1 12]"> 8083 HZ_100 HZ_74 8084 </matrixUsed> 8085 <gains index="1" type="double" size="[1 4]"> 8086 [1.0000 4.0000 6.0000 16.0000 ] 8087 </gains> 8088 <sat index="1" type="double" size="[1 4]"> 8089 [100.0000 100.0000 90.0000 50.0000 ] 8090 </sat> 8091 </cell> 8092 <cell index="6" type="struct" size="[1 1]"> 8093 <name index="1" type="char" size="[1 4]"> 8094 TL84 8095 </name> 8096 <wbGain index="1" type="double" size="[1 2]"> 8097 [1.5274 2.6033 ] 8098 </wbGain> 8099 <matrixUsed index="1" type="char" size="[1 16]"> 8100 TL84_100 TL84_74 8101 </matrixUsed> 8102 <gains index="1" type="double" size="[1 4]"> 8103 [1.0000 4.0000 6.0000 16.0000 ] 8104 </gains> 8105 <sat index="1" type="double" size="[1 4]"> 8106 [100.0000 100.0000 90.0000 50.0000 ] 8107 </sat> 8108 </cell> 8109 </illAll> 8110 </aCcmCof> 8111 <matrixAll index="1" type="cell" size="[1 14]"> 8112 <cell index="1" type="struct" size="[1 5]"> 8113 <name index="1" type="char" size="[1 5]"> 8114 A_100 8115 </name> 8116 <illumination index="1" type="char" size="[1 1]"> 8117 A 8118 </illumination> 8119 <saturation index="1" type="double" size="[1 1]"> 8120 [100.0000 ] 8121 </saturation> 8122 <ccMatrix index="1" type="double" size="[3 3]"> 8123 [1.2656 -0.2498 -0.0158 8124 -0.4621 1.4010 0.0611 8125 -0.0438 -1.0811 2.1249 ] 8126 </ccMatrix> 8127 <ccOffsets index="1" type="double" size="[1 3]"> 8128 [0.0000 0.0000 0.0000 ] 8129 </ccOffsets> 8130 </cell> 8131 <cell index="2" type="struct" size="[1 5]"> 8132 <name index="1" type="char" size="[1 4]"> 8133 A_74 8134 </name> 8135 <illumination index="1" type="char" size="[1 1]"> 8136 A 8137 </illumination> 8138 <saturation index="1" type="double" size="[1 1]"> 8139 [74.0000 ] 8140 </saturation> 8141 <ccMatrix index="1" type="double" size="[3 3]"> 8142 [0.9632 -0.0233 0.0600 8143 -0.3153 1.1992 0.1160 8144 -0.0064 -0.6371 1.6435 ] 8145 </ccMatrix> 8146 <ccOffsets index="1" type="double" size="[1 3]"> 8147 [0.0000 0.0000 0.0000 ] 8148 </ccOffsets> 8149 </cell> 8150 <cell index="3" type="struct" size="[1 5]"> 8151 <name index="1" type="char" size="[1 7]"> 8152 D50_100 8153 </name> 8154 <illumination index="1" type="char" size="[1 3]"> 8155 D50 8156 </illumination> 8157 <saturation index="1" type="double" size="[1 1]"> 8158 [100.0000 ] 8159 </saturation> 8160 <ccMatrix index="1" type="double" size="[3 3]"> 8161 [1.3481 -0.2895 -0.0587 8162 -0.3168 1.4265 -0.1097 8163 0.0110 -0.6122 1.6012 ] 8164 </ccMatrix> 8165 <ccOffsets index="1" type="double" size="[1 3]"> 8166 [0.0000 0.0000 0.0000 ] 8167 </ccOffsets> 8168 </cell> 8169 <cell index="4" type="struct" size="[1 5]"> 8170 <name index="1" type="char" size="[1 6]"> 8171 D50_74 8172 </name> 8173 <illumination index="1" type="char" size="[1 3]"> 8174 D50 8175 </illumination> 8176 <saturation index="1" type="double" size="[1 1]"> 8177 [74.0000 ] 8178 </saturation> 8179 <ccMatrix index="1" type="double" size="[3 3]"> 8180 [1.0545 -0.0378 -0.0167 8181 -0.1776 1.2328 -0.0552 8182 0.0644 -0.2753 1.2110 ] 8183 </ccMatrix> 8184 <ccOffsets index="1" type="double" size="[1 3]"> 8185 [0.0000 0.0000 0.0000 ] 8186 </ccOffsets> 8187 </cell> 8188 <cell index="5" type="struct" size="[1 5]"> 8189 <name index="1" type="char" size="[1 7]"> 8190 D65_100 8191 </name> 8192 <illumination index="1" type="char" size="[1 3]"> 8193 D65 8194 </illumination> 8195 <saturation index="1" type="double" size="[1 1]"> 8196 [100.0000 ] 8197 </saturation> 8198 <ccMatrix index="1" type="double" size="[3 3]"> 8199 [1.5216 -0.4032 -0.1184 8200 -0.3214 1.5514 -0.2300 8201 0.0068 -0.4594 1.4525 ] 8202 </ccMatrix> 8203 <ccOffsets index="1" type="double" size="[1 3]"> 8204 [0.0000 0.0000 0.0000 ] 8205 </ccOffsets> 8206 </cell> 8207 <cell index="6" type="struct" size="[1 5]"> 8208 <name index="1" type="char" size="[1 6]"> 8209 D65_74 8210 </name> 8211 <illumination index="1" type="char" size="[1 3]"> 8212 D65 8213 </illumination> 8214 <saturation index="1" type="double" size="[1 1]"> 8215 [74.0000 ] 8216 </saturation> 8217 <ccMatrix index="1" type="double" size="[3 3]"> 8218 [1.1955 -0.1072 -0.0883 8219 -0.1682 1.3399 -0.1717 8220 0.0739 -0.1475 1.0736 ] 8221 </ccMatrix> 8222 <ccOffsets index="1" type="double" size="[1 3]"> 8223 [0.0000 0.0000 0.0000 ] 8224 </ccOffsets> 8225 </cell> 8226 <cell index="7" type="struct" size="[1 5]"> 8227 <name index="1" type="char" size="[1 7]"> 8228 D75_100 8229 </name> 8230 <illumination index="1" type="char" size="[1 3]"> 8231 D75 8232 </illumination> 8233 <saturation index="1" type="double" size="[1 1]"> 8234 [100.0000 ] 8235 </saturation> 8236 <ccMatrix index="1" type="double" size="[3 3]"> 8237 [1.4704 -0.3814 -0.0890 8238 -0.2778 1.4837 -0.2059 8239 -0.0115 -0.4119 1.4234 ] 8240 </ccMatrix> 8241 <ccOffsets index="1" type="double" size="[1 3]"> 8242 [0.0000 0.0000 0.0000 ] 8243 </ccOffsets> 8244 </cell> 8245 <cell index="8" type="struct" size="[1 5]"> 8246 <name index="1" type="char" size="[1 6]"> 8247 D75_74 8248 </name> 8249 <illumination index="1" type="char" size="[1 3]"> 8250 D75 8251 </illumination> 8252 <saturation index="1" type="double" size="[1 1]"> 8253 [74.0000 ] 8254 </saturation> 8255 <ccMatrix index="1" type="double" size="[3 3]"> 8256 [1.1598 -0.0983 -0.0615 8257 -0.1339 1.2826 -0.1487 8258 0.0625 -0.1196 1.0571 ] 8259 </ccMatrix> 8260 <ccOffsets index="1" type="double" size="[1 3]"> 8261 [0.0000 0.0000 0.0000 ] 8262 </ccOffsets> 8263 </cell> 8264 <cell index="9" type="struct" size="[1 5]"> 8265 <name index="1" type="char" size="[1 7]"> 8266 CWF_100 8267 </name> 8268 <illumination index="1" type="char" size="[1 3]"> 8269 CWF 8270 </illumination> 8271 <saturation index="1" type="double" size="[1 1]"> 8272 [100.0000 ] 8273 </saturation> 8274 <ccMatrix index="1" type="double" size="[3 3]"> 8275 [1.4207 -0.4177 -0.0030 8276 -0.3712 1.3693 0.0019 8277 0.0688 -0.5709 1.5021 ] 8278 </ccMatrix> 8279 <ccOffsets index="1" type="double" size="[1 3]"> 8280 [0.0000 0.0000 0.0000 ] 8281 </ccOffsets> 8282 </cell> 8283 <cell index="10" type="struct" size="[1 5]"> 8284 <name index="1" type="char" size="[1 6]"> 8285 CWF_74 8286 </name> 8287 <illumination index="1" type="char" size="[1 3]"> 8288 CWF 8289 </illumination> 8290 <saturation index="1" type="double" size="[1 1]"> 8291 [74.0000 ] 8292 </saturation> 8293 <ccMatrix index="1" type="double" size="[3 3]"> 8294 [1.1073 -0.1501 0.0428 8295 -0.2188 1.1730 0.0458 8296 0.1061 -0.2623 1.1561 ] 8297 </ccMatrix> 8298 <ccOffsets index="1" type="double" size="[1 3]"> 8299 [0.0000 0.0000 0.0000 ] 8300 </ccOffsets> 8301 </cell> 8302 <cell index="11" type="struct" size="[1 5]"> 8303 <name index="1" type="char" size="[1 8]"> 8304 TL84_100 8305 </name> 8306 <illumination index="1" type="char" size="[1 4]"> 8307 TL84 8308 </illumination> 8309 <saturation index="1" type="double" size="[1 1]"> 8310 [100.0000 ] 8311 </saturation> 8312 <ccMatrix index="1" type="double" size="[3 3]"> 8313 [1.2081 -0.1987 -0.0094 8314 -0.4071 1.4505 -0.0435 8315 0.0527 -0.5564 1.5037 ] 8316 </ccMatrix> 8317 <ccOffsets index="1" type="double" size="[1 3]"> 8318 [0.0000 0.0000 0.0000 ] 8319 </ccOffsets> 8320 </cell> 8321 <cell index="12" type="struct" size="[1 5]"> 8322 <name index="1" type="char" size="[1 7]"> 8323 TL84_74 8324 </name> 8325 <illumination index="1" type="char" size="[1 4]"> 8326 TL84 8327 </illumination> 8328 <saturation index="1" type="double" size="[1 1]"> 8329 [74.0000 ] 8330 </saturation> 8331 <ccMatrix index="1" type="double" size="[3 3]"> 8332 [0.9275 0.0417 0.0307 8333 -0.2678 1.2629 0.0048 8334 0.0718 -0.2217 1.1499 ] 8335 </ccMatrix> 8336 <ccOffsets index="1" type="double" size="[1 3]"> 8337 [0.0000 0.0000 0.0000 ] 8338 </ccOffsets> 8339 </cell> 8340 <cell index="13" type="struct" size="[1 5]"> 8341 <name index="1" type="char" size="[1 6]"> 8342 HZ_100 8343 </name> 8344 <illumination index="1" type="char" size="[1 2]"> 8345 HZ 8346 </illumination> 8347 <saturation index="1" type="double" size="[1 1]"> 8348 [100.0000 ] 8349 </saturation> 8350 <ccMatrix index="1" type="double" size="[3 3]"> 8351 [1.5217 -0.3782 -0.1435 8352 -0.6794 1.5774 0.1020 8353 -0.7287 -0.3560 2.0847 ] 8354 </ccMatrix> 8355 <ccOffsets index="1" type="double" size="[1 3]"> 8356 [0.0000 0.0000 0.0000 ] 8357 </ccOffsets> 8358 </cell> 8359 <cell index="14" type="struct" size="[1 5]"> 8360 <name index="1" type="char" size="[1 5]"> 8361 HZ_74 8362 </name> 8363 <illumination index="1" type="char" size="[1 2]"> 8364 HZ 8365 </illumination> 8366 <saturation index="1" type="double" size="[1 1]"> 8367 [74.0000 ] 8368 </saturation> 8369 <ccMatrix index="1" type="double" size="[3 3]"> 8370 [1.1191 -0.0797 -0.0394 8371 -0.5095 1.3681 0.1414 8372 -0.5470 -0.0619 1.6089 ] 8373 </ccMatrix> 8374 <ccOffsets index="1" type="double" size="[1 3]"> 8375 [0.0000 0.0000 0.0000 ] 8376 </ccOffsets> 8377 </cell> 8378 </matrixAll> 8379 </cell> 8380 <cell index="1" type="struct" size="[1 1]"> 8381 <Name index="1" type="char" size="[1 13]"> 8382 hdr 8383 </Name> 8384 <damp_enable index="1" type="char" size="[1 1]"> 8385 [1 ] 8386 </damp_enable> 8387 <lumaCCM index="1" type="struct" size="[1 1]"> 8388 <RGB2Y_para index="1" type="double" size="[1 3]"> 8389 [38.0000 75.0000 15.0000 ] 8390 </RGB2Y_para> 8391 <low_bound_pos_bit index="1" type="double" size="[1 1]"> 8392 [8.0000 ] 8393 </low_bound_pos_bit> 8394 <y_alpha_curve index="1" type="double" size="[1 17]"> 8395 [0.0000 64.0000 128.0000 192.0000 256.0000 320.0000 384.0000 448.0000 512.0000 576.0000 640.0000 704.0000 768.0000 832.0000 896.0000 960.0000 1024.0000 ] 8396 </y_alpha_curve> 8397 <gain_alphaScale_curve index="1" type="struct" size="[1 1]"> 8398 <gain index="1" type="double" size="[1 9]"> 8399 [1.0000 2.0000 4.0000 8.0000 16.0000 32.0000 64.0000 128.0000 256.0000 ] 8400 </gain> 8401 <scale index="1" type="double" size="[1 9]"> 8402 [1.0000 0.8000 0.8000 0.9000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 8403 </scale> 8404 </gain_alphaScale_curve> 8405 </lumaCCM> 8406 <aCcmCof index="1" type="cell" size="[1 4]"> 8407 <illAll index="1" type="cell" size="[1 7]"> 8408 <cell index="1" type="struct" size="[1 1]"> 8409 <name index="1" type="char" size="[1 1]"> 8410 A 8411 </name> 8412 <wbGain index="1" type="double" size="[1 2]"> 8413 [1.3271 3.3148 ] 8414 </wbGain> 8415 <matrixUsed index="1" type="char" size="[1 10]"> 8416 A_100 A_74 8417 </matrixUsed> 8418 <gains index="1" type="double" size="[1 4]"> 8419 [1.0000 4.0000 6.0000 16.0000 ] 8420 </gains> 8421 <sat index="1" type="double" size="[1 4]"> 8422 [100.0000 100.0000 90.0000 50.0000 ] 8423 </sat> 8424 </cell> 8425 <cell index="5" type="struct" size="[1 1]"> 8426 <name index="1" type="char" size="[1 3]"> 8427 CWF 8428 </name> 8429 <wbGain index="1" type="double" size="[1 2]"> 8430 [1.8823 2.8817 ] 8431 </wbGain> 8432 <matrixUsed index="1" type="char" size="[1 14]"> 8433 CWF_100 CWF_74 8434 </matrixUsed> 8435 <gains index="1" type="double" size="[1 4]"> 8436 [1.0000 4.0000 6.0000 16.0000 ] 8437 </gains> 8438 <sat index="1" type="double" size="[1 4]"> 8439 [100.0000 100.0000 90.0000 50.0000 ] 8440 </sat> 8441 </cell> 8442 <cell index="2" type="struct" size="[1 1]"> 8443 <name index="1" type="char" size="[1 3]"> 8444 D50 8445 </name> 8446 <wbGain index="1" type="double" size="[1 2]"> 8447 [1.9051 1.9785 ] 8448 </wbGain> 8449 <matrixUsed index="1" type="char" size="[1 14]"> 8450 D50_100 D50_74 8451 </matrixUsed> 8452 <gains index="1" type="double" size="[1 4]"> 8453 [1.0000 4.0000 6.0000 16.0000 ] 8454 </gains> 8455 <sat index="1" type="double" size="[1 4]"> 8456 [100.0000 100.0000 90.0000 50.0000 ] 8457 </sat> 8458 </cell> 8459 <cell index="3" type="struct" size="[1 1]"> 8460 <name index="1" type="char" size="[1 3]"> 8461 D65 8462 </name> 8463 <wbGain index="1" type="double" size="[1 2]"> 8464 [2.2062 1.7040 ] 8465 </wbGain> 8466 <matrixUsed index="1" type="char" size="[1 14]"> 8467 D65_100 D65_74 8468 </matrixUsed> 8469 <gains index="1" type="double" size="[1 4]"> 8470 [1.0000 4.0000 6.0000 16.0000 ] 8471 </gains> 8472 <sat index="1" type="double" size="[1 4]"> 8473 [100.0000 100.0000 90.0000 50.0000 ] 8474 </sat> 8475 </cell> 8476 <cell index="4" type="struct" size="[1 1]"> 8477 <name index="1" type="char" size="[1 3]"> 8478 D75 8479 </name> 8480 <wbGain index="1" type="double" size="[1 2]"> 8481 [2.2996 1.5809 ] 8482 </wbGain> 8483 <matrixUsed index="1" type="char" size="[1 14]"> 8484 D75_100 D75_74 8485 </matrixUsed> 8486 <gains index="1" type="double" size="[1 4]"> 8487 [1.0000 4.0000 6.0000 16.0000 ] 8488 </gains> 8489 <sat index="1" type="double" size="[1 4]"> 8490 [100.0000 100.0000 90.0000 50.0000 ] 8491 </sat> 8492 </cell> 8493 <cell index="4" type="struct" size="[1 1]"> 8494 <name index="1" type="char" size="[1 2]"> 8495 HZ 8496 </name> 8497 <wbGain index="1" type="double" size="[1 2]"> 8498 [1.1183 3.6332 ] 8499 </wbGain> 8500 <matrixUsed index="1" type="char" size="[1 12]"> 8501 HZ_100 HZ_74 8502 </matrixUsed> 8503 <gains index="1" type="double" size="[1 4]"> 8504 [1.0000 4.0000 6.0000 16.0000 ] 8505 </gains> 8506 <sat index="1" type="double" size="[1 4]"> 8507 [100.0000 100.0000 90.0000 50.0000 ] 8508 </sat> 8509 </cell> 8510 <cell index="6" type="struct" size="[1 1]"> 8511 <name index="1" type="char" size="[1 4]"> 8512 TL84 8513 </name> 8514 <wbGain index="1" type="double" size="[1 2]"> 8515 [1.5274 2.6033 ] 8516 </wbGain> 8517 <matrixUsed index="1" type="char" size="[1 16]"> 8518 TL84_100 TL84_74 8519 </matrixUsed> 8520 <gains index="1" type="double" size="[1 4]"> 8521 [1.0000 4.0000 6.0000 16.0000 ] 8522 </gains> 8523 <sat index="1" type="double" size="[1 4]"> 8524 [100.0000 100.0000 90.0000 50.0000 ] 8525 </sat> 8526 </cell> 8527 </illAll> 8528 </aCcmCof> 8529 <matrixAll index="1" type="cell" size="[1 14]"> 8530 <cell index="1" type="struct" size="[1 5]"> 8531 <name index="1" type="char" size="[1 5]"> 8532 A_100 8533 </name> 8534 <illumination index="1" type="char" size="[1 1]"> 8535 A 8536 </illumination> 8537 <saturation index="1" type="double" size="[1 1]"> 8538 [100.0000 ] 8539 </saturation> 8540 <ccMatrix index="1" type="double" size="[3 3]"> 8541 [1.2656 -0.2498 -0.0158 8542 -0.4621 1.4010 0.0611 8543 -0.0438 -1.0811 2.1249 ] 8544 </ccMatrix> 8545 <ccOffsets index="1" type="double" size="[1 3]"> 8546 [0.0000 0.0000 0.0000 ] 8547 </ccOffsets> 8548 </cell> 8549 <cell index="2" type="struct" size="[1 5]"> 8550 <name index="1" type="char" size="[1 4]"> 8551 A_74 8552 </name> 8553 <illumination index="1" type="char" size="[1 1]"> 8554 A 8555 </illumination> 8556 <saturation index="1" type="double" size="[1 1]"> 8557 [74.0000 ] 8558 </saturation> 8559 <ccMatrix index="1" type="double" size="[3 3]"> 8560 [0.9632 -0.0233 0.0600 8561 -0.3153 1.1992 0.1160 8562 -0.0064 -0.6371 1.6435 ] 8563 </ccMatrix> 8564 <ccOffsets index="1" type="double" size="[1 3]"> 8565 [0.0000 0.0000 0.0000 ] 8566 </ccOffsets> 8567 </cell> 8568 <cell index="3" type="struct" size="[1 5]"> 8569 <name index="1" type="char" size="[1 7]"> 8570 D50_100 8571 </name> 8572 <illumination index="1" type="char" size="[1 3]"> 8573 D50 8574 </illumination> 8575 <saturation index="1" type="double" size="[1 1]"> 8576 [100.0000 ] 8577 </saturation> 8578 <ccMatrix index="1" type="double" size="[3 3]"> 8579 [1.3481 -0.2895 -0.0587 8580 -0.3168 1.4265 -0.1097 8581 0.0110 -0.6122 1.6012 ] 8582 </ccMatrix> 8583 <ccOffsets index="1" type="double" size="[1 3]"> 8584 [0.0000 0.0000 0.0000 ] 8585 </ccOffsets> 8586 </cell> 8587 <cell index="4" type="struct" size="[1 5]"> 8588 <name index="1" type="char" size="[1 6]"> 8589 D50_74 8590 </name> 8591 <illumination index="1" type="char" size="[1 3]"> 8592 D50 8593 </illumination> 8594 <saturation index="1" type="double" size="[1 1]"> 8595 [74.0000 ] 8596 </saturation> 8597 <ccMatrix index="1" type="double" size="[3 3]"> 8598 [1.0545 -0.0378 -0.0167 8599 -0.1776 1.2328 -0.0552 8600 0.0644 -0.2753 1.2110 ] 8601 </ccMatrix> 8602 <ccOffsets index="1" type="double" size="[1 3]"> 8603 [0.0000 0.0000 0.0000 ] 8604 </ccOffsets> 8605 </cell> 8606 <cell index="5" type="struct" size="[1 5]"> 8607 <name index="1" type="char" size="[1 7]"> 8608 D65_100 8609 </name> 8610 <illumination index="1" type="char" size="[1 3]"> 8611 D65 8612 </illumination> 8613 <saturation index="1" type="double" size="[1 1]"> 8614 [100.0000 ] 8615 </saturation> 8616 <ccMatrix index="1" type="double" size="[3 3]"> 8617 [1.5216 -0.4032 -0.1184 8618 -0.3214 1.5514 -0.2300 8619 0.0068 -0.4594 1.4525 ] 8620 </ccMatrix> 8621 <ccOffsets index="1" type="double" size="[1 3]"> 8622 [0.0000 0.0000 0.0000 ] 8623 </ccOffsets> 8624 </cell> 8625 <cell index="6" type="struct" size="[1 5]"> 8626 <name index="1" type="char" size="[1 6]"> 8627 D65_74 8628 </name> 8629 <illumination index="1" type="char" size="[1 3]"> 8630 D65 8631 </illumination> 8632 <saturation index="1" type="double" size="[1 1]"> 8633 [74.0000 ] 8634 </saturation> 8635 <ccMatrix index="1" type="double" size="[3 3]"> 8636 [1.1955 -0.1072 -0.0883 8637 -0.1682 1.3399 -0.1717 8638 0.0739 -0.1475 1.0736 ] 8639 </ccMatrix> 8640 <ccOffsets index="1" type="double" size="[1 3]"> 8641 [0.0000 0.0000 0.0000 ] 8642 </ccOffsets> 8643 </cell> 8644 <cell index="7" type="struct" size="[1 5]"> 8645 <name index="1" type="char" size="[1 7]"> 8646 D75_100 8647 </name> 8648 <illumination index="1" type="char" size="[1 3]"> 8649 D75 8650 </illumination> 8651 <saturation index="1" type="double" size="[1 1]"> 8652 [100.0000 ] 8653 </saturation> 8654 <ccMatrix index="1" type="double" size="[3 3]"> 8655 [1.4704 -0.3814 -0.0890 8656 -0.2778 1.4837 -0.2059 8657 -0.0115 -0.4119 1.4234 ] 8658 </ccMatrix> 8659 <ccOffsets index="1" type="double" size="[1 3]"> 8660 [0.0000 0.0000 0.0000 ] 8661 </ccOffsets> 8662 </cell> 8663 <cell index="8" type="struct" size="[1 5]"> 8664 <name index="1" type="char" size="[1 6]"> 8665 D75_74 8666 </name> 8667 <illumination index="1" type="char" size="[1 3]"> 8668 D75 8669 </illumination> 8670 <saturation index="1" type="double" size="[1 1]"> 8671 [74.0000 ] 8672 </saturation> 8673 <ccMatrix index="1" type="double" size="[3 3]"> 8674 [1.1598 -0.0983 -0.0615 8675 -0.1339 1.2826 -0.1487 8676 0.0625 -0.1196 1.0571 ] 8677 </ccMatrix> 8678 <ccOffsets index="1" type="double" size="[1 3]"> 8679 [0.0000 0.0000 0.0000 ] 8680 </ccOffsets> 8681 </cell> 8682 <cell index="9" type="struct" size="[1 5]"> 8683 <name index="1" type="char" size="[1 7]"> 8684 CWF_100 8685 </name> 8686 <illumination index="1" type="char" size="[1 3]"> 8687 CWF 8688 </illumination> 8689 <saturation index="1" type="double" size="[1 1]"> 8690 [100.0000 ] 8691 </saturation> 8692 <ccMatrix index="1" type="double" size="[3 3]"> 8693 [1.4207 -0.4177 -0.0030 8694 -0.3712 1.3693 0.0019 8695 0.0688 -0.5709 1.5021 ] 8696 </ccMatrix> 8697 <ccOffsets index="1" type="double" size="[1 3]"> 8698 [0.0000 0.0000 0.0000 ] 8699 </ccOffsets> 8700 </cell> 8701 <cell index="10" type="struct" size="[1 5]"> 8702 <name index="1" type="char" size="[1 6]"> 8703 CWF_74 8704 </name> 8705 <illumination index="1" type="char" size="[1 3]"> 8706 CWF 8707 </illumination> 8708 <saturation index="1" type="double" size="[1 1]"> 8709 [74.0000 ] 8710 </saturation> 8711 <ccMatrix index="1" type="double" size="[3 3]"> 8712 [1.1073 -0.1501 0.0428 8713 -0.2188 1.1730 0.0458 8714 0.1061 -0.2623 1.1561 ] 8715 </ccMatrix> 8716 <ccOffsets index="1" type="double" size="[1 3]"> 8717 [0.0000 0.0000 0.0000 ] 8718 </ccOffsets> 8719 </cell> 8720 <cell index="11" type="struct" size="[1 5]"> 8721 <name index="1" type="char" size="[1 8]"> 8722 TL84_100 8723 </name> 8724 <illumination index="1" type="char" size="[1 4]"> 8725 TL84 8726 </illumination> 8727 <saturation index="1" type="double" size="[1 1]"> 8728 [100.0000 ] 8729 </saturation> 8730 <ccMatrix index="1" type="double" size="[3 3]"> 8731 [1.2081 -0.1987 -0.0094 8732 -0.4071 1.4505 -0.0435 8733 0.0527 -0.5564 1.5037 ] 8734 </ccMatrix> 8735 <ccOffsets index="1" type="double" size="[1 3]"> 8736 [0.0000 0.0000 0.0000 ] 8737 </ccOffsets> 8738 </cell> 8739 <cell index="12" type="struct" size="[1 5]"> 8740 <name index="1" type="char" size="[1 7]"> 8741 TL84_74 8742 </name> 8743 <illumination index="1" type="char" size="[1 4]"> 8744 TL84 8745 </illumination> 8746 <saturation index="1" type="double" size="[1 1]"> 8747 [74.0000 ] 8748 </saturation> 8749 <ccMatrix index="1" type="double" size="[3 3]"> 8750 [0.9275 0.0417 0.0307 8751 -0.2678 1.2629 0.0048 8752 0.0718 -0.2217 1.1499 ] 8753 </ccMatrix> 8754 <ccOffsets index="1" type="double" size="[1 3]"> 8755 [0.0000 0.0000 0.0000 ] 8756 </ccOffsets> 8757 </cell> 8758 <cell index="13" type="struct" size="[1 5]"> 8759 <name index="1" type="char" size="[1 6]"> 8760 HZ_100 8761 </name> 8762 <illumination index="1" type="char" size="[1 2]"> 8763 HZ 8764 </illumination> 8765 <saturation index="1" type="double" size="[1 1]"> 8766 [100.0000 ] 8767 </saturation> 8768 <ccMatrix index="1" type="double" size="[3 3]"> 8769 [1.5217 -0.3782 -0.1435 8770 -0.6794 1.5774 0.1020 8771 -0.7287 -0.3560 2.0847 ] 8772 </ccMatrix> 8773 <ccOffsets index="1" type="double" size="[1 3]"> 8774 [0.0000 0.0000 0.0000 ] 8775 </ccOffsets> 8776 </cell> 8777 <cell index="14" type="struct" size="[1 5]"> 8778 <name index="1" type="char" size="[1 5]"> 8779 HZ_74 8780 </name> 8781 <illumination index="1" type="char" size="[1 2]"> 8782 HZ 8783 </illumination> 8784 <saturation index="1" type="double" size="[1 1]"> 8785 [74.0000 ] 8786 </saturation> 8787 <ccMatrix index="1" type="double" size="[3 3]"> 8788 [1.1191 -0.0797 -0.0394 8789 -0.5095 1.3681 0.1414 8790 -0.5470 -0.0619 1.6089 ] 8791 </ccMatrix> 8792 <ccOffsets index="1" type="double" size="[1 3]"> 8793 [0.0000 0.0000 0.0000 ] 8794 </ccOffsets> 8795 </cell> 8796 </matrixAll> 8797 </cell> 8798 </Mode> 8799 </CCM> 8800 <UVNR index="1" type="struct" size="[1 1]"> 8801 <Enable index="1" type="double" size="[1 1]"> 8802 [1 ] 8803 </Enable> 8804 <Version index="1" type="char" size="[1 2]"> 8805 V1 8806 </Version> 8807 <Mode index="1" type="cell" size="[1 3]"> 8808 <cell index="1" type="struct" size="[1 1]"> 8809 <Name index="1" type="char" size="[1 8]"> 8810 normal 8811 </Name> 8812 <Setting index="1" type="cell" size="[1 2]"> 8813 <cell index="1" type="struct" size="[1 1]"> 8814 <SNR_Mode index="1" type="char" size="[1 4]"> 8815 LSNR 8816 </SNR_Mode> 8817 <Sensor_Mode index="1" type="char" size="[1 3]"> 8818 lcg 8819 </Sensor_Mode> 8820 <ISO index="1" type="double" size="[1 13]"> 8821 [50.0000 100.0000 200.0000 400.0000 800.0000 1600.0000 3200.0000 6400.0000 12800.0000 25600.0000 51200.0000 102400.0000 204800.0000 ] 8822 </ISO> 8823 <step0_uvgrad_ratio index="1" type="double" size="[1 13]"> 8824 [40.0000 40.0000 40.0000 50.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 ] 8825 </step0_uvgrad_ratio> 8826 <step0_uvgrad_offset index="1" type="double" size="[1 13]"> 8827 [0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 ] 8828 </step0_uvgrad_offset> 8829 <step1_nonMed1 index="1" type="double" size="[1 4]"> 8830 [3.0000 3.0000 3.0000 3.0000 ] 8831 </step1_nonMed1> 8832 <step1_nonBf1 index="1" type="double" size="[1 4]"> 8833 [31.0000 31.0000 31.0000 31.0000 ] 8834 </step1_nonBf1> 8835 <step1_downSample_w index="1" type="double" size="[1 13]"> 8836 [4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 ] 8837 </step1_downSample_w> 8838 <step1_downSample_h index="1" type="double" size="[1 13]"> 8839 [4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 ] 8840 </step1_downSample_h> 8841 <step1_downSample_meansize index="1" type="double" size="[1 13]"> 8842 [4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 ] 8843 </step1_downSample_meansize> 8844 <step1_median_ratio index="1" type="double" size="[1 13]"> 8845 [0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 8846 </step1_median_ratio> 8847 <step1_median_size index="1" type="double" size="[1 13]"> 8848 [3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 ] 8849 </step1_median_size> 8850 <step1_median_IIR index="1" type="double" size="[1 13]"> 8851 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 8852 </step1_median_IIR> 8853 <step1_bf_sigmaR index="1" type="double" size="[1 13]"> 8854 [8.5300 10.2400 10.2400 10.2400 12.8000 12.8000 21.3000 25.6000 25.6000 25.6000 25.6000 25.6000 25.6000 ] 8855 </step1_bf_sigmaR> 8856 <step1_bf_uvgain index="1" type="double" size="[1 13]"> 8857 [1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 8858 </step1_bf_uvgain> 8859 <step1_bf_ratio index="1" type="double" size="[1 13]"> 8860 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 8861 </step1_bf_ratio> 8862 <step1_bf_size index="1" type="double" size="[1 13]"> 8863 [5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 ] 8864 </step1_bf_size> 8865 <step1_bf_sigmaD index="1" type="double" size="[1 13]"> 8866 [16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 ] 8867 </step1_bf_sigmaD> 8868 <step1_bf_isRowIIR index="1" type="double" size="[1 13]"> 8869 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 8870 </step1_bf_isRowIIR> 8871 <step1_bf_isYcopy index="1" type="double" size="[1 13]"> 8872 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 8873 </step1_bf_isYcopy> 8874 <step2_nonExt_block index="1" type="double" size="[1 4]"> 8875 [7.0000 7.0000 7.0000 7.0000 ] 8876 </step2_nonExt_block> 8877 <step2_nonMed index="1" type="double" size="[1 4]"> 8878 [1.0000 1.0000 1.0000 1.0000 ] 8879 </step2_nonMed> 8880 <step2_nonBf index="1" type="double" size="[1 4]"> 8881 [3.0000 3.0000 3.0000 3.0000 ] 8882 </step2_nonBf> 8883 <step2_downSample_w index="1" type="double" size="[1 13]"> 8884 [32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 ] 8885 </step2_downSample_w> 8886 <step2_downSample_h index="1" type="double" size="[1 13]"> 8887 [32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 ] 8888 </step2_downSample_h> 8889 <step2_downSample_meansize index="1" type="double" size="[1 13]"> 8890 [8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 ] 8891 </step2_downSample_meansize> 8892 <step2_median_ratio index="1" type="double" size="[1 13]"> 8893 [0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 ] 8894 </step2_median_ratio> 8895 <step2_median_size index="1" type="double" size="[1 13]"> 8896 [3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 ] 8897 </step2_median_size> 8898 <step2_median_IIR index="1" type="double" size="[1 13]"> 8899 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 8900 </step2_median_IIR> 8901 <step2_bf_sigmaR index="1" type="double" size="[1 13]"> 8902 [5.1200 6.4000 8.5300 10.2400 10.2400 12.8000 12.8000 12.8000 17.0600 17.0600 17.0600 17.0600 17.0600 ] 8903 </step2_bf_sigmaR> 8904 <step2_bf_uvgain index="1" type="double" size="[1 13]"> 8905 [2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 ] 8906 </step2_bf_uvgain> 8907 <step2_bf_ratio index="1" type="double" size="[1 13]"> 8908 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 8909 </step2_bf_ratio> 8910 <step2_bf_size index="1" type="double" size="[1 13]"> 8911 [5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 ] 8912 </step2_bf_size> 8913 <step2_bf_sigmaD index="1" type="double" size="[1 13]"> 8914 [128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 ] 8915 </step2_bf_sigmaD> 8916 <step2_bf_isRowIIR index="1" type="double" size="[1 13]"> 8917 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 8918 </step2_bf_isRowIIR> 8919 <step2_bf_isYcopy index="1" type="double" size="[1 13]"> 8920 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 8921 </step2_bf_isYcopy> 8922 <step3_nonBf3 index="1" type="double" size="[1 4]"> 8923 [32.0000 32.0000 32.0000 32.0000 ] 8924 </step3_nonBf3> 8925 <step3_bf_sigmaR index="1" type="double" size="[1 13]"> 8926 [3.4130 4.2670 5.6890 7.1100 8.5300 8.5300 10.2400 10.2400 10.2400 10.2400 10.2400 10.2400 10.2400 ] 8927 </step3_bf_sigmaR> 8928 <step3_bf_uvgain index="1" type="double" size="[1 13]"> 8929 [4.0000 4.0000 4.0000 3.0000 3.0000 3.0000 3.0000 2.5000 2.0000 2.0000 2.0000 2.0000 2.0000 ] 8930 </step3_bf_uvgain> 8931 <step3_bf_ratio index="1" type="double" size="[1 13]"> 8932 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 8933 </step3_bf_ratio> 8934 <step3_bf_size index="1" type="double" size="[1 13]"> 8935 [3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 ] 8936 </step3_bf_size> 8937 <step3_bf_sigmaD index="1" type="double" size="[1 13]"> 8938 [8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 ] 8939 </step3_bf_sigmaD> 8940 <step3_bf_isRowIIR index="1" type="double" size="[1 13]"> 8941 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 8942 </step3_bf_isRowIIR> 8943 <step3_bf_isYcopy index="1" type="double" size="[1 13]"> 8944 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 8945 </step3_bf_isYcopy> 8946 <kernel_3x3 index="1" type="double" size="[1 3]"> 8947 [1.0000 0.8825 0.7788 ] 8948 </kernel_3x3> 8949 <kernel_5x5 index="1" type="double" size="[1 5]"> 8950 [1.0000 0.8825 0.7788 0.6065 0.3679 ] 8951 </kernel_5x5> 8952 <kernel_9x9 index="1" type="double" size="[1 8]"> 8953 [1.0000 0.8825 0.7788 0.6065 0.3679 0.1969 0.1353 0.0439 ] 8954 </kernel_9x9> 8955 <kernel_9x9_num index="1" type="double" size="[1 1]"> 8956 [0.0000 ] 8957 </kernel_9x9_num> 8958 <sigma_adj_luma index="1" type="double" size="[1 9]"> 8959 [0.0000 32.0000 64.0000 96.0000 128.0000 160.0000 192.0000 224.0000 256.0000 ] 8960 </sigma_adj_luma> 8961 <sigma_adj_ratio index="1" type="double" size="[1 9]"> 8962 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 8963 </sigma_adj_ratio> 8964 <threshold_adj_luma index="1" type="double" size="[1 9]"> 8965 [0.0000 32.0000 64.0000 96.0000 128.0000 160.0000 192.0000 224.0000 256.0000 ] 8966 </threshold_adj_luma> 8967 <threshold_adj_thre index="1" type="double" size="[1 9]"> 8968 [10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 ] 8969 </threshold_adj_thre> 8970 </cell> 8971 <cell index="2" type="struct" size="[1 1]"> 8972 <SNR_Mode index="1" type="char" size="[1 4]"> 8973 HSNR 8974 </SNR_Mode> 8975 <Sensor_Mode index="1" type="char" size="[1 3]"> 8976 hcg 8977 </Sensor_Mode> 8978 <ISO index="1" type="double" size="[1 13]"> 8979 [50.0000 100.0000 200.0000 400.0000 800.0000 1600.0000 3200.0000 6400.0000 12800.0000 25600.0000 51200.0000 102400.0000 204800.0000 ] 8980 </ISO> 8981 <step0_uvgrad_ratio index="1" type="double" size="[1 13]"> 8982 [40.0000 40.0000 40.0000 50.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 ] 8983 </step0_uvgrad_ratio> 8984 <step0_uvgrad_offset index="1" type="double" size="[1 13]"> 8985 [0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 ] 8986 </step0_uvgrad_offset> 8987 <step1_nonMed1 index="1" type="double" size="[1 4]"> 8988 [3.0000 3.0000 3.0000 3.0000 ] 8989 </step1_nonMed1> 8990 <step1_nonBf1 index="1" type="double" size="[1 4]"> 8991 [31.0000 31.0000 31.0000 31.0000 ] 8992 </step1_nonBf1> 8993 <step1_downSample_w index="1" type="double" size="[1 13]"> 8994 [4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 ] 8995 </step1_downSample_w> 8996 <step1_downSample_h index="1" type="double" size="[1 13]"> 8997 [4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 ] 8998 </step1_downSample_h> 8999 <step1_downSample_meansize index="1" type="double" size="[1 13]"> 9000 [4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 ] 9001 </step1_downSample_meansize> 9002 <step1_median_ratio index="1" type="double" size="[1 13]"> 9003 [0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 9004 </step1_median_ratio> 9005 <step1_median_size index="1" type="double" size="[1 13]"> 9006 [3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 ] 9007 </step1_median_size> 9008 <step1_median_IIR index="1" type="double" size="[1 13]"> 9009 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9010 </step1_median_IIR> 9011 <step1_bf_sigmaR index="1" type="double" size="[1 13]"> 9012 [8.5300 10.2400 10.2400 10.2400 12.8000 12.8000 21.3000 25.6000 25.6000 25.6000 25.6000 25.6000 25.6000 ] 9013 </step1_bf_sigmaR> 9014 <step1_bf_uvgain index="1" type="double" size="[1 13]"> 9015 [1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9016 </step1_bf_uvgain> 9017 <step1_bf_ratio index="1" type="double" size="[1 13]"> 9018 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9019 </step1_bf_ratio> 9020 <step1_bf_size index="1" type="double" size="[1 13]"> 9021 [5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 ] 9022 </step1_bf_size> 9023 <step1_bf_sigmaD index="1" type="double" size="[1 13]"> 9024 [16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 ] 9025 </step1_bf_sigmaD> 9026 <step1_bf_isRowIIR index="1" type="double" size="[1 13]"> 9027 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9028 </step1_bf_isRowIIR> 9029 <step1_bf_isYcopy index="1" type="double" size="[1 13]"> 9030 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9031 </step1_bf_isYcopy> 9032 <step2_nonExt_block index="1" type="double" size="[1 4]"> 9033 [7.0000 7.0000 7.0000 7.0000 ] 9034 </step2_nonExt_block> 9035 <step2_nonMed index="1" type="double" size="[1 4]"> 9036 [1.0000 1.0000 1.0000 1.0000 ] 9037 </step2_nonMed> 9038 <step2_nonBf index="1" type="double" size="[1 4]"> 9039 [3.0000 3.0000 3.0000 3.0000 ] 9040 </step2_nonBf> 9041 <step2_downSample_w index="1" type="double" size="[1 13]"> 9042 [32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 ] 9043 </step2_downSample_w> 9044 <step2_downSample_h index="1" type="double" size="[1 13]"> 9045 [32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 ] 9046 </step2_downSample_h> 9047 <step2_downSample_meansize index="1" type="double" size="[1 13]"> 9048 [8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 ] 9049 </step2_downSample_meansize> 9050 <step2_median_ratio index="1" type="double" size="[1 13]"> 9051 [0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 ] 9052 </step2_median_ratio> 9053 <step2_median_size index="1" type="double" size="[1 13]"> 9054 [3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 ] 9055 </step2_median_size> 9056 <step2_median_IIR index="1" type="double" size="[1 13]"> 9057 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9058 </step2_median_IIR> 9059 <step2_bf_sigmaR index="1" type="double" size="[1 13]"> 9060 [5.1200 6.4000 8.5300 10.2400 10.2400 12.8000 12.8000 12.8000 17.0600 17.0600 17.0600 17.0600 17.0600 ] 9061 </step2_bf_sigmaR> 9062 <step2_bf_uvgain index="1" type="double" size="[1 13]"> 9063 [2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 ] 9064 </step2_bf_uvgain> 9065 <step2_bf_ratio index="1" type="double" size="[1 13]"> 9066 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9067 </step2_bf_ratio> 9068 <step2_bf_size index="1" type="double" size="[1 13]"> 9069 [5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 ] 9070 </step2_bf_size> 9071 <step2_bf_sigmaD index="1" type="double" size="[1 13]"> 9072 [128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 ] 9073 </step2_bf_sigmaD> 9074 <step2_bf_isRowIIR index="1" type="double" size="[1 13]"> 9075 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9076 </step2_bf_isRowIIR> 9077 <step2_bf_isYcopy index="1" type="double" size="[1 13]"> 9078 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9079 </step2_bf_isYcopy> 9080 <step3_nonBf3 index="1" type="double" size="[1 4]"> 9081 [32.0000 32.0000 32.0000 32.0000 ] 9082 </step3_nonBf3> 9083 <step3_bf_sigmaR index="1" type="double" size="[1 13]"> 9084 [3.4130 4.2670 5.6890 7.1100 8.5300 8.5300 10.2400 10.2400 10.2400 10.2400 10.2400 10.2400 10.2400 ] 9085 </step3_bf_sigmaR> 9086 <step3_bf_uvgain index="1" type="double" size="[1 13]"> 9087 [4.0000 4.0000 4.0000 3.0000 3.0000 3.0000 3.0000 2.5000 2.0000 2.0000 2.0000 2.0000 2.0000 ] 9088 </step3_bf_uvgain> 9089 <step3_bf_ratio index="1" type="double" size="[1 13]"> 9090 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9091 </step3_bf_ratio> 9092 <step3_bf_size index="1" type="double" size="[1 13]"> 9093 [3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 ] 9094 </step3_bf_size> 9095 <step3_bf_sigmaD index="1" type="double" size="[1 13]"> 9096 [8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 ] 9097 </step3_bf_sigmaD> 9098 <step3_bf_isRowIIR index="1" type="double" size="[1 13]"> 9099 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9100 </step3_bf_isRowIIR> 9101 <step3_bf_isYcopy index="1" type="double" size="[1 13]"> 9102 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9103 </step3_bf_isYcopy> 9104 <kernel_3x3 index="1" type="double" size="[1 3]"> 9105 [1.0000 0.8825 0.7788 ] 9106 </kernel_3x3> 9107 <kernel_5x5 index="1" type="double" size="[1 5]"> 9108 [1.0000 0.8825 0.7788 0.6065 0.3679 ] 9109 </kernel_5x5> 9110 <kernel_9x9 index="1" type="double" size="[1 8]"> 9111 [1.0000 0.8825 0.7788 0.6065 0.3679 0.1969 0.1353 0.0439 ] 9112 </kernel_9x9> 9113 <kernel_9x9_num index="1" type="double" size="[1 1]"> 9114 [0.0000 ] 9115 </kernel_9x9_num> 9116 <sigma_adj_luma index="1" type="double" size="[1 9]"> 9117 [0.0000 32.0000 64.0000 96.0000 128.0000 160.0000 192.0000 224.0000 256.0000 ] 9118 </sigma_adj_luma> 9119 <sigma_adj_ratio index="1" type="double" size="[1 9]"> 9120 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9121 </sigma_adj_ratio> 9122 <threshold_adj_luma index="1" type="double" size="[1 9]"> 9123 [0.0000 32.0000 64.0000 96.0000 128.0000 160.0000 192.0000 224.0000 256.0000 ] 9124 </threshold_adj_luma> 9125 <threshold_adj_thre index="1" type="double" size="[1 9]"> 9126 [10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 ] 9127 </threshold_adj_thre> 9128 </cell> 9129 </Setting> 9130 </cell> 9131 <cell index="1" type="struct" size="[1 1]"> 9132 <Name index="1" type="char" size="[1 8]"> 9133 hdr 9134 </Name> 9135 <Setting index="1" type="cell" size="[1 2]"> 9136 <cell index="1" type="struct" size="[1 1]"> 9137 <SNR_Mode index="1" type="char" size="[1 4]"> 9138 LSNR 9139 </SNR_Mode> 9140 <Sensor_Mode index="1" type="char" size="[1 3]"> 9141 lcg 9142 </Sensor_Mode> 9143 <ISO index="1" type="double" size="[1 13]"> 9144 [50.0000 100.0000 200.0000 400.0000 800.0000 1600.0000 3200.0000 6400.0000 12800.0000 25600.0000 51200.0000 102400.0000 204800.0000 ] 9145 </ISO> 9146 <step0_uvgrad_ratio index="1" type="double" size="[1 13]"> 9147 [40.0000 40.0000 40.0000 50.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 ] 9148 </step0_uvgrad_ratio> 9149 <step0_uvgrad_offset index="1" type="double" size="[1 13]"> 9150 [0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 ] 9151 </step0_uvgrad_offset> 9152 <step1_nonMed1 index="1" type="double" size="[1 4]"> 9153 [3.0000 3.0000 3.0000 3.0000 ] 9154 </step1_nonMed1> 9155 <step1_nonBf1 index="1" type="double" size="[1 4]"> 9156 [31.0000 31.0000 31.0000 31.0000 ] 9157 </step1_nonBf1> 9158 <step1_downSample_w index="1" type="double" size="[1 13]"> 9159 [4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 ] 9160 </step1_downSample_w> 9161 <step1_downSample_h index="1" type="double" size="[1 13]"> 9162 [4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 ] 9163 </step1_downSample_h> 9164 <step1_downSample_meansize index="1" type="double" size="[1 13]"> 9165 [4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 ] 9166 </step1_downSample_meansize> 9167 <step1_median_ratio index="1" type="double" size="[1 13]"> 9168 [0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 9169 </step1_median_ratio> 9170 <step1_median_size index="1" type="double" size="[1 13]"> 9171 [3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 ] 9172 </step1_median_size> 9173 <step1_median_IIR index="1" type="double" size="[1 13]"> 9174 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9175 </step1_median_IIR> 9176 <step1_bf_sigmaR index="1" type="double" size="[1 13]"> 9177 [8.5300 10.2400 10.2400 10.2400 12.8000 12.8000 21.3000 25.6000 25.6000 25.6000 25.6000 25.6000 25.6000 ] 9178 </step1_bf_sigmaR> 9179 <step1_bf_uvgain index="1" type="double" size="[1 13]"> 9180 [1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9181 </step1_bf_uvgain> 9182 <step1_bf_ratio index="1" type="double" size="[1 13]"> 9183 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9184 </step1_bf_ratio> 9185 <step1_bf_size index="1" type="double" size="[1 13]"> 9186 [5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 ] 9187 </step1_bf_size> 9188 <step1_bf_sigmaD index="1" type="double" size="[1 13]"> 9189 [16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 ] 9190 </step1_bf_sigmaD> 9191 <step1_bf_isRowIIR index="1" type="double" size="[1 13]"> 9192 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9193 </step1_bf_isRowIIR> 9194 <step1_bf_isYcopy index="1" type="double" size="[1 13]"> 9195 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9196 </step1_bf_isYcopy> 9197 <step2_nonExt_block index="1" type="double" size="[1 4]"> 9198 [7.0000 7.0000 7.0000 7.0000 ] 9199 </step2_nonExt_block> 9200 <step2_nonMed index="1" type="double" size="[1 4]"> 9201 [1.0000 1.0000 1.0000 1.0000 ] 9202 </step2_nonMed> 9203 <step2_nonBf index="1" type="double" size="[1 4]"> 9204 [3.0000 3.0000 3.0000 3.0000 ] 9205 </step2_nonBf> 9206 <step2_downSample_w index="1" type="double" size="[1 13]"> 9207 [32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 ] 9208 </step2_downSample_w> 9209 <step2_downSample_h index="1" type="double" size="[1 13]"> 9210 [32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 ] 9211 </step2_downSample_h> 9212 <step2_downSample_meansize index="1" type="double" size="[1 13]"> 9213 [8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 ] 9214 </step2_downSample_meansize> 9215 <step2_median_ratio index="1" type="double" size="[1 13]"> 9216 [0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 ] 9217 </step2_median_ratio> 9218 <step2_median_size index="1" type="double" size="[1 13]"> 9219 [3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 ] 9220 </step2_median_size> 9221 <step2_median_IIR index="1" type="double" size="[1 13]"> 9222 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9223 </step2_median_IIR> 9224 <step2_bf_sigmaR index="1" type="double" size="[1 13]"> 9225 [5.1200 6.4000 8.5300 10.2400 10.2400 12.8000 12.8000 12.8000 17.0600 17.0600 17.0600 17.0600 17.0600 ] 9226 </step2_bf_sigmaR> 9227 <step2_bf_uvgain index="1" type="double" size="[1 13]"> 9228 [2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 ] 9229 </step2_bf_uvgain> 9230 <step2_bf_ratio index="1" type="double" size="[1 13]"> 9231 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9232 </step2_bf_ratio> 9233 <step2_bf_size index="1" type="double" size="[1 13]"> 9234 [5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 ] 9235 </step2_bf_size> 9236 <step2_bf_sigmaD index="1" type="double" size="[1 13]"> 9237 [128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 ] 9238 </step2_bf_sigmaD> 9239 <step2_bf_isRowIIR index="1" type="double" size="[1 13]"> 9240 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9241 </step2_bf_isRowIIR> 9242 <step2_bf_isYcopy index="1" type="double" size="[1 13]"> 9243 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9244 </step2_bf_isYcopy> 9245 <step3_nonBf3 index="1" type="double" size="[1 4]"> 9246 [32.0000 32.0000 32.0000 32.0000 ] 9247 </step3_nonBf3> 9248 <step3_bf_sigmaR index="1" type="double" size="[1 13]"> 9249 [3.4130 4.2670 5.6890 7.1100 8.5300 8.5300 10.2400 10.2400 10.2400 10.2400 10.2400 10.2400 10.2400 ] 9250 </step3_bf_sigmaR> 9251 <step3_bf_uvgain index="1" type="double" size="[1 13]"> 9252 [4.0000 4.0000 4.0000 3.0000 3.0000 3.0000 3.0000 2.5000 2.0000 2.0000 2.0000 2.0000 2.0000 ] 9253 </step3_bf_uvgain> 9254 <step3_bf_ratio index="1" type="double" size="[1 13]"> 9255 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9256 </step3_bf_ratio> 9257 <step3_bf_size index="1" type="double" size="[1 13]"> 9258 [3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 ] 9259 </step3_bf_size> 9260 <step3_bf_sigmaD index="1" type="double" size="[1 13]"> 9261 [8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 ] 9262 </step3_bf_sigmaD> 9263 <step3_bf_isRowIIR index="1" type="double" size="[1 13]"> 9264 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9265 </step3_bf_isRowIIR> 9266 <step3_bf_isYcopy index="1" type="double" size="[1 13]"> 9267 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9268 </step3_bf_isYcopy> 9269 <kernel_3x3 index="1" type="double" size="[1 3]"> 9270 [1.0000 0.8825 0.7788 ] 9271 </kernel_3x3> 9272 <kernel_5x5 index="1" type="double" size="[1 5]"> 9273 [1.0000 0.8825 0.7788 0.6065 0.3679 ] 9274 </kernel_5x5> 9275 <kernel_9x9 index="1" type="double" size="[1 8]"> 9276 [1.0000 0.8825 0.7788 0.6065 0.3679 0.1969 0.1353 0.0439 ] 9277 </kernel_9x9> 9278 <kernel_9x9_num index="1" type="double" size="[1 1]"> 9279 [0.0000 ] 9280 </kernel_9x9_num> 9281 <sigma_adj_luma index="1" type="double" size="[1 9]"> 9282 [0.0000 32.0000 64.0000 96.0000 128.0000 160.0000 192.0000 224.0000 256.0000 ] 9283 </sigma_adj_luma> 9284 <sigma_adj_ratio index="1" type="double" size="[1 9]"> 9285 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9286 </sigma_adj_ratio> 9287 <threshold_adj_luma index="1" type="double" size="[1 9]"> 9288 [0.0000 32.0000 64.0000 96.0000 128.0000 160.0000 192.0000 224.0000 256.0000 ] 9289 </threshold_adj_luma> 9290 <threshold_adj_thre index="1" type="double" size="[1 9]"> 9291 [10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 ] 9292 </threshold_adj_thre> 9293 </cell> 9294 <cell index="2" type="struct" size="[1 1]"> 9295 <SNR_Mode index="1" type="char" size="[1 4]"> 9296 HSNR 9297 </SNR_Mode> 9298 <Sensor_Mode index="1" type="char" size="[1 3]"> 9299 hcg 9300 </Sensor_Mode> 9301 <ISO index="1" type="double" size="[1 13]"> 9302 [50.0000 100.0000 200.0000 400.0000 800.0000 1600.0000 3200.0000 6400.0000 12800.0000 25600.0000 51200.0000 102400.0000 204800.0000 ] 9303 </ISO> 9304 <step0_uvgrad_ratio index="1" type="double" size="[1 13]"> 9305 [40.0000 40.0000 40.0000 50.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 ] 9306 </step0_uvgrad_ratio> 9307 <step0_uvgrad_offset index="1" type="double" size="[1 13]"> 9308 [0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 ] 9309 </step0_uvgrad_offset> 9310 <step1_nonMed1 index="1" type="double" size="[1 4]"> 9311 [3.0000 3.0000 3.0000 3.0000 ] 9312 </step1_nonMed1> 9313 <step1_nonBf1 index="1" type="double" size="[1 4]"> 9314 [31.0000 31.0000 31.0000 31.0000 ] 9315 </step1_nonBf1> 9316 <step1_downSample_w index="1" type="double" size="[1 13]"> 9317 [4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 ] 9318 </step1_downSample_w> 9319 <step1_downSample_h index="1" type="double" size="[1 13]"> 9320 [4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 ] 9321 </step1_downSample_h> 9322 <step1_downSample_meansize index="1" type="double" size="[1 13]"> 9323 [4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 ] 9324 </step1_downSample_meansize> 9325 <step1_median_ratio index="1" type="double" size="[1 13]"> 9326 [0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 9327 </step1_median_ratio> 9328 <step1_median_size index="1" type="double" size="[1 13]"> 9329 [3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 ] 9330 </step1_median_size> 9331 <step1_median_IIR index="1" type="double" size="[1 13]"> 9332 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9333 </step1_median_IIR> 9334 <step1_bf_sigmaR index="1" type="double" size="[1 13]"> 9335 [8.5300 10.2400 10.2400 10.2400 12.8000 12.8000 21.3000 25.6000 25.6000 25.6000 25.6000 25.6000 25.6000 ] 9336 </step1_bf_sigmaR> 9337 <step1_bf_uvgain index="1" type="double" size="[1 13]"> 9338 [1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9339 </step1_bf_uvgain> 9340 <step1_bf_ratio index="1" type="double" size="[1 13]"> 9341 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9342 </step1_bf_ratio> 9343 <step1_bf_size index="1" type="double" size="[1 13]"> 9344 [5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 ] 9345 </step1_bf_size> 9346 <step1_bf_sigmaD index="1" type="double" size="[1 13]"> 9347 [16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 ] 9348 </step1_bf_sigmaD> 9349 <step1_bf_isRowIIR index="1" type="double" size="[1 13]"> 9350 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9351 </step1_bf_isRowIIR> 9352 <step1_bf_isYcopy index="1" type="double" size="[1 13]"> 9353 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9354 </step1_bf_isYcopy> 9355 <step2_nonExt_block index="1" type="double" size="[1 4]"> 9356 [7.0000 7.0000 7.0000 7.0000 ] 9357 </step2_nonExt_block> 9358 <step2_nonMed index="1" type="double" size="[1 4]"> 9359 [1.0000 1.0000 1.0000 1.0000 ] 9360 </step2_nonMed> 9361 <step2_nonBf index="1" type="double" size="[1 4]"> 9362 [3.0000 3.0000 3.0000 3.0000 ] 9363 </step2_nonBf> 9364 <step2_downSample_w index="1" type="double" size="[1 13]"> 9365 [32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 ] 9366 </step2_downSample_w> 9367 <step2_downSample_h index="1" type="double" size="[1 13]"> 9368 [32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 ] 9369 </step2_downSample_h> 9370 <step2_downSample_meansize index="1" type="double" size="[1 13]"> 9371 [8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 ] 9372 </step2_downSample_meansize> 9373 <step2_median_ratio index="1" type="double" size="[1 13]"> 9374 [0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 ] 9375 </step2_median_ratio> 9376 <step2_median_size index="1" type="double" size="[1 13]"> 9377 [3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 ] 9378 </step2_median_size> 9379 <step2_median_IIR index="1" type="double" size="[1 13]"> 9380 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9381 </step2_median_IIR> 9382 <step2_bf_sigmaR index="1" type="double" size="[1 13]"> 9383 [5.1200 6.4000 8.5300 10.2400 10.2400 12.8000 12.8000 12.8000 17.0600 17.0600 17.0600 17.0600 17.0600 ] 9384 </step2_bf_sigmaR> 9385 <step2_bf_uvgain index="1" type="double" size="[1 13]"> 9386 [2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 ] 9387 </step2_bf_uvgain> 9388 <step2_bf_ratio index="1" type="double" size="[1 13]"> 9389 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9390 </step2_bf_ratio> 9391 <step2_bf_size index="1" type="double" size="[1 13]"> 9392 [5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 ] 9393 </step2_bf_size> 9394 <step2_bf_sigmaD index="1" type="double" size="[1 13]"> 9395 [128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 ] 9396 </step2_bf_sigmaD> 9397 <step2_bf_isRowIIR index="1" type="double" size="[1 13]"> 9398 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9399 </step2_bf_isRowIIR> 9400 <step2_bf_isYcopy index="1" type="double" size="[1 13]"> 9401 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9402 </step2_bf_isYcopy> 9403 <step3_nonBf3 index="1" type="double" size="[1 4]"> 9404 [32.0000 32.0000 32.0000 32.0000 ] 9405 </step3_nonBf3> 9406 <step3_bf_sigmaR index="1" type="double" size="[1 13]"> 9407 [3.4130 4.2670 5.6890 7.1100 8.5300 8.5300 10.2400 10.2400 10.2400 10.2400 10.2400 10.2400 10.2400 ] 9408 </step3_bf_sigmaR> 9409 <step3_bf_uvgain index="1" type="double" size="[1 13]"> 9410 [4.0000 4.0000 4.0000 3.0000 3.0000 3.0000 3.0000 2.5000 2.0000 2.0000 2.0000 2.0000 2.0000 ] 9411 </step3_bf_uvgain> 9412 <step3_bf_ratio index="1" type="double" size="[1 13]"> 9413 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9414 </step3_bf_ratio> 9415 <step3_bf_size index="1" type="double" size="[1 13]"> 9416 [3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 ] 9417 </step3_bf_size> 9418 <step3_bf_sigmaD index="1" type="double" size="[1 13]"> 9419 [8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 ] 9420 </step3_bf_sigmaD> 9421 <step3_bf_isRowIIR index="1" type="double" size="[1 13]"> 9422 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9423 </step3_bf_isRowIIR> 9424 <step3_bf_isYcopy index="1" type="double" size="[1 13]"> 9425 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9426 </step3_bf_isYcopy> 9427 <kernel_3x3 index="1" type="double" size="[1 3]"> 9428 [1.0000 0.8825 0.7788 ] 9429 </kernel_3x3> 9430 <kernel_5x5 index="1" type="double" size="[1 5]"> 9431 [1.0000 0.8825 0.7788 0.6065 0.3679 ] 9432 </kernel_5x5> 9433 <kernel_9x9 index="1" type="double" size="[1 8]"> 9434 [1.0000 0.8825 0.7788 0.6065 0.3679 0.1969 0.1353 0.0439 ] 9435 </kernel_9x9> 9436 <kernel_9x9_num index="1" type="double" size="[1 1]"> 9437 [0.0000 ] 9438 </kernel_9x9_num> 9439 <sigma_adj_luma index="1" type="double" size="[1 9]"> 9440 [0.0000 32.0000 64.0000 96.0000 128.0000 160.0000 192.0000 224.0000 256.0000 ] 9441 </sigma_adj_luma> 9442 <sigma_adj_ratio index="1" type="double" size="[1 9]"> 9443 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9444 </sigma_adj_ratio> 9445 <threshold_adj_luma index="1" type="double" size="[1 9]"> 9446 [0.0000 32.0000 64.0000 96.0000 128.0000 160.0000 192.0000 224.0000 256.0000 ] 9447 </threshold_adj_luma> 9448 <threshold_adj_thre index="1" type="double" size="[1 9]"> 9449 [10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 ] 9450 </threshold_adj_thre> 9451 </cell> 9452 </Setting> 9453 </cell> 9454 <cell index="1" type="struct" size="[1 1]"> 9455 <Name index="1" type="char" size="[1 8]"> 9456 gray 9457 </Name> 9458 <Setting index="1" type="cell" size="[1 2]"> 9459 <cell index="1" type="struct" size="[1 1]"> 9460 <SNR_Mode index="1" type="char" size="[1 4]"> 9461 LSNR 9462 </SNR_Mode> 9463 <Sensor_Mode index="1" type="char" size="[1 3]"> 9464 lcg 9465 </Sensor_Mode> 9466 <ISO index="1" type="double" size="[1 13]"> 9467 [50.0000 100.0000 200.0000 400.0000 800.0000 1600.0000 3200.0000 6400.0000 12800.0000 25600.0000 51200.0000 102400.0000 204800.0000 ] 9468 </ISO> 9469 <step0_uvgrad_ratio index="1" type="double" size="[1 13]"> 9470 [40.0000 40.0000 40.0000 50.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 ] 9471 </step0_uvgrad_ratio> 9472 <step0_uvgrad_offset index="1" type="double" size="[1 13]"> 9473 [0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 ] 9474 </step0_uvgrad_offset> 9475 <step1_nonMed1 index="1" type="double" size="[1 4]"> 9476 [3.0000 3.0000 3.0000 3.0000 ] 9477 </step1_nonMed1> 9478 <step1_nonBf1 index="1" type="double" size="[1 4]"> 9479 [31.0000 31.0000 31.0000 31.0000 ] 9480 </step1_nonBf1> 9481 <step1_downSample_w index="1" type="double" size="[1 13]"> 9482 [4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 ] 9483 </step1_downSample_w> 9484 <step1_downSample_h index="1" type="double" size="[1 13]"> 9485 [4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 ] 9486 </step1_downSample_h> 9487 <step1_downSample_meansize index="1" type="double" size="[1 13]"> 9488 [4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 ] 9489 </step1_downSample_meansize> 9490 <step1_median_ratio index="1" type="double" size="[1 13]"> 9491 [0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 9492 </step1_median_ratio> 9493 <step1_median_size index="1" type="double" size="[1 13]"> 9494 [3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 ] 9495 </step1_median_size> 9496 <step1_median_IIR index="1" type="double" size="[1 13]"> 9497 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9498 </step1_median_IIR> 9499 <step1_bf_sigmaR index="1" type="double" size="[1 13]"> 9500 [8.5300 10.2400 10.2400 10.2400 12.8000 12.8000 21.3000 25.6000 25.6000 25.6000 25.6000 25.6000 25.6000 ] 9501 </step1_bf_sigmaR> 9502 <step1_bf_uvgain index="1" type="double" size="[1 13]"> 9503 [1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9504 </step1_bf_uvgain> 9505 <step1_bf_ratio index="1" type="double" size="[1 13]"> 9506 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9507 </step1_bf_ratio> 9508 <step1_bf_size index="1" type="double" size="[1 13]"> 9509 [5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 ] 9510 </step1_bf_size> 9511 <step1_bf_sigmaD index="1" type="double" size="[1 13]"> 9512 [16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 ] 9513 </step1_bf_sigmaD> 9514 <step1_bf_isRowIIR index="1" type="double" size="[1 13]"> 9515 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9516 </step1_bf_isRowIIR> 9517 <step1_bf_isYcopy index="1" type="double" size="[1 13]"> 9518 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9519 </step1_bf_isYcopy> 9520 <step2_nonExt_block index="1" type="double" size="[1 4]"> 9521 [7.0000 7.0000 7.0000 7.0000 ] 9522 </step2_nonExt_block> 9523 <step2_nonMed index="1" type="double" size="[1 4]"> 9524 [1.0000 1.0000 1.0000 1.0000 ] 9525 </step2_nonMed> 9526 <step2_nonBf index="1" type="double" size="[1 4]"> 9527 [3.0000 3.0000 3.0000 3.0000 ] 9528 </step2_nonBf> 9529 <step2_downSample_w index="1" type="double" size="[1 13]"> 9530 [32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 ] 9531 </step2_downSample_w> 9532 <step2_downSample_h index="1" type="double" size="[1 13]"> 9533 [32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 ] 9534 </step2_downSample_h> 9535 <step2_downSample_meansize index="1" type="double" size="[1 13]"> 9536 [8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 ] 9537 </step2_downSample_meansize> 9538 <step2_median_ratio index="1" type="double" size="[1 13]"> 9539 [0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 ] 9540 </step2_median_ratio> 9541 <step2_median_size index="1" type="double" size="[1 13]"> 9542 [3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 ] 9543 </step2_median_size> 9544 <step2_median_IIR index="1" type="double" size="[1 13]"> 9545 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9546 </step2_median_IIR> 9547 <step2_bf_sigmaR index="1" type="double" size="[1 13]"> 9548 [5.1200 6.4000 8.5300 10.2400 10.2400 12.8000 12.8000 12.8000 17.0600 17.0600 17.0600 17.0600 17.0600 ] 9549 </step2_bf_sigmaR> 9550 <step2_bf_uvgain index="1" type="double" size="[1 13]"> 9551 [2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 ] 9552 </step2_bf_uvgain> 9553 <step2_bf_ratio index="1" type="double" size="[1 13]"> 9554 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9555 </step2_bf_ratio> 9556 <step2_bf_size index="1" type="double" size="[1 13]"> 9557 [5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 ] 9558 </step2_bf_size> 9559 <step2_bf_sigmaD index="1" type="double" size="[1 13]"> 9560 [128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 ] 9561 </step2_bf_sigmaD> 9562 <step2_bf_isRowIIR index="1" type="double" size="[1 13]"> 9563 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9564 </step2_bf_isRowIIR> 9565 <step2_bf_isYcopy index="1" type="double" size="[1 13]"> 9566 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9567 </step2_bf_isYcopy> 9568 <step3_nonBf3 index="1" type="double" size="[1 4]"> 9569 [32.0000 32.0000 32.0000 32.0000 ] 9570 </step3_nonBf3> 9571 <step3_bf_sigmaR index="1" type="double" size="[1 13]"> 9572 [3.4130 4.2670 5.6890 7.1100 8.5300 8.5300 10.2400 10.2400 10.2400 10.2400 10.2400 10.2400 10.2400 ] 9573 </step3_bf_sigmaR> 9574 <step3_bf_uvgain index="1" type="double" size="[1 13]"> 9575 [4.0000 4.0000 4.0000 3.0000 3.0000 3.0000 3.0000 2.5000 2.0000 2.0000 2.0000 2.0000 2.0000 ] 9576 </step3_bf_uvgain> 9577 <step3_bf_ratio index="1" type="double" size="[1 13]"> 9578 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9579 </step3_bf_ratio> 9580 <step3_bf_size index="1" type="double" size="[1 13]"> 9581 [3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 ] 9582 </step3_bf_size> 9583 <step3_bf_sigmaD index="1" type="double" size="[1 13]"> 9584 [8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 ] 9585 </step3_bf_sigmaD> 9586 <step3_bf_isRowIIR index="1" type="double" size="[1 13]"> 9587 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9588 </step3_bf_isRowIIR> 9589 <step3_bf_isYcopy index="1" type="double" size="[1 13]"> 9590 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9591 </step3_bf_isYcopy> 9592 <kernel_3x3 index="1" type="double" size="[1 3]"> 9593 [1.0000 0.8825 0.7788 ] 9594 </kernel_3x3> 9595 <kernel_5x5 index="1" type="double" size="[1 5]"> 9596 [1.0000 0.8825 0.7788 0.6065 0.3679 ] 9597 </kernel_5x5> 9598 <kernel_9x9 index="1" type="double" size="[1 8]"> 9599 [1.0000 0.8825 0.7788 0.6065 0.3679 0.1969 0.1353 0.0439 ] 9600 </kernel_9x9> 9601 <kernel_9x9_num index="1" type="double" size="[1 1]"> 9602 [0.0000 ] 9603 </kernel_9x9_num> 9604 <sigma_adj_luma index="1" type="double" size="[1 9]"> 9605 [0.0000 32.0000 64.0000 96.0000 128.0000 160.0000 192.0000 224.0000 256.0000 ] 9606 </sigma_adj_luma> 9607 <sigma_adj_ratio index="1" type="double" size="[1 9]"> 9608 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9609 </sigma_adj_ratio> 9610 <threshold_adj_luma index="1" type="double" size="[1 9]"> 9611 [0.0000 32.0000 64.0000 96.0000 128.0000 160.0000 192.0000 224.0000 256.0000 ] 9612 </threshold_adj_luma> 9613 <threshold_adj_thre index="1" type="double" size="[1 9]"> 9614 [10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 ] 9615 </threshold_adj_thre> 9616 </cell> 9617 <cell index="2" type="struct" size="[1 1]"> 9618 <SNR_Mode index="1" type="char" size="[1 4]"> 9619 HSNR 9620 </SNR_Mode> 9621 <Sensor_Mode index="1" type="char" size="[1 3]"> 9622 hcg 9623 </Sensor_Mode> 9624 <ISO index="1" type="double" size="[1 13]"> 9625 [50.0000 100.0000 200.0000 400.0000 800.0000 1600.0000 3200.0000 6400.0000 12800.0000 25600.0000 51200.0000 102400.0000 204800.0000 ] 9626 </ISO> 9627 <step0_uvgrad_ratio index="1" type="double" size="[1 13]"> 9628 [40.0000 40.0000 40.0000 50.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 60.0000 ] 9629 </step0_uvgrad_ratio> 9630 <step0_uvgrad_offset index="1" type="double" size="[1 13]"> 9631 [0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 ] 9632 </step0_uvgrad_offset> 9633 <step1_nonMed1 index="1" type="double" size="[1 4]"> 9634 [3.0000 3.0000 3.0000 3.0000 ] 9635 </step1_nonMed1> 9636 <step1_nonBf1 index="1" type="double" size="[1 4]"> 9637 [31.0000 31.0000 31.0000 31.0000 ] 9638 </step1_nonBf1> 9639 <step1_downSample_w index="1" type="double" size="[1 13]"> 9640 [4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 ] 9641 </step1_downSample_w> 9642 <step1_downSample_h index="1" type="double" size="[1 13]"> 9643 [4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 ] 9644 </step1_downSample_h> 9645 <step1_downSample_meansize index="1" type="double" size="[1 13]"> 9646 [4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 4.0000 ] 9647 </step1_downSample_meansize> 9648 <step1_median_ratio index="1" type="double" size="[1 13]"> 9649 [0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 9650 </step1_median_ratio> 9651 <step1_median_size index="1" type="double" size="[1 13]"> 9652 [3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 ] 9653 </step1_median_size> 9654 <step1_median_IIR index="1" type="double" size="[1 13]"> 9655 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9656 </step1_median_IIR> 9657 <step1_bf_sigmaR index="1" type="double" size="[1 13]"> 9658 [8.5300 10.2400 10.2400 10.2400 12.8000 12.8000 21.3000 25.6000 25.6000 25.6000 25.6000 25.6000 25.6000 ] 9659 </step1_bf_sigmaR> 9660 <step1_bf_uvgain index="1" type="double" size="[1 13]"> 9661 [1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9662 </step1_bf_uvgain> 9663 <step1_bf_ratio index="1" type="double" size="[1 13]"> 9664 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9665 </step1_bf_ratio> 9666 <step1_bf_size index="1" type="double" size="[1 13]"> 9667 [5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 ] 9668 </step1_bf_size> 9669 <step1_bf_sigmaD index="1" type="double" size="[1 13]"> 9670 [16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 16.0000 ] 9671 </step1_bf_sigmaD> 9672 <step1_bf_isRowIIR index="1" type="double" size="[1 13]"> 9673 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9674 </step1_bf_isRowIIR> 9675 <step1_bf_isYcopy index="1" type="double" size="[1 13]"> 9676 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9677 </step1_bf_isYcopy> 9678 <step2_nonExt_block index="1" type="double" size="[1 4]"> 9679 [7.0000 7.0000 7.0000 7.0000 ] 9680 </step2_nonExt_block> 9681 <step2_nonMed index="1" type="double" size="[1 4]"> 9682 [1.0000 1.0000 1.0000 1.0000 ] 9683 </step2_nonMed> 9684 <step2_nonBf index="1" type="double" size="[1 4]"> 9685 [3.0000 3.0000 3.0000 3.0000 ] 9686 </step2_nonBf> 9687 <step2_downSample_w index="1" type="double" size="[1 13]"> 9688 [32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 ] 9689 </step2_downSample_w> 9690 <step2_downSample_h index="1" type="double" size="[1 13]"> 9691 [32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 ] 9692 </step2_downSample_h> 9693 <step2_downSample_meansize index="1" type="double" size="[1 13]"> 9694 [8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 ] 9695 </step2_downSample_meansize> 9696 <step2_median_ratio index="1" type="double" size="[1 13]"> 9697 [0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 ] 9698 </step2_median_ratio> 9699 <step2_median_size index="1" type="double" size="[1 13]"> 9700 [3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 ] 9701 </step2_median_size> 9702 <step2_median_IIR index="1" type="double" size="[1 13]"> 9703 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9704 </step2_median_IIR> 9705 <step2_bf_sigmaR index="1" type="double" size="[1 13]"> 9706 [5.1200 6.4000 8.5300 10.2400 10.2400 12.8000 12.8000 12.8000 17.0600 17.0600 17.0600 17.0600 17.0600 ] 9707 </step2_bf_sigmaR> 9708 <step2_bf_uvgain index="1" type="double" size="[1 13]"> 9709 [2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 ] 9710 </step2_bf_uvgain> 9711 <step2_bf_ratio index="1" type="double" size="[1 13]"> 9712 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9713 </step2_bf_ratio> 9714 <step2_bf_size index="1" type="double" size="[1 13]"> 9715 [5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 ] 9716 </step2_bf_size> 9717 <step2_bf_sigmaD index="1" type="double" size="[1 13]"> 9718 [128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 128.0000 ] 9719 </step2_bf_sigmaD> 9720 <step2_bf_isRowIIR index="1" type="double" size="[1 13]"> 9721 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9722 </step2_bf_isRowIIR> 9723 <step2_bf_isYcopy index="1" type="double" size="[1 13]"> 9724 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9725 </step2_bf_isYcopy> 9726 <step3_nonBf3 index="1" type="double" size="[1 4]"> 9727 [32.0000 32.0000 32.0000 32.0000 ] 9728 </step3_nonBf3> 9729 <step3_bf_sigmaR index="1" type="double" size="[1 13]"> 9730 [3.4130 4.2670 5.6890 7.1100 8.5300 8.5300 10.2400 10.2400 10.2400 10.2400 10.2400 10.2400 10.2400 ] 9731 </step3_bf_sigmaR> 9732 <step3_bf_uvgain index="1" type="double" size="[1 13]"> 9733 [4.0000 4.0000 4.0000 3.0000 3.0000 3.0000 3.0000 2.5000 2.0000 2.0000 2.0000 2.0000 2.0000 ] 9734 </step3_bf_uvgain> 9735 <step3_bf_ratio index="1" type="double" size="[1 13]"> 9736 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9737 </step3_bf_ratio> 9738 <step3_bf_size index="1" type="double" size="[1 13]"> 9739 [3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 ] 9740 </step3_bf_size> 9741 <step3_bf_sigmaD index="1" type="double" size="[1 13]"> 9742 [8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 ] 9743 </step3_bf_sigmaD> 9744 <step3_bf_isRowIIR index="1" type="double" size="[1 13]"> 9745 [0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ] 9746 </step3_bf_isRowIIR> 9747 <step3_bf_isYcopy index="1" type="double" size="[1 13]"> 9748 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9749 </step3_bf_isYcopy> 9750 <kernel_3x3 index="1" type="double" size="[1 3]"> 9751 [1.0000 0.8825 0.7788 ] 9752 </kernel_3x3> 9753 <kernel_5x5 index="1" type="double" size="[1 5]"> 9754 [1.0000 0.8825 0.7788 0.6065 0.3679 ] 9755 </kernel_5x5> 9756 <kernel_9x9 index="1" type="double" size="[1 8]"> 9757 [1.0000 0.8825 0.7788 0.6065 0.3679 0.1969 0.1353 0.0439 ] 9758 </kernel_9x9> 9759 <kernel_9x9_num index="1" type="double" size="[1 1]"> 9760 [0.0000 ] 9761 </kernel_9x9_num> 9762 <sigma_adj_luma index="1" type="double" size="[1 9]"> 9763 [0.0000 32.0000 64.0000 96.0000 128.0000 160.0000 192.0000 224.0000 256.0000 ] 9764 </sigma_adj_luma> 9765 <sigma_adj_ratio index="1" type="double" size="[1 9]"> 9766 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 9767 </sigma_adj_ratio> 9768 <threshold_adj_luma index="1" type="double" size="[1 9]"> 9769 [0.0000 32.0000 64.0000 96.0000 128.0000 160.0000 192.0000 224.0000 256.0000 ] 9770 </threshold_adj_luma> 9771 <threshold_adj_thre index="1" type="double" size="[1 9]"> 9772 [10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 10.0000 ] 9773 </threshold_adj_thre> 9774 </cell> 9775 </Setting> 9776 </cell> 9777 </Mode> 9778 </UVNR> 9779 <GAMMA index="1" type="struct" size="[1 1]"> 9780 <gamma_en index="1" type="char" size="[1 1]"> 9781 [1 ] 9782 </gamma_en> 9783 <gamma_out_segnum index="1" type="char" size="[1 1]"> 9784 [0 ] 9785 </gamma_out_segnum> 9786 <gamma_out_offset index="1" type="char" size="[1 1]"> 9787 [0 ] 9788 </gamma_out_offset> 9789 <curve_normal index="1" type="double" size="[1 45]"> 9790 [0.0000 6.0000 11.0000 17.0000 22.0000 28.0000 33.0000 39.0000 44.0000 55.0000 66.0000 77.0000 88.0000 109.0000 130.0000 150.0000 170.0000 210.0000 248.0000 286.0000 323.0000 393.0000 460.0000 525.0000 586.0000 702.0000 809.0000 909.0000 1002.0000 1172.0000 1325.0000 1462.0000 1588.0000 1811.0000 2004.0000 2174.0000 2327.0000 2590.0000 2813.0000 3006.0000 3177.0000 3467.0000 3708.0000 3915.0000 4095.0000 ] 9791 </curve_normal> 9792 <curve_hdr index="1" type="double" size="[1 45]"> 9793 [0.0000 6.0000 11.0000 17.0000 22.0000 28.0000 33.0000 39.0000 44.0000 55.0000 66.0000 77.0000 88.0000 109.0000 130.0000 150.0000 170.0000 210.0000 248.0000 286.0000 323.0000 393.0000 460.0000 525.0000 586.0000 702.0000 809.0000 909.0000 1002.0000 1172.0000 1325.0000 1462.0000 1588.0000 1811.0000 2004.0000 2174.0000 2327.0000 2590.0000 2813.0000 3006.0000 3177.0000 3467.0000 3708.0000 3915.0000 4095.0000 ] 9794 </curve_hdr> 9795 <curve_night index="1" type="double" size="[1 45]"> 9796 [0.0000 6.0000 11.0000 17.0000 22.0000 28.0000 33.0000 39.0000 44.0000 55.0000 66.0000 77.0000 88.0000 109.0000 130.0000 150.0000 170.0000 210.0000 248.0000 286.0000 323.0000 393.0000 460.0000 525.0000 586.0000 702.0000 809.0000 909.0000 1002.0000 1172.0000 1325.0000 1462.0000 1588.0000 1811.0000 2004.0000 2174.0000 2327.0000 2590.0000 2813.0000 3006.0000 3177.0000 3467.0000 3708.0000 3915.0000 4095.0000 ] 9797 </curve_night> 9798 </GAMMA> 9799 <DEGAMMA index="1" type="struct" size="[1 1]"> 9800 <Degamma_en index="1" type="char" size="[1 1]"> 9801 [0] 9802 </Degamma_en> 9803 <Degamma_mode index="1" type="cell" size="[1 3]"> 9804 <cell index="1" type="struct" size="[1 1]"> 9805 <Name index="1" type="char" size="[1 6]"> 9806 normal 9807 </Name> 9808 <Degamma_scene_en index="1" type="char" size="[1 1]"> 9809 [1 ] 9810 </Degamma_scene_en> 9811 <X_axis index="1" type="double" size="[1 17]"> 9812 [0 256 512 768 1024 1280 1536 1792 2048 2304 2560 2816 3072 3328 3584 3840 4096] 9813 </X_axis> 9814 <curve_R index="1" type="double" size="[1 17]"> 9815 [0.0000 256.0000 512.0000 768.0000 1024.0000 1280.0000 1536.0000 1792.0000 9816 2048.0000 2304.0000 2560.0000 2816.0000 3072.0000 3328.0000 3584.0000 3840.0000 4095.0000] 9817 </curve_R> 9818 <curve_G index="1" type="double" size="[1 17]"> 9819 [0.0000 256.0000 512.0000 768.0000 1024.0000 1280.0000 1536.0000 1792.0000 9820 2048.0000 2304.0000 2560.0000 2816.0000 3072.0000 3328.0000 3584.0000 3840.0000 4095.0000] 9821 </curve_G> 9822 <curve_B index="1" type="double" size="[1 17]"> 9823 [0.0000 256.0000 512.0000 768.0000 1024.0000 1280.0000 1536.0000 1792.0000 9824 2048.0000 2304.0000 2560.0000 2816.0000 3072.0000 3328.0000 3584.0000 3840.0000 4095.0000] 9825 </curve_B> 9826 </cell> 9827 <cell index="1" type="struct" size="[1 1]"> 9828 <Name index="1" type="char" size="[1 6]"> 9829 HDR 9830 </Name> 9831 <Degamma_scene_en index="1" type="char" size="[1 1]"> 9832 [1 ] 9833 </Degamma_scene_en> 9834 <X_axis index="1" type="double" size="[1 17]"> 9835 [0 256 512 768 1024 1280 1536 1792 2048 2304 2560 2816 3072 3328 3584 3840 4096] 9836 </X_axis> 9837 <curve_R index="1" type="double" size="[1 17]"> 9838 [0.0000 256.0000 512.0000 768.0000 1024.0000 1280.0000 1536.0000 1792.0000 9839 2048.0000 2304.0000 2560.0000 2816.0000 3072.0000 3328.0000 3584.0000 3840.0000 4095.0000] 9840 </curve_R> 9841 <curve_G index="1" type="double" size="[1 17]"> 9842 [0.0000 256.0000 512.0000 768.0000 1024.0000 1280.0000 1536.0000 1792.0000 9843 2048.0000 2304.0000 2560.0000 2816.0000 3072.0000 3328.0000 3584.0000 3840.0000 4095.0000] 9844 </curve_G> 9845 <curve_B index="1" type="double" size="[1 17]"> 9846 [0.0000 256.0000 512.0000 768.0000 1024.0000 1280.0000 1536.0000 1792.0000 9847 2048.0000 2304.0000 2560.0000 2816.0000 3072.0000 3328.0000 3584.0000 3840.0000 4095.0000] 9848 </curve_B> 9849 </cell> 9850 <cell index="1" type="struct" size="[1 1]"> 9851 <Name index="1" type="char" size="[1 6]"> 9852 night 9853 </Name> 9854 <Degamma_scene_en index="1" type="char" size="[1 1]"> 9855 [1 ] 9856 </Degamma_scene_en> 9857 <X_axis index="1" type="double" size="[1 17]"> 9858 [0 256 512 768 1024 1280 1536 1792 2048 2304 2560 2816 3072 3328 3584 3840 4096] 9859 </X_axis> 9860 <curve_R index="1" type="double" size="[1 17]"> 9861 [0.0000 256.0000 512.0000 768.0000 1024.0000 1280.0000 1536.0000 1792.0000 9862 2048.0000 2304.0000 2560.0000 2816.0000 3072.0000 3328.0000 3584.0000 3840.0000 4095.0000] 9863 </curve_R> 9864 <curve_G index="1" type="double" size="[1 17]"> 9865 [0.0000 256.0000 512.0000 768.0000 1024.0000 1280.0000 1536.0000 1792.0000 9866 2048.0000 2304.0000 2560.0000 2816.0000 3072.0000 3328.0000 3584.0000 3840.0000 4095.0000] 9867 </curve_G> 9868 <curve_B index="1" type="double" size="[1 17]"> 9869 [0.0000 256.0000 512.0000 768.0000 1024.0000 1280.0000 1536.0000 1792.0000 9870 2048.0000 2304.0000 2560.0000 2816.0000 3072.0000 3328.0000 3584.0000 3840.0000 4095.0000] 9871 </curve_B> 9872 </cell> 9873 </Degamma_mode> 9874 </DEGAMMA> 9875 <YNR index="1" type="struct" size="[1 1]"> 9876 <Enable index="1" type="double" size="[1 1]"> 9877 [1 ] 9878 </Enable> 9879 <Version index="1" type="char" size="[1 2]"> 9880 V1 9881 </Version> 9882 <Mode index="1" type="cell" size="[1 3]"> 9883 <cell index="1" type="struct" size="[1 1]"> 9884 <Name index="1" type="char" size="[1 8]"> 9885 normal 9886 </Name> 9887 <Setting index="1" type="cell" size="[1 2]"> 9888 <cell index="1" type="struct" size="[1 1]"> 9889 <SNR_Mode index="1" type="char" size="[1 4]"> 9890 LSNR 9891 </SNR_Mode> 9892 <Sensor_Mode index="1" type="char" size="[1 3]"> 9893 lcg 9894 </Sensor_Mode> 9895 <YNR_ISO index="1" type="cell" size="[1 13]"> 9896 <cell index="1" type="struct" size="[1 1]"> 9897 <iso index="1" type="double" size="[1 1]"> 9898 [50.0000 ] 9899 </iso> 9900 <sigma_curve index="1" type="double" size="[1 5]"> 9901 [-2.22683837604954e-013 2.70089733255463e-009 -1.19360265610630e-005 1.69475563290717e-002 2.21533631975799e+001 ] 9902 </sigma_curve> 9903 <ynr_lci index="1" type="double" size="[1 4]"> 9904 [0.9636 0.7324 0.4539 0.2570 ] 9905 </ynr_lci> 9906 <ynr_lhci index="1" type="double" size="[1 4]"> 9907 [0.7906 1.0826 0.8486 0.6018 ] 9908 </ynr_lhci> 9909 <ynr_hlci index="1" type="double" size="[1 4]"> 9910 [0.7938 1.0093 0.8587 0.5390 ] 9911 </ynr_hlci> 9912 <ynr_hhci index="1" type="double" size="[1 4]"> 9913 [0.7093 1.4092 1.4153 0.9588 ] 9914 </ynr_hhci> 9915 <lo_lumaPoint index="1" type="double" size="[1 6]"> 9916 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 9917 </lo_lumaPoint> 9918 <lo_lumaRatio index="1" type="double" size="[1 6]"> 9919 [1.2000 1.2000 1.2500 1.0000 1.0000 1.0000 ] 9920 </lo_lumaRatio> 9921 <lo_directionStrength index="1" type="double" size="[1 1]"> 9922 [0.5000 ] 9923 </lo_directionStrength> 9924 <lo_bfScale index="1" type="double" size="[1 4]"> 9925 [0.50000 0.50000 0.50000 0.50000 ] 9926 </lo_bfScale> 9927 <imerge_ratio index="1" type="double" size="[1 1]"> 9928 [0.4000 ] 9929 </imerge_ratio> 9930 <imerge_bound index="1" type="double" size="[1 1]"> 9931 [1.2500 ] 9932 </imerge_bound> 9933 <denoise_weight index="1" type="double" size="[1 4]"> 9934 [0.3000 0.3000 0.5000 0.7000 ] 9935 </denoise_weight> 9936 <hi_lumaPoint index="1" type="double" size="[1 6]"> 9937 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 9938 </hi_lumaPoint> 9939 <hi_lumaRatio index="1" type="double" size="[1 6]"> 9940 [1.2500 1.2500 1.2500 1.0000 1.0000 1.0000 ] 9941 </hi_lumaRatio> 9942 <hi_bfScale index="1" type="double" size="[1 4]"> 9943 [0.50000 0.50000 0.50000 0.50000 ] 9944 </hi_bfScale> 9945 <hwith_d index="1" type="double" size="[1 4]"> 9946 [2.0000 2.0000 1.2000 1.2000 ] 9947 </hwith_d> 9948 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 9949 [2.0000 ] 9950 </hi_denoiseStrength> 9951 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 9952 [0.2000 ] 9953 </hi_detailMinAdjDnW> 9954 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 9955 [0.7500 0.7000 0.6000 0.5000 ] 9956 </hi_denoiseWeight> 9957 <y_luma_point index="1" type="double" size="[1 6]"> 9958 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 9959 </y_luma_point> 9960 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 9961 [1.0000 0.6700 0.6700 0.6700 0.6700 0.6700 ] 9962 </hgrad_y_level1> 9963 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 9964 [1.0000 0.6700 0.6700 0.6700 0.6700 0.6700 ] 9965 </hgrad_y_level2> 9966 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 9967 [1.0000 0.5700 0.5700 0.5700 0.5700 0.5700 ] 9968 </hgrad_y_level3> 9969 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 9970 [1.0000 0.5000 0.5000 0.4000 0.3000 0.2000 ] 9971 </hgrad_y_level4> 9972 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 9973 [0.1100 0.1100 0.1000 0.1000 ] 9974 </hi_soft_thresh_scale> 9975 </cell> 9976 <cell index="2" type="struct" size="[1 1]"> 9977 <iso index="1" type="double" size="[1 1]"> 9978 [100.0000 ] 9979 </iso> 9980 <sigma_curve index="1" type="double" size="[1 5]"> 9981 [-6.12954260408810e-013 6.56213771001716e-009 -2.56271619105131e-005 3.53336500457644e-002 2.51344679667418e+001 ] 9982 </sigma_curve> 9983 <ynr_lci index="1" type="double" size="[1 4]"> 9984 [0.9686 0.7317 0.4368 0.2440 ] 9985 </ynr_lci> 9986 <ynr_lhci index="1" type="double" size="[1 4]"> 9987 [0.7923 1.0678 0.8134 0.5675 ] 9988 </ynr_lhci> 9989 <ynr_hlci index="1" type="double" size="[1 4]"> 9990 [0.7945 0.9887 0.8222 0.5071 ] 9991 </ynr_hlci> 9992 <ynr_hhci index="1" type="double" size="[1 4]"> 9993 [0.6917 1.3976 1.3816 0.8942 ] 9994 </ynr_hhci> 9995 <lo_lumaPoint index="1" type="double" size="[1 6]"> 9996 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 9997 </lo_lumaPoint> 9998 <lo_lumaRatio index="1" type="double" size="[1 6]"> 9999 [1.3000 1.2000 1.3000 1.0000 1.0000 1.0000 ] 10000 </lo_lumaRatio> 10001 <lo_directionStrength index="1" type="double" size="[1 1]"> 10002 [0.5000 ] 10003 </lo_directionStrength> 10004 <lo_bfScale index="1" type="double" size="[1 4]"> 10005 [1.0000 1.0000 1.0000 1.0000 ] 10006 </lo_bfScale> 10007 <imerge_ratio index="1" type="double" size="[1 1]"> 10008 [0.4000 ] 10009 </imerge_ratio> 10010 <imerge_bound index="1" type="double" size="[1 1]"> 10011 [1.2500 ] 10012 </imerge_bound> 10013 <denoise_weight index="1" type="double" size="[1 4]"> 10014 [0.3000 0.3000 0.5000 0.8000 ] 10015 </denoise_weight> 10016 <hi_lumaPoint index="1" type="double" size="[1 6]"> 10017 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 10018 </hi_lumaPoint> 10019 <hi_lumaRatio index="1" type="double" size="[1 6]"> 10020 [1.2500 1.3000 1.2500 1.0000 1.0000 1.0000 ] 10021 </hi_lumaRatio> 10022 <hi_bfScale index="1" type="double" size="[1 4]"> 10023 [1.2000 1.2000 1.0000 1.0000 ] 10024 </hi_bfScale> 10025 <hwith_d index="1" type="double" size="[1 4]"> 10026 [2.0000 2.0000 1.2000 1.2000 ] 10027 </hwith_d> 10028 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 10029 [1.2000 ] 10030 </hi_denoiseStrength> 10031 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 10032 [0.2000 ] 10033 </hi_detailMinAdjDnW> 10034 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 10035 [0.7500 0.7500 0.6000 0.3000 ] 10036 </hi_denoiseWeight> 10037 <y_luma_point index="1" type="double" size="[1 6]"> 10038 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 10039 </y_luma_point> 10040 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 10041 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 10042 </hgrad_y_level1> 10043 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 10044 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 10045 </hgrad_y_level2> 10046 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 10047 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 10048 </hgrad_y_level3> 10049 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 10050 [1.0000 0.5000 0.5000 0.4000 0.3000 0.2000 ] 10051 </hgrad_y_level4> 10052 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 10053 [0.1100 0.1100 0.1000 0.1000 ] 10054 </hi_soft_thresh_scale> 10055 </cell> 10056 <cell index="3" type="struct" size="[1 1]"> 10057 <iso index="1" type="double" size="[1 1]"> 10058 [200.0000 ] 10059 </iso> 10060 <sigma_curve index="1" type="double" size="[1 5]"> 10061 [-4.88118020793126e-013 5.17135216910485e-009 -2.12964081629935e-005 2.87181383407642e-002 4.47372008265083e+001 ] 10062 </sigma_curve> 10063 <ynr_lci index="1" type="double" size="[1 4]"> 10064 [0.9712 0.7271 0.4331 0.2318 ] 10065 </ynr_lci> 10066 <ynr_lhci index="1" type="double" size="[1 4]"> 10067 [0.7952 1.0518 0.8044 0.5177 ] 10068 </ynr_lhci> 10069 <ynr_hlci index="1" type="double" size="[1 4]"> 10070 [0.7902 0.9882 0.7978 0.4915 ] 10071 </ynr_hlci> 10072 <ynr_hhci index="1" type="double" size="[1 4]"> 10073 [0.6750 1.4024 1.3611 0.8802 ] 10074 </ynr_hhci> 10075 <lo_lumaPoint index="1" type="double" size="[1 6]"> 10076 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 10077 </lo_lumaPoint> 10078 <lo_lumaRatio index="1" type="double" size="[1 6]"> 10079 [1.3000 1.2000 1.5000 1.2000 1.0000 1.0000 ] 10080 </lo_lumaRatio> 10081 <lo_directionStrength index="1" type="double" size="[1 1]"> 10082 [0.5000 ] 10083 </lo_directionStrength> 10084 <lo_bfScale index="1" type="double" size="[1 4]"> 10085 [0.3000 0.6000 1.0000 1.0000 ] 10086 </lo_bfScale> 10087 <imerge_ratio index="1" type="double" size="[1 1]"> 10088 [0.3000 ] 10089 </imerge_ratio> 10090 <imerge_bound index="1" type="double" size="[1 1]"> 10091 [1.2500 ] 10092 </imerge_bound> 10093 <denoise_weight index="1" type="double" size="[1 4]"> 10094 [0.3000 0.4000 0.6000 0.6000 ] 10095 </denoise_weight> 10096 <hi_lumaPoint index="1" type="double" size="[1 6]"> 10097 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 10098 </hi_lumaPoint> 10099 <hi_lumaRatio index="1" type="double" size="[1 6]"> 10100 [1.1000 1.1000 1.5000 1.0000 1.0000 1.0000 ] 10101 </hi_lumaRatio> 10102 <hi_bfScale index="1" type="double" size="[1 4]"> 10103 [1.1000 1.0000 1.0000 1.0000 ] 10104 </hi_bfScale> 10105 <hwith_d index="1" type="double" size="[1 4]"> 10106 [4.0000 4.0000 2.0000 1.2000 ] 10107 </hwith_d> 10108 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 10109 [1.3000 ] 10110 </hi_denoiseStrength> 10111 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 10112 [0.2000 ] 10113 </hi_detailMinAdjDnW> 10114 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 10115 [0.7000 0.7000 0.6000 0.3000 ] 10116 </hi_denoiseWeight> 10117 <y_luma_point index="1" type="double" size="[1 6]"> 10118 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 10119 </y_luma_point> 10120 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 10121 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 10122 </hgrad_y_level1> 10123 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 10124 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 10125 </hgrad_y_level2> 10126 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 10127 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 10128 </hgrad_y_level3> 10129 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 10130 [1.0000 0.5000 0.5000 0.4000 0.3000 0.2000 ] 10131 </hgrad_y_level4> 10132 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 10133 [0.1200 0.1200 0.1000 0.1000 ] 10134 </hi_soft_thresh_scale> 10135 </cell> 10136 <cell index="4" type="struct" size="[1 1]"> 10137 <iso index="1" type="double" size="[1 1]"> 10138 [400.0000 ] 10139 </iso> 10140 <sigma_curve index="1" type="double" size="[1 5]"> 10141 [-1.48119726941212e-012 1.56289236737456e-008 -5.98269836499521e-005 8.25287140888520e-002 4.27598482026588e+001 ] 10142 </sigma_curve> 10143 <ynr_lci index="1" type="double" size="[1 4]"> 10144 [0.9824 0.7376 0.4461 0.2333 ] 10145 </ynr_lci> 10146 <ynr_lhci index="1" type="double" size="[1 4]"> 10147 [0.7832 1.0576 0.8094 0.4839 ] 10148 </ynr_lhci> 10149 <ynr_hlci index="1" type="double" size="[1 4]"> 10150 [0.7856 0.9876 0.8081 0.4706 ] 10151 </ynr_hlci> 10152 <ynr_hhci index="1" type="double" size="[1 4]"> 10153 [0.6681 1.3952 1.3472 0.8614 ] 10154 </ynr_hhci> 10155 <lo_lumaPoint index="1" type="double" size="[1 6]"> 10156 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 10157 </lo_lumaPoint> 10158 <lo_lumaRatio index="1" type="double" size="[1 6]"> 10159 [1.3000 1.2000 1.5000 1.0000 1.0000 1.0000 ] 10160 </lo_lumaRatio> 10161 <lo_directionStrength index="1" type="double" size="[1 1]"> 10162 [0.5000 ] 10163 </lo_directionStrength> 10164 <lo_bfScale index="1" type="double" size="[1 4]"> 10165 [0.4000 0.7000 1.0000 1.0000 ] 10166 </lo_bfScale> 10167 <imerge_ratio index="1" type="double" size="[1 1]"> 10168 [0.2500 ] 10169 </imerge_ratio> 10170 <imerge_bound index="1" type="double" size="[1 1]"> 10171 [1.2500 ] 10172 </imerge_bound> 10173 <denoise_weight index="1" type="double" size="[1 4]"> 10174 [0.3500 0.4000 0.6000 0.6000 ] 10175 </denoise_weight> 10176 <hi_lumaPoint index="1" type="double" size="[1 6]"> 10177 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 10178 </hi_lumaPoint> 10179 <hi_lumaRatio index="1" type="double" size="[1 6]"> 10180 [1.2000 1.2000 1.5000 1.5000 1.0000 1.0000 ] 10181 </hi_lumaRatio> 10182 <hi_bfScale index="1" type="double" size="[1 4]"> 10183 [1.5000 1.5000 1.5000 1.5000 ] 10184 </hi_bfScale> 10185 <hwith_d index="1" type="double" size="[1 4]"> 10186 [6.0000 6.0000 4.0000 2.0000 ] 10187 </hwith_d> 10188 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 10189 [1.5000 ] 10190 </hi_denoiseStrength> 10191 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 10192 [0.2000 ] 10193 </hi_detailMinAdjDnW> 10194 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 10195 [0.8000 0.9000 1.0000 1.0000 ] 10196 </hi_denoiseWeight> 10197 <y_luma_point index="1" type="double" size="[1 6]"> 10198 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 10199 </y_luma_point> 10200 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 10201 [1.0000 0.5000 0.5000 0.5000 0.5000 0.3000 ] 10202 </hgrad_y_level1> 10203 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 10204 [1.0000 0.5000 0.5000 0.5000 0.5000 0.3000 ] 10205 </hgrad_y_level2> 10206 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 10207 [1.0000 0.5100 0.5100 0.5100 0.5100 0.3000 ] 10208 </hgrad_y_level3> 10209 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 10210 [1.0000 0.5000 0.5000 0.4000 0.3000 0.2000 ] 10211 </hgrad_y_level4> 10212 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 10213 [0.1300 0.1300 0.1000 0.1000 ] 10214 </hi_soft_thresh_scale> 10215 </cell> 10216 <cell index="5" type="struct" size="[1 1]"> 10217 <iso index="1" type="double" size="[1 1]"> 10218 [800.0000 ] 10219 </iso> 10220 <sigma_curve index="1" type="double" size="[1 5]"> 10221 [-1.63594828480084e-012 1.75614677431381e-008 -6.92401591106118e-005 9.58142896234051e-002 7.18496259606400e+001 ] 10222 </sigma_curve> 10223 <ynr_lci index="1" type="double" size="[1 4]"> 10224 [0.9781 0.7313 0.4366 0.2350 ] 10225 </ynr_lci> 10226 <ynr_lhci index="1" type="double" size="[1 4]"> 10227 [0.7932 1.0457 0.7904 0.4573 ] 10228 </ynr_lhci> 10229 <ynr_hlci index="1" type="double" size="[1 4]"> 10230 [0.7924 0.9861 0.7910 0.4630 ] 10231 </ynr_hlci> 10232 <ynr_hhci index="1" type="double" size="[1 4]"> 10233 [0.6668 1.3875 1.3597 0.8841 ] 10234 </ynr_hhci> 10235 <lo_lumaPoint index="1" type="double" size="[1 6]"> 10236 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 10237 </lo_lumaPoint> 10238 <lo_lumaRatio index="1" type="double" size="[1 6]"> 10239 [1.0000 1.0000 1.5000 1.0000 1.0000 1.0000 ] 10240 </lo_lumaRatio> 10241 <lo_directionStrength index="1" type="double" size="[1 1]"> 10242 [0.3000 ] 10243 </lo_directionStrength> 10244 <lo_bfScale index="1" type="double" size="[1 4]"> 10245 [0.3000 0.5000 1.0000 1.0000 ] 10246 </lo_bfScale> 10247 <imerge_ratio index="1" type="double" size="[1 1]"> 10248 [0.2000 ] 10249 </imerge_ratio> 10250 <imerge_bound index="1" type="double" size="[1 1]"> 10251 [1.2500 ] 10252 </imerge_bound> 10253 <denoise_weight index="1" type="double" size="[1 4]"> 10254 [0.4000 0.5000 1.0000 1.0000 ] 10255 </denoise_weight> 10256 <hi_lumaPoint index="1" type="double" size="[1 6]"> 10257 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 10258 </hi_lumaPoint> 10259 <hi_lumaRatio index="1" type="double" size="[1 6]"> 10260 [1.1000 1.2000 1.5000 1.5000 1.0000 1.0000 ] 10261 </hi_lumaRatio> 10262 <hi_bfScale index="1" type="double" size="[1 4]"> 10263 [1.2000 1.3000 1.5000 1.5000 ] 10264 </hi_bfScale> 10265 <hwith_d index="1" type="double" size="[1 4]"> 10266 [6.0000 6.0000 4.0000 2.0000 ] 10267 </hwith_d> 10268 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 10269 [1.3000 ] 10270 </hi_denoiseStrength> 10271 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 10272 [0.2000 ] 10273 </hi_detailMinAdjDnW> 10274 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 10275 [1.1000 1.2000 1.3000 1.3000 ] 10276 </hi_denoiseWeight> 10277 <y_luma_point index="1" type="double" size="[1 6]"> 10278 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 10279 </y_luma_point> 10280 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 10281 [1.0000 0.5000 0.4000 0.3500 0.3000 0.2000 ] 10282 </hgrad_y_level1> 10283 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 10284 [1.0000 0.5000 0.4000 0.3500 0.3000 0.2000 ] 10285 </hgrad_y_level2> 10286 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 10287 [1.0000 0.5000 0.4000 0.3500 0.3000 0.2000 ] 10288 </hgrad_y_level3> 10289 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 10290 [1.0000 0.5000 0.4000 0.3500 0.3000 0.2000 ] 10291 </hgrad_y_level4> 10292 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 10293 [0.1300 0.1300 0.1000 0.1000 ] 10294 </hi_soft_thresh_scale> 10295 </cell> 10296 <cell index="6" type="struct" size="[1 1]"> 10297 <iso index="1" type="double" size="[1 1]"> 10298 [1600.0000 ] 10299 </iso> 10300 <sigma_curve index="1" type="double" size="[1 5]"> 10301 [-3.54429850049432e-012 3.60287476727038e-008 -1.31984529909812e-004 1.75061075984246e-001 8.74586517163552e+001 ] 10302 </sigma_curve> 10303 <ynr_lci index="1" type="double" size="[1 4]"> 10304 [0.9678 0.7111 0.4194 0.2277 ] 10305 </ynr_lci> 10306 <ynr_lhci index="1" type="double" size="[1 4]"> 10307 [0.8166 1.0234 0.7747 0.4554 ] 10308 </ynr_lhci> 10309 <ynr_hlci index="1" type="double" size="[1 4]"> 10310 [0.8149 0.9866 0.7613 0.4590 ] 10311 </ynr_hlci> 10312 <ynr_hhci index="1" type="double" size="[1 4]"> 10313 [0.6683 1.3823 1.3066 0.8024 ] 10314 </ynr_hhci> 10315 <lo_lumaPoint index="1" type="double" size="[1 6]"> 10316 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 10317 </lo_lumaPoint> 10318 <lo_lumaRatio index="1" type="double" size="[1 6]"> 10319 [1.0000 1.0000 1.5000 1.0000 1.0000 1.0000 ] 10320 </lo_lumaRatio> 10321 <lo_directionStrength index="1" type="double" size="[1 1]"> 10322 [0.2000 ] 10323 </lo_directionStrength> 10324 <lo_bfScale index="1" type="double" size="[1 4]"> 10325 [0.500 0.7000 2.0000 1.0000 ] 10326 </lo_bfScale> 10327 <imerge_ratio index="1" type="double" size="[1 1]"> 10328 [0.1500 ] 10329 </imerge_ratio> 10330 <imerge_bound index="1" type="double" size="[1 1]"> 10331 [1.2500 ] 10332 </imerge_bound> 10333 <denoise_weight index="1" type="double" size="[1 4]"> 10334 [0.8000 0.8500 0.8500 0.9000 ] 10335 </denoise_weight> 10336 <hi_lumaPoint index="1" type="double" size="[1 6]"> 10337 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 10338 </hi_lumaPoint> 10339 <hi_lumaRatio index="1" type="double" size="[1 6]"> 10340 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 10341 </hi_lumaRatio> 10342 <hi_bfScale index="1" type="double" size="[1 4]"> 10343 [1.2000 1.5000 1.5000 0.9600 ] 10344 </hi_bfScale> 10345 <hwith_d index="1" type="double" size="[1 4]"> 10346 [6.0000 6.0000 4.0000 2.0000 ] 10347 </hwith_d> 10348 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 10349 [1.8000 ] 10350 </hi_denoiseStrength> 10351 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 10352 [0.2000 ] 10353 </hi_detailMinAdjDnW> 10354 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 10355 [0.8000 0.8500 0.8500 0.8000 ] 10356 </hi_denoiseWeight> 10357 <y_luma_point index="1" type="double" size="[1 6]"> 10358 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 10359 </y_luma_point> 10360 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 10361 [1.2000 1.0000 1.0000 1.0000 0.8000 0.7000 ] 10362 </hgrad_y_level1> 10363 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 10364 [1.2400 1.2400 1.0000 1.0000 0.7600 0.6300 ] 10365 </hgrad_y_level2> 10366 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 10367 [1.9000 1.6000 1.3000 1.0000 0.8000 0.8000 ] 10368 </hgrad_y_level3> 10369 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 10370 [1.4300 1.0000 0.5600 0.5600 0.5600 0.5600 ] 10371 </hgrad_y_level4> 10372 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 10373 [0.1300 0.3000 0.3000 0.1000 ] 10374 </hi_soft_thresh_scale> 10375 </cell> 10376 <cell index="7" type="struct" size="[1 1]"> 10377 <iso index="1" type="double" size="[1 1]"> 10378 [3200.0000 ] 10379 </iso> 10380 <sigma_curve index="1" type="double" size="[1 5]"> 10381 [-3.50549752881191e-012 3.76368052960353e-008 -1.51293815921383e-004 2.17945943756604e-001 1.33106751935557e+002 ] 10382 </sigma_curve> 10383 <ynr_lci index="1" type="double" size="[1 4]"> 10384 [0.9672 0.7349 0.4412 0.2149 ] 10385 </ynr_lci> 10386 <ynr_lhci index="1" type="double" size="[1 4]"> 10387 [0.8123 1.0416 0.7791 0.4971 ] 10388 </ynr_lhci> 10389 <ynr_hlci index="1" type="double" size="[1 4]"> 10390 [0.7957 0.9784 0.7845 0.4539 ] 10391 </ynr_hlci> 10392 <ynr_hhci index="1" type="double" size="[1 4]"> 10393 [0.6649 1.3670 1.3200 0.8774 ] 10394 </ynr_hhci> 10395 <lo_lumaPoint index="1" type="double" size="[1 6]"> 10396 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 10397 </lo_lumaPoint> 10398 <lo_lumaRatio index="1" type="double" size="[1 6]"> 10399 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 10400 </lo_lumaRatio> 10401 <lo_directionStrength index="1" type="double" size="[1 1]"> 10402 [0.2000 ] 10403 </lo_directionStrength> 10404 <lo_bfScale index="1" type="double" size="[1 4]"> 10405 [0.700 0.9000 2.2000 1.2000 ] 10406 </lo_bfScale> 10407 <imerge_ratio index="1" type="double" size="[1 1]"> 10408 [0.1500 ] 10409 </imerge_ratio> 10410 <imerge_bound index="1" type="double" size="[1 1]"> 10411 [1.2500 ] 10412 </imerge_bound> 10413 <denoise_weight index="1" type="double" size="[1 4]"> 10414 [0.9000 0.900 0.9000 0.9000 ] 10415 </denoise_weight> 10416 <hi_lumaPoint index="1" type="double" size="[1 6]"> 10417 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 10418 </hi_lumaPoint> 10419 <hi_lumaRatio index="1" type="double" size="[1 6]"> 10420 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 10421 </hi_lumaRatio> 10422 <hi_bfScale index="1" type="double" size="[1 4]"> 10423 [1.5000 1.7000 1.7000 1.200 ] 10424 </hi_bfScale> 10425 <hwith_d index="1" type="double" size="[1 4]"> 10426 [0.7500 0.7000 0.6600 0.3600 ] 10427 </hwith_d> 10428 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 10429 [2.0000 ] 10430 </hi_denoiseStrength> 10431 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 10432 [0.2000 ] 10433 </hi_detailMinAdjDnW> 10434 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 10435 [0.9000 0.9500 0.950 0.9000 ] 10436 </hi_denoiseWeight> 10437 <y_luma_point index="1" type="double" size="[1 6]"> 10438 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 10439 </y_luma_point> 10440 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 10441 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10442 </hgrad_y_level1> 10443 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 10444 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10445 </hgrad_y_level2> 10446 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 10447 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10448 </hgrad_y_level3> 10449 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 10450 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10451 </hgrad_y_level4> 10452 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 10453 [0.1300 0.3000 0.3000 0.1000 ] 10454 </hi_soft_thresh_scale> 10455 </cell> 10456 <cell index="8" type="struct" size="[1 1]"> 10457 <iso index="1" type="double" size="[1 1]"> 10458 [6400.0000 ] 10459 </iso> 10460 <sigma_curve index="1" type="double" size="[1 5]"> 10461 [-1.17756545286079e-011 1.12670434028526e-007 -4.05537564186043e-004 5.71448012221026e-001 6.52947928690119e+001 ] 10462 </sigma_curve> 10463 <ynr_lci index="1" type="double" size="[1 4]"> 10464 [0.9994 0.7431 0.4539 0.2078 ] 10465 </ynr_lci> 10466 <ynr_lhci index="1" type="double" size="[1 4]"> 10467 [0.8036 1.0685 0.8190 0.4374 ] 10468 </ynr_lhci> 10469 <ynr_hlci index="1" type="double" size="[1 4]"> 10470 [0.7714 0.9690 0.7755 0.4423 ] 10471 </ynr_hlci> 10472 <ynr_hhci index="1" type="double" size="[1 4]"> 10473 [0.6623 1.3492 1.3111 0.6951 ] 10474 </ynr_hhci> 10475 <lo_lumaPoint index="1" type="double" size="[1 6]"> 10476 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 10477 </lo_lumaPoint> 10478 <lo_lumaRatio index="1" type="double" size="[1 6]"> 10479 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 10480 </lo_lumaRatio> 10481 <lo_directionStrength index="1" type="double" size="[1 1]"> 10482 [0.2000 ] 10483 </lo_directionStrength> 10484 <lo_bfScale index="1" type="double" size="[1 4]"> 10485 [0.700 0.9000 2.2000 1.2000 ] 10486 </lo_bfScale> 10487 <imerge_ratio index="1" type="double" size="[1 1]"> 10488 [0.1500 ] 10489 </imerge_ratio> 10490 <imerge_bound index="1" type="double" size="[1 1]"> 10491 [1.2500 ] 10492 </imerge_bound> 10493 <denoise_weight index="1" type="double" size="[1 4]"> 10494 [0.9000 0.9000 0.9000 0.9000 ] 10495 </denoise_weight> 10496 <hi_lumaPoint index="1" type="double" size="[1 6]"> 10497 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 10498 </hi_lumaPoint> 10499 <hi_lumaRatio index="1" type="double" size="[1 6]"> 10500 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 10501 </hi_lumaRatio> 10502 <hi_bfScale index="1" type="double" size="[1 4]"> 10503 [1.5000 1.7000 1.7000 1.2000 ] 10504 </hi_bfScale> 10505 <hwith_d index="1" type="double" size="[1 4]"> 10506 [0.7500 0.7000 0.6600 0.3600 ] 10507 </hwith_d> 10508 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 10509 [1.0000 ] 10510 </hi_denoiseStrength> 10511 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 10512 [0.2000 ] 10513 </hi_detailMinAdjDnW> 10514 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 10515 [0.9000 0.9500 0.9500 0.9000 ] 10516 </hi_denoiseWeight> 10517 <y_luma_point index="1" type="double" size="[1 6]"> 10518 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 10519 </y_luma_point> 10520 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 10521 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10522 </hgrad_y_level1> 10523 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 10524 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10525 </hgrad_y_level2> 10526 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 10527 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10528 </hgrad_y_level3> 10529 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 10530 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10531 </hgrad_y_level4> 10532 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 10533 [0.1300 0.3000 0.3000 0.1000 ] 10534 </hi_soft_thresh_scale> 10535 </cell> 10536 <cell index="9" type="struct" size="[1 1]"> 10537 <iso index="1" type="double" size="[1 1]"> 10538 [12800.0000 ] 10539 </iso> 10540 <sigma_curve index="1" type="double" size="[1 5]"> 10541 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 10542 </sigma_curve> 10543 <ynr_lci index="1" type="double" size="[1 4]"> 10544 [0.9362 0.6543 0.4559 0.4039 ] 10545 </ynr_lci> 10546 <ynr_lhci index="1" type="double" size="[1 4]"> 10547 [0.8559 0.9798 0.6914 0.5389 ] 10548 </ynr_lhci> 10549 <ynr_hlci index="1" type="double" size="[1 4]"> 10550 [0.8855 0.9817 0.7013 0.5513 ] 10551 </ynr_hlci> 10552 <ynr_hhci index="1" type="double" size="[1 4]"> 10553 [0.7069 1.4633 1.1028 0.7415 ] 10554 </ynr_hhci> 10555 <lo_lumaPoint index="1" type="double" size="[1 6]"> 10556 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 10557 </lo_lumaPoint> 10558 <lo_lumaRatio index="1" type="double" size="[1 6]"> 10559 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 10560 </lo_lumaRatio> 10561 <lo_directionStrength index="1" type="double" size="[1 1]"> 10562 [0.2000 ] 10563 </lo_directionStrength> 10564 <lo_bfScale index="1" type="double" size="[1 4]"> 10565 [1.0000 1.0000 3.0000 1.0000 ] 10566 </lo_bfScale> 10567 <imerge_ratio index="1" type="double" size="[1 1]"> 10568 [0.1500 ] 10569 </imerge_ratio> 10570 <imerge_bound index="1" type="double" size="[1 1]"> 10571 [1.2500 ] 10572 </imerge_bound> 10573 <denoise_weight index="1" type="double" size="[1 4]"> 10574 [0.3000 0.8500 0.3000 0.3000 ] 10575 </denoise_weight> 10576 <hi_lumaPoint index="1" type="double" size="[1 6]"> 10577 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 10578 </hi_lumaPoint> 10579 <hi_lumaRatio index="1" type="double" size="[1 6]"> 10580 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 10581 </hi_lumaRatio> 10582 <hi_bfScale index="1" type="double" size="[1 4]"> 10583 [1.2000 1.1000 0.8600 0.8600 ] 10584 </hi_bfScale> 10585 <hwith_d index="1" type="double" size="[1 4]"> 10586 [6.0000 6.0000 4.0000 2.0000 ] 10587 </hwith_d> 10588 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 10589 [1.2000 ] 10590 </hi_denoiseStrength> 10591 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 10592 [0.2000 ] 10593 </hi_detailMinAdjDnW> 10594 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 10595 [0.7500 0.7000 0.6600 0.3600 ] 10596 </hi_denoiseWeight> 10597 <y_luma_point index="1" type="double" size="[1 6]"> 10598 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 10599 </y_luma_point> 10600 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 10601 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10602 </hgrad_y_level1> 10603 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 10604 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10605 </hgrad_y_level2> 10606 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 10607 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10608 </hgrad_y_level3> 10609 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 10610 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10611 </hgrad_y_level4> 10612 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 10613 [0.1300 0.3000 0.3000 0.1000 ] 10614 </hi_soft_thresh_scale> 10615 </cell> 10616 <cell index="10" type="struct" size="[1 1]"> 10617 <iso index="1" type="double" size="[1 1]"> 10618 [25600.0000 ] 10619 </iso> 10620 <sigma_curve index="1" type="double" size="[1 5]"> 10621 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 10622 </sigma_curve> 10623 <ynr_lci index="1" type="double" size="[1 4]"> 10624 [0.9362 0.6543 0.4559 0.4039 ] 10625 </ynr_lci> 10626 <ynr_lhci index="1" type="double" size="[1 4]"> 10627 [0.8559 0.9798 0.6914 0.5389 ] 10628 </ynr_lhci> 10629 <ynr_hlci index="1" type="double" size="[1 4]"> 10630 [0.8855 0.9817 0.7013 0.5513 ] 10631 </ynr_hlci> 10632 <ynr_hhci index="1" type="double" size="[1 4]"> 10633 [0.7069 1.4633 1.1028 0.7415 ] 10634 </ynr_hhci> 10635 <lo_lumaPoint index="1" type="double" size="[1 6]"> 10636 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 10637 </lo_lumaPoint> 10638 <lo_lumaRatio index="1" type="double" size="[1 6]"> 10639 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 10640 </lo_lumaRatio> 10641 <lo_directionStrength index="1" type="double" size="[1 1]"> 10642 [0.2000 ] 10643 </lo_directionStrength> 10644 <lo_bfScale index="1" type="double" size="[1 4]"> 10645 [1.0000 1.0000 3.0000 1.0000 ] 10646 </lo_bfScale> 10647 <imerge_ratio index="1" type="double" size="[1 1]"> 10648 [0.1500 ] 10649 </imerge_ratio> 10650 <imerge_bound index="1" type="double" size="[1 1]"> 10651 [1.2500 ] 10652 </imerge_bound> 10653 <denoise_weight index="1" type="double" size="[1 4]"> 10654 [0.3000 0.8500 0.3000 0.3000 ] 10655 </denoise_weight> 10656 <hi_lumaPoint index="1" type="double" size="[1 6]"> 10657 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 10658 </hi_lumaPoint> 10659 <hi_lumaRatio index="1" type="double" size="[1 6]"> 10660 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 10661 </hi_lumaRatio> 10662 <hi_bfScale index="1" type="double" size="[1 4]"> 10663 [1.2000 1.1000 0.8600 0.8600 ] 10664 </hi_bfScale> 10665 <hwith_d index="1" type="double" size="[1 4]"> 10666 [6.0000 6.0000 4.0000 2.0000 ] 10667 </hwith_d> 10668 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 10669 [1.2000 ] 10670 </hi_denoiseStrength> 10671 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 10672 [0.2000 ] 10673 </hi_detailMinAdjDnW> 10674 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 10675 [0.7500 0.7000 0.6600 0.3600 ] 10676 </hi_denoiseWeight> 10677 <y_luma_point index="1" type="double" size="[1 6]"> 10678 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 10679 </y_luma_point> 10680 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 10681 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10682 </hgrad_y_level1> 10683 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 10684 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10685 </hgrad_y_level2> 10686 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 10687 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10688 </hgrad_y_level3> 10689 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 10690 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10691 </hgrad_y_level4> 10692 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 10693 [0.1300 0.3000 0.3000 0.1000 ] 10694 </hi_soft_thresh_scale> 10695 </cell> 10696 <cell index="11" type="struct" size="[1 1]"> 10697 <iso index="1" type="double" size="[1 1]"> 10698 [51200.0000 ] 10699 </iso> 10700 <sigma_curve index="1" type="double" size="[1 5]"> 10701 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 10702 </sigma_curve> 10703 <ynr_lci index="1" type="double" size="[1 4]"> 10704 [0.9362 0.6543 0.4559 0.4039 ] 10705 </ynr_lci> 10706 <ynr_lhci index="1" type="double" size="[1 4]"> 10707 [0.8559 0.9798 0.6914 0.5389 ] 10708 </ynr_lhci> 10709 <ynr_hlci index="1" type="double" size="[1 4]"> 10710 [0.8855 0.9817 0.7013 0.5513 ] 10711 </ynr_hlci> 10712 <ynr_hhci index="1" type="double" size="[1 4]"> 10713 [0.7069 1.4633 1.1028 0.7415 ] 10714 </ynr_hhci> 10715 <lo_lumaPoint index="1" type="double" size="[1 6]"> 10716 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 10717 </lo_lumaPoint> 10718 <lo_lumaRatio index="1" type="double" size="[1 6]"> 10719 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 10720 </lo_lumaRatio> 10721 <lo_directionStrength index="1" type="double" size="[1 1]"> 10722 [0.2000 ] 10723 </lo_directionStrength> 10724 <lo_bfScale index="1" type="double" size="[1 4]"> 10725 [1.0000 1.0000 3.0000 1.0000 ] 10726 </lo_bfScale> 10727 <imerge_ratio index="1" type="double" size="[1 1]"> 10728 [0.1500 ] 10729 </imerge_ratio> 10730 <imerge_bound index="1" type="double" size="[1 1]"> 10731 [1.2500 ] 10732 </imerge_bound> 10733 <denoise_weight index="1" type="double" size="[1 4]"> 10734 [0.3000 0.8500 0.3000 0.3000 ] 10735 </denoise_weight> 10736 <hi_lumaPoint index="1" type="double" size="[1 6]"> 10737 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 10738 </hi_lumaPoint> 10739 <hi_lumaRatio index="1" type="double" size="[1 6]"> 10740 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 10741 </hi_lumaRatio> 10742 <hi_bfScale index="1" type="double" size="[1 4]"> 10743 [1.2000 1.1000 0.8600 0.8600 ] 10744 </hi_bfScale> 10745 <hwith_d index="1" type="double" size="[1 4]"> 10746 [6.0000 6.0000 4.0000 2.0000 ] 10747 </hwith_d> 10748 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 10749 [1.2000 ] 10750 </hi_denoiseStrength> 10751 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 10752 [0.2000 ] 10753 </hi_detailMinAdjDnW> 10754 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 10755 [0.7500 0.7000 0.6600 0.3600 ] 10756 </hi_denoiseWeight> 10757 <y_luma_point index="1" type="double" size="[1 6]"> 10758 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 10759 </y_luma_point> 10760 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 10761 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10762 </hgrad_y_level1> 10763 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 10764 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10765 </hgrad_y_level2> 10766 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 10767 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10768 </hgrad_y_level3> 10769 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 10770 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10771 </hgrad_y_level4> 10772 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 10773 [0.1300 0.3000 0.3000 0.1000 ] 10774 </hi_soft_thresh_scale> 10775 </cell> 10776 <cell index="12" type="struct" size="[1 1]"> 10777 <iso index="1" type="double" size="[1 1]"> 10778 [102400.0000 ] 10779 </iso> 10780 <sigma_curve index="1" type="double" size="[1 5]"> 10781 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 10782 </sigma_curve> 10783 <ynr_lci index="1" type="double" size="[1 4]"> 10784 [0.9362 0.6543 0.4559 0.4039 ] 10785 </ynr_lci> 10786 <ynr_lhci index="1" type="double" size="[1 4]"> 10787 [0.8559 0.9798 0.6914 0.5389 ] 10788 </ynr_lhci> 10789 <ynr_hlci index="1" type="double" size="[1 4]"> 10790 [0.8855 0.9817 0.7013 0.5513 ] 10791 </ynr_hlci> 10792 <ynr_hhci index="1" type="double" size="[1 4]"> 10793 [0.7069 1.4633 1.1028 0.7415 ] 10794 </ynr_hhci> 10795 <lo_lumaPoint index="1" type="double" size="[1 6]"> 10796 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 10797 </lo_lumaPoint> 10798 <lo_lumaRatio index="1" type="double" size="[1 6]"> 10799 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 10800 </lo_lumaRatio> 10801 <lo_directionStrength index="1" type="double" size="[1 1]"> 10802 [0.2000 ] 10803 </lo_directionStrength> 10804 <lo_bfScale index="1" type="double" size="[1 4]"> 10805 [1.0000 1.0000 3.0000 1.0000 ] 10806 </lo_bfScale> 10807 <imerge_ratio index="1" type="double" size="[1 1]"> 10808 [0.1500 ] 10809 </imerge_ratio> 10810 <imerge_bound index="1" type="double" size="[1 1]"> 10811 [1.2500 ] 10812 </imerge_bound> 10813 <denoise_weight index="1" type="double" size="[1 4]"> 10814 [0.3000 0.8500 0.3000 0.3000 ] 10815 </denoise_weight> 10816 <hi_lumaPoint index="1" type="double" size="[1 6]"> 10817 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 10818 </hi_lumaPoint> 10819 <hi_lumaRatio index="1" type="double" size="[1 6]"> 10820 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 10821 </hi_lumaRatio> 10822 <hi_bfScale index="1" type="double" size="[1 4]"> 10823 [1.2000 1.1000 0.8600 0.8600 ] 10824 </hi_bfScale> 10825 <hwith_d index="1" type="double" size="[1 4]"> 10826 [6.0000 6.0000 4.0000 2.0000 ] 10827 </hwith_d> 10828 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 10829 [1.2000 ] 10830 </hi_denoiseStrength> 10831 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 10832 [0.2000 ] 10833 </hi_detailMinAdjDnW> 10834 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 10835 [0.7500 0.7000 0.6600 0.3600 ] 10836 </hi_denoiseWeight> 10837 <y_luma_point index="1" type="double" size="[1 6]"> 10838 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 10839 </y_luma_point> 10840 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 10841 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10842 </hgrad_y_level1> 10843 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 10844 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10845 </hgrad_y_level2> 10846 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 10847 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10848 </hgrad_y_level3> 10849 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 10850 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10851 </hgrad_y_level4> 10852 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 10853 [0.1300 0.3000 0.3000 0.1000 ] 10854 </hi_soft_thresh_scale> 10855 </cell> 10856 <cell index="13" type="struct" size="[1 1]"> 10857 <iso index="1" type="double" size="[1 1]"> 10858 [204800.0000 ] 10859 </iso> 10860 <sigma_curve index="1" type="double" size="[1 5]"> 10861 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 10862 </sigma_curve> 10863 <ynr_lci index="1" type="double" size="[1 4]"> 10864 [0.9362 0.6543 0.4559 0.4039 ] 10865 </ynr_lci> 10866 <ynr_lhci index="1" type="double" size="[1 4]"> 10867 [0.8559 0.9798 0.6914 0.5389 ] 10868 </ynr_lhci> 10869 <ynr_hlci index="1" type="double" size="[1 4]"> 10870 [0.8855 0.9817 0.7013 0.5513 ] 10871 </ynr_hlci> 10872 <ynr_hhci index="1" type="double" size="[1 4]"> 10873 [0.7069 1.4633 1.1028 0.7415 ] 10874 </ynr_hhci> 10875 <lo_lumaPoint index="1" type="double" size="[1 6]"> 10876 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 10877 </lo_lumaPoint> 10878 <lo_lumaRatio index="1" type="double" size="[1 6]"> 10879 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 10880 </lo_lumaRatio> 10881 <lo_directionStrength index="1" type="double" size="[1 1]"> 10882 [0.2000 ] 10883 </lo_directionStrength> 10884 <lo_bfScale index="1" type="double" size="[1 4]"> 10885 [1.0000 1.0000 3.0000 1.0000 ] 10886 </lo_bfScale> 10887 <imerge_ratio index="1" type="double" size="[1 1]"> 10888 [0.1500 ] 10889 </imerge_ratio> 10890 <imerge_bound index="1" type="double" size="[1 1]"> 10891 [1.2500 ] 10892 </imerge_bound> 10893 <denoise_weight index="1" type="double" size="[1 4]"> 10894 [0.3000 0.8500 0.3000 0.3000 ] 10895 </denoise_weight> 10896 <hi_lumaPoint index="1" type="double" size="[1 6]"> 10897 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 10898 </hi_lumaPoint> 10899 <hi_lumaRatio index="1" type="double" size="[1 6]"> 10900 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 10901 </hi_lumaRatio> 10902 <hi_bfScale index="1" type="double" size="[1 4]"> 10903 [1.2000 1.1000 0.8600 0.8600 ] 10904 </hi_bfScale> 10905 <hwith_d index="1" type="double" size="[1 4]"> 10906 [6.0000 6.0000 4.0000 2.0000 ] 10907 </hwith_d> 10908 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 10909 [1.2000 ] 10910 </hi_denoiseStrength> 10911 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 10912 [0.2000 ] 10913 </hi_detailMinAdjDnW> 10914 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 10915 [0.7500 0.7000 0.6600 0.3600 ] 10916 </hi_denoiseWeight> 10917 <y_luma_point index="1" type="double" size="[1 6]"> 10918 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 10919 </y_luma_point> 10920 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 10921 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10922 </hgrad_y_level1> 10923 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 10924 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10925 </hgrad_y_level2> 10926 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 10927 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10928 </hgrad_y_level3> 10929 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 10930 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 10931 </hgrad_y_level4> 10932 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 10933 [0.1300 0.3000 0.3000 0.1000 ] 10934 </hi_soft_thresh_scale> 10935 </cell> 10936 </YNR_ISO> 10937 </cell> 10938 <cell index="2" type="struct" size="[1 1]"> 10939 <SNR_Mode index="1" type="char" size="[1 4]"> 10940 HSNR 10941 </SNR_Mode> 10942 <Sensor_Mode index="1" type="char" size="[1 3]"> 10943 hcg 10944 </Sensor_Mode> 10945 <YNR_ISO index="1" type="cell" size="[1 13]"> 10946 <cell index="1" type="struct" size="[1 1]"> 10947 <iso index="1" type="double" size="[1 1]"> 10948 [50.0000 ] 10949 </iso> 10950 <sigma_curve index="1" type="double" size="[1 5]"> 10951 [-8.43031629716230e-013 7.96403418022611e-009 -2.69124846208717e-005 3.30491353997608e-002 1.82112440798101e+001 ] 10952 </sigma_curve> 10953 <ynr_lci index="1" type="double" size="[1 4]"> 10954 [0.9332 0.6865 0.4320 0.2739 ] 10955 </ynr_lci> 10956 <ynr_lhci index="1" type="double" size="[1 4]"> 10957 [0.8451 0.9787 0.7649 0.5108 ] 10958 </ynr_lhci> 10959 <ynr_hlci index="1" type="double" size="[1 4]"> 10960 [0.8322 0.9514 0.7381 0.4824 ] 10961 </ynr_hlci> 10962 <ynr_hhci index="1" type="double" size="[1 4]"> 10963 [0.6986 1.4097 1.2535 0.8366 ] 10964 </ynr_hhci> 10965 <lo_lumaPoint index="1" type="double" size="[1 6]"> 10966 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 10967 </lo_lumaPoint> 10968 <lo_lumaRatio index="1" type="double" size="[1 6]"> 10969 [1.2000 1.2000 1.2500 1.0000 1.0000 1.0000 ] 10970 </lo_lumaRatio> 10971 <lo_directionStrength index="1" type="double" size="[1 1]"> 10972 [0.5000 ] 10973 </lo_directionStrength> 10974 <lo_bfScale index="1" type="double" size="[1 4]"> 10975 [1.0000 1.0000 1.0000 1.0000 ] 10976 </lo_bfScale> 10977 <imerge_ratio index="1" type="double" size="[1 1]"> 10978 [0.4000 ] 10979 </imerge_ratio> 10980 <imerge_bound index="1" type="double" size="[1 1]"> 10981 [1.2500 ] 10982 </imerge_bound> 10983 <denoise_weight index="1" type="double" size="[1 4]"> 10984 [0.3000 0.3000 0.5000 0.7000 ] 10985 </denoise_weight> 10986 <hi_lumaPoint index="1" type="double" size="[1 6]"> 10987 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 10988 </hi_lumaPoint> 10989 <hi_lumaRatio index="1" type="double" size="[1 6]"> 10990 [1.2500 1.2500 1.2500 1.0000 1.0000 1.0000 ] 10991 </hi_lumaRatio> 10992 <hi_bfScale index="1" type="double" size="[1 4]"> 10993 [1.0000 1.0000 1.0000 1.0000 ] 10994 </hi_bfScale> 10995 <hwith_d index="1" type="double" size="[1 4]"> 10996 [2.0000 2.0000 1.2000 1.2000 ] 10997 </hwith_d> 10998 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 10999 [1.1000 ] 11000 </hi_denoiseStrength> 11001 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 11002 [0.2000 ] 11003 </hi_detailMinAdjDnW> 11004 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 11005 [0.7500 0.7000 0.6000 0.5000 ] 11006 </hi_denoiseWeight> 11007 <y_luma_point index="1" type="double" size="[1 6]"> 11008 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 11009 </y_luma_point> 11010 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 11011 [1.0000 0.6700 0.6700 0.6700 0.6700 0.6700 ] 11012 </hgrad_y_level1> 11013 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 11014 [1.0000 0.6700 0.6700 0.6700 0.6700 0.6700 ] 11015 </hgrad_y_level2> 11016 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 11017 [1.0000 0.5700 0.5700 0.5700 0.5700 0.5700 ] 11018 </hgrad_y_level3> 11019 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 11020 [1.0000 0.5000 0.5000 0.4000 0.3000 0.2000 ] 11021 </hgrad_y_level4> 11022 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 11023 [0.1100 0.1100 0.1000 0.1000 ] 11024 </hi_soft_thresh_scale> 11025 </cell> 11026 <cell index="2" type="struct" size="[1 1]"> 11027 <iso index="1" type="double" size="[1 1]"> 11028 [100.0000 ] 11029 </iso> 11030 <sigma_curve index="1" type="double" size="[1 5]"> 11031 [-9.07873071141055e-013 9.05495555543235e-009 -3.21717261013016e-005 4.12882265916323e-002 2.10344756396116e+001 ] 11032 </sigma_curve> 11033 <ynr_lci index="1" type="double" size="[1 4]"> 11034 [0.9705 0.7580 0.4856 0.2991 ] 11035 </ynr_lci> 11036 <ynr_lhci index="1" type="double" size="[1 4]"> 11037 [0.7414 0.9915 0.8479 0.5629 ] 11038 </ynr_lhci> 11039 <ynr_hlci index="1" type="double" size="[1 4]"> 11040 [0.7546 0.9337 0.8045 0.5478 ] 11041 </ynr_hlci> 11042 <ynr_hhci index="1" type="double" size="[1 4]"> 11043 [0.6777 1.3441 1.3399 0.9403 ] 11044 </ynr_hhci> 11045 <lo_lumaPoint index="1" type="double" size="[1 6]"> 11046 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 11047 </lo_lumaPoint> 11048 <lo_lumaRatio index="1" type="double" size="[1 6]"> 11049 [1.3000 1.2000 1.3000 1.0000 1.0000 1.0000 ] 11050 </lo_lumaRatio> 11051 <lo_directionStrength index="1" type="double" size="[1 1]"> 11052 [0.5000 ] 11053 </lo_directionStrength> 11054 <lo_bfScale index="1" type="double" size="[1 4]"> 11055 [1.0000 1.0000 1.0000 1.0000 ] 11056 </lo_bfScale> 11057 <imerge_ratio index="1" type="double" size="[1 1]"> 11058 [0.4000 ] 11059 </imerge_ratio> 11060 <imerge_bound index="1" type="double" size="[1 1]"> 11061 [1.2500 ] 11062 </imerge_bound> 11063 <denoise_weight index="1" type="double" size="[1 4]"> 11064 [0.3000 0.3000 0.5000 0.8000 ] 11065 </denoise_weight> 11066 <hi_lumaPoint index="1" type="double" size="[1 6]"> 11067 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 11068 </hi_lumaPoint> 11069 <hi_lumaRatio index="1" type="double" size="[1 6]"> 11070 [1.2500 1.3000 1.2500 1.0000 1.0000 1.0000 ] 11071 </hi_lumaRatio> 11072 <hi_bfScale index="1" type="double" size="[1 4]"> 11073 [1.2000 1.2000 1.0000 1.0000 ] 11074 </hi_bfScale> 11075 <hwith_d index="1" type="double" size="[1 4]"> 11076 [2.0000 2.0000 1.2000 1.2000 ] 11077 </hwith_d> 11078 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 11079 [1.2000 ] 11080 </hi_denoiseStrength> 11081 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 11082 [0.2000 ] 11083 </hi_detailMinAdjDnW> 11084 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 11085 [0.7500 0.7500 0.6000 0.3000 ] 11086 </hi_denoiseWeight> 11087 <y_luma_point index="1" type="double" size="[1 6]"> 11088 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 11089 </y_luma_point> 11090 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 11091 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 11092 </hgrad_y_level1> 11093 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 11094 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 11095 </hgrad_y_level2> 11096 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 11097 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 11098 </hgrad_y_level3> 11099 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 11100 [1.0000 0.5000 0.5000 0.4000 0.3000 0.2000 ] 11101 </hgrad_y_level4> 11102 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 11103 [0.1100 0.1100 0.1000 0.1000 ] 11104 </hi_soft_thresh_scale> 11105 </cell> 11106 <cell index="3" type="struct" size="[1 1]"> 11107 <iso index="1" type="double" size="[1 1]"> 11108 [200.0000 ] 11109 </iso> 11110 <sigma_curve index="1" type="double" size="[1 5]"> 11111 [-1.52155493457974e-012 1.40665186878902e-008 -4.69371860616144e-005 5.84762430174166e-002 2.60227194063991e+001 ] 11112 </sigma_curve> 11113 <ynr_lci index="1" type="double" size="[1 4]"> 11114 [0.9803 0.8076 0.5477 0.3742 ] 11115 </ynr_lci> 11116 <ynr_lhci index="1" type="double" size="[1 4]"> 11117 [0.6903 0.9419 0.8266 0.5464 ] 11118 </ynr_lhci> 11119 <ynr_hlci index="1" type="double" size="[1 4]"> 11120 [0.7051 0.8922 0.8274 0.5191 ] 11121 </ynr_hlci> 11122 <ynr_hhci index="1" type="double" size="[1 4]"> 11123 [0.6291 1.2325 1.3371 0.9198 ] 11124 </ynr_hhci> 11125 <lo_lumaPoint index="1" type="double" size="[1 6]"> 11126 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 11127 </lo_lumaPoint> 11128 <lo_lumaRatio index="1" type="double" size="[1 6]"> 11129 [1.3000 1.2000 1.5000 1.2000 1.0000 1.0000 ] 11130 </lo_lumaRatio> 11131 <lo_directionStrength index="1" type="double" size="[1 1]"> 11132 [0.5000 ] 11133 </lo_directionStrength> 11134 <lo_bfScale index="1" type="double" size="[1 4]"> 11135 [0.3000 0.6000 1.0000 1.0000 ] 11136 </lo_bfScale> 11137 <imerge_ratio index="1" type="double" size="[1 1]"> 11138 [0.3000 ] 11139 </imerge_ratio> 11140 <imerge_bound index="1" type="double" size="[1 1]"> 11141 [1.2500 ] 11142 </imerge_bound> 11143 <denoise_weight index="1" type="double" size="[1 4]"> 11144 [0.3000 0.4000 0.6000 0.6000 ] 11145 </denoise_weight> 11146 <hi_lumaPoint index="1" type="double" size="[1 6]"> 11147 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 11148 </hi_lumaPoint> 11149 <hi_lumaRatio index="1" type="double" size="[1 6]"> 11150 [1.1000 1.1000 1.5000 1.0000 1.0000 1.0000 ] 11151 </hi_lumaRatio> 11152 <hi_bfScale index="1" type="double" size="[1 4]"> 11153 [1.1000 1.0000 1.0000 1.0000 ] 11154 </hi_bfScale> 11155 <hwith_d index="1" type="double" size="[1 4]"> 11156 [4.0000 4.0000 2.0000 1.2000 ] 11157 </hwith_d> 11158 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 11159 [1.3000 ] 11160 </hi_denoiseStrength> 11161 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 11162 [0.2000 ] 11163 </hi_detailMinAdjDnW> 11164 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 11165 [0.7000 0.7000 0.6000 0.3000 ] 11166 </hi_denoiseWeight> 11167 <y_luma_point index="1" type="double" size="[1 6]"> 11168 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 11169 </y_luma_point> 11170 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 11171 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 11172 </hgrad_y_level1> 11173 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 11174 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 11175 </hgrad_y_level2> 11176 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 11177 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 11178 </hgrad_y_level3> 11179 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 11180 [1.0000 0.5000 0.5000 0.4000 0.3000 0.2000 ] 11181 </hgrad_y_level4> 11182 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 11183 [0.1200 0.1200 0.1000 0.1000 ] 11184 </hi_soft_thresh_scale> 11185 </cell> 11186 <cell index="4" type="struct" size="[1 1]"> 11187 <iso index="1" type="double" size="[1 1]"> 11188 [400.0000 ] 11189 </iso> 11190 <sigma_curve index="1" type="double" size="[1 5]"> 11191 [-2.78200837475752e-012 2.61174369092566e-008 -8.77094728358591e-005 1.11980382041814e-001 2.36814539463394e+001 ] 11192 </sigma_curve> 11193 <ynr_lci index="1" type="double" size="[1 4]"> 11194 [0.9916 0.8348 0.5930 0.4323 ] 11195 </ynr_lci> 11196 <ynr_lhci index="1" type="double" size="[1 4]"> 11197 [0.6344 0.9054 0.8065 0.5319 ] 11198 </ynr_lhci> 11199 <ynr_hlci index="1" type="double" size="[1 4]"> 11200 [0.6500 0.8519 0.7976 0.5142 ] 11201 </ynr_hlci> 11202 <ynr_hhci index="1" type="double" size="[1 4]"> 11203 [0.5847 1.1568 1.3008 0.9211 ] 11204 </ynr_hhci> 11205 <lo_lumaPoint index="1" type="double" size="[1 6]"> 11206 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 11207 </lo_lumaPoint> 11208 <lo_lumaRatio index="1" type="double" size="[1 6]"> 11209 [1.3000 1.2000 1.5000 1.0000 1.0000 1.0000 ] 11210 </lo_lumaRatio> 11211 <lo_directionStrength index="1" type="double" size="[1 1]"> 11212 [0.5000 ] 11213 </lo_directionStrength> 11214 <lo_bfScale index="1" type="double" size="[1 4]"> 11215 [0.4000 0.7000 1.0000 1.0000 ] 11216 </lo_bfScale> 11217 <imerge_ratio index="1" type="double" size="[1 1]"> 11218 [0.2500 ] 11219 </imerge_ratio> 11220 <imerge_bound index="1" type="double" size="[1 1]"> 11221 [1.2500 ] 11222 </imerge_bound> 11223 <denoise_weight index="1" type="double" size="[1 4]"> 11224 [0.3500 0.4000 0.6000 0.6000 ] 11225 </denoise_weight> 11226 <hi_lumaPoint index="1" type="double" size="[1 6]"> 11227 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 11228 </hi_lumaPoint> 11229 <hi_lumaRatio index="1" type="double" size="[1 6]"> 11230 [1.2000 1.2000 1.5000 1.5000 1.0000 1.0000 ] 11231 </hi_lumaRatio> 11232 <hi_bfScale index="1" type="double" size="[1 4]"> 11233 [1.2000 1.2000 1.2000 1.2000 ] 11234 </hi_bfScale> 11235 <hwith_d index="1" type="double" size="[1 4]"> 11236 [6.0000 6.0000 4.0000 2.0000 ] 11237 </hwith_d> 11238 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 11239 [1.4000 ] 11240 </hi_denoiseStrength> 11241 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 11242 [0.2000 ] 11243 </hi_detailMinAdjDnW> 11244 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 11245 [0.8000 0.9000 1.0000 1.0000 ] 11246 </hi_denoiseWeight> 11247 <y_luma_point index="1" type="double" size="[1 6]"> 11248 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 11249 </y_luma_point> 11250 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 11251 [1.0000 0.5000 0.5000 0.5000 0.5000 0.3000 ] 11252 </hgrad_y_level1> 11253 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 11254 [1.0000 0.5000 0.5000 0.5000 0.5000 0.3000 ] 11255 </hgrad_y_level2> 11256 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 11257 [1.0000 0.5100 0.5100 0.5100 0.5100 0.3000 ] 11258 </hgrad_y_level3> 11259 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 11260 [1.0000 0.5000 0.5000 0.4000 0.3000 0.2000 ] 11261 </hgrad_y_level4> 11262 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 11263 [0.1300 0.1300 0.1000 0.1000 ] 11264 </hi_soft_thresh_scale> 11265 </cell> 11266 <cell index="5" type="struct" size="[1 1]"> 11267 <iso index="1" type="double" size="[1 1]"> 11268 [800.0000 ] 11269 </iso> 11270 <sigma_curve index="1" type="double" size="[1 5]"> 11271 [-2.23709690355328e-012 2.11901816670340e-008 -7.26688079299778e-005 9.60394777007423e-002 2.24640616934303e+001 ] 11272 </sigma_curve> 11273 <ynr_lci index="1" type="double" size="[1 4]"> 11274 [0.9995 0.8669 0.6279 0.4620 ] 11275 </ynr_lci> 11276 <ynr_lhci index="1" type="double" size="[1 4]"> 11277 [0.5868 0.8782 0.8352 0.5524 ] 11278 </ynr_lhci> 11279 <ynr_hlci index="1" type="double" size="[1 4]"> 11280 [0.6041 0.8250 0.8222 0.5392 ] 11281 </ynr_hlci> 11282 <ynr_hhci index="1" type="double" size="[1 4]"> 11283 [0.5544 1.0703 1.3144 0.9702 ] 11284 </ynr_hhci> 11285 <lo_lumaPoint index="1" type="double" size="[1 6]"> 11286 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 11287 </lo_lumaPoint> 11288 <lo_lumaRatio index="1" type="double" size="[1 6]"> 11289 [1.0000 1.0000 1.5000 1.0000 1.0000 1.0000 ] 11290 </lo_lumaRatio> 11291 <lo_directionStrength index="1" type="double" size="[1 1]"> 11292 [0.3000 ] 11293 </lo_directionStrength> 11294 <lo_bfScale index="1" type="double" size="[1 4]"> 11295 [0.3000 0.5000 1.0000 1.0000 ] 11296 </lo_bfScale> 11297 <imerge_ratio index="1" type="double" size="[1 1]"> 11298 [0.2000 ] 11299 </imerge_ratio> 11300 <imerge_bound index="1" type="double" size="[1 1]"> 11301 [1.2500 ] 11302 </imerge_bound> 11303 <denoise_weight index="1" type="double" size="[1 4]"> 11304 [0.4000 0.5000 1.0000 1.0000 ] 11305 </denoise_weight> 11306 <hi_lumaPoint index="1" type="double" size="[1 6]"> 11307 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 11308 </hi_lumaPoint> 11309 <hi_lumaRatio index="1" type="double" size="[1 6]"> 11310 [1.1000 1.2000 1.5000 1.5000 1.0000 1.0000 ] 11311 </hi_lumaRatio> 11312 <hi_bfScale index="1" type="double" size="[1 4]"> 11313 [1.2000 1.3000 1.5000 1.5000 ] 11314 </hi_bfScale> 11315 <hwith_d index="1" type="double" size="[1 4]"> 11316 [6.0000 6.0000 4.0000 2.0000 ] 11317 </hwith_d> 11318 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 11319 [1.3000 ] 11320 </hi_denoiseStrength> 11321 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 11322 [0.2000 ] 11323 </hi_detailMinAdjDnW> 11324 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 11325 [1.1000 1.2000 1.3000 1.3000 ] 11326 </hi_denoiseWeight> 11327 <y_luma_point index="1" type="double" size="[1 6]"> 11328 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 11329 </y_luma_point> 11330 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 11331 [1.0000 0.5000 0.4000 0.3500 0.3000 0.2000 ] 11332 </hgrad_y_level1> 11333 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 11334 [1.0000 0.5000 0.4000 0.3500 0.3000 0.2000 ] 11335 </hgrad_y_level2> 11336 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 11337 [1.0000 0.5000 0.4000 0.3500 0.3000 0.2000 ] 11338 </hgrad_y_level3> 11339 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 11340 [1.0000 0.5000 0.4000 0.3500 0.3000 0.2000 ] 11341 </hgrad_y_level4> 11342 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 11343 [0.1300 0.1300 0.1000 0.1000 ] 11344 </hi_soft_thresh_scale> 11345 </cell> 11346 <cell index="6" type="struct" size="[1 1]"> 11347 <iso index="1" type="double" size="[1 1]"> 11348 [1600.0000 ] 11349 </iso> 11350 <sigma_curve index="1" type="double" size="[1 5]"> 11351 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 11352 </sigma_curve> 11353 <ynr_lci index="1" type="double" size="[1 4]"> 11354 [0.9431 0.6702 0.4477 0.3673 ] 11355 </ynr_lci> 11356 <ynr_lhci index="1" type="double" size="[1 4]"> 11357 [0.8418 0.9831 0.7047 0.5016 ] 11358 </ynr_lhci> 11359 <ynr_hlci index="1" type="double" size="[1 4]"> 11360 [0.8724 0.9884 0.7118 0.5088 ] 11361 </ynr_hlci> 11362 <ynr_hhci index="1" type="double" size="[1 4]"> 11363 [0.6503 1.4228 1.1743 0.7566 ] 11364 </ynr_hhci> 11365 <lo_lumaPoint index="1" type="double" size="[1 6]"> 11366 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 11367 </lo_lumaPoint> 11368 <lo_lumaRatio index="1" type="double" size="[1 6]"> 11369 [1.0000 1.0000 1.5000 1.0000 1.0000 1.0000 ] 11370 </lo_lumaRatio> 11371 <lo_directionStrength index="1" type="double" size="[1 1]"> 11372 [0.2000 ] 11373 </lo_directionStrength> 11374 <lo_bfScale index="1" type="double" size="[1 4]"> 11375 [0.2500 0.5000 2.0000 1.0000 ] 11376 </lo_bfScale> 11377 <imerge_ratio index="1" type="double" size="[1 1]"> 11378 [0.1500 ] 11379 </imerge_ratio> 11380 <imerge_bound index="1" type="double" size="[1 1]"> 11381 [1.2500 ] 11382 </imerge_bound> 11383 <denoise_weight index="1" type="double" size="[1 4]"> 11384 [0.4000 0.8500 0.8500 0.9000 ] 11385 </denoise_weight> 11386 <hi_lumaPoint index="1" type="double" size="[1 6]"> 11387 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 11388 </hi_lumaPoint> 11389 <hi_lumaRatio index="1" type="double" size="[1 6]"> 11390 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 11391 </hi_lumaRatio> 11392 <hi_bfScale index="1" type="double" size="[1 4]"> 11393 [1.2000 1.5000 1.5000 0.8600 ] 11394 </hi_bfScale> 11395 <hwith_d index="1" type="double" size="[1 4]"> 11396 [6.0000 6.0000 4.0000 2.0000 ] 11397 </hwith_d> 11398 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 11399 [1.2000 ] 11400 </hi_denoiseStrength> 11401 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 11402 [0.2000 ] 11403 </hi_detailMinAdjDnW> 11404 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 11405 [0.5000 0.4500 0.2500 0.4000 ] 11406 </hi_denoiseWeight> 11407 <y_luma_point index="1" type="double" size="[1 6]"> 11408 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 11409 </y_luma_point> 11410 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 11411 [1.2000 1.0000 1.0000 1.0000 0.8000 0.7000 ] 11412 </hgrad_y_level1> 11413 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 11414 [1.2400 1.2400 1.0000 1.0000 0.7600 0.6300 ] 11415 </hgrad_y_level2> 11416 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 11417 [1.9000 1.6000 1.3000 1.0000 0.8000 0.8000 ] 11418 </hgrad_y_level3> 11419 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 11420 [1.4300 1.0000 0.5600 0.5600 0.5600 0.5600 ] 11421 </hgrad_y_level4> 11422 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 11423 [0.1300 0.3000 0.3000 0.1000 ] 11424 </hi_soft_thresh_scale> 11425 </cell> 11426 <cell index="7" type="struct" size="[1 1]"> 11427 <iso index="1" type="double" size="[1 1]"> 11428 [3200.0000 ] 11429 </iso> 11430 <sigma_curve index="1" type="double" size="[1 5]"> 11431 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 11432 </sigma_curve> 11433 <ynr_lci index="1" type="double" size="[1 4]"> 11434 [0.9507 0.6887 0.4587 0.3811 ] 11435 </ynr_lci> 11436 <ynr_lhci index="1" type="double" size="[1 4]"> 11437 [0.8287 0.9938 0.7358 0.5284 ] 11438 </ynr_lhci> 11439 <ynr_hlci index="1" type="double" size="[1 4]"> 11440 [0.8579 0.9965 0.7366 0.5295 ] 11441 </ynr_hlci> 11442 <ynr_hhci index="1" type="double" size="[1 4]"> 11443 [0.6034 1.3726 1.2116 0.7878 ] 11444 </ynr_hhci> 11445 <lo_lumaPoint index="1" type="double" size="[1 6]"> 11446 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 11447 </lo_lumaPoint> 11448 <lo_lumaRatio index="1" type="double" size="[1 6]"> 11449 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 11450 </lo_lumaRatio> 11451 <lo_directionStrength index="1" type="double" size="[1 1]"> 11452 [0.2000 ] 11453 </lo_directionStrength> 11454 <lo_bfScale index="1" type="double" size="[1 4]"> 11455 [0.2500 0.5000 2.0000 1.0000 ] 11456 </lo_bfScale> 11457 <imerge_ratio index="1" type="double" size="[1 1]"> 11458 [0.1500 ] 11459 </imerge_ratio> 11460 <imerge_bound index="1" type="double" size="[1 1]"> 11461 [1.2500 ] 11462 </imerge_bound> 11463 <denoise_weight index="1" type="double" size="[1 4]"> 11464 [0.3000 0.8500 0.2000 0.7000 ] 11465 </denoise_weight> 11466 <hi_lumaPoint index="1" type="double" size="[1 6]"> 11467 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 11468 </hi_lumaPoint> 11469 <hi_lumaRatio index="1" type="double" size="[1 6]"> 11470 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 11471 </hi_lumaRatio> 11472 <hi_bfScale index="1" type="double" size="[1 4]"> 11473 [1.2000 1.1000 0.8600 0.8600 ] 11474 </hi_bfScale> 11475 <hwith_d index="1" type="double" size="[1 4]"> 11476 [0.7500 0.7000 0.6600 0.3600 ] 11477 </hwith_d> 11478 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 11479 [1.2000 ] 11480 </hi_denoiseStrength> 11481 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 11482 [0.2000 ] 11483 </hi_detailMinAdjDnW> 11484 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 11485 [0.7500 0.7000 0.6600 0.3600 ] 11486 </hi_denoiseWeight> 11487 <y_luma_point index="1" type="double" size="[1 6]"> 11488 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 11489 </y_luma_point> 11490 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 11491 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11492 </hgrad_y_level1> 11493 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 11494 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11495 </hgrad_y_level2> 11496 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 11497 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11498 </hgrad_y_level3> 11499 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 11500 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11501 </hgrad_y_level4> 11502 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 11503 [0.1300 0.3000 0.3000 0.1000 ] 11504 </hi_soft_thresh_scale> 11505 </cell> 11506 <cell index="8" type="struct" size="[1 1]"> 11507 <iso index="1" type="double" size="[1 1]"> 11508 [6400.0000 ] 11509 </iso> 11510 <sigma_curve index="1" type="double" size="[1 5]"> 11511 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 11512 </sigma_curve> 11513 <ynr_lci index="1" type="double" size="[1 4]"> 11514 [0.9483 0.6817 0.4481 0.3610 ] 11515 </ynr_lci> 11516 <ynr_lhci index="1" type="double" size="[1 4]"> 11517 [0.8322 0.9968 0.7385 0.5208 ] 11518 </ynr_lhci> 11519 <ynr_hlci index="1" type="double" size="[1 4]"> 11520 [0.8616 0.9967 0.7311 0.5271 ] 11521 </ynr_hlci> 11522 <ynr_hhci index="1" type="double" size="[1 4]"> 11523 [0.6135 1.3821 1.2081 0.7883 ] 11524 </ynr_hhci> 11525 <lo_lumaPoint index="1" type="double" size="[1 6]"> 11526 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 11527 </lo_lumaPoint> 11528 <lo_lumaRatio index="1" type="double" size="[1 6]"> 11529 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 11530 </lo_lumaRatio> 11531 <lo_directionStrength index="1" type="double" size="[1 1]"> 11532 [0.2000 ] 11533 </lo_directionStrength> 11534 <lo_bfScale index="1" type="double" size="[1 4]"> 11535 [0.2400 0.5000 2.0000 1.0000 ] 11536 </lo_bfScale> 11537 <imerge_ratio index="1" type="double" size="[1 1]"> 11538 [0.1500 ] 11539 </imerge_ratio> 11540 <imerge_bound index="1" type="double" size="[1 1]"> 11541 [1.2500 ] 11542 </imerge_bound> 11543 <denoise_weight index="1" type="double" size="[1 4]"> 11544 [0.3000 0.8500 0.3000 0.4000 ] 11545 </denoise_weight> 11546 <hi_lumaPoint index="1" type="double" size="[1 6]"> 11547 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 11548 </hi_lumaPoint> 11549 <hi_lumaRatio index="1" type="double" size="[1 6]"> 11550 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 11551 </hi_lumaRatio> 11552 <hi_bfScale index="1" type="double" size="[1 4]"> 11553 [1.2000 1.1000 0.8600 0.8600 ] 11554 </hi_bfScale> 11555 <hwith_d index="1" type="double" size="[1 4]"> 11556 [6.0000 6.0000 4.0000 2.0000 ] 11557 </hwith_d> 11558 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 11559 [1.2000 ] 11560 </hi_denoiseStrength> 11561 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 11562 [0.2000 ] 11563 </hi_detailMinAdjDnW> 11564 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 11565 [0.7500 0.7000 0.6600 0.3600 ] 11566 </hi_denoiseWeight> 11567 <y_luma_point index="1" type="double" size="[1 6]"> 11568 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 11569 </y_luma_point> 11570 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 11571 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11572 </hgrad_y_level1> 11573 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 11574 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11575 </hgrad_y_level2> 11576 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 11577 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11578 </hgrad_y_level3> 11579 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 11580 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11581 </hgrad_y_level4> 11582 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 11583 [0.1300 0.3000 0.3000 0.1000 ] 11584 </hi_soft_thresh_scale> 11585 </cell> 11586 <cell index="9" type="struct" size="[1 1]"> 11587 <iso index="1" type="double" size="[1 1]"> 11588 [12800.0000 ] 11589 </iso> 11590 <sigma_curve index="1" type="double" size="[1 5]"> 11591 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 11592 </sigma_curve> 11593 <ynr_lci index="1" type="double" size="[1 4]"> 11594 [0.9362 0.6543 0.4559 0.4039 ] 11595 </ynr_lci> 11596 <ynr_lhci index="1" type="double" size="[1 4]"> 11597 [0.8559 0.9798 0.6914 0.5389 ] 11598 </ynr_lhci> 11599 <ynr_hlci index="1" type="double" size="[1 4]"> 11600 [0.8855 0.9817 0.7013 0.5513 ] 11601 </ynr_hlci> 11602 <ynr_hhci index="1" type="double" size="[1 4]"> 11603 [0.7069 1.4633 1.1028 0.7415 ] 11604 </ynr_hhci> 11605 <lo_lumaPoint index="1" type="double" size="[1 6]"> 11606 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 11607 </lo_lumaPoint> 11608 <lo_lumaRatio index="1" type="double" size="[1 6]"> 11609 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 11610 </lo_lumaRatio> 11611 <lo_directionStrength index="1" type="double" size="[1 1]"> 11612 [0.2000 ] 11613 </lo_directionStrength> 11614 <lo_bfScale index="1" type="double" size="[1 4]"> 11615 [1.0000 1.0000 3.0000 1.0000 ] 11616 </lo_bfScale> 11617 <imerge_ratio index="1" type="double" size="[1 1]"> 11618 [0.1500 ] 11619 </imerge_ratio> 11620 <imerge_bound index="1" type="double" size="[1 1]"> 11621 [1.2500 ] 11622 </imerge_bound> 11623 <denoise_weight index="1" type="double" size="[1 4]"> 11624 [0.3000 0.8500 0.3000 0.3000 ] 11625 </denoise_weight> 11626 <hi_lumaPoint index="1" type="double" size="[1 6]"> 11627 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 11628 </hi_lumaPoint> 11629 <hi_lumaRatio index="1" type="double" size="[1 6]"> 11630 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 11631 </hi_lumaRatio> 11632 <hi_bfScale index="1" type="double" size="[1 4]"> 11633 [1.2000 1.1000 0.8600 0.8600 ] 11634 </hi_bfScale> 11635 <hwith_d index="1" type="double" size="[1 4]"> 11636 [6.0000 6.0000 4.0000 2.0000 ] 11637 </hwith_d> 11638 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 11639 [1.2000 ] 11640 </hi_denoiseStrength> 11641 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 11642 [0.2000 ] 11643 </hi_detailMinAdjDnW> 11644 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 11645 [0.7500 0.7000 0.6600 0.3600 ] 11646 </hi_denoiseWeight> 11647 <y_luma_point index="1" type="double" size="[1 6]"> 11648 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 11649 </y_luma_point> 11650 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 11651 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11652 </hgrad_y_level1> 11653 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 11654 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11655 </hgrad_y_level2> 11656 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 11657 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11658 </hgrad_y_level3> 11659 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 11660 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11661 </hgrad_y_level4> 11662 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 11663 [0.1300 0.3000 0.3000 0.1000 ] 11664 </hi_soft_thresh_scale> 11665 </cell> 11666 <cell index="10" type="struct" size="[1 1]"> 11667 <iso index="1" type="double" size="[1 1]"> 11668 [25600.0000 ] 11669 </iso> 11670 <sigma_curve index="1" type="double" size="[1 5]"> 11671 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 11672 </sigma_curve> 11673 <ynr_lci index="1" type="double" size="[1 4]"> 11674 [0.9362 0.6543 0.4559 0.4039 ] 11675 </ynr_lci> 11676 <ynr_lhci index="1" type="double" size="[1 4]"> 11677 [0.8559 0.9798 0.6914 0.5389 ] 11678 </ynr_lhci> 11679 <ynr_hlci index="1" type="double" size="[1 4]"> 11680 [0.8855 0.9817 0.7013 0.5513 ] 11681 </ynr_hlci> 11682 <ynr_hhci index="1" type="double" size="[1 4]"> 11683 [0.7069 1.4633 1.1028 0.7415 ] 11684 </ynr_hhci> 11685 <lo_lumaPoint index="1" type="double" size="[1 6]"> 11686 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 11687 </lo_lumaPoint> 11688 <lo_lumaRatio index="1" type="double" size="[1 6]"> 11689 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 11690 </lo_lumaRatio> 11691 <lo_directionStrength index="1" type="double" size="[1 1]"> 11692 [0.2000 ] 11693 </lo_directionStrength> 11694 <lo_bfScale index="1" type="double" size="[1 4]"> 11695 [1.0000 1.0000 3.0000 1.0000 ] 11696 </lo_bfScale> 11697 <imerge_ratio index="1" type="double" size="[1 1]"> 11698 [0.1500 ] 11699 </imerge_ratio> 11700 <imerge_bound index="1" type="double" size="[1 1]"> 11701 [1.2500 ] 11702 </imerge_bound> 11703 <denoise_weight index="1" type="double" size="[1 4]"> 11704 [0.3000 0.8500 0.3000 0.3000 ] 11705 </denoise_weight> 11706 <hi_lumaPoint index="1" type="double" size="[1 6]"> 11707 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 11708 </hi_lumaPoint> 11709 <hi_lumaRatio index="1" type="double" size="[1 6]"> 11710 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 11711 </hi_lumaRatio> 11712 <hi_bfScale index="1" type="double" size="[1 4]"> 11713 [1.2000 1.1000 0.8600 0.8600 ] 11714 </hi_bfScale> 11715 <hwith_d index="1" type="double" size="[1 4]"> 11716 [6.0000 6.0000 4.0000 2.0000 ] 11717 </hwith_d> 11718 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 11719 [1.2000 ] 11720 </hi_denoiseStrength> 11721 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 11722 [0.2000 ] 11723 </hi_detailMinAdjDnW> 11724 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 11725 [0.7500 0.7000 0.6600 0.3600 ] 11726 </hi_denoiseWeight> 11727 <y_luma_point index="1" type="double" size="[1 6]"> 11728 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 11729 </y_luma_point> 11730 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 11731 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11732 </hgrad_y_level1> 11733 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 11734 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11735 </hgrad_y_level2> 11736 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 11737 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11738 </hgrad_y_level3> 11739 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 11740 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11741 </hgrad_y_level4> 11742 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 11743 [0.1300 0.3000 0.3000 0.1000 ] 11744 </hi_soft_thresh_scale> 11745 </cell> 11746 <cell index="11" type="struct" size="[1 1]"> 11747 <iso index="1" type="double" size="[1 1]"> 11748 [51200.0000 ] 11749 </iso> 11750 <sigma_curve index="1" type="double" size="[1 5]"> 11751 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 11752 </sigma_curve> 11753 <ynr_lci index="1" type="double" size="[1 4]"> 11754 [0.9362 0.6543 0.4559 0.4039 ] 11755 </ynr_lci> 11756 <ynr_lhci index="1" type="double" size="[1 4]"> 11757 [0.8559 0.9798 0.6914 0.5389 ] 11758 </ynr_lhci> 11759 <ynr_hlci index="1" type="double" size="[1 4]"> 11760 [0.8855 0.9817 0.7013 0.5513 ] 11761 </ynr_hlci> 11762 <ynr_hhci index="1" type="double" size="[1 4]"> 11763 [0.7069 1.4633 1.1028 0.7415 ] 11764 </ynr_hhci> 11765 <lo_lumaPoint index="1" type="double" size="[1 6]"> 11766 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 11767 </lo_lumaPoint> 11768 <lo_lumaRatio index="1" type="double" size="[1 6]"> 11769 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 11770 </lo_lumaRatio> 11771 <lo_directionStrength index="1" type="double" size="[1 1]"> 11772 [0.2000 ] 11773 </lo_directionStrength> 11774 <lo_bfScale index="1" type="double" size="[1 4]"> 11775 [1.0000 1.0000 3.0000 1.0000 ] 11776 </lo_bfScale> 11777 <imerge_ratio index="1" type="double" size="[1 1]"> 11778 [0.1500 ] 11779 </imerge_ratio> 11780 <imerge_bound index="1" type="double" size="[1 1]"> 11781 [1.2500 ] 11782 </imerge_bound> 11783 <denoise_weight index="1" type="double" size="[1 4]"> 11784 [0.3000 0.8500 0.3000 0.3000 ] 11785 </denoise_weight> 11786 <hi_lumaPoint index="1" type="double" size="[1 6]"> 11787 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 11788 </hi_lumaPoint> 11789 <hi_lumaRatio index="1" type="double" size="[1 6]"> 11790 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 11791 </hi_lumaRatio> 11792 <hi_bfScale index="1" type="double" size="[1 4]"> 11793 [1.2000 1.1000 0.8600 0.8600 ] 11794 </hi_bfScale> 11795 <hwith_d index="1" type="double" size="[1 4]"> 11796 [6.0000 6.0000 4.0000 2.0000 ] 11797 </hwith_d> 11798 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 11799 [1.2000 ] 11800 </hi_denoiseStrength> 11801 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 11802 [0.2000 ] 11803 </hi_detailMinAdjDnW> 11804 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 11805 [0.7500 0.7000 0.6600 0.3600 ] 11806 </hi_denoiseWeight> 11807 <y_luma_point index="1" type="double" size="[1 6]"> 11808 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 11809 </y_luma_point> 11810 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 11811 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11812 </hgrad_y_level1> 11813 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 11814 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11815 </hgrad_y_level2> 11816 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 11817 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11818 </hgrad_y_level3> 11819 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 11820 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11821 </hgrad_y_level4> 11822 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 11823 [0.1300 0.3000 0.3000 0.1000 ] 11824 </hi_soft_thresh_scale> 11825 </cell> 11826 <cell index="12" type="struct" size="[1 1]"> 11827 <iso index="1" type="double" size="[1 1]"> 11828 [102400.0000 ] 11829 </iso> 11830 <sigma_curve index="1" type="double" size="[1 5]"> 11831 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 11832 </sigma_curve> 11833 <ynr_lci index="1" type="double" size="[1 4]"> 11834 [0.9362 0.6543 0.4559 0.4039 ] 11835 </ynr_lci> 11836 <ynr_lhci index="1" type="double" size="[1 4]"> 11837 [0.8559 0.9798 0.6914 0.5389 ] 11838 </ynr_lhci> 11839 <ynr_hlci index="1" type="double" size="[1 4]"> 11840 [0.8855 0.9817 0.7013 0.5513 ] 11841 </ynr_hlci> 11842 <ynr_hhci index="1" type="double" size="[1 4]"> 11843 [0.7069 1.4633 1.1028 0.7415 ] 11844 </ynr_hhci> 11845 <lo_lumaPoint index="1" type="double" size="[1 6]"> 11846 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 11847 </lo_lumaPoint> 11848 <lo_lumaRatio index="1" type="double" size="[1 6]"> 11849 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 11850 </lo_lumaRatio> 11851 <lo_directionStrength index="1" type="double" size="[1 1]"> 11852 [0.2000 ] 11853 </lo_directionStrength> 11854 <lo_bfScale index="1" type="double" size="[1 4]"> 11855 [1.0000 1.0000 3.0000 1.0000 ] 11856 </lo_bfScale> 11857 <imerge_ratio index="1" type="double" size="[1 1]"> 11858 [0.1500 ] 11859 </imerge_ratio> 11860 <imerge_bound index="1" type="double" size="[1 1]"> 11861 [1.2500 ] 11862 </imerge_bound> 11863 <denoise_weight index="1" type="double" size="[1 4]"> 11864 [0.3000 0.8500 0.3000 0.3000 ] 11865 </denoise_weight> 11866 <hi_lumaPoint index="1" type="double" size="[1 6]"> 11867 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 11868 </hi_lumaPoint> 11869 <hi_lumaRatio index="1" type="double" size="[1 6]"> 11870 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 11871 </hi_lumaRatio> 11872 <hi_bfScale index="1" type="double" size="[1 4]"> 11873 [1.2000 1.1000 0.8600 0.8600 ] 11874 </hi_bfScale> 11875 <hwith_d index="1" type="double" size="[1 4]"> 11876 [6.0000 6.0000 4.0000 2.0000 ] 11877 </hwith_d> 11878 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 11879 [1.2000 ] 11880 </hi_denoiseStrength> 11881 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 11882 [0.2000 ] 11883 </hi_detailMinAdjDnW> 11884 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 11885 [0.7500 0.7000 0.6600 0.3600 ] 11886 </hi_denoiseWeight> 11887 <y_luma_point index="1" type="double" size="[1 6]"> 11888 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 11889 </y_luma_point> 11890 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 11891 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11892 </hgrad_y_level1> 11893 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 11894 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11895 </hgrad_y_level2> 11896 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 11897 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11898 </hgrad_y_level3> 11899 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 11900 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11901 </hgrad_y_level4> 11902 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 11903 [0.1300 0.3000 0.3000 0.1000 ] 11904 </hi_soft_thresh_scale> 11905 </cell> 11906 <cell index="13" type="struct" size="[1 1]"> 11907 <iso index="1" type="double" size="[1 1]"> 11908 [204800.0000 ] 11909 </iso> 11910 <sigma_curve index="1" type="double" size="[1 5]"> 11911 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 11912 </sigma_curve> 11913 <ynr_lci index="1" type="double" size="[1 4]"> 11914 [0.9362 0.6543 0.4559 0.4039 ] 11915 </ynr_lci> 11916 <ynr_lhci index="1" type="double" size="[1 4]"> 11917 [0.8559 0.9798 0.6914 0.5389 ] 11918 </ynr_lhci> 11919 <ynr_hlci index="1" type="double" size="[1 4]"> 11920 [0.8855 0.9817 0.7013 0.5513 ] 11921 </ynr_hlci> 11922 <ynr_hhci index="1" type="double" size="[1 4]"> 11923 [0.7069 1.4633 1.1028 0.7415 ] 11924 </ynr_hhci> 11925 <lo_lumaPoint index="1" type="double" size="[1 6]"> 11926 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 11927 </lo_lumaPoint> 11928 <lo_lumaRatio index="1" type="double" size="[1 6]"> 11929 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 11930 </lo_lumaRatio> 11931 <lo_directionStrength index="1" type="double" size="[1 1]"> 11932 [0.2000 ] 11933 </lo_directionStrength> 11934 <lo_bfScale index="1" type="double" size="[1 4]"> 11935 [1.0000 1.0000 3.0000 1.0000 ] 11936 </lo_bfScale> 11937 <imerge_ratio index="1" type="double" size="[1 1]"> 11938 [0.1500 ] 11939 </imerge_ratio> 11940 <imerge_bound index="1" type="double" size="[1 1]"> 11941 [1.2500 ] 11942 </imerge_bound> 11943 <denoise_weight index="1" type="double" size="[1 4]"> 11944 [0.3000 0.8500 0.3000 0.3000 ] 11945 </denoise_weight> 11946 <hi_lumaPoint index="1" type="double" size="[1 6]"> 11947 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 11948 </hi_lumaPoint> 11949 <hi_lumaRatio index="1" type="double" size="[1 6]"> 11950 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 11951 </hi_lumaRatio> 11952 <hi_bfScale index="1" type="double" size="[1 4]"> 11953 [1.2000 1.1000 0.8600 0.8600 ] 11954 </hi_bfScale> 11955 <hwith_d index="1" type="double" size="[1 4]"> 11956 [6.0000 6.0000 4.0000 2.0000 ] 11957 </hwith_d> 11958 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 11959 [1.2000 ] 11960 </hi_denoiseStrength> 11961 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 11962 [0.2000 ] 11963 </hi_detailMinAdjDnW> 11964 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 11965 [0.7500 0.7000 0.6600 0.3600 ] 11966 </hi_denoiseWeight> 11967 <y_luma_point index="1" type="double" size="[1 6]"> 11968 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 11969 </y_luma_point> 11970 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 11971 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11972 </hgrad_y_level1> 11973 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 11974 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11975 </hgrad_y_level2> 11976 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 11977 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11978 </hgrad_y_level3> 11979 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 11980 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 11981 </hgrad_y_level4> 11982 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 11983 [0.1300 0.3000 0.3000 0.1000 ] 11984 </hi_soft_thresh_scale> 11985 </cell> 11986 </YNR_ISO> 11987 </cell> 11988 </Setting> 11989 </cell> 11990 <cell index="1" type="struct" size="[1 1]"> 11991 <Name index="1" type="char" size="[1 8]"> 11992 hdr 11993 </Name> 11994 <Setting index="1" type="cell" size="[1 2]"> 11995 <cell index="1" type="struct" size="[1 1]"> 11996 <SNR_Mode index="1" type="char" size="[1 4]"> 11997 LSNR 11998 </SNR_Mode> 11999 <Sensor_Mode index="1" type="char" size="[1 3]"> 12000 lcg 12001 </Sensor_Mode> 12002 <YNR_ISO index="1" type="cell" size="[1 13]"> 12003 <cell index="1" type="struct" size="[1 1]"> 12004 <iso index="1" type="double" size="[1 1]"> 12005 [50.0000 ] 12006 </iso> 12007 <sigma_curve index="1" type="double" size="[1 5]"> 12008 [-2.22683837604954e-013 2.70089733255463e-009 -1.19360265610630e-005 1.69475563290717e-002 2.21533631975799e+001 ] 12009 </sigma_curve> 12010 <ynr_lci index="1" type="double" size="[1 4]"> 12011 [0.9636 0.7324 0.4539 0.2570 ] 12012 </ynr_lci> 12013 <ynr_lhci index="1" type="double" size="[1 4]"> 12014 [0.7906 1.0826 0.8486 0.6018 ] 12015 </ynr_lhci> 12016 <ynr_hlci index="1" type="double" size="[1 4]"> 12017 [0.7938 1.0093 0.8587 0.5390 ] 12018 </ynr_hlci> 12019 <ynr_hhci index="1" type="double" size="[1 4]"> 12020 [0.7093 1.4092 1.4153 0.9588 ] 12021 </ynr_hhci> 12022 <lo_lumaPoint index="1" type="double" size="[1 6]"> 12023 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 12024 </lo_lumaPoint> 12025 <lo_lumaRatio index="1" type="double" size="[1 6]"> 12026 [1.2000 1.2000 1.2500 1.0000 1.0000 1.0000 ] 12027 </lo_lumaRatio> 12028 <lo_directionStrength index="1" type="double" size="[1 1]"> 12029 [0.5000 ] 12030 </lo_directionStrength> 12031 <lo_bfScale index="1" type="double" size="[1 4]"> 12032 [0.50000 0.50000 0.50000 0.50000 ] 12033 </lo_bfScale> 12034 <imerge_ratio index="1" type="double" size="[1 1]"> 12035 [0.4000 ] 12036 </imerge_ratio> 12037 <imerge_bound index="1" type="double" size="[1 1]"> 12038 [1.2500 ] 12039 </imerge_bound> 12040 <denoise_weight index="1" type="double" size="[1 4]"> 12041 [0.3000 0.3000 0.5000 0.7000 ] 12042 </denoise_weight> 12043 <hi_lumaPoint index="1" type="double" size="[1 6]"> 12044 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 12045 </hi_lumaPoint> 12046 <hi_lumaRatio index="1" type="double" size="[1 6]"> 12047 [1.2500 1.2500 1.2500 1.0000 1.0000 1.0000 ] 12048 </hi_lumaRatio> 12049 <hi_bfScale index="1" type="double" size="[1 4]"> 12050 [0.50000 0.50000 0.50000 0.50000 ] 12051 </hi_bfScale> 12052 <hwith_d index="1" type="double" size="[1 4]"> 12053 [2.0000 2.0000 1.2000 1.2000 ] 12054 </hwith_d> 12055 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 12056 [2.0000 ] 12057 </hi_denoiseStrength> 12058 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 12059 [0.2000 ] 12060 </hi_detailMinAdjDnW> 12061 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 12062 [0.7500 0.7000 0.6000 0.5000 ] 12063 </hi_denoiseWeight> 12064 <y_luma_point index="1" type="double" size="[1 6]"> 12065 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 12066 </y_luma_point> 12067 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 12068 [1.0000 0.6700 0.6700 0.6700 0.6700 0.6700 ] 12069 </hgrad_y_level1> 12070 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 12071 [1.0000 0.6700 0.6700 0.6700 0.6700 0.6700 ] 12072 </hgrad_y_level2> 12073 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 12074 [1.0000 0.5700 0.5700 0.5700 0.5700 0.5700 ] 12075 </hgrad_y_level3> 12076 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 12077 [1.0000 0.5000 0.5000 0.4000 0.3000 0.2000 ] 12078 </hgrad_y_level4> 12079 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 12080 [0.1100 0.1100 0.1000 0.1000 ] 12081 </hi_soft_thresh_scale> 12082 </cell> 12083 <cell index="2" type="struct" size="[1 1]"> 12084 <iso index="1" type="double" size="[1 1]"> 12085 [100.0000 ] 12086 </iso> 12087 <sigma_curve index="1" type="double" size="[1 5]"> 12088 [-6.12954260408810e-013 6.56213771001716e-009 -2.56271619105131e-005 3.53336500457644e-002 2.51344679667418e+001 ] 12089 </sigma_curve> 12090 <ynr_lci index="1" type="double" size="[1 4]"> 12091 [0.9686 0.7317 0.4368 0.2440 ] 12092 </ynr_lci> 12093 <ynr_lhci index="1" type="double" size="[1 4]"> 12094 [0.7923 1.0678 0.8134 0.5675 ] 12095 </ynr_lhci> 12096 <ynr_hlci index="1" type="double" size="[1 4]"> 12097 [0.7945 0.9887 0.8222 0.5071 ] 12098 </ynr_hlci> 12099 <ynr_hhci index="1" type="double" size="[1 4]"> 12100 [0.6917 1.3976 1.3816 0.8942 ] 12101 </ynr_hhci> 12102 <lo_lumaPoint index="1" type="double" size="[1 6]"> 12103 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 12104 </lo_lumaPoint> 12105 <lo_lumaRatio index="1" type="double" size="[1 6]"> 12106 [1.3000 1.2000 1.3000 1.0000 1.0000 1.0000 ] 12107 </lo_lumaRatio> 12108 <lo_directionStrength index="1" type="double" size="[1 1]"> 12109 [0.5000 ] 12110 </lo_directionStrength> 12111 <lo_bfScale index="1" type="double" size="[1 4]"> 12112 [1.0000 1.0000 1.0000 1.0000 ] 12113 </lo_bfScale> 12114 <imerge_ratio index="1" type="double" size="[1 1]"> 12115 [0.4000 ] 12116 </imerge_ratio> 12117 <imerge_bound index="1" type="double" size="[1 1]"> 12118 [1.2500 ] 12119 </imerge_bound> 12120 <denoise_weight index="1" type="double" size="[1 4]"> 12121 [0.3000 0.3000 0.5000 0.8000 ] 12122 </denoise_weight> 12123 <hi_lumaPoint index="1" type="double" size="[1 6]"> 12124 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 12125 </hi_lumaPoint> 12126 <hi_lumaRatio index="1" type="double" size="[1 6]"> 12127 [1.2500 1.3000 1.2500 1.0000 1.0000 1.0000 ] 12128 </hi_lumaRatio> 12129 <hi_bfScale index="1" type="double" size="[1 4]"> 12130 [1.2000 1.2000 1.0000 1.0000 ] 12131 </hi_bfScale> 12132 <hwith_d index="1" type="double" size="[1 4]"> 12133 [2.0000 2.0000 1.2000 1.2000 ] 12134 </hwith_d> 12135 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 12136 [1.2000 ] 12137 </hi_denoiseStrength> 12138 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 12139 [0.2000 ] 12140 </hi_detailMinAdjDnW> 12141 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 12142 [0.7500 0.7500 0.6000 0.3000 ] 12143 </hi_denoiseWeight> 12144 <y_luma_point index="1" type="double" size="[1 6]"> 12145 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 12146 </y_luma_point> 12147 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 12148 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 12149 </hgrad_y_level1> 12150 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 12151 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 12152 </hgrad_y_level2> 12153 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 12154 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 12155 </hgrad_y_level3> 12156 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 12157 [1.0000 0.5000 0.5000 0.4000 0.3000 0.2000 ] 12158 </hgrad_y_level4> 12159 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 12160 [0.1100 0.1100 0.1000 0.1000 ] 12161 </hi_soft_thresh_scale> 12162 </cell> 12163 <cell index="3" type="struct" size="[1 1]"> 12164 <iso index="1" type="double" size="[1 1]"> 12165 [200.0000 ] 12166 </iso> 12167 <sigma_curve index="1" type="double" size="[1 5]"> 12168 [-4.88118020793126e-013 5.17135216910485e-009 -2.12964081629935e-005 2.87181383407642e-002 4.47372008265083e+001 ] 12169 </sigma_curve> 12170 <ynr_lci index="1" type="double" size="[1 4]"> 12171 [0.9712 0.7271 0.4331 0.2318 ] 12172 </ynr_lci> 12173 <ynr_lhci index="1" type="double" size="[1 4]"> 12174 [0.7952 1.0518 0.8044 0.5177 ] 12175 </ynr_lhci> 12176 <ynr_hlci index="1" type="double" size="[1 4]"> 12177 [0.7902 0.9882 0.7978 0.4915 ] 12178 </ynr_hlci> 12179 <ynr_hhci index="1" type="double" size="[1 4]"> 12180 [0.6750 1.4024 1.3611 0.8802 ] 12181 </ynr_hhci> 12182 <lo_lumaPoint index="1" type="double" size="[1 6]"> 12183 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 12184 </lo_lumaPoint> 12185 <lo_lumaRatio index="1" type="double" size="[1 6]"> 12186 [1.3000 1.2000 1.5000 1.2000 1.0000 1.0000 ] 12187 </lo_lumaRatio> 12188 <lo_directionStrength index="1" type="double" size="[1 1]"> 12189 [0.5000 ] 12190 </lo_directionStrength> 12191 <lo_bfScale index="1" type="double" size="[1 4]"> 12192 [0.3000 0.6000 1.0000 1.0000 ] 12193 </lo_bfScale> 12194 <imerge_ratio index="1" type="double" size="[1 1]"> 12195 [0.3000 ] 12196 </imerge_ratio> 12197 <imerge_bound index="1" type="double" size="[1 1]"> 12198 [1.2500 ] 12199 </imerge_bound> 12200 <denoise_weight index="1" type="double" size="[1 4]"> 12201 [0.3000 0.4000 0.6000 0.6000 ] 12202 </denoise_weight> 12203 <hi_lumaPoint index="1" type="double" size="[1 6]"> 12204 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 12205 </hi_lumaPoint> 12206 <hi_lumaRatio index="1" type="double" size="[1 6]"> 12207 [1.1000 1.1000 1.5000 1.0000 1.0000 1.0000 ] 12208 </hi_lumaRatio> 12209 <hi_bfScale index="1" type="double" size="[1 4]"> 12210 [1.1000 1.0000 1.0000 1.0000 ] 12211 </hi_bfScale> 12212 <hwith_d index="1" type="double" size="[1 4]"> 12213 [4.0000 4.0000 2.0000 1.2000 ] 12214 </hwith_d> 12215 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 12216 [1.3000 ] 12217 </hi_denoiseStrength> 12218 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 12219 [0.2000 ] 12220 </hi_detailMinAdjDnW> 12221 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 12222 [0.7000 0.7000 0.6000 0.3000 ] 12223 </hi_denoiseWeight> 12224 <y_luma_point index="1" type="double" size="[1 6]"> 12225 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 12226 </y_luma_point> 12227 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 12228 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 12229 </hgrad_y_level1> 12230 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 12231 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 12232 </hgrad_y_level2> 12233 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 12234 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 12235 </hgrad_y_level3> 12236 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 12237 [1.0000 0.5000 0.5000 0.4000 0.3000 0.2000 ] 12238 </hgrad_y_level4> 12239 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 12240 [0.1200 0.1200 0.1000 0.1000 ] 12241 </hi_soft_thresh_scale> 12242 </cell> 12243 <cell index="4" type="struct" size="[1 1]"> 12244 <iso index="1" type="double" size="[1 1]"> 12245 [400.0000 ] 12246 </iso> 12247 <sigma_curve index="1" type="double" size="[1 5]"> 12248 [-1.48119726941212e-012 1.56289236737456e-008 -5.98269836499521e-005 8.25287140888520e-002 4.27598482026588e+001 ] 12249 </sigma_curve> 12250 <ynr_lci index="1" type="double" size="[1 4]"> 12251 [0.9824 0.7376 0.4461 0.2333 ] 12252 </ynr_lci> 12253 <ynr_lhci index="1" type="double" size="[1 4]"> 12254 [0.7832 1.0576 0.8094 0.4839 ] 12255 </ynr_lhci> 12256 <ynr_hlci index="1" type="double" size="[1 4]"> 12257 [0.7856 0.9876 0.8081 0.4706 ] 12258 </ynr_hlci> 12259 <ynr_hhci index="1" type="double" size="[1 4]"> 12260 [0.6681 1.3952 1.3472 0.8614 ] 12261 </ynr_hhci> 12262 <lo_lumaPoint index="1" type="double" size="[1 6]"> 12263 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 12264 </lo_lumaPoint> 12265 <lo_lumaRatio index="1" type="double" size="[1 6]"> 12266 [1.3000 1.2000 1.5000 1.0000 1.0000 1.0000 ] 12267 </lo_lumaRatio> 12268 <lo_directionStrength index="1" type="double" size="[1 1]"> 12269 [0.5000 ] 12270 </lo_directionStrength> 12271 <lo_bfScale index="1" type="double" size="[1 4]"> 12272 [0.4000 0.7000 1.0000 1.0000 ] 12273 </lo_bfScale> 12274 <imerge_ratio index="1" type="double" size="[1 1]"> 12275 [0.2500 ] 12276 </imerge_ratio> 12277 <imerge_bound index="1" type="double" size="[1 1]"> 12278 [1.2500 ] 12279 </imerge_bound> 12280 <denoise_weight index="1" type="double" size="[1 4]"> 12281 [0.3500 0.4000 0.6000 0.6000 ] 12282 </denoise_weight> 12283 <hi_lumaPoint index="1" type="double" size="[1 6]"> 12284 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 12285 </hi_lumaPoint> 12286 <hi_lumaRatio index="1" type="double" size="[1 6]"> 12287 [1.2000 1.2000 1.5000 1.5000 1.0000 1.0000 ] 12288 </hi_lumaRatio> 12289 <hi_bfScale index="1" type="double" size="[1 4]"> 12290 [1.5000 1.5000 1.5000 1.5000 ] 12291 </hi_bfScale> 12292 <hwith_d index="1" type="double" size="[1 4]"> 12293 [6.0000 6.0000 4.0000 2.0000 ] 12294 </hwith_d> 12295 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 12296 [1.5000 ] 12297 </hi_denoiseStrength> 12298 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 12299 [0.2000 ] 12300 </hi_detailMinAdjDnW> 12301 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 12302 [0.8000 0.9000 1.0000 1.0000 ] 12303 </hi_denoiseWeight> 12304 <y_luma_point index="1" type="double" size="[1 6]"> 12305 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 12306 </y_luma_point> 12307 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 12308 [1.0000 0.5000 0.5000 0.5000 0.5000 0.3000 ] 12309 </hgrad_y_level1> 12310 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 12311 [1.0000 0.5000 0.5000 0.5000 0.5000 0.3000 ] 12312 </hgrad_y_level2> 12313 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 12314 [1.0000 0.5100 0.5100 0.5100 0.5100 0.3000 ] 12315 </hgrad_y_level3> 12316 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 12317 [1.0000 0.5000 0.5000 0.4000 0.3000 0.2000 ] 12318 </hgrad_y_level4> 12319 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 12320 [0.1300 0.1300 0.1000 0.1000 ] 12321 </hi_soft_thresh_scale> 12322 </cell> 12323 <cell index="5" type="struct" size="[1 1]"> 12324 <iso index="1" type="double" size="[1 1]"> 12325 [800.0000 ] 12326 </iso> 12327 <sigma_curve index="1" type="double" size="[1 5]"> 12328 [-1.63594828480084e-012 1.75614677431381e-008 -6.92401591106118e-005 9.58142896234051e-002 7.18496259606400e+001 ] 12329 </sigma_curve> 12330 <ynr_lci index="1" type="double" size="[1 4]"> 12331 [0.9781 0.7313 0.4366 0.2350 ] 12332 </ynr_lci> 12333 <ynr_lhci index="1" type="double" size="[1 4]"> 12334 [0.7932 1.0457 0.7904 0.4573 ] 12335 </ynr_lhci> 12336 <ynr_hlci index="1" type="double" size="[1 4]"> 12337 [0.7924 0.9861 0.7910 0.4630 ] 12338 </ynr_hlci> 12339 <ynr_hhci index="1" type="double" size="[1 4]"> 12340 [0.6668 1.3875 1.3597 0.8841 ] 12341 </ynr_hhci> 12342 <lo_lumaPoint index="1" type="double" size="[1 6]"> 12343 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 12344 </lo_lumaPoint> 12345 <lo_lumaRatio index="1" type="double" size="[1 6]"> 12346 [1.0000 1.0000 1.5000 1.0000 1.0000 1.0000 ] 12347 </lo_lumaRatio> 12348 <lo_directionStrength index="1" type="double" size="[1 1]"> 12349 [0.3000 ] 12350 </lo_directionStrength> 12351 <lo_bfScale index="1" type="double" size="[1 4]"> 12352 [0.3000 0.5000 1.0000 1.0000 ] 12353 </lo_bfScale> 12354 <imerge_ratio index="1" type="double" size="[1 1]"> 12355 [0.2000 ] 12356 </imerge_ratio> 12357 <imerge_bound index="1" type="double" size="[1 1]"> 12358 [1.2500 ] 12359 </imerge_bound> 12360 <denoise_weight index="1" type="double" size="[1 4]"> 12361 [0.4000 0.5000 1.0000 1.0000 ] 12362 </denoise_weight> 12363 <hi_lumaPoint index="1" type="double" size="[1 6]"> 12364 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 12365 </hi_lumaPoint> 12366 <hi_lumaRatio index="1" type="double" size="[1 6]"> 12367 [1.1000 1.2000 1.5000 1.5000 1.0000 1.0000 ] 12368 </hi_lumaRatio> 12369 <hi_bfScale index="1" type="double" size="[1 4]"> 12370 [1.2000 1.3000 1.5000 1.5000 ] 12371 </hi_bfScale> 12372 <hwith_d index="1" type="double" size="[1 4]"> 12373 [6.0000 6.0000 4.0000 2.0000 ] 12374 </hwith_d> 12375 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 12376 [1.3000 ] 12377 </hi_denoiseStrength> 12378 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 12379 [0.2000 ] 12380 </hi_detailMinAdjDnW> 12381 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 12382 [1.1000 1.2000 1.3000 1.3000 ] 12383 </hi_denoiseWeight> 12384 <y_luma_point index="1" type="double" size="[1 6]"> 12385 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 12386 </y_luma_point> 12387 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 12388 [1.0000 0.5000 0.4000 0.3500 0.3000 0.2000 ] 12389 </hgrad_y_level1> 12390 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 12391 [1.0000 0.5000 0.4000 0.3500 0.3000 0.2000 ] 12392 </hgrad_y_level2> 12393 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 12394 [1.0000 0.5000 0.4000 0.3500 0.3000 0.2000 ] 12395 </hgrad_y_level3> 12396 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 12397 [1.0000 0.5000 0.4000 0.3500 0.3000 0.2000 ] 12398 </hgrad_y_level4> 12399 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 12400 [0.1300 0.1300 0.1000 0.1000 ] 12401 </hi_soft_thresh_scale> 12402 </cell> 12403 <cell index="6" type="struct" size="[1 1]"> 12404 <iso index="1" type="double" size="[1 1]"> 12405 [1600.0000 ] 12406 </iso> 12407 <sigma_curve index="1" type="double" size="[1 5]"> 12408 [-3.54429850049432e-012 3.60287476727038e-008 -1.31984529909812e-004 1.75061075984246e-001 8.74586517163552e+001 ] 12409 </sigma_curve> 12410 <ynr_lci index="1" type="double" size="[1 4]"> 12411 [0.9678 0.7111 0.4194 0.2277 ] 12412 </ynr_lci> 12413 <ynr_lhci index="1" type="double" size="[1 4]"> 12414 [0.8166 1.0234 0.7747 0.4554 ] 12415 </ynr_lhci> 12416 <ynr_hlci index="1" type="double" size="[1 4]"> 12417 [0.8149 0.9866 0.7613 0.4590 ] 12418 </ynr_hlci> 12419 <ynr_hhci index="1" type="double" size="[1 4]"> 12420 [0.6683 1.3823 1.3066 0.8024 ] 12421 </ynr_hhci> 12422 <lo_lumaPoint index="1" type="double" size="[1 6]"> 12423 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 12424 </lo_lumaPoint> 12425 <lo_lumaRatio index="1" type="double" size="[1 6]"> 12426 [1.0000 1.0000 1.5000 1.0000 1.0000 1.0000 ] 12427 </lo_lumaRatio> 12428 <lo_directionStrength index="1" type="double" size="[1 1]"> 12429 [0.2000 ] 12430 </lo_directionStrength> 12431 <lo_bfScale index="1" type="double" size="[1 4]"> 12432 [0.500 0.7000 2.0000 1.0000 ] 12433 </lo_bfScale> 12434 <imerge_ratio index="1" type="double" size="[1 1]"> 12435 [0.1500 ] 12436 </imerge_ratio> 12437 <imerge_bound index="1" type="double" size="[1 1]"> 12438 [1.2500 ] 12439 </imerge_bound> 12440 <denoise_weight index="1" type="double" size="[1 4]"> 12441 [0.8000 0.8500 0.8500 0.9000 ] 12442 </denoise_weight> 12443 <hi_lumaPoint index="1" type="double" size="[1 6]"> 12444 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 12445 </hi_lumaPoint> 12446 <hi_lumaRatio index="1" type="double" size="[1 6]"> 12447 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 12448 </hi_lumaRatio> 12449 <hi_bfScale index="1" type="double" size="[1 4]"> 12450 [1.2000 1.5000 1.5000 0.9600 ] 12451 </hi_bfScale> 12452 <hwith_d index="1" type="double" size="[1 4]"> 12453 [6.0000 6.0000 4.0000 2.0000 ] 12454 </hwith_d> 12455 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 12456 [1.8000 ] 12457 </hi_denoiseStrength> 12458 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 12459 [0.2000 ] 12460 </hi_detailMinAdjDnW> 12461 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 12462 [0.8000 0.8500 0.8500 0.8000 ] 12463 </hi_denoiseWeight> 12464 <y_luma_point index="1" type="double" size="[1 6]"> 12465 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 12466 </y_luma_point> 12467 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 12468 [1.2000 1.0000 1.0000 1.0000 0.8000 0.7000 ] 12469 </hgrad_y_level1> 12470 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 12471 [1.2400 1.2400 1.0000 1.0000 0.7600 0.6300 ] 12472 </hgrad_y_level2> 12473 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 12474 [1.9000 1.6000 1.3000 1.0000 0.8000 0.8000 ] 12475 </hgrad_y_level3> 12476 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 12477 [1.4300 1.0000 0.5600 0.5600 0.5600 0.5600 ] 12478 </hgrad_y_level4> 12479 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 12480 [0.1300 0.3000 0.3000 0.1000 ] 12481 </hi_soft_thresh_scale> 12482 </cell> 12483 <cell index="7" type="struct" size="[1 1]"> 12484 <iso index="1" type="double" size="[1 1]"> 12485 [3200.0000 ] 12486 </iso> 12487 <sigma_curve index="1" type="double" size="[1 5]"> 12488 [-3.50549752881191e-012 3.76368052960353e-008 -1.51293815921383e-004 2.17945943756604e-001 1.33106751935557e+002 ] 12489 </sigma_curve> 12490 <ynr_lci index="1" type="double" size="[1 4]"> 12491 [0.9672 0.7349 0.4412 0.2149 ] 12492 </ynr_lci> 12493 <ynr_lhci index="1" type="double" size="[1 4]"> 12494 [0.8123 1.0416 0.7791 0.4971 ] 12495 </ynr_lhci> 12496 <ynr_hlci index="1" type="double" size="[1 4]"> 12497 [0.7957 0.9784 0.7845 0.4539 ] 12498 </ynr_hlci> 12499 <ynr_hhci index="1" type="double" size="[1 4]"> 12500 [0.6649 1.3670 1.3200 0.8774 ] 12501 </ynr_hhci> 12502 <lo_lumaPoint index="1" type="double" size="[1 6]"> 12503 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 12504 </lo_lumaPoint> 12505 <lo_lumaRatio index="1" type="double" size="[1 6]"> 12506 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 12507 </lo_lumaRatio> 12508 <lo_directionStrength index="1" type="double" size="[1 1]"> 12509 [0.2000 ] 12510 </lo_directionStrength> 12511 <lo_bfScale index="1" type="double" size="[1 4]"> 12512 [0.700 0.9000 2.2000 1.2000 ] 12513 </lo_bfScale> 12514 <imerge_ratio index="1" type="double" size="[1 1]"> 12515 [0.1500 ] 12516 </imerge_ratio> 12517 <imerge_bound index="1" type="double" size="[1 1]"> 12518 [1.2500 ] 12519 </imerge_bound> 12520 <denoise_weight index="1" type="double" size="[1 4]"> 12521 [0.9000 0.900 0.9000 0.9000 ] 12522 </denoise_weight> 12523 <hi_lumaPoint index="1" type="double" size="[1 6]"> 12524 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 12525 </hi_lumaPoint> 12526 <hi_lumaRatio index="1" type="double" size="[1 6]"> 12527 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 12528 </hi_lumaRatio> 12529 <hi_bfScale index="1" type="double" size="[1 4]"> 12530 [1.5000 1.7000 1.7000 1.200 ] 12531 </hi_bfScale> 12532 <hwith_d index="1" type="double" size="[1 4]"> 12533 [0.7500 0.7000 0.6600 0.3600 ] 12534 </hwith_d> 12535 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 12536 [2.0000 ] 12537 </hi_denoiseStrength> 12538 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 12539 [0.2000 ] 12540 </hi_detailMinAdjDnW> 12541 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 12542 [0.9000 0.9500 0.950 0.9000 ] 12543 </hi_denoiseWeight> 12544 <y_luma_point index="1" type="double" size="[1 6]"> 12545 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 12546 </y_luma_point> 12547 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 12548 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 12549 </hgrad_y_level1> 12550 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 12551 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 12552 </hgrad_y_level2> 12553 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 12554 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 12555 </hgrad_y_level3> 12556 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 12557 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 12558 </hgrad_y_level4> 12559 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 12560 [0.1300 0.3000 0.3000 0.1000 ] 12561 </hi_soft_thresh_scale> 12562 </cell> 12563 <cell index="8" type="struct" size="[1 1]"> 12564 <iso index="1" type="double" size="[1 1]"> 12565 [6400.0000 ] 12566 </iso> 12567 <sigma_curve index="1" type="double" size="[1 5]"> 12568 [-1.17756545286079e-011 1.12670434028526e-007 -4.05537564186043e-004 5.71448012221026e-001 6.52947928690119e+001 ] 12569 </sigma_curve> 12570 <ynr_lci index="1" type="double" size="[1 4]"> 12571 [0.9994 0.7431 0.4539 0.2078 ] 12572 </ynr_lci> 12573 <ynr_lhci index="1" type="double" size="[1 4]"> 12574 [0.8036 1.0685 0.8190 0.4374 ] 12575 </ynr_lhci> 12576 <ynr_hlci index="1" type="double" size="[1 4]"> 12577 [0.7714 0.9690 0.7755 0.4423 ] 12578 </ynr_hlci> 12579 <ynr_hhci index="1" type="double" size="[1 4]"> 12580 [0.6623 1.3492 1.3111 0.6951 ] 12581 </ynr_hhci> 12582 <lo_lumaPoint index="1" type="double" size="[1 6]"> 12583 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 12584 </lo_lumaPoint> 12585 <lo_lumaRatio index="1" type="double" size="[1 6]"> 12586 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 12587 </lo_lumaRatio> 12588 <lo_directionStrength index="1" type="double" size="[1 1]"> 12589 [0.2000 ] 12590 </lo_directionStrength> 12591 <lo_bfScale index="1" type="double" size="[1 4]"> 12592 [0.700 0.9000 2.2000 1.2000 ] 12593 </lo_bfScale> 12594 <imerge_ratio index="1" type="double" size="[1 1]"> 12595 [0.1500 ] 12596 </imerge_ratio> 12597 <imerge_bound index="1" type="double" size="[1 1]"> 12598 [1.2500 ] 12599 </imerge_bound> 12600 <denoise_weight index="1" type="double" size="[1 4]"> 12601 [0.9000 0.9000 0.9000 0.9000 ] 12602 </denoise_weight> 12603 <hi_lumaPoint index="1" type="double" size="[1 6]"> 12604 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 12605 </hi_lumaPoint> 12606 <hi_lumaRatio index="1" type="double" size="[1 6]"> 12607 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 12608 </hi_lumaRatio> 12609 <hi_bfScale index="1" type="double" size="[1 4]"> 12610 [1.5000 1.7000 1.7000 1.2000 ] 12611 </hi_bfScale> 12612 <hwith_d index="1" type="double" size="[1 4]"> 12613 [0.7500 0.7000 0.6600 0.3600 ] 12614 </hwith_d> 12615 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 12616 [1.0000 ] 12617 </hi_denoiseStrength> 12618 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 12619 [0.2000 ] 12620 </hi_detailMinAdjDnW> 12621 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 12622 [0.9000 0.9500 0.9500 0.9000 ] 12623 </hi_denoiseWeight> 12624 <y_luma_point index="1" type="double" size="[1 6]"> 12625 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 12626 </y_luma_point> 12627 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 12628 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 12629 </hgrad_y_level1> 12630 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 12631 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 12632 </hgrad_y_level2> 12633 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 12634 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 12635 </hgrad_y_level3> 12636 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 12637 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 12638 </hgrad_y_level4> 12639 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 12640 [0.1300 0.3000 0.3000 0.1000 ] 12641 </hi_soft_thresh_scale> 12642 </cell> 12643 <cell index="9" type="struct" size="[1 1]"> 12644 <iso index="1" type="double" size="[1 1]"> 12645 [12800.0000 ] 12646 </iso> 12647 <sigma_curve index="1" type="double" size="[1 5]"> 12648 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 12649 </sigma_curve> 12650 <ynr_lci index="1" type="double" size="[1 4]"> 12651 [0.9362 0.6543 0.4559 0.4039 ] 12652 </ynr_lci> 12653 <ynr_lhci index="1" type="double" size="[1 4]"> 12654 [0.8559 0.9798 0.6914 0.5389 ] 12655 </ynr_lhci> 12656 <ynr_hlci index="1" type="double" size="[1 4]"> 12657 [0.8855 0.9817 0.7013 0.5513 ] 12658 </ynr_hlci> 12659 <ynr_hhci index="1" type="double" size="[1 4]"> 12660 [0.7069 1.4633 1.1028 0.7415 ] 12661 </ynr_hhci> 12662 <lo_lumaPoint index="1" type="double" size="[1 6]"> 12663 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 12664 </lo_lumaPoint> 12665 <lo_lumaRatio index="1" type="double" size="[1 6]"> 12666 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 12667 </lo_lumaRatio> 12668 <lo_directionStrength index="1" type="double" size="[1 1]"> 12669 [0.2000 ] 12670 </lo_directionStrength> 12671 <lo_bfScale index="1" type="double" size="[1 4]"> 12672 [1.0000 1.0000 3.0000 1.0000 ] 12673 </lo_bfScale> 12674 <imerge_ratio index="1" type="double" size="[1 1]"> 12675 [0.1500 ] 12676 </imerge_ratio> 12677 <imerge_bound index="1" type="double" size="[1 1]"> 12678 [1.2500 ] 12679 </imerge_bound> 12680 <denoise_weight index="1" type="double" size="[1 4]"> 12681 [0.3000 0.8500 0.3000 0.3000 ] 12682 </denoise_weight> 12683 <hi_lumaPoint index="1" type="double" size="[1 6]"> 12684 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 12685 </hi_lumaPoint> 12686 <hi_lumaRatio index="1" type="double" size="[1 6]"> 12687 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 12688 </hi_lumaRatio> 12689 <hi_bfScale index="1" type="double" size="[1 4]"> 12690 [1.2000 1.1000 0.8600 0.8600 ] 12691 </hi_bfScale> 12692 <hwith_d index="1" type="double" size="[1 4]"> 12693 [6.0000 6.0000 4.0000 2.0000 ] 12694 </hwith_d> 12695 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 12696 [1.2000 ] 12697 </hi_denoiseStrength> 12698 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 12699 [0.2000 ] 12700 </hi_detailMinAdjDnW> 12701 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 12702 [0.7500 0.7000 0.6600 0.3600 ] 12703 </hi_denoiseWeight> 12704 <y_luma_point index="1" type="double" size="[1 6]"> 12705 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 12706 </y_luma_point> 12707 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 12708 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 12709 </hgrad_y_level1> 12710 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 12711 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 12712 </hgrad_y_level2> 12713 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 12714 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 12715 </hgrad_y_level3> 12716 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 12717 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 12718 </hgrad_y_level4> 12719 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 12720 [0.1300 0.3000 0.3000 0.1000 ] 12721 </hi_soft_thresh_scale> 12722 </cell> 12723 <cell index="10" type="struct" size="[1 1]"> 12724 <iso index="1" type="double" size="[1 1]"> 12725 [25600.0000 ] 12726 </iso> 12727 <sigma_curve index="1" type="double" size="[1 5]"> 12728 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 12729 </sigma_curve> 12730 <ynr_lci index="1" type="double" size="[1 4]"> 12731 [0.9362 0.6543 0.4559 0.4039 ] 12732 </ynr_lci> 12733 <ynr_lhci index="1" type="double" size="[1 4]"> 12734 [0.8559 0.9798 0.6914 0.5389 ] 12735 </ynr_lhci> 12736 <ynr_hlci index="1" type="double" size="[1 4]"> 12737 [0.8855 0.9817 0.7013 0.5513 ] 12738 </ynr_hlci> 12739 <ynr_hhci index="1" type="double" size="[1 4]"> 12740 [0.7069 1.4633 1.1028 0.7415 ] 12741 </ynr_hhci> 12742 <lo_lumaPoint index="1" type="double" size="[1 6]"> 12743 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 12744 </lo_lumaPoint> 12745 <lo_lumaRatio index="1" type="double" size="[1 6]"> 12746 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 12747 </lo_lumaRatio> 12748 <lo_directionStrength index="1" type="double" size="[1 1]"> 12749 [0.2000 ] 12750 </lo_directionStrength> 12751 <lo_bfScale index="1" type="double" size="[1 4]"> 12752 [1.0000 1.0000 3.0000 1.0000 ] 12753 </lo_bfScale> 12754 <imerge_ratio index="1" type="double" size="[1 1]"> 12755 [0.1500 ] 12756 </imerge_ratio> 12757 <imerge_bound index="1" type="double" size="[1 1]"> 12758 [1.2500 ] 12759 </imerge_bound> 12760 <denoise_weight index="1" type="double" size="[1 4]"> 12761 [0.3000 0.8500 0.3000 0.3000 ] 12762 </denoise_weight> 12763 <hi_lumaPoint index="1" type="double" size="[1 6]"> 12764 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 12765 </hi_lumaPoint> 12766 <hi_lumaRatio index="1" type="double" size="[1 6]"> 12767 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 12768 </hi_lumaRatio> 12769 <hi_bfScale index="1" type="double" size="[1 4]"> 12770 [1.2000 1.1000 0.8600 0.8600 ] 12771 </hi_bfScale> 12772 <hwith_d index="1" type="double" size="[1 4]"> 12773 [6.0000 6.0000 4.0000 2.0000 ] 12774 </hwith_d> 12775 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 12776 [1.2000 ] 12777 </hi_denoiseStrength> 12778 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 12779 [0.2000 ] 12780 </hi_detailMinAdjDnW> 12781 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 12782 [0.7500 0.7000 0.6600 0.3600 ] 12783 </hi_denoiseWeight> 12784 <y_luma_point index="1" type="double" size="[1 6]"> 12785 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 12786 </y_luma_point> 12787 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 12788 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 12789 </hgrad_y_level1> 12790 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 12791 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 12792 </hgrad_y_level2> 12793 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 12794 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 12795 </hgrad_y_level3> 12796 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 12797 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 12798 </hgrad_y_level4> 12799 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 12800 [0.1300 0.3000 0.3000 0.1000 ] 12801 </hi_soft_thresh_scale> 12802 </cell> 12803 <cell index="11" type="struct" size="[1 1]"> 12804 <iso index="1" type="double" size="[1 1]"> 12805 [51200.0000 ] 12806 </iso> 12807 <sigma_curve index="1" type="double" size="[1 5]"> 12808 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 12809 </sigma_curve> 12810 <ynr_lci index="1" type="double" size="[1 4]"> 12811 [0.9362 0.6543 0.4559 0.4039 ] 12812 </ynr_lci> 12813 <ynr_lhci index="1" type="double" size="[1 4]"> 12814 [0.8559 0.9798 0.6914 0.5389 ] 12815 </ynr_lhci> 12816 <ynr_hlci index="1" type="double" size="[1 4]"> 12817 [0.8855 0.9817 0.7013 0.5513 ] 12818 </ynr_hlci> 12819 <ynr_hhci index="1" type="double" size="[1 4]"> 12820 [0.7069 1.4633 1.1028 0.7415 ] 12821 </ynr_hhci> 12822 <lo_lumaPoint index="1" type="double" size="[1 6]"> 12823 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 12824 </lo_lumaPoint> 12825 <lo_lumaRatio index="1" type="double" size="[1 6]"> 12826 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 12827 </lo_lumaRatio> 12828 <lo_directionStrength index="1" type="double" size="[1 1]"> 12829 [0.2000 ] 12830 </lo_directionStrength> 12831 <lo_bfScale index="1" type="double" size="[1 4]"> 12832 [1.0000 1.0000 3.0000 1.0000 ] 12833 </lo_bfScale> 12834 <imerge_ratio index="1" type="double" size="[1 1]"> 12835 [0.1500 ] 12836 </imerge_ratio> 12837 <imerge_bound index="1" type="double" size="[1 1]"> 12838 [1.2500 ] 12839 </imerge_bound> 12840 <denoise_weight index="1" type="double" size="[1 4]"> 12841 [0.3000 0.8500 0.3000 0.3000 ] 12842 </denoise_weight> 12843 <hi_lumaPoint index="1" type="double" size="[1 6]"> 12844 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 12845 </hi_lumaPoint> 12846 <hi_lumaRatio index="1" type="double" size="[1 6]"> 12847 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 12848 </hi_lumaRatio> 12849 <hi_bfScale index="1" type="double" size="[1 4]"> 12850 [1.2000 1.1000 0.8600 0.8600 ] 12851 </hi_bfScale> 12852 <hwith_d index="1" type="double" size="[1 4]"> 12853 [6.0000 6.0000 4.0000 2.0000 ] 12854 </hwith_d> 12855 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 12856 [1.2000 ] 12857 </hi_denoiseStrength> 12858 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 12859 [0.2000 ] 12860 </hi_detailMinAdjDnW> 12861 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 12862 [0.7500 0.7000 0.6600 0.3600 ] 12863 </hi_denoiseWeight> 12864 <y_luma_point index="1" type="double" size="[1 6]"> 12865 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 12866 </y_luma_point> 12867 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 12868 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 12869 </hgrad_y_level1> 12870 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 12871 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 12872 </hgrad_y_level2> 12873 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 12874 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 12875 </hgrad_y_level3> 12876 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 12877 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 12878 </hgrad_y_level4> 12879 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 12880 [0.1300 0.3000 0.3000 0.1000 ] 12881 </hi_soft_thresh_scale> 12882 </cell> 12883 <cell index="12" type="struct" size="[1 1]"> 12884 <iso index="1" type="double" size="[1 1]"> 12885 [102400.0000 ] 12886 </iso> 12887 <sigma_curve index="1" type="double" size="[1 5]"> 12888 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 12889 </sigma_curve> 12890 <ynr_lci index="1" type="double" size="[1 4]"> 12891 [0.9362 0.6543 0.4559 0.4039 ] 12892 </ynr_lci> 12893 <ynr_lhci index="1" type="double" size="[1 4]"> 12894 [0.8559 0.9798 0.6914 0.5389 ] 12895 </ynr_lhci> 12896 <ynr_hlci index="1" type="double" size="[1 4]"> 12897 [0.8855 0.9817 0.7013 0.5513 ] 12898 </ynr_hlci> 12899 <ynr_hhci index="1" type="double" size="[1 4]"> 12900 [0.7069 1.4633 1.1028 0.7415 ] 12901 </ynr_hhci> 12902 <lo_lumaPoint index="1" type="double" size="[1 6]"> 12903 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 12904 </lo_lumaPoint> 12905 <lo_lumaRatio index="1" type="double" size="[1 6]"> 12906 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 12907 </lo_lumaRatio> 12908 <lo_directionStrength index="1" type="double" size="[1 1]"> 12909 [0.2000 ] 12910 </lo_directionStrength> 12911 <lo_bfScale index="1" type="double" size="[1 4]"> 12912 [1.0000 1.0000 3.0000 1.0000 ] 12913 </lo_bfScale> 12914 <imerge_ratio index="1" type="double" size="[1 1]"> 12915 [0.1500 ] 12916 </imerge_ratio> 12917 <imerge_bound index="1" type="double" size="[1 1]"> 12918 [1.2500 ] 12919 </imerge_bound> 12920 <denoise_weight index="1" type="double" size="[1 4]"> 12921 [0.3000 0.8500 0.3000 0.3000 ] 12922 </denoise_weight> 12923 <hi_lumaPoint index="1" type="double" size="[1 6]"> 12924 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 12925 </hi_lumaPoint> 12926 <hi_lumaRatio index="1" type="double" size="[1 6]"> 12927 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 12928 </hi_lumaRatio> 12929 <hi_bfScale index="1" type="double" size="[1 4]"> 12930 [1.2000 1.1000 0.8600 0.8600 ] 12931 </hi_bfScale> 12932 <hwith_d index="1" type="double" size="[1 4]"> 12933 [6.0000 6.0000 4.0000 2.0000 ] 12934 </hwith_d> 12935 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 12936 [1.2000 ] 12937 </hi_denoiseStrength> 12938 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 12939 [0.2000 ] 12940 </hi_detailMinAdjDnW> 12941 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 12942 [0.7500 0.7000 0.6600 0.3600 ] 12943 </hi_denoiseWeight> 12944 <y_luma_point index="1" type="double" size="[1 6]"> 12945 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 12946 </y_luma_point> 12947 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 12948 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 12949 </hgrad_y_level1> 12950 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 12951 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 12952 </hgrad_y_level2> 12953 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 12954 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 12955 </hgrad_y_level3> 12956 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 12957 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 12958 </hgrad_y_level4> 12959 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 12960 [0.1300 0.3000 0.3000 0.1000 ] 12961 </hi_soft_thresh_scale> 12962 </cell> 12963 <cell index="13" type="struct" size="[1 1]"> 12964 <iso index="1" type="double" size="[1 1]"> 12965 [204800.0000 ] 12966 </iso> 12967 <sigma_curve index="1" type="double" size="[1 5]"> 12968 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 12969 </sigma_curve> 12970 <ynr_lci index="1" type="double" size="[1 4]"> 12971 [0.9362 0.6543 0.4559 0.4039 ] 12972 </ynr_lci> 12973 <ynr_lhci index="1" type="double" size="[1 4]"> 12974 [0.8559 0.9798 0.6914 0.5389 ] 12975 </ynr_lhci> 12976 <ynr_hlci index="1" type="double" size="[1 4]"> 12977 [0.8855 0.9817 0.7013 0.5513 ] 12978 </ynr_hlci> 12979 <ynr_hhci index="1" type="double" size="[1 4]"> 12980 [0.7069 1.4633 1.1028 0.7415 ] 12981 </ynr_hhci> 12982 <lo_lumaPoint index="1" type="double" size="[1 6]"> 12983 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 12984 </lo_lumaPoint> 12985 <lo_lumaRatio index="1" type="double" size="[1 6]"> 12986 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 12987 </lo_lumaRatio> 12988 <lo_directionStrength index="1" type="double" size="[1 1]"> 12989 [0.2000 ] 12990 </lo_directionStrength> 12991 <lo_bfScale index="1" type="double" size="[1 4]"> 12992 [1.0000 1.0000 3.0000 1.0000 ] 12993 </lo_bfScale> 12994 <imerge_ratio index="1" type="double" size="[1 1]"> 12995 [0.1500 ] 12996 </imerge_ratio> 12997 <imerge_bound index="1" type="double" size="[1 1]"> 12998 [1.2500 ] 12999 </imerge_bound> 13000 <denoise_weight index="1" type="double" size="[1 4]"> 13001 [0.3000 0.8500 0.3000 0.3000 ] 13002 </denoise_weight> 13003 <hi_lumaPoint index="1" type="double" size="[1 6]"> 13004 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 13005 </hi_lumaPoint> 13006 <hi_lumaRatio index="1" type="double" size="[1 6]"> 13007 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 13008 </hi_lumaRatio> 13009 <hi_bfScale index="1" type="double" size="[1 4]"> 13010 [1.2000 1.1000 0.8600 0.8600 ] 13011 </hi_bfScale> 13012 <hwith_d index="1" type="double" size="[1 4]"> 13013 [6.0000 6.0000 4.0000 2.0000 ] 13014 </hwith_d> 13015 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 13016 [1.2000 ] 13017 </hi_denoiseStrength> 13018 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 13019 [0.2000 ] 13020 </hi_detailMinAdjDnW> 13021 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 13022 [0.7500 0.7000 0.6600 0.3600 ] 13023 </hi_denoiseWeight> 13024 <y_luma_point index="1" type="double" size="[1 6]"> 13025 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 13026 </y_luma_point> 13027 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 13028 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 13029 </hgrad_y_level1> 13030 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 13031 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 13032 </hgrad_y_level2> 13033 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 13034 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 13035 </hgrad_y_level3> 13036 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 13037 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 13038 </hgrad_y_level4> 13039 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 13040 [0.1300 0.3000 0.3000 0.1000 ] 13041 </hi_soft_thresh_scale> 13042 </cell> 13043 </YNR_ISO> 13044 </cell> 13045 <cell index="2" type="struct" size="[1 1]"> 13046 <SNR_Mode index="1" type="char" size="[1 4]"> 13047 HSNR 13048 </SNR_Mode> 13049 <Sensor_Mode index="1" type="char" size="[1 3]"> 13050 hcg 13051 </Sensor_Mode> 13052 <YNR_ISO index="1" type="cell" size="[1 13]"> 13053 <cell index="1" type="struct" size="[1 1]"> 13054 <iso index="1" type="double" size="[1 1]"> 13055 [50.0000 ] 13056 </iso> 13057 <sigma_curve index="1" type="double" size="[1 5]"> 13058 [-8.43031629716230e-013 7.96403418022611e-009 -2.69124846208717e-005 3.30491353997608e-002 1.82112440798101e+001 ] 13059 </sigma_curve> 13060 <ynr_lci index="1" type="double" size="[1 4]"> 13061 [0.9332 0.6865 0.4320 0.2739 ] 13062 </ynr_lci> 13063 <ynr_lhci index="1" type="double" size="[1 4]"> 13064 [0.8451 0.9787 0.7649 0.5108 ] 13065 </ynr_lhci> 13066 <ynr_hlci index="1" type="double" size="[1 4]"> 13067 [0.8322 0.9514 0.7381 0.4824 ] 13068 </ynr_hlci> 13069 <ynr_hhci index="1" type="double" size="[1 4]"> 13070 [0.6986 1.4097 1.2535 0.8366 ] 13071 </ynr_hhci> 13072 <lo_lumaPoint index="1" type="double" size="[1 6]"> 13073 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 13074 </lo_lumaPoint> 13075 <lo_lumaRatio index="1" type="double" size="[1 6]"> 13076 [1.2000 1.2000 1.2500 1.0000 1.0000 1.0000 ] 13077 </lo_lumaRatio> 13078 <lo_directionStrength index="1" type="double" size="[1 1]"> 13079 [0.5000 ] 13080 </lo_directionStrength> 13081 <lo_bfScale index="1" type="double" size="[1 4]"> 13082 [1.0000 1.0000 1.0000 1.0000 ] 13083 </lo_bfScale> 13084 <imerge_ratio index="1" type="double" size="[1 1]"> 13085 [0.4000 ] 13086 </imerge_ratio> 13087 <imerge_bound index="1" type="double" size="[1 1]"> 13088 [1.2500 ] 13089 </imerge_bound> 13090 <denoise_weight index="1" type="double" size="[1 4]"> 13091 [0.3000 0.3000 0.5000 0.7000 ] 13092 </denoise_weight> 13093 <hi_lumaPoint index="1" type="double" size="[1 6]"> 13094 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 13095 </hi_lumaPoint> 13096 <hi_lumaRatio index="1" type="double" size="[1 6]"> 13097 [1.2500 1.2500 1.2500 1.0000 1.0000 1.0000 ] 13098 </hi_lumaRatio> 13099 <hi_bfScale index="1" type="double" size="[1 4]"> 13100 [1.0000 1.0000 1.0000 1.0000 ] 13101 </hi_bfScale> 13102 <hwith_d index="1" type="double" size="[1 4]"> 13103 [2.0000 2.0000 1.2000 1.2000 ] 13104 </hwith_d> 13105 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 13106 [1.1000 ] 13107 </hi_denoiseStrength> 13108 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 13109 [0.2000 ] 13110 </hi_detailMinAdjDnW> 13111 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 13112 [0.7500 0.7000 0.6000 0.5000 ] 13113 </hi_denoiseWeight> 13114 <y_luma_point index="1" type="double" size="[1 6]"> 13115 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 13116 </y_luma_point> 13117 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 13118 [1.0000 0.6700 0.6700 0.6700 0.6700 0.6700 ] 13119 </hgrad_y_level1> 13120 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 13121 [1.0000 0.6700 0.6700 0.6700 0.6700 0.6700 ] 13122 </hgrad_y_level2> 13123 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 13124 [1.0000 0.5700 0.5700 0.5700 0.5700 0.5700 ] 13125 </hgrad_y_level3> 13126 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 13127 [1.0000 0.5000 0.5000 0.4000 0.3000 0.2000 ] 13128 </hgrad_y_level4> 13129 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 13130 [0.1100 0.1100 0.1000 0.1000 ] 13131 </hi_soft_thresh_scale> 13132 </cell> 13133 <cell index="2" type="struct" size="[1 1]"> 13134 <iso index="1" type="double" size="[1 1]"> 13135 [100.0000 ] 13136 </iso> 13137 <sigma_curve index="1" type="double" size="[1 5]"> 13138 [-9.07873071141055e-013 9.05495555543235e-009 -3.21717261013016e-005 4.12882265916323e-002 2.10344756396116e+001 ] 13139 </sigma_curve> 13140 <ynr_lci index="1" type="double" size="[1 4]"> 13141 [0.9705 0.7580 0.4856 0.2991 ] 13142 </ynr_lci> 13143 <ynr_lhci index="1" type="double" size="[1 4]"> 13144 [0.7414 0.9915 0.8479 0.5629 ] 13145 </ynr_lhci> 13146 <ynr_hlci index="1" type="double" size="[1 4]"> 13147 [0.7546 0.9337 0.8045 0.5478 ] 13148 </ynr_hlci> 13149 <ynr_hhci index="1" type="double" size="[1 4]"> 13150 [0.6777 1.3441 1.3399 0.9403 ] 13151 </ynr_hhci> 13152 <lo_lumaPoint index="1" type="double" size="[1 6]"> 13153 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 13154 </lo_lumaPoint> 13155 <lo_lumaRatio index="1" type="double" size="[1 6]"> 13156 [1.3000 1.2000 1.3000 1.0000 1.0000 1.0000 ] 13157 </lo_lumaRatio> 13158 <lo_directionStrength index="1" type="double" size="[1 1]"> 13159 [0.5000 ] 13160 </lo_directionStrength> 13161 <lo_bfScale index="1" type="double" size="[1 4]"> 13162 [1.0000 1.0000 1.0000 1.0000 ] 13163 </lo_bfScale> 13164 <imerge_ratio index="1" type="double" size="[1 1]"> 13165 [0.4000 ] 13166 </imerge_ratio> 13167 <imerge_bound index="1" type="double" size="[1 1]"> 13168 [1.2500 ] 13169 </imerge_bound> 13170 <denoise_weight index="1" type="double" size="[1 4]"> 13171 [0.3000 0.3000 0.5000 0.8000 ] 13172 </denoise_weight> 13173 <hi_lumaPoint index="1" type="double" size="[1 6]"> 13174 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 13175 </hi_lumaPoint> 13176 <hi_lumaRatio index="1" type="double" size="[1 6]"> 13177 [1.2500 1.3000 1.2500 1.0000 1.0000 1.0000 ] 13178 </hi_lumaRatio> 13179 <hi_bfScale index="1" type="double" size="[1 4]"> 13180 [1.2000 1.2000 1.0000 1.0000 ] 13181 </hi_bfScale> 13182 <hwith_d index="1" type="double" size="[1 4]"> 13183 [2.0000 2.0000 1.2000 1.2000 ] 13184 </hwith_d> 13185 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 13186 [1.2000 ] 13187 </hi_denoiseStrength> 13188 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 13189 [0.2000 ] 13190 </hi_detailMinAdjDnW> 13191 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 13192 [0.7500 0.7500 0.6000 0.3000 ] 13193 </hi_denoiseWeight> 13194 <y_luma_point index="1" type="double" size="[1 6]"> 13195 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 13196 </y_luma_point> 13197 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 13198 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 13199 </hgrad_y_level1> 13200 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 13201 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 13202 </hgrad_y_level2> 13203 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 13204 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 13205 </hgrad_y_level3> 13206 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 13207 [1.0000 0.5000 0.5000 0.4000 0.3000 0.2000 ] 13208 </hgrad_y_level4> 13209 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 13210 [0.1100 0.1100 0.1000 0.1000 ] 13211 </hi_soft_thresh_scale> 13212 </cell> 13213 <cell index="3" type="struct" size="[1 1]"> 13214 <iso index="1" type="double" size="[1 1]"> 13215 [200.0000 ] 13216 </iso> 13217 <sigma_curve index="1" type="double" size="[1 5]"> 13218 [-1.52155493457974e-012 1.40665186878902e-008 -4.69371860616144e-005 5.84762430174166e-002 2.60227194063991e+001 ] 13219 </sigma_curve> 13220 <ynr_lci index="1" type="double" size="[1 4]"> 13221 [0.9803 0.8076 0.5477 0.3742 ] 13222 </ynr_lci> 13223 <ynr_lhci index="1" type="double" size="[1 4]"> 13224 [0.6903 0.9419 0.8266 0.5464 ] 13225 </ynr_lhci> 13226 <ynr_hlci index="1" type="double" size="[1 4]"> 13227 [0.7051 0.8922 0.8274 0.5191 ] 13228 </ynr_hlci> 13229 <ynr_hhci index="1" type="double" size="[1 4]"> 13230 [0.6291 1.2325 1.3371 0.9198 ] 13231 </ynr_hhci> 13232 <lo_lumaPoint index="1" type="double" size="[1 6]"> 13233 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 13234 </lo_lumaPoint> 13235 <lo_lumaRatio index="1" type="double" size="[1 6]"> 13236 [1.3000 1.2000 1.5000 1.2000 1.0000 1.0000 ] 13237 </lo_lumaRatio> 13238 <lo_directionStrength index="1" type="double" size="[1 1]"> 13239 [0.5000 ] 13240 </lo_directionStrength> 13241 <lo_bfScale index="1" type="double" size="[1 4]"> 13242 [0.3000 0.6000 1.0000 1.0000 ] 13243 </lo_bfScale> 13244 <imerge_ratio index="1" type="double" size="[1 1]"> 13245 [0.3000 ] 13246 </imerge_ratio> 13247 <imerge_bound index="1" type="double" size="[1 1]"> 13248 [1.2500 ] 13249 </imerge_bound> 13250 <denoise_weight index="1" type="double" size="[1 4]"> 13251 [0.3000 0.4000 0.6000 0.6000 ] 13252 </denoise_weight> 13253 <hi_lumaPoint index="1" type="double" size="[1 6]"> 13254 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 13255 </hi_lumaPoint> 13256 <hi_lumaRatio index="1" type="double" size="[1 6]"> 13257 [1.1000 1.1000 1.5000 1.0000 1.0000 1.0000 ] 13258 </hi_lumaRatio> 13259 <hi_bfScale index="1" type="double" size="[1 4]"> 13260 [1.1000 1.0000 1.0000 1.0000 ] 13261 </hi_bfScale> 13262 <hwith_d index="1" type="double" size="[1 4]"> 13263 [4.0000 4.0000 2.0000 1.2000 ] 13264 </hwith_d> 13265 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 13266 [1.3000 ] 13267 </hi_denoiseStrength> 13268 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 13269 [0.2000 ] 13270 </hi_detailMinAdjDnW> 13271 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 13272 [0.7000 0.7000 0.6000 0.3000 ] 13273 </hi_denoiseWeight> 13274 <y_luma_point index="1" type="double" size="[1 6]"> 13275 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 13276 </y_luma_point> 13277 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 13278 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 13279 </hgrad_y_level1> 13280 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 13281 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 13282 </hgrad_y_level2> 13283 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 13284 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 13285 </hgrad_y_level3> 13286 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 13287 [1.0000 0.5000 0.5000 0.4000 0.3000 0.2000 ] 13288 </hgrad_y_level4> 13289 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 13290 [0.1200 0.1200 0.1000 0.1000 ] 13291 </hi_soft_thresh_scale> 13292 </cell> 13293 <cell index="4" type="struct" size="[1 1]"> 13294 <iso index="1" type="double" size="[1 1]"> 13295 [400.0000 ] 13296 </iso> 13297 <sigma_curve index="1" type="double" size="[1 5]"> 13298 [-2.78200837475752e-012 2.61174369092566e-008 -8.77094728358591e-005 1.11980382041814e-001 2.36814539463394e+001 ] 13299 </sigma_curve> 13300 <ynr_lci index="1" type="double" size="[1 4]"> 13301 [0.9916 0.8348 0.5930 0.4323 ] 13302 </ynr_lci> 13303 <ynr_lhci index="1" type="double" size="[1 4]"> 13304 [0.6344 0.9054 0.8065 0.5319 ] 13305 </ynr_lhci> 13306 <ynr_hlci index="1" type="double" size="[1 4]"> 13307 [0.6500 0.8519 0.7976 0.5142 ] 13308 </ynr_hlci> 13309 <ynr_hhci index="1" type="double" size="[1 4]"> 13310 [0.5847 1.1568 1.3008 0.9211 ] 13311 </ynr_hhci> 13312 <lo_lumaPoint index="1" type="double" size="[1 6]"> 13313 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 13314 </lo_lumaPoint> 13315 <lo_lumaRatio index="1" type="double" size="[1 6]"> 13316 [1.3000 1.2000 1.5000 1.0000 1.0000 1.0000 ] 13317 </lo_lumaRatio> 13318 <lo_directionStrength index="1" type="double" size="[1 1]"> 13319 [0.5000 ] 13320 </lo_directionStrength> 13321 <lo_bfScale index="1" type="double" size="[1 4]"> 13322 [0.4000 0.7000 1.0000 1.0000 ] 13323 </lo_bfScale> 13324 <imerge_ratio index="1" type="double" size="[1 1]"> 13325 [0.2500 ] 13326 </imerge_ratio> 13327 <imerge_bound index="1" type="double" size="[1 1]"> 13328 [1.2500 ] 13329 </imerge_bound> 13330 <denoise_weight index="1" type="double" size="[1 4]"> 13331 [0.3500 0.4000 0.6000 0.6000 ] 13332 </denoise_weight> 13333 <hi_lumaPoint index="1" type="double" size="[1 6]"> 13334 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 13335 </hi_lumaPoint> 13336 <hi_lumaRatio index="1" type="double" size="[1 6]"> 13337 [1.2000 1.2000 1.5000 1.5000 1.0000 1.0000 ] 13338 </hi_lumaRatio> 13339 <hi_bfScale index="1" type="double" size="[1 4]"> 13340 [1.2000 1.2000 1.2000 1.2000 ] 13341 </hi_bfScale> 13342 <hwith_d index="1" type="double" size="[1 4]"> 13343 [6.0000 6.0000 4.0000 2.0000 ] 13344 </hwith_d> 13345 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 13346 [1.4000 ] 13347 </hi_denoiseStrength> 13348 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 13349 [0.2000 ] 13350 </hi_detailMinAdjDnW> 13351 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 13352 [0.8000 0.9000 1.0000 1.0000 ] 13353 </hi_denoiseWeight> 13354 <y_luma_point index="1" type="double" size="[1 6]"> 13355 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 13356 </y_luma_point> 13357 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 13358 [1.0000 0.5000 0.5000 0.5000 0.5000 0.3000 ] 13359 </hgrad_y_level1> 13360 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 13361 [1.0000 0.5000 0.5000 0.5000 0.5000 0.3000 ] 13362 </hgrad_y_level2> 13363 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 13364 [1.0000 0.5100 0.5100 0.5100 0.5100 0.3000 ] 13365 </hgrad_y_level3> 13366 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 13367 [1.0000 0.5000 0.5000 0.4000 0.3000 0.2000 ] 13368 </hgrad_y_level4> 13369 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 13370 [0.1300 0.1300 0.1000 0.1000 ] 13371 </hi_soft_thresh_scale> 13372 </cell> 13373 <cell index="5" type="struct" size="[1 1]"> 13374 <iso index="1" type="double" size="[1 1]"> 13375 [800.0000 ] 13376 </iso> 13377 <sigma_curve index="1" type="double" size="[1 5]"> 13378 [-2.23709690355328e-012 2.11901816670340e-008 -7.26688079299778e-005 9.60394777007423e-002 2.24640616934303e+001 ] 13379 </sigma_curve> 13380 <ynr_lci index="1" type="double" size="[1 4]"> 13381 [0.9995 0.8669 0.6279 0.4620 ] 13382 </ynr_lci> 13383 <ynr_lhci index="1" type="double" size="[1 4]"> 13384 [0.5868 0.8782 0.8352 0.5524 ] 13385 </ynr_lhci> 13386 <ynr_hlci index="1" type="double" size="[1 4]"> 13387 [0.6041 0.8250 0.8222 0.5392 ] 13388 </ynr_hlci> 13389 <ynr_hhci index="1" type="double" size="[1 4]"> 13390 [0.5544 1.0703 1.3144 0.9702 ] 13391 </ynr_hhci> 13392 <lo_lumaPoint index="1" type="double" size="[1 6]"> 13393 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 13394 </lo_lumaPoint> 13395 <lo_lumaRatio index="1" type="double" size="[1 6]"> 13396 [1.0000 1.0000 1.5000 1.0000 1.0000 1.0000 ] 13397 </lo_lumaRatio> 13398 <lo_directionStrength index="1" type="double" size="[1 1]"> 13399 [0.3000 ] 13400 </lo_directionStrength> 13401 <lo_bfScale index="1" type="double" size="[1 4]"> 13402 [0.3000 0.5000 1.0000 1.0000 ] 13403 </lo_bfScale> 13404 <imerge_ratio index="1" type="double" size="[1 1]"> 13405 [0.2000 ] 13406 </imerge_ratio> 13407 <imerge_bound index="1" type="double" size="[1 1]"> 13408 [1.2500 ] 13409 </imerge_bound> 13410 <denoise_weight index="1" type="double" size="[1 4]"> 13411 [0.4000 0.5000 1.0000 1.0000 ] 13412 </denoise_weight> 13413 <hi_lumaPoint index="1" type="double" size="[1 6]"> 13414 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 13415 </hi_lumaPoint> 13416 <hi_lumaRatio index="1" type="double" size="[1 6]"> 13417 [1.1000 1.2000 1.5000 1.5000 1.0000 1.0000 ] 13418 </hi_lumaRatio> 13419 <hi_bfScale index="1" type="double" size="[1 4]"> 13420 [1.2000 1.3000 1.5000 1.5000 ] 13421 </hi_bfScale> 13422 <hwith_d index="1" type="double" size="[1 4]"> 13423 [6.0000 6.0000 4.0000 2.0000 ] 13424 </hwith_d> 13425 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 13426 [1.3000 ] 13427 </hi_denoiseStrength> 13428 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 13429 [0.2000 ] 13430 </hi_detailMinAdjDnW> 13431 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 13432 [1.1000 1.2000 1.3000 1.3000 ] 13433 </hi_denoiseWeight> 13434 <y_luma_point index="1" type="double" size="[1 6]"> 13435 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 13436 </y_luma_point> 13437 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 13438 [1.0000 0.5000 0.4000 0.3500 0.3000 0.2000 ] 13439 </hgrad_y_level1> 13440 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 13441 [1.0000 0.5000 0.4000 0.3500 0.3000 0.2000 ] 13442 </hgrad_y_level2> 13443 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 13444 [1.0000 0.5000 0.4000 0.3500 0.3000 0.2000 ] 13445 </hgrad_y_level3> 13446 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 13447 [1.0000 0.5000 0.4000 0.3500 0.3000 0.2000 ] 13448 </hgrad_y_level4> 13449 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 13450 [0.1300 0.1300 0.1000 0.1000 ] 13451 </hi_soft_thresh_scale> 13452 </cell> 13453 <cell index="6" type="struct" size="[1 1]"> 13454 <iso index="1" type="double" size="[1 1]"> 13455 [1600.0000 ] 13456 </iso> 13457 <sigma_curve index="1" type="double" size="[1 5]"> 13458 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 13459 </sigma_curve> 13460 <ynr_lci index="1" type="double" size="[1 4]"> 13461 [0.9431 0.6702 0.4477 0.3673 ] 13462 </ynr_lci> 13463 <ynr_lhci index="1" type="double" size="[1 4]"> 13464 [0.8418 0.9831 0.7047 0.5016 ] 13465 </ynr_lhci> 13466 <ynr_hlci index="1" type="double" size="[1 4]"> 13467 [0.8724 0.9884 0.7118 0.5088 ] 13468 </ynr_hlci> 13469 <ynr_hhci index="1" type="double" size="[1 4]"> 13470 [0.6503 1.4228 1.1743 0.7566 ] 13471 </ynr_hhci> 13472 <lo_lumaPoint index="1" type="double" size="[1 6]"> 13473 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 13474 </lo_lumaPoint> 13475 <lo_lumaRatio index="1" type="double" size="[1 6]"> 13476 [1.0000 1.0000 1.5000 1.0000 1.0000 1.0000 ] 13477 </lo_lumaRatio> 13478 <lo_directionStrength index="1" type="double" size="[1 1]"> 13479 [0.2000 ] 13480 </lo_directionStrength> 13481 <lo_bfScale index="1" type="double" size="[1 4]"> 13482 [0.2500 0.5000 2.0000 1.0000 ] 13483 </lo_bfScale> 13484 <imerge_ratio index="1" type="double" size="[1 1]"> 13485 [0.1500 ] 13486 </imerge_ratio> 13487 <imerge_bound index="1" type="double" size="[1 1]"> 13488 [1.2500 ] 13489 </imerge_bound> 13490 <denoise_weight index="1" type="double" size="[1 4]"> 13491 [0.4000 0.8500 0.8500 0.9000 ] 13492 </denoise_weight> 13493 <hi_lumaPoint index="1" type="double" size="[1 6]"> 13494 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 13495 </hi_lumaPoint> 13496 <hi_lumaRatio index="1" type="double" size="[1 6]"> 13497 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 13498 </hi_lumaRatio> 13499 <hi_bfScale index="1" type="double" size="[1 4]"> 13500 [1.2000 1.5000 1.5000 0.8600 ] 13501 </hi_bfScale> 13502 <hwith_d index="1" type="double" size="[1 4]"> 13503 [6.0000 6.0000 4.0000 2.0000 ] 13504 </hwith_d> 13505 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 13506 [1.2000 ] 13507 </hi_denoiseStrength> 13508 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 13509 [0.2000 ] 13510 </hi_detailMinAdjDnW> 13511 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 13512 [0.5000 0.4500 0.2500 0.4000 ] 13513 </hi_denoiseWeight> 13514 <y_luma_point index="1" type="double" size="[1 6]"> 13515 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 13516 </y_luma_point> 13517 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 13518 [1.2000 1.0000 1.0000 1.0000 0.8000 0.7000 ] 13519 </hgrad_y_level1> 13520 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 13521 [1.2400 1.2400 1.0000 1.0000 0.7600 0.6300 ] 13522 </hgrad_y_level2> 13523 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 13524 [1.9000 1.6000 1.3000 1.0000 0.8000 0.8000 ] 13525 </hgrad_y_level3> 13526 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 13527 [1.4300 1.0000 0.5600 0.5600 0.5600 0.5600 ] 13528 </hgrad_y_level4> 13529 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 13530 [0.1300 0.3000 0.3000 0.1000 ] 13531 </hi_soft_thresh_scale> 13532 </cell> 13533 <cell index="7" type="struct" size="[1 1]"> 13534 <iso index="1" type="double" size="[1 1]"> 13535 [3200.0000 ] 13536 </iso> 13537 <sigma_curve index="1" type="double" size="[1 5]"> 13538 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 13539 </sigma_curve> 13540 <ynr_lci index="1" type="double" size="[1 4]"> 13541 [0.9507 0.6887 0.4587 0.3811 ] 13542 </ynr_lci> 13543 <ynr_lhci index="1" type="double" size="[1 4]"> 13544 [0.8287 0.9938 0.7358 0.5284 ] 13545 </ynr_lhci> 13546 <ynr_hlci index="1" type="double" size="[1 4]"> 13547 [0.8579 0.9965 0.7366 0.5295 ] 13548 </ynr_hlci> 13549 <ynr_hhci index="1" type="double" size="[1 4]"> 13550 [0.6034 1.3726 1.2116 0.7878 ] 13551 </ynr_hhci> 13552 <lo_lumaPoint index="1" type="double" size="[1 6]"> 13553 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 13554 </lo_lumaPoint> 13555 <lo_lumaRatio index="1" type="double" size="[1 6]"> 13556 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 13557 </lo_lumaRatio> 13558 <lo_directionStrength index="1" type="double" size="[1 1]"> 13559 [0.2000 ] 13560 </lo_directionStrength> 13561 <lo_bfScale index="1" type="double" size="[1 4]"> 13562 [0.2500 0.5000 2.0000 1.0000 ] 13563 </lo_bfScale> 13564 <imerge_ratio index="1" type="double" size="[1 1]"> 13565 [0.1500 ] 13566 </imerge_ratio> 13567 <imerge_bound index="1" type="double" size="[1 1]"> 13568 [1.2500 ] 13569 </imerge_bound> 13570 <denoise_weight index="1" type="double" size="[1 4]"> 13571 [0.3000 0.8500 0.2000 0.7000 ] 13572 </denoise_weight> 13573 <hi_lumaPoint index="1" type="double" size="[1 6]"> 13574 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 13575 </hi_lumaPoint> 13576 <hi_lumaRatio index="1" type="double" size="[1 6]"> 13577 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 13578 </hi_lumaRatio> 13579 <hi_bfScale index="1" type="double" size="[1 4]"> 13580 [1.2000 1.1000 0.8600 0.8600 ] 13581 </hi_bfScale> 13582 <hwith_d index="1" type="double" size="[1 4]"> 13583 [0.7500 0.7000 0.6600 0.3600 ] 13584 </hwith_d> 13585 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 13586 [1.2000 ] 13587 </hi_denoiseStrength> 13588 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 13589 [0.2000 ] 13590 </hi_detailMinAdjDnW> 13591 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 13592 [0.7500 0.7000 0.6600 0.3600 ] 13593 </hi_denoiseWeight> 13594 <y_luma_point index="1" type="double" size="[1 6]"> 13595 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 13596 </y_luma_point> 13597 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 13598 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 13599 </hgrad_y_level1> 13600 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 13601 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 13602 </hgrad_y_level2> 13603 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 13604 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 13605 </hgrad_y_level3> 13606 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 13607 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 13608 </hgrad_y_level4> 13609 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 13610 [0.1300 0.3000 0.3000 0.1000 ] 13611 </hi_soft_thresh_scale> 13612 </cell> 13613 <cell index="8" type="struct" size="[1 1]"> 13614 <iso index="1" type="double" size="[1 1]"> 13615 [6400.0000 ] 13616 </iso> 13617 <sigma_curve index="1" type="double" size="[1 5]"> 13618 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 13619 </sigma_curve> 13620 <ynr_lci index="1" type="double" size="[1 4]"> 13621 [0.9483 0.6817 0.4481 0.3610 ] 13622 </ynr_lci> 13623 <ynr_lhci index="1" type="double" size="[1 4]"> 13624 [0.8322 0.9968 0.7385 0.5208 ] 13625 </ynr_lhci> 13626 <ynr_hlci index="1" type="double" size="[1 4]"> 13627 [0.8616 0.9967 0.7311 0.5271 ] 13628 </ynr_hlci> 13629 <ynr_hhci index="1" type="double" size="[1 4]"> 13630 [0.6135 1.3821 1.2081 0.7883 ] 13631 </ynr_hhci> 13632 <lo_lumaPoint index="1" type="double" size="[1 6]"> 13633 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 13634 </lo_lumaPoint> 13635 <lo_lumaRatio index="1" type="double" size="[1 6]"> 13636 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 13637 </lo_lumaRatio> 13638 <lo_directionStrength index="1" type="double" size="[1 1]"> 13639 [0.2000 ] 13640 </lo_directionStrength> 13641 <lo_bfScale index="1" type="double" size="[1 4]"> 13642 [0.2400 0.5000 2.0000 1.0000 ] 13643 </lo_bfScale> 13644 <imerge_ratio index="1" type="double" size="[1 1]"> 13645 [0.1500 ] 13646 </imerge_ratio> 13647 <imerge_bound index="1" type="double" size="[1 1]"> 13648 [1.2500 ] 13649 </imerge_bound> 13650 <denoise_weight index="1" type="double" size="[1 4]"> 13651 [0.3000 0.8500 0.3000 0.4000 ] 13652 </denoise_weight> 13653 <hi_lumaPoint index="1" type="double" size="[1 6]"> 13654 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 13655 </hi_lumaPoint> 13656 <hi_lumaRatio index="1" type="double" size="[1 6]"> 13657 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 13658 </hi_lumaRatio> 13659 <hi_bfScale index="1" type="double" size="[1 4]"> 13660 [1.2000 1.1000 0.8600 0.8600 ] 13661 </hi_bfScale> 13662 <hwith_d index="1" type="double" size="[1 4]"> 13663 [6.0000 6.0000 4.0000 2.0000 ] 13664 </hwith_d> 13665 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 13666 [1.2000 ] 13667 </hi_denoiseStrength> 13668 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 13669 [0.2000 ] 13670 </hi_detailMinAdjDnW> 13671 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 13672 [0.7500 0.7000 0.6600 0.3600 ] 13673 </hi_denoiseWeight> 13674 <y_luma_point index="1" type="double" size="[1 6]"> 13675 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 13676 </y_luma_point> 13677 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 13678 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 13679 </hgrad_y_level1> 13680 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 13681 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 13682 </hgrad_y_level2> 13683 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 13684 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 13685 </hgrad_y_level3> 13686 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 13687 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 13688 </hgrad_y_level4> 13689 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 13690 [0.1300 0.3000 0.3000 0.1000 ] 13691 </hi_soft_thresh_scale> 13692 </cell> 13693 <cell index="9" type="struct" size="[1 1]"> 13694 <iso index="1" type="double" size="[1 1]"> 13695 [12800.0000 ] 13696 </iso> 13697 <sigma_curve index="1" type="double" size="[1 5]"> 13698 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 13699 </sigma_curve> 13700 <ynr_lci index="1" type="double" size="[1 4]"> 13701 [0.9362 0.6543 0.4559 0.4039 ] 13702 </ynr_lci> 13703 <ynr_lhci index="1" type="double" size="[1 4]"> 13704 [0.8559 0.9798 0.6914 0.5389 ] 13705 </ynr_lhci> 13706 <ynr_hlci index="1" type="double" size="[1 4]"> 13707 [0.8855 0.9817 0.7013 0.5513 ] 13708 </ynr_hlci> 13709 <ynr_hhci index="1" type="double" size="[1 4]"> 13710 [0.7069 1.4633 1.1028 0.7415 ] 13711 </ynr_hhci> 13712 <lo_lumaPoint index="1" type="double" size="[1 6]"> 13713 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 13714 </lo_lumaPoint> 13715 <lo_lumaRatio index="1" type="double" size="[1 6]"> 13716 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 13717 </lo_lumaRatio> 13718 <lo_directionStrength index="1" type="double" size="[1 1]"> 13719 [0.2000 ] 13720 </lo_directionStrength> 13721 <lo_bfScale index="1" type="double" size="[1 4]"> 13722 [1.0000 1.0000 3.0000 1.0000 ] 13723 </lo_bfScale> 13724 <imerge_ratio index="1" type="double" size="[1 1]"> 13725 [0.1500 ] 13726 </imerge_ratio> 13727 <imerge_bound index="1" type="double" size="[1 1]"> 13728 [1.2500 ] 13729 </imerge_bound> 13730 <denoise_weight index="1" type="double" size="[1 4]"> 13731 [0.3000 0.8500 0.3000 0.3000 ] 13732 </denoise_weight> 13733 <hi_lumaPoint index="1" type="double" size="[1 6]"> 13734 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 13735 </hi_lumaPoint> 13736 <hi_lumaRatio index="1" type="double" size="[1 6]"> 13737 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 13738 </hi_lumaRatio> 13739 <hi_bfScale index="1" type="double" size="[1 4]"> 13740 [1.2000 1.1000 0.8600 0.8600 ] 13741 </hi_bfScale> 13742 <hwith_d index="1" type="double" size="[1 4]"> 13743 [6.0000 6.0000 4.0000 2.0000 ] 13744 </hwith_d> 13745 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 13746 [1.2000 ] 13747 </hi_denoiseStrength> 13748 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 13749 [0.2000 ] 13750 </hi_detailMinAdjDnW> 13751 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 13752 [0.7500 0.7000 0.6600 0.3600 ] 13753 </hi_denoiseWeight> 13754 <y_luma_point index="1" type="double" size="[1 6]"> 13755 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 13756 </y_luma_point> 13757 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 13758 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 13759 </hgrad_y_level1> 13760 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 13761 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 13762 </hgrad_y_level2> 13763 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 13764 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 13765 </hgrad_y_level3> 13766 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 13767 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 13768 </hgrad_y_level4> 13769 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 13770 [0.1300 0.3000 0.3000 0.1000 ] 13771 </hi_soft_thresh_scale> 13772 </cell> 13773 <cell index="10" type="struct" size="[1 1]"> 13774 <iso index="1" type="double" size="[1 1]"> 13775 [25600.0000 ] 13776 </iso> 13777 <sigma_curve index="1" type="double" size="[1 5]"> 13778 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 13779 </sigma_curve> 13780 <ynr_lci index="1" type="double" size="[1 4]"> 13781 [0.9362 0.6543 0.4559 0.4039 ] 13782 </ynr_lci> 13783 <ynr_lhci index="1" type="double" size="[1 4]"> 13784 [0.8559 0.9798 0.6914 0.5389 ] 13785 </ynr_lhci> 13786 <ynr_hlci index="1" type="double" size="[1 4]"> 13787 [0.8855 0.9817 0.7013 0.5513 ] 13788 </ynr_hlci> 13789 <ynr_hhci index="1" type="double" size="[1 4]"> 13790 [0.7069 1.4633 1.1028 0.7415 ] 13791 </ynr_hhci> 13792 <lo_lumaPoint index="1" type="double" size="[1 6]"> 13793 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 13794 </lo_lumaPoint> 13795 <lo_lumaRatio index="1" type="double" size="[1 6]"> 13796 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 13797 </lo_lumaRatio> 13798 <lo_directionStrength index="1" type="double" size="[1 1]"> 13799 [0.2000 ] 13800 </lo_directionStrength> 13801 <lo_bfScale index="1" type="double" size="[1 4]"> 13802 [1.0000 1.0000 3.0000 1.0000 ] 13803 </lo_bfScale> 13804 <imerge_ratio index="1" type="double" size="[1 1]"> 13805 [0.1500 ] 13806 </imerge_ratio> 13807 <imerge_bound index="1" type="double" size="[1 1]"> 13808 [1.2500 ] 13809 </imerge_bound> 13810 <denoise_weight index="1" type="double" size="[1 4]"> 13811 [0.3000 0.8500 0.3000 0.3000 ] 13812 </denoise_weight> 13813 <hi_lumaPoint index="1" type="double" size="[1 6]"> 13814 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 13815 </hi_lumaPoint> 13816 <hi_lumaRatio index="1" type="double" size="[1 6]"> 13817 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 13818 </hi_lumaRatio> 13819 <hi_bfScale index="1" type="double" size="[1 4]"> 13820 [1.2000 1.1000 0.8600 0.8600 ] 13821 </hi_bfScale> 13822 <hwith_d index="1" type="double" size="[1 4]"> 13823 [6.0000 6.0000 4.0000 2.0000 ] 13824 </hwith_d> 13825 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 13826 [1.2000 ] 13827 </hi_denoiseStrength> 13828 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 13829 [0.2000 ] 13830 </hi_detailMinAdjDnW> 13831 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 13832 [0.7500 0.7000 0.6600 0.3600 ] 13833 </hi_denoiseWeight> 13834 <y_luma_point index="1" type="double" size="[1 6]"> 13835 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 13836 </y_luma_point> 13837 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 13838 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 13839 </hgrad_y_level1> 13840 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 13841 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 13842 </hgrad_y_level2> 13843 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 13844 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 13845 </hgrad_y_level3> 13846 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 13847 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 13848 </hgrad_y_level4> 13849 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 13850 [0.1300 0.3000 0.3000 0.1000 ] 13851 </hi_soft_thresh_scale> 13852 </cell> 13853 <cell index="11" type="struct" size="[1 1]"> 13854 <iso index="1" type="double" size="[1 1]"> 13855 [51200.0000 ] 13856 </iso> 13857 <sigma_curve index="1" type="double" size="[1 5]"> 13858 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 13859 </sigma_curve> 13860 <ynr_lci index="1" type="double" size="[1 4]"> 13861 [0.9362 0.6543 0.4559 0.4039 ] 13862 </ynr_lci> 13863 <ynr_lhci index="1" type="double" size="[1 4]"> 13864 [0.8559 0.9798 0.6914 0.5389 ] 13865 </ynr_lhci> 13866 <ynr_hlci index="1" type="double" size="[1 4]"> 13867 [0.8855 0.9817 0.7013 0.5513 ] 13868 </ynr_hlci> 13869 <ynr_hhci index="1" type="double" size="[1 4]"> 13870 [0.7069 1.4633 1.1028 0.7415 ] 13871 </ynr_hhci> 13872 <lo_lumaPoint index="1" type="double" size="[1 6]"> 13873 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 13874 </lo_lumaPoint> 13875 <lo_lumaRatio index="1" type="double" size="[1 6]"> 13876 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 13877 </lo_lumaRatio> 13878 <lo_directionStrength index="1" type="double" size="[1 1]"> 13879 [0.2000 ] 13880 </lo_directionStrength> 13881 <lo_bfScale index="1" type="double" size="[1 4]"> 13882 [1.0000 1.0000 3.0000 1.0000 ] 13883 </lo_bfScale> 13884 <imerge_ratio index="1" type="double" size="[1 1]"> 13885 [0.1500 ] 13886 </imerge_ratio> 13887 <imerge_bound index="1" type="double" size="[1 1]"> 13888 [1.2500 ] 13889 </imerge_bound> 13890 <denoise_weight index="1" type="double" size="[1 4]"> 13891 [0.3000 0.8500 0.3000 0.3000 ] 13892 </denoise_weight> 13893 <hi_lumaPoint index="1" type="double" size="[1 6]"> 13894 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 13895 </hi_lumaPoint> 13896 <hi_lumaRatio index="1" type="double" size="[1 6]"> 13897 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 13898 </hi_lumaRatio> 13899 <hi_bfScale index="1" type="double" size="[1 4]"> 13900 [1.2000 1.1000 0.8600 0.8600 ] 13901 </hi_bfScale> 13902 <hwith_d index="1" type="double" size="[1 4]"> 13903 [6.0000 6.0000 4.0000 2.0000 ] 13904 </hwith_d> 13905 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 13906 [1.2000 ] 13907 </hi_denoiseStrength> 13908 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 13909 [0.2000 ] 13910 </hi_detailMinAdjDnW> 13911 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 13912 [0.7500 0.7000 0.6600 0.3600 ] 13913 </hi_denoiseWeight> 13914 <y_luma_point index="1" type="double" size="[1 6]"> 13915 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 13916 </y_luma_point> 13917 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 13918 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 13919 </hgrad_y_level1> 13920 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 13921 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 13922 </hgrad_y_level2> 13923 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 13924 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 13925 </hgrad_y_level3> 13926 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 13927 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 13928 </hgrad_y_level4> 13929 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 13930 [0.1300 0.3000 0.3000 0.1000 ] 13931 </hi_soft_thresh_scale> 13932 </cell> 13933 <cell index="12" type="struct" size="[1 1]"> 13934 <iso index="1" type="double" size="[1 1]"> 13935 [102400.0000 ] 13936 </iso> 13937 <sigma_curve index="1" type="double" size="[1 5]"> 13938 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 13939 </sigma_curve> 13940 <ynr_lci index="1" type="double" size="[1 4]"> 13941 [0.9362 0.6543 0.4559 0.4039 ] 13942 </ynr_lci> 13943 <ynr_lhci index="1" type="double" size="[1 4]"> 13944 [0.8559 0.9798 0.6914 0.5389 ] 13945 </ynr_lhci> 13946 <ynr_hlci index="1" type="double" size="[1 4]"> 13947 [0.8855 0.9817 0.7013 0.5513 ] 13948 </ynr_hlci> 13949 <ynr_hhci index="1" type="double" size="[1 4]"> 13950 [0.7069 1.4633 1.1028 0.7415 ] 13951 </ynr_hhci> 13952 <lo_lumaPoint index="1" type="double" size="[1 6]"> 13953 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 13954 </lo_lumaPoint> 13955 <lo_lumaRatio index="1" type="double" size="[1 6]"> 13956 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 13957 </lo_lumaRatio> 13958 <lo_directionStrength index="1" type="double" size="[1 1]"> 13959 [0.2000 ] 13960 </lo_directionStrength> 13961 <lo_bfScale index="1" type="double" size="[1 4]"> 13962 [1.0000 1.0000 3.0000 1.0000 ] 13963 </lo_bfScale> 13964 <imerge_ratio index="1" type="double" size="[1 1]"> 13965 [0.1500 ] 13966 </imerge_ratio> 13967 <imerge_bound index="1" type="double" size="[1 1]"> 13968 [1.2500 ] 13969 </imerge_bound> 13970 <denoise_weight index="1" type="double" size="[1 4]"> 13971 [0.3000 0.8500 0.3000 0.3000 ] 13972 </denoise_weight> 13973 <hi_lumaPoint index="1" type="double" size="[1 6]"> 13974 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 13975 </hi_lumaPoint> 13976 <hi_lumaRatio index="1" type="double" size="[1 6]"> 13977 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 13978 </hi_lumaRatio> 13979 <hi_bfScale index="1" type="double" size="[1 4]"> 13980 [1.2000 1.1000 0.8600 0.8600 ] 13981 </hi_bfScale> 13982 <hwith_d index="1" type="double" size="[1 4]"> 13983 [6.0000 6.0000 4.0000 2.0000 ] 13984 </hwith_d> 13985 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 13986 [1.2000 ] 13987 </hi_denoiseStrength> 13988 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 13989 [0.2000 ] 13990 </hi_detailMinAdjDnW> 13991 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 13992 [0.7500 0.7000 0.6600 0.3600 ] 13993 </hi_denoiseWeight> 13994 <y_luma_point index="1" type="double" size="[1 6]"> 13995 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 13996 </y_luma_point> 13997 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 13998 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 13999 </hgrad_y_level1> 14000 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 14001 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14002 </hgrad_y_level2> 14003 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 14004 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14005 </hgrad_y_level3> 14006 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 14007 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14008 </hgrad_y_level4> 14009 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 14010 [0.1300 0.3000 0.3000 0.1000 ] 14011 </hi_soft_thresh_scale> 14012 </cell> 14013 <cell index="13" type="struct" size="[1 1]"> 14014 <iso index="1" type="double" size="[1 1]"> 14015 [204800.0000 ] 14016 </iso> 14017 <sigma_curve index="1" type="double" size="[1 5]"> 14018 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 14019 </sigma_curve> 14020 <ynr_lci index="1" type="double" size="[1 4]"> 14021 [0.9362 0.6543 0.4559 0.4039 ] 14022 </ynr_lci> 14023 <ynr_lhci index="1" type="double" size="[1 4]"> 14024 [0.8559 0.9798 0.6914 0.5389 ] 14025 </ynr_lhci> 14026 <ynr_hlci index="1" type="double" size="[1 4]"> 14027 [0.8855 0.9817 0.7013 0.5513 ] 14028 </ynr_hlci> 14029 <ynr_hhci index="1" type="double" size="[1 4]"> 14030 [0.7069 1.4633 1.1028 0.7415 ] 14031 </ynr_hhci> 14032 <lo_lumaPoint index="1" type="double" size="[1 6]"> 14033 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 14034 </lo_lumaPoint> 14035 <lo_lumaRatio index="1" type="double" size="[1 6]"> 14036 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 14037 </lo_lumaRatio> 14038 <lo_directionStrength index="1" type="double" size="[1 1]"> 14039 [0.2000 ] 14040 </lo_directionStrength> 14041 <lo_bfScale index="1" type="double" size="[1 4]"> 14042 [1.0000 1.0000 3.0000 1.0000 ] 14043 </lo_bfScale> 14044 <imerge_ratio index="1" type="double" size="[1 1]"> 14045 [0.1500 ] 14046 </imerge_ratio> 14047 <imerge_bound index="1" type="double" size="[1 1]"> 14048 [1.2500 ] 14049 </imerge_bound> 14050 <denoise_weight index="1" type="double" size="[1 4]"> 14051 [0.3000 0.8500 0.3000 0.3000 ] 14052 </denoise_weight> 14053 <hi_lumaPoint index="1" type="double" size="[1 6]"> 14054 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 14055 </hi_lumaPoint> 14056 <hi_lumaRatio index="1" type="double" size="[1 6]"> 14057 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 14058 </hi_lumaRatio> 14059 <hi_bfScale index="1" type="double" size="[1 4]"> 14060 [1.2000 1.1000 0.8600 0.8600 ] 14061 </hi_bfScale> 14062 <hwith_d index="1" type="double" size="[1 4]"> 14063 [6.0000 6.0000 4.0000 2.0000 ] 14064 </hwith_d> 14065 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 14066 [1.2000 ] 14067 </hi_denoiseStrength> 14068 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 14069 [0.2000 ] 14070 </hi_detailMinAdjDnW> 14071 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 14072 [0.7500 0.7000 0.6600 0.3600 ] 14073 </hi_denoiseWeight> 14074 <y_luma_point index="1" type="double" size="[1 6]"> 14075 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 14076 </y_luma_point> 14077 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 14078 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14079 </hgrad_y_level1> 14080 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 14081 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14082 </hgrad_y_level2> 14083 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 14084 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14085 </hgrad_y_level3> 14086 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 14087 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14088 </hgrad_y_level4> 14089 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 14090 [0.1300 0.3000 0.3000 0.1000 ] 14091 </hi_soft_thresh_scale> 14092 </cell> 14093 </YNR_ISO> 14094 </cell> 14095 </Setting> 14096 </cell> 14097 <cell index="1" type="struct" size="[1 1]"> 14098 <Name index="1" type="char" size="[1 8]"> 14099 gray 14100 </Name> 14101 <Setting index="1" type="cell" size="[1 2]"> 14102 <cell index="1" type="struct" size="[1 1]"> 14103 <SNR_Mode index="1" type="char" size="[1 4]"> 14104 LSNR 14105 </SNR_Mode> 14106 <Sensor_Mode index="1" type="char" size="[1 3]"> 14107 lcg 14108 </Sensor_Mode> 14109 <YNR_ISO index="1" type="cell" size="[1 13]"> 14110 <cell index="1" type="struct" size="[1 1]"> 14111 <iso index="1" type="double" size="[1 1]"> 14112 [50.0000 ] 14113 </iso> 14114 <sigma_curve index="1" type="double" size="[1 5]"> 14115 [-2.22683837604954e-013 2.70089733255463e-009 -1.19360265610630e-005 1.69475563290717e-002 2.21533631975799e+001 ] 14116 </sigma_curve> 14117 <ynr_lci index="1" type="double" size="[1 4]"> 14118 [0.9636 0.7324 0.4539 0.2570 ] 14119 </ynr_lci> 14120 <ynr_lhci index="1" type="double" size="[1 4]"> 14121 [0.7906 1.0826 0.8486 0.6018 ] 14122 </ynr_lhci> 14123 <ynr_hlci index="1" type="double" size="[1 4]"> 14124 [0.7938 1.0093 0.8587 0.5390 ] 14125 </ynr_hlci> 14126 <ynr_hhci index="1" type="double" size="[1 4]"> 14127 [0.7093 1.4092 1.4153 0.9588 ] 14128 </ynr_hhci> 14129 <lo_lumaPoint index="1" type="double" size="[1 6]"> 14130 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 14131 </lo_lumaPoint> 14132 <lo_lumaRatio index="1" type="double" size="[1 6]"> 14133 [1.2000 1.2000 1.2500 1.0000 1.0000 1.0000 ] 14134 </lo_lumaRatio> 14135 <lo_directionStrength index="1" type="double" size="[1 1]"> 14136 [0.5000 ] 14137 </lo_directionStrength> 14138 <lo_bfScale index="1" type="double" size="[1 4]"> 14139 [0.50000 0.50000 0.50000 0.50000 ] 14140 </lo_bfScale> 14141 <imerge_ratio index="1" type="double" size="[1 1]"> 14142 [0.4000 ] 14143 </imerge_ratio> 14144 <imerge_bound index="1" type="double" size="[1 1]"> 14145 [1.2500 ] 14146 </imerge_bound> 14147 <denoise_weight index="1" type="double" size="[1 4]"> 14148 [0.3000 0.3000 0.5000 0.7000 ] 14149 </denoise_weight> 14150 <hi_lumaPoint index="1" type="double" size="[1 6]"> 14151 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 14152 </hi_lumaPoint> 14153 <hi_lumaRatio index="1" type="double" size="[1 6]"> 14154 [1.2500 1.2500 1.2500 1.0000 1.0000 1.0000 ] 14155 </hi_lumaRatio> 14156 <hi_bfScale index="1" type="double" size="[1 4]"> 14157 [0.50000 0.50000 0.50000 0.50000 ] 14158 </hi_bfScale> 14159 <hwith_d index="1" type="double" size="[1 4]"> 14160 [2.0000 2.0000 1.2000 1.2000 ] 14161 </hwith_d> 14162 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 14163 [2.0000 ] 14164 </hi_denoiseStrength> 14165 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 14166 [0.2000 ] 14167 </hi_detailMinAdjDnW> 14168 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 14169 [0.7500 0.7000 0.6000 0.5000 ] 14170 </hi_denoiseWeight> 14171 <y_luma_point index="1" type="double" size="[1 6]"> 14172 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 14173 </y_luma_point> 14174 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 14175 [1.0000 0.6700 0.6700 0.6700 0.6700 0.6700 ] 14176 </hgrad_y_level1> 14177 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 14178 [1.0000 0.6700 0.6700 0.6700 0.6700 0.6700 ] 14179 </hgrad_y_level2> 14180 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 14181 [1.0000 0.5700 0.5700 0.5700 0.5700 0.5700 ] 14182 </hgrad_y_level3> 14183 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 14184 [1.0000 0.5000 0.5000 0.4000 0.3000 0.2000 ] 14185 </hgrad_y_level4> 14186 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 14187 [0.1100 0.1100 0.1000 0.1000 ] 14188 </hi_soft_thresh_scale> 14189 </cell> 14190 <cell index="2" type="struct" size="[1 1]"> 14191 <iso index="1" type="double" size="[1 1]"> 14192 [100.0000 ] 14193 </iso> 14194 <sigma_curve index="1" type="double" size="[1 5]"> 14195 [-6.12954260408810e-013 6.56213771001716e-009 -2.56271619105131e-005 3.53336500457644e-002 2.51344679667418e+001 ] 14196 </sigma_curve> 14197 <ynr_lci index="1" type="double" size="[1 4]"> 14198 [0.9686 0.7317 0.4368 0.2440 ] 14199 </ynr_lci> 14200 <ynr_lhci index="1" type="double" size="[1 4]"> 14201 [0.7923 1.0678 0.8134 0.5675 ] 14202 </ynr_lhci> 14203 <ynr_hlci index="1" type="double" size="[1 4]"> 14204 [0.7945 0.9887 0.8222 0.5071 ] 14205 </ynr_hlci> 14206 <ynr_hhci index="1" type="double" size="[1 4]"> 14207 [0.6917 1.3976 1.3816 0.8942 ] 14208 </ynr_hhci> 14209 <lo_lumaPoint index="1" type="double" size="[1 6]"> 14210 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 14211 </lo_lumaPoint> 14212 <lo_lumaRatio index="1" type="double" size="[1 6]"> 14213 [1.3000 1.2000 1.3000 1.0000 1.0000 1.0000 ] 14214 </lo_lumaRatio> 14215 <lo_directionStrength index="1" type="double" size="[1 1]"> 14216 [0.5000 ] 14217 </lo_directionStrength> 14218 <lo_bfScale index="1" type="double" size="[1 4]"> 14219 [1.0000 1.0000 1.0000 1.0000 ] 14220 </lo_bfScale> 14221 <imerge_ratio index="1" type="double" size="[1 1]"> 14222 [0.4000 ] 14223 </imerge_ratio> 14224 <imerge_bound index="1" type="double" size="[1 1]"> 14225 [1.2500 ] 14226 </imerge_bound> 14227 <denoise_weight index="1" type="double" size="[1 4]"> 14228 [0.3000 0.3000 0.5000 0.8000 ] 14229 </denoise_weight> 14230 <hi_lumaPoint index="1" type="double" size="[1 6]"> 14231 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 14232 </hi_lumaPoint> 14233 <hi_lumaRatio index="1" type="double" size="[1 6]"> 14234 [1.2500 1.3000 1.2500 1.0000 1.0000 1.0000 ] 14235 </hi_lumaRatio> 14236 <hi_bfScale index="1" type="double" size="[1 4]"> 14237 [1.2000 1.2000 1.0000 1.0000 ] 14238 </hi_bfScale> 14239 <hwith_d index="1" type="double" size="[1 4]"> 14240 [2.0000 2.0000 1.2000 1.2000 ] 14241 </hwith_d> 14242 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 14243 [1.2000 ] 14244 </hi_denoiseStrength> 14245 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 14246 [0.2000 ] 14247 </hi_detailMinAdjDnW> 14248 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 14249 [0.7500 0.7500 0.6000 0.3000 ] 14250 </hi_denoiseWeight> 14251 <y_luma_point index="1" type="double" size="[1 6]"> 14252 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 14253 </y_luma_point> 14254 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 14255 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 14256 </hgrad_y_level1> 14257 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 14258 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 14259 </hgrad_y_level2> 14260 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 14261 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 14262 </hgrad_y_level3> 14263 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 14264 [1.0000 0.5000 0.5000 0.4000 0.3000 0.2000 ] 14265 </hgrad_y_level4> 14266 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 14267 [0.1100 0.1100 0.1000 0.1000 ] 14268 </hi_soft_thresh_scale> 14269 </cell> 14270 <cell index="3" type="struct" size="[1 1]"> 14271 <iso index="1" type="double" size="[1 1]"> 14272 [200.0000 ] 14273 </iso> 14274 <sigma_curve index="1" type="double" size="[1 5]"> 14275 [-4.88118020793126e-013 5.17135216910485e-009 -2.12964081629935e-005 2.87181383407642e-002 4.47372008265083e+001 ] 14276 </sigma_curve> 14277 <ynr_lci index="1" type="double" size="[1 4]"> 14278 [0.9712 0.7271 0.4331 0.2318 ] 14279 </ynr_lci> 14280 <ynr_lhci index="1" type="double" size="[1 4]"> 14281 [0.7952 1.0518 0.8044 0.5177 ] 14282 </ynr_lhci> 14283 <ynr_hlci index="1" type="double" size="[1 4]"> 14284 [0.7902 0.9882 0.7978 0.4915 ] 14285 </ynr_hlci> 14286 <ynr_hhci index="1" type="double" size="[1 4]"> 14287 [0.6750 1.4024 1.3611 0.8802 ] 14288 </ynr_hhci> 14289 <lo_lumaPoint index="1" type="double" size="[1 6]"> 14290 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 14291 </lo_lumaPoint> 14292 <lo_lumaRatio index="1" type="double" size="[1 6]"> 14293 [1.3000 1.2000 1.5000 1.2000 1.0000 1.0000 ] 14294 </lo_lumaRatio> 14295 <lo_directionStrength index="1" type="double" size="[1 1]"> 14296 [0.5000 ] 14297 </lo_directionStrength> 14298 <lo_bfScale index="1" type="double" size="[1 4]"> 14299 [0.3000 0.6000 1.0000 1.0000 ] 14300 </lo_bfScale> 14301 <imerge_ratio index="1" type="double" size="[1 1]"> 14302 [0.3000 ] 14303 </imerge_ratio> 14304 <imerge_bound index="1" type="double" size="[1 1]"> 14305 [1.2500 ] 14306 </imerge_bound> 14307 <denoise_weight index="1" type="double" size="[1 4]"> 14308 [0.3000 0.4000 0.6000 0.6000 ] 14309 </denoise_weight> 14310 <hi_lumaPoint index="1" type="double" size="[1 6]"> 14311 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 14312 </hi_lumaPoint> 14313 <hi_lumaRatio index="1" type="double" size="[1 6]"> 14314 [1.1000 1.1000 1.5000 1.0000 1.0000 1.0000 ] 14315 </hi_lumaRatio> 14316 <hi_bfScale index="1" type="double" size="[1 4]"> 14317 [1.1000 1.0000 1.0000 1.0000 ] 14318 </hi_bfScale> 14319 <hwith_d index="1" type="double" size="[1 4]"> 14320 [4.0000 4.0000 2.0000 1.2000 ] 14321 </hwith_d> 14322 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 14323 [1.3000 ] 14324 </hi_denoiseStrength> 14325 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 14326 [0.2000 ] 14327 </hi_detailMinAdjDnW> 14328 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 14329 [0.7000 0.7000 0.6000 0.3000 ] 14330 </hi_denoiseWeight> 14331 <y_luma_point index="1" type="double" size="[1 6]"> 14332 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 14333 </y_luma_point> 14334 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 14335 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 14336 </hgrad_y_level1> 14337 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 14338 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 14339 </hgrad_y_level2> 14340 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 14341 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 14342 </hgrad_y_level3> 14343 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 14344 [1.0000 0.5000 0.5000 0.4000 0.3000 0.2000 ] 14345 </hgrad_y_level4> 14346 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 14347 [0.1200 0.1200 0.1000 0.1000 ] 14348 </hi_soft_thresh_scale> 14349 </cell> 14350 <cell index="4" type="struct" size="[1 1]"> 14351 <iso index="1" type="double" size="[1 1]"> 14352 [400.0000 ] 14353 </iso> 14354 <sigma_curve index="1" type="double" size="[1 5]"> 14355 [-1.48119726941212e-012 1.56289236737456e-008 -5.98269836499521e-005 8.25287140888520e-002 4.27598482026588e+001 ] 14356 </sigma_curve> 14357 <ynr_lci index="1" type="double" size="[1 4]"> 14358 [0.9824 0.7376 0.4461 0.2333 ] 14359 </ynr_lci> 14360 <ynr_lhci index="1" type="double" size="[1 4]"> 14361 [0.7832 1.0576 0.8094 0.4839 ] 14362 </ynr_lhci> 14363 <ynr_hlci index="1" type="double" size="[1 4]"> 14364 [0.7856 0.9876 0.8081 0.4706 ] 14365 </ynr_hlci> 14366 <ynr_hhci index="1" type="double" size="[1 4]"> 14367 [0.6681 1.3952 1.3472 0.8614 ] 14368 </ynr_hhci> 14369 <lo_lumaPoint index="1" type="double" size="[1 6]"> 14370 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 14371 </lo_lumaPoint> 14372 <lo_lumaRatio index="1" type="double" size="[1 6]"> 14373 [1.3000 1.2000 1.5000 1.0000 1.0000 1.0000 ] 14374 </lo_lumaRatio> 14375 <lo_directionStrength index="1" type="double" size="[1 1]"> 14376 [0.5000 ] 14377 </lo_directionStrength> 14378 <lo_bfScale index="1" type="double" size="[1 4]"> 14379 [0.4000 0.7000 1.0000 1.0000 ] 14380 </lo_bfScale> 14381 <imerge_ratio index="1" type="double" size="[1 1]"> 14382 [0.2500 ] 14383 </imerge_ratio> 14384 <imerge_bound index="1" type="double" size="[1 1]"> 14385 [1.2500 ] 14386 </imerge_bound> 14387 <denoise_weight index="1" type="double" size="[1 4]"> 14388 [0.3500 0.4000 0.6000 0.6000 ] 14389 </denoise_weight> 14390 <hi_lumaPoint index="1" type="double" size="[1 6]"> 14391 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 14392 </hi_lumaPoint> 14393 <hi_lumaRatio index="1" type="double" size="[1 6]"> 14394 [1.2000 1.2000 1.5000 1.5000 1.0000 1.0000 ] 14395 </hi_lumaRatio> 14396 <hi_bfScale index="1" type="double" size="[1 4]"> 14397 [1.5000 1.5000 1.5000 1.5000 ] 14398 </hi_bfScale> 14399 <hwith_d index="1" type="double" size="[1 4]"> 14400 [6.0000 6.0000 4.0000 2.0000 ] 14401 </hwith_d> 14402 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 14403 [1.5000 ] 14404 </hi_denoiseStrength> 14405 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 14406 [0.2000 ] 14407 </hi_detailMinAdjDnW> 14408 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 14409 [0.8000 0.9000 1.0000 1.0000 ] 14410 </hi_denoiseWeight> 14411 <y_luma_point index="1" type="double" size="[1 6]"> 14412 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 14413 </y_luma_point> 14414 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 14415 [1.0000 0.5000 0.5000 0.5000 0.5000 0.3000 ] 14416 </hgrad_y_level1> 14417 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 14418 [1.0000 0.5000 0.5000 0.5000 0.5000 0.3000 ] 14419 </hgrad_y_level2> 14420 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 14421 [1.0000 0.5100 0.5100 0.5100 0.5100 0.3000 ] 14422 </hgrad_y_level3> 14423 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 14424 [1.0000 0.5000 0.5000 0.4000 0.3000 0.2000 ] 14425 </hgrad_y_level4> 14426 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 14427 [0.1300 0.1300 0.1000 0.1000 ] 14428 </hi_soft_thresh_scale> 14429 </cell> 14430 <cell index="5" type="struct" size="[1 1]"> 14431 <iso index="1" type="double" size="[1 1]"> 14432 [800.0000 ] 14433 </iso> 14434 <sigma_curve index="1" type="double" size="[1 5]"> 14435 [-1.63594828480084e-012 1.75614677431381e-008 -6.92401591106118e-005 9.58142896234051e-002 7.18496259606400e+001 ] 14436 </sigma_curve> 14437 <ynr_lci index="1" type="double" size="[1 4]"> 14438 [0.9781 0.7313 0.4366 0.2350 ] 14439 </ynr_lci> 14440 <ynr_lhci index="1" type="double" size="[1 4]"> 14441 [0.7932 1.0457 0.7904 0.4573 ] 14442 </ynr_lhci> 14443 <ynr_hlci index="1" type="double" size="[1 4]"> 14444 [0.7924 0.9861 0.7910 0.4630 ] 14445 </ynr_hlci> 14446 <ynr_hhci index="1" type="double" size="[1 4]"> 14447 [0.6668 1.3875 1.3597 0.8841 ] 14448 </ynr_hhci> 14449 <lo_lumaPoint index="1" type="double" size="[1 6]"> 14450 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 14451 </lo_lumaPoint> 14452 <lo_lumaRatio index="1" type="double" size="[1 6]"> 14453 [1.0000 1.0000 1.5000 1.0000 1.0000 1.0000 ] 14454 </lo_lumaRatio> 14455 <lo_directionStrength index="1" type="double" size="[1 1]"> 14456 [0.3000 ] 14457 </lo_directionStrength> 14458 <lo_bfScale index="1" type="double" size="[1 4]"> 14459 [0.3000 0.5000 1.0000 1.0000 ] 14460 </lo_bfScale> 14461 <imerge_ratio index="1" type="double" size="[1 1]"> 14462 [0.2000 ] 14463 </imerge_ratio> 14464 <imerge_bound index="1" type="double" size="[1 1]"> 14465 [1.2500 ] 14466 </imerge_bound> 14467 <denoise_weight index="1" type="double" size="[1 4]"> 14468 [0.4000 0.5000 1.0000 1.0000 ] 14469 </denoise_weight> 14470 <hi_lumaPoint index="1" type="double" size="[1 6]"> 14471 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 14472 </hi_lumaPoint> 14473 <hi_lumaRatio index="1" type="double" size="[1 6]"> 14474 [1.1000 1.2000 1.5000 1.5000 1.0000 1.0000 ] 14475 </hi_lumaRatio> 14476 <hi_bfScale index="1" type="double" size="[1 4]"> 14477 [1.2000 1.3000 1.5000 1.5000 ] 14478 </hi_bfScale> 14479 <hwith_d index="1" type="double" size="[1 4]"> 14480 [6.0000 6.0000 4.0000 2.0000 ] 14481 </hwith_d> 14482 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 14483 [1.3000 ] 14484 </hi_denoiseStrength> 14485 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 14486 [0.2000 ] 14487 </hi_detailMinAdjDnW> 14488 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 14489 [1.1000 1.2000 1.3000 1.3000 ] 14490 </hi_denoiseWeight> 14491 <y_luma_point index="1" type="double" size="[1 6]"> 14492 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 14493 </y_luma_point> 14494 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 14495 [1.0000 0.5000 0.4000 0.3500 0.3000 0.2000 ] 14496 </hgrad_y_level1> 14497 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 14498 [1.0000 0.5000 0.4000 0.3500 0.3000 0.2000 ] 14499 </hgrad_y_level2> 14500 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 14501 [1.0000 0.5000 0.4000 0.3500 0.3000 0.2000 ] 14502 </hgrad_y_level3> 14503 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 14504 [1.0000 0.5000 0.4000 0.3500 0.3000 0.2000 ] 14505 </hgrad_y_level4> 14506 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 14507 [0.1300 0.1300 0.1000 0.1000 ] 14508 </hi_soft_thresh_scale> 14509 </cell> 14510 <cell index="6" type="struct" size="[1 1]"> 14511 <iso index="1" type="double" size="[1 1]"> 14512 [1600.0000 ] 14513 </iso> 14514 <sigma_curve index="1" type="double" size="[1 5]"> 14515 [-3.54429850049432e-012 3.60287476727038e-008 -1.31984529909812e-004 1.75061075984246e-001 8.74586517163552e+001 ] 14516 </sigma_curve> 14517 <ynr_lci index="1" type="double" size="[1 4]"> 14518 [0.9678 0.7111 0.4194 0.2277 ] 14519 </ynr_lci> 14520 <ynr_lhci index="1" type="double" size="[1 4]"> 14521 [0.8166 1.0234 0.7747 0.4554 ] 14522 </ynr_lhci> 14523 <ynr_hlci index="1" type="double" size="[1 4]"> 14524 [0.8149 0.9866 0.7613 0.4590 ] 14525 </ynr_hlci> 14526 <ynr_hhci index="1" type="double" size="[1 4]"> 14527 [0.6683 1.3823 1.3066 0.8024 ] 14528 </ynr_hhci> 14529 <lo_lumaPoint index="1" type="double" size="[1 6]"> 14530 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 14531 </lo_lumaPoint> 14532 <lo_lumaRatio index="1" type="double" size="[1 6]"> 14533 [1.0000 1.0000 1.5000 1.0000 1.0000 1.0000 ] 14534 </lo_lumaRatio> 14535 <lo_directionStrength index="1" type="double" size="[1 1]"> 14536 [0.2000 ] 14537 </lo_directionStrength> 14538 <lo_bfScale index="1" type="double" size="[1 4]"> 14539 [0.500 0.7000 2.0000 1.0000 ] 14540 </lo_bfScale> 14541 <imerge_ratio index="1" type="double" size="[1 1]"> 14542 [0.1500 ] 14543 </imerge_ratio> 14544 <imerge_bound index="1" type="double" size="[1 1]"> 14545 [1.2500 ] 14546 </imerge_bound> 14547 <denoise_weight index="1" type="double" size="[1 4]"> 14548 [0.8000 0.8500 0.8500 0.9000 ] 14549 </denoise_weight> 14550 <hi_lumaPoint index="1" type="double" size="[1 6]"> 14551 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 14552 </hi_lumaPoint> 14553 <hi_lumaRatio index="1" type="double" size="[1 6]"> 14554 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 14555 </hi_lumaRatio> 14556 <hi_bfScale index="1" type="double" size="[1 4]"> 14557 [1.2000 1.5000 1.5000 0.9600 ] 14558 </hi_bfScale> 14559 <hwith_d index="1" type="double" size="[1 4]"> 14560 [6.0000 6.0000 4.0000 2.0000 ] 14561 </hwith_d> 14562 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 14563 [1.8000 ] 14564 </hi_denoiseStrength> 14565 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 14566 [0.2000 ] 14567 </hi_detailMinAdjDnW> 14568 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 14569 [0.8000 0.8500 0.8500 0.8000 ] 14570 </hi_denoiseWeight> 14571 <y_luma_point index="1" type="double" size="[1 6]"> 14572 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 14573 </y_luma_point> 14574 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 14575 [1.2000 1.0000 1.0000 1.0000 0.8000 0.7000 ] 14576 </hgrad_y_level1> 14577 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 14578 [1.2400 1.2400 1.0000 1.0000 0.7600 0.6300 ] 14579 </hgrad_y_level2> 14580 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 14581 [1.9000 1.6000 1.3000 1.0000 0.8000 0.8000 ] 14582 </hgrad_y_level3> 14583 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 14584 [1.4300 1.0000 0.5600 0.5600 0.5600 0.5600 ] 14585 </hgrad_y_level4> 14586 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 14587 [0.1300 0.3000 0.3000 0.1000 ] 14588 </hi_soft_thresh_scale> 14589 </cell> 14590 <cell index="7" type="struct" size="[1 1]"> 14591 <iso index="1" type="double" size="[1 1]"> 14592 [3200.0000 ] 14593 </iso> 14594 <sigma_curve index="1" type="double" size="[1 5]"> 14595 [-3.50549752881191e-012 3.76368052960353e-008 -1.51293815921383e-004 2.17945943756604e-001 1.33106751935557e+002 ] 14596 </sigma_curve> 14597 <ynr_lci index="1" type="double" size="[1 4]"> 14598 [0.9672 0.7349 0.4412 0.2149 ] 14599 </ynr_lci> 14600 <ynr_lhci index="1" type="double" size="[1 4]"> 14601 [0.8123 1.0416 0.7791 0.4971 ] 14602 </ynr_lhci> 14603 <ynr_hlci index="1" type="double" size="[1 4]"> 14604 [0.7957 0.9784 0.7845 0.4539 ] 14605 </ynr_hlci> 14606 <ynr_hhci index="1" type="double" size="[1 4]"> 14607 [0.6649 1.3670 1.3200 0.8774 ] 14608 </ynr_hhci> 14609 <lo_lumaPoint index="1" type="double" size="[1 6]"> 14610 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 14611 </lo_lumaPoint> 14612 <lo_lumaRatio index="1" type="double" size="[1 6]"> 14613 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 14614 </lo_lumaRatio> 14615 <lo_directionStrength index="1" type="double" size="[1 1]"> 14616 [0.2000 ] 14617 </lo_directionStrength> 14618 <lo_bfScale index="1" type="double" size="[1 4]"> 14619 [0.700 0.9000 2.2000 1.2000 ] 14620 </lo_bfScale> 14621 <imerge_ratio index="1" type="double" size="[1 1]"> 14622 [0.1500 ] 14623 </imerge_ratio> 14624 <imerge_bound index="1" type="double" size="[1 1]"> 14625 [1.2500 ] 14626 </imerge_bound> 14627 <denoise_weight index="1" type="double" size="[1 4]"> 14628 [0.9000 0.900 0.9000 0.9000 ] 14629 </denoise_weight> 14630 <hi_lumaPoint index="1" type="double" size="[1 6]"> 14631 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 14632 </hi_lumaPoint> 14633 <hi_lumaRatio index="1" type="double" size="[1 6]"> 14634 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 14635 </hi_lumaRatio> 14636 <hi_bfScale index="1" type="double" size="[1 4]"> 14637 [1.5000 1.7000 1.7000 1.200 ] 14638 </hi_bfScale> 14639 <hwith_d index="1" type="double" size="[1 4]"> 14640 [0.7500 0.7000 0.6600 0.3600 ] 14641 </hwith_d> 14642 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 14643 [2.0000 ] 14644 </hi_denoiseStrength> 14645 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 14646 [0.2000 ] 14647 </hi_detailMinAdjDnW> 14648 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 14649 [0.9000 0.9500 0.950 0.9000 ] 14650 </hi_denoiseWeight> 14651 <y_luma_point index="1" type="double" size="[1 6]"> 14652 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 14653 </y_luma_point> 14654 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 14655 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14656 </hgrad_y_level1> 14657 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 14658 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14659 </hgrad_y_level2> 14660 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 14661 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14662 </hgrad_y_level3> 14663 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 14664 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14665 </hgrad_y_level4> 14666 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 14667 [0.1300 0.3000 0.3000 0.1000 ] 14668 </hi_soft_thresh_scale> 14669 </cell> 14670 <cell index="8" type="struct" size="[1 1]"> 14671 <iso index="1" type="double" size="[1 1]"> 14672 [6400.0000 ] 14673 </iso> 14674 <sigma_curve index="1" type="double" size="[1 5]"> 14675 [-1.17756545286079e-011 1.12670434028526e-007 -4.05537564186043e-004 5.71448012221026e-001 6.52947928690119e+001 ] 14676 </sigma_curve> 14677 <ynr_lci index="1" type="double" size="[1 4]"> 14678 [0.9994 0.7431 0.4539 0.2078 ] 14679 </ynr_lci> 14680 <ynr_lhci index="1" type="double" size="[1 4]"> 14681 [0.8036 1.0685 0.8190 0.4374 ] 14682 </ynr_lhci> 14683 <ynr_hlci index="1" type="double" size="[1 4]"> 14684 [0.7714 0.9690 0.7755 0.4423 ] 14685 </ynr_hlci> 14686 <ynr_hhci index="1" type="double" size="[1 4]"> 14687 [0.6623 1.3492 1.3111 0.6951 ] 14688 </ynr_hhci> 14689 <lo_lumaPoint index="1" type="double" size="[1 6]"> 14690 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 14691 </lo_lumaPoint> 14692 <lo_lumaRatio index="1" type="double" size="[1 6]"> 14693 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 14694 </lo_lumaRatio> 14695 <lo_directionStrength index="1" type="double" size="[1 1]"> 14696 [0.2000 ] 14697 </lo_directionStrength> 14698 <lo_bfScale index="1" type="double" size="[1 4]"> 14699 [0.700 0.9000 2.2000 1.2000 ] 14700 </lo_bfScale> 14701 <imerge_ratio index="1" type="double" size="[1 1]"> 14702 [0.1500 ] 14703 </imerge_ratio> 14704 <imerge_bound index="1" type="double" size="[1 1]"> 14705 [1.2500 ] 14706 </imerge_bound> 14707 <denoise_weight index="1" type="double" size="[1 4]"> 14708 [0.9000 0.9000 0.9000 0.9000 ] 14709 </denoise_weight> 14710 <hi_lumaPoint index="1" type="double" size="[1 6]"> 14711 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 14712 </hi_lumaPoint> 14713 <hi_lumaRatio index="1" type="double" size="[1 6]"> 14714 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 14715 </hi_lumaRatio> 14716 <hi_bfScale index="1" type="double" size="[1 4]"> 14717 [1.5000 1.7000 1.7000 1.2000 ] 14718 </hi_bfScale> 14719 <hwith_d index="1" type="double" size="[1 4]"> 14720 [0.7500 0.7000 0.6600 0.3600 ] 14721 </hwith_d> 14722 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 14723 [1.0000 ] 14724 </hi_denoiseStrength> 14725 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 14726 [0.2000 ] 14727 </hi_detailMinAdjDnW> 14728 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 14729 [0.9000 0.9500 0.9500 0.9000 ] 14730 </hi_denoiseWeight> 14731 <y_luma_point index="1" type="double" size="[1 6]"> 14732 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 14733 </y_luma_point> 14734 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 14735 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14736 </hgrad_y_level1> 14737 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 14738 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14739 </hgrad_y_level2> 14740 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 14741 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14742 </hgrad_y_level3> 14743 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 14744 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14745 </hgrad_y_level4> 14746 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 14747 [0.1300 0.3000 0.3000 0.1000 ] 14748 </hi_soft_thresh_scale> 14749 </cell> 14750 <cell index="9" type="struct" size="[1 1]"> 14751 <iso index="1" type="double" size="[1 1]"> 14752 [12800.0000 ] 14753 </iso> 14754 <sigma_curve index="1" type="double" size="[1 5]"> 14755 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 14756 </sigma_curve> 14757 <ynr_lci index="1" type="double" size="[1 4]"> 14758 [0.9362 0.6543 0.4559 0.4039 ] 14759 </ynr_lci> 14760 <ynr_lhci index="1" type="double" size="[1 4]"> 14761 [0.8559 0.9798 0.6914 0.5389 ] 14762 </ynr_lhci> 14763 <ynr_hlci index="1" type="double" size="[1 4]"> 14764 [0.8855 0.9817 0.7013 0.5513 ] 14765 </ynr_hlci> 14766 <ynr_hhci index="1" type="double" size="[1 4]"> 14767 [0.7069 1.4633 1.1028 0.7415 ] 14768 </ynr_hhci> 14769 <lo_lumaPoint index="1" type="double" size="[1 6]"> 14770 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 14771 </lo_lumaPoint> 14772 <lo_lumaRatio index="1" type="double" size="[1 6]"> 14773 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 14774 </lo_lumaRatio> 14775 <lo_directionStrength index="1" type="double" size="[1 1]"> 14776 [0.2000 ] 14777 </lo_directionStrength> 14778 <lo_bfScale index="1" type="double" size="[1 4]"> 14779 [1.0000 1.0000 3.0000 1.0000 ] 14780 </lo_bfScale> 14781 <imerge_ratio index="1" type="double" size="[1 1]"> 14782 [0.1500 ] 14783 </imerge_ratio> 14784 <imerge_bound index="1" type="double" size="[1 1]"> 14785 [1.2500 ] 14786 </imerge_bound> 14787 <denoise_weight index="1" type="double" size="[1 4]"> 14788 [0.3000 0.8500 0.3000 0.3000 ] 14789 </denoise_weight> 14790 <hi_lumaPoint index="1" type="double" size="[1 6]"> 14791 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 14792 </hi_lumaPoint> 14793 <hi_lumaRatio index="1" type="double" size="[1 6]"> 14794 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 14795 </hi_lumaRatio> 14796 <hi_bfScale index="1" type="double" size="[1 4]"> 14797 [1.2000 1.1000 0.8600 0.8600 ] 14798 </hi_bfScale> 14799 <hwith_d index="1" type="double" size="[1 4]"> 14800 [6.0000 6.0000 4.0000 2.0000 ] 14801 </hwith_d> 14802 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 14803 [1.2000 ] 14804 </hi_denoiseStrength> 14805 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 14806 [0.2000 ] 14807 </hi_detailMinAdjDnW> 14808 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 14809 [0.7500 0.7000 0.6600 0.3600 ] 14810 </hi_denoiseWeight> 14811 <y_luma_point index="1" type="double" size="[1 6]"> 14812 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 14813 </y_luma_point> 14814 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 14815 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14816 </hgrad_y_level1> 14817 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 14818 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14819 </hgrad_y_level2> 14820 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 14821 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14822 </hgrad_y_level3> 14823 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 14824 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14825 </hgrad_y_level4> 14826 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 14827 [0.1300 0.3000 0.3000 0.1000 ] 14828 </hi_soft_thresh_scale> 14829 </cell> 14830 <cell index="10" type="struct" size="[1 1]"> 14831 <iso index="1" type="double" size="[1 1]"> 14832 [25600.0000 ] 14833 </iso> 14834 <sigma_curve index="1" type="double" size="[1 5]"> 14835 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 14836 </sigma_curve> 14837 <ynr_lci index="1" type="double" size="[1 4]"> 14838 [0.9362 0.6543 0.4559 0.4039 ] 14839 </ynr_lci> 14840 <ynr_lhci index="1" type="double" size="[1 4]"> 14841 [0.8559 0.9798 0.6914 0.5389 ] 14842 </ynr_lhci> 14843 <ynr_hlci index="1" type="double" size="[1 4]"> 14844 [0.8855 0.9817 0.7013 0.5513 ] 14845 </ynr_hlci> 14846 <ynr_hhci index="1" type="double" size="[1 4]"> 14847 [0.7069 1.4633 1.1028 0.7415 ] 14848 </ynr_hhci> 14849 <lo_lumaPoint index="1" type="double" size="[1 6]"> 14850 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 14851 </lo_lumaPoint> 14852 <lo_lumaRatio index="1" type="double" size="[1 6]"> 14853 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 14854 </lo_lumaRatio> 14855 <lo_directionStrength index="1" type="double" size="[1 1]"> 14856 [0.2000 ] 14857 </lo_directionStrength> 14858 <lo_bfScale index="1" type="double" size="[1 4]"> 14859 [1.0000 1.0000 3.0000 1.0000 ] 14860 </lo_bfScale> 14861 <imerge_ratio index="1" type="double" size="[1 1]"> 14862 [0.1500 ] 14863 </imerge_ratio> 14864 <imerge_bound index="1" type="double" size="[1 1]"> 14865 [1.2500 ] 14866 </imerge_bound> 14867 <denoise_weight index="1" type="double" size="[1 4]"> 14868 [0.3000 0.8500 0.3000 0.3000 ] 14869 </denoise_weight> 14870 <hi_lumaPoint index="1" type="double" size="[1 6]"> 14871 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 14872 </hi_lumaPoint> 14873 <hi_lumaRatio index="1" type="double" size="[1 6]"> 14874 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 14875 </hi_lumaRatio> 14876 <hi_bfScale index="1" type="double" size="[1 4]"> 14877 [1.2000 1.1000 0.8600 0.8600 ] 14878 </hi_bfScale> 14879 <hwith_d index="1" type="double" size="[1 4]"> 14880 [6.0000 6.0000 4.0000 2.0000 ] 14881 </hwith_d> 14882 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 14883 [1.2000 ] 14884 </hi_denoiseStrength> 14885 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 14886 [0.2000 ] 14887 </hi_detailMinAdjDnW> 14888 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 14889 [0.7500 0.7000 0.6600 0.3600 ] 14890 </hi_denoiseWeight> 14891 <y_luma_point index="1" type="double" size="[1 6]"> 14892 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 14893 </y_luma_point> 14894 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 14895 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14896 </hgrad_y_level1> 14897 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 14898 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14899 </hgrad_y_level2> 14900 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 14901 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14902 </hgrad_y_level3> 14903 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 14904 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14905 </hgrad_y_level4> 14906 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 14907 [0.1300 0.3000 0.3000 0.1000 ] 14908 </hi_soft_thresh_scale> 14909 </cell> 14910 <cell index="11" type="struct" size="[1 1]"> 14911 <iso index="1" type="double" size="[1 1]"> 14912 [51200.0000 ] 14913 </iso> 14914 <sigma_curve index="1" type="double" size="[1 5]"> 14915 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 14916 </sigma_curve> 14917 <ynr_lci index="1" type="double" size="[1 4]"> 14918 [0.9362 0.6543 0.4559 0.4039 ] 14919 </ynr_lci> 14920 <ynr_lhci index="1" type="double" size="[1 4]"> 14921 [0.8559 0.9798 0.6914 0.5389 ] 14922 </ynr_lhci> 14923 <ynr_hlci index="1" type="double" size="[1 4]"> 14924 [0.8855 0.9817 0.7013 0.5513 ] 14925 </ynr_hlci> 14926 <ynr_hhci index="1" type="double" size="[1 4]"> 14927 [0.7069 1.4633 1.1028 0.7415 ] 14928 </ynr_hhci> 14929 <lo_lumaPoint index="1" type="double" size="[1 6]"> 14930 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 14931 </lo_lumaPoint> 14932 <lo_lumaRatio index="1" type="double" size="[1 6]"> 14933 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 14934 </lo_lumaRatio> 14935 <lo_directionStrength index="1" type="double" size="[1 1]"> 14936 [0.2000 ] 14937 </lo_directionStrength> 14938 <lo_bfScale index="1" type="double" size="[1 4]"> 14939 [1.0000 1.0000 3.0000 1.0000 ] 14940 </lo_bfScale> 14941 <imerge_ratio index="1" type="double" size="[1 1]"> 14942 [0.1500 ] 14943 </imerge_ratio> 14944 <imerge_bound index="1" type="double" size="[1 1]"> 14945 [1.2500 ] 14946 </imerge_bound> 14947 <denoise_weight index="1" type="double" size="[1 4]"> 14948 [0.3000 0.8500 0.3000 0.3000 ] 14949 </denoise_weight> 14950 <hi_lumaPoint index="1" type="double" size="[1 6]"> 14951 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 14952 </hi_lumaPoint> 14953 <hi_lumaRatio index="1" type="double" size="[1 6]"> 14954 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 14955 </hi_lumaRatio> 14956 <hi_bfScale index="1" type="double" size="[1 4]"> 14957 [1.2000 1.1000 0.8600 0.8600 ] 14958 </hi_bfScale> 14959 <hwith_d index="1" type="double" size="[1 4]"> 14960 [6.0000 6.0000 4.0000 2.0000 ] 14961 </hwith_d> 14962 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 14963 [1.2000 ] 14964 </hi_denoiseStrength> 14965 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 14966 [0.2000 ] 14967 </hi_detailMinAdjDnW> 14968 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 14969 [0.7500 0.7000 0.6600 0.3600 ] 14970 </hi_denoiseWeight> 14971 <y_luma_point index="1" type="double" size="[1 6]"> 14972 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 14973 </y_luma_point> 14974 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 14975 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14976 </hgrad_y_level1> 14977 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 14978 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14979 </hgrad_y_level2> 14980 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 14981 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14982 </hgrad_y_level3> 14983 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 14984 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 14985 </hgrad_y_level4> 14986 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 14987 [0.1300 0.3000 0.3000 0.1000 ] 14988 </hi_soft_thresh_scale> 14989 </cell> 14990 <cell index="12" type="struct" size="[1 1]"> 14991 <iso index="1" type="double" size="[1 1]"> 14992 [102400.0000 ] 14993 </iso> 14994 <sigma_curve index="1" type="double" size="[1 5]"> 14995 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 14996 </sigma_curve> 14997 <ynr_lci index="1" type="double" size="[1 4]"> 14998 [0.9362 0.6543 0.4559 0.4039 ] 14999 </ynr_lci> 15000 <ynr_lhci index="1" type="double" size="[1 4]"> 15001 [0.8559 0.9798 0.6914 0.5389 ] 15002 </ynr_lhci> 15003 <ynr_hlci index="1" type="double" size="[1 4]"> 15004 [0.8855 0.9817 0.7013 0.5513 ] 15005 </ynr_hlci> 15006 <ynr_hhci index="1" type="double" size="[1 4]"> 15007 [0.7069 1.4633 1.1028 0.7415 ] 15008 </ynr_hhci> 15009 <lo_lumaPoint index="1" type="double" size="[1 6]"> 15010 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 15011 </lo_lumaPoint> 15012 <lo_lumaRatio index="1" type="double" size="[1 6]"> 15013 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 15014 </lo_lumaRatio> 15015 <lo_directionStrength index="1" type="double" size="[1 1]"> 15016 [0.2000 ] 15017 </lo_directionStrength> 15018 <lo_bfScale index="1" type="double" size="[1 4]"> 15019 [1.0000 1.0000 3.0000 1.0000 ] 15020 </lo_bfScale> 15021 <imerge_ratio index="1" type="double" size="[1 1]"> 15022 [0.1500 ] 15023 </imerge_ratio> 15024 <imerge_bound index="1" type="double" size="[1 1]"> 15025 [1.2500 ] 15026 </imerge_bound> 15027 <denoise_weight index="1" type="double" size="[1 4]"> 15028 [0.3000 0.8500 0.3000 0.3000 ] 15029 </denoise_weight> 15030 <hi_lumaPoint index="1" type="double" size="[1 6]"> 15031 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 15032 </hi_lumaPoint> 15033 <hi_lumaRatio index="1" type="double" size="[1 6]"> 15034 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 15035 </hi_lumaRatio> 15036 <hi_bfScale index="1" type="double" size="[1 4]"> 15037 [1.2000 1.1000 0.8600 0.8600 ] 15038 </hi_bfScale> 15039 <hwith_d index="1" type="double" size="[1 4]"> 15040 [6.0000 6.0000 4.0000 2.0000 ] 15041 </hwith_d> 15042 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 15043 [1.2000 ] 15044 </hi_denoiseStrength> 15045 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 15046 [0.2000 ] 15047 </hi_detailMinAdjDnW> 15048 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 15049 [0.7500 0.7000 0.6600 0.3600 ] 15050 </hi_denoiseWeight> 15051 <y_luma_point index="1" type="double" size="[1 6]"> 15052 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 15053 </y_luma_point> 15054 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 15055 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 15056 </hgrad_y_level1> 15057 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 15058 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 15059 </hgrad_y_level2> 15060 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 15061 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 15062 </hgrad_y_level3> 15063 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 15064 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 15065 </hgrad_y_level4> 15066 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 15067 [0.1300 0.3000 0.3000 0.1000 ] 15068 </hi_soft_thresh_scale> 15069 </cell> 15070 <cell index="13" type="struct" size="[1 1]"> 15071 <iso index="1" type="double" size="[1 1]"> 15072 [204800.0000 ] 15073 </iso> 15074 <sigma_curve index="1" type="double" size="[1 5]"> 15075 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 15076 </sigma_curve> 15077 <ynr_lci index="1" type="double" size="[1 4]"> 15078 [0.9362 0.6543 0.4559 0.4039 ] 15079 </ynr_lci> 15080 <ynr_lhci index="1" type="double" size="[1 4]"> 15081 [0.8559 0.9798 0.6914 0.5389 ] 15082 </ynr_lhci> 15083 <ynr_hlci index="1" type="double" size="[1 4]"> 15084 [0.8855 0.9817 0.7013 0.5513 ] 15085 </ynr_hlci> 15086 <ynr_hhci index="1" type="double" size="[1 4]"> 15087 [0.7069 1.4633 1.1028 0.7415 ] 15088 </ynr_hhci> 15089 <lo_lumaPoint index="1" type="double" size="[1 6]"> 15090 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 15091 </lo_lumaPoint> 15092 <lo_lumaRatio index="1" type="double" size="[1 6]"> 15093 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 15094 </lo_lumaRatio> 15095 <lo_directionStrength index="1" type="double" size="[1 1]"> 15096 [0.2000 ] 15097 </lo_directionStrength> 15098 <lo_bfScale index="1" type="double" size="[1 4]"> 15099 [1.0000 1.0000 3.0000 1.0000 ] 15100 </lo_bfScale> 15101 <imerge_ratio index="1" type="double" size="[1 1]"> 15102 [0.1500 ] 15103 </imerge_ratio> 15104 <imerge_bound index="1" type="double" size="[1 1]"> 15105 [1.2500 ] 15106 </imerge_bound> 15107 <denoise_weight index="1" type="double" size="[1 4]"> 15108 [0.3000 0.8500 0.3000 0.3000 ] 15109 </denoise_weight> 15110 <hi_lumaPoint index="1" type="double" size="[1 6]"> 15111 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 15112 </hi_lumaPoint> 15113 <hi_lumaRatio index="1" type="double" size="[1 6]"> 15114 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 15115 </hi_lumaRatio> 15116 <hi_bfScale index="1" type="double" size="[1 4]"> 15117 [1.2000 1.1000 0.8600 0.8600 ] 15118 </hi_bfScale> 15119 <hwith_d index="1" type="double" size="[1 4]"> 15120 [6.0000 6.0000 4.0000 2.0000 ] 15121 </hwith_d> 15122 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 15123 [1.2000 ] 15124 </hi_denoiseStrength> 15125 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 15126 [0.2000 ] 15127 </hi_detailMinAdjDnW> 15128 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 15129 [0.7500 0.7000 0.6600 0.3600 ] 15130 </hi_denoiseWeight> 15131 <y_luma_point index="1" type="double" size="[1 6]"> 15132 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 15133 </y_luma_point> 15134 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 15135 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 15136 </hgrad_y_level1> 15137 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 15138 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 15139 </hgrad_y_level2> 15140 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 15141 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 15142 </hgrad_y_level3> 15143 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 15144 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 15145 </hgrad_y_level4> 15146 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 15147 [0.1300 0.3000 0.3000 0.1000 ] 15148 </hi_soft_thresh_scale> 15149 </cell> 15150 </YNR_ISO> 15151 </cell> 15152 <cell index="2" type="struct" size="[1 1]"> 15153 <SNR_Mode index="1" type="char" size="[1 4]"> 15154 HSNR 15155 </SNR_Mode> 15156 <Sensor_Mode index="1" type="char" size="[1 3]"> 15157 hcg 15158 </Sensor_Mode> 15159 <YNR_ISO index="1" type="cell" size="[1 13]"> 15160 <cell index="1" type="struct" size="[1 1]"> 15161 <iso index="1" type="double" size="[1 1]"> 15162 [50.0000 ] 15163 </iso> 15164 <sigma_curve index="1" type="double" size="[1 5]"> 15165 [-8.43031629716230e-013 7.96403418022611e-009 -2.69124846208717e-005 3.30491353997608e-002 1.82112440798101e+001 ] 15166 </sigma_curve> 15167 <ynr_lci index="1" type="double" size="[1 4]"> 15168 [0.9332 0.6865 0.4320 0.2739 ] 15169 </ynr_lci> 15170 <ynr_lhci index="1" type="double" size="[1 4]"> 15171 [0.8451 0.9787 0.7649 0.5108 ] 15172 </ynr_lhci> 15173 <ynr_hlci index="1" type="double" size="[1 4]"> 15174 [0.8322 0.9514 0.7381 0.4824 ] 15175 </ynr_hlci> 15176 <ynr_hhci index="1" type="double" size="[1 4]"> 15177 [0.6986 1.4097 1.2535 0.8366 ] 15178 </ynr_hhci> 15179 <lo_lumaPoint index="1" type="double" size="[1 6]"> 15180 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 15181 </lo_lumaPoint> 15182 <lo_lumaRatio index="1" type="double" size="[1 6]"> 15183 [1.2000 1.2000 1.2500 1.0000 1.0000 1.0000 ] 15184 </lo_lumaRatio> 15185 <lo_directionStrength index="1" type="double" size="[1 1]"> 15186 [0.5000 ] 15187 </lo_directionStrength> 15188 <lo_bfScale index="1" type="double" size="[1 4]"> 15189 [1.0000 1.0000 1.0000 1.0000 ] 15190 </lo_bfScale> 15191 <imerge_ratio index="1" type="double" size="[1 1]"> 15192 [0.4000 ] 15193 </imerge_ratio> 15194 <imerge_bound index="1" type="double" size="[1 1]"> 15195 [1.2500 ] 15196 </imerge_bound> 15197 <denoise_weight index="1" type="double" size="[1 4]"> 15198 [0.3000 0.3000 0.5000 0.7000 ] 15199 </denoise_weight> 15200 <hi_lumaPoint index="1" type="double" size="[1 6]"> 15201 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 15202 </hi_lumaPoint> 15203 <hi_lumaRatio index="1" type="double" size="[1 6]"> 15204 [1.2500 1.2500 1.2500 1.0000 1.0000 1.0000 ] 15205 </hi_lumaRatio> 15206 <hi_bfScale index="1" type="double" size="[1 4]"> 15207 [1.0000 1.0000 1.0000 1.0000 ] 15208 </hi_bfScale> 15209 <hwith_d index="1" type="double" size="[1 4]"> 15210 [2.0000 2.0000 1.2000 1.2000 ] 15211 </hwith_d> 15212 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 15213 [1.1000 ] 15214 </hi_denoiseStrength> 15215 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 15216 [0.2000 ] 15217 </hi_detailMinAdjDnW> 15218 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 15219 [0.7500 0.7000 0.6000 0.5000 ] 15220 </hi_denoiseWeight> 15221 <y_luma_point index="1" type="double" size="[1 6]"> 15222 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 15223 </y_luma_point> 15224 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 15225 [1.0000 0.6700 0.6700 0.6700 0.6700 0.6700 ] 15226 </hgrad_y_level1> 15227 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 15228 [1.0000 0.6700 0.6700 0.6700 0.6700 0.6700 ] 15229 </hgrad_y_level2> 15230 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 15231 [1.0000 0.5700 0.5700 0.5700 0.5700 0.5700 ] 15232 </hgrad_y_level3> 15233 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 15234 [1.0000 0.5000 0.5000 0.4000 0.3000 0.2000 ] 15235 </hgrad_y_level4> 15236 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 15237 [0.1100 0.1100 0.1000 0.1000 ] 15238 </hi_soft_thresh_scale> 15239 </cell> 15240 <cell index="2" type="struct" size="[1 1]"> 15241 <iso index="1" type="double" size="[1 1]"> 15242 [100.0000 ] 15243 </iso> 15244 <sigma_curve index="1" type="double" size="[1 5]"> 15245 [-9.07873071141055e-013 9.05495555543235e-009 -3.21717261013016e-005 4.12882265916323e-002 2.10344756396116e+001 ] 15246 </sigma_curve> 15247 <ynr_lci index="1" type="double" size="[1 4]"> 15248 [0.9705 0.7580 0.4856 0.2991 ] 15249 </ynr_lci> 15250 <ynr_lhci index="1" type="double" size="[1 4]"> 15251 [0.7414 0.9915 0.8479 0.5629 ] 15252 </ynr_lhci> 15253 <ynr_hlci index="1" type="double" size="[1 4]"> 15254 [0.7546 0.9337 0.8045 0.5478 ] 15255 </ynr_hlci> 15256 <ynr_hhci index="1" type="double" size="[1 4]"> 15257 [0.6777 1.3441 1.3399 0.9403 ] 15258 </ynr_hhci> 15259 <lo_lumaPoint index="1" type="double" size="[1 6]"> 15260 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 15261 </lo_lumaPoint> 15262 <lo_lumaRatio index="1" type="double" size="[1 6]"> 15263 [1.3000 1.2000 1.3000 1.0000 1.0000 1.0000 ] 15264 </lo_lumaRatio> 15265 <lo_directionStrength index="1" type="double" size="[1 1]"> 15266 [0.5000 ] 15267 </lo_directionStrength> 15268 <lo_bfScale index="1" type="double" size="[1 4]"> 15269 [1.0000 1.0000 1.0000 1.0000 ] 15270 </lo_bfScale> 15271 <imerge_ratio index="1" type="double" size="[1 1]"> 15272 [0.4000 ] 15273 </imerge_ratio> 15274 <imerge_bound index="1" type="double" size="[1 1]"> 15275 [1.2500 ] 15276 </imerge_bound> 15277 <denoise_weight index="1" type="double" size="[1 4]"> 15278 [0.3000 0.3000 0.5000 0.8000 ] 15279 </denoise_weight> 15280 <hi_lumaPoint index="1" type="double" size="[1 6]"> 15281 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 15282 </hi_lumaPoint> 15283 <hi_lumaRatio index="1" type="double" size="[1 6]"> 15284 [1.2500 1.3000 1.2500 1.0000 1.0000 1.0000 ] 15285 </hi_lumaRatio> 15286 <hi_bfScale index="1" type="double" size="[1 4]"> 15287 [1.2000 1.2000 1.0000 1.0000 ] 15288 </hi_bfScale> 15289 <hwith_d index="1" type="double" size="[1 4]"> 15290 [2.0000 2.0000 1.2000 1.2000 ] 15291 </hwith_d> 15292 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 15293 [1.2000 ] 15294 </hi_denoiseStrength> 15295 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 15296 [0.2000 ] 15297 </hi_detailMinAdjDnW> 15298 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 15299 [0.7500 0.7500 0.6000 0.3000 ] 15300 </hi_denoiseWeight> 15301 <y_luma_point index="1" type="double" size="[1 6]"> 15302 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 15303 </y_luma_point> 15304 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 15305 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 15306 </hgrad_y_level1> 15307 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 15308 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 15309 </hgrad_y_level2> 15310 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 15311 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 15312 </hgrad_y_level3> 15313 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 15314 [1.0000 0.5000 0.5000 0.4000 0.3000 0.2000 ] 15315 </hgrad_y_level4> 15316 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 15317 [0.1100 0.1100 0.1000 0.1000 ] 15318 </hi_soft_thresh_scale> 15319 </cell> 15320 <cell index="3" type="struct" size="[1 1]"> 15321 <iso index="1" type="double" size="[1 1]"> 15322 [200.0000 ] 15323 </iso> 15324 <sigma_curve index="1" type="double" size="[1 5]"> 15325 [-1.52155493457974e-012 1.40665186878902e-008 -4.69371860616144e-005 5.84762430174166e-002 2.60227194063991e+001 ] 15326 </sigma_curve> 15327 <ynr_lci index="1" type="double" size="[1 4]"> 15328 [0.9803 0.8076 0.5477 0.3742 ] 15329 </ynr_lci> 15330 <ynr_lhci index="1" type="double" size="[1 4]"> 15331 [0.6903 0.9419 0.8266 0.5464 ] 15332 </ynr_lhci> 15333 <ynr_hlci index="1" type="double" size="[1 4]"> 15334 [0.7051 0.8922 0.8274 0.5191 ] 15335 </ynr_hlci> 15336 <ynr_hhci index="1" type="double" size="[1 4]"> 15337 [0.6291 1.2325 1.3371 0.9198 ] 15338 </ynr_hhci> 15339 <lo_lumaPoint index="1" type="double" size="[1 6]"> 15340 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 15341 </lo_lumaPoint> 15342 <lo_lumaRatio index="1" type="double" size="[1 6]"> 15343 [1.3000 1.2000 1.5000 1.2000 1.0000 1.0000 ] 15344 </lo_lumaRatio> 15345 <lo_directionStrength index="1" type="double" size="[1 1]"> 15346 [0.5000 ] 15347 </lo_directionStrength> 15348 <lo_bfScale index="1" type="double" size="[1 4]"> 15349 [0.3000 0.6000 1.0000 1.0000 ] 15350 </lo_bfScale> 15351 <imerge_ratio index="1" type="double" size="[1 1]"> 15352 [0.3000 ] 15353 </imerge_ratio> 15354 <imerge_bound index="1" type="double" size="[1 1]"> 15355 [1.2500 ] 15356 </imerge_bound> 15357 <denoise_weight index="1" type="double" size="[1 4]"> 15358 [0.3000 0.4000 0.6000 0.6000 ] 15359 </denoise_weight> 15360 <hi_lumaPoint index="1" type="double" size="[1 6]"> 15361 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 15362 </hi_lumaPoint> 15363 <hi_lumaRatio index="1" type="double" size="[1 6]"> 15364 [1.1000 1.1000 1.5000 1.0000 1.0000 1.0000 ] 15365 </hi_lumaRatio> 15366 <hi_bfScale index="1" type="double" size="[1 4]"> 15367 [1.1000 1.0000 1.0000 1.0000 ] 15368 </hi_bfScale> 15369 <hwith_d index="1" type="double" size="[1 4]"> 15370 [4.0000 4.0000 2.0000 1.2000 ] 15371 </hwith_d> 15372 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 15373 [1.3000 ] 15374 </hi_denoiseStrength> 15375 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 15376 [0.2000 ] 15377 </hi_detailMinAdjDnW> 15378 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 15379 [0.7000 0.7000 0.6000 0.3000 ] 15380 </hi_denoiseWeight> 15381 <y_luma_point index="1" type="double" size="[1 6]"> 15382 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 15383 </y_luma_point> 15384 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 15385 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 15386 </hgrad_y_level1> 15387 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 15388 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 15389 </hgrad_y_level2> 15390 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 15391 [1.0000 0.5000 0.5000 0.5000 0.5000 0.5000 ] 15392 </hgrad_y_level3> 15393 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 15394 [1.0000 0.5000 0.5000 0.4000 0.3000 0.2000 ] 15395 </hgrad_y_level4> 15396 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 15397 [0.1200 0.1200 0.1000 0.1000 ] 15398 </hi_soft_thresh_scale> 15399 </cell> 15400 <cell index="4" type="struct" size="[1 1]"> 15401 <iso index="1" type="double" size="[1 1]"> 15402 [400.0000 ] 15403 </iso> 15404 <sigma_curve index="1" type="double" size="[1 5]"> 15405 [-2.78200837475752e-012 2.61174369092566e-008 -8.77094728358591e-005 1.11980382041814e-001 2.36814539463394e+001 ] 15406 </sigma_curve> 15407 <ynr_lci index="1" type="double" size="[1 4]"> 15408 [0.9916 0.8348 0.5930 0.4323 ] 15409 </ynr_lci> 15410 <ynr_lhci index="1" type="double" size="[1 4]"> 15411 [0.6344 0.9054 0.8065 0.5319 ] 15412 </ynr_lhci> 15413 <ynr_hlci index="1" type="double" size="[1 4]"> 15414 [0.6500 0.8519 0.7976 0.5142 ] 15415 </ynr_hlci> 15416 <ynr_hhci index="1" type="double" size="[1 4]"> 15417 [0.5847 1.1568 1.3008 0.9211 ] 15418 </ynr_hhci> 15419 <lo_lumaPoint index="1" type="double" size="[1 6]"> 15420 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 15421 </lo_lumaPoint> 15422 <lo_lumaRatio index="1" type="double" size="[1 6]"> 15423 [1.3000 1.2000 1.5000 1.0000 1.0000 1.0000 ] 15424 </lo_lumaRatio> 15425 <lo_directionStrength index="1" type="double" size="[1 1]"> 15426 [0.5000 ] 15427 </lo_directionStrength> 15428 <lo_bfScale index="1" type="double" size="[1 4]"> 15429 [0.4000 0.7000 1.0000 1.0000 ] 15430 </lo_bfScale> 15431 <imerge_ratio index="1" type="double" size="[1 1]"> 15432 [0.2500 ] 15433 </imerge_ratio> 15434 <imerge_bound index="1" type="double" size="[1 1]"> 15435 [1.2500 ] 15436 </imerge_bound> 15437 <denoise_weight index="1" type="double" size="[1 4]"> 15438 [0.3500 0.4000 0.6000 0.6000 ] 15439 </denoise_weight> 15440 <hi_lumaPoint index="1" type="double" size="[1 6]"> 15441 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 15442 </hi_lumaPoint> 15443 <hi_lumaRatio index="1" type="double" size="[1 6]"> 15444 [1.2000 1.2000 1.5000 1.5000 1.0000 1.0000 ] 15445 </hi_lumaRatio> 15446 <hi_bfScale index="1" type="double" size="[1 4]"> 15447 [1.2000 1.2000 1.2000 1.2000 ] 15448 </hi_bfScale> 15449 <hwith_d index="1" type="double" size="[1 4]"> 15450 [6.0000 6.0000 4.0000 2.0000 ] 15451 </hwith_d> 15452 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 15453 [1.4000 ] 15454 </hi_denoiseStrength> 15455 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 15456 [0.2000 ] 15457 </hi_detailMinAdjDnW> 15458 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 15459 [0.8000 0.9000 1.0000 1.0000 ] 15460 </hi_denoiseWeight> 15461 <y_luma_point index="1" type="double" size="[1 6]"> 15462 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 15463 </y_luma_point> 15464 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 15465 [1.0000 0.5000 0.5000 0.5000 0.5000 0.3000 ] 15466 </hgrad_y_level1> 15467 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 15468 [1.0000 0.5000 0.5000 0.5000 0.5000 0.3000 ] 15469 </hgrad_y_level2> 15470 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 15471 [1.0000 0.5100 0.5100 0.5100 0.5100 0.3000 ] 15472 </hgrad_y_level3> 15473 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 15474 [1.0000 0.5000 0.5000 0.4000 0.3000 0.2000 ] 15475 </hgrad_y_level4> 15476 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 15477 [0.1300 0.1300 0.1000 0.1000 ] 15478 </hi_soft_thresh_scale> 15479 </cell> 15480 <cell index="5" type="struct" size="[1 1]"> 15481 <iso index="1" type="double" size="[1 1]"> 15482 [800.0000 ] 15483 </iso> 15484 <sigma_curve index="1" type="double" size="[1 5]"> 15485 [-2.23709690355328e-012 2.11901816670340e-008 -7.26688079299778e-005 9.60394777007423e-002 2.24640616934303e+001 ] 15486 </sigma_curve> 15487 <ynr_lci index="1" type="double" size="[1 4]"> 15488 [0.9995 0.8669 0.6279 0.4620 ] 15489 </ynr_lci> 15490 <ynr_lhci index="1" type="double" size="[1 4]"> 15491 [0.5868 0.8782 0.8352 0.5524 ] 15492 </ynr_lhci> 15493 <ynr_hlci index="1" type="double" size="[1 4]"> 15494 [0.6041 0.8250 0.8222 0.5392 ] 15495 </ynr_hlci> 15496 <ynr_hhci index="1" type="double" size="[1 4]"> 15497 [0.5544 1.0703 1.3144 0.9702 ] 15498 </ynr_hhci> 15499 <lo_lumaPoint index="1" type="double" size="[1 6]"> 15500 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 15501 </lo_lumaPoint> 15502 <lo_lumaRatio index="1" type="double" size="[1 6]"> 15503 [1.0000 1.0000 1.5000 1.0000 1.0000 1.0000 ] 15504 </lo_lumaRatio> 15505 <lo_directionStrength index="1" type="double" size="[1 1]"> 15506 [0.3000 ] 15507 </lo_directionStrength> 15508 <lo_bfScale index="1" type="double" size="[1 4]"> 15509 [0.3000 0.5000 1.0000 1.0000 ] 15510 </lo_bfScale> 15511 <imerge_ratio index="1" type="double" size="[1 1]"> 15512 [0.2000 ] 15513 </imerge_ratio> 15514 <imerge_bound index="1" type="double" size="[1 1]"> 15515 [1.2500 ] 15516 </imerge_bound> 15517 <denoise_weight index="1" type="double" size="[1 4]"> 15518 [0.4000 0.5000 1.0000 1.0000 ] 15519 </denoise_weight> 15520 <hi_lumaPoint index="1" type="double" size="[1 6]"> 15521 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 15522 </hi_lumaPoint> 15523 <hi_lumaRatio index="1" type="double" size="[1 6]"> 15524 [1.1000 1.2000 1.5000 1.5000 1.0000 1.0000 ] 15525 </hi_lumaRatio> 15526 <hi_bfScale index="1" type="double" size="[1 4]"> 15527 [1.2000 1.3000 1.5000 1.5000 ] 15528 </hi_bfScale> 15529 <hwith_d index="1" type="double" size="[1 4]"> 15530 [6.0000 6.0000 4.0000 2.0000 ] 15531 </hwith_d> 15532 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 15533 [1.3000 ] 15534 </hi_denoiseStrength> 15535 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 15536 [0.2000 ] 15537 </hi_detailMinAdjDnW> 15538 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 15539 [1.1000 1.2000 1.3000 1.3000 ] 15540 </hi_denoiseWeight> 15541 <y_luma_point index="1" type="double" size="[1 6]"> 15542 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 15543 </y_luma_point> 15544 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 15545 [1.0000 0.5000 0.4000 0.3500 0.3000 0.2000 ] 15546 </hgrad_y_level1> 15547 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 15548 [1.0000 0.5000 0.4000 0.3500 0.3000 0.2000 ] 15549 </hgrad_y_level2> 15550 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 15551 [1.0000 0.5000 0.4000 0.3500 0.3000 0.2000 ] 15552 </hgrad_y_level3> 15553 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 15554 [1.0000 0.5000 0.4000 0.3500 0.3000 0.2000 ] 15555 </hgrad_y_level4> 15556 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 15557 [0.1300 0.1300 0.1000 0.1000 ] 15558 </hi_soft_thresh_scale> 15559 </cell> 15560 <cell index="6" type="struct" size="[1 1]"> 15561 <iso index="1" type="double" size="[1 1]"> 15562 [1600.0000 ] 15563 </iso> 15564 <sigma_curve index="1" type="double" size="[1 5]"> 15565 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 15566 </sigma_curve> 15567 <ynr_lci index="1" type="double" size="[1 4]"> 15568 [0.9431 0.6702 0.4477 0.3673 ] 15569 </ynr_lci> 15570 <ynr_lhci index="1" type="double" size="[1 4]"> 15571 [0.8418 0.9831 0.7047 0.5016 ] 15572 </ynr_lhci> 15573 <ynr_hlci index="1" type="double" size="[1 4]"> 15574 [0.8724 0.9884 0.7118 0.5088 ] 15575 </ynr_hlci> 15576 <ynr_hhci index="1" type="double" size="[1 4]"> 15577 [0.6503 1.4228 1.1743 0.7566 ] 15578 </ynr_hhci> 15579 <lo_lumaPoint index="1" type="double" size="[1 6]"> 15580 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 15581 </lo_lumaPoint> 15582 <lo_lumaRatio index="1" type="double" size="[1 6]"> 15583 [1.0000 1.0000 1.5000 1.0000 1.0000 1.0000 ] 15584 </lo_lumaRatio> 15585 <lo_directionStrength index="1" type="double" size="[1 1]"> 15586 [0.2000 ] 15587 </lo_directionStrength> 15588 <lo_bfScale index="1" type="double" size="[1 4]"> 15589 [0.2500 0.5000 2.0000 1.0000 ] 15590 </lo_bfScale> 15591 <imerge_ratio index="1" type="double" size="[1 1]"> 15592 [0.1500 ] 15593 </imerge_ratio> 15594 <imerge_bound index="1" type="double" size="[1 1]"> 15595 [1.2500 ] 15596 </imerge_bound> 15597 <denoise_weight index="1" type="double" size="[1 4]"> 15598 [0.4000 0.8500 0.8500 0.9000 ] 15599 </denoise_weight> 15600 <hi_lumaPoint index="1" type="double" size="[1 6]"> 15601 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 15602 </hi_lumaPoint> 15603 <hi_lumaRatio index="1" type="double" size="[1 6]"> 15604 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 15605 </hi_lumaRatio> 15606 <hi_bfScale index="1" type="double" size="[1 4]"> 15607 [1.2000 1.5000 1.5000 0.8600 ] 15608 </hi_bfScale> 15609 <hwith_d index="1" type="double" size="[1 4]"> 15610 [6.0000 6.0000 4.0000 2.0000 ] 15611 </hwith_d> 15612 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 15613 [1.2000 ] 15614 </hi_denoiseStrength> 15615 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 15616 [0.2000 ] 15617 </hi_detailMinAdjDnW> 15618 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 15619 [0.5000 0.4500 0.2500 0.4000 ] 15620 </hi_denoiseWeight> 15621 <y_luma_point index="1" type="double" size="[1 6]"> 15622 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 15623 </y_luma_point> 15624 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 15625 [1.2000 1.0000 1.0000 1.0000 0.8000 0.7000 ] 15626 </hgrad_y_level1> 15627 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 15628 [1.2400 1.2400 1.0000 1.0000 0.7600 0.6300 ] 15629 </hgrad_y_level2> 15630 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 15631 [1.9000 1.6000 1.3000 1.0000 0.8000 0.8000 ] 15632 </hgrad_y_level3> 15633 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 15634 [1.4300 1.0000 0.5600 0.5600 0.5600 0.5600 ] 15635 </hgrad_y_level4> 15636 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 15637 [0.1300 0.3000 0.3000 0.1000 ] 15638 </hi_soft_thresh_scale> 15639 </cell> 15640 <cell index="7" type="struct" size="[1 1]"> 15641 <iso index="1" type="double" size="[1 1]"> 15642 [3200.0000 ] 15643 </iso> 15644 <sigma_curve index="1" type="double" size="[1 5]"> 15645 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 15646 </sigma_curve> 15647 <ynr_lci index="1" type="double" size="[1 4]"> 15648 [0.9507 0.6887 0.4587 0.3811 ] 15649 </ynr_lci> 15650 <ynr_lhci index="1" type="double" size="[1 4]"> 15651 [0.8287 0.9938 0.7358 0.5284 ] 15652 </ynr_lhci> 15653 <ynr_hlci index="1" type="double" size="[1 4]"> 15654 [0.8579 0.9965 0.7366 0.5295 ] 15655 </ynr_hlci> 15656 <ynr_hhci index="1" type="double" size="[1 4]"> 15657 [0.6034 1.3726 1.2116 0.7878 ] 15658 </ynr_hhci> 15659 <lo_lumaPoint index="1" type="double" size="[1 6]"> 15660 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 15661 </lo_lumaPoint> 15662 <lo_lumaRatio index="1" type="double" size="[1 6]"> 15663 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 15664 </lo_lumaRatio> 15665 <lo_directionStrength index="1" type="double" size="[1 1]"> 15666 [0.2000 ] 15667 </lo_directionStrength> 15668 <lo_bfScale index="1" type="double" size="[1 4]"> 15669 [0.2500 0.5000 2.0000 1.0000 ] 15670 </lo_bfScale> 15671 <imerge_ratio index="1" type="double" size="[1 1]"> 15672 [0.1500 ] 15673 </imerge_ratio> 15674 <imerge_bound index="1" type="double" size="[1 1]"> 15675 [1.2500 ] 15676 </imerge_bound> 15677 <denoise_weight index="1" type="double" size="[1 4]"> 15678 [0.3000 0.8500 0.2000 0.7000 ] 15679 </denoise_weight> 15680 <hi_lumaPoint index="1" type="double" size="[1 6]"> 15681 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 15682 </hi_lumaPoint> 15683 <hi_lumaRatio index="1" type="double" size="[1 6]"> 15684 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 15685 </hi_lumaRatio> 15686 <hi_bfScale index="1" type="double" size="[1 4]"> 15687 [1.2000 1.1000 0.8600 0.8600 ] 15688 </hi_bfScale> 15689 <hwith_d index="1" type="double" size="[1 4]"> 15690 [0.7500 0.7000 0.6600 0.3600 ] 15691 </hwith_d> 15692 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 15693 [1.2000 ] 15694 </hi_denoiseStrength> 15695 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 15696 [0.2000 ] 15697 </hi_detailMinAdjDnW> 15698 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 15699 [0.7500 0.7000 0.6600 0.3600 ] 15700 </hi_denoiseWeight> 15701 <y_luma_point index="1" type="double" size="[1 6]"> 15702 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 15703 </y_luma_point> 15704 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 15705 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 15706 </hgrad_y_level1> 15707 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 15708 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 15709 </hgrad_y_level2> 15710 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 15711 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 15712 </hgrad_y_level3> 15713 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 15714 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 15715 </hgrad_y_level4> 15716 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 15717 [0.1300 0.3000 0.3000 0.1000 ] 15718 </hi_soft_thresh_scale> 15719 </cell> 15720 <cell index="8" type="struct" size="[1 1]"> 15721 <iso index="1" type="double" size="[1 1]"> 15722 [6400.0000 ] 15723 </iso> 15724 <sigma_curve index="1" type="double" size="[1 5]"> 15725 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 15726 </sigma_curve> 15727 <ynr_lci index="1" type="double" size="[1 4]"> 15728 [0.9483 0.6817 0.4481 0.3610 ] 15729 </ynr_lci> 15730 <ynr_lhci index="1" type="double" size="[1 4]"> 15731 [0.8322 0.9968 0.7385 0.5208 ] 15732 </ynr_lhci> 15733 <ynr_hlci index="1" type="double" size="[1 4]"> 15734 [0.8616 0.9967 0.7311 0.5271 ] 15735 </ynr_hlci> 15736 <ynr_hhci index="1" type="double" size="[1 4]"> 15737 [0.6135 1.3821 1.2081 0.7883 ] 15738 </ynr_hhci> 15739 <lo_lumaPoint index="1" type="double" size="[1 6]"> 15740 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 15741 </lo_lumaPoint> 15742 <lo_lumaRatio index="1" type="double" size="[1 6]"> 15743 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 15744 </lo_lumaRatio> 15745 <lo_directionStrength index="1" type="double" size="[1 1]"> 15746 [0.2000 ] 15747 </lo_directionStrength> 15748 <lo_bfScale index="1" type="double" size="[1 4]"> 15749 [0.2400 0.5000 2.0000 1.0000 ] 15750 </lo_bfScale> 15751 <imerge_ratio index="1" type="double" size="[1 1]"> 15752 [0.1500 ] 15753 </imerge_ratio> 15754 <imerge_bound index="1" type="double" size="[1 1]"> 15755 [1.2500 ] 15756 </imerge_bound> 15757 <denoise_weight index="1" type="double" size="[1 4]"> 15758 [0.3000 0.8500 0.3000 0.4000 ] 15759 </denoise_weight> 15760 <hi_lumaPoint index="1" type="double" size="[1 6]"> 15761 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 15762 </hi_lumaPoint> 15763 <hi_lumaRatio index="1" type="double" size="[1 6]"> 15764 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 15765 </hi_lumaRatio> 15766 <hi_bfScale index="1" type="double" size="[1 4]"> 15767 [1.2000 1.1000 0.8600 0.8600 ] 15768 </hi_bfScale> 15769 <hwith_d index="1" type="double" size="[1 4]"> 15770 [6.0000 6.0000 4.0000 2.0000 ] 15771 </hwith_d> 15772 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 15773 [1.2000 ] 15774 </hi_denoiseStrength> 15775 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 15776 [0.2000 ] 15777 </hi_detailMinAdjDnW> 15778 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 15779 [0.7500 0.7000 0.6600 0.3600 ] 15780 </hi_denoiseWeight> 15781 <y_luma_point index="1" type="double" size="[1 6]"> 15782 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 15783 </y_luma_point> 15784 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 15785 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 15786 </hgrad_y_level1> 15787 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 15788 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 15789 </hgrad_y_level2> 15790 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 15791 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 15792 </hgrad_y_level3> 15793 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 15794 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 15795 </hgrad_y_level4> 15796 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 15797 [0.1300 0.3000 0.3000 0.1000 ] 15798 </hi_soft_thresh_scale> 15799 </cell> 15800 <cell index="9" type="struct" size="[1 1]"> 15801 <iso index="1" type="double" size="[1 1]"> 15802 [12800.0000 ] 15803 </iso> 15804 <sigma_curve index="1" type="double" size="[1 5]"> 15805 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 15806 </sigma_curve> 15807 <ynr_lci index="1" type="double" size="[1 4]"> 15808 [0.9362 0.6543 0.4559 0.4039 ] 15809 </ynr_lci> 15810 <ynr_lhci index="1" type="double" size="[1 4]"> 15811 [0.8559 0.9798 0.6914 0.5389 ] 15812 </ynr_lhci> 15813 <ynr_hlci index="1" type="double" size="[1 4]"> 15814 [0.8855 0.9817 0.7013 0.5513 ] 15815 </ynr_hlci> 15816 <ynr_hhci index="1" type="double" size="[1 4]"> 15817 [0.7069 1.4633 1.1028 0.7415 ] 15818 </ynr_hhci> 15819 <lo_lumaPoint index="1" type="double" size="[1 6]"> 15820 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 15821 </lo_lumaPoint> 15822 <lo_lumaRatio index="1" type="double" size="[1 6]"> 15823 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 15824 </lo_lumaRatio> 15825 <lo_directionStrength index="1" type="double" size="[1 1]"> 15826 [0.2000 ] 15827 </lo_directionStrength> 15828 <lo_bfScale index="1" type="double" size="[1 4]"> 15829 [1.0000 1.0000 3.0000 1.0000 ] 15830 </lo_bfScale> 15831 <imerge_ratio index="1" type="double" size="[1 1]"> 15832 [0.1500 ] 15833 </imerge_ratio> 15834 <imerge_bound index="1" type="double" size="[1 1]"> 15835 [1.2500 ] 15836 </imerge_bound> 15837 <denoise_weight index="1" type="double" size="[1 4]"> 15838 [0.3000 0.8500 0.3000 0.3000 ] 15839 </denoise_weight> 15840 <hi_lumaPoint index="1" type="double" size="[1 6]"> 15841 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 15842 </hi_lumaPoint> 15843 <hi_lumaRatio index="1" type="double" size="[1 6]"> 15844 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 15845 </hi_lumaRatio> 15846 <hi_bfScale index="1" type="double" size="[1 4]"> 15847 [1.2000 1.1000 0.8600 0.8600 ] 15848 </hi_bfScale> 15849 <hwith_d index="1" type="double" size="[1 4]"> 15850 [6.0000 6.0000 4.0000 2.0000 ] 15851 </hwith_d> 15852 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 15853 [1.2000 ] 15854 </hi_denoiseStrength> 15855 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 15856 [0.2000 ] 15857 </hi_detailMinAdjDnW> 15858 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 15859 [0.7500 0.7000 0.6600 0.3600 ] 15860 </hi_denoiseWeight> 15861 <y_luma_point index="1" type="double" size="[1 6]"> 15862 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 15863 </y_luma_point> 15864 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 15865 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 15866 </hgrad_y_level1> 15867 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 15868 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 15869 </hgrad_y_level2> 15870 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 15871 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 15872 </hgrad_y_level3> 15873 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 15874 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 15875 </hgrad_y_level4> 15876 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 15877 [0.1300 0.3000 0.3000 0.1000 ] 15878 </hi_soft_thresh_scale> 15879 </cell> 15880 <cell index="10" type="struct" size="[1 1]"> 15881 <iso index="1" type="double" size="[1 1]"> 15882 [25600.0000 ] 15883 </iso> 15884 <sigma_curve index="1" type="double" size="[1 5]"> 15885 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 15886 </sigma_curve> 15887 <ynr_lci index="1" type="double" size="[1 4]"> 15888 [0.9362 0.6543 0.4559 0.4039 ] 15889 </ynr_lci> 15890 <ynr_lhci index="1" type="double" size="[1 4]"> 15891 [0.8559 0.9798 0.6914 0.5389 ] 15892 </ynr_lhci> 15893 <ynr_hlci index="1" type="double" size="[1 4]"> 15894 [0.8855 0.9817 0.7013 0.5513 ] 15895 </ynr_hlci> 15896 <ynr_hhci index="1" type="double" size="[1 4]"> 15897 [0.7069 1.4633 1.1028 0.7415 ] 15898 </ynr_hhci> 15899 <lo_lumaPoint index="1" type="double" size="[1 6]"> 15900 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 15901 </lo_lumaPoint> 15902 <lo_lumaRatio index="1" type="double" size="[1 6]"> 15903 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 15904 </lo_lumaRatio> 15905 <lo_directionStrength index="1" type="double" size="[1 1]"> 15906 [0.2000 ] 15907 </lo_directionStrength> 15908 <lo_bfScale index="1" type="double" size="[1 4]"> 15909 [1.0000 1.0000 3.0000 1.0000 ] 15910 </lo_bfScale> 15911 <imerge_ratio index="1" type="double" size="[1 1]"> 15912 [0.1500 ] 15913 </imerge_ratio> 15914 <imerge_bound index="1" type="double" size="[1 1]"> 15915 [1.2500 ] 15916 </imerge_bound> 15917 <denoise_weight index="1" type="double" size="[1 4]"> 15918 [0.3000 0.8500 0.3000 0.3000 ] 15919 </denoise_weight> 15920 <hi_lumaPoint index="1" type="double" size="[1 6]"> 15921 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 15922 </hi_lumaPoint> 15923 <hi_lumaRatio index="1" type="double" size="[1 6]"> 15924 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 15925 </hi_lumaRatio> 15926 <hi_bfScale index="1" type="double" size="[1 4]"> 15927 [1.2000 1.1000 0.8600 0.8600 ] 15928 </hi_bfScale> 15929 <hwith_d index="1" type="double" size="[1 4]"> 15930 [6.0000 6.0000 4.0000 2.0000 ] 15931 </hwith_d> 15932 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 15933 [1.2000 ] 15934 </hi_denoiseStrength> 15935 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 15936 [0.2000 ] 15937 </hi_detailMinAdjDnW> 15938 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 15939 [0.7500 0.7000 0.6600 0.3600 ] 15940 </hi_denoiseWeight> 15941 <y_luma_point index="1" type="double" size="[1 6]"> 15942 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 15943 </y_luma_point> 15944 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 15945 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 15946 </hgrad_y_level1> 15947 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 15948 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 15949 </hgrad_y_level2> 15950 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 15951 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 15952 </hgrad_y_level3> 15953 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 15954 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 15955 </hgrad_y_level4> 15956 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 15957 [0.1300 0.3000 0.3000 0.1000 ] 15958 </hi_soft_thresh_scale> 15959 </cell> 15960 <cell index="11" type="struct" size="[1 1]"> 15961 <iso index="1" type="double" size="[1 1]"> 15962 [51200.0000 ] 15963 </iso> 15964 <sigma_curve index="1" type="double" size="[1 5]"> 15965 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 15966 </sigma_curve> 15967 <ynr_lci index="1" type="double" size="[1 4]"> 15968 [0.9362 0.6543 0.4559 0.4039 ] 15969 </ynr_lci> 15970 <ynr_lhci index="1" type="double" size="[1 4]"> 15971 [0.8559 0.9798 0.6914 0.5389 ] 15972 </ynr_lhci> 15973 <ynr_hlci index="1" type="double" size="[1 4]"> 15974 [0.8855 0.9817 0.7013 0.5513 ] 15975 </ynr_hlci> 15976 <ynr_hhci index="1" type="double" size="[1 4]"> 15977 [0.7069 1.4633 1.1028 0.7415 ] 15978 </ynr_hhci> 15979 <lo_lumaPoint index="1" type="double" size="[1 6]"> 15980 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 15981 </lo_lumaPoint> 15982 <lo_lumaRatio index="1" type="double" size="[1 6]"> 15983 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 15984 </lo_lumaRatio> 15985 <lo_directionStrength index="1" type="double" size="[1 1]"> 15986 [0.2000 ] 15987 </lo_directionStrength> 15988 <lo_bfScale index="1" type="double" size="[1 4]"> 15989 [1.0000 1.0000 3.0000 1.0000 ] 15990 </lo_bfScale> 15991 <imerge_ratio index="1" type="double" size="[1 1]"> 15992 [0.1500 ] 15993 </imerge_ratio> 15994 <imerge_bound index="1" type="double" size="[1 1]"> 15995 [1.2500 ] 15996 </imerge_bound> 15997 <denoise_weight index="1" type="double" size="[1 4]"> 15998 [0.3000 0.8500 0.3000 0.3000 ] 15999 </denoise_weight> 16000 <hi_lumaPoint index="1" type="double" size="[1 6]"> 16001 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 16002 </hi_lumaPoint> 16003 <hi_lumaRatio index="1" type="double" size="[1 6]"> 16004 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 16005 </hi_lumaRatio> 16006 <hi_bfScale index="1" type="double" size="[1 4]"> 16007 [1.2000 1.1000 0.8600 0.8600 ] 16008 </hi_bfScale> 16009 <hwith_d index="1" type="double" size="[1 4]"> 16010 [6.0000 6.0000 4.0000 2.0000 ] 16011 </hwith_d> 16012 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 16013 [1.2000 ] 16014 </hi_denoiseStrength> 16015 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 16016 [0.2000 ] 16017 </hi_detailMinAdjDnW> 16018 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 16019 [0.7500 0.7000 0.6600 0.3600 ] 16020 </hi_denoiseWeight> 16021 <y_luma_point index="1" type="double" size="[1 6]"> 16022 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 16023 </y_luma_point> 16024 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 16025 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 16026 </hgrad_y_level1> 16027 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 16028 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 16029 </hgrad_y_level2> 16030 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 16031 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 16032 </hgrad_y_level3> 16033 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 16034 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 16035 </hgrad_y_level4> 16036 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 16037 [0.1300 0.3000 0.3000 0.1000 ] 16038 </hi_soft_thresh_scale> 16039 </cell> 16040 <cell index="12" type="struct" size="[1 1]"> 16041 <iso index="1" type="double" size="[1 1]"> 16042 [102400.0000 ] 16043 </iso> 16044 <sigma_curve index="1" type="double" size="[1 5]"> 16045 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 16046 </sigma_curve> 16047 <ynr_lci index="1" type="double" size="[1 4]"> 16048 [0.9362 0.6543 0.4559 0.4039 ] 16049 </ynr_lci> 16050 <ynr_lhci index="1" type="double" size="[1 4]"> 16051 [0.8559 0.9798 0.6914 0.5389 ] 16052 </ynr_lhci> 16053 <ynr_hlci index="1" type="double" size="[1 4]"> 16054 [0.8855 0.9817 0.7013 0.5513 ] 16055 </ynr_hlci> 16056 <ynr_hhci index="1" type="double" size="[1 4]"> 16057 [0.7069 1.4633 1.1028 0.7415 ] 16058 </ynr_hhci> 16059 <lo_lumaPoint index="1" type="double" size="[1 6]"> 16060 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 16061 </lo_lumaPoint> 16062 <lo_lumaRatio index="1" type="double" size="[1 6]"> 16063 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 16064 </lo_lumaRatio> 16065 <lo_directionStrength index="1" type="double" size="[1 1]"> 16066 [0.2000 ] 16067 </lo_directionStrength> 16068 <lo_bfScale index="1" type="double" size="[1 4]"> 16069 [1.0000 1.0000 3.0000 1.0000 ] 16070 </lo_bfScale> 16071 <imerge_ratio index="1" type="double" size="[1 1]"> 16072 [0.1500 ] 16073 </imerge_ratio> 16074 <imerge_bound index="1" type="double" size="[1 1]"> 16075 [1.2500 ] 16076 </imerge_bound> 16077 <denoise_weight index="1" type="double" size="[1 4]"> 16078 [0.3000 0.8500 0.3000 0.3000 ] 16079 </denoise_weight> 16080 <hi_lumaPoint index="1" type="double" size="[1 6]"> 16081 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 16082 </hi_lumaPoint> 16083 <hi_lumaRatio index="1" type="double" size="[1 6]"> 16084 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 16085 </hi_lumaRatio> 16086 <hi_bfScale index="1" type="double" size="[1 4]"> 16087 [1.2000 1.1000 0.8600 0.8600 ] 16088 </hi_bfScale> 16089 <hwith_d index="1" type="double" size="[1 4]"> 16090 [6.0000 6.0000 4.0000 2.0000 ] 16091 </hwith_d> 16092 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 16093 [1.2000 ] 16094 </hi_denoiseStrength> 16095 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 16096 [0.2000 ] 16097 </hi_detailMinAdjDnW> 16098 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 16099 [0.7500 0.7000 0.6600 0.3600 ] 16100 </hi_denoiseWeight> 16101 <y_luma_point index="1" type="double" size="[1 6]"> 16102 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 16103 </y_luma_point> 16104 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 16105 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 16106 </hgrad_y_level1> 16107 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 16108 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 16109 </hgrad_y_level2> 16110 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 16111 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 16112 </hgrad_y_level3> 16113 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 16114 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 16115 </hgrad_y_level4> 16116 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 16117 [0.1300 0.3000 0.3000 0.1000 ] 16118 </hi_soft_thresh_scale> 16119 </cell> 16120 <cell index="13" type="struct" size="[1 1]"> 16121 <iso index="1" type="double" size="[1 1]"> 16122 [204800.0000 ] 16123 </iso> 16124 <sigma_curve index="1" type="double" size="[1 5]"> 16125 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 16126 </sigma_curve> 16127 <ynr_lci index="1" type="double" size="[1 4]"> 16128 [0.9362 0.6543 0.4559 0.4039 ] 16129 </ynr_lci> 16130 <ynr_lhci index="1" type="double" size="[1 4]"> 16131 [0.8559 0.9798 0.6914 0.5389 ] 16132 </ynr_lhci> 16133 <ynr_hlci index="1" type="double" size="[1 4]"> 16134 [0.8855 0.9817 0.7013 0.5513 ] 16135 </ynr_hlci> 16136 <ynr_hhci index="1" type="double" size="[1 4]"> 16137 [0.7069 1.4633 1.1028 0.7415 ] 16138 </ynr_hhci> 16139 <lo_lumaPoint index="1" type="double" size="[1 6]"> 16140 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 16141 </lo_lumaPoint> 16142 <lo_lumaRatio index="1" type="double" size="[1 6]"> 16143 [1.0000 1.0000 1.5000 1.5000 1.0000 1.0000 ] 16144 </lo_lumaRatio> 16145 <lo_directionStrength index="1" type="double" size="[1 1]"> 16146 [0.2000 ] 16147 </lo_directionStrength> 16148 <lo_bfScale index="1" type="double" size="[1 4]"> 16149 [1.0000 1.0000 3.0000 1.0000 ] 16150 </lo_bfScale> 16151 <imerge_ratio index="1" type="double" size="[1 1]"> 16152 [0.1500 ] 16153 </imerge_ratio> 16154 <imerge_bound index="1" type="double" size="[1 1]"> 16155 [1.2500 ] 16156 </imerge_bound> 16157 <denoise_weight index="1" type="double" size="[1 4]"> 16158 [0.3000 0.8500 0.3000 0.3000 ] 16159 </denoise_weight> 16160 <hi_lumaPoint index="1" type="double" size="[1 6]"> 16161 [0.0000 32.0000 64.0000 128.0000 192.0000 256.0000 ] 16162 </hi_lumaPoint> 16163 <hi_lumaRatio index="1" type="double" size="[1 6]"> 16164 [2.0000 2.5000 1.5000 1.5000 1.0000 1.0000 ] 16165 </hi_lumaRatio> 16166 <hi_bfScale index="1" type="double" size="[1 4]"> 16167 [1.2000 1.1000 0.8600 0.8600 ] 16168 </hi_bfScale> 16169 <hwith_d index="1" type="double" size="[1 4]"> 16170 [6.0000 6.0000 4.0000 2.0000 ] 16171 </hwith_d> 16172 <hi_denoiseStrength index="1" type="double" size="[1 1]"> 16173 [1.2000 ] 16174 </hi_denoiseStrength> 16175 <hi_detailMinAdjDnW index="1" type="double" size="[1 1]"> 16176 [0.2000 ] 16177 </hi_detailMinAdjDnW> 16178 <hi_denoiseWeight index="1" type="double" size="[1 4]"> 16179 [0.7500 0.7000 0.6600 0.3600 ] 16180 </hi_denoiseWeight> 16181 <y_luma_point index="1" type="double" size="[1 6]"> 16182 [64.0000 128.0000 192.0000 256.0000 384.0000 512.0000 ] 16183 </y_luma_point> 16184 <hgrad_y_level1 index="1" type="double" size="[1 6]"> 16185 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 16186 </hgrad_y_level1> 16187 <hgrad_y_level2 index="1" type="double" size="[1 6]"> 16188 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 16189 </hgrad_y_level2> 16190 <hgrad_y_level3 index="1" type="double" size="[1 6]"> 16191 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 16192 </hgrad_y_level3> 16193 <hgrad_y_level4 index="1" type="double" size="[1 6]"> 16194 [1.0000 0.6500 0.5500 0.4500 0.3000 0.2000 ] 16195 </hgrad_y_level4> 16196 <hi_soft_thresh_scale index="1" type="double" size="[1 4]"> 16197 [0.1300 0.3000 0.3000 0.1000 ] 16198 </hi_soft_thresh_scale> 16199 </cell> 16200 </YNR_ISO> 16201 </cell> 16202 </Setting> 16203 </cell> 16204 </Mode> 16205 </YNR> 16206 <GIC index="1" type="struct" size="[1 1]"> 16207 <enable index="1" type="char" size="[1 1]"> 16208 [1 ] 16209 </enable> 16210 <GIC_ISO index="1" type="cell" size="[1 9]"> 16211 <cell index="1" type="struct" size="[1 1]"> 16212 <iso index="1" type="double" size="[1 1]"> 16213 [50.0000 ] 16214 </iso> 16215 <min_busy_thre index="1" type="double" size="[1 1]"> 16216 [40.0000 ] 16217 </min_busy_thre> 16218 <min_grad_thr1 index="1" type="double" size="[1 1]"> 16219 [16.0000 ] 16220 </min_grad_thr1> 16221 <min_grad_thr2 index="1" type="double" size="[1 1]"> 16222 [8.0000 ] 16223 </min_grad_thr2> 16224 <k_grad1 index="1" type="double" size="[1 1]"> 16225 [64.0000 ] 16226 </k_grad1> 16227 <k_grad2 index="1" type="double" size="[1 1]"> 16228 [2.0000 ] 16229 </k_grad2> 16230 <smoothness_gb index="1" type="double" size="[1 1]"> 16231 [16.0000 ] 16232 </smoothness_gb> 16233 <smoothness_gb_weak index="1" type="double" size="[1 1]"> 16234 [128.0000 ] 16235 </smoothness_gb_weak> 16236 <gb_thre index="1" type="double" size="[1 1]"> 16237 [32.0000 ] 16238 </gb_thre> 16239 <maxCorV index="1" type="double" size="[1 1]"> 16240 [10.0000 ] 16241 </maxCorV> 16242 <maxCorVboth index="1" type="double" size="[1 1]"> 16243 [20.0000 ] 16244 </maxCorVboth> 16245 <maxCutV index="1" type="double" size="[1 1]"> 16246 [80.0000 ] 16247 </maxCutV> 16248 <dark_thre index="1" type="double" size="[1 1]"> 16249 [120.0000 ] 16250 </dark_thre> 16251 <dark_threHi index="1" type="double" size="[1 1]"> 16252 [240.0000 ] 16253 </dark_threHi> 16254 <k_grad1_dark index="1" type="double" size="[1 1]"> 16255 [64.0000 ] 16256 </k_grad1_dark> 16257 <k_grad2_dark index="1" type="double" size="[1 1]"> 16258 [2.0000 ] 16259 </k_grad2_dark> 16260 <min_grad_thr_dark1 index="1" type="double" size="[1 1]"> 16261 [16.0000 ] 16262 </min_grad_thr_dark1> 16263 <min_grad_thr_dark2 index="1" type="double" size="[1 1]"> 16264 [8.0000 ] 16265 </min_grad_thr_dark2> 16266 <GValueLimitLo index="1" type="double" size="[1 1]"> 16267 [1280.0000 ] 16268 </GValueLimitLo> 16269 <GValueLimitHi index="1" type="double" size="[1 1]"> 16270 [1760.0000 ] 16271 </GValueLimitHi> 16272 <textureStrength index="1" type="double" size="[1 1]"> 16273 [0.2500 ] 16274 </textureStrength> 16275 <ScaleLo index="1" type="double" size="[1 1]"> 16276 [3.0000 ] 16277 </ScaleLo> 16278 <ScaleHi index="1" type="double" size="[1 1]"> 16279 [5.0000 ] 16280 </ScaleHi> 16281 <noiseCurve_0 index="1" type="double" size="[1 1]"> 16282 [1.0063 ] 16283 </noiseCurve_0> 16284 <noiseCurve_1 index="1" type="double" size="[1 1]"> 16285 [-5.5875 ] 16286 </noiseCurve_1> 16287 <globalStrength index="1" type="double" size="[1 1]"> 16288 [1.0000 ] 16289 </globalStrength> 16290 <noise_coea index="1" type="double" size="[1 1]"> 16291 [199.0000 ] 16292 </noise_coea> 16293 <noise_coeb index="1" type="double" size="[1 1]"> 16294 [957.0000 ] 16295 </noise_coeb> 16296 <diff_clip index="1" type="double" size="[1 1]"> 16297 [32767.0000 ] 16298 </diff_clip> 16299 </cell> 16300 <cell index="2" type="struct" size="[1 1]"> 16301 <iso index="1" type="double" size="[1 1]"> 16302 [100.0000 ] 16303 </iso> 16304 <min_busy_thre index="1" type="double" size="[1 1]"> 16305 [40.0000 ] 16306 </min_busy_thre> 16307 <min_grad_thr1 index="1" type="double" size="[1 1]"> 16308 [16.0000 ] 16309 </min_grad_thr1> 16310 <min_grad_thr2 index="1" type="double" size="[1 1]"> 16311 [8.0000 ] 16312 </min_grad_thr2> 16313 <k_grad1 index="1" type="double" size="[1 1]"> 16314 [64.0000 ] 16315 </k_grad1> 16316 <k_grad2 index="1" type="double" size="[1 1]"> 16317 [2.0000 ] 16318 </k_grad2> 16319 <smoothness_gb index="1" type="double" size="[1 1]"> 16320 [16.0000 ] 16321 </smoothness_gb> 16322 <smoothness_gb_weak index="1" type="double" size="[1 1]"> 16323 [128.0000 ] 16324 </smoothness_gb_weak> 16325 <gb_thre index="1" type="double" size="[1 1]"> 16326 [32.0000 ] 16327 </gb_thre> 16328 <maxCorV index="1" type="double" size="[1 1]"> 16329 [10.0000 ] 16330 </maxCorV> 16331 <maxCorVboth index="1" type="double" size="[1 1]"> 16332 [20.0000 ] 16333 </maxCorVboth> 16334 <maxCutV index="1" type="double" size="[1 1]"> 16335 [80.0000 ] 16336 </maxCutV> 16337 <dark_thre index="1" type="double" size="[1 1]"> 16338 [120.0000 ] 16339 </dark_thre> 16340 <dark_threHi index="1" type="double" size="[1 1]"> 16341 [240.0000 ] 16342 </dark_threHi> 16343 <k_grad1_dark index="1" type="double" size="[1 1]"> 16344 [64.0000 ] 16345 </k_grad1_dark> 16346 <k_grad2_dark index="1" type="double" size="[1 1]"> 16347 [2.0000 ] 16348 </k_grad2_dark> 16349 <min_grad_thr_dark1 index="1" type="double" size="[1 1]"> 16350 [16.0000 ] 16351 </min_grad_thr_dark1> 16352 <min_grad_thr_dark2 index="1" type="double" size="[1 1]"> 16353 [8.0000 ] 16354 </min_grad_thr_dark2> 16355 <GValueLimitLo index="1" type="double" size="[1 1]"> 16356 [1280.0000 ] 16357 </GValueLimitLo> 16358 <GValueLimitHi index="1" type="double" size="[1 1]"> 16359 [1760.0000 ] 16360 </GValueLimitHi> 16361 <textureStrength index="1" type="double" size="[1 1]"> 16362 [1.0000 ] 16363 </textureStrength> 16364 <ScaleLo index="1" type="double" size="[1 1]"> 16365 [0.8000 ] 16366 </ScaleLo> 16367 <ScaleHi index="1" type="double" size="[1 1]"> 16368 [1.0000 ] 16369 </ScaleHi> 16370 <noiseCurve_0 index="1" type="double" size="[1 1]"> 16371 [1.4222 ] 16372 </noiseCurve_0> 16373 <noiseCurve_1 index="1" type="double" size="[1 1]"> 16374 [-8.2064 ] 16375 </noiseCurve_1> 16376 <globalStrength index="1" type="double" size="[1 1]"> 16377 [1.0000 ] 16378 </globalStrength> 16379 <noise_coea index="1" type="double" size="[1 1]"> 16380 [270.0000 ] 16381 </noise_coea> 16382 <noise_coeb index="1" type="double" size="[1 1]"> 16383 [1372.0000 ] 16384 </noise_coeb> 16385 <diff_clip index="1" type="double" size="[1 1]"> 16386 [32767.0000 ] 16387 </diff_clip> 16388 </cell> 16389 <cell index="3" type="struct" size="[1 1]"> 16390 <iso index="1" type="double" size="[1 1]"> 16391 [200.0000 ] 16392 </iso> 16393 <min_busy_thre index="1" type="double" size="[1 1]"> 16394 [40.0000 ] 16395 </min_busy_thre> 16396 <min_grad_thr1 index="1" type="double" size="[1 1]"> 16397 [16.0000 ] 16398 </min_grad_thr1> 16399 <min_grad_thr2 index="1" type="double" size="[1 1]"> 16400 [8.0000 ] 16401 </min_grad_thr2> 16402 <k_grad1 index="1" type="double" size="[1 1]"> 16403 [64.0000 ] 16404 </k_grad1> 16405 <k_grad2 index="1" type="double" size="[1 1]"> 16406 [2.0000 ] 16407 </k_grad2> 16408 <smoothness_gb index="1" type="double" size="[1 1]"> 16409 [16.0000 ] 16410 </smoothness_gb> 16411 <smoothness_gb_weak index="1" type="double" size="[1 1]"> 16412 [128.0000 ] 16413 </smoothness_gb_weak> 16414 <gb_thre index="1" type="double" size="[1 1]"> 16415 [32.0000 ] 16416 </gb_thre> 16417 <maxCorV index="1" type="double" size="[1 1]"> 16418 [16.0000 ] 16419 </maxCorV> 16420 <maxCorVboth index="1" type="double" size="[1 1]"> 16421 [20.0000 ] 16422 </maxCorVboth> 16423 <maxCutV index="1" type="double" size="[1 1]"> 16424 [80.0000 ] 16425 </maxCutV> 16426 <dark_thre index="1" type="double" size="[1 1]"> 16427 [120.0000 ] 16428 </dark_thre> 16429 <dark_threHi index="1" type="double" size="[1 1]"> 16430 [240.0000 ] 16431 </dark_threHi> 16432 <k_grad1_dark index="1" type="double" size="[1 1]"> 16433 [64.0000 ] 16434 </k_grad1_dark> 16435 <k_grad2_dark index="1" type="double" size="[1 1]"> 16436 [2.0000 ] 16437 </k_grad2_dark> 16438 <min_grad_thr_dark1 index="1" type="double" size="[1 1]"> 16439 [16.0000 ] 16440 </min_grad_thr_dark1> 16441 <min_grad_thr_dark2 index="1" type="double" size="[1 1]"> 16442 [8.0000 ] 16443 </min_grad_thr_dark2> 16444 <GValueLimitLo index="1" type="double" size="[1 1]"> 16445 [1280.0000 ] 16446 </GValueLimitLo> 16447 <GValueLimitHi index="1" type="double" size="[1 1]"> 16448 [1760.0000 ] 16449 </GValueLimitHi> 16450 <textureStrength index="1" type="double" size="[1 1]"> 16451 [1.0000 ] 16452 </textureStrength> 16453 <ScaleLo index="1" type="double" size="[1 1]"> 16454 [0.8000 ] 16455 </ScaleLo> 16456 <ScaleHi index="1" type="double" size="[1 1]"> 16457 [1.0000 ] 16458 </ScaleHi> 16459 <noiseCurve_0 index="1" type="double" size="[1 1]"> 16460 [1.9823 ] 16461 </noiseCurve_0> 16462 <noiseCurve_1 index="1" type="double" size="[1 1]"> 16463 [-10.6764 ] 16464 </noiseCurve_1> 16465 <globalStrength index="1" type="double" size="[1 1]"> 16466 [1.0000 ] 16467 </globalStrength> 16468 <noise_coea index="1" type="double" size="[1 1]"> 16469 [312.0000 ] 16470 </noise_coea> 16471 <noise_coeb index="1" type="double" size="[1 1]"> 16472 [2077.0000 ] 16473 </noise_coeb> 16474 <diff_clip index="1" type="double" size="[1 1]"> 16475 [32767.0000 ] 16476 </diff_clip> 16477 </cell> 16478 <cell index="4" type="struct" size="[1 1]"> 16479 <iso index="1" type="double" size="[1 1]"> 16480 [400.0000 ] 16481 </iso> 16482 <min_busy_thre index="1" type="double" size="[1 1]"> 16483 [40.0000 ] 16484 </min_busy_thre> 16485 <min_grad_thr1 index="1" type="double" size="[1 1]"> 16486 [16.0000 ] 16487 </min_grad_thr1> 16488 <min_grad_thr2 index="1" type="double" size="[1 1]"> 16489 [8.0000 ] 16490 </min_grad_thr2> 16491 <k_grad1 index="1" type="double" size="[1 1]"> 16492 [64.0000 ] 16493 </k_grad1> 16494 <k_grad2 index="1" type="double" size="[1 1]"> 16495 [2.0000 ] 16496 </k_grad2> 16497 <smoothness_gb index="1" type="double" size="[1 1]"> 16498 [16.0000 ] 16499 </smoothness_gb> 16500 <smoothness_gb_weak index="1" type="double" size="[1 1]"> 16501 [128.0000 ] 16502 </smoothness_gb_weak> 16503 <gb_thre index="1" type="double" size="[1 1]"> 16504 [16.0000 ] 16505 </gb_thre> 16506 <maxCorV index="1" type="double" size="[1 1]"> 16507 [24.0000 ] 16508 </maxCorV> 16509 <maxCorVboth index="1" type="double" size="[1 1]"> 16510 [20.0000 ] 16511 </maxCorVboth> 16512 <maxCutV index="1" type="double" size="[1 1]"> 16513 [80.0000 ] 16514 </maxCutV> 16515 <dark_thre index="1" type="double" size="[1 1]"> 16516 [120.0000 ] 16517 </dark_thre> 16518 <dark_threHi index="1" type="double" size="[1 1]"> 16519 [240.0000 ] 16520 </dark_threHi> 16521 <k_grad1_dark index="1" type="double" size="[1 1]"> 16522 [64.0000 ] 16523 </k_grad1_dark> 16524 <k_grad2_dark index="1" type="double" size="[1 1]"> 16525 [2.0000 ] 16526 </k_grad2_dark> 16527 <min_grad_thr_dark1 index="1" type="double" size="[1 1]"> 16528 [16.0000 ] 16529 </min_grad_thr_dark1> 16530 <min_grad_thr_dark2 index="1" type="double" size="[1 1]"> 16531 [8.0000 ] 16532 </min_grad_thr_dark2> 16533 <GValueLimitLo index="1" type="double" size="[1 1]"> 16534 [1280.0000 ] 16535 </GValueLimitLo> 16536 <GValueLimitHi index="1" type="double" size="[1 1]"> 16537 [1760.0000 ] 16538 </GValueLimitHi> 16539 <textureStrength index="1" type="double" size="[1 1]"> 16540 [1.0000 ] 16541 </textureStrength> 16542 <ScaleLo index="1" type="double" size="[1 1]"> 16543 [0.8000 ] 16544 </ScaleLo> 16545 <ScaleHi index="1" type="double" size="[1 1]"> 16546 [1.0000 ] 16547 </ScaleHi> 16548 <noiseCurve_0 index="1" type="double" size="[1 1]"> 16549 [2.7982 ] 16550 </noiseCurve_0> 16551 <noiseCurve_1 index="1" type="double" size="[1 1]"> 16552 [-15.8889 ] 16553 </noiseCurve_1> 16554 <globalStrength index="1" type="double" size="[1 1]"> 16555 [1.0000 ] 16556 </globalStrength> 16557 <noise_coea index="1" type="double" size="[1 1]"> 16558 [418.0000 ] 16559 </noise_coea> 16560 <noise_coeb index="1" type="double" size="[1 1]"> 16561 [2967.0000 ] 16562 </noise_coeb> 16563 <diff_clip index="1" type="double" size="[1 1]"> 16564 [32767.0000 ] 16565 </diff_clip> 16566 </cell> 16567 <cell index="5" type="struct" size="[1 1]"> 16568 <iso index="1" type="double" size="[1 1]"> 16569 [800.0000 ] 16570 </iso> 16571 <min_busy_thre index="1" type="double" size="[1 1]"> 16572 [80.0000 ] 16573 </min_busy_thre> 16574 <min_grad_thr1 index="1" type="double" size="[1 1]"> 16575 [32.0000 ] 16576 </min_grad_thr1> 16577 <min_grad_thr2 index="1" type="double" size="[1 1]"> 16578 [8.0000 ] 16579 </min_grad_thr2> 16580 <k_grad1 index="1" type="double" size="[1 1]"> 16581 [64.0000 ] 16582 </k_grad1> 16583 <k_grad2 index="1" type="double" size="[1 1]"> 16584 [2.0000 ] 16585 </k_grad2> 16586 <smoothness_gb index="1" type="double" size="[1 1]"> 16587 [16.0000 ] 16588 </smoothness_gb> 16589 <smoothness_gb_weak index="1" type="double" size="[1 1]"> 16590 [128.0000 ] 16591 </smoothness_gb_weak> 16592 <gb_thre index="1" type="double" size="[1 1]"> 16593 [16.0000 ] 16594 </gb_thre> 16595 <maxCorV index="1" type="double" size="[1 1]"> 16596 [24.0000 ] 16597 </maxCorV> 16598 <maxCorVboth index="1" type="double" size="[1 1]"> 16599 [40.0000 ] 16600 </maxCorVboth> 16601 <maxCutV index="1" type="double" size="[1 1]"> 16602 [160.0000 ] 16603 </maxCutV> 16604 <dark_thre index="1" type="double" size="[1 1]"> 16605 [160.0000 ] 16606 </dark_thre> 16607 <dark_threHi index="1" type="double" size="[1 1]"> 16608 [280.0000 ] 16609 </dark_threHi> 16610 <k_grad1_dark index="1" type="double" size="[1 1]"> 16611 [64.0000 ] 16612 </k_grad1_dark> 16613 <k_grad2_dark index="1" type="double" size="[1 1]"> 16614 [2.0000 ] 16615 </k_grad2_dark> 16616 <min_grad_thr_dark1 index="1" type="double" size="[1 1]"> 16617 [32.0000 ] 16618 </min_grad_thr_dark1> 16619 <min_grad_thr_dark2 index="1" type="double" size="[1 1]"> 16620 [16.0000 ] 16621 </min_grad_thr_dark2> 16622 <GValueLimitLo index="1" type="double" size="[1 1]"> 16623 [1280.0000 ] 16624 </GValueLimitLo> 16625 <GValueLimitHi index="1" type="double" size="[1 1]"> 16626 [1760.0000 ] 16627 </GValueLimitHi> 16628 <textureStrength index="1" type="double" size="[1 1]"> 16629 [1.0000 ] 16630 </textureStrength> 16631 <ScaleLo index="1" type="double" size="[1 1]"> 16632 [0.8000 ] 16633 </ScaleLo> 16634 <ScaleHi index="1" type="double" size="[1 1]"> 16635 [1.0000 ] 16636 </ScaleHi> 16637 <noiseCurve_0 index="1" type="double" size="[1 1]"> 16638 [3.8967 ] 16639 </noiseCurve_0> 16640 <noiseCurve_1 index="1" type="double" size="[1 1]"> 16641 [-18.8875 ] 16642 </noiseCurve_1> 16643 <globalStrength index="1" type="double" size="[1 1]"> 16644 [1.0000 ] 16645 </globalStrength> 16646 <noise_coea index="1" type="double" size="[1 1]"> 16647 [620.0000 ] 16648 </noise_coea> 16649 <noise_coeb index="1" type="double" size="[1 1]"> 16650 [4047.0000 ] 16651 </noise_coeb> 16652 <diff_clip index="1" type="double" size="[1 1]"> 16653 [32767.0000 ] 16654 </diff_clip> 16655 </cell> 16656 <cell index="6" type="struct" size="[1 1]"> 16657 <iso index="1" type="double" size="[1 1]"> 16658 [1600.0000 ] 16659 </iso> 16660 <min_busy_thre index="1" type="double" size="[1 1]"> 16661 [80.0000 ] 16662 </min_busy_thre> 16663 <min_grad_thr1 index="1" type="double" size="[1 1]"> 16664 [32.0000 ] 16665 </min_grad_thr1> 16666 <min_grad_thr2 index="1" type="double" size="[1 1]"> 16667 [8.0000 ] 16668 </min_grad_thr2> 16669 <k_grad1 index="1" type="double" size="[1 1]"> 16670 [64.0000 ] 16671 </k_grad1> 16672 <k_grad2 index="1" type="double" size="[1 1]"> 16673 [2.0000 ] 16674 </k_grad2> 16675 <smoothness_gb index="1" type="double" size="[1 1]"> 16676 [16.0000 ] 16677 </smoothness_gb> 16678 <smoothness_gb_weak index="1" type="double" size="[1 1]"> 16679 [128.0000 ] 16680 </smoothness_gb_weak> 16681 <gb_thre index="1" type="double" size="[1 1]"> 16682 [16.0000 ] 16683 </gb_thre> 16684 <maxCorV index="1" type="double" size="[1 1]"> 16685 [26.0000 ] 16686 </maxCorV> 16687 <maxCorVboth index="1" type="double" size="[1 1]"> 16688 [40.0000 ] 16689 </maxCorVboth> 16690 <maxCutV index="1" type="double" size="[1 1]"> 16691 [160.0000 ] 16692 </maxCutV> 16693 <dark_thre index="1" type="double" size="[1 1]"> 16694 [160.0000 ] 16695 </dark_thre> 16696 <dark_threHi index="1" type="double" size="[1 1]"> 16697 [280.0000 ] 16698 </dark_threHi> 16699 <k_grad1_dark index="1" type="double" size="[1 1]"> 16700 [64.0000 ] 16701 </k_grad1_dark> 16702 <k_grad2_dark index="1" type="double" size="[1 1]"> 16703 [2.0000 ] 16704 </k_grad2_dark> 16705 <min_grad_thr_dark1 index="1" type="double" size="[1 1]"> 16706 [32.0000 ] 16707 </min_grad_thr_dark1> 16708 <min_grad_thr_dark2 index="1" type="double" size="[1 1]"> 16709 [16.0000 ] 16710 </min_grad_thr_dark2> 16711 <GValueLimitLo index="1" type="double" size="[1 1]"> 16712 [1280.0000 ] 16713 </GValueLimitLo> 16714 <GValueLimitHi index="1" type="double" size="[1 1]"> 16715 [1760.0000 ] 16716 </GValueLimitHi> 16717 <textureStrength index="1" type="double" size="[1 1]"> 16718 [1.0000 ] 16719 </textureStrength> 16720 <ScaleLo index="1" type="double" size="[1 1]"> 16721 [0.8000 ] 16722 </ScaleLo> 16723 <ScaleHi index="1" type="double" size="[1 1]"> 16724 [1.0000 ] 16725 </ScaleHi> 16726 <noiseCurve_0 index="1" type="double" size="[1 1]"> 16727 [5.5291 ] 16728 </noiseCurve_0> 16729 <noiseCurve_1 index="1" type="double" size="[1 1]"> 16730 [-28.7652 ] 16731 </noiseCurve_1> 16732 <globalStrength index="1" type="double" size="[1 1]"> 16733 [1.0000 ] 16734 </globalStrength> 16735 <noise_coea index="1" type="double" size="[1 1]"> 16736 [872.0000 ] 16737 </noise_coea> 16738 <noise_coeb index="1" type="double" size="[1 1]"> 16739 [5817.0000 ] 16740 </noise_coeb> 16741 <diff_clip index="1" type="double" size="[1 1]"> 16742 [32767.0000 ] 16743 </diff_clip> 16744 </cell> 16745 <cell index="7" type="struct" size="[1 1]"> 16746 <iso index="1" type="double" size="[1 1]"> 16747 [3200.0000 ] 16748 </iso> 16749 <min_busy_thre index="1" type="double" size="[1 1]"> 16750 [80.0000 ] 16751 </min_busy_thre> 16752 <min_grad_thr1 index="1" type="double" size="[1 1]"> 16753 [32.0000 ] 16754 </min_grad_thr1> 16755 <min_grad_thr2 index="1" type="double" size="[1 1]"> 16756 [8.0000 ] 16757 </min_grad_thr2> 16758 <k_grad1 index="1" type="double" size="[1 1]"> 16759 [64.0000 ] 16760 </k_grad1> 16761 <k_grad2 index="1" type="double" size="[1 1]"> 16762 [2.0000 ] 16763 </k_grad2> 16764 <smoothness_gb index="1" type="double" size="[1 1]"> 16765 [16.0000 ] 16766 </smoothness_gb> 16767 <smoothness_gb_weak index="1" type="double" size="[1 1]"> 16768 [128.0000 ] 16769 </smoothness_gb_weak> 16770 <gb_thre index="1" type="double" size="[1 1]"> 16771 [8.0000 ] 16772 </gb_thre> 16773 <maxCorV index="1" type="double" size="[1 1]"> 16774 [28.0000 ] 16775 </maxCorV> 16776 <maxCorVboth index="1" type="double" size="[1 1]"> 16777 [60.0000 ] 16778 </maxCorVboth> 16779 <maxCutV index="1" type="double" size="[1 1]"> 16780 [240.0000 ] 16781 </maxCutV> 16782 <dark_thre index="1" type="double" size="[1 1]"> 16783 [160.0000 ] 16784 </dark_thre> 16785 <dark_threHi index="1" type="double" size="[1 1]"> 16786 [280.0000 ] 16787 </dark_threHi> 16788 <k_grad1_dark index="1" type="double" size="[1 1]"> 16789 [64.0000 ] 16790 </k_grad1_dark> 16791 <k_grad2_dark index="1" type="double" size="[1 1]"> 16792 [2.0000 ] 16793 </k_grad2_dark> 16794 <min_grad_thr_dark1 index="1" type="double" size="[1 1]"> 16795 [64.0000 ] 16796 </min_grad_thr_dark1> 16797 <min_grad_thr_dark2 index="1" type="double" size="[1 1]"> 16798 [32.0000 ] 16799 </min_grad_thr_dark2> 16800 <GValueLimitLo index="1" type="double" size="[1 1]"> 16801 [1280.0000 ] 16802 </GValueLimitLo> 16803 <GValueLimitHi index="1" type="double" size="[1 1]"> 16804 [1760.0000 ] 16805 </GValueLimitHi> 16806 <textureStrength index="1" type="double" size="[1 1]"> 16807 [1.0000 ] 16808 </textureStrength> 16809 <ScaleLo index="1" type="double" size="[1 1]"> 16810 [0.8000 ] 16811 </ScaleLo> 16812 <ScaleHi index="1" type="double" size="[1 1]"> 16813 [1.0000 ] 16814 </ScaleHi> 16815 <noiseCurve_0 index="1" type="double" size="[1 1]"> 16816 [7.8907 ] 16817 </noiseCurve_0> 16818 <noiseCurve_1 index="1" type="double" size="[1 1]"> 16819 [-33.0438 ] 16820 </noiseCurve_1> 16821 <globalStrength index="1" type="double" size="[1 1]"> 16822 [1.0000 ] 16823 </globalStrength> 16824 <noise_coea index="1" type="double" size="[1 1]"> 16825 [1168.0000 ] 16826 </noise_coea> 16827 <noise_coeb index="1" type="double" size="[1 1]"> 16828 [7765.0000 ] 16829 </noise_coeb> 16830 <diff_clip index="1" type="double" size="[1 1]"> 16831 [32767.0000 ] 16832 </diff_clip> 16833 </cell> 16834 <cell index="8" type="struct" size="[1 1]"> 16835 <iso index="1" type="double" size="[1 1]"> 16836 [6400.0000 ] 16837 </iso> 16838 <min_busy_thre index="1" type="double" size="[1 1]"> 16839 [80.0000 ] 16840 </min_busy_thre> 16841 <min_grad_thr1 index="1" type="double" size="[1 1]"> 16842 [32.0000 ] 16843 </min_grad_thr1> 16844 <min_grad_thr2 index="1" type="double" size="[1 1]"> 16845 [8.0000 ] 16846 </min_grad_thr2> 16847 <k_grad1 index="1" type="double" size="[1 1]"> 16848 [64.0000 ] 16849 </k_grad1> 16850 <k_grad2 index="1" type="double" size="[1 1]"> 16851 [2.0000 ] 16852 </k_grad2> 16853 <smoothness_gb index="1" type="double" size="[1 1]"> 16854 [16.0000 ] 16855 </smoothness_gb> 16856 <smoothness_gb_weak index="1" type="double" size="[1 1]"> 16857 [128.0000 ] 16858 </smoothness_gb_weak> 16859 <gb_thre index="1" type="double" size="[1 1]"> 16860 [8.0000 ] 16861 </gb_thre> 16862 <maxCorV index="1" type="double" size="[1 1]"> 16863 [32.0000 ] 16864 </maxCorV> 16865 <maxCorVboth index="1" type="double" size="[1 1]"> 16866 [60.0000 ] 16867 </maxCorVboth> 16868 <maxCutV index="1" type="double" size="[1 1]"> 16869 [240.0000 ] 16870 </maxCutV> 16871 <dark_thre index="1" type="double" size="[1 1]"> 16872 [160.0000 ] 16873 </dark_thre> 16874 <dark_threHi index="1" type="double" size="[1 1]"> 16875 [280.0000 ] 16876 </dark_threHi> 16877 <k_grad1_dark index="1" type="double" size="[1 1]"> 16878 [64.0000 ] 16879 </k_grad1_dark> 16880 <k_grad2_dark index="1" type="double" size="[1 1]"> 16881 [2.0000 ] 16882 </k_grad2_dark> 16883 <min_grad_thr_dark1 index="1" type="double" size="[1 1]"> 16884 [64.0000 ] 16885 </min_grad_thr_dark1> 16886 <min_grad_thr_dark2 index="1" type="double" size="[1 1]"> 16887 [32.0000 ] 16888 </min_grad_thr_dark2> 16889 <GValueLimitLo index="1" type="double" size="[1 1]"> 16890 [1280.0000 ] 16891 </GValueLimitLo> 16892 <GValueLimitHi index="1" type="double" size="[1 1]"> 16893 [1760.0000 ] 16894 </GValueLimitHi> 16895 <textureStrength index="1" type="double" size="[1 1]"> 16896 [1.0000 ] 16897 </textureStrength> 16898 <ScaleLo index="1" type="double" size="[1 1]"> 16899 [3.0000 ] 16900 </ScaleLo> 16901 <ScaleHi index="1" type="double" size="[1 1]"> 16902 [5.0000 ] 16903 </ScaleHi> 16904 <noiseCurve_0 index="1" type="double" size="[1 1]"> 16905 [11.2972 ] 16906 </noiseCurve_0> 16907 <noiseCurve_1 index="1" type="double" size="[1 1]"> 16908 [-48.2012 ] 16909 </noiseCurve_1> 16910 <globalStrength index="1" type="double" size="[1 1]"> 16911 [1.0000 ] 16912 </globalStrength> 16913 <noise_coea index="1" type="double" size="[1 1]"> 16914 [1168.0000 ] 16915 </noise_coea> 16916 <noise_coeb index="1" type="double" size="[1 1]"> 16917 [7765.0000 ] 16918 </noise_coeb> 16919 <diff_clip index="1" type="double" size="[1 1]"> 16920 [32767.0000 ] 16921 </diff_clip> 16922 </cell> 16923 <cell index="9" type="struct" size="[1 1]"> 16924 <iso index="1" type="double" size="[1 1]"> 16925 [12800.0000 ] 16926 </iso> 16927 <min_busy_thre index="1" type="double" size="[1 1]"> 16928 [80.0000 ] 16929 </min_busy_thre> 16930 <min_grad_thr1 index="1" type="double" size="[1 1]"> 16931 [32.0000 ] 16932 </min_grad_thr1> 16933 <min_grad_thr2 index="1" type="double" size="[1 1]"> 16934 [8.0000 ] 16935 </min_grad_thr2> 16936 <k_grad1 index="1" type="double" size="[1 1]"> 16937 [64.0000 ] 16938 </k_grad1> 16939 <k_grad2 index="1" type="double" size="[1 1]"> 16940 [2.0000 ] 16941 </k_grad2> 16942 <smoothness_gb index="1" type="double" size="[1 1]"> 16943 [16.0000 ] 16944 </smoothness_gb> 16945 <smoothness_gb_weak index="1" type="double" size="[1 1]"> 16946 [128.0000 ] 16947 </smoothness_gb_weak> 16948 <gb_thre index="1" type="double" size="[1 1]"> 16949 [8.0000 ] 16950 </gb_thre> 16951 <maxCorV index="1" type="double" size="[1 1]"> 16952 [32.0000 ] 16953 </maxCorV> 16954 <maxCorVboth index="1" type="double" size="[1 1]"> 16955 [60.0000 ] 16956 </maxCorVboth> 16957 <maxCutV index="1" type="double" size="[1 1]"> 16958 [240.0000 ] 16959 </maxCutV> 16960 <dark_thre index="1" type="double" size="[1 1]"> 16961 [160.0000 ] 16962 </dark_thre> 16963 <dark_threHi index="1" type="double" size="[1 1]"> 16964 [280.0000 ] 16965 </dark_threHi> 16966 <k_grad1_dark index="1" type="double" size="[1 1]"> 16967 [64.0000 ] 16968 </k_grad1_dark> 16969 <k_grad2_dark index="1" type="double" size="[1 1]"> 16970 [2.0000 ] 16971 </k_grad2_dark> 16972 <min_grad_thr_dark1 index="1" type="double" size="[1 1]"> 16973 [64.0000 ] 16974 </min_grad_thr_dark1> 16975 <min_grad_thr_dark2 index="1" type="double" size="[1 1]"> 16976 [32.0000 ] 16977 </min_grad_thr_dark2> 16978 <GValueLimitLo index="1" type="double" size="[1 1]"> 16979 [1280.0000 ] 16980 </GValueLimitLo> 16981 <GValueLimitHi index="1" type="double" size="[1 1]"> 16982 [1760.0000 ] 16983 </GValueLimitHi> 16984 <textureStrength index="1" type="double" size="[1 1]"> 16985 [1.0000 ] 16986 </textureStrength> 16987 <ScaleLo index="1" type="double" size="[1 1]"> 16988 [3.0000 ] 16989 </ScaleLo> 16990 <ScaleHi index="1" type="double" size="[1 1]"> 16991 [5.0000 ] 16992 </ScaleHi> 16993 <noiseCurve_0 index="1" type="double" size="[1 1]"> 16994 [5.3534 ] 16995 </noiseCurve_0> 16996 <noiseCurve_1 index="1" type="double" size="[1 1]"> 16997 [-1.8432 ] 16998 </noiseCurve_1> 16999 <globalStrength index="1" type="double" size="[1 1]"> 17000 [1.0000 ] 17001 </globalStrength> 17002 <noise_coea index="1" type="double" size="[1 1]"> 17003 [1168.0000 ] 17004 </noise_coea> 17005 <noise_coeb index="1" type="double" size="[1 1]"> 17006 [7765.0000 ] 17007 </noise_coeb> 17008 <diff_clip index="1" type="double" size="[1 1]"> 17009 [32767.0000 ] 17010 </diff_clip> 17011 </cell> 17012 </GIC_ISO> 17013 <edge_en index="1" type="char" size="[1 1]"> 17014 [0 ] 17015 </edge_en> 17016 <gr_ration index="1" type="char" size="[1 1]"> 17017 [0 ] 17018 </gr_ration> 17019 <noise_cut_en index="1" type="char" size="[1 1]"> 17020 [0 ] 17021 </noise_cut_en> 17022 </GIC> 17023 <MFNR index="1" type="struct" size="[1 1]"> 17024 <Enable index="1" type="double" size="[1 1]"> 17025 [1 ] 17026 </Enable> 17027 <Version index="1" type="char" size="[1 2]"> 17028 V1 17029 </Version> 17030 <local_gain_en index="1" type="double" size="[1 1]"> 17031 [0 ] 17032 </local_gain_en> 17033 <motion_detect_en index="1" type="double" size="[1 1]"> 17034 [0 ] 17035 </motion_detect_en> 17036 <mode_3to1 index="1" type="double" size="[1 1]"> 17037 [0 ] 17038 </mode_3to1> 17039 <max_level index="1" type="char" size="[1 1]"> 17040 [4 ] 17041 </max_level> 17042 <max_level_uv index="1" type="char" size="[1 1]"> 17043 [3 ] 17044 </max_level_uv> 17045 <back_ref_num index="1" type="char" size="[1 1]"> 17046 [0 ] 17047 </back_ref_num> 17048 <awb_uv_ratio index="1" type="cell" size="[1 4]"> 17049 <cell index="1" type="struct" size="[1 1]"> 17050 <name index="1" type="char" size="[1 1]"> 17051 A 17052 </name> 17053 <ratio index="1" type="double" size="[1 2]"> 17054 [1.0000 1.0000 ] 17055 </ratio> 17056 </cell> 17057 <cell index="2" type="struct" size="[1 1]"> 17058 <name index="1" type="char" size="[1 3]"> 17059 D65 17060 </name> 17061 <ratio index="1" type="double" size="[1 2]"> 17062 [1.0000 1.0000 ] 17063 </ratio> 17064 </cell> 17065 <cell index="3" type="struct" size="[1 1]"> 17066 <name index="1" type="char" size="[1 8]"> 17067 F11_TL84 17068 </name> 17069 <ratio index="1" type="double" size="[1 2]"> 17070 [0.9000 0.7000 ] 17071 </ratio> 17072 </cell> 17073 <cell index="4" type="struct" size="[1 1]"> 17074 <name index="1" type="char" size="[1 6]"> 17075 F2_CWF 17076 </name> 17077 <ratio index="1" type="double" size="[1 2]"> 17078 [1.0000 1.0000 ] 17079 </ratio> 17080 </cell> 17081 </awb_uv_ratio> 17082 <Mode index="1" type="cell" size="[1 3]"> 17083 <cell index="1" type="struct" size="[1 1]"> 17084 <Name index="1" type="char" size="[1 8]"> 17085 normal 17086 </Name> 17087 <Dynamic index="1" type="struct" size="[1 1]"> 17088 <Enable index="1" type="double" size="[1 1]"> 17089 [0] 17090 </Enable> 17091 <LowTh_iso index="1" type="double" size="[1 1]"> 17092 [50] 17093 </LowTh_iso> 17094 <LowTh_time index="1" type="double" size="[1 1]"> 17095 [0.01] 17096 </LowTh_time> 17097 <HighTh_iso index="1" type="double" size="[1 1]"> 17098 [50] 17099 </HighTh_iso> 17100 <HighTh_time index="1" type="double" size="[1 1]"> 17101 [0.025] 17102 </HighTh_time> 17103 </Dynamic> 17104 <Setting index="1" type="cell" size="[1 2]"> 17105 <cell index="1" type="struct" size="[1 1]"> 17106 <SNR_Mode index="1" type="char" size="[1 4]"> 17107 LSNR 17108 </SNR_Mode> 17109 <Sensor_Mode index="1" type="char" size="[1 3]"> 17110 lcg 17111 </Sensor_Mode> 17112 <MFNR_ISO index="1" type="cell" size="[1 13]"> 17113 <cell index="1" type="struct" size="[1 1]"> 17114 <iso index="1" type="double" size="[1 1]"> 17115 [50.0000 ] 17116 </iso> 17117 <weight_limit_y index="1" type="double" size="[1 4]"> 17118 [32.0000 320000 32.0000 32.0000 ] 17119 </weight_limit_y> 17120 <weight_limit_uv index="1" type="double" size="[1 3]"> 17121 [32.0000 32.0000 32.0000 ] 17122 </weight_limit_uv> 17123 <ratio_frq index="1" type="double" size="[1 4]"> 17124 [0.5000 2.0000 0.5000 2.0000 ] 17125 </ratio_frq> 17126 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 17127 [0.5000 0.5000 0.5000 ] 17128 </luma_w_in_chroma> 17129 <noise_curve index="1" type="double" size="[1 5]"> 17130 [-2.22683837604954e-013 2.70089733255463e-009 -1.19360265610630e-005 1.69475563290717e-002 2.21533631975799e+001 ] 17131 </noise_curve> 17132 <noise_curve_x00 index="1" type="double" size="[1 1]"> 17133 [3.64700000000000e+003 ] 17134 </noise_curve_x00> 17135 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 17136 [1.00000 0.72793 0.43887 0.24093 ] 17137 </y_lo_noiseprofile> 17138 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 17139 [0.73870 0.67642 0.47338 0.00000 ] 17140 </y_hi_noiseprofile> 17141 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 17142 [1.0000 1.0000 1.0000 1.0000 ] 17143 </y_lo_denoiseweight> 17144 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 17145 [1.0000 1.0000 1.0000 1.0000 ] 17146 </y_hi_denoiseweight> 17147 <y_lo_bfscale index="1" type="double" size="[1 4]"> 17148 [0.5000 0.5000 0.5000 0.5000 ] 17149 </y_lo_bfscale> 17150 <y_hi_bfscale index="1" type="double" size="[1 4]"> 17151 [0.5000 0.5000 0.5000 0.5000 ] 17152 </y_hi_bfscale> 17153 <y_lumanrpoint index="1" type="double" size="[1 6]"> 17154 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 17155 </y_lumanrpoint> 17156 <y_lumanrcurve index="1" type="double" size="[1 6]"> 17157 [1.2000 1.2000 1.2000 1.1000 1.1000 1.0000 ] 17158 </y_lumanrcurve> 17159 <y_denoisestrength index="1" type="double" size="[1 1]"> 17160 [2.0000 ] 17161 </y_denoisestrength> 17162 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17163 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17164 </y_lo_lvl0_gfdelta> 17165 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17166 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17167 </y_hi_lvl0_gfdelta> 17168 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17169 [0.12500 0.10938 0.10938 ] 17170 </y_lo_lvl1_gfdelta> 17171 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17172 [0.12500 0.10938 0.10938 ] 17173 </y_hi_lvl1_gfdelta> 17174 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17175 [0.12500 0.10938 0.10938 ] 17176 </y_lo_lvl2_gfdelta> 17177 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17178 [0.12500 0.10938 0.10938 ] 17179 </y_hi_lvl2_gfdelta> 17180 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 17181 [0.12500 0.10938 0.10938 ] 17182 </y_lo_lvl3_gfdelta> 17183 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 17184 [0.12500 0.10938 0.10938 ] 17185 </y_hi_lvl3_gfdelta> 17186 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 17187 [1.00000 0.72793 0.43887 ] 17188 </uv_lo_noiseprofile> 17189 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 17190 [0.73870 0.67642 0.35740 ] 17191 </uv_hi_noiseprofile> 17192 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 17193 [1.0000 1.0000 1.0000 ] 17194 </uv_lo_denoiseweight> 17195 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 17196 [1.0000 1.0000 1.0000 ] 17197 </uv_hi_denoiseweight> 17198 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 17199 [0.5000 0.5000 0.5000 ] 17200 </uv_lo_bfscale> 17201 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 17202 [0.5000 0.5000 0.5000 ] 17203 </uv_hi_bfscale> 17204 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 17205 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 17206 </uv_lumanrpoint> 17207 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 17208 [1.3000 1.2000 1.2000 1.1000 1.1000 1.0000 ] 17209 </uv_lumanrcurve> 17210 <uv_denoisestrength index="1" type="double" size="[1 1]"> 17211 [1.2000 ] 17212 </uv_denoisestrength> 17213 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17214 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17215 </uv_lo_lvl0_gfdelta> 17216 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17217 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17218 </uv_hi_lvl0_gfdelta> 17219 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17220 [0.12500 0.10938 0.10938 ] 17221 </uv_lo_lvl1_gfdelta> 17222 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17223 [0.12500 0.10938 0.10938 ] 17224 </uv_hi_lvl1_gfdelta> 17225 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17226 [0.12500 0.10938 0.10938 ] 17227 </uv_lo_lvl2_gfdelta> 17228 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17229 [0.12500 0.10938 0.10938 ] 17230 </uv_hi_lvl2_gfdelta> 17231 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 17232 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17233 </lvl0_gfsigma> 17234 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 17235 [0.12500 0.10938 0.10938 ] 17236 </lvl1_gfsigma> 17237 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 17238 [0.12500 0.10938 0.10938 ] 17239 </lvl2_gfsigma> 17240 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 17241 [0.12500 0.10938 0.10938 ] 17242 </lvl3_gfsigma> 17243 </cell> 17244 <cell index="2" type="struct" size="[1 1]"> 17245 <iso index="1" type="double" size="[1 1]"> 17246 [100.0000 ] 17247 </iso> 17248 <weight_limit_y index="1" type="double" size="[1 4]"> 17249 [32.0000 32.0000 32.0000 32.0000 ] 17250 </weight_limit_y> 17251 <weight_limit_uv index="1" type="double" size="[1 3]"> 17252 [32.0000 32.0000 32.0000 ] 17253 </weight_limit_uv> 17254 <ratio_frq index="1" type="double" size="[1 4]"> 17255 [0.5000 2.0000 0.5000 2.0000 ] 17256 </ratio_frq> 17257 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 17258 [0.5000 0.5000 0.5000 ] 17259 </luma_w_in_chroma> 17260 <noise_curve index="1" type="double" size="[1 5]"> 17261 [-6.12954260408810e-013 6.56213771001716e-009 -2.56271619105131e-005 3.53336500457644e-002 2.51344679667418e+001 ] 17262 </noise_curve> 17263 <noise_curve_x00 index="1" type="double" size="[1 1]"> 17264 [3.64700000000000e+003 ] 17265 </noise_curve_x00> 17266 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 17267 [1.00000 0.73076 0.43314 0.23422 ] 17268 </y_lo_noiseprofile> 17269 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 17270 [0.72929 0.65444 0.43454 0.00000 ] 17271 </y_hi_noiseprofile> 17272 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 17273 [1.0000 1.0000 1.0000 1.0000 ] 17274 </y_lo_denoiseweight> 17275 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 17276 [1.0000 1.0000 1.0000 1.0000 ] 17277 </y_hi_denoiseweight> 17278 <y_lo_bfscale index="1" type="double" size="[1 4]"> 17279 [0.45000 0.45000 0.45000 0.45000 ] 17280 </y_lo_bfscale> 17281 <y_hi_bfscale index="1" type="double" size="[1 4]"> 17282 [0.45000 0.45000 0.45000 0.45000 ] 17283 </y_hi_bfscale> 17284 <y_lumanrpoint index="1" type="double" size="[1 6]"> 17285 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 17286 </y_lumanrpoint> 17287 <y_lumanrcurve index="1" type="double" size="[1 6]"> 17288 [1.3000 1.2000 1.2000 1.2000 1.2000 1.1000 ] 17289 </y_lumanrcurve> 17290 <y_denoisestrength index="1" type="double" size="[1 1]"> 17291 [1.6000 ] 17292 </y_denoisestrength> 17293 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17294 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17295 </y_lo_lvl0_gfdelta> 17296 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17297 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17298 </y_hi_lvl0_gfdelta> 17299 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17300 [0.12500 0.10938 0.10938 ] 17301 </y_lo_lvl1_gfdelta> 17302 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17303 [0.12500 0.10938 0.10938 ] 17304 </y_hi_lvl1_gfdelta> 17305 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17306 [0.12500 0.10938 0.10938 ] 17307 </y_lo_lvl2_gfdelta> 17308 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17309 [0.12500 0.10938 0.10938 ] 17310 </y_hi_lvl2_gfdelta> 17311 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 17312 [0.12500 0.10938 0.10938 ] 17313 </y_lo_lvl3_gfdelta> 17314 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 17315 [0.12500 0.10938 0.10938 ] 17316 </y_hi_lvl3_gfdelta> 17317 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 17318 [1.00000 0.73076 0.43314 ] 17319 </uv_lo_noiseprofile> 17320 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 17321 [0.72929 0.65444 0.38596 ] 17322 </uv_hi_noiseprofile> 17323 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 17324 [1.0000 1.0000 1.0000 ] 17325 </uv_lo_denoiseweight> 17326 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 17327 [1.0000 1.0000 1.0000 ] 17328 </uv_hi_denoiseweight> 17329 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 17330 [0.5000 0.5000 0.5000 ] 17331 </uv_lo_bfscale> 17332 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 17333 [0.5000 0.5000 0.5000 ] 17334 </uv_hi_bfscale> 17335 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 17336 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 17337 </uv_lumanrpoint> 17338 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 17339 [1.3000 1.2000 1.2000 1.2000 1.2000 1.2000 ] 17340 </uv_lumanrcurve> 17341 <uv_denoisestrength index="1" type="double" size="[1 1]"> 17342 [1.4000 ] 17343 </uv_denoisestrength> 17344 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17345 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17346 </uv_lo_lvl0_gfdelta> 17347 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17348 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17349 </uv_hi_lvl0_gfdelta> 17350 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17351 [0.12500 0.10938 0.10938 ] 17352 </uv_lo_lvl1_gfdelta> 17353 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17354 [0.12500 0.10938 0.10938 ] 17355 </uv_hi_lvl1_gfdelta> 17356 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17357 [0.12500 0.10938 0.10938 ] 17358 </uv_lo_lvl2_gfdelta> 17359 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17360 [0.12500 0.10938 0.10938 ] 17361 </uv_hi_lvl2_gfdelta> 17362 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 17363 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17364 </lvl0_gfsigma> 17365 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 17366 [0.12500 0.10938 0.10938 ] 17367 </lvl1_gfsigma> 17368 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 17369 [0.12500 0.10938 0.10938 ] 17370 </lvl2_gfsigma> 17371 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 17372 [0.12500 0.10938 0.10938 ] 17373 </lvl3_gfsigma> 17374 </cell> 17375 <cell index="3" type="struct" size="[1 1]"> 17376 <iso index="1" type="double" size="[1 1]"> 17377 [200.0000 ] 17378 </iso> 17379 <weight_limit_y index="1" type="double" size="[1 4]"> 17380 [16.0000 16.0000 16.0000 16.0000 ] 17381 </weight_limit_y> 17382 <weight_limit_uv index="1" type="double" size="[1 3]"> 17383 [16.0000 16.0000 16.0000 ] 17384 </weight_limit_uv> 17385 <ratio_frq index="1" type="double" size="[1 4]"> 17386 [0.5000 2.0000 0.5000 2.0000 ] 17387 </ratio_frq> 17388 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 17389 [0.5000 0.5000 0.5000 ] 17390 </luma_w_in_chroma> 17391 <noise_curve index="1" type="double" size="[1 5]"> 17392 [-4.88118020793126e-013 5.17135216910485e-009 -2.12964081629935e-005 2.87181383407642e-002 4.47372008265083e+001 ] 17393 </noise_curve> 17394 <noise_curve_x00 index="1" type="double" size="[1 1]"> 17395 [3.79000000000000e+003 ] 17396 </noise_curve_x00> 17397 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 17398 [1.00000 0.73421 0.43242 0.23146 ] 17399 </y_lo_noiseprofile> 17400 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 17401 [0.72131 0.64365 0.41113 0.00000 ] 17402 </y_hi_noiseprofile> 17403 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 17404 [1.0000 1.0000 1.0000 1.0000 ] 17405 </y_lo_denoiseweight> 17406 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 17407 [1.0000 1.0000 1.0000 1.0000 ] 17408 </y_hi_denoiseweight> 17409 <y_lo_bfscale index="1" type="double" size="[1 4]"> 17410 [0.35000 0.35000 0.35000 0.35000 ] 17411 </y_lo_bfscale> 17412 <y_hi_bfscale index="1" type="double" size="[1 4]"> 17413 [0.35000 0.35000 0.35000 0.35000 ] 17414 </y_hi_bfscale> 17415 <y_lumanrpoint index="1" type="double" size="[1 6]"> 17416 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 17417 </y_lumanrpoint> 17418 <y_lumanrcurve index="1" type="double" size="[1 6]"> 17419 [1.4000 1.3000 1.3000 1.2500 1.3000 1.3000 ] 17420 </y_lumanrcurve> 17421 <y_denoisestrength index="1" type="double" size="[1 1]"> 17422 [1.6000 ] 17423 </y_denoisestrength> 17424 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17425 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17426 </y_lo_lvl0_gfdelta> 17427 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17428 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17429 </y_hi_lvl0_gfdelta> 17430 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17431 [0.12500 0.10938 0.10938 ] 17432 </y_lo_lvl1_gfdelta> 17433 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17434 [0.12500 0.10938 0.10938 ] 17435 </y_hi_lvl1_gfdelta> 17436 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17437 [0.12500 0.10938 0.10938 ] 17438 </y_lo_lvl2_gfdelta> 17439 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17440 [0.12500 0.10938 0.10938 ] 17441 </y_hi_lvl2_gfdelta> 17442 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 17443 [0.12500 0.10938 0.10938 ] 17444 </y_lo_lvl3_gfdelta> 17445 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 17446 [0.12500 0.10938 0.10938 ] 17447 </y_hi_lvl3_gfdelta> 17448 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 17449 [1.00000 0.73421 0.43242 ] 17450 </uv_lo_noiseprofile> 17451 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 17452 [0.72131 0.64365 0.35740 ] 17453 </uv_hi_noiseprofile> 17454 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 17455 [1.0000 1.0000 1.0000 ] 17456 </uv_lo_denoiseweight> 17457 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 17458 [1.0000 1.0000 1.0000 ] 17459 </uv_hi_denoiseweight> 17460 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 17461 [0.01000 0.01000 0.01000 ] 17462 </uv_lo_bfscale> 17463 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 17464 [0.01000 0.01000 0.01000 ] 17465 </uv_hi_bfscale> 17466 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 17467 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 17468 </uv_lumanrpoint> 17469 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 17470 [1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 ] 17471 </uv_lumanrcurve> 17472 <uv_denoisestrength index="1" type="double" size="[1 1]"> 17473 [2.2000 ] 17474 </uv_denoisestrength> 17475 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17476 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17477 </uv_lo_lvl0_gfdelta> 17478 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17479 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17480 </uv_hi_lvl0_gfdelta> 17481 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17482 [0.12500 0.10938 0.10938 ] 17483 </uv_lo_lvl1_gfdelta> 17484 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17485 [0.12500 0.10938 0.10938 ] 17486 </uv_hi_lvl1_gfdelta> 17487 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17488 [0.12500 0.10938 0.10938 ] 17489 </uv_lo_lvl2_gfdelta> 17490 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17491 [0.12500 0.10938 0.10938 ] 17492 </uv_hi_lvl2_gfdelta> 17493 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 17494 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17495 </lvl0_gfsigma> 17496 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 17497 [0.12500 0.10938 0.10938 ] 17498 </lvl1_gfsigma> 17499 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 17500 [0.12500 0.10938 0.10938 ] 17501 </lvl2_gfsigma> 17502 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 17503 [0.12500 0.10938 0.10938 ] 17504 </lvl3_gfsigma> 17505 </cell> 17506 <cell index="4" type="struct" size="[1 1]"> 17507 <iso index="1" type="double" size="[1 1]"> 17508 [400.0000 ] 17509 </iso> 17510 <weight_limit_y index="1" type="double" size="[1 4]"> 17511 [16.0000 16.0000 16.0000 16.0000 ] 17512 </weight_limit_y> 17513 <weight_limit_uv index="1" type="double" size="[1 3]"> 17514 [16.0000 16.0000 16.0000 ] 17515 </weight_limit_uv> 17516 <ratio_frq index="1" type="double" size="[1 4]"> 17517 [0.5000 2.0000 0.5000 2.0000 ] 17518 </ratio_frq> 17519 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 17520 [0.5000 0.5000 0.5000 ] 17521 </luma_w_in_chroma> 17522 <noise_curve index="1" type="double" size="[1 5]"> 17523 [-1.48119726941212e-012 1.56289236737456e-008 -5.98269836499521e-005 8.25287140888520e-002 4.27598482026588e+001 ] 17524 </noise_curve> 17525 <noise_curve_x00 index="1" type="double" size="[1 1]"> 17526 [3.71400000000000e+003 ] 17527 </noise_curve_x00> 17528 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 17529 [1.00000 0.74281 0.44399 0.23777 ] 17530 </y_lo_noiseprofile> 17531 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 17532 [0.70753 0.64029 0.40958 0.00000 ] 17533 </y_hi_noiseprofile> 17534 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 17535 [1.0000 1.0000 1.0000 1.0000 ] 17536 </y_lo_denoiseweight> 17537 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 17538 [1.0000 1.0000 1.0000 1.0000 ] 17539 </y_hi_denoiseweight> 17540 <y_lo_bfscale index="1" type="double" size="[1 4]"> 17541 [0.5000 0.5000 0.5000 0.5000 ] 17542 </y_lo_bfscale> 17543 <y_hi_bfscale index="1" type="double" size="[1 4]"> 17544 [0.5000 0.5000 0.5000 0.5000 ] 17545 </y_hi_bfscale> 17546 <y_lumanrpoint index="1" type="double" size="[1 6]"> 17547 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 17548 </y_lumanrpoint> 17549 <y_lumanrcurve index="1" type="double" size="[1 6]"> 17550 [1.6000 1.5000 1.3000 1.2500 1.3000 1.3000 ] 17551 </y_lumanrcurve> 17552 <y_denoisestrength index="1" type="double" size="[1 1]"> 17553 [2.2000 ] 17554 </y_denoisestrength> 17555 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17556 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17557 </y_lo_lvl0_gfdelta> 17558 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17559 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17560 </y_hi_lvl0_gfdelta> 17561 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17562 [0.12500 0.10938 0.10938 ] 17563 </y_lo_lvl1_gfdelta> 17564 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17565 [0.12500 0.10938 0.10938 ] 17566 </y_hi_lvl1_gfdelta> 17567 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17568 [0.12500 0.10938 0.10938 ] 17569 </y_lo_lvl2_gfdelta> 17570 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17571 [0.12500 0.10938 0.10938 ] 17572 </y_hi_lvl2_gfdelta> 17573 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 17574 [0.12500 0.10938 0.10938 ] 17575 </y_lo_lvl3_gfdelta> 17576 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 17577 [0.12500 0.10938 0.10938 ] 17578 </y_hi_lvl3_gfdelta> 17579 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 17580 [1.00000 0.74281 0.44399 ] 17581 </uv_lo_noiseprofile> 17582 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 17583 [0.70753 0.64029 0.39704 ] 17584 </uv_hi_noiseprofile> 17585 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 17586 [1.0000 1.0000 1.0000 ] 17587 </uv_lo_denoiseweight> 17588 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 17589 [1.0000 1.0000 1.0000 ] 17590 </uv_hi_denoiseweight> 17591 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 17592 [0.5000 0.5000 0.4000 ] 17593 </uv_lo_bfscale> 17594 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 17595 [0.4000 0.4000 0.4000 ] 17596 </uv_hi_bfscale> 17597 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 17598 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 17599 </uv_lumanrpoint> 17600 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 17601 [1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 ] 17602 </uv_lumanrcurve> 17603 <uv_denoisestrength index="1" type="double" size="[1 1]"> 17604 [2.2000 ] 17605 </uv_denoisestrength> 17606 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17607 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17608 </uv_lo_lvl0_gfdelta> 17609 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17610 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17611 </uv_hi_lvl0_gfdelta> 17612 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17613 [0.12500 0.10938 0.10938 ] 17614 </uv_lo_lvl1_gfdelta> 17615 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17616 [0.12500 0.10938 0.10938 ] 17617 </uv_hi_lvl1_gfdelta> 17618 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17619 [0.12500 0.10938 0.10938 ] 17620 </uv_lo_lvl2_gfdelta> 17621 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17622 [0.12500 0.10938 0.10938 ] 17623 </uv_hi_lvl2_gfdelta> 17624 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 17625 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17626 </lvl0_gfsigma> 17627 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 17628 [0.12500 0.10938 0.10938 ] 17629 </lvl1_gfsigma> 17630 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 17631 [0.12500 0.10938 0.10938 ] 17632 </lvl2_gfsigma> 17633 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 17634 [0.12500 0.10938 0.10938 ] 17635 </lvl3_gfsigma> 17636 </cell> 17637 <cell index="5" type="struct" size="[1 1]"> 17638 <iso index="1" type="double" size="[1 1]"> 17639 [800.0000 ] 17640 </iso> 17641 <weight_limit_y index="1" type="double" size="[1 4]"> 17642 [16.0000 16.0000 16.0000 16.0000 ] 17643 </weight_limit_y> 17644 <weight_limit_uv index="1" type="double" size="[1 3]"> 17645 [16.0000 16.0000 16.0000 ] 17646 </weight_limit_uv> 17647 <ratio_frq index="1" type="double" size="[1 4]"> 17648 [0.5000 2.0000 0.5000 2.0000 ] 17649 </ratio_frq> 17650 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 17651 [0.6000 0.6000 0.6000 ] 17652 </luma_w_in_chroma> 17653 <noise_curve index="1" type="double" size="[1 5]"> 17654 [-1.63594828480084e-012 1.75614677431381e-008 -6.92401591106118e-005 9.58142896234051e-002 7.18496259606400e+001 ] 17655 </noise_curve> 17656 <noise_curve_x00 index="1" type="double" size="[1 1]"> 17657 [3.33100000000000e+003 ] 17658 </noise_curve_x00> 17659 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 17660 [1.00000 0.73992 0.43785 0.23198 ] 17661 </y_lo_noiseprofile> 17662 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 17663 [0.71187 0.63271 0.39725 0.00000 ] 17664 </y_hi_noiseprofile> 17665 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 17666 [1.0000 1.0000 1.0000 1.0000 ] 17667 </y_lo_denoiseweight> 17668 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 17669 [1.0000 1.0000 1.0000 1.0000 ] 17670 </y_hi_denoiseweight> 17671 <y_lo_bfscale index="1" type="double" size="[1 4]"> 17672 [0.3000 0.3000 0.3000 0.3000 ] 17673 </y_lo_bfscale> 17674 <y_hi_bfscale index="1" type="double" size="[1 4]"> 17675 [0.3000 0.3000 0.3000 0.3000 ] 17676 </y_hi_bfscale> 17677 <y_lumanrpoint index="1" type="double" size="[1 6]"> 17678 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 17679 </y_lumanrpoint> 17680 <y_lumanrcurve index="1" type="double" size="[1 6]"> 17681 [1.7000 1.5000 1.3000 1.3500 1.4000 1.4000 ] 17682 </y_lumanrcurve> 17683 <y_denoisestrength index="1" type="double" size="[1 1]"> 17684 [2.0000 ] 17685 </y_denoisestrength> 17686 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17687 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17688 </y_lo_lvl0_gfdelta> 17689 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17690 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17691 </y_hi_lvl0_gfdelta> 17692 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17693 [0.12500 0.10938 0.10938 ] 17694 </y_lo_lvl1_gfdelta> 17695 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17696 [0.12500 0.10938 0.10938 ] 17697 </y_hi_lvl1_gfdelta> 17698 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17699 [0.12500 0.10938 0.10938 ] 17700 </y_lo_lvl2_gfdelta> 17701 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17702 [0.12500 0.10938 0.10938 ] 17703 </y_hi_lvl2_gfdelta> 17704 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 17705 [0.12500 0.10938 0.10938 ] 17706 </y_lo_lvl3_gfdelta> 17707 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 17708 [0.12500 0.10938 0.10938 ] 17709 </y_hi_lvl3_gfdelta> 17710 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 17711 [1.00000 0.73992 0.43785 ] 17712 </uv_lo_noiseprofile> 17713 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 17714 [0.71187 0.63271 0.39342 ] 17715 </uv_hi_noiseprofile> 17716 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 17717 [1.0000 1.0000 1.0000 ] 17718 </uv_lo_denoiseweight> 17719 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 17720 [1.0000 1.0000 1.0000 ] 17721 </uv_hi_denoiseweight> 17722 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 17723 [0.3000 0.3000 0.3000 ] 17724 </uv_lo_bfscale> 17725 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 17726 [0.3000 0.3000 0.3000 ] 17727 </uv_hi_bfscale> 17728 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 17729 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 17730 </uv_lumanrpoint> 17731 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 17732 [1.8000 1.7000 1.5000 1.5000 1.5000 1.5000 ] 17733 </uv_lumanrcurve> 17734 <uv_denoisestrength index="1" type="double" size="[1 1]"> 17735 [2.0000 ] 17736 </uv_denoisestrength> 17737 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17738 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17739 </uv_lo_lvl0_gfdelta> 17740 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17741 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17742 </uv_hi_lvl0_gfdelta> 17743 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17744 [0.12500 0.10938 0.10938 ] 17745 </uv_lo_lvl1_gfdelta> 17746 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17747 [0.12500 0.10938 0.10938 ] 17748 </uv_hi_lvl1_gfdelta> 17749 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17750 [0.12500 0.10938 0.10938 ] 17751 </uv_lo_lvl2_gfdelta> 17752 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17753 [0.12500 0.10938 0.10938 ] 17754 </uv_hi_lvl2_gfdelta> 17755 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 17756 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17757 </lvl0_gfsigma> 17758 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 17759 [0.12500 0.10938 0.10938 ] 17760 </lvl1_gfsigma> 17761 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 17762 [0.12500 0.10938 0.10938 ] 17763 </lvl2_gfsigma> 17764 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 17765 [0.12500 0.10938 0.10938 ] 17766 </lvl3_gfsigma> 17767 </cell> 17768 <cell index="6" type="struct" size="[1 1]"> 17769 <iso index="1" type="double" size="[1 1]"> 17770 [1600.0000 ] 17771 </iso> 17772 <weight_limit_y index="1" type="double" size="[1 4]"> 17773 [4.0000 4.0000 4.0000 4.0000 ] 17774 </weight_limit_y> 17775 <weight_limit_uv index="1" type="double" size="[1 3]"> 17776 [4.0000 4.0000 4.0000 ] 17777 </weight_limit_uv> 17778 <ratio_frq index="1" type="double" size="[1 4]"> 17779 [0.5000 2.0000 0.5000 2.0000 ] 17780 </ratio_frq> 17781 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 17782 [0.6500 0.6500 0.6500 ] 17783 </luma_w_in_chroma> 17784 <noise_curve index="1" type="double" size="[1 5]"> 17785 [-3.54429850049432e-012 3.60287476727038e-008 -1.31984529909812e-004 1.75061075984246e-001 8.74586517163552e+001 ] 17786 </noise_curve> 17787 <noise_curve_x00 index="1" type="double" size="[1 1]"> 17788 [3.24400000000000e+003 ] 17789 </noise_curve_x00> 17790 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 17791 [1.00000 0.73294 0.42965 0.22624 ] 17792 </y_lo_noiseprofile> 17793 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 17794 [0.71960 0.62684 0.38632 0.00000 ] 17795 </y_hi_noiseprofile> 17796 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 17797 [1.0000 1.0000 1.0000 1.0000 ] 17798 </y_lo_denoiseweight> 17799 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 17800 [1.0000 1.0000 1.0000 1.0000 ] 17801 </y_hi_denoiseweight> 17802 <y_lo_bfscale index="1" type="double" size="[1 4]"> 17803 [0.300 0.300 0.300 0.300 ] 17804 </y_lo_bfscale> 17805 <y_hi_bfscale index="1" type="double" size="[1 4]"> 17806 [0.300 0.300 0.300 0.300 ] 17807 </y_hi_bfscale> 17808 <y_lumanrpoint index="1" type="double" size="[1 6]"> 17809 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 17810 </y_lumanrpoint> 17811 <y_lumanrcurve index="1" type="double" size="[1 6]"> 17812 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 17813 </y_lumanrcurve> 17814 <y_denoisestrength index="1" type="double" size="[1 1]"> 17815 [3.0000 ] 17816 </y_denoisestrength> 17817 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17818 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17819 </y_lo_lvl0_gfdelta> 17820 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17821 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17822 </y_hi_lvl0_gfdelta> 17823 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17824 [0.12500 0.10938 0.10938 ] 17825 </y_lo_lvl1_gfdelta> 17826 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17827 [0.12500 0.10938 0.10938 ] 17828 </y_hi_lvl1_gfdelta> 17829 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17830 [0.12500 0.10938 0.10938 ] 17831 </y_lo_lvl2_gfdelta> 17832 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17833 [0.12500 0.10938 0.10938 ] 17834 </y_hi_lvl2_gfdelta> 17835 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 17836 [0.12500 0.10938 0.10938 ] 17837 </y_lo_lvl3_gfdelta> 17838 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 17839 [0.12500 0.10938 0.10938 ] 17840 </y_hi_lvl3_gfdelta> 17841 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 17842 [1.00000 0.73294 0.42965 ] 17843 </uv_lo_noiseprofile> 17844 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 17845 [0.71960 0.62684 0.39427 ] 17846 </uv_hi_noiseprofile> 17847 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 17848 [1.0000 1.0000 1.0000 ] 17849 </uv_lo_denoiseweight> 17850 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 17851 [1.0000 1.0000 1.0000 ] 17852 </uv_hi_denoiseweight> 17853 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 17854 [0.300 0.300 0.300 ] 17855 </uv_lo_bfscale> 17856 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 17857 [0.300 0.300 0.300 ] 17858 </uv_hi_bfscale> 17859 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 17860 [0.0000 32.0000 64.0000 192.0000 232.0000 255.0000 ] 17861 </uv_lumanrpoint> 17862 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 17863 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 17864 </uv_lumanrcurve> 17865 <uv_denoisestrength index="1" type="double" size="[1 1]"> 17866 [3.0000 ] 17867 </uv_denoisestrength> 17868 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17869 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17870 </uv_lo_lvl0_gfdelta> 17871 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17872 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17873 </uv_hi_lvl0_gfdelta> 17874 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17875 [0.12500 0.10938 0.10938 ] 17876 </uv_lo_lvl1_gfdelta> 17877 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17878 [0.12500 0.10938 0.10938 ] 17879 </uv_hi_lvl1_gfdelta> 17880 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17881 [0.12500 0.10938 0.10938 ] 17882 </uv_lo_lvl2_gfdelta> 17883 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17884 [0.12500 0.10938 0.10938 ] 17885 </uv_hi_lvl2_gfdelta> 17886 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 17887 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17888 </lvl0_gfsigma> 17889 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 17890 [0.12500 0.10938 0.10938 ] 17891 </lvl1_gfsigma> 17892 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 17893 [0.12500 0.10938 0.10938 ] 17894 </lvl2_gfsigma> 17895 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 17896 [0.12500 0.10938 0.10938 ] 17897 </lvl3_gfsigma> 17898 </cell> 17899 <cell index="7" type="struct" size="[1 1]"> 17900 <iso index="1" type="double" size="[1 1]"> 17901 [3200.0000 ] 17902 </iso> 17903 <weight_limit_y index="1" type="double" size="[1 4]"> 17904 [4.0000 4.0000 4.0000 4.0000 ] 17905 </weight_limit_y> 17906 <weight_limit_uv index="1" type="double" size="[1 3]"> 17907 [4.0000 4.0000 4.0000 ] 17908 </weight_limit_uv> 17909 <ratio_frq index="1" type="double" size="[1 4]"> 17910 [0.5000 2.0000 0.5000 2.0000 ] 17911 </ratio_frq> 17912 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 17913 [0.7000 0.7000 0.7000 ] 17914 </luma_w_in_chroma> 17915 <noise_curve index="1" type="double" size="[1 5]"> 17916 [-3.50549752881191e-012 3.76368052960353e-008 -1.51293815921383e-004 2.17945943756604e-001 1.33106751935557e+002 ] 17917 </noise_curve> 17918 <noise_curve_x00 index="1" type="double" size="[1 1]"> 17919 [3.17000000000000e+003 ] 17920 </noise_curve_x00> 17921 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 17922 [1.00000 0.74047 0.43176 0.23232 ] 17923 </y_lo_noiseprofile> 17924 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 17925 [0.70863 0.62708 0.38287 0.00000 ] 17926 </y_hi_noiseprofile> 17927 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 17928 [1.0000 1.0000 1.0000 1.0000 ] 17929 </y_lo_denoiseweight> 17930 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 17931 [1.0000 1.0000 1.0000 1.0000 ] 17932 </y_hi_denoiseweight> 17933 <y_lo_bfscale index="1" type="double" size="[1 4]"> 17934 [0.3000 0.3000 0.3000 0.3000 ] 17935 </y_lo_bfscale> 17936 <y_hi_bfscale index="1" type="double" size="[1 4]"> 17937 [0.3000 0.3000 0.3000 0.3000 ] 17938 </y_hi_bfscale> 17939 <y_lumanrpoint index="1" type="double" size="[1 6]"> 17940 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 17941 </y_lumanrpoint> 17942 <y_lumanrcurve index="1" type="double" size="[1 6]"> 17943 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 17944 </y_lumanrcurve> 17945 <y_denoisestrength index="1" type="double" size="[1 1]"> 17946 [3.0000 ] 17947 </y_denoisestrength> 17948 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17949 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17950 </y_lo_lvl0_gfdelta> 17951 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 17952 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 17953 </y_hi_lvl0_gfdelta> 17954 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17955 [0.12500 0.10938 0.10938 ] 17956 </y_lo_lvl1_gfdelta> 17957 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 17958 [0.12500 0.10938 0.10938 ] 17959 </y_hi_lvl1_gfdelta> 17960 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17961 [0.12500 0.10938 0.10938 ] 17962 </y_lo_lvl2_gfdelta> 17963 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 17964 [0.12500 0.10938 0.10938 ] 17965 </y_hi_lvl2_gfdelta> 17966 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 17967 [0.12500 0.10938 0.10938 ] 17968 </y_lo_lvl3_gfdelta> 17969 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 17970 [0.12500 0.10938 0.10938 ] 17971 </y_hi_lvl3_gfdelta> 17972 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 17973 [1.00000 0.74047 0.43176 ] 17974 </uv_lo_noiseprofile> 17975 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 17976 [0.70863 0.62708 0.39626 ] 17977 </uv_hi_noiseprofile> 17978 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 17979 [1.0000 1.0000 1.0000 ] 17980 </uv_lo_denoiseweight> 17981 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 17982 [1.0000 1.0000 1.0000 ] 17983 </uv_hi_denoiseweight> 17984 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 17985 [0.3000 0.3000 0.3000 ] 17986 </uv_lo_bfscale> 17987 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 17988 [0.3000 0.3000 0.3000 ] 17989 </uv_hi_bfscale> 17990 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 17991 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 17992 </uv_lumanrpoint> 17993 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 17994 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 17995 </uv_lumanrcurve> 17996 <uv_denoisestrength index="1" type="double" size="[1 1]"> 17997 [3.0000 ] 17998 </uv_denoisestrength> 17999 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18000 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18001 </uv_lo_lvl0_gfdelta> 18002 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18003 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18004 </uv_hi_lvl0_gfdelta> 18005 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18006 [0.12500 0.10938 0.10938 ] 18007 </uv_lo_lvl1_gfdelta> 18008 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18009 [0.12500 0.10938 0.10938 ] 18010 </uv_hi_lvl1_gfdelta> 18011 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18012 [0.12500 0.10938 0.10938 ] 18013 </uv_lo_lvl2_gfdelta> 18014 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18015 [0.12500 0.10938 0.10938 ] 18016 </uv_hi_lvl2_gfdelta> 18017 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 18018 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18019 </lvl0_gfsigma> 18020 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 18021 [0.12500 0.10938 0.10938 ] 18022 </lvl1_gfsigma> 18023 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 18024 [0.12500 0.10938 0.10938 ] 18025 </lvl2_gfsigma> 18026 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 18027 [0.12500 0.10938 0.10938 ] 18028 </lvl3_gfsigma> 18029 </cell> 18030 <cell index="8" type="struct" size="[1 1]"> 18031 <iso index="1" type="double" size="[1 1]"> 18032 [6400.0000 ] 18033 </iso> 18034 <weight_limit_y index="1" type="double" size="[1 4]"> 18035 [8.0000 8.0000 8.0000 8.0000 ] 18036 </weight_limit_y> 18037 <weight_limit_uv index="1" type="double" size="[1 3]"> 18038 [4.0000 4.0000 64.0000 ] 18039 </weight_limit_uv> 18040 <ratio_frq index="1" type="double" size="[1 4]"> 18041 [0.5000 2.0000 0.5000 2.0000 ] 18042 </ratio_frq> 18043 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 18044 [0.7500 0.7500 0.7500 ] 18045 </luma_w_in_chroma> 18046 <noise_curve index="1" type="double" size="[1 5]"> 18047 [-1.17756545286079e-011 1.12670434028526e-007 -4.05537564186043e-004 5.71448012221026e-001 6.52947928690119e+001 ] 18048 </noise_curve> 18049 <noise_curve_x00 index="1" type="double" size="[1 1]"> 18050 [3.17000000000000e+003 ] 18051 </noise_curve_x00> 18052 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 18053 [1.00000 0.75478 0.45723 0.24457 ] 18054 </y_lo_noiseprofile> 18055 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 18056 [0.69157 0.63395 0.40685 0.00000 ] 18057 </y_hi_noiseprofile> 18058 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 18059 [1.0000 1.0000 1.0000 1.0000 ] 18060 </y_lo_denoiseweight> 18061 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 18062 [1.0000 1.0000 1.0000 1.0000 ] 18063 </y_hi_denoiseweight> 18064 <y_lo_bfscale index="1" type="double" size="[1 4]"> 18065 [0.2000 0.2000 0.2000 0.2000 ] 18066 </y_lo_bfscale> 18067 <y_hi_bfscale index="1" type="double" size="[1 4]"> 18068 [0.2000 0.2000 0.2000 0.2000 ] 18069 </y_hi_bfscale> 18070 <y_lumanrpoint index="1" type="double" size="[1 6]"> 18071 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 18072 </y_lumanrpoint> 18073 <y_lumanrcurve index="1" type="double" size="[1 6]"> 18074 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 18075 </y_lumanrcurve> 18076 <y_denoisestrength index="1" type="double" size="[1 1]"> 18077 [5.0000 ] 18078 </y_denoisestrength> 18079 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18080 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18081 </y_lo_lvl0_gfdelta> 18082 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18083 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18084 </y_hi_lvl0_gfdelta> 18085 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18086 [0.12500 0.10938 0.10938 ] 18087 </y_lo_lvl1_gfdelta> 18088 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18089 [0.12500 0.10938 0.10938 ] 18090 </y_hi_lvl1_gfdelta> 18091 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18092 [0.12500 0.10938 0.10938 ] 18093 </y_lo_lvl2_gfdelta> 18094 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18095 [0.12500 0.10938 0.10938 ] 18096 </y_hi_lvl2_gfdelta> 18097 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 18098 [0.12500 0.10938 0.10938 ] 18099 </y_lo_lvl3_gfdelta> 18100 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 18101 [0.12500 0.10938 0.10938 ] 18102 </y_hi_lvl3_gfdelta> 18103 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 18104 [1.00000 0.75478 0.45723 ] 18105 </uv_lo_noiseprofile> 18106 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 18107 [0.69157 0.63395 0.39626 ] 18108 </uv_hi_noiseprofile> 18109 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 18110 [1.0000 1.0000 1.0000 ] 18111 </uv_lo_denoiseweight> 18112 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 18113 [1.0000 1.0000 1.0000 ] 18114 </uv_hi_denoiseweight> 18115 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 18116 [0.2000 0.2000 0.2000 ] 18117 </uv_lo_bfscale> 18118 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 18119 [0.2000 0.2000 0.2000 ] 18120 </uv_hi_bfscale> 18121 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 18122 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 18123 </uv_lumanrpoint> 18124 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 18125 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 18126 </uv_lumanrcurve> 18127 <uv_denoisestrength index="1" type="double" size="[1 1]"> 18128 [5.0000 ] 18129 </uv_denoisestrength> 18130 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18131 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18132 </uv_lo_lvl0_gfdelta> 18133 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18134 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18135 </uv_hi_lvl0_gfdelta> 18136 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18137 [0.12500 0.10938 0.10938 ] 18138 </uv_lo_lvl1_gfdelta> 18139 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18140 [0.12500 0.10938 0.10938 ] 18141 </uv_hi_lvl1_gfdelta> 18142 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18143 [0.12500 0.10938 0.10938 ] 18144 </uv_lo_lvl2_gfdelta> 18145 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18146 [0.12500 0.10938 0.10938 ] 18147 </uv_hi_lvl2_gfdelta> 18148 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 18149 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18150 </lvl0_gfsigma> 18151 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 18152 [0.12500 0.10938 0.10938 ] 18153 </lvl1_gfsigma> 18154 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 18155 [0.12500 0.10938 0.10938 ] 18156 </lvl2_gfsigma> 18157 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 18158 [0.12500 0.10938 0.10938 ] 18159 </lvl3_gfsigma> 18160 </cell> 18161 <cell index="9" type="struct" size="[1 1]"> 18162 <iso index="1" type="double" size="[1 1]"> 18163 [12800.0000 ] 18164 </iso> 18165 <weight_limit_y index="1" type="double" size="[1 4]"> 18166 [4.0000 4.0000 4.0000 4.0000 ] 18167 </weight_limit_y> 18168 <weight_limit_uv index="1" type="double" size="[1 3]"> 18169 [4.0000 4.0000 4.0000 ] 18170 </weight_limit_uv> 18171 <ratio_frq index="1" type="double" size="[1 4]"> 18172 [0.5000 2.0000 0.5000 2.0000 ] 18173 </ratio_frq> 18174 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 18175 [0.8000 0.8000 0.8000 ] 18176 </luma_w_in_chroma> 18177 <noise_curve index="1" type="double" size="[1 5]"> 18178 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 18179 </noise_curve> 18180 <noise_curve_x00 index="1" type="double" size="[1 1]"> 18181 [3.17000000000000e+003 ] 18182 </noise_curve_x00> 18183 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 18184 [1.00000 0.72924 0.45749 0.28517 ] 18185 </y_lo_noiseprofile> 18186 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 18187 [0.72960 0.61071 0.39626 0.00000 ] 18188 </y_hi_noiseprofile> 18189 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 18190 [1.0000 1.0000 1.0000 1.0000 ] 18191 </y_lo_denoiseweight> 18192 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 18193 [1.0000 1.0000 1.0000 1.0000 ] 18194 </y_hi_denoiseweight> 18195 <y_lo_bfscale index="1" type="double" size="[1 4]"> 18196 [0.2000 0.2000 0.2000 0.2000 ] 18197 </y_lo_bfscale> 18198 <y_hi_bfscale index="1" type="double" size="[1 4]"> 18199 [0.2000 0.2000 0.2000 0.2000] 18200 </y_hi_bfscale> 18201 <y_lumanrpoint index="1" type="double" size="[1 6]"> 18202 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 18203 </y_lumanrpoint> 18204 <y_lumanrcurve index="1" type="double" size="[1 6]"> 18205 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 18206 </y_lumanrcurve> 18207 <y_denoisestrength index="1" type="double" size="[1 1]"> 18208 [5.0000 ] 18209 </y_denoisestrength> 18210 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18211 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18212 </y_lo_lvl0_gfdelta> 18213 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18214 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18215 </y_hi_lvl0_gfdelta> 18216 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18217 [0.12500 0.10938 0.10938 ] 18218 </y_lo_lvl1_gfdelta> 18219 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18220 [0.12500 0.10938 0.10938 ] 18221 </y_hi_lvl1_gfdelta> 18222 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18223 [0.12500 0.10938 0.10938 ] 18224 </y_lo_lvl2_gfdelta> 18225 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18226 [0.12500 0.10938 0.10938 ] 18227 </y_hi_lvl2_gfdelta> 18228 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 18229 [0.12500 0.10938 0.10938 ] 18230 </y_lo_lvl3_gfdelta> 18231 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 18232 [0.12500 0.10938 0.10938 ] 18233 </y_hi_lvl3_gfdelta> 18234 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 18235 [1.00000 0.72924 0.45749 ] 18236 </uv_lo_noiseprofile> 18237 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 18238 [0.72960 0.61071 0.39626 ] 18239 </uv_hi_noiseprofile> 18240 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 18241 [1.0000 1.0000 1.0000 ] 18242 </uv_lo_denoiseweight> 18243 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 18244 [1.0000 1.0000 1.0000 ] 18245 </uv_hi_denoiseweight> 18246 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 18247 [0.2000 0.2000 0.2000 ] 18248 </uv_lo_bfscale> 18249 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 18250 [0.2000 0.2000 0.2000 ] 18251 </uv_hi_bfscale> 18252 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 18253 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 18254 </uv_lumanrpoint> 18255 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 18256 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 18257 </uv_lumanrcurve> 18258 <uv_denoisestrength index="1" type="double" size="[1 1]"> 18259 [5.0000 ] 18260 </uv_denoisestrength> 18261 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18262 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18263 </uv_lo_lvl0_gfdelta> 18264 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18265 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18266 </uv_hi_lvl0_gfdelta> 18267 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18268 [0.12500 0.10938 0.10938 ] 18269 </uv_lo_lvl1_gfdelta> 18270 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18271 [0.12500 0.10938 0.10938 ] 18272 </uv_hi_lvl1_gfdelta> 18273 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18274 [0.12500 0.10938 0.10938 ] 18275 </uv_lo_lvl2_gfdelta> 18276 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18277 [0.12500 0.10938 0.10938 ] 18278 </uv_hi_lvl2_gfdelta> 18279 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 18280 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18281 </lvl0_gfsigma> 18282 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 18283 [0.12500 0.10938 0.10938 ] 18284 </lvl1_gfsigma> 18285 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 18286 [0.12500 0.10938 0.10938 ] 18287 </lvl2_gfsigma> 18288 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 18289 [0.12500 0.10938 0.10938 ] 18290 </lvl3_gfsigma> 18291 </cell> 18292 <cell index="10" type="struct" size="[1 1]"> 18293 <iso index="1" type="double" size="[1 1]"> 18294 [25600.0000 ] 18295 </iso> 18296 <weight_limit_y index="1" type="double" size="[1 4]"> 18297 [4.0000 4.0000 4.0000 4.0000 ] 18298 </weight_limit_y> 18299 <weight_limit_uv index="1" type="double" size="[1 3]"> 18300 [4.0000 4.0000 4.0000 ] 18301 </weight_limit_uv> 18302 <ratio_frq index="1" type="double" size="[1 4]"> 18303 [0.5000 2.0000 0.5000 2.0000 ] 18304 </ratio_frq> 18305 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 18306 [0.8000 0.8000 0.8000 ] 18307 </luma_w_in_chroma> 18308 <noise_curve index="1" type="double" size="[1 5]"> 18309 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 18310 </noise_curve> 18311 <noise_curve_x00 index="1" type="double" size="[1 1]"> 18312 [3.17000000000000e+003 ] 18313 </noise_curve_x00> 18314 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 18315 [1.00000 0.72924 0.45749 0.28517 ] 18316 </y_lo_noiseprofile> 18317 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 18318 [0.72960 0.61071 0.39626 0.00000 ] 18319 </y_hi_noiseprofile> 18320 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 18321 [1.0000 1.0000 1.0000 1.0000 ] 18322 </y_lo_denoiseweight> 18323 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 18324 [1.0000 1.0000 1.0000 1.0000 ] 18325 </y_hi_denoiseweight> 18326 <y_lo_bfscale index="1" type="double" size="[1 4]"> 18327 [0.5000 0.5000 0.5000 0.7000 ] 18328 </y_lo_bfscale> 18329 <y_hi_bfscale index="1" type="double" size="[1 4]"> 18330 [0.5000 0.5000 0.5000 0.7000 ] 18331 </y_hi_bfscale> 18332 <y_lumanrpoint index="1" type="double" size="[1 6]"> 18333 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 18334 </y_lumanrpoint> 18335 <y_lumanrcurve index="1" type="double" size="[1 6]"> 18336 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 18337 </y_lumanrcurve> 18338 <y_denoisestrength index="1" type="double" size="[1 1]"> 18339 [1.8000 ] 18340 </y_denoisestrength> 18341 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18342 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18343 </y_lo_lvl0_gfdelta> 18344 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18345 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18346 </y_hi_lvl0_gfdelta> 18347 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18348 [0.12500 0.10938 0.10938 ] 18349 </y_lo_lvl1_gfdelta> 18350 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18351 [0.12500 0.10938 0.10938 ] 18352 </y_hi_lvl1_gfdelta> 18353 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18354 [0.12500 0.10938 0.10938 ] 18355 </y_lo_lvl2_gfdelta> 18356 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18357 [0.12500 0.10938 0.10938 ] 18358 </y_hi_lvl2_gfdelta> 18359 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 18360 [0.12500 0.10938 0.10938 ] 18361 </y_lo_lvl3_gfdelta> 18362 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 18363 [0.12500 0.10938 0.10938 ] 18364 </y_hi_lvl3_gfdelta> 18365 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 18366 [1.00000 0.72924 0.45749 ] 18367 </uv_lo_noiseprofile> 18368 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 18369 [0.72960 0.61071 0.39626 ] 18370 </uv_hi_noiseprofile> 18371 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 18372 [1.0000 1.0000 1.0000 ] 18373 </uv_lo_denoiseweight> 18374 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 18375 [1.0000 1.0000 1.0000 ] 18376 </uv_hi_denoiseweight> 18377 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 18378 [0.5000 0.7000 0.7000 ] 18379 </uv_lo_bfscale> 18380 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 18381 [0.3000 0.3000 0.4000 ] 18382 </uv_hi_bfscale> 18383 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 18384 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 18385 </uv_lumanrpoint> 18386 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 18387 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 18388 </uv_lumanrcurve> 18389 <uv_denoisestrength index="1" type="double" size="[1 1]"> 18390 [1.8000 ] 18391 </uv_denoisestrength> 18392 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18393 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18394 </uv_lo_lvl0_gfdelta> 18395 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18396 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18397 </uv_hi_lvl0_gfdelta> 18398 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18399 [0.12500 0.10938 0.10938 ] 18400 </uv_lo_lvl1_gfdelta> 18401 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18402 [0.12500 0.10938 0.10938 ] 18403 </uv_hi_lvl1_gfdelta> 18404 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18405 [0.12500 0.10938 0.10938 ] 18406 </uv_lo_lvl2_gfdelta> 18407 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18408 [0.12500 0.10938 0.10938 ] 18409 </uv_hi_lvl2_gfdelta> 18410 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 18411 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18412 </lvl0_gfsigma> 18413 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 18414 [0.12500 0.10938 0.10938 ] 18415 </lvl1_gfsigma> 18416 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 18417 [0.12500 0.10938 0.10938 ] 18418 </lvl2_gfsigma> 18419 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 18420 [0.12500 0.10938 0.10938 ] 18421 </lvl3_gfsigma> 18422 </cell> 18423 <cell index="11" type="struct" size="[1 1]"> 18424 <iso index="1" type="double" size="[1 1]"> 18425 [51200.0000 ] 18426 </iso> 18427 <weight_limit_y index="1" type="double" size="[1 4]"> 18428 [4.0000 4.0000 4.0000 4.0000 ] 18429 </weight_limit_y> 18430 <weight_limit_uv index="1" type="double" size="[1 3]"> 18431 [4.0000 4.0000 4.0000 ] 18432 </weight_limit_uv> 18433 <ratio_frq index="1" type="double" size="[1 4]"> 18434 [0.5000 2.0000 0.5000 2.0000 ] 18435 </ratio_frq> 18436 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 18437 [0.8000 0.8000 0.8000 ] 18438 </luma_w_in_chroma> 18439 <noise_curve index="1" type="double" size="[1 5]"> 18440 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 18441 </noise_curve> 18442 <noise_curve_x00 index="1" type="double" size="[1 1]"> 18443 [3.17000000000000e+003 ] 18444 </noise_curve_x00> 18445 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 18446 [1.00000 0.72924 0.45749 0.28517 ] 18447 </y_lo_noiseprofile> 18448 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 18449 [0.72960 0.61071 0.39626 0.00000 ] 18450 </y_hi_noiseprofile> 18451 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 18452 [1.0000 1.0000 1.0000 1.0000 ] 18453 </y_lo_denoiseweight> 18454 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 18455 [1.0000 1.0000 1.0000 1.0000 ] 18456 </y_hi_denoiseweight> 18457 <y_lo_bfscale index="1" type="double" size="[1 4]"> 18458 [0.5000 0.5000 0.5000 0.7000 ] 18459 </y_lo_bfscale> 18460 <y_hi_bfscale index="1" type="double" size="[1 4]"> 18461 [0.5000 0.5000 0.5000 0.7000 ] 18462 </y_hi_bfscale> 18463 <y_lumanrpoint index="1" type="double" size="[1 6]"> 18464 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 18465 </y_lumanrpoint> 18466 <y_lumanrcurve index="1" type="double" size="[1 6]"> 18467 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 18468 </y_lumanrcurve> 18469 <y_denoisestrength index="1" type="double" size="[1 1]"> 18470 [1.8000 ] 18471 </y_denoisestrength> 18472 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18473 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18474 </y_lo_lvl0_gfdelta> 18475 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18476 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18477 </y_hi_lvl0_gfdelta> 18478 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18479 [0.12500 0.10938 0.10938 ] 18480 </y_lo_lvl1_gfdelta> 18481 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18482 [0.12500 0.10938 0.10938 ] 18483 </y_hi_lvl1_gfdelta> 18484 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18485 [0.12500 0.10938 0.10938 ] 18486 </y_lo_lvl2_gfdelta> 18487 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18488 [0.12500 0.10938 0.10938 ] 18489 </y_hi_lvl2_gfdelta> 18490 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 18491 [0.12500 0.10938 0.10938 ] 18492 </y_lo_lvl3_gfdelta> 18493 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 18494 [0.12500 0.10938 0.10938 ] 18495 </y_hi_lvl3_gfdelta> 18496 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 18497 [1.00000 0.72924 0.45749 ] 18498 </uv_lo_noiseprofile> 18499 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 18500 [0.72960 0.61071 0.39626 ] 18501 </uv_hi_noiseprofile> 18502 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 18503 [1.0000 1.0000 1.0000 ] 18504 </uv_lo_denoiseweight> 18505 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 18506 [1.0000 1.0000 1.0000 ] 18507 </uv_hi_denoiseweight> 18508 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 18509 [0.5000 0.7000 0.7000 ] 18510 </uv_lo_bfscale> 18511 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 18512 [0.3000 0.3000 0.4000 ] 18513 </uv_hi_bfscale> 18514 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 18515 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 18516 </uv_lumanrpoint> 18517 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 18518 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 18519 </uv_lumanrcurve> 18520 <uv_denoisestrength index="1" type="double" size="[1 1]"> 18521 [1.8000 ] 18522 </uv_denoisestrength> 18523 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18524 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18525 </uv_lo_lvl0_gfdelta> 18526 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18527 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18528 </uv_hi_lvl0_gfdelta> 18529 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18530 [0.12500 0.10938 0.10938 ] 18531 </uv_lo_lvl1_gfdelta> 18532 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18533 [0.12500 0.10938 0.10938 ] 18534 </uv_hi_lvl1_gfdelta> 18535 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18536 [0.12500 0.10938 0.10938 ] 18537 </uv_lo_lvl2_gfdelta> 18538 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18539 [0.12500 0.10938 0.10938 ] 18540 </uv_hi_lvl2_gfdelta> 18541 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 18542 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18543 </lvl0_gfsigma> 18544 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 18545 [0.12500 0.10938 0.10938 ] 18546 </lvl1_gfsigma> 18547 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 18548 [0.12500 0.10938 0.10938 ] 18549 </lvl2_gfsigma> 18550 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 18551 [0.12500 0.10938 0.10938 ] 18552 </lvl3_gfsigma> 18553 </cell> 18554 <cell index="12" type="struct" size="[1 1]"> 18555 <iso index="1" type="double" size="[1 1]"> 18556 [102400.0000 ] 18557 </iso> 18558 <weight_limit_y index="1" type="double" size="[1 4]"> 18559 [4.0000 4.0000 4.0000 4.0000 ] 18560 </weight_limit_y> 18561 <weight_limit_uv index="1" type="double" size="[1 3]"> 18562 [4.0000 4.0000 4.0000 ] 18563 </weight_limit_uv> 18564 <ratio_frq index="1" type="double" size="[1 4]"> 18565 [0.5000 2.0000 0.5000 2.0000 ] 18566 </ratio_frq> 18567 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 18568 [0.8000 0.8000 0.8000 ] 18569 </luma_w_in_chroma> 18570 <noise_curve index="1" type="double" size="[1 5]"> 18571 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 18572 </noise_curve> 18573 <noise_curve_x00 index="1" type="double" size="[1 1]"> 18574 [3.17000000000000e+003 ] 18575 </noise_curve_x00> 18576 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 18577 [1.00000 0.72924 0.45749 0.28517 ] 18578 </y_lo_noiseprofile> 18579 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 18580 [0.72960 0.61071 0.39626 0.00000 ] 18581 </y_hi_noiseprofile> 18582 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 18583 [1.0000 1.0000 1.0000 1.0000 ] 18584 </y_lo_denoiseweight> 18585 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 18586 [1.0000 1.0000 1.0000 1.0000 ] 18587 </y_hi_denoiseweight> 18588 <y_lo_bfscale index="1" type="double" size="[1 4]"> 18589 [0.5000 0.5000 0.5000 0.7000 ] 18590 </y_lo_bfscale> 18591 <y_hi_bfscale index="1" type="double" size="[1 4]"> 18592 [0.5000 0.5000 0.5000 0.7000 ] 18593 </y_hi_bfscale> 18594 <y_lumanrpoint index="1" type="double" size="[1 6]"> 18595 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 18596 </y_lumanrpoint> 18597 <y_lumanrcurve index="1" type="double" size="[1 6]"> 18598 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 18599 </y_lumanrcurve> 18600 <y_denoisestrength index="1" type="double" size="[1 1]"> 18601 [1.8000 ] 18602 </y_denoisestrength> 18603 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18604 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18605 </y_lo_lvl0_gfdelta> 18606 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18607 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18608 </y_hi_lvl0_gfdelta> 18609 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18610 [0.12500 0.10938 0.10938 ] 18611 </y_lo_lvl1_gfdelta> 18612 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18613 [0.12500 0.10938 0.10938 ] 18614 </y_hi_lvl1_gfdelta> 18615 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18616 [0.12500 0.10938 0.10938 ] 18617 </y_lo_lvl2_gfdelta> 18618 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18619 [0.12500 0.10938 0.10938 ] 18620 </y_hi_lvl2_gfdelta> 18621 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 18622 [0.12500 0.10938 0.10938 ] 18623 </y_lo_lvl3_gfdelta> 18624 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 18625 [0.12500 0.10938 0.10938 ] 18626 </y_hi_lvl3_gfdelta> 18627 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 18628 [1.00000 0.72924 0.45749 ] 18629 </uv_lo_noiseprofile> 18630 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 18631 [0.72960 0.61071 0.39626 ] 18632 </uv_hi_noiseprofile> 18633 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 18634 [1.0000 1.0000 1.0000 ] 18635 </uv_lo_denoiseweight> 18636 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 18637 [1.0000 1.0000 1.0000 ] 18638 </uv_hi_denoiseweight> 18639 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 18640 [0.5000 0.7000 0.7000 ] 18641 </uv_lo_bfscale> 18642 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 18643 [0.3000 0.3000 0.4000 ] 18644 </uv_hi_bfscale> 18645 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 18646 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 18647 </uv_lumanrpoint> 18648 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 18649 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 18650 </uv_lumanrcurve> 18651 <uv_denoisestrength index="1" type="double" size="[1 1]"> 18652 [1.8000 ] 18653 </uv_denoisestrength> 18654 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18655 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18656 </uv_lo_lvl0_gfdelta> 18657 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18658 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18659 </uv_hi_lvl0_gfdelta> 18660 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18661 [0.12500 0.10938 0.10938 ] 18662 </uv_lo_lvl1_gfdelta> 18663 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18664 [0.12500 0.10938 0.10938 ] 18665 </uv_hi_lvl1_gfdelta> 18666 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18667 [0.12500 0.10938 0.10938 ] 18668 </uv_lo_lvl2_gfdelta> 18669 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18670 [0.12500 0.10938 0.10938 ] 18671 </uv_hi_lvl2_gfdelta> 18672 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 18673 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18674 </lvl0_gfsigma> 18675 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 18676 [0.12500 0.10938 0.10938 ] 18677 </lvl1_gfsigma> 18678 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 18679 [0.12500 0.10938 0.10938 ] 18680 </lvl2_gfsigma> 18681 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 18682 [0.12500 0.10938 0.10938 ] 18683 </lvl3_gfsigma> 18684 </cell> 18685 <cell index="13" type="struct" size="[1 1]"> 18686 <iso index="1" type="double" size="[1 1]"> 18687 [204800.0000 ] 18688 </iso> 18689 <weight_limit_y index="1" type="double" size="[1 4]"> 18690 [4.0000 4.0000 4.0000 4.0000 ] 18691 </weight_limit_y> 18692 <weight_limit_uv index="1" type="double" size="[1 3]"> 18693 [4.0000 4.0000 4.0000 ] 18694 </weight_limit_uv> 18695 <ratio_frq index="1" type="double" size="[1 4]"> 18696 [0.5000 2.0000 0.5000 2.0000 ] 18697 </ratio_frq> 18698 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 18699 [0.8000 0.8000 0.8000 ] 18700 </luma_w_in_chroma> 18701 <noise_curve index="1" type="double" size="[1 5]"> 18702 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 18703 </noise_curve> 18704 <noise_curve_x00 index="1" type="double" size="[1 1]"> 18705 [3.17000000000000e+003 ] 18706 </noise_curve_x00> 18707 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 18708 [1.00000 0.72924 0.45749 0.28517 ] 18709 </y_lo_noiseprofile> 18710 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 18711 [0.72960 0.61071 0.39626 0.00000 ] 18712 </y_hi_noiseprofile> 18713 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 18714 [1.0000 1.0000 1.0000 1.0000 ] 18715 </y_lo_denoiseweight> 18716 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 18717 [1.0000 1.0000 1.0000 1.0000 ] 18718 </y_hi_denoiseweight> 18719 <y_lo_bfscale index="1" type="double" size="[1 4]"> 18720 [0.5000 0.5000 0.5000 0.7000 ] 18721 </y_lo_bfscale> 18722 <y_hi_bfscale index="1" type="double" size="[1 4]"> 18723 [0.5000 0.5000 0.5000 0.7000 ] 18724 </y_hi_bfscale> 18725 <y_lumanrpoint index="1" type="double" size="[1 6]"> 18726 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 18727 </y_lumanrpoint> 18728 <y_lumanrcurve index="1" type="double" size="[1 6]"> 18729 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 18730 </y_lumanrcurve> 18731 <y_denoisestrength index="1" type="double" size="[1 1]"> 18732 [1.8000 ] 18733 </y_denoisestrength> 18734 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18735 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18736 </y_lo_lvl0_gfdelta> 18737 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18738 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18739 </y_hi_lvl0_gfdelta> 18740 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18741 [0.12500 0.10938 0.10938 ] 18742 </y_lo_lvl1_gfdelta> 18743 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18744 [0.12500 0.10938 0.10938 ] 18745 </y_hi_lvl1_gfdelta> 18746 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18747 [0.12500 0.10938 0.10938 ] 18748 </y_lo_lvl2_gfdelta> 18749 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18750 [0.12500 0.10938 0.10938 ] 18751 </y_hi_lvl2_gfdelta> 18752 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 18753 [0.12500 0.10938 0.10938 ] 18754 </y_lo_lvl3_gfdelta> 18755 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 18756 [0.12500 0.10938 0.10938 ] 18757 </y_hi_lvl3_gfdelta> 18758 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 18759 [1.00000 0.72924 0.45749 ] 18760 </uv_lo_noiseprofile> 18761 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 18762 [0.72960 0.61071 0.39626 ] 18763 </uv_hi_noiseprofile> 18764 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 18765 [1.0000 1.0000 1.0000 ] 18766 </uv_lo_denoiseweight> 18767 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 18768 [1.0000 1.0000 1.0000 ] 18769 </uv_hi_denoiseweight> 18770 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 18771 [0.5000 0.7000 0.7000 ] 18772 </uv_lo_bfscale> 18773 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 18774 [0.3000 0.3000 0.4000 ] 18775 </uv_hi_bfscale> 18776 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 18777 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 18778 </uv_lumanrpoint> 18779 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 18780 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 18781 </uv_lumanrcurve> 18782 <uv_denoisestrength index="1" type="double" size="[1 1]"> 18783 [1.8000 ] 18784 </uv_denoisestrength> 18785 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18786 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18787 </uv_lo_lvl0_gfdelta> 18788 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18789 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18790 </uv_hi_lvl0_gfdelta> 18791 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18792 [0.12500 0.10938 0.10938 ] 18793 </uv_lo_lvl1_gfdelta> 18794 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18795 [0.12500 0.10938 0.10938 ] 18796 </uv_hi_lvl1_gfdelta> 18797 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18798 [0.12500 0.10938 0.10938 ] 18799 </uv_lo_lvl2_gfdelta> 18800 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18801 [0.12500 0.10938 0.10938 ] 18802 </uv_hi_lvl2_gfdelta> 18803 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 18804 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18805 </lvl0_gfsigma> 18806 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 18807 [0.12500 0.10938 0.10938 ] 18808 </lvl1_gfsigma> 18809 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 18810 [0.12500 0.10938 0.10938 ] 18811 </lvl2_gfsigma> 18812 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 18813 [0.12500 0.10938 0.10938 ] 18814 </lvl3_gfsigma> 18815 </cell> 18816 </MFNR_ISO> 18817 </cell> 18818 <cell index="2" type="struct" size="[1 1]"> 18819 <SNR_Mode index="1" type="char" size="[1 4]"> 18820 HSNR 18821 </SNR_Mode> 18822 <Sensor_Mode index="1" type="char" size="[1 3]"> 18823 hcg 18824 </Sensor_Mode> 18825 <MFNR_ISO index="1" type="cell" size="[1 13]"> 18826 <cell index="1" type="struct" size="[1 1]"> 18827 <iso index="1" type="double" size="[1 1]"> 18828 [50.0000 ] 18829 </iso> 18830 <weight_limit_y index="1" type="double" size="[1 4]"> 18831 [64.0000 64.0000 64.0000 64.0000 ] 18832 </weight_limit_y> 18833 <weight_limit_uv index="1" type="double" size="[1 3]"> 18834 [64.0000 64.0000 64.0000 ] 18835 </weight_limit_uv> 18836 <ratio_frq index="1" type="double" size="[1 4]"> 18837 [0.5000 2.0000 0.5000 2.0000 ] 18838 </ratio_frq> 18839 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 18840 [0.5000 0.5000 0.5000 ] 18841 </luma_w_in_chroma> 18842 <noise_curve index="1" type="double" size="[1 5]"> 18843 [-8.43031629716230e-013 7.96403418022611e-009 -2.69124846208717e-005 3.30491353997608e-002 1.82112440798101e+001 ] 18844 </noise_curve> 18845 <noise_curve_x00 index="1" type="double" size="[1 1]"> 18846 [3.64700000000000e+003 ] 18847 </noise_curve_x00> 18848 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 18849 [1.00000 0.68993 0.41986 0.24798 ] 18850 </y_lo_noiseprofile> 18851 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 18852 [0.77114 0.62293 0.46145 0.00000 ] 18853 </y_hi_noiseprofile> 18854 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 18855 [1.0000 1.0000 1.0000 1.0000 ] 18856 </y_lo_denoiseweight> 18857 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 18858 [1.0000 1.0000 1.0000 1.0000 ] 18859 </y_hi_denoiseweight> 18860 <y_lo_bfscale index="1" type="double" size="[1 4]"> 18861 [0.5000 0.5000 0.5000 0.5000 ] 18862 </y_lo_bfscale> 18863 <y_hi_bfscale index="1" type="double" size="[1 4]"> 18864 [0.5000 0.5000 0.5000 0.5000 ] 18865 </y_hi_bfscale> 18866 <y_lumanrpoint index="1" type="double" size="[1 6]"> 18867 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 18868 </y_lumanrpoint> 18869 <y_lumanrcurve index="1" type="double" size="[1 6]"> 18870 [1.2000 1.2000 1.2000 1.1000 1.1000 1.0000 ] 18871 </y_lumanrcurve> 18872 <y_denoisestrength index="1" type="double" size="[1 1]"> 18873 [1.2000 ] 18874 </y_denoisestrength> 18875 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18876 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18877 </y_lo_lvl0_gfdelta> 18878 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18879 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18880 </y_hi_lvl0_gfdelta> 18881 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18882 [0.12500 0.10938 0.10938 ] 18883 </y_lo_lvl1_gfdelta> 18884 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18885 [0.12500 0.10938 0.10938 ] 18886 </y_hi_lvl1_gfdelta> 18887 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18888 [0.12500 0.10938 0.10938 ] 18889 </y_lo_lvl2_gfdelta> 18890 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18891 [0.12500 0.10938 0.10938 ] 18892 </y_hi_lvl2_gfdelta> 18893 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 18894 [0.12500 0.10938 0.10938 ] 18895 </y_lo_lvl3_gfdelta> 18896 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 18897 [0.12500 0.10938 0.10938 ] 18898 </y_hi_lvl3_gfdelta> 18899 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 18900 [1.00000 0.68993 0.41986 ] 18901 </uv_lo_noiseprofile> 18902 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 18903 [0.77114 0.62293 0.35740 ] 18904 </uv_hi_noiseprofile> 18905 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 18906 [1.0000 1.0000 1.0000 ] 18907 </uv_lo_denoiseweight> 18908 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 18909 [1.0000 1.0000 1.0000 ] 18910 </uv_hi_denoiseweight> 18911 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 18912 [0.5000 0.5000 0.5000 ] 18913 </uv_lo_bfscale> 18914 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 18915 [0.5000 0.5000 0.5000 ] 18916 </uv_hi_bfscale> 18917 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 18918 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 18919 </uv_lumanrpoint> 18920 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 18921 [1.3000 1.2000 1.2000 1.1000 1.1000 1.0000 ] 18922 </uv_lumanrcurve> 18923 <uv_denoisestrength index="1" type="double" size="[1 1]"> 18924 [1.2000 ] 18925 </uv_denoisestrength> 18926 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18927 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18928 </uv_lo_lvl0_gfdelta> 18929 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 18930 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18931 </uv_hi_lvl0_gfdelta> 18932 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18933 [0.12500 0.10938 0.10938 ] 18934 </uv_lo_lvl1_gfdelta> 18935 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 18936 [0.12500 0.10938 0.10938 ] 18937 </uv_hi_lvl1_gfdelta> 18938 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18939 [0.12500 0.10938 0.10938 ] 18940 </uv_lo_lvl2_gfdelta> 18941 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 18942 [0.12500 0.10938 0.10938 ] 18943 </uv_hi_lvl2_gfdelta> 18944 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 18945 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 18946 </lvl0_gfsigma> 18947 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 18948 [0.12500 0.10938 0.10938 ] 18949 </lvl1_gfsigma> 18950 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 18951 [0.12500 0.10938 0.10938 ] 18952 </lvl2_gfsigma> 18953 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 18954 [0.12500 0.10938 0.10938 ] 18955 </lvl3_gfsigma> 18956 </cell> 18957 <cell index="2" type="struct" size="[1 1]"> 18958 <iso index="1" type="double" size="[1 1]"> 18959 [100.0000 ] 18960 </iso> 18961 <weight_limit_y index="1" type="double" size="[1 4]"> 18962 [64.0000 64.0000 64.0000 64.0000 ] 18963 </weight_limit_y> 18964 <weight_limit_uv index="1" type="double" size="[1 3]"> 18965 [64.0000 64.0000 64.0000 ] 18966 </weight_limit_uv> 18967 <ratio_frq index="1" type="double" size="[1 4]"> 18968 [0.5000 2.0000 0.5000 2.0000 ] 18969 </ratio_frq> 18970 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 18971 [0.5000 0.5000 0.5000 ] 18972 </luma_w_in_chroma> 18973 <noise_curve index="1" type="double" size="[1 5]"> 18974 [-9.07873071141055e-013 9.05495555543235e-009 -3.21717261013016e-005 4.12882265916323e-002 2.10344756396116e+001 ] 18975 </noise_curve> 18976 <noise_curve_x00 index="1" type="double" size="[1 1]"> 18977 [3.64700000000000e+003 ] 18978 </noise_curve_x00> 18979 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 18980 [1.00000 0.73721 0.47316 0.28630 ] 18981 </y_lo_noiseprofile> 18982 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 18983 [0.70806 0.62814 0.46846 0.00000 ] 18984 </y_hi_noiseprofile> 18985 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 18986 [1.0000 1.0000 1.0000 1.0000 ] 18987 </y_lo_denoiseweight> 18988 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 18989 [1.0000 1.0000 1.0000 1.0000 ] 18990 </y_hi_denoiseweight> 18991 <y_lo_bfscale index="1" type="double" size="[1 4]"> 18992 [0.5000 0.5000 0.5000 0.5000 ] 18993 </y_lo_bfscale> 18994 <y_hi_bfscale index="1" type="double" size="[1 4]"> 18995 [0.5000 0.5000 0.5000 0.5000 ] 18996 </y_hi_bfscale> 18997 <y_lumanrpoint index="1" type="double" size="[1 6]"> 18998 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 18999 </y_lumanrpoint> 19000 <y_lumanrcurve index="1" type="double" size="[1 6]"> 19001 [1.3000 1.2000 1.2000 1.2000 1.2000 1.1000 ] 19002 </y_lumanrcurve> 19003 <y_denoisestrength index="1" type="double" size="[1 1]"> 19004 [1.4000 ] 19005 </y_denoisestrength> 19006 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19007 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19008 </y_lo_lvl0_gfdelta> 19009 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19010 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19011 </y_hi_lvl0_gfdelta> 19012 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19013 [0.12500 0.10938 0.10938 ] 19014 </y_lo_lvl1_gfdelta> 19015 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19016 [0.12500 0.10938 0.10938 ] 19017 </y_hi_lvl1_gfdelta> 19018 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19019 [0.12500 0.10938 0.10938 ] 19020 </y_lo_lvl2_gfdelta> 19021 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19022 [0.12500 0.10938 0.10938 ] 19023 </y_hi_lvl2_gfdelta> 19024 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 19025 [0.12500 0.10938 0.10938 ] 19026 </y_lo_lvl3_gfdelta> 19027 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 19028 [0.12500 0.10938 0.10938 ] 19029 </y_hi_lvl3_gfdelta> 19030 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 19031 [1.00000 0.73721 0.47316 ] 19032 </uv_lo_noiseprofile> 19033 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 19034 [0.70806 0.62814 0.38596 ] 19035 </uv_hi_noiseprofile> 19036 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 19037 [1.0000 1.0000 1.0000 ] 19038 </uv_lo_denoiseweight> 19039 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 19040 [1.0000 1.0000 1.0000 ] 19041 </uv_hi_denoiseweight> 19042 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 19043 [0.5000 0.5000 0.5000 ] 19044 </uv_lo_bfscale> 19045 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 19046 [0.5000 0.5000 0.5000 ] 19047 </uv_hi_bfscale> 19048 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 19049 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 19050 </uv_lumanrpoint> 19051 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 19052 [1.3000 1.2000 1.2000 1.2000 1.2000 1.2000 ] 19053 </uv_lumanrcurve> 19054 <uv_denoisestrength index="1" type="double" size="[1 1]"> 19055 [1.4000 ] 19056 </uv_denoisestrength> 19057 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19058 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19059 </uv_lo_lvl0_gfdelta> 19060 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19061 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19062 </uv_hi_lvl0_gfdelta> 19063 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19064 [0.12500 0.10938 0.10938 ] 19065 </uv_lo_lvl1_gfdelta> 19066 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19067 [0.12500 0.10938 0.10938 ] 19068 </uv_hi_lvl1_gfdelta> 19069 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19070 [0.12500 0.10938 0.10938 ] 19071 </uv_lo_lvl2_gfdelta> 19072 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19073 [0.12500 0.10938 0.10938 ] 19074 </uv_hi_lvl2_gfdelta> 19075 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 19076 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19077 </lvl0_gfsigma> 19078 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 19079 [0.12500 0.10938 0.10938 ] 19080 </lvl1_gfsigma> 19081 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 19082 [0.12500 0.10938 0.10938 ] 19083 </lvl2_gfsigma> 19084 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 19085 [0.12500 0.10938 0.10938 ] 19086 </lvl3_gfsigma> 19087 </cell> 19088 <cell index="3" type="struct" size="[1 1]"> 19089 <iso index="1" type="double" size="[1 1]"> 19090 [200.0000 ] 19091 </iso> 19092 <weight_limit_y index="1" type="double" size="[1 4]"> 19093 [32.0000 32.0000 32.0000 32.0000 ] 19094 </weight_limit_y> 19095 <weight_limit_uv index="1" type="double" size="[1 3]"> 19096 [32.0000 32.0000 32.0000 ] 19097 </weight_limit_uv> 19098 <ratio_frq index="1" type="double" size="[1 4]"> 19099 [0.5000 2.0000 0.5000 2.0000 ] 19100 </ratio_frq> 19101 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 19102 [0.5000 0.5000 0.5000 ] 19103 </luma_w_in_chroma> 19104 <noise_curve index="1" type="double" size="[1 5]"> 19105 [-1.52155493457974e-012 1.40665186878902e-008 -4.69371860616144e-005 5.84762430174166e-002 2.60227194063991e+001 ] 19106 </noise_curve> 19107 <noise_curve_x00 index="1" type="double" size="[1 1]"> 19108 [3.79000000000000e+003 ] 19109 </noise_curve_x00> 19110 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 19111 [1.00000 0.77354 0.53926 0.36661 ] 19112 </y_lo_noiseprofile> 19113 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 19114 [0.65807 0.59759 0.44849 0.00000 ] 19115 </y_hi_noiseprofile> 19116 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 19117 [1.0000 1.0000 1.0000 1.0000 ] 19118 </y_lo_denoiseweight> 19119 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 19120 [1.0000 1.0000 1.0000 1.0000 ] 19121 </y_hi_denoiseweight> 19122 <y_lo_bfscale index="1" type="double" size="[1 4]"> 19123 [0.5000 0.5000 0.5000 0.5000 ] 19124 </y_lo_bfscale> 19125 <y_hi_bfscale index="1" type="double" size="[1 4]"> 19126 [0.4500 0.4500 0.4500 0.4500 ] 19127 </y_hi_bfscale> 19128 <y_lumanrpoint index="1" type="double" size="[1 6]"> 19129 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 19130 </y_lumanrpoint> 19131 <y_lumanrcurve index="1" type="double" size="[1 6]"> 19132 [1.4000 1.3000 1.3000 1.2500 1.3000 1.3000 ] 19133 </y_lumanrcurve> 19134 <y_denoisestrength index="1" type="double" size="[1 1]"> 19135 [1.7000 ] 19136 </y_denoisestrength> 19137 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19138 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19139 </y_lo_lvl0_gfdelta> 19140 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19141 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19142 </y_hi_lvl0_gfdelta> 19143 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19144 [0.12500 0.10938 0.10938 ] 19145 </y_lo_lvl1_gfdelta> 19146 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19147 [0.12500 0.10938 0.10938 ] 19148 </y_hi_lvl1_gfdelta> 19149 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19150 [0.12500 0.10938 0.10938 ] 19151 </y_lo_lvl2_gfdelta> 19152 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19153 [0.12500 0.10938 0.10938 ] 19154 </y_hi_lvl2_gfdelta> 19155 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 19156 [0.12500 0.10938 0.10938 ] 19157 </y_lo_lvl3_gfdelta> 19158 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 19159 [0.12500 0.10938 0.10938 ] 19160 </y_hi_lvl3_gfdelta> 19161 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 19162 [1.00000 0.77354 0.53926 ] 19163 </uv_lo_noiseprofile> 19164 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 19165 [0.65807 0.59759 0.35740 ] 19166 </uv_hi_noiseprofile> 19167 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 19168 [1.0000 1.0000 1.0000 ] 19169 </uv_lo_denoiseweight> 19170 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 19171 [1.0000 1.0000 1.0000 ] 19172 </uv_hi_denoiseweight> 19173 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 19174 [0.5000 0.5000 0.5000 ] 19175 </uv_lo_bfscale> 19176 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 19177 [0.4000 0.4500 0.5000 ] 19178 </uv_hi_bfscale> 19179 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 19180 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 19181 </uv_lumanrpoint> 19182 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 19183 [1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 ] 19184 </uv_lumanrcurve> 19185 <uv_denoisestrength index="1" type="double" size="[1 1]"> 19186 [1.8000 ] 19187 </uv_denoisestrength> 19188 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19189 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19190 </uv_lo_lvl0_gfdelta> 19191 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19192 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19193 </uv_hi_lvl0_gfdelta> 19194 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19195 [0.12500 0.10938 0.10938 ] 19196 </uv_lo_lvl1_gfdelta> 19197 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19198 [0.12500 0.10938 0.10938 ] 19199 </uv_hi_lvl1_gfdelta> 19200 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19201 [0.12500 0.10938 0.10938 ] 19202 </uv_lo_lvl2_gfdelta> 19203 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19204 [0.12500 0.10938 0.10938 ] 19205 </uv_hi_lvl2_gfdelta> 19206 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 19207 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19208 </lvl0_gfsigma> 19209 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 19210 [0.12500 0.10938 0.10938 ] 19211 </lvl1_gfsigma> 19212 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 19213 [0.12500 0.10938 0.10938 ] 19214 </lvl2_gfsigma> 19215 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 19216 [0.12500 0.10938 0.10938 ] 19217 </lvl3_gfsigma> 19218 </cell> 19219 <cell index="4" type="struct" size="[1 1]"> 19220 <iso index="1" type="double" size="[1 1]"> 19221 [400.0000 ] 19222 </iso> 19223 <weight_limit_y index="1" type="double" size="[1 4]"> 19224 [32.0000 32.0000 32.0000 32.0000 ] 19225 </weight_limit_y> 19226 <weight_limit_uv index="1" type="double" size="[1 3]"> 19227 [32.0000 32.0000 32.0000 ] 19228 </weight_limit_uv> 19229 <ratio_frq index="1" type="double" size="[1 4]"> 19230 [0.5000 2.0000 0.5000 2.0000 ] 19231 </ratio_frq> 19232 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 19233 [0.5000 0.5000 0.5000 ] 19234 </luma_w_in_chroma> 19235 <noise_curve index="1" type="double" size="[1 5]"> 19236 [-2.78200837475752e-012 2.61174369092566e-008 -8.77094728358591e-005 1.11980382041814e-001 2.36814539463394e+001 ] 19237 </noise_curve> 19238 <noise_curve_x00 index="1" type="double" size="[1 1]"> 19239 [3.71400000000000e+003 ] 19240 </noise_curve_x00> 19241 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 19242 [1.00000 0.80420 0.59319 0.43480 ] 19243 </y_lo_noiseprofile> 19244 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 19245 [0.60811 0.56888 0.41942 0.00000 ] 19246 </y_hi_noiseprofile> 19247 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 19248 [1.0000 1.0000 1.0000 1.0000 ] 19249 </y_lo_denoiseweight> 19250 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 19251 [1.0000 1.0000 1.0000 1.0000 ] 19252 </y_hi_denoiseweight> 19253 <y_lo_bfscale index="1" type="double" size="[1 4]"> 19254 [0.5000 0.5000 0.4000 0.4000 ] 19255 </y_lo_bfscale> 19256 <y_hi_bfscale index="1" type="double" size="[1 4]"> 19257 [0.4000 0.4000 0.4000 0.4000 ] 19258 </y_hi_bfscale> 19259 <y_lumanrpoint index="1" type="double" size="[1 6]"> 19260 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 19261 </y_lumanrpoint> 19262 <y_lumanrcurve index="1" type="double" size="[1 6]"> 19263 [1.6000 1.5000 1.3000 1.2500 1.3000 1.3000 ] 19264 </y_lumanrcurve> 19265 <y_denoisestrength index="1" type="double" size="[1 1]"> 19266 [2.2000 ] 19267 </y_denoisestrength> 19268 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19269 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19270 </y_lo_lvl0_gfdelta> 19271 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19272 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19273 </y_hi_lvl0_gfdelta> 19274 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19275 [0.12500 0.10938 0.10938 ] 19276 </y_lo_lvl1_gfdelta> 19277 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19278 [0.12500 0.10938 0.10938 ] 19279 </y_hi_lvl1_gfdelta> 19280 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19281 [0.12500 0.10938 0.10938 ] 19282 </y_lo_lvl2_gfdelta> 19283 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19284 [0.12500 0.10938 0.10938 ] 19285 </y_hi_lvl2_gfdelta> 19286 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 19287 [0.12500 0.10938 0.10938 ] 19288 </y_lo_lvl3_gfdelta> 19289 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 19290 [0.12500 0.10938 0.10938 ] 19291 </y_hi_lvl3_gfdelta> 19292 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 19293 [1.00000 0.80420 0.59319 ] 19294 </uv_lo_noiseprofile> 19295 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 19296 [0.60811 0.56888 0.39704 ] 19297 </uv_hi_noiseprofile> 19298 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 19299 [1.0000 1.0000 1.0000 ] 19300 </uv_lo_denoiseweight> 19301 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 19302 [1.0000 1.0000 1.0000 ] 19303 </uv_hi_denoiseweight> 19304 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 19305 [0.5000 0.5000 0.4000 ] 19306 </uv_lo_bfscale> 19307 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 19308 [0.4000 0.4000 0.4000 ] 19309 </uv_hi_bfscale> 19310 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 19311 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 19312 </uv_lumanrpoint> 19313 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 19314 [1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 ] 19315 </uv_lumanrcurve> 19316 <uv_denoisestrength index="1" type="double" size="[1 1]"> 19317 [2.2000 ] 19318 </uv_denoisestrength> 19319 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19320 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19321 </uv_lo_lvl0_gfdelta> 19322 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19323 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19324 </uv_hi_lvl0_gfdelta> 19325 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19326 [0.12500 0.10938 0.10938 ] 19327 </uv_lo_lvl1_gfdelta> 19328 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19329 [0.12500 0.10938 0.10938 ] 19330 </uv_hi_lvl1_gfdelta> 19331 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19332 [0.12500 0.10938 0.10938 ] 19333 </uv_lo_lvl2_gfdelta> 19334 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19335 [0.12500 0.10938 0.10938 ] 19336 </uv_hi_lvl2_gfdelta> 19337 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 19338 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19339 </lvl0_gfsigma> 19340 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 19341 [0.12500 0.10938 0.10938 ] 19342 </lvl1_gfsigma> 19343 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 19344 [0.12500 0.10938 0.10938 ] 19345 </lvl2_gfsigma> 19346 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 19347 [0.12500 0.10938 0.10938 ] 19348 </lvl3_gfsigma> 19349 </cell> 19350 <cell index="5" type="struct" size="[1 1]"> 19351 <iso index="1" type="double" size="[1 1]"> 19352 [800.0000 ] 19353 </iso> 19354 <weight_limit_y index="1" type="double" size="[1 4]"> 19355 [32.0000 32.0000 32.0000 32.0000 ] 19356 </weight_limit_y> 19357 <weight_limit_uv index="1" type="double" size="[1 3]"> 19358 [32.0000 32.0000 32.0000 ] 19359 </weight_limit_uv> 19360 <ratio_frq index="1" type="double" size="[1 4]"> 19361 [0.5000 2.0000 0.5000 2.0000 ] 19362 </ratio_frq> 19363 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 19364 [0.6000 0.6000 0.6000 ] 19365 </luma_w_in_chroma> 19366 <noise_curve index="1" type="double" size="[1 5]"> 19367 [-2.23709690355328e-012 2.11901816670340e-008 -7.26688079299778e-005 9.60394777007423e-002 2.24640616934303e+001 ] 19368 </noise_curve> 19369 <noise_curve_x00 index="1" type="double" size="[1 1]"> 19370 [3.33100000000000e+003 ] 19371 </noise_curve_x00> 19372 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 19373 [1.00000 0.82405 0.62343 0.46180 ] 19374 </y_lo_noiseprofile> 19375 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 19376 [0.57401 0.56317 0.43568 0.00000 ] 19377 </y_hi_noiseprofile> 19378 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 19379 [1.0000 1.0000 1.0000 1.0000 ] 19380 </y_lo_denoiseweight> 19381 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 19382 [1.0000 1.0000 1.0000 1.0000 ] 19383 </y_hi_denoiseweight> 19384 <y_lo_bfscale index="1" type="double" size="[1 4]"> 19385 [0.5000 0.5000 0.4000 0.4000 ] 19386 </y_lo_bfscale> 19387 <y_hi_bfscale index="1" type="double" size="[1 4]"> 19388 [0.4000 0.4000 0.4000 0.4000 ] 19389 </y_hi_bfscale> 19390 <y_lumanrpoint index="1" type="double" size="[1 6]"> 19391 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 19392 </y_lumanrpoint> 19393 <y_lumanrcurve index="1" type="double" size="[1 6]"> 19394 [1.7000 1.5000 1.3000 1.3500 1.4000 1.4000 ] 19395 </y_lumanrcurve> 19396 <y_denoisestrength index="1" type="double" size="[1 1]"> 19397 [2.8000 ] 19398 </y_denoisestrength> 19399 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19400 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19401 </y_lo_lvl0_gfdelta> 19402 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19403 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19404 </y_hi_lvl0_gfdelta> 19405 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19406 [0.12500 0.10938 0.10938 ] 19407 </y_lo_lvl1_gfdelta> 19408 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19409 [0.12500 0.10938 0.10938 ] 19410 </y_hi_lvl1_gfdelta> 19411 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19412 [0.12500 0.10938 0.10938 ] 19413 </y_lo_lvl2_gfdelta> 19414 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19415 [0.12500 0.10938 0.10938 ] 19416 </y_hi_lvl2_gfdelta> 19417 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 19418 [0.12500 0.10938 0.10938 ] 19419 </y_lo_lvl3_gfdelta> 19420 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 19421 [0.12500 0.10938 0.10938 ] 19422 </y_hi_lvl3_gfdelta> 19423 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 19424 [1.00000 0.82405 0.62343 ] 19425 </uv_lo_noiseprofile> 19426 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 19427 [0.57401 0.56317 0.39342 ] 19428 </uv_hi_noiseprofile> 19429 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 19430 [1.0000 1.0000 1.0000 ] 19431 </uv_lo_denoiseweight> 19432 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 19433 [1.0000 1.0000 1.0000 ] 19434 </uv_hi_denoiseweight> 19435 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 19436 [0.5000 0.5000 0.4000 ] 19437 </uv_lo_bfscale> 19438 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 19439 [0.4000 0.4000 0.4000 ] 19440 </uv_hi_bfscale> 19441 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 19442 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 19443 </uv_lumanrpoint> 19444 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 19445 [1.8000 1.7000 1.5000 1.5000 1.5000 1.5000 ] 19446 </uv_lumanrcurve> 19447 <uv_denoisestrength index="1" type="double" size="[1 1]"> 19448 [2.8000 ] 19449 </uv_denoisestrength> 19450 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19451 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19452 </uv_lo_lvl0_gfdelta> 19453 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19454 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19455 </uv_hi_lvl0_gfdelta> 19456 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19457 [0.12500 0.10938 0.10938 ] 19458 </uv_lo_lvl1_gfdelta> 19459 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19460 [0.12500 0.10938 0.10938 ] 19461 </uv_hi_lvl1_gfdelta> 19462 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19463 [0.12500 0.10938 0.10938 ] 19464 </uv_lo_lvl2_gfdelta> 19465 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19466 [0.12500 0.10938 0.10938 ] 19467 </uv_hi_lvl2_gfdelta> 19468 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 19469 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19470 </lvl0_gfsigma> 19471 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 19472 [0.12500 0.10938 0.10938 ] 19473 </lvl1_gfsigma> 19474 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 19475 [0.12500 0.10938 0.10938 ] 19476 </lvl2_gfsigma> 19477 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 19478 [0.12500 0.10938 0.10938 ] 19479 </lvl3_gfsigma> 19480 </cell> 19481 <cell index="6" type="struct" size="[1 1]"> 19482 <iso index="1" type="double" size="[1 1]"> 19483 [1600.0000 ] 19484 </iso> 19485 <weight_limit_y index="1" type="double" size="[1 4]"> 19486 [16.0000 16.0000 16.0000 16.0000 ] 19487 </weight_limit_y> 19488 <weight_limit_uv index="1" type="double" size="[1 3]"> 19489 [16.0000 16.0000 16.0000 ] 19490 </weight_limit_uv> 19491 <ratio_frq index="1" type="double" size="[1 4]"> 19492 [0.5000 2.0000 0.5000 2.0000 ] 19493 </ratio_frq> 19494 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 19495 [0.6500 0.6500 0.6500 ] 19496 </luma_w_in_chroma> 19497 <noise_curve index="1" type="double" size="[1 5]"> 19498 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 19499 </noise_curve> 19500 <noise_curve_x00 index="1" type="double" size="[1 1]"> 19501 [3.24400000000000e+003 ] 19502 </noise_curve_x00> 19503 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 19504 [1.00000 0.72770 0.46182 0.29414 ] 19505 </y_lo_noiseprofile> 19506 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 19507 [0.73231 0.60469 0.39427 0.00000 ] 19508 </y_hi_noiseprofile> 19509 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 19510 [1.0000 1.0000 1.0000 1.0000 ] 19511 </y_lo_denoiseweight> 19512 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 19513 [1.0000 1.0000 1.0000 1.0000 ] 19514 </y_hi_denoiseweight> 19515 <y_lo_bfscale index="1" type="double" size="[1 4]"> 19516 [0.5000 0.5000 0.5000 0.7000 ] 19517 </y_lo_bfscale> 19518 <y_hi_bfscale index="1" type="double" size="[1 4]"> 19519 [0.5000 0.5000 0.5000 0.7000 ] 19520 </y_hi_bfscale> 19521 <y_lumanrpoint index="1" type="double" size="[1 6]"> 19522 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 19523 </y_lumanrpoint> 19524 <y_lumanrcurve index="1" type="double" size="[1 6]"> 19525 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 19526 </y_lumanrcurve> 19527 <y_denoisestrength index="1" type="double" size="[1 1]"> 19528 [3.2000 ] 19529 </y_denoisestrength> 19530 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19531 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19532 </y_lo_lvl0_gfdelta> 19533 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19534 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19535 </y_hi_lvl0_gfdelta> 19536 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19537 [0.12500 0.10938 0.10938 ] 19538 </y_lo_lvl1_gfdelta> 19539 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19540 [0.12500 0.10938 0.10938 ] 19541 </y_hi_lvl1_gfdelta> 19542 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19543 [0.12500 0.10938 0.10938 ] 19544 </y_lo_lvl2_gfdelta> 19545 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19546 [0.12500 0.10938 0.10938 ] 19547 </y_hi_lvl2_gfdelta> 19548 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 19549 [0.12500 0.10938 0.10938 ] 19550 </y_lo_lvl3_gfdelta> 19551 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 19552 [0.12500 0.10938 0.10938 ] 19553 </y_hi_lvl3_gfdelta> 19554 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 19555 [1.00000 0.72770 0.46182 ] 19556 </uv_lo_noiseprofile> 19557 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 19558 [0.73231 0.60469 0.39427 ] 19559 </uv_hi_noiseprofile> 19560 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 19561 [1.0000 1.0000 1.0000 ] 19562 </uv_lo_denoiseweight> 19563 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 19564 [1.0000 1.0000 1.0000 ] 19565 </uv_hi_denoiseweight> 19566 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 19567 [0.5000 0.7000 0.7000 ] 19568 </uv_lo_bfscale> 19569 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 19570 [0.3000 0.4000 0.5000 ] 19571 </uv_hi_bfscale> 19572 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 19573 [0.0000 32.0000 64.0000 192.0000 232.0000 255.0000 ] 19574 </uv_lumanrpoint> 19575 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 19576 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 19577 </uv_lumanrcurve> 19578 <uv_denoisestrength index="1" type="double" size="[1 1]"> 19579 [3.2000 ] 19580 </uv_denoisestrength> 19581 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19582 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19583 </uv_lo_lvl0_gfdelta> 19584 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19585 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19586 </uv_hi_lvl0_gfdelta> 19587 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19588 [0.12500 0.10938 0.10938 ] 19589 </uv_lo_lvl1_gfdelta> 19590 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19591 [0.12500 0.10938 0.10938 ] 19592 </uv_hi_lvl1_gfdelta> 19593 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19594 [0.12500 0.10938 0.10938 ] 19595 </uv_lo_lvl2_gfdelta> 19596 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19597 [0.12500 0.10938 0.10938 ] 19598 </uv_hi_lvl2_gfdelta> 19599 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 19600 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19601 </lvl0_gfsigma> 19602 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 19603 [0.12500 0.10938 0.10938 ] 19604 </lvl1_gfsigma> 19605 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 19606 [0.12500 0.10938 0.10938 ] 19607 </lvl2_gfsigma> 19608 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 19609 [0.12500 0.10938 0.10938 ] 19610 </lvl3_gfsigma> 19611 </cell> 19612 <cell index="7" type="struct" size="[1 1]"> 19613 <iso index="1" type="double" size="[1 1]"> 19614 [3200.0000 ] 19615 </iso> 19616 <weight_limit_y index="1" type="double" size="[1 4]"> 19617 [16.0000 16.0000 16.0000 16.0000 ] 19618 </weight_limit_y> 19619 <weight_limit_uv index="1" type="double" size="[1 3]"> 19620 [16.0000 16.0000 16.0000 ] 19621 </weight_limit_uv> 19622 <ratio_frq index="1" type="double" size="[1 4]"> 19623 [0.5000 2.0000 0.5000 2.0000 ] 19624 </ratio_frq> 19625 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 19626 [0.7000 0.7000 0.7000 ] 19627 </luma_w_in_chroma> 19628 <noise_curve index="1" type="double" size="[1 5]"> 19629 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 19630 </noise_curve> 19631 <noise_curve_x00 index="1" type="double" size="[1 1]"> 19632 [3.17000000000000e+003 ] 19633 </noise_curve_x00> 19634 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 19635 [1.00000 0.72924 0.45749 0.28517 ] 19636 </y_lo_noiseprofile> 19637 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 19638 [0.72960 0.61071 0.39626 0.00000 ] 19639 </y_hi_noiseprofile> 19640 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 19641 [1.0000 1.0000 1.0000 1.0000 ] 19642 </y_lo_denoiseweight> 19643 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 19644 [1.0000 1.0000 1.0000 1.0000 ] 19645 </y_hi_denoiseweight> 19646 <y_lo_bfscale index="1" type="double" size="[1 4]"> 19647 [0.5000 0.5000 0.5000 0.7000 ] 19648 </y_lo_bfscale> 19649 <y_hi_bfscale index="1" type="double" size="[1 4]"> 19650 [0.5000 0.5000 0.5000 0.7000 ] 19651 </y_hi_bfscale> 19652 <y_lumanrpoint index="1" type="double" size="[1 6]"> 19653 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 19654 </y_lumanrpoint> 19655 <y_lumanrcurve index="1" type="double" size="[1 6]"> 19656 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 19657 </y_lumanrcurve> 19658 <y_denoisestrength index="1" type="double" size="[1 1]"> 19659 [1.4000 ] 19660 </y_denoisestrength> 19661 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19662 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19663 </y_lo_lvl0_gfdelta> 19664 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19665 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19666 </y_hi_lvl0_gfdelta> 19667 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19668 [0.12500 0.10938 0.10938 ] 19669 </y_lo_lvl1_gfdelta> 19670 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19671 [0.12500 0.10938 0.10938 ] 19672 </y_hi_lvl1_gfdelta> 19673 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19674 [0.12500 0.10938 0.10938 ] 19675 </y_lo_lvl2_gfdelta> 19676 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19677 [0.12500 0.10938 0.10938 ] 19678 </y_hi_lvl2_gfdelta> 19679 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 19680 [0.12500 0.10938 0.10938 ] 19681 </y_lo_lvl3_gfdelta> 19682 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 19683 [0.12500 0.10938 0.10938 ] 19684 </y_hi_lvl3_gfdelta> 19685 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 19686 [1.00000 0.72924 0.45749 ] 19687 </uv_lo_noiseprofile> 19688 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 19689 [0.72960 0.61071 0.39626 ] 19690 </uv_hi_noiseprofile> 19691 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 19692 [1.0000 1.0000 1.0000 ] 19693 </uv_lo_denoiseweight> 19694 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 19695 [1.0000 1.0000 1.0000 ] 19696 </uv_hi_denoiseweight> 19697 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 19698 [0.5000 0.7000 0.7000 ] 19699 </uv_lo_bfscale> 19700 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 19701 [0.3000 0.3000 0.4000 ] 19702 </uv_hi_bfscale> 19703 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 19704 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 19705 </uv_lumanrpoint> 19706 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 19707 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 19708 </uv_lumanrcurve> 19709 <uv_denoisestrength index="1" type="double" size="[1 1]"> 19710 [1.4000 ] 19711 </uv_denoisestrength> 19712 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19713 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19714 </uv_lo_lvl0_gfdelta> 19715 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19716 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19717 </uv_hi_lvl0_gfdelta> 19718 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19719 [0.12500 0.10938 0.10938 ] 19720 </uv_lo_lvl1_gfdelta> 19721 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19722 [0.12500 0.10938 0.10938 ] 19723 </uv_hi_lvl1_gfdelta> 19724 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19725 [0.12500 0.10938 0.10938 ] 19726 </uv_lo_lvl2_gfdelta> 19727 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19728 [0.12500 0.10938 0.10938 ] 19729 </uv_hi_lvl2_gfdelta> 19730 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 19731 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19732 </lvl0_gfsigma> 19733 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 19734 [0.12500 0.10938 0.10938 ] 19735 </lvl1_gfsigma> 19736 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 19737 [0.12500 0.10938 0.10938 ] 19738 </lvl2_gfsigma> 19739 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 19740 [0.12500 0.10938 0.10938 ] 19741 </lvl3_gfsigma> 19742 </cell> 19743 <cell index="8" type="struct" size="[1 1]"> 19744 <iso index="1" type="double" size="[1 1]"> 19745 [6400.0000 ] 19746 </iso> 19747 <weight_limit_y index="1" type="double" size="[1 4]"> 19748 [4.0000 4.0000 4.0000 4.0000 ] 19749 </weight_limit_y> 19750 <weight_limit_uv index="1" type="double" size="[1 3]"> 19751 [4.0000 4.0000 4.0000 ] 19752 </weight_limit_uv> 19753 <ratio_frq index="1" type="double" size="[1 4]"> 19754 [0.5000 2.0000 0.5000 2.0000 ] 19755 </ratio_frq> 19756 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 19757 [0.7500 0.7500 0.7500 ] 19758 </luma_w_in_chroma> 19759 <noise_curve index="1" type="double" size="[1 5]"> 19760 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 19761 </noise_curve> 19762 <noise_curve_x00 index="1" type="double" size="[1 1]"> 19763 [3.17000000000000e+003 ] 19764 </noise_curve_x00> 19765 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 19766 [1.00000 0.72924 0.45749 0.28517 ] 19767 </y_lo_noiseprofile> 19768 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 19769 [0.72960 0.61071 0.39626 0.00000 ] 19770 </y_hi_noiseprofile> 19771 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 19772 [1.0000 1.0000 1.0000 1.0000 ] 19773 </y_lo_denoiseweight> 19774 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 19775 [1.0000 1.0000 1.0000 1.0000 ] 19776 </y_hi_denoiseweight> 19777 <y_lo_bfscale index="1" type="double" size="[1 4]"> 19778 [0.5000 0.5000 0.5000 0.7000 ] 19779 </y_lo_bfscale> 19780 <y_hi_bfscale index="1" type="double" size="[1 4]"> 19781 [0.5000 0.5000 0.5000 0.7000 ] 19782 </y_hi_bfscale> 19783 <y_lumanrpoint index="1" type="double" size="[1 6]"> 19784 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 19785 </y_lumanrpoint> 19786 <y_lumanrcurve index="1" type="double" size="[1 6]"> 19787 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 19788 </y_lumanrcurve> 19789 <y_denoisestrength index="1" type="double" size="[1 1]"> 19790 [1.6000 ] 19791 </y_denoisestrength> 19792 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19793 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19794 </y_lo_lvl0_gfdelta> 19795 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19796 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19797 </y_hi_lvl0_gfdelta> 19798 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19799 [0.12500 0.10938 0.10938 ] 19800 </y_lo_lvl1_gfdelta> 19801 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19802 [0.12500 0.10938 0.10938 ] 19803 </y_hi_lvl1_gfdelta> 19804 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19805 [0.12500 0.10938 0.10938 ] 19806 </y_lo_lvl2_gfdelta> 19807 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19808 [0.12500 0.10938 0.10938 ] 19809 </y_hi_lvl2_gfdelta> 19810 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 19811 [0.12500 0.10938 0.10938 ] 19812 </y_lo_lvl3_gfdelta> 19813 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 19814 [0.12500 0.10938 0.10938 ] 19815 </y_hi_lvl3_gfdelta> 19816 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 19817 [1.00000 0.72924 0.45749 ] 19818 </uv_lo_noiseprofile> 19819 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 19820 [0.72960 0.61071 0.39626 ] 19821 </uv_hi_noiseprofile> 19822 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 19823 [1.0000 1.0000 1.0000 ] 19824 </uv_lo_denoiseweight> 19825 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 19826 [1.0000 1.0000 1.0000 ] 19827 </uv_hi_denoiseweight> 19828 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 19829 [0.5000 0.7000 0.7000 ] 19830 </uv_lo_bfscale> 19831 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 19832 [0.3000 0.3000 0.4000 ] 19833 </uv_hi_bfscale> 19834 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 19835 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 19836 </uv_lumanrpoint> 19837 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 19838 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 19839 </uv_lumanrcurve> 19840 <uv_denoisestrength index="1" type="double" size="[1 1]"> 19841 [1.6000 ] 19842 </uv_denoisestrength> 19843 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19844 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19845 </uv_lo_lvl0_gfdelta> 19846 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19847 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19848 </uv_hi_lvl0_gfdelta> 19849 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19850 [0.12500 0.10938 0.10938 ] 19851 </uv_lo_lvl1_gfdelta> 19852 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19853 [0.12500 0.10938 0.10938 ] 19854 </uv_hi_lvl1_gfdelta> 19855 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19856 [0.12500 0.10938 0.10938 ] 19857 </uv_lo_lvl2_gfdelta> 19858 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19859 [0.12500 0.10938 0.10938 ] 19860 </uv_hi_lvl2_gfdelta> 19861 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 19862 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19863 </lvl0_gfsigma> 19864 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 19865 [0.12500 0.10938 0.10938 ] 19866 </lvl1_gfsigma> 19867 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 19868 [0.12500 0.10938 0.10938 ] 19869 </lvl2_gfsigma> 19870 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 19871 [0.12500 0.10938 0.10938 ] 19872 </lvl3_gfsigma> 19873 </cell> 19874 <cell index="9" type="struct" size="[1 1]"> 19875 <iso index="1" type="double" size="[1 1]"> 19876 [12800.0000 ] 19877 </iso> 19878 <weight_limit_y index="1" type="double" size="[1 4]"> 19879 [4.0000 4.0000 4.0000 4.0000 ] 19880 </weight_limit_y> 19881 <weight_limit_uv index="1" type="double" size="[1 3]"> 19882 [4.0000 4.0000 4.0000 ] 19883 </weight_limit_uv> 19884 <ratio_frq index="1" type="double" size="[1 4]"> 19885 [0.5000 2.0000 0.5000 2.0000 ] 19886 </ratio_frq> 19887 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 19888 [0.8000 0.8000 0.8000 ] 19889 </luma_w_in_chroma> 19890 <noise_curve index="1" type="double" size="[1 5]"> 19891 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 19892 </noise_curve> 19893 <noise_curve_x00 index="1" type="double" size="[1 1]"> 19894 [3.17000000000000e+003 ] 19895 </noise_curve_x00> 19896 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 19897 [1.00000 0.72924 0.45749 0.28517 ] 19898 </y_lo_noiseprofile> 19899 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 19900 [0.72960 0.61071 0.39626 0.00000 ] 19901 </y_hi_noiseprofile> 19902 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 19903 [1.0000 1.0000 1.0000 1.0000 ] 19904 </y_lo_denoiseweight> 19905 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 19906 [1.0000 1.0000 1.0000 1.0000 ] 19907 </y_hi_denoiseweight> 19908 <y_lo_bfscale index="1" type="double" size="[1 4]"> 19909 [0.5000 0.5000 0.5000 0.7000 ] 19910 </y_lo_bfscale> 19911 <y_hi_bfscale index="1" type="double" size="[1 4]"> 19912 [0.5000 0.5000 0.5000 0.7000 ] 19913 </y_hi_bfscale> 19914 <y_lumanrpoint index="1" type="double" size="[1 6]"> 19915 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 19916 </y_lumanrpoint> 19917 <y_lumanrcurve index="1" type="double" size="[1 6]"> 19918 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 19919 </y_lumanrcurve> 19920 <y_denoisestrength index="1" type="double" size="[1 1]"> 19921 [1.8000 ] 19922 </y_denoisestrength> 19923 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19924 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19925 </y_lo_lvl0_gfdelta> 19926 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19927 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19928 </y_hi_lvl0_gfdelta> 19929 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19930 [0.12500 0.10938 0.10938 ] 19931 </y_lo_lvl1_gfdelta> 19932 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19933 [0.12500 0.10938 0.10938 ] 19934 </y_hi_lvl1_gfdelta> 19935 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19936 [0.12500 0.10938 0.10938 ] 19937 </y_lo_lvl2_gfdelta> 19938 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19939 [0.12500 0.10938 0.10938 ] 19940 </y_hi_lvl2_gfdelta> 19941 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 19942 [0.12500 0.10938 0.10938 ] 19943 </y_lo_lvl3_gfdelta> 19944 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 19945 [0.12500 0.10938 0.10938 ] 19946 </y_hi_lvl3_gfdelta> 19947 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 19948 [1.00000 0.72924 0.45749 ] 19949 </uv_lo_noiseprofile> 19950 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 19951 [0.72960 0.61071 0.39626 ] 19952 </uv_hi_noiseprofile> 19953 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 19954 [1.0000 1.0000 1.0000 ] 19955 </uv_lo_denoiseweight> 19956 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 19957 [1.0000 1.0000 1.0000 ] 19958 </uv_hi_denoiseweight> 19959 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 19960 [0.5000 0.7000 0.7000 ] 19961 </uv_lo_bfscale> 19962 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 19963 [0.3000 0.3000 0.4000 ] 19964 </uv_hi_bfscale> 19965 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 19966 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 19967 </uv_lumanrpoint> 19968 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 19969 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 19970 </uv_lumanrcurve> 19971 <uv_denoisestrength index="1" type="double" size="[1 1]"> 19972 [1.8000 ] 19973 </uv_denoisestrength> 19974 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19975 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19976 </uv_lo_lvl0_gfdelta> 19977 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 19978 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19979 </uv_hi_lvl0_gfdelta> 19980 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19981 [0.12500 0.10938 0.10938 ] 19982 </uv_lo_lvl1_gfdelta> 19983 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 19984 [0.12500 0.10938 0.10938 ] 19985 </uv_hi_lvl1_gfdelta> 19986 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19987 [0.12500 0.10938 0.10938 ] 19988 </uv_lo_lvl2_gfdelta> 19989 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 19990 [0.12500 0.10938 0.10938 ] 19991 </uv_hi_lvl2_gfdelta> 19992 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 19993 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 19994 </lvl0_gfsigma> 19995 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 19996 [0.12500 0.10938 0.10938 ] 19997 </lvl1_gfsigma> 19998 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 19999 [0.12500 0.10938 0.10938 ] 20000 </lvl2_gfsigma> 20001 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 20002 [0.12500 0.10938 0.10938 ] 20003 </lvl3_gfsigma> 20004 </cell> 20005 <cell index="10" type="struct" size="[1 1]"> 20006 <iso index="1" type="double" size="[1 1]"> 20007 [25600.0000 ] 20008 </iso> 20009 <weight_limit_y index="1" type="double" size="[1 4]"> 20010 [4.0000 4.0000 4.0000 4.0000 ] 20011 </weight_limit_y> 20012 <weight_limit_uv index="1" type="double" size="[1 3]"> 20013 [4.0000 4.0000 4.0000 ] 20014 </weight_limit_uv> 20015 <ratio_frq index="1" type="double" size="[1 4]"> 20016 [0.5000 2.0000 0.5000 2.0000 ] 20017 </ratio_frq> 20018 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 20019 [0.8000 0.8000 0.8000 ] 20020 </luma_w_in_chroma> 20021 <noise_curve index="1" type="double" size="[1 5]"> 20022 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 20023 </noise_curve> 20024 <noise_curve_x00 index="1" type="double" size="[1 1]"> 20025 [3.17000000000000e+003 ] 20026 </noise_curve_x00> 20027 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 20028 [1.00000 0.72924 0.45749 0.28517 ] 20029 </y_lo_noiseprofile> 20030 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 20031 [0.72960 0.61071 0.39626 0.00000 ] 20032 </y_hi_noiseprofile> 20033 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 20034 [1.0000 1.0000 1.0000 1.0000 ] 20035 </y_lo_denoiseweight> 20036 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 20037 [1.0000 1.0000 1.0000 1.0000 ] 20038 </y_hi_denoiseweight> 20039 <y_lo_bfscale index="1" type="double" size="[1 4]"> 20040 [0.5000 0.5000 0.5000 0.7000 ] 20041 </y_lo_bfscale> 20042 <y_hi_bfscale index="1" type="double" size="[1 4]"> 20043 [0.5000 0.5000 0.5000 0.7000 ] 20044 </y_hi_bfscale> 20045 <y_lumanrpoint index="1" type="double" size="[1 6]"> 20046 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 20047 </y_lumanrpoint> 20048 <y_lumanrcurve index="1" type="double" size="[1 6]"> 20049 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 20050 </y_lumanrcurve> 20051 <y_denoisestrength index="1" type="double" size="[1 1]"> 20052 [1.8000 ] 20053 </y_denoisestrength> 20054 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20055 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20056 </y_lo_lvl0_gfdelta> 20057 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20058 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20059 </y_hi_lvl0_gfdelta> 20060 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20061 [0.12500 0.10938 0.10938 ] 20062 </y_lo_lvl1_gfdelta> 20063 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20064 [0.12500 0.10938 0.10938 ] 20065 </y_hi_lvl1_gfdelta> 20066 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20067 [0.12500 0.10938 0.10938 ] 20068 </y_lo_lvl2_gfdelta> 20069 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20070 [0.12500 0.10938 0.10938 ] 20071 </y_hi_lvl2_gfdelta> 20072 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 20073 [0.12500 0.10938 0.10938 ] 20074 </y_lo_lvl3_gfdelta> 20075 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 20076 [0.12500 0.10938 0.10938 ] 20077 </y_hi_lvl3_gfdelta> 20078 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 20079 [1.00000 0.72924 0.45749 ] 20080 </uv_lo_noiseprofile> 20081 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 20082 [0.72960 0.61071 0.39626 ] 20083 </uv_hi_noiseprofile> 20084 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 20085 [1.0000 1.0000 1.0000 ] 20086 </uv_lo_denoiseweight> 20087 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 20088 [1.0000 1.0000 1.0000 ] 20089 </uv_hi_denoiseweight> 20090 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 20091 [0.5000 0.7000 0.7000 ] 20092 </uv_lo_bfscale> 20093 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 20094 [0.3000 0.3000 0.4000 ] 20095 </uv_hi_bfscale> 20096 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 20097 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 20098 </uv_lumanrpoint> 20099 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 20100 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 20101 </uv_lumanrcurve> 20102 <uv_denoisestrength index="1" type="double" size="[1 1]"> 20103 [1.8000 ] 20104 </uv_denoisestrength> 20105 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20106 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20107 </uv_lo_lvl0_gfdelta> 20108 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20109 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20110 </uv_hi_lvl0_gfdelta> 20111 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20112 [0.12500 0.10938 0.10938 ] 20113 </uv_lo_lvl1_gfdelta> 20114 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20115 [0.12500 0.10938 0.10938 ] 20116 </uv_hi_lvl1_gfdelta> 20117 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20118 [0.12500 0.10938 0.10938 ] 20119 </uv_lo_lvl2_gfdelta> 20120 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20121 [0.12500 0.10938 0.10938 ] 20122 </uv_hi_lvl2_gfdelta> 20123 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 20124 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20125 </lvl0_gfsigma> 20126 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 20127 [0.12500 0.10938 0.10938 ] 20128 </lvl1_gfsigma> 20129 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 20130 [0.12500 0.10938 0.10938 ] 20131 </lvl2_gfsigma> 20132 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 20133 [0.12500 0.10938 0.10938 ] 20134 </lvl3_gfsigma> 20135 </cell> 20136 <cell index="11" type="struct" size="[1 1]"> 20137 <iso index="1" type="double" size="[1 1]"> 20138 [51200.0000 ] 20139 </iso> 20140 <weight_limit_y index="1" type="double" size="[1 4]"> 20141 [4.0000 4.0000 4.0000 4.0000 ] 20142 </weight_limit_y> 20143 <weight_limit_uv index="1" type="double" size="[1 3]"> 20144 [4.0000 4.0000 4.0000 ] 20145 </weight_limit_uv> 20146 <ratio_frq index="1" type="double" size="[1 4]"> 20147 [0.5000 2.0000 0.5000 2.0000 ] 20148 </ratio_frq> 20149 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 20150 [0.8000 0.8000 0.8000 ] 20151 </luma_w_in_chroma> 20152 <noise_curve index="1" type="double" size="[1 5]"> 20153 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 20154 </noise_curve> 20155 <noise_curve_x00 index="1" type="double" size="[1 1]"> 20156 [3.17000000000000e+003 ] 20157 </noise_curve_x00> 20158 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 20159 [1.00000 0.72924 0.45749 0.28517 ] 20160 </y_lo_noiseprofile> 20161 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 20162 [0.72960 0.61071 0.39626 0.00000 ] 20163 </y_hi_noiseprofile> 20164 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 20165 [1.0000 1.0000 1.0000 1.0000 ] 20166 </y_lo_denoiseweight> 20167 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 20168 [1.0000 1.0000 1.0000 1.0000 ] 20169 </y_hi_denoiseweight> 20170 <y_lo_bfscale index="1" type="double" size="[1 4]"> 20171 [0.5000 0.5000 0.5000 0.7000 ] 20172 </y_lo_bfscale> 20173 <y_hi_bfscale index="1" type="double" size="[1 4]"> 20174 [0.5000 0.5000 0.5000 0.7000 ] 20175 </y_hi_bfscale> 20176 <y_lumanrpoint index="1" type="double" size="[1 6]"> 20177 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 20178 </y_lumanrpoint> 20179 <y_lumanrcurve index="1" type="double" size="[1 6]"> 20180 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 20181 </y_lumanrcurve> 20182 <y_denoisestrength index="1" type="double" size="[1 1]"> 20183 [1.8000 ] 20184 </y_denoisestrength> 20185 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20186 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20187 </y_lo_lvl0_gfdelta> 20188 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20189 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20190 </y_hi_lvl0_gfdelta> 20191 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20192 [0.12500 0.10938 0.10938 ] 20193 </y_lo_lvl1_gfdelta> 20194 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20195 [0.12500 0.10938 0.10938 ] 20196 </y_hi_lvl1_gfdelta> 20197 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20198 [0.12500 0.10938 0.10938 ] 20199 </y_lo_lvl2_gfdelta> 20200 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20201 [0.12500 0.10938 0.10938 ] 20202 </y_hi_lvl2_gfdelta> 20203 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 20204 [0.12500 0.10938 0.10938 ] 20205 </y_lo_lvl3_gfdelta> 20206 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 20207 [0.12500 0.10938 0.10938 ] 20208 </y_hi_lvl3_gfdelta> 20209 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 20210 [1.00000 0.72924 0.45749 ] 20211 </uv_lo_noiseprofile> 20212 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 20213 [0.72960 0.61071 0.39626 ] 20214 </uv_hi_noiseprofile> 20215 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 20216 [1.0000 1.0000 1.0000 ] 20217 </uv_lo_denoiseweight> 20218 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 20219 [1.0000 1.0000 1.0000 ] 20220 </uv_hi_denoiseweight> 20221 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 20222 [0.5000 0.7000 0.7000 ] 20223 </uv_lo_bfscale> 20224 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 20225 [0.3000 0.3000 0.4000 ] 20226 </uv_hi_bfscale> 20227 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 20228 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 20229 </uv_lumanrpoint> 20230 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 20231 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 20232 </uv_lumanrcurve> 20233 <uv_denoisestrength index="1" type="double" size="[1 1]"> 20234 [1.8000 ] 20235 </uv_denoisestrength> 20236 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20237 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20238 </uv_lo_lvl0_gfdelta> 20239 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20240 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20241 </uv_hi_lvl0_gfdelta> 20242 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20243 [0.12500 0.10938 0.10938 ] 20244 </uv_lo_lvl1_gfdelta> 20245 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20246 [0.12500 0.10938 0.10938 ] 20247 </uv_hi_lvl1_gfdelta> 20248 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20249 [0.12500 0.10938 0.10938 ] 20250 </uv_lo_lvl2_gfdelta> 20251 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20252 [0.12500 0.10938 0.10938 ] 20253 </uv_hi_lvl2_gfdelta> 20254 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 20255 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20256 </lvl0_gfsigma> 20257 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 20258 [0.12500 0.10938 0.10938 ] 20259 </lvl1_gfsigma> 20260 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 20261 [0.12500 0.10938 0.10938 ] 20262 </lvl2_gfsigma> 20263 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 20264 [0.12500 0.10938 0.10938 ] 20265 </lvl3_gfsigma> 20266 </cell> 20267 <cell index="12" type="struct" size="[1 1]"> 20268 <iso index="1" type="double" size="[1 1]"> 20269 [102400.0000 ] 20270 </iso> 20271 <weight_limit_y index="1" type="double" size="[1 4]"> 20272 [4.0000 4.0000 4.0000 4.0000 ] 20273 </weight_limit_y> 20274 <weight_limit_uv index="1" type="double" size="[1 3]"> 20275 [4.0000 4.0000 4.0000 ] 20276 </weight_limit_uv> 20277 <ratio_frq index="1" type="double" size="[1 4]"> 20278 [0.5000 2.0000 0.5000 2.0000 ] 20279 </ratio_frq> 20280 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 20281 [0.8000 0.8000 0.8000 ] 20282 </luma_w_in_chroma> 20283 <noise_curve index="1" type="double" size="[1 5]"> 20284 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 20285 </noise_curve> 20286 <noise_curve_x00 index="1" type="double" size="[1 1]"> 20287 [3.17000000000000e+003 ] 20288 </noise_curve_x00> 20289 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 20290 [1.00000 0.72924 0.45749 0.28517 ] 20291 </y_lo_noiseprofile> 20292 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 20293 [0.72960 0.61071 0.39626 0.00000 ] 20294 </y_hi_noiseprofile> 20295 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 20296 [1.0000 1.0000 1.0000 1.0000 ] 20297 </y_lo_denoiseweight> 20298 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 20299 [1.0000 1.0000 1.0000 1.0000 ] 20300 </y_hi_denoiseweight> 20301 <y_lo_bfscale index="1" type="double" size="[1 4]"> 20302 [0.5000 0.5000 0.5000 0.7000 ] 20303 </y_lo_bfscale> 20304 <y_hi_bfscale index="1" type="double" size="[1 4]"> 20305 [0.5000 0.5000 0.5000 0.7000 ] 20306 </y_hi_bfscale> 20307 <y_lumanrpoint index="1" type="double" size="[1 6]"> 20308 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 20309 </y_lumanrpoint> 20310 <y_lumanrcurve index="1" type="double" size="[1 6]"> 20311 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 20312 </y_lumanrcurve> 20313 <y_denoisestrength index="1" type="double" size="[1 1]"> 20314 [1.8000 ] 20315 </y_denoisestrength> 20316 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20317 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20318 </y_lo_lvl0_gfdelta> 20319 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20320 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20321 </y_hi_lvl0_gfdelta> 20322 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20323 [0.12500 0.10938 0.10938 ] 20324 </y_lo_lvl1_gfdelta> 20325 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20326 [0.12500 0.10938 0.10938 ] 20327 </y_hi_lvl1_gfdelta> 20328 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20329 [0.12500 0.10938 0.10938 ] 20330 </y_lo_lvl2_gfdelta> 20331 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20332 [0.12500 0.10938 0.10938 ] 20333 </y_hi_lvl2_gfdelta> 20334 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 20335 [0.12500 0.10938 0.10938 ] 20336 </y_lo_lvl3_gfdelta> 20337 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 20338 [0.12500 0.10938 0.10938 ] 20339 </y_hi_lvl3_gfdelta> 20340 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 20341 [1.00000 0.72924 0.45749 ] 20342 </uv_lo_noiseprofile> 20343 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 20344 [0.72960 0.61071 0.39626 ] 20345 </uv_hi_noiseprofile> 20346 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 20347 [1.0000 1.0000 1.0000 ] 20348 </uv_lo_denoiseweight> 20349 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 20350 [1.0000 1.0000 1.0000 ] 20351 </uv_hi_denoiseweight> 20352 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 20353 [0.5000 0.7000 0.7000 ] 20354 </uv_lo_bfscale> 20355 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 20356 [0.3000 0.3000 0.4000 ] 20357 </uv_hi_bfscale> 20358 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 20359 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 20360 </uv_lumanrpoint> 20361 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 20362 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 20363 </uv_lumanrcurve> 20364 <uv_denoisestrength index="1" type="double" size="[1 1]"> 20365 [1.8000 ] 20366 </uv_denoisestrength> 20367 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20368 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20369 </uv_lo_lvl0_gfdelta> 20370 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20371 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20372 </uv_hi_lvl0_gfdelta> 20373 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20374 [0.12500 0.10938 0.10938 ] 20375 </uv_lo_lvl1_gfdelta> 20376 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20377 [0.12500 0.10938 0.10938 ] 20378 </uv_hi_lvl1_gfdelta> 20379 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20380 [0.12500 0.10938 0.10938 ] 20381 </uv_lo_lvl2_gfdelta> 20382 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20383 [0.12500 0.10938 0.10938 ] 20384 </uv_hi_lvl2_gfdelta> 20385 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 20386 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20387 </lvl0_gfsigma> 20388 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 20389 [0.12500 0.10938 0.10938 ] 20390 </lvl1_gfsigma> 20391 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 20392 [0.12500 0.10938 0.10938 ] 20393 </lvl2_gfsigma> 20394 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 20395 [0.12500 0.10938 0.10938 ] 20396 </lvl3_gfsigma> 20397 </cell> 20398 <cell index="13" type="struct" size="[1 1]"> 20399 <iso index="1" type="double" size="[1 1]"> 20400 [204800.0000 ] 20401 </iso> 20402 <weight_limit_y index="1" type="double" size="[1 4]"> 20403 [4.0000 4.0000 4.0000 4.0000 ] 20404 </weight_limit_y> 20405 <weight_limit_uv index="1" type="double" size="[1 3]"> 20406 [4.0000 4.0000 4.0000 ] 20407 </weight_limit_uv> 20408 <ratio_frq index="1" type="double" size="[1 4]"> 20409 [0.5000 2.0000 0.5000 2.0000 ] 20410 </ratio_frq> 20411 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 20412 [0.8000 0.8000 0.8000 ] 20413 </luma_w_in_chroma> 20414 <noise_curve index="1" type="double" size="[1 5]"> 20415 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 20416 </noise_curve> 20417 <noise_curve_x00 index="1" type="double" size="[1 1]"> 20418 [3.17000000000000e+003 ] 20419 </noise_curve_x00> 20420 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 20421 [1.00000 0.72924 0.45749 0.28517 ] 20422 </y_lo_noiseprofile> 20423 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 20424 [0.72960 0.61071 0.39626 0.00000 ] 20425 </y_hi_noiseprofile> 20426 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 20427 [1.0000 1.0000 1.0000 1.0000 ] 20428 </y_lo_denoiseweight> 20429 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 20430 [1.0000 1.0000 1.0000 1.0000 ] 20431 </y_hi_denoiseweight> 20432 <y_lo_bfscale index="1" type="double" size="[1 4]"> 20433 [0.5000 0.5000 0.5000 0.7000 ] 20434 </y_lo_bfscale> 20435 <y_hi_bfscale index="1" type="double" size="[1 4]"> 20436 [0.5000 0.5000 0.5000 0.7000 ] 20437 </y_hi_bfscale> 20438 <y_lumanrpoint index="1" type="double" size="[1 6]"> 20439 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 20440 </y_lumanrpoint> 20441 <y_lumanrcurve index="1" type="double" size="[1 6]"> 20442 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 20443 </y_lumanrcurve> 20444 <y_denoisestrength index="1" type="double" size="[1 1]"> 20445 [1.8000 ] 20446 </y_denoisestrength> 20447 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20448 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20449 </y_lo_lvl0_gfdelta> 20450 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20451 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20452 </y_hi_lvl0_gfdelta> 20453 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20454 [0.12500 0.10938 0.10938 ] 20455 </y_lo_lvl1_gfdelta> 20456 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20457 [0.12500 0.10938 0.10938 ] 20458 </y_hi_lvl1_gfdelta> 20459 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20460 [0.12500 0.10938 0.10938 ] 20461 </y_lo_lvl2_gfdelta> 20462 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20463 [0.12500 0.10938 0.10938 ] 20464 </y_hi_lvl2_gfdelta> 20465 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 20466 [0.12500 0.10938 0.10938 ] 20467 </y_lo_lvl3_gfdelta> 20468 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 20469 [0.12500 0.10938 0.10938 ] 20470 </y_hi_lvl3_gfdelta> 20471 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 20472 [1.00000 0.72924 0.45749 ] 20473 </uv_lo_noiseprofile> 20474 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 20475 [0.72960 0.61071 0.39626 ] 20476 </uv_hi_noiseprofile> 20477 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 20478 [1.0000 1.0000 1.0000 ] 20479 </uv_lo_denoiseweight> 20480 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 20481 [1.0000 1.0000 1.0000 ] 20482 </uv_hi_denoiseweight> 20483 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 20484 [0.5000 0.7000 0.7000 ] 20485 </uv_lo_bfscale> 20486 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 20487 [0.3000 0.3000 0.4000 ] 20488 </uv_hi_bfscale> 20489 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 20490 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 20491 </uv_lumanrpoint> 20492 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 20493 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 20494 </uv_lumanrcurve> 20495 <uv_denoisestrength index="1" type="double" size="[1 1]"> 20496 [1.8000 ] 20497 </uv_denoisestrength> 20498 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20499 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20500 </uv_lo_lvl0_gfdelta> 20501 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20502 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20503 </uv_hi_lvl0_gfdelta> 20504 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20505 [0.12500 0.10938 0.10938 ] 20506 </uv_lo_lvl1_gfdelta> 20507 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20508 [0.12500 0.10938 0.10938 ] 20509 </uv_hi_lvl1_gfdelta> 20510 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20511 [0.12500 0.10938 0.10938 ] 20512 </uv_lo_lvl2_gfdelta> 20513 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20514 [0.12500 0.10938 0.10938 ] 20515 </uv_hi_lvl2_gfdelta> 20516 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 20517 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20518 </lvl0_gfsigma> 20519 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 20520 [0.12500 0.10938 0.10938 ] 20521 </lvl1_gfsigma> 20522 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 20523 [0.12500 0.10938 0.10938 ] 20524 </lvl2_gfsigma> 20525 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 20526 [0.12500 0.10938 0.10938 ] 20527 </lvl3_gfsigma> 20528 </cell> 20529 </MFNR_ISO> 20530 </cell> 20531 </Setting> 20532 <motion_detection index="1" type="struct" size="[1 1]"> 20533 <Enable index="1" type="double" size="[1 1]"> 20534 [0] 20535 </Enable> 20536 <ISO index="1" type="double" size="[1 13]"> 20537 [50.0000 100.0000 200.0000 400.0000 800.0000 1600.0000 3200.0000 6400.0000 12800.0000 25600.0000 51200.0000 102400.0000 204800.0000 ] 20538 </ISO> 20539 <sigmaHScale index="1" type="double" size="[1 13]"> 20540 [1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ] 20541 </sigmaHScale> 20542 <sigmaLScale index="1" type="double" size="[1 13]"> 20543 [0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ] 20544 </sigmaLScale> 20545 <light_clp index="1" type="double" size="[1 13]"> 20546 [32 32 32 32 32 32 32 32 32 32 32 32 32 ] 20547 </light_clp> 20548 <uv_weight index="1" type="double" size="[1 13]"> 20549 [1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ] 20550 </uv_weight> 20551 <mfnr_sigma_scale index="1" type="double" size="[1 13]"> 20552 [4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 ] 20553 </mfnr_sigma_scale> 20554 <yuvnr_gain_scale0 index="1" type="double" size="[1 13]"> 20555 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 20556 </yuvnr_gain_scale0> 20557 <yuvnr_gain_scale1 index="1" type="double" size="[1 13]"> 20558 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 20559 </yuvnr_gain_scale1> 20560 <yuvnr_gain_scale2 index="1" type="double" size="[1 13]"> 20561 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 20562 </yuvnr_gain_scale2> 20563 <frame_limit_y index="1" type="double" size="[1 13]"> 20564 [24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 ] 20565 </frame_limit_y> 20566 <frame_limit_uv index="1" type="double" size="[1 13]"> 20567 [24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 ] 20568 </frame_limit_uv> 20569 <reserved7 index="1" type="double" size="[1 13]"> 20570 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 20571 </reserved7> 20572 <reserved6 index="1" type="double" size="[1 13]"> 20573 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 20574 </reserved6> 20575 <reserved5 index="1" type="double" size="[1 13]"> 20576 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 20577 </reserved5> 20578 <reserved4 index="1" type="double" size="[1 13]"> 20579 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 20580 </reserved4> 20581 <reserved3 index="1" type="double" size="[1 13]"> 20582 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 20583 </reserved3> 20584 <reserved2 index="1" type="double" size="[1 13]"> 20585 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 20586 </reserved2> 20587 <reserved1 index="1" type="double" size="[1 13]"> 20588 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 20589 </reserved1> 20590 <reserved0 index="1" type="double" size="[1 13]"> 20591 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 20592 </reserved0> 20593 </motion_detection> 20594 </cell> 20595 <cell index="1" type="struct" size="[1 1]"> 20596 <Name index="1" type="char" size="[1 8]"> 20597 hdr 20598 </Name> 20599 <Dynamic index="1" type="struct" size="[1 1]"> 20600 <Enable index="1" type="double" size="[1 1]"> 20601 [0] 20602 </Enable> 20603 <LowTh_iso index="1" type="double" size="[1 1]"> 20604 [50] 20605 </LowTh_iso> 20606 <LowTh_time index="1" type="double" size="[1 1]"> 20607 [0.01] 20608 </LowTh_time> 20609 <HighTh_iso index="1" type="double" size="[1 1]"> 20610 [50] 20611 </HighTh_iso> 20612 <HighTh_time index="1" type="double" size="[1 1]"> 20613 [0.025] 20614 </HighTh_time> 20615 </Dynamic> 20616 <Setting index="1" type="cell" size="[1 2]"> 20617 <cell index="1" type="struct" size="[1 1]"> 20618 <SNR_Mode index="1" type="char" size="[1 4]"> 20619 LSNR 20620 </SNR_Mode> 20621 <Sensor_Mode index="1" type="char" size="[1 3]"> 20622 lcg 20623 </Sensor_Mode> 20624 <MFNR_ISO index="1" type="cell" size="[1 13]"> 20625 <cell index="1" type="struct" size="[1 1]"> 20626 <iso index="1" type="double" size="[1 1]"> 20627 [50.0000 ] 20628 </iso> 20629 <weight_limit_y index="1" type="double" size="[1 4]"> 20630 [32.0000 320000 32.0000 32.0000 ] 20631 </weight_limit_y> 20632 <weight_limit_uv index="1" type="double" size="[1 3]"> 20633 [32.0000 32.0000 32.0000 ] 20634 </weight_limit_uv> 20635 <ratio_frq index="1" type="double" size="[1 4]"> 20636 [0.5000 2.0000 0.5000 2.0000 ] 20637 </ratio_frq> 20638 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 20639 [0.5000 0.5000 0.5000 ] 20640 </luma_w_in_chroma> 20641 <noise_curve index="1" type="double" size="[1 5]"> 20642 [-2.22683837604954e-013 2.70089733255463e-009 -1.19360265610630e-005 1.69475563290717e-002 2.21533631975799e+001 ] 20643 </noise_curve> 20644 <noise_curve_x00 index="1" type="double" size="[1 1]"> 20645 [3.64700000000000e+003 ] 20646 </noise_curve_x00> 20647 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 20648 [1.00000 0.72793 0.43887 0.24093 ] 20649 </y_lo_noiseprofile> 20650 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 20651 [0.73870 0.67642 0.47338 0.00000 ] 20652 </y_hi_noiseprofile> 20653 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 20654 [1.0000 1.0000 1.0000 1.0000 ] 20655 </y_lo_denoiseweight> 20656 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 20657 [1.0000 1.0000 1.0000 1.0000 ] 20658 </y_hi_denoiseweight> 20659 <y_lo_bfscale index="1" type="double" size="[1 4]"> 20660 [0.5000 0.5000 0.5000 0.5000 ] 20661 </y_lo_bfscale> 20662 <y_hi_bfscale index="1" type="double" size="[1 4]"> 20663 [0.5000 0.5000 0.5000 0.5000 ] 20664 </y_hi_bfscale> 20665 <y_lumanrpoint index="1" type="double" size="[1 6]"> 20666 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 20667 </y_lumanrpoint> 20668 <y_lumanrcurve index="1" type="double" size="[1 6]"> 20669 [1.2000 1.2000 1.2000 1.1000 1.1000 1.0000 ] 20670 </y_lumanrcurve> 20671 <y_denoisestrength index="1" type="double" size="[1 1]"> 20672 [2.0000 ] 20673 </y_denoisestrength> 20674 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20675 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20676 </y_lo_lvl0_gfdelta> 20677 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20678 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20679 </y_hi_lvl0_gfdelta> 20680 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20681 [0.12500 0.10938 0.10938 ] 20682 </y_lo_lvl1_gfdelta> 20683 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20684 [0.12500 0.10938 0.10938 ] 20685 </y_hi_lvl1_gfdelta> 20686 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20687 [0.12500 0.10938 0.10938 ] 20688 </y_lo_lvl2_gfdelta> 20689 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20690 [0.12500 0.10938 0.10938 ] 20691 </y_hi_lvl2_gfdelta> 20692 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 20693 [0.12500 0.10938 0.10938 ] 20694 </y_lo_lvl3_gfdelta> 20695 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 20696 [0.12500 0.10938 0.10938 ] 20697 </y_hi_lvl3_gfdelta> 20698 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 20699 [1.00000 0.72793 0.43887 ] 20700 </uv_lo_noiseprofile> 20701 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 20702 [0.73870 0.67642 0.35740 ] 20703 </uv_hi_noiseprofile> 20704 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 20705 [1.0000 1.0000 1.0000 ] 20706 </uv_lo_denoiseweight> 20707 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 20708 [1.0000 1.0000 1.0000 ] 20709 </uv_hi_denoiseweight> 20710 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 20711 [0.5000 0.5000 0.5000 ] 20712 </uv_lo_bfscale> 20713 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 20714 [0.5000 0.5000 0.5000 ] 20715 </uv_hi_bfscale> 20716 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 20717 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 20718 </uv_lumanrpoint> 20719 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 20720 [1.3000 1.2000 1.2000 1.1000 1.1000 1.0000 ] 20721 </uv_lumanrcurve> 20722 <uv_denoisestrength index="1" type="double" size="[1 1]"> 20723 [1.2000 ] 20724 </uv_denoisestrength> 20725 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20726 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20727 </uv_lo_lvl0_gfdelta> 20728 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20729 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20730 </uv_hi_lvl0_gfdelta> 20731 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20732 [0.12500 0.10938 0.10938 ] 20733 </uv_lo_lvl1_gfdelta> 20734 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20735 [0.12500 0.10938 0.10938 ] 20736 </uv_hi_lvl1_gfdelta> 20737 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20738 [0.12500 0.10938 0.10938 ] 20739 </uv_lo_lvl2_gfdelta> 20740 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20741 [0.12500 0.10938 0.10938 ] 20742 </uv_hi_lvl2_gfdelta> 20743 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 20744 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20745 </lvl0_gfsigma> 20746 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 20747 [0.12500 0.10938 0.10938 ] 20748 </lvl1_gfsigma> 20749 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 20750 [0.12500 0.10938 0.10938 ] 20751 </lvl2_gfsigma> 20752 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 20753 [0.12500 0.10938 0.10938 ] 20754 </lvl3_gfsigma> 20755 </cell> 20756 <cell index="2" type="struct" size="[1 1]"> 20757 <iso index="1" type="double" size="[1 1]"> 20758 [100.0000 ] 20759 </iso> 20760 <weight_limit_y index="1" type="double" size="[1 4]"> 20761 [32.0000 32.0000 32.0000 32.0000 ] 20762 </weight_limit_y> 20763 <weight_limit_uv index="1" type="double" size="[1 3]"> 20764 [32.0000 32.0000 32.0000 ] 20765 </weight_limit_uv> 20766 <ratio_frq index="1" type="double" size="[1 4]"> 20767 [0.5000 2.0000 0.5000 2.0000 ] 20768 </ratio_frq> 20769 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 20770 [0.5000 0.5000 0.5000 ] 20771 </luma_w_in_chroma> 20772 <noise_curve index="1" type="double" size="[1 5]"> 20773 [-6.12954260408810e-013 6.56213771001716e-009 -2.56271619105131e-005 3.53336500457644e-002 2.51344679667418e+001 ] 20774 </noise_curve> 20775 <noise_curve_x00 index="1" type="double" size="[1 1]"> 20776 [3.64700000000000e+003 ] 20777 </noise_curve_x00> 20778 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 20779 [1.00000 0.73076 0.43314 0.23422 ] 20780 </y_lo_noiseprofile> 20781 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 20782 [0.72929 0.65444 0.43454 0.00000 ] 20783 </y_hi_noiseprofile> 20784 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 20785 [1.0000 1.0000 1.0000 1.0000 ] 20786 </y_lo_denoiseweight> 20787 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 20788 [1.0000 1.0000 1.0000 1.0000 ] 20789 </y_hi_denoiseweight> 20790 <y_lo_bfscale index="1" type="double" size="[1 4]"> 20791 [0.45000 0.45000 0.45000 0.45000 ] 20792 </y_lo_bfscale> 20793 <y_hi_bfscale index="1" type="double" size="[1 4]"> 20794 [0.45000 0.45000 0.45000 0.45000 ] 20795 </y_hi_bfscale> 20796 <y_lumanrpoint index="1" type="double" size="[1 6]"> 20797 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 20798 </y_lumanrpoint> 20799 <y_lumanrcurve index="1" type="double" size="[1 6]"> 20800 [1.3000 1.2000 1.2000 1.2000 1.2000 1.1000 ] 20801 </y_lumanrcurve> 20802 <y_denoisestrength index="1" type="double" size="[1 1]"> 20803 [1.6000 ] 20804 </y_denoisestrength> 20805 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20806 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20807 </y_lo_lvl0_gfdelta> 20808 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20809 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20810 </y_hi_lvl0_gfdelta> 20811 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20812 [0.12500 0.10938 0.10938 ] 20813 </y_lo_lvl1_gfdelta> 20814 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20815 [0.12500 0.10938 0.10938 ] 20816 </y_hi_lvl1_gfdelta> 20817 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20818 [0.12500 0.10938 0.10938 ] 20819 </y_lo_lvl2_gfdelta> 20820 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20821 [0.12500 0.10938 0.10938 ] 20822 </y_hi_lvl2_gfdelta> 20823 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 20824 [0.12500 0.10938 0.10938 ] 20825 </y_lo_lvl3_gfdelta> 20826 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 20827 [0.12500 0.10938 0.10938 ] 20828 </y_hi_lvl3_gfdelta> 20829 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 20830 [1.00000 0.73076 0.43314 ] 20831 </uv_lo_noiseprofile> 20832 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 20833 [0.72929 0.65444 0.38596 ] 20834 </uv_hi_noiseprofile> 20835 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 20836 [1.0000 1.0000 1.0000 ] 20837 </uv_lo_denoiseweight> 20838 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 20839 [1.0000 1.0000 1.0000 ] 20840 </uv_hi_denoiseweight> 20841 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 20842 [0.5000 0.5000 0.5000 ] 20843 </uv_lo_bfscale> 20844 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 20845 [0.5000 0.5000 0.5000 ] 20846 </uv_hi_bfscale> 20847 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 20848 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 20849 </uv_lumanrpoint> 20850 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 20851 [1.3000 1.2000 1.2000 1.2000 1.2000 1.2000 ] 20852 </uv_lumanrcurve> 20853 <uv_denoisestrength index="1" type="double" size="[1 1]"> 20854 [1.4000 ] 20855 </uv_denoisestrength> 20856 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20857 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20858 </uv_lo_lvl0_gfdelta> 20859 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20860 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20861 </uv_hi_lvl0_gfdelta> 20862 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20863 [0.12500 0.10938 0.10938 ] 20864 </uv_lo_lvl1_gfdelta> 20865 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20866 [0.12500 0.10938 0.10938 ] 20867 </uv_hi_lvl1_gfdelta> 20868 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20869 [0.12500 0.10938 0.10938 ] 20870 </uv_lo_lvl2_gfdelta> 20871 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20872 [0.12500 0.10938 0.10938 ] 20873 </uv_hi_lvl2_gfdelta> 20874 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 20875 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20876 </lvl0_gfsigma> 20877 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 20878 [0.12500 0.10938 0.10938 ] 20879 </lvl1_gfsigma> 20880 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 20881 [0.12500 0.10938 0.10938 ] 20882 </lvl2_gfsigma> 20883 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 20884 [0.12500 0.10938 0.10938 ] 20885 </lvl3_gfsigma> 20886 </cell> 20887 <cell index="3" type="struct" size="[1 1]"> 20888 <iso index="1" type="double" size="[1 1]"> 20889 [200.0000 ] 20890 </iso> 20891 <weight_limit_y index="1" type="double" size="[1 4]"> 20892 [16.0000 16.0000 16.0000 16.0000 ] 20893 </weight_limit_y> 20894 <weight_limit_uv index="1" type="double" size="[1 3]"> 20895 [16.0000 16.0000 16.0000 ] 20896 </weight_limit_uv> 20897 <ratio_frq index="1" type="double" size="[1 4]"> 20898 [0.5000 2.0000 0.5000 2.0000 ] 20899 </ratio_frq> 20900 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 20901 [0.5000 0.5000 0.5000 ] 20902 </luma_w_in_chroma> 20903 <noise_curve index="1" type="double" size="[1 5]"> 20904 [-4.88118020793126e-013 5.17135216910485e-009 -2.12964081629935e-005 2.87181383407642e-002 4.47372008265083e+001 ] 20905 </noise_curve> 20906 <noise_curve_x00 index="1" type="double" size="[1 1]"> 20907 [3.79000000000000e+003 ] 20908 </noise_curve_x00> 20909 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 20910 [1.00000 0.73421 0.43242 0.23146 ] 20911 </y_lo_noiseprofile> 20912 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 20913 [0.72131 0.64365 0.41113 0.00000 ] 20914 </y_hi_noiseprofile> 20915 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 20916 [1.0000 1.0000 1.0000 1.0000 ] 20917 </y_lo_denoiseweight> 20918 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 20919 [1.0000 1.0000 1.0000 1.0000 ] 20920 </y_hi_denoiseweight> 20921 <y_lo_bfscale index="1" type="double" size="[1 4]"> 20922 [0.35000 0.35000 0.35000 0.35000 ] 20923 </y_lo_bfscale> 20924 <y_hi_bfscale index="1" type="double" size="[1 4]"> 20925 [0.35000 0.35000 0.35000 0.35000 ] 20926 </y_hi_bfscale> 20927 <y_lumanrpoint index="1" type="double" size="[1 6]"> 20928 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 20929 </y_lumanrpoint> 20930 <y_lumanrcurve index="1" type="double" size="[1 6]"> 20931 [1.4000 1.3000 1.3000 1.2500 1.3000 1.3000 ] 20932 </y_lumanrcurve> 20933 <y_denoisestrength index="1" type="double" size="[1 1]"> 20934 [1.6000 ] 20935 </y_denoisestrength> 20936 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20937 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20938 </y_lo_lvl0_gfdelta> 20939 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20940 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20941 </y_hi_lvl0_gfdelta> 20942 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20943 [0.12500 0.10938 0.10938 ] 20944 </y_lo_lvl1_gfdelta> 20945 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20946 [0.12500 0.10938 0.10938 ] 20947 </y_hi_lvl1_gfdelta> 20948 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20949 [0.12500 0.10938 0.10938 ] 20950 </y_lo_lvl2_gfdelta> 20951 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 20952 [0.12500 0.10938 0.10938 ] 20953 </y_hi_lvl2_gfdelta> 20954 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 20955 [0.12500 0.10938 0.10938 ] 20956 </y_lo_lvl3_gfdelta> 20957 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 20958 [0.12500 0.10938 0.10938 ] 20959 </y_hi_lvl3_gfdelta> 20960 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 20961 [1.00000 0.73421 0.43242 ] 20962 </uv_lo_noiseprofile> 20963 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 20964 [0.72131 0.64365 0.35740 ] 20965 </uv_hi_noiseprofile> 20966 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 20967 [1.0000 1.0000 1.0000 ] 20968 </uv_lo_denoiseweight> 20969 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 20970 [1.0000 1.0000 1.0000 ] 20971 </uv_hi_denoiseweight> 20972 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 20973 [0.01000 0.01000 0.01000 ] 20974 </uv_lo_bfscale> 20975 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 20976 [0.01000 0.01000 0.01000 ] 20977 </uv_hi_bfscale> 20978 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 20979 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 20980 </uv_lumanrpoint> 20981 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 20982 [1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 ] 20983 </uv_lumanrcurve> 20984 <uv_denoisestrength index="1" type="double" size="[1 1]"> 20985 [2.2000 ] 20986 </uv_denoisestrength> 20987 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20988 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20989 </uv_lo_lvl0_gfdelta> 20990 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 20991 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 20992 </uv_hi_lvl0_gfdelta> 20993 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20994 [0.12500 0.10938 0.10938 ] 20995 </uv_lo_lvl1_gfdelta> 20996 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 20997 [0.12500 0.10938 0.10938 ] 20998 </uv_hi_lvl1_gfdelta> 20999 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21000 [0.12500 0.10938 0.10938 ] 21001 </uv_lo_lvl2_gfdelta> 21002 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21003 [0.12500 0.10938 0.10938 ] 21004 </uv_hi_lvl2_gfdelta> 21005 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 21006 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21007 </lvl0_gfsigma> 21008 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 21009 [0.12500 0.10938 0.10938 ] 21010 </lvl1_gfsigma> 21011 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 21012 [0.12500 0.10938 0.10938 ] 21013 </lvl2_gfsigma> 21014 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 21015 [0.12500 0.10938 0.10938 ] 21016 </lvl3_gfsigma> 21017 </cell> 21018 <cell index="4" type="struct" size="[1 1]"> 21019 <iso index="1" type="double" size="[1 1]"> 21020 [400.0000 ] 21021 </iso> 21022 <weight_limit_y index="1" type="double" size="[1 4]"> 21023 [16.0000 16.0000 16.0000 16.0000 ] 21024 </weight_limit_y> 21025 <weight_limit_uv index="1" type="double" size="[1 3]"> 21026 [16.0000 16.0000 16.0000 ] 21027 </weight_limit_uv> 21028 <ratio_frq index="1" type="double" size="[1 4]"> 21029 [0.5000 2.0000 0.5000 2.0000 ] 21030 </ratio_frq> 21031 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 21032 [0.5000 0.5000 0.5000 ] 21033 </luma_w_in_chroma> 21034 <noise_curve index="1" type="double" size="[1 5]"> 21035 [-1.48119726941212e-012 1.56289236737456e-008 -5.98269836499521e-005 8.25287140888520e-002 4.27598482026588e+001 ] 21036 </noise_curve> 21037 <noise_curve_x00 index="1" type="double" size="[1 1]"> 21038 [3.71400000000000e+003 ] 21039 </noise_curve_x00> 21040 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 21041 [1.00000 0.74281 0.44399 0.23777 ] 21042 </y_lo_noiseprofile> 21043 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 21044 [0.70753 0.64029 0.40958 0.00000 ] 21045 </y_hi_noiseprofile> 21046 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 21047 [1.0000 1.0000 1.0000 1.0000 ] 21048 </y_lo_denoiseweight> 21049 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 21050 [1.0000 1.0000 1.0000 1.0000 ] 21051 </y_hi_denoiseweight> 21052 <y_lo_bfscale index="1" type="double" size="[1 4]"> 21053 [0.5000 0.5000 0.5000 0.5000 ] 21054 </y_lo_bfscale> 21055 <y_hi_bfscale index="1" type="double" size="[1 4]"> 21056 [0.5000 0.5000 0.5000 0.5000 ] 21057 </y_hi_bfscale> 21058 <y_lumanrpoint index="1" type="double" size="[1 6]"> 21059 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 21060 </y_lumanrpoint> 21061 <y_lumanrcurve index="1" type="double" size="[1 6]"> 21062 [1.6000 1.5000 1.3000 1.2500 1.3000 1.3000 ] 21063 </y_lumanrcurve> 21064 <y_denoisestrength index="1" type="double" size="[1 1]"> 21065 [2.2000 ] 21066 </y_denoisestrength> 21067 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21068 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21069 </y_lo_lvl0_gfdelta> 21070 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21071 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21072 </y_hi_lvl0_gfdelta> 21073 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21074 [0.12500 0.10938 0.10938 ] 21075 </y_lo_lvl1_gfdelta> 21076 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21077 [0.12500 0.10938 0.10938 ] 21078 </y_hi_lvl1_gfdelta> 21079 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21080 [0.12500 0.10938 0.10938 ] 21081 </y_lo_lvl2_gfdelta> 21082 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21083 [0.12500 0.10938 0.10938 ] 21084 </y_hi_lvl2_gfdelta> 21085 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 21086 [0.12500 0.10938 0.10938 ] 21087 </y_lo_lvl3_gfdelta> 21088 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 21089 [0.12500 0.10938 0.10938 ] 21090 </y_hi_lvl3_gfdelta> 21091 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 21092 [1.00000 0.74281 0.44399 ] 21093 </uv_lo_noiseprofile> 21094 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 21095 [0.70753 0.64029 0.39704 ] 21096 </uv_hi_noiseprofile> 21097 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 21098 [1.0000 1.0000 1.0000 ] 21099 </uv_lo_denoiseweight> 21100 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 21101 [1.0000 1.0000 1.0000 ] 21102 </uv_hi_denoiseweight> 21103 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 21104 [0.5000 0.5000 0.4000 ] 21105 </uv_lo_bfscale> 21106 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 21107 [0.4000 0.4000 0.4000 ] 21108 </uv_hi_bfscale> 21109 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 21110 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 21111 </uv_lumanrpoint> 21112 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 21113 [1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 ] 21114 </uv_lumanrcurve> 21115 <uv_denoisestrength index="1" type="double" size="[1 1]"> 21116 [2.2000 ] 21117 </uv_denoisestrength> 21118 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21119 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21120 </uv_lo_lvl0_gfdelta> 21121 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21122 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21123 </uv_hi_lvl0_gfdelta> 21124 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21125 [0.12500 0.10938 0.10938 ] 21126 </uv_lo_lvl1_gfdelta> 21127 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21128 [0.12500 0.10938 0.10938 ] 21129 </uv_hi_lvl1_gfdelta> 21130 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21131 [0.12500 0.10938 0.10938 ] 21132 </uv_lo_lvl2_gfdelta> 21133 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21134 [0.12500 0.10938 0.10938 ] 21135 </uv_hi_lvl2_gfdelta> 21136 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 21137 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21138 </lvl0_gfsigma> 21139 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 21140 [0.12500 0.10938 0.10938 ] 21141 </lvl1_gfsigma> 21142 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 21143 [0.12500 0.10938 0.10938 ] 21144 </lvl2_gfsigma> 21145 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 21146 [0.12500 0.10938 0.10938 ] 21147 </lvl3_gfsigma> 21148 </cell> 21149 <cell index="5" type="struct" size="[1 1]"> 21150 <iso index="1" type="double" size="[1 1]"> 21151 [800.0000 ] 21152 </iso> 21153 <weight_limit_y index="1" type="double" size="[1 4]"> 21154 [16.0000 16.0000 16.0000 16.0000 ] 21155 </weight_limit_y> 21156 <weight_limit_uv index="1" type="double" size="[1 3]"> 21157 [16.0000 16.0000 16.0000 ] 21158 </weight_limit_uv> 21159 <ratio_frq index="1" type="double" size="[1 4]"> 21160 [0.5000 2.0000 0.5000 2.0000 ] 21161 </ratio_frq> 21162 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 21163 [0.6000 0.6000 0.6000 ] 21164 </luma_w_in_chroma> 21165 <noise_curve index="1" type="double" size="[1 5]"> 21166 [-1.63594828480084e-012 1.75614677431381e-008 -6.92401591106118e-005 9.58142896234051e-002 7.18496259606400e+001 ] 21167 </noise_curve> 21168 <noise_curve_x00 index="1" type="double" size="[1 1]"> 21169 [3.33100000000000e+003 ] 21170 </noise_curve_x00> 21171 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 21172 [1.00000 0.73992 0.43785 0.23198 ] 21173 </y_lo_noiseprofile> 21174 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 21175 [0.71187 0.63271 0.39725 0.00000 ] 21176 </y_hi_noiseprofile> 21177 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 21178 [1.0000 1.0000 1.0000 1.0000 ] 21179 </y_lo_denoiseweight> 21180 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 21181 [1.0000 1.0000 1.0000 1.0000 ] 21182 </y_hi_denoiseweight> 21183 <y_lo_bfscale index="1" type="double" size="[1 4]"> 21184 [0.3000 0.3000 0.3000 0.3000 ] 21185 </y_lo_bfscale> 21186 <y_hi_bfscale index="1" type="double" size="[1 4]"> 21187 [0.3000 0.3000 0.3000 0.3000 ] 21188 </y_hi_bfscale> 21189 <y_lumanrpoint index="1" type="double" size="[1 6]"> 21190 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 21191 </y_lumanrpoint> 21192 <y_lumanrcurve index="1" type="double" size="[1 6]"> 21193 [1.7000 1.5000 1.3000 1.3500 1.4000 1.4000 ] 21194 </y_lumanrcurve> 21195 <y_denoisestrength index="1" type="double" size="[1 1]"> 21196 [2.0000 ] 21197 </y_denoisestrength> 21198 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21199 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21200 </y_lo_lvl0_gfdelta> 21201 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21202 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21203 </y_hi_lvl0_gfdelta> 21204 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21205 [0.12500 0.10938 0.10938 ] 21206 </y_lo_lvl1_gfdelta> 21207 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21208 [0.12500 0.10938 0.10938 ] 21209 </y_hi_lvl1_gfdelta> 21210 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21211 [0.12500 0.10938 0.10938 ] 21212 </y_lo_lvl2_gfdelta> 21213 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21214 [0.12500 0.10938 0.10938 ] 21215 </y_hi_lvl2_gfdelta> 21216 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 21217 [0.12500 0.10938 0.10938 ] 21218 </y_lo_lvl3_gfdelta> 21219 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 21220 [0.12500 0.10938 0.10938 ] 21221 </y_hi_lvl3_gfdelta> 21222 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 21223 [1.00000 0.73992 0.43785 ] 21224 </uv_lo_noiseprofile> 21225 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 21226 [0.71187 0.63271 0.39342 ] 21227 </uv_hi_noiseprofile> 21228 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 21229 [1.0000 1.0000 1.0000 ] 21230 </uv_lo_denoiseweight> 21231 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 21232 [1.0000 1.0000 1.0000 ] 21233 </uv_hi_denoiseweight> 21234 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 21235 [0.3000 0.3000 0.3000 ] 21236 </uv_lo_bfscale> 21237 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 21238 [0.3000 0.3000 0.3000 ] 21239 </uv_hi_bfscale> 21240 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 21241 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 21242 </uv_lumanrpoint> 21243 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 21244 [1.8000 1.7000 1.5000 1.5000 1.5000 1.5000 ] 21245 </uv_lumanrcurve> 21246 <uv_denoisestrength index="1" type="double" size="[1 1]"> 21247 [2.0000 ] 21248 </uv_denoisestrength> 21249 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21250 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21251 </uv_lo_lvl0_gfdelta> 21252 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21253 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21254 </uv_hi_lvl0_gfdelta> 21255 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21256 [0.12500 0.10938 0.10938 ] 21257 </uv_lo_lvl1_gfdelta> 21258 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21259 [0.12500 0.10938 0.10938 ] 21260 </uv_hi_lvl1_gfdelta> 21261 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21262 [0.12500 0.10938 0.10938 ] 21263 </uv_lo_lvl2_gfdelta> 21264 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21265 [0.12500 0.10938 0.10938 ] 21266 </uv_hi_lvl2_gfdelta> 21267 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 21268 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21269 </lvl0_gfsigma> 21270 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 21271 [0.12500 0.10938 0.10938 ] 21272 </lvl1_gfsigma> 21273 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 21274 [0.12500 0.10938 0.10938 ] 21275 </lvl2_gfsigma> 21276 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 21277 [0.12500 0.10938 0.10938 ] 21278 </lvl3_gfsigma> 21279 </cell> 21280 <cell index="6" type="struct" size="[1 1]"> 21281 <iso index="1" type="double" size="[1 1]"> 21282 [1600.0000 ] 21283 </iso> 21284 <weight_limit_y index="1" type="double" size="[1 4]"> 21285 [4.0000 4.0000 4.0000 4.0000 ] 21286 </weight_limit_y> 21287 <weight_limit_uv index="1" type="double" size="[1 3]"> 21288 [4.0000 4.0000 4.0000 ] 21289 </weight_limit_uv> 21290 <ratio_frq index="1" type="double" size="[1 4]"> 21291 [0.5000 2.0000 0.5000 2.0000 ] 21292 </ratio_frq> 21293 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 21294 [0.6500 0.6500 0.6500 ] 21295 </luma_w_in_chroma> 21296 <noise_curve index="1" type="double" size="[1 5]"> 21297 [-3.54429850049432e-012 3.60287476727038e-008 -1.31984529909812e-004 1.75061075984246e-001 8.74586517163552e+001 ] 21298 </noise_curve> 21299 <noise_curve_x00 index="1" type="double" size="[1 1]"> 21300 [3.24400000000000e+003 ] 21301 </noise_curve_x00> 21302 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 21303 [1.00000 0.73294 0.42965 0.22624 ] 21304 </y_lo_noiseprofile> 21305 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 21306 [0.71960 0.62684 0.38632 0.00000 ] 21307 </y_hi_noiseprofile> 21308 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 21309 [1.0000 1.0000 1.0000 1.0000 ] 21310 </y_lo_denoiseweight> 21311 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 21312 [1.0000 1.0000 1.0000 1.0000 ] 21313 </y_hi_denoiseweight> 21314 <y_lo_bfscale index="1" type="double" size="[1 4]"> 21315 [0.300 0.300 0.300 0.300 ] 21316 </y_lo_bfscale> 21317 <y_hi_bfscale index="1" type="double" size="[1 4]"> 21318 [0.300 0.300 0.300 0.300 ] 21319 </y_hi_bfscale> 21320 <y_lumanrpoint index="1" type="double" size="[1 6]"> 21321 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 21322 </y_lumanrpoint> 21323 <y_lumanrcurve index="1" type="double" size="[1 6]"> 21324 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 21325 </y_lumanrcurve> 21326 <y_denoisestrength index="1" type="double" size="[1 1]"> 21327 [3.0000 ] 21328 </y_denoisestrength> 21329 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21330 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21331 </y_lo_lvl0_gfdelta> 21332 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21333 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21334 </y_hi_lvl0_gfdelta> 21335 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21336 [0.12500 0.10938 0.10938 ] 21337 </y_lo_lvl1_gfdelta> 21338 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21339 [0.12500 0.10938 0.10938 ] 21340 </y_hi_lvl1_gfdelta> 21341 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21342 [0.12500 0.10938 0.10938 ] 21343 </y_lo_lvl2_gfdelta> 21344 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21345 [0.12500 0.10938 0.10938 ] 21346 </y_hi_lvl2_gfdelta> 21347 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 21348 [0.12500 0.10938 0.10938 ] 21349 </y_lo_lvl3_gfdelta> 21350 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 21351 [0.12500 0.10938 0.10938 ] 21352 </y_hi_lvl3_gfdelta> 21353 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 21354 [1.00000 0.73294 0.42965 ] 21355 </uv_lo_noiseprofile> 21356 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 21357 [0.71960 0.62684 0.39427 ] 21358 </uv_hi_noiseprofile> 21359 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 21360 [1.0000 1.0000 1.0000 ] 21361 </uv_lo_denoiseweight> 21362 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 21363 [1.0000 1.0000 1.0000 ] 21364 </uv_hi_denoiseweight> 21365 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 21366 [0.300 0.300 0.300 ] 21367 </uv_lo_bfscale> 21368 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 21369 [0.300 0.300 0.300 ] 21370 </uv_hi_bfscale> 21371 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 21372 [0.0000 32.0000 64.0000 192.0000 232.0000 255.0000 ] 21373 </uv_lumanrpoint> 21374 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 21375 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 21376 </uv_lumanrcurve> 21377 <uv_denoisestrength index="1" type="double" size="[1 1]"> 21378 [3.0000 ] 21379 </uv_denoisestrength> 21380 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21381 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21382 </uv_lo_lvl0_gfdelta> 21383 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21384 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21385 </uv_hi_lvl0_gfdelta> 21386 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21387 [0.12500 0.10938 0.10938 ] 21388 </uv_lo_lvl1_gfdelta> 21389 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21390 [0.12500 0.10938 0.10938 ] 21391 </uv_hi_lvl1_gfdelta> 21392 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21393 [0.12500 0.10938 0.10938 ] 21394 </uv_lo_lvl2_gfdelta> 21395 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21396 [0.12500 0.10938 0.10938 ] 21397 </uv_hi_lvl2_gfdelta> 21398 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 21399 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21400 </lvl0_gfsigma> 21401 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 21402 [0.12500 0.10938 0.10938 ] 21403 </lvl1_gfsigma> 21404 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 21405 [0.12500 0.10938 0.10938 ] 21406 </lvl2_gfsigma> 21407 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 21408 [0.12500 0.10938 0.10938 ] 21409 </lvl3_gfsigma> 21410 </cell> 21411 <cell index="7" type="struct" size="[1 1]"> 21412 <iso index="1" type="double" size="[1 1]"> 21413 [3200.0000 ] 21414 </iso> 21415 <weight_limit_y index="1" type="double" size="[1 4]"> 21416 [4.0000 4.0000 4.0000 4.0000 ] 21417 </weight_limit_y> 21418 <weight_limit_uv index="1" type="double" size="[1 3]"> 21419 [4.0000 4.0000 4.0000 ] 21420 </weight_limit_uv> 21421 <ratio_frq index="1" type="double" size="[1 4]"> 21422 [0.5000 2.0000 0.5000 2.0000 ] 21423 </ratio_frq> 21424 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 21425 [0.7000 0.7000 0.7000 ] 21426 </luma_w_in_chroma> 21427 <noise_curve index="1" type="double" size="[1 5]"> 21428 [-3.50549752881191e-012 3.76368052960353e-008 -1.51293815921383e-004 2.17945943756604e-001 1.33106751935557e+002 ] 21429 </noise_curve> 21430 <noise_curve_x00 index="1" type="double" size="[1 1]"> 21431 [3.17000000000000e+003 ] 21432 </noise_curve_x00> 21433 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 21434 [1.00000 0.74047 0.43176 0.23232 ] 21435 </y_lo_noiseprofile> 21436 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 21437 [0.70863 0.62708 0.38287 0.00000 ] 21438 </y_hi_noiseprofile> 21439 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 21440 [1.0000 1.0000 1.0000 1.0000 ] 21441 </y_lo_denoiseweight> 21442 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 21443 [1.0000 1.0000 1.0000 1.0000 ] 21444 </y_hi_denoiseweight> 21445 <y_lo_bfscale index="1" type="double" size="[1 4]"> 21446 [0.3000 0.3000 0.3000 0.3000 ] 21447 </y_lo_bfscale> 21448 <y_hi_bfscale index="1" type="double" size="[1 4]"> 21449 [0.3000 0.3000 0.3000 0.3000 ] 21450 </y_hi_bfscale> 21451 <y_lumanrpoint index="1" type="double" size="[1 6]"> 21452 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 21453 </y_lumanrpoint> 21454 <y_lumanrcurve index="1" type="double" size="[1 6]"> 21455 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 21456 </y_lumanrcurve> 21457 <y_denoisestrength index="1" type="double" size="[1 1]"> 21458 [3.0000 ] 21459 </y_denoisestrength> 21460 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21461 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21462 </y_lo_lvl0_gfdelta> 21463 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21464 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21465 </y_hi_lvl0_gfdelta> 21466 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21467 [0.12500 0.10938 0.10938 ] 21468 </y_lo_lvl1_gfdelta> 21469 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21470 [0.12500 0.10938 0.10938 ] 21471 </y_hi_lvl1_gfdelta> 21472 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21473 [0.12500 0.10938 0.10938 ] 21474 </y_lo_lvl2_gfdelta> 21475 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21476 [0.12500 0.10938 0.10938 ] 21477 </y_hi_lvl2_gfdelta> 21478 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 21479 [0.12500 0.10938 0.10938 ] 21480 </y_lo_lvl3_gfdelta> 21481 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 21482 [0.12500 0.10938 0.10938 ] 21483 </y_hi_lvl3_gfdelta> 21484 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 21485 [1.00000 0.74047 0.43176 ] 21486 </uv_lo_noiseprofile> 21487 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 21488 [0.70863 0.62708 0.39626 ] 21489 </uv_hi_noiseprofile> 21490 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 21491 [1.0000 1.0000 1.0000 ] 21492 </uv_lo_denoiseweight> 21493 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 21494 [1.0000 1.0000 1.0000 ] 21495 </uv_hi_denoiseweight> 21496 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 21497 [0.3000 0.3000 0.3000 ] 21498 </uv_lo_bfscale> 21499 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 21500 [0.3000 0.3000 0.3000 ] 21501 </uv_hi_bfscale> 21502 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 21503 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 21504 </uv_lumanrpoint> 21505 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 21506 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 21507 </uv_lumanrcurve> 21508 <uv_denoisestrength index="1" type="double" size="[1 1]"> 21509 [3.0000 ] 21510 </uv_denoisestrength> 21511 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21512 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21513 </uv_lo_lvl0_gfdelta> 21514 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21515 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21516 </uv_hi_lvl0_gfdelta> 21517 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21518 [0.12500 0.10938 0.10938 ] 21519 </uv_lo_lvl1_gfdelta> 21520 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21521 [0.12500 0.10938 0.10938 ] 21522 </uv_hi_lvl1_gfdelta> 21523 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21524 [0.12500 0.10938 0.10938 ] 21525 </uv_lo_lvl2_gfdelta> 21526 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21527 [0.12500 0.10938 0.10938 ] 21528 </uv_hi_lvl2_gfdelta> 21529 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 21530 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21531 </lvl0_gfsigma> 21532 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 21533 [0.12500 0.10938 0.10938 ] 21534 </lvl1_gfsigma> 21535 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 21536 [0.12500 0.10938 0.10938 ] 21537 </lvl2_gfsigma> 21538 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 21539 [0.12500 0.10938 0.10938 ] 21540 </lvl3_gfsigma> 21541 </cell> 21542 <cell index="8" type="struct" size="[1 1]"> 21543 <iso index="1" type="double" size="[1 1]"> 21544 [6400.0000 ] 21545 </iso> 21546 <weight_limit_y index="1" type="double" size="[1 4]"> 21547 [8.0000 8.0000 8.0000 8.0000 ] 21548 </weight_limit_y> 21549 <weight_limit_uv index="1" type="double" size="[1 3]"> 21550 [4.0000 4.0000 64.0000 ] 21551 </weight_limit_uv> 21552 <ratio_frq index="1" type="double" size="[1 4]"> 21553 [0.5000 2.0000 0.5000 2.0000 ] 21554 </ratio_frq> 21555 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 21556 [0.7500 0.7500 0.7500 ] 21557 </luma_w_in_chroma> 21558 <noise_curve index="1" type="double" size="[1 5]"> 21559 [-1.17756545286079e-011 1.12670434028526e-007 -4.05537564186043e-004 5.71448012221026e-001 6.52947928690119e+001 ] 21560 </noise_curve> 21561 <noise_curve_x00 index="1" type="double" size="[1 1]"> 21562 [3.17000000000000e+003 ] 21563 </noise_curve_x00> 21564 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 21565 [1.00000 0.75478 0.45723 0.24457 ] 21566 </y_lo_noiseprofile> 21567 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 21568 [0.69157 0.63395 0.40685 0.00000 ] 21569 </y_hi_noiseprofile> 21570 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 21571 [1.0000 1.0000 1.0000 1.0000 ] 21572 </y_lo_denoiseweight> 21573 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 21574 [1.0000 1.0000 1.0000 1.0000 ] 21575 </y_hi_denoiseweight> 21576 <y_lo_bfscale index="1" type="double" size="[1 4]"> 21577 [0.2000 0.2000 0.2000 0.2000 ] 21578 </y_lo_bfscale> 21579 <y_hi_bfscale index="1" type="double" size="[1 4]"> 21580 [0.2000 0.2000 0.2000 0.2000 ] 21581 </y_hi_bfscale> 21582 <y_lumanrpoint index="1" type="double" size="[1 6]"> 21583 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 21584 </y_lumanrpoint> 21585 <y_lumanrcurve index="1" type="double" size="[1 6]"> 21586 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 21587 </y_lumanrcurve> 21588 <y_denoisestrength index="1" type="double" size="[1 1]"> 21589 [5.0000 ] 21590 </y_denoisestrength> 21591 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21592 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21593 </y_lo_lvl0_gfdelta> 21594 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21595 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21596 </y_hi_lvl0_gfdelta> 21597 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21598 [0.12500 0.10938 0.10938 ] 21599 </y_lo_lvl1_gfdelta> 21600 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21601 [0.12500 0.10938 0.10938 ] 21602 </y_hi_lvl1_gfdelta> 21603 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21604 [0.12500 0.10938 0.10938 ] 21605 </y_lo_lvl2_gfdelta> 21606 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21607 [0.12500 0.10938 0.10938 ] 21608 </y_hi_lvl2_gfdelta> 21609 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 21610 [0.12500 0.10938 0.10938 ] 21611 </y_lo_lvl3_gfdelta> 21612 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 21613 [0.12500 0.10938 0.10938 ] 21614 </y_hi_lvl3_gfdelta> 21615 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 21616 [1.00000 0.75478 0.45723 ] 21617 </uv_lo_noiseprofile> 21618 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 21619 [0.69157 0.63395 0.39626 ] 21620 </uv_hi_noiseprofile> 21621 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 21622 [1.0000 1.0000 1.0000 ] 21623 </uv_lo_denoiseweight> 21624 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 21625 [1.0000 1.0000 1.0000 ] 21626 </uv_hi_denoiseweight> 21627 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 21628 [0.2000 0.2000 0.2000 ] 21629 </uv_lo_bfscale> 21630 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 21631 [0.2000 0.2000 0.2000 ] 21632 </uv_hi_bfscale> 21633 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 21634 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 21635 </uv_lumanrpoint> 21636 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 21637 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 21638 </uv_lumanrcurve> 21639 <uv_denoisestrength index="1" type="double" size="[1 1]"> 21640 [5.0000 ] 21641 </uv_denoisestrength> 21642 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21643 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21644 </uv_lo_lvl0_gfdelta> 21645 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21646 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21647 </uv_hi_lvl0_gfdelta> 21648 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21649 [0.12500 0.10938 0.10938 ] 21650 </uv_lo_lvl1_gfdelta> 21651 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21652 [0.12500 0.10938 0.10938 ] 21653 </uv_hi_lvl1_gfdelta> 21654 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21655 [0.12500 0.10938 0.10938 ] 21656 </uv_lo_lvl2_gfdelta> 21657 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21658 [0.12500 0.10938 0.10938 ] 21659 </uv_hi_lvl2_gfdelta> 21660 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 21661 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21662 </lvl0_gfsigma> 21663 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 21664 [0.12500 0.10938 0.10938 ] 21665 </lvl1_gfsigma> 21666 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 21667 [0.12500 0.10938 0.10938 ] 21668 </lvl2_gfsigma> 21669 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 21670 [0.12500 0.10938 0.10938 ] 21671 </lvl3_gfsigma> 21672 </cell> 21673 <cell index="9" type="struct" size="[1 1]"> 21674 <iso index="1" type="double" size="[1 1]"> 21675 [12800.0000 ] 21676 </iso> 21677 <weight_limit_y index="1" type="double" size="[1 4]"> 21678 [4.0000 4.0000 4.0000 4.0000 ] 21679 </weight_limit_y> 21680 <weight_limit_uv index="1" type="double" size="[1 3]"> 21681 [4.0000 4.0000 4.0000 ] 21682 </weight_limit_uv> 21683 <ratio_frq index="1" type="double" size="[1 4]"> 21684 [0.5000 2.0000 0.5000 2.0000 ] 21685 </ratio_frq> 21686 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 21687 [0.8000 0.8000 0.8000 ] 21688 </luma_w_in_chroma> 21689 <noise_curve index="1" type="double" size="[1 5]"> 21690 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 21691 </noise_curve> 21692 <noise_curve_x00 index="1" type="double" size="[1 1]"> 21693 [3.17000000000000e+003 ] 21694 </noise_curve_x00> 21695 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 21696 [1.00000 0.72924 0.45749 0.28517 ] 21697 </y_lo_noiseprofile> 21698 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 21699 [0.72960 0.61071 0.39626 0.00000 ] 21700 </y_hi_noiseprofile> 21701 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 21702 [1.0000 1.0000 1.0000 1.0000 ] 21703 </y_lo_denoiseweight> 21704 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 21705 [1.0000 1.0000 1.0000 1.0000 ] 21706 </y_hi_denoiseweight> 21707 <y_lo_bfscale index="1" type="double" size="[1 4]"> 21708 [0.2000 0.2000 0.2000 0.2000 ] 21709 </y_lo_bfscale> 21710 <y_hi_bfscale index="1" type="double" size="[1 4]"> 21711 [0.2000 0.2000 0.2000 0.2000] 21712 </y_hi_bfscale> 21713 <y_lumanrpoint index="1" type="double" size="[1 6]"> 21714 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 21715 </y_lumanrpoint> 21716 <y_lumanrcurve index="1" type="double" size="[1 6]"> 21717 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 21718 </y_lumanrcurve> 21719 <y_denoisestrength index="1" type="double" size="[1 1]"> 21720 [5.0000 ] 21721 </y_denoisestrength> 21722 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21723 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21724 </y_lo_lvl0_gfdelta> 21725 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21726 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21727 </y_hi_lvl0_gfdelta> 21728 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21729 [0.12500 0.10938 0.10938 ] 21730 </y_lo_lvl1_gfdelta> 21731 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21732 [0.12500 0.10938 0.10938 ] 21733 </y_hi_lvl1_gfdelta> 21734 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21735 [0.12500 0.10938 0.10938 ] 21736 </y_lo_lvl2_gfdelta> 21737 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21738 [0.12500 0.10938 0.10938 ] 21739 </y_hi_lvl2_gfdelta> 21740 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 21741 [0.12500 0.10938 0.10938 ] 21742 </y_lo_lvl3_gfdelta> 21743 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 21744 [0.12500 0.10938 0.10938 ] 21745 </y_hi_lvl3_gfdelta> 21746 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 21747 [1.00000 0.72924 0.45749 ] 21748 </uv_lo_noiseprofile> 21749 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 21750 [0.72960 0.61071 0.39626 ] 21751 </uv_hi_noiseprofile> 21752 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 21753 [1.0000 1.0000 1.0000 ] 21754 </uv_lo_denoiseweight> 21755 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 21756 [1.0000 1.0000 1.0000 ] 21757 </uv_hi_denoiseweight> 21758 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 21759 [0.2000 0.2000 0.2000 ] 21760 </uv_lo_bfscale> 21761 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 21762 [0.2000 0.2000 0.2000 ] 21763 </uv_hi_bfscale> 21764 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 21765 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 21766 </uv_lumanrpoint> 21767 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 21768 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 21769 </uv_lumanrcurve> 21770 <uv_denoisestrength index="1" type="double" size="[1 1]"> 21771 [5.0000 ] 21772 </uv_denoisestrength> 21773 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21774 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21775 </uv_lo_lvl0_gfdelta> 21776 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21777 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21778 </uv_hi_lvl0_gfdelta> 21779 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21780 [0.12500 0.10938 0.10938 ] 21781 </uv_lo_lvl1_gfdelta> 21782 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21783 [0.12500 0.10938 0.10938 ] 21784 </uv_hi_lvl1_gfdelta> 21785 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21786 [0.12500 0.10938 0.10938 ] 21787 </uv_lo_lvl2_gfdelta> 21788 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21789 [0.12500 0.10938 0.10938 ] 21790 </uv_hi_lvl2_gfdelta> 21791 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 21792 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21793 </lvl0_gfsigma> 21794 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 21795 [0.12500 0.10938 0.10938 ] 21796 </lvl1_gfsigma> 21797 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 21798 [0.12500 0.10938 0.10938 ] 21799 </lvl2_gfsigma> 21800 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 21801 [0.12500 0.10938 0.10938 ] 21802 </lvl3_gfsigma> 21803 </cell> 21804 <cell index="10" type="struct" size="[1 1]"> 21805 <iso index="1" type="double" size="[1 1]"> 21806 [25600.0000 ] 21807 </iso> 21808 <weight_limit_y index="1" type="double" size="[1 4]"> 21809 [4.0000 4.0000 4.0000 4.0000 ] 21810 </weight_limit_y> 21811 <weight_limit_uv index="1" type="double" size="[1 3]"> 21812 [4.0000 4.0000 4.0000 ] 21813 </weight_limit_uv> 21814 <ratio_frq index="1" type="double" size="[1 4]"> 21815 [0.5000 2.0000 0.5000 2.0000 ] 21816 </ratio_frq> 21817 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 21818 [0.8000 0.8000 0.8000 ] 21819 </luma_w_in_chroma> 21820 <noise_curve index="1" type="double" size="[1 5]"> 21821 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 21822 </noise_curve> 21823 <noise_curve_x00 index="1" type="double" size="[1 1]"> 21824 [3.17000000000000e+003 ] 21825 </noise_curve_x00> 21826 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 21827 [1.00000 0.72924 0.45749 0.28517 ] 21828 </y_lo_noiseprofile> 21829 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 21830 [0.72960 0.61071 0.39626 0.00000 ] 21831 </y_hi_noiseprofile> 21832 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 21833 [1.0000 1.0000 1.0000 1.0000 ] 21834 </y_lo_denoiseweight> 21835 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 21836 [1.0000 1.0000 1.0000 1.0000 ] 21837 </y_hi_denoiseweight> 21838 <y_lo_bfscale index="1" type="double" size="[1 4]"> 21839 [0.5000 0.5000 0.5000 0.7000 ] 21840 </y_lo_bfscale> 21841 <y_hi_bfscale index="1" type="double" size="[1 4]"> 21842 [0.5000 0.5000 0.5000 0.7000 ] 21843 </y_hi_bfscale> 21844 <y_lumanrpoint index="1" type="double" size="[1 6]"> 21845 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 21846 </y_lumanrpoint> 21847 <y_lumanrcurve index="1" type="double" size="[1 6]"> 21848 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 21849 </y_lumanrcurve> 21850 <y_denoisestrength index="1" type="double" size="[1 1]"> 21851 [1.8000 ] 21852 </y_denoisestrength> 21853 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21854 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21855 </y_lo_lvl0_gfdelta> 21856 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21857 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21858 </y_hi_lvl0_gfdelta> 21859 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21860 [0.12500 0.10938 0.10938 ] 21861 </y_lo_lvl1_gfdelta> 21862 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21863 [0.12500 0.10938 0.10938 ] 21864 </y_hi_lvl1_gfdelta> 21865 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21866 [0.12500 0.10938 0.10938 ] 21867 </y_lo_lvl2_gfdelta> 21868 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21869 [0.12500 0.10938 0.10938 ] 21870 </y_hi_lvl2_gfdelta> 21871 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 21872 [0.12500 0.10938 0.10938 ] 21873 </y_lo_lvl3_gfdelta> 21874 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 21875 [0.12500 0.10938 0.10938 ] 21876 </y_hi_lvl3_gfdelta> 21877 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 21878 [1.00000 0.72924 0.45749 ] 21879 </uv_lo_noiseprofile> 21880 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 21881 [0.72960 0.61071 0.39626 ] 21882 </uv_hi_noiseprofile> 21883 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 21884 [1.0000 1.0000 1.0000 ] 21885 </uv_lo_denoiseweight> 21886 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 21887 [1.0000 1.0000 1.0000 ] 21888 </uv_hi_denoiseweight> 21889 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 21890 [0.5000 0.7000 0.7000 ] 21891 </uv_lo_bfscale> 21892 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 21893 [0.3000 0.3000 0.4000 ] 21894 </uv_hi_bfscale> 21895 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 21896 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 21897 </uv_lumanrpoint> 21898 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 21899 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 21900 </uv_lumanrcurve> 21901 <uv_denoisestrength index="1" type="double" size="[1 1]"> 21902 [1.8000 ] 21903 </uv_denoisestrength> 21904 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21905 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21906 </uv_lo_lvl0_gfdelta> 21907 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21908 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21909 </uv_hi_lvl0_gfdelta> 21910 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21911 [0.12500 0.10938 0.10938 ] 21912 </uv_lo_lvl1_gfdelta> 21913 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21914 [0.12500 0.10938 0.10938 ] 21915 </uv_hi_lvl1_gfdelta> 21916 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21917 [0.12500 0.10938 0.10938 ] 21918 </uv_lo_lvl2_gfdelta> 21919 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21920 [0.12500 0.10938 0.10938 ] 21921 </uv_hi_lvl2_gfdelta> 21922 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 21923 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21924 </lvl0_gfsigma> 21925 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 21926 [0.12500 0.10938 0.10938 ] 21927 </lvl1_gfsigma> 21928 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 21929 [0.12500 0.10938 0.10938 ] 21930 </lvl2_gfsigma> 21931 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 21932 [0.12500 0.10938 0.10938 ] 21933 </lvl3_gfsigma> 21934 </cell> 21935 <cell index="11" type="struct" size="[1 1]"> 21936 <iso index="1" type="double" size="[1 1]"> 21937 [51200.0000 ] 21938 </iso> 21939 <weight_limit_y index="1" type="double" size="[1 4]"> 21940 [4.0000 4.0000 4.0000 4.0000 ] 21941 </weight_limit_y> 21942 <weight_limit_uv index="1" type="double" size="[1 3]"> 21943 [4.0000 4.0000 4.0000 ] 21944 </weight_limit_uv> 21945 <ratio_frq index="1" type="double" size="[1 4]"> 21946 [0.5000 2.0000 0.5000 2.0000 ] 21947 </ratio_frq> 21948 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 21949 [0.8000 0.8000 0.8000 ] 21950 </luma_w_in_chroma> 21951 <noise_curve index="1" type="double" size="[1 5]"> 21952 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 21953 </noise_curve> 21954 <noise_curve_x00 index="1" type="double" size="[1 1]"> 21955 [3.17000000000000e+003 ] 21956 </noise_curve_x00> 21957 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 21958 [1.00000 0.72924 0.45749 0.28517 ] 21959 </y_lo_noiseprofile> 21960 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 21961 [0.72960 0.61071 0.39626 0.00000 ] 21962 </y_hi_noiseprofile> 21963 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 21964 [1.0000 1.0000 1.0000 1.0000 ] 21965 </y_lo_denoiseweight> 21966 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 21967 [1.0000 1.0000 1.0000 1.0000 ] 21968 </y_hi_denoiseweight> 21969 <y_lo_bfscale index="1" type="double" size="[1 4]"> 21970 [0.5000 0.5000 0.5000 0.7000 ] 21971 </y_lo_bfscale> 21972 <y_hi_bfscale index="1" type="double" size="[1 4]"> 21973 [0.5000 0.5000 0.5000 0.7000 ] 21974 </y_hi_bfscale> 21975 <y_lumanrpoint index="1" type="double" size="[1 6]"> 21976 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 21977 </y_lumanrpoint> 21978 <y_lumanrcurve index="1" type="double" size="[1 6]"> 21979 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 21980 </y_lumanrcurve> 21981 <y_denoisestrength index="1" type="double" size="[1 1]"> 21982 [1.8000 ] 21983 </y_denoisestrength> 21984 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21985 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21986 </y_lo_lvl0_gfdelta> 21987 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 21988 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 21989 </y_hi_lvl0_gfdelta> 21990 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21991 [0.12500 0.10938 0.10938 ] 21992 </y_lo_lvl1_gfdelta> 21993 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 21994 [0.12500 0.10938 0.10938 ] 21995 </y_hi_lvl1_gfdelta> 21996 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 21997 [0.12500 0.10938 0.10938 ] 21998 </y_lo_lvl2_gfdelta> 21999 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22000 [0.12500 0.10938 0.10938 ] 22001 </y_hi_lvl2_gfdelta> 22002 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 22003 [0.12500 0.10938 0.10938 ] 22004 </y_lo_lvl3_gfdelta> 22005 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 22006 [0.12500 0.10938 0.10938 ] 22007 </y_hi_lvl3_gfdelta> 22008 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 22009 [1.00000 0.72924 0.45749 ] 22010 </uv_lo_noiseprofile> 22011 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 22012 [0.72960 0.61071 0.39626 ] 22013 </uv_hi_noiseprofile> 22014 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 22015 [1.0000 1.0000 1.0000 ] 22016 </uv_lo_denoiseweight> 22017 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 22018 [1.0000 1.0000 1.0000 ] 22019 </uv_hi_denoiseweight> 22020 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 22021 [0.5000 0.7000 0.7000 ] 22022 </uv_lo_bfscale> 22023 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 22024 [0.3000 0.3000 0.4000 ] 22025 </uv_hi_bfscale> 22026 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 22027 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 22028 </uv_lumanrpoint> 22029 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 22030 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 22031 </uv_lumanrcurve> 22032 <uv_denoisestrength index="1" type="double" size="[1 1]"> 22033 [1.8000 ] 22034 </uv_denoisestrength> 22035 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22036 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22037 </uv_lo_lvl0_gfdelta> 22038 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22039 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22040 </uv_hi_lvl0_gfdelta> 22041 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22042 [0.12500 0.10938 0.10938 ] 22043 </uv_lo_lvl1_gfdelta> 22044 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22045 [0.12500 0.10938 0.10938 ] 22046 </uv_hi_lvl1_gfdelta> 22047 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22048 [0.12500 0.10938 0.10938 ] 22049 </uv_lo_lvl2_gfdelta> 22050 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22051 [0.12500 0.10938 0.10938 ] 22052 </uv_hi_lvl2_gfdelta> 22053 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 22054 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22055 </lvl0_gfsigma> 22056 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 22057 [0.12500 0.10938 0.10938 ] 22058 </lvl1_gfsigma> 22059 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 22060 [0.12500 0.10938 0.10938 ] 22061 </lvl2_gfsigma> 22062 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 22063 [0.12500 0.10938 0.10938 ] 22064 </lvl3_gfsigma> 22065 </cell> 22066 <cell index="12" type="struct" size="[1 1]"> 22067 <iso index="1" type="double" size="[1 1]"> 22068 [102400.0000 ] 22069 </iso> 22070 <weight_limit_y index="1" type="double" size="[1 4]"> 22071 [4.0000 4.0000 4.0000 4.0000 ] 22072 </weight_limit_y> 22073 <weight_limit_uv index="1" type="double" size="[1 3]"> 22074 [4.0000 4.0000 4.0000 ] 22075 </weight_limit_uv> 22076 <ratio_frq index="1" type="double" size="[1 4]"> 22077 [0.5000 2.0000 0.5000 2.0000 ] 22078 </ratio_frq> 22079 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 22080 [0.8000 0.8000 0.8000 ] 22081 </luma_w_in_chroma> 22082 <noise_curve index="1" type="double" size="[1 5]"> 22083 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 22084 </noise_curve> 22085 <noise_curve_x00 index="1" type="double" size="[1 1]"> 22086 [3.17000000000000e+003 ] 22087 </noise_curve_x00> 22088 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 22089 [1.00000 0.72924 0.45749 0.28517 ] 22090 </y_lo_noiseprofile> 22091 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 22092 [0.72960 0.61071 0.39626 0.00000 ] 22093 </y_hi_noiseprofile> 22094 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 22095 [1.0000 1.0000 1.0000 1.0000 ] 22096 </y_lo_denoiseweight> 22097 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 22098 [1.0000 1.0000 1.0000 1.0000 ] 22099 </y_hi_denoiseweight> 22100 <y_lo_bfscale index="1" type="double" size="[1 4]"> 22101 [0.5000 0.5000 0.5000 0.7000 ] 22102 </y_lo_bfscale> 22103 <y_hi_bfscale index="1" type="double" size="[1 4]"> 22104 [0.5000 0.5000 0.5000 0.7000 ] 22105 </y_hi_bfscale> 22106 <y_lumanrpoint index="1" type="double" size="[1 6]"> 22107 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 22108 </y_lumanrpoint> 22109 <y_lumanrcurve index="1" type="double" size="[1 6]"> 22110 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 22111 </y_lumanrcurve> 22112 <y_denoisestrength index="1" type="double" size="[1 1]"> 22113 [1.8000 ] 22114 </y_denoisestrength> 22115 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22116 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22117 </y_lo_lvl0_gfdelta> 22118 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22119 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22120 </y_hi_lvl0_gfdelta> 22121 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22122 [0.12500 0.10938 0.10938 ] 22123 </y_lo_lvl1_gfdelta> 22124 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22125 [0.12500 0.10938 0.10938 ] 22126 </y_hi_lvl1_gfdelta> 22127 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22128 [0.12500 0.10938 0.10938 ] 22129 </y_lo_lvl2_gfdelta> 22130 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22131 [0.12500 0.10938 0.10938 ] 22132 </y_hi_lvl2_gfdelta> 22133 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 22134 [0.12500 0.10938 0.10938 ] 22135 </y_lo_lvl3_gfdelta> 22136 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 22137 [0.12500 0.10938 0.10938 ] 22138 </y_hi_lvl3_gfdelta> 22139 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 22140 [1.00000 0.72924 0.45749 ] 22141 </uv_lo_noiseprofile> 22142 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 22143 [0.72960 0.61071 0.39626 ] 22144 </uv_hi_noiseprofile> 22145 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 22146 [1.0000 1.0000 1.0000 ] 22147 </uv_lo_denoiseweight> 22148 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 22149 [1.0000 1.0000 1.0000 ] 22150 </uv_hi_denoiseweight> 22151 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 22152 [0.5000 0.7000 0.7000 ] 22153 </uv_lo_bfscale> 22154 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 22155 [0.3000 0.3000 0.4000 ] 22156 </uv_hi_bfscale> 22157 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 22158 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 22159 </uv_lumanrpoint> 22160 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 22161 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 22162 </uv_lumanrcurve> 22163 <uv_denoisestrength index="1" type="double" size="[1 1]"> 22164 [1.8000 ] 22165 </uv_denoisestrength> 22166 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22167 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22168 </uv_lo_lvl0_gfdelta> 22169 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22170 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22171 </uv_hi_lvl0_gfdelta> 22172 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22173 [0.12500 0.10938 0.10938 ] 22174 </uv_lo_lvl1_gfdelta> 22175 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22176 [0.12500 0.10938 0.10938 ] 22177 </uv_hi_lvl1_gfdelta> 22178 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22179 [0.12500 0.10938 0.10938 ] 22180 </uv_lo_lvl2_gfdelta> 22181 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22182 [0.12500 0.10938 0.10938 ] 22183 </uv_hi_lvl2_gfdelta> 22184 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 22185 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22186 </lvl0_gfsigma> 22187 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 22188 [0.12500 0.10938 0.10938 ] 22189 </lvl1_gfsigma> 22190 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 22191 [0.12500 0.10938 0.10938 ] 22192 </lvl2_gfsigma> 22193 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 22194 [0.12500 0.10938 0.10938 ] 22195 </lvl3_gfsigma> 22196 </cell> 22197 <cell index="13" type="struct" size="[1 1]"> 22198 <iso index="1" type="double" size="[1 1]"> 22199 [204800.0000 ] 22200 </iso> 22201 <weight_limit_y index="1" type="double" size="[1 4]"> 22202 [4.0000 4.0000 4.0000 4.0000 ] 22203 </weight_limit_y> 22204 <weight_limit_uv index="1" type="double" size="[1 3]"> 22205 [4.0000 4.0000 4.0000 ] 22206 </weight_limit_uv> 22207 <ratio_frq index="1" type="double" size="[1 4]"> 22208 [0.5000 2.0000 0.5000 2.0000 ] 22209 </ratio_frq> 22210 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 22211 [0.8000 0.8000 0.8000 ] 22212 </luma_w_in_chroma> 22213 <noise_curve index="1" type="double" size="[1 5]"> 22214 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 22215 </noise_curve> 22216 <noise_curve_x00 index="1" type="double" size="[1 1]"> 22217 [3.17000000000000e+003 ] 22218 </noise_curve_x00> 22219 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 22220 [1.00000 0.72924 0.45749 0.28517 ] 22221 </y_lo_noiseprofile> 22222 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 22223 [0.72960 0.61071 0.39626 0.00000 ] 22224 </y_hi_noiseprofile> 22225 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 22226 [1.0000 1.0000 1.0000 1.0000 ] 22227 </y_lo_denoiseweight> 22228 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 22229 [1.0000 1.0000 1.0000 1.0000 ] 22230 </y_hi_denoiseweight> 22231 <y_lo_bfscale index="1" type="double" size="[1 4]"> 22232 [0.5000 0.5000 0.5000 0.7000 ] 22233 </y_lo_bfscale> 22234 <y_hi_bfscale index="1" type="double" size="[1 4]"> 22235 [0.5000 0.5000 0.5000 0.7000 ] 22236 </y_hi_bfscale> 22237 <y_lumanrpoint index="1" type="double" size="[1 6]"> 22238 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 22239 </y_lumanrpoint> 22240 <y_lumanrcurve index="1" type="double" size="[1 6]"> 22241 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 22242 </y_lumanrcurve> 22243 <y_denoisestrength index="1" type="double" size="[1 1]"> 22244 [1.8000 ] 22245 </y_denoisestrength> 22246 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22247 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22248 </y_lo_lvl0_gfdelta> 22249 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22250 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22251 </y_hi_lvl0_gfdelta> 22252 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22253 [0.12500 0.10938 0.10938 ] 22254 </y_lo_lvl1_gfdelta> 22255 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22256 [0.12500 0.10938 0.10938 ] 22257 </y_hi_lvl1_gfdelta> 22258 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22259 [0.12500 0.10938 0.10938 ] 22260 </y_lo_lvl2_gfdelta> 22261 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22262 [0.12500 0.10938 0.10938 ] 22263 </y_hi_lvl2_gfdelta> 22264 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 22265 [0.12500 0.10938 0.10938 ] 22266 </y_lo_lvl3_gfdelta> 22267 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 22268 [0.12500 0.10938 0.10938 ] 22269 </y_hi_lvl3_gfdelta> 22270 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 22271 [1.00000 0.72924 0.45749 ] 22272 </uv_lo_noiseprofile> 22273 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 22274 [0.72960 0.61071 0.39626 ] 22275 </uv_hi_noiseprofile> 22276 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 22277 [1.0000 1.0000 1.0000 ] 22278 </uv_lo_denoiseweight> 22279 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 22280 [1.0000 1.0000 1.0000 ] 22281 </uv_hi_denoiseweight> 22282 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 22283 [0.5000 0.7000 0.7000 ] 22284 </uv_lo_bfscale> 22285 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 22286 [0.3000 0.3000 0.4000 ] 22287 </uv_hi_bfscale> 22288 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 22289 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 22290 </uv_lumanrpoint> 22291 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 22292 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 22293 </uv_lumanrcurve> 22294 <uv_denoisestrength index="1" type="double" size="[1 1]"> 22295 [1.8000 ] 22296 </uv_denoisestrength> 22297 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22298 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22299 </uv_lo_lvl0_gfdelta> 22300 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22301 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22302 </uv_hi_lvl0_gfdelta> 22303 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22304 [0.12500 0.10938 0.10938 ] 22305 </uv_lo_lvl1_gfdelta> 22306 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22307 [0.12500 0.10938 0.10938 ] 22308 </uv_hi_lvl1_gfdelta> 22309 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22310 [0.12500 0.10938 0.10938 ] 22311 </uv_lo_lvl2_gfdelta> 22312 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22313 [0.12500 0.10938 0.10938 ] 22314 </uv_hi_lvl2_gfdelta> 22315 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 22316 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22317 </lvl0_gfsigma> 22318 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 22319 [0.12500 0.10938 0.10938 ] 22320 </lvl1_gfsigma> 22321 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 22322 [0.12500 0.10938 0.10938 ] 22323 </lvl2_gfsigma> 22324 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 22325 [0.12500 0.10938 0.10938 ] 22326 </lvl3_gfsigma> 22327 </cell> 22328 </MFNR_ISO> 22329 </cell> 22330 <cell index="2" type="struct" size="[1 1]"> 22331 <SNR_Mode index="1" type="char" size="[1 4]"> 22332 HSNR 22333 </SNR_Mode> 22334 <Sensor_Mode index="1" type="char" size="[1 3]"> 22335 hcg 22336 </Sensor_Mode> 22337 <MFNR_ISO index="1" type="cell" size="[1 13]"> 22338 <cell index="1" type="struct" size="[1 1]"> 22339 <iso index="1" type="double" size="[1 1]"> 22340 [50.0000 ] 22341 </iso> 22342 <weight_limit_y index="1" type="double" size="[1 4]"> 22343 [64.0000 64.0000 64.0000 64.0000 ] 22344 </weight_limit_y> 22345 <weight_limit_uv index="1" type="double" size="[1 3]"> 22346 [64.0000 64.0000 64.0000 ] 22347 </weight_limit_uv> 22348 <ratio_frq index="1" type="double" size="[1 4]"> 22349 [0.5000 2.0000 0.5000 2.0000 ] 22350 </ratio_frq> 22351 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 22352 [0.5000 0.5000 0.5000 ] 22353 </luma_w_in_chroma> 22354 <noise_curve index="1" type="double" size="[1 5]"> 22355 [-8.43031629716230e-013 7.96403418022611e-009 -2.69124846208717e-005 3.30491353997608e-002 1.82112440798101e+001 ] 22356 </noise_curve> 22357 <noise_curve_x00 index="1" type="double" size="[1 1]"> 22358 [3.64700000000000e+003 ] 22359 </noise_curve_x00> 22360 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 22361 [1.00000 0.68993 0.41986 0.24798 ] 22362 </y_lo_noiseprofile> 22363 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 22364 [0.77114 0.62293 0.46145 0.00000 ] 22365 </y_hi_noiseprofile> 22366 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 22367 [1.0000 1.0000 1.0000 1.0000 ] 22368 </y_lo_denoiseweight> 22369 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 22370 [1.0000 1.0000 1.0000 1.0000 ] 22371 </y_hi_denoiseweight> 22372 <y_lo_bfscale index="1" type="double" size="[1 4]"> 22373 [0.5000 0.5000 0.5000 0.5000 ] 22374 </y_lo_bfscale> 22375 <y_hi_bfscale index="1" type="double" size="[1 4]"> 22376 [0.5000 0.5000 0.5000 0.5000 ] 22377 </y_hi_bfscale> 22378 <y_lumanrpoint index="1" type="double" size="[1 6]"> 22379 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 22380 </y_lumanrpoint> 22381 <y_lumanrcurve index="1" type="double" size="[1 6]"> 22382 [1.2000 1.2000 1.2000 1.1000 1.1000 1.0000 ] 22383 </y_lumanrcurve> 22384 <y_denoisestrength index="1" type="double" size="[1 1]"> 22385 [1.2000 ] 22386 </y_denoisestrength> 22387 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22388 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22389 </y_lo_lvl0_gfdelta> 22390 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22391 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22392 </y_hi_lvl0_gfdelta> 22393 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22394 [0.12500 0.10938 0.10938 ] 22395 </y_lo_lvl1_gfdelta> 22396 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22397 [0.12500 0.10938 0.10938 ] 22398 </y_hi_lvl1_gfdelta> 22399 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22400 [0.12500 0.10938 0.10938 ] 22401 </y_lo_lvl2_gfdelta> 22402 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22403 [0.12500 0.10938 0.10938 ] 22404 </y_hi_lvl2_gfdelta> 22405 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 22406 [0.12500 0.10938 0.10938 ] 22407 </y_lo_lvl3_gfdelta> 22408 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 22409 [0.12500 0.10938 0.10938 ] 22410 </y_hi_lvl3_gfdelta> 22411 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 22412 [1.00000 0.68993 0.41986 ] 22413 </uv_lo_noiseprofile> 22414 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 22415 [0.77114 0.62293 0.35740 ] 22416 </uv_hi_noiseprofile> 22417 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 22418 [1.0000 1.0000 1.0000 ] 22419 </uv_lo_denoiseweight> 22420 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 22421 [1.0000 1.0000 1.0000 ] 22422 </uv_hi_denoiseweight> 22423 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 22424 [0.5000 0.5000 0.5000 ] 22425 </uv_lo_bfscale> 22426 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 22427 [0.5000 0.5000 0.5000 ] 22428 </uv_hi_bfscale> 22429 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 22430 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 22431 </uv_lumanrpoint> 22432 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 22433 [1.3000 1.2000 1.2000 1.1000 1.1000 1.0000 ] 22434 </uv_lumanrcurve> 22435 <uv_denoisestrength index="1" type="double" size="[1 1]"> 22436 [1.2000 ] 22437 </uv_denoisestrength> 22438 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22439 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22440 </uv_lo_lvl0_gfdelta> 22441 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22442 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22443 </uv_hi_lvl0_gfdelta> 22444 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22445 [0.12500 0.10938 0.10938 ] 22446 </uv_lo_lvl1_gfdelta> 22447 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22448 [0.12500 0.10938 0.10938 ] 22449 </uv_hi_lvl1_gfdelta> 22450 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22451 [0.12500 0.10938 0.10938 ] 22452 </uv_lo_lvl2_gfdelta> 22453 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22454 [0.12500 0.10938 0.10938 ] 22455 </uv_hi_lvl2_gfdelta> 22456 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 22457 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22458 </lvl0_gfsigma> 22459 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 22460 [0.12500 0.10938 0.10938 ] 22461 </lvl1_gfsigma> 22462 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 22463 [0.12500 0.10938 0.10938 ] 22464 </lvl2_gfsigma> 22465 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 22466 [0.12500 0.10938 0.10938 ] 22467 </lvl3_gfsigma> 22468 </cell> 22469 <cell index="2" type="struct" size="[1 1]"> 22470 <iso index="1" type="double" size="[1 1]"> 22471 [100.0000 ] 22472 </iso> 22473 <weight_limit_y index="1" type="double" size="[1 4]"> 22474 [64.0000 64.0000 64.0000 64.0000 ] 22475 </weight_limit_y> 22476 <weight_limit_uv index="1" type="double" size="[1 3]"> 22477 [64.0000 64.0000 64.0000 ] 22478 </weight_limit_uv> 22479 <ratio_frq index="1" type="double" size="[1 4]"> 22480 [0.5000 2.0000 0.5000 2.0000 ] 22481 </ratio_frq> 22482 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 22483 [0.5000 0.5000 0.5000 ] 22484 </luma_w_in_chroma> 22485 <noise_curve index="1" type="double" size="[1 5]"> 22486 [-9.07873071141055e-013 9.05495555543235e-009 -3.21717261013016e-005 4.12882265916323e-002 2.10344756396116e+001 ] 22487 </noise_curve> 22488 <noise_curve_x00 index="1" type="double" size="[1 1]"> 22489 [3.64700000000000e+003 ] 22490 </noise_curve_x00> 22491 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 22492 [1.00000 0.73721 0.47316 0.28630 ] 22493 </y_lo_noiseprofile> 22494 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 22495 [0.70806 0.62814 0.46846 0.00000 ] 22496 </y_hi_noiseprofile> 22497 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 22498 [1.0000 1.0000 1.0000 1.0000 ] 22499 </y_lo_denoiseweight> 22500 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 22501 [1.0000 1.0000 1.0000 1.0000 ] 22502 </y_hi_denoiseweight> 22503 <y_lo_bfscale index="1" type="double" size="[1 4]"> 22504 [0.5000 0.5000 0.5000 0.5000 ] 22505 </y_lo_bfscale> 22506 <y_hi_bfscale index="1" type="double" size="[1 4]"> 22507 [0.5000 0.5000 0.5000 0.5000 ] 22508 </y_hi_bfscale> 22509 <y_lumanrpoint index="1" type="double" size="[1 6]"> 22510 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 22511 </y_lumanrpoint> 22512 <y_lumanrcurve index="1" type="double" size="[1 6]"> 22513 [1.3000 1.2000 1.2000 1.2000 1.2000 1.1000 ] 22514 </y_lumanrcurve> 22515 <y_denoisestrength index="1" type="double" size="[1 1]"> 22516 [1.4000 ] 22517 </y_denoisestrength> 22518 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22519 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22520 </y_lo_lvl0_gfdelta> 22521 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22522 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22523 </y_hi_lvl0_gfdelta> 22524 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22525 [0.12500 0.10938 0.10938 ] 22526 </y_lo_lvl1_gfdelta> 22527 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22528 [0.12500 0.10938 0.10938 ] 22529 </y_hi_lvl1_gfdelta> 22530 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22531 [0.12500 0.10938 0.10938 ] 22532 </y_lo_lvl2_gfdelta> 22533 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22534 [0.12500 0.10938 0.10938 ] 22535 </y_hi_lvl2_gfdelta> 22536 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 22537 [0.12500 0.10938 0.10938 ] 22538 </y_lo_lvl3_gfdelta> 22539 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 22540 [0.12500 0.10938 0.10938 ] 22541 </y_hi_lvl3_gfdelta> 22542 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 22543 [1.00000 0.73721 0.47316 ] 22544 </uv_lo_noiseprofile> 22545 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 22546 [0.70806 0.62814 0.38596 ] 22547 </uv_hi_noiseprofile> 22548 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 22549 [1.0000 1.0000 1.0000 ] 22550 </uv_lo_denoiseweight> 22551 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 22552 [1.0000 1.0000 1.0000 ] 22553 </uv_hi_denoiseweight> 22554 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 22555 [0.5000 0.5000 0.5000 ] 22556 </uv_lo_bfscale> 22557 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 22558 [0.5000 0.5000 0.5000 ] 22559 </uv_hi_bfscale> 22560 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 22561 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 22562 </uv_lumanrpoint> 22563 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 22564 [1.3000 1.2000 1.2000 1.2000 1.2000 1.2000 ] 22565 </uv_lumanrcurve> 22566 <uv_denoisestrength index="1" type="double" size="[1 1]"> 22567 [1.4000 ] 22568 </uv_denoisestrength> 22569 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22570 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22571 </uv_lo_lvl0_gfdelta> 22572 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22573 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22574 </uv_hi_lvl0_gfdelta> 22575 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22576 [0.12500 0.10938 0.10938 ] 22577 </uv_lo_lvl1_gfdelta> 22578 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22579 [0.12500 0.10938 0.10938 ] 22580 </uv_hi_lvl1_gfdelta> 22581 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22582 [0.12500 0.10938 0.10938 ] 22583 </uv_lo_lvl2_gfdelta> 22584 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22585 [0.12500 0.10938 0.10938 ] 22586 </uv_hi_lvl2_gfdelta> 22587 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 22588 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22589 </lvl0_gfsigma> 22590 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 22591 [0.12500 0.10938 0.10938 ] 22592 </lvl1_gfsigma> 22593 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 22594 [0.12500 0.10938 0.10938 ] 22595 </lvl2_gfsigma> 22596 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 22597 [0.12500 0.10938 0.10938 ] 22598 </lvl3_gfsigma> 22599 </cell> 22600 <cell index="3" type="struct" size="[1 1]"> 22601 <iso index="1" type="double" size="[1 1]"> 22602 [200.0000 ] 22603 </iso> 22604 <weight_limit_y index="1" type="double" size="[1 4]"> 22605 [32.0000 32.0000 32.0000 32.0000 ] 22606 </weight_limit_y> 22607 <weight_limit_uv index="1" type="double" size="[1 3]"> 22608 [32.0000 32.0000 32.0000 ] 22609 </weight_limit_uv> 22610 <ratio_frq index="1" type="double" size="[1 4]"> 22611 [0.5000 2.0000 0.5000 2.0000 ] 22612 </ratio_frq> 22613 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 22614 [0.5000 0.5000 0.5000 ] 22615 </luma_w_in_chroma> 22616 <noise_curve index="1" type="double" size="[1 5]"> 22617 [-1.52155493457974e-012 1.40665186878902e-008 -4.69371860616144e-005 5.84762430174166e-002 2.60227194063991e+001 ] 22618 </noise_curve> 22619 <noise_curve_x00 index="1" type="double" size="[1 1]"> 22620 [3.79000000000000e+003 ] 22621 </noise_curve_x00> 22622 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 22623 [1.00000 0.77354 0.53926 0.36661 ] 22624 </y_lo_noiseprofile> 22625 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 22626 [0.65807 0.59759 0.44849 0.00000 ] 22627 </y_hi_noiseprofile> 22628 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 22629 [1.0000 1.0000 1.0000 1.0000 ] 22630 </y_lo_denoiseweight> 22631 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 22632 [1.0000 1.0000 1.0000 1.0000 ] 22633 </y_hi_denoiseweight> 22634 <y_lo_bfscale index="1" type="double" size="[1 4]"> 22635 [0.5000 0.5000 0.5000 0.5000 ] 22636 </y_lo_bfscale> 22637 <y_hi_bfscale index="1" type="double" size="[1 4]"> 22638 [0.4500 0.4500 0.4500 0.4500 ] 22639 </y_hi_bfscale> 22640 <y_lumanrpoint index="1" type="double" size="[1 6]"> 22641 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 22642 </y_lumanrpoint> 22643 <y_lumanrcurve index="1" type="double" size="[1 6]"> 22644 [1.4000 1.3000 1.3000 1.2500 1.3000 1.3000 ] 22645 </y_lumanrcurve> 22646 <y_denoisestrength index="1" type="double" size="[1 1]"> 22647 [1.7000 ] 22648 </y_denoisestrength> 22649 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22650 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22651 </y_lo_lvl0_gfdelta> 22652 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22653 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22654 </y_hi_lvl0_gfdelta> 22655 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22656 [0.12500 0.10938 0.10938 ] 22657 </y_lo_lvl1_gfdelta> 22658 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22659 [0.12500 0.10938 0.10938 ] 22660 </y_hi_lvl1_gfdelta> 22661 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22662 [0.12500 0.10938 0.10938 ] 22663 </y_lo_lvl2_gfdelta> 22664 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22665 [0.12500 0.10938 0.10938 ] 22666 </y_hi_lvl2_gfdelta> 22667 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 22668 [0.12500 0.10938 0.10938 ] 22669 </y_lo_lvl3_gfdelta> 22670 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 22671 [0.12500 0.10938 0.10938 ] 22672 </y_hi_lvl3_gfdelta> 22673 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 22674 [1.00000 0.77354 0.53926 ] 22675 </uv_lo_noiseprofile> 22676 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 22677 [0.65807 0.59759 0.35740 ] 22678 </uv_hi_noiseprofile> 22679 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 22680 [1.0000 1.0000 1.0000 ] 22681 </uv_lo_denoiseweight> 22682 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 22683 [1.0000 1.0000 1.0000 ] 22684 </uv_hi_denoiseweight> 22685 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 22686 [0.5000 0.5000 0.5000 ] 22687 </uv_lo_bfscale> 22688 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 22689 [0.4000 0.4500 0.5000 ] 22690 </uv_hi_bfscale> 22691 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 22692 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 22693 </uv_lumanrpoint> 22694 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 22695 [1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 ] 22696 </uv_lumanrcurve> 22697 <uv_denoisestrength index="1" type="double" size="[1 1]"> 22698 [1.8000 ] 22699 </uv_denoisestrength> 22700 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22701 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22702 </uv_lo_lvl0_gfdelta> 22703 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22704 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22705 </uv_hi_lvl0_gfdelta> 22706 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22707 [0.12500 0.10938 0.10938 ] 22708 </uv_lo_lvl1_gfdelta> 22709 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22710 [0.12500 0.10938 0.10938 ] 22711 </uv_hi_lvl1_gfdelta> 22712 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22713 [0.12500 0.10938 0.10938 ] 22714 </uv_lo_lvl2_gfdelta> 22715 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22716 [0.12500 0.10938 0.10938 ] 22717 </uv_hi_lvl2_gfdelta> 22718 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 22719 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22720 </lvl0_gfsigma> 22721 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 22722 [0.12500 0.10938 0.10938 ] 22723 </lvl1_gfsigma> 22724 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 22725 [0.12500 0.10938 0.10938 ] 22726 </lvl2_gfsigma> 22727 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 22728 [0.12500 0.10938 0.10938 ] 22729 </lvl3_gfsigma> 22730 </cell> 22731 <cell index="4" type="struct" size="[1 1]"> 22732 <iso index="1" type="double" size="[1 1]"> 22733 [400.0000 ] 22734 </iso> 22735 <weight_limit_y index="1" type="double" size="[1 4]"> 22736 [32.0000 32.0000 32.0000 32.0000 ] 22737 </weight_limit_y> 22738 <weight_limit_uv index="1" type="double" size="[1 3]"> 22739 [32.0000 32.0000 32.0000 ] 22740 </weight_limit_uv> 22741 <ratio_frq index="1" type="double" size="[1 4]"> 22742 [0.5000 2.0000 0.5000 2.0000 ] 22743 </ratio_frq> 22744 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 22745 [0.5000 0.5000 0.5000 ] 22746 </luma_w_in_chroma> 22747 <noise_curve index="1" type="double" size="[1 5]"> 22748 [-2.78200837475752e-012 2.61174369092566e-008 -8.77094728358591e-005 1.11980382041814e-001 2.36814539463394e+001 ] 22749 </noise_curve> 22750 <noise_curve_x00 index="1" type="double" size="[1 1]"> 22751 [3.71400000000000e+003 ] 22752 </noise_curve_x00> 22753 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 22754 [1.00000 0.80420 0.59319 0.43480 ] 22755 </y_lo_noiseprofile> 22756 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 22757 [0.60811 0.56888 0.41942 0.00000 ] 22758 </y_hi_noiseprofile> 22759 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 22760 [1.0000 1.0000 1.0000 1.0000 ] 22761 </y_lo_denoiseweight> 22762 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 22763 [1.0000 1.0000 1.0000 1.0000 ] 22764 </y_hi_denoiseweight> 22765 <y_lo_bfscale index="1" type="double" size="[1 4]"> 22766 [0.5000 0.5000 0.4000 0.4000 ] 22767 </y_lo_bfscale> 22768 <y_hi_bfscale index="1" type="double" size="[1 4]"> 22769 [0.4000 0.4000 0.4000 0.4000 ] 22770 </y_hi_bfscale> 22771 <y_lumanrpoint index="1" type="double" size="[1 6]"> 22772 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 22773 </y_lumanrpoint> 22774 <y_lumanrcurve index="1" type="double" size="[1 6]"> 22775 [1.6000 1.5000 1.3000 1.2500 1.3000 1.3000 ] 22776 </y_lumanrcurve> 22777 <y_denoisestrength index="1" type="double" size="[1 1]"> 22778 [2.2000 ] 22779 </y_denoisestrength> 22780 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22781 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22782 </y_lo_lvl0_gfdelta> 22783 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22784 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22785 </y_hi_lvl0_gfdelta> 22786 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22787 [0.12500 0.10938 0.10938 ] 22788 </y_lo_lvl1_gfdelta> 22789 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22790 [0.12500 0.10938 0.10938 ] 22791 </y_hi_lvl1_gfdelta> 22792 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22793 [0.12500 0.10938 0.10938 ] 22794 </y_lo_lvl2_gfdelta> 22795 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22796 [0.12500 0.10938 0.10938 ] 22797 </y_hi_lvl2_gfdelta> 22798 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 22799 [0.12500 0.10938 0.10938 ] 22800 </y_lo_lvl3_gfdelta> 22801 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 22802 [0.12500 0.10938 0.10938 ] 22803 </y_hi_lvl3_gfdelta> 22804 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 22805 [1.00000 0.80420 0.59319 ] 22806 </uv_lo_noiseprofile> 22807 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 22808 [0.60811 0.56888 0.39704 ] 22809 </uv_hi_noiseprofile> 22810 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 22811 [1.0000 1.0000 1.0000 ] 22812 </uv_lo_denoiseweight> 22813 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 22814 [1.0000 1.0000 1.0000 ] 22815 </uv_hi_denoiseweight> 22816 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 22817 [0.5000 0.5000 0.4000 ] 22818 </uv_lo_bfscale> 22819 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 22820 [0.4000 0.4000 0.4000 ] 22821 </uv_hi_bfscale> 22822 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 22823 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 22824 </uv_lumanrpoint> 22825 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 22826 [1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 ] 22827 </uv_lumanrcurve> 22828 <uv_denoisestrength index="1" type="double" size="[1 1]"> 22829 [2.2000 ] 22830 </uv_denoisestrength> 22831 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22832 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22833 </uv_lo_lvl0_gfdelta> 22834 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22835 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22836 </uv_hi_lvl0_gfdelta> 22837 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22838 [0.12500 0.10938 0.10938 ] 22839 </uv_lo_lvl1_gfdelta> 22840 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22841 [0.12500 0.10938 0.10938 ] 22842 </uv_hi_lvl1_gfdelta> 22843 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22844 [0.12500 0.10938 0.10938 ] 22845 </uv_lo_lvl2_gfdelta> 22846 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22847 [0.12500 0.10938 0.10938 ] 22848 </uv_hi_lvl2_gfdelta> 22849 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 22850 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22851 </lvl0_gfsigma> 22852 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 22853 [0.12500 0.10938 0.10938 ] 22854 </lvl1_gfsigma> 22855 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 22856 [0.12500 0.10938 0.10938 ] 22857 </lvl2_gfsigma> 22858 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 22859 [0.12500 0.10938 0.10938 ] 22860 </lvl3_gfsigma> 22861 </cell> 22862 <cell index="5" type="struct" size="[1 1]"> 22863 <iso index="1" type="double" size="[1 1]"> 22864 [800.0000 ] 22865 </iso> 22866 <weight_limit_y index="1" type="double" size="[1 4]"> 22867 [32.0000 32.0000 32.0000 32.0000 ] 22868 </weight_limit_y> 22869 <weight_limit_uv index="1" type="double" size="[1 3]"> 22870 [32.0000 32.0000 32.0000 ] 22871 </weight_limit_uv> 22872 <ratio_frq index="1" type="double" size="[1 4]"> 22873 [0.5000 2.0000 0.5000 2.0000 ] 22874 </ratio_frq> 22875 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 22876 [0.6000 0.6000 0.6000 ] 22877 </luma_w_in_chroma> 22878 <noise_curve index="1" type="double" size="[1 5]"> 22879 [-2.23709690355328e-012 2.11901816670340e-008 -7.26688079299778e-005 9.60394777007423e-002 2.24640616934303e+001 ] 22880 </noise_curve> 22881 <noise_curve_x00 index="1" type="double" size="[1 1]"> 22882 [3.33100000000000e+003 ] 22883 </noise_curve_x00> 22884 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 22885 [1.00000 0.82405 0.62343 0.46180 ] 22886 </y_lo_noiseprofile> 22887 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 22888 [0.57401 0.56317 0.43568 0.00000 ] 22889 </y_hi_noiseprofile> 22890 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 22891 [1.0000 1.0000 1.0000 1.0000 ] 22892 </y_lo_denoiseweight> 22893 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 22894 [1.0000 1.0000 1.0000 1.0000 ] 22895 </y_hi_denoiseweight> 22896 <y_lo_bfscale index="1" type="double" size="[1 4]"> 22897 [0.5000 0.5000 0.4000 0.4000 ] 22898 </y_lo_bfscale> 22899 <y_hi_bfscale index="1" type="double" size="[1 4]"> 22900 [0.4000 0.4000 0.4000 0.4000 ] 22901 </y_hi_bfscale> 22902 <y_lumanrpoint index="1" type="double" size="[1 6]"> 22903 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 22904 </y_lumanrpoint> 22905 <y_lumanrcurve index="1" type="double" size="[1 6]"> 22906 [1.7000 1.5000 1.3000 1.3500 1.4000 1.4000 ] 22907 </y_lumanrcurve> 22908 <y_denoisestrength index="1" type="double" size="[1 1]"> 22909 [2.8000 ] 22910 </y_denoisestrength> 22911 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22912 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22913 </y_lo_lvl0_gfdelta> 22914 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22915 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22916 </y_hi_lvl0_gfdelta> 22917 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22918 [0.12500 0.10938 0.10938 ] 22919 </y_lo_lvl1_gfdelta> 22920 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22921 [0.12500 0.10938 0.10938 ] 22922 </y_hi_lvl1_gfdelta> 22923 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22924 [0.12500 0.10938 0.10938 ] 22925 </y_lo_lvl2_gfdelta> 22926 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22927 [0.12500 0.10938 0.10938 ] 22928 </y_hi_lvl2_gfdelta> 22929 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 22930 [0.12500 0.10938 0.10938 ] 22931 </y_lo_lvl3_gfdelta> 22932 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 22933 [0.12500 0.10938 0.10938 ] 22934 </y_hi_lvl3_gfdelta> 22935 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 22936 [1.00000 0.82405 0.62343 ] 22937 </uv_lo_noiseprofile> 22938 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 22939 [0.57401 0.56317 0.39342 ] 22940 </uv_hi_noiseprofile> 22941 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 22942 [1.0000 1.0000 1.0000 ] 22943 </uv_lo_denoiseweight> 22944 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 22945 [1.0000 1.0000 1.0000 ] 22946 </uv_hi_denoiseweight> 22947 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 22948 [0.5000 0.5000 0.4000 ] 22949 </uv_lo_bfscale> 22950 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 22951 [0.4000 0.4000 0.4000 ] 22952 </uv_hi_bfscale> 22953 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 22954 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 22955 </uv_lumanrpoint> 22956 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 22957 [1.8000 1.7000 1.5000 1.5000 1.5000 1.5000 ] 22958 </uv_lumanrcurve> 22959 <uv_denoisestrength index="1" type="double" size="[1 1]"> 22960 [2.8000 ] 22961 </uv_denoisestrength> 22962 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22963 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22964 </uv_lo_lvl0_gfdelta> 22965 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 22966 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22967 </uv_hi_lvl0_gfdelta> 22968 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22969 [0.12500 0.10938 0.10938 ] 22970 </uv_lo_lvl1_gfdelta> 22971 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 22972 [0.12500 0.10938 0.10938 ] 22973 </uv_hi_lvl1_gfdelta> 22974 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22975 [0.12500 0.10938 0.10938 ] 22976 </uv_lo_lvl2_gfdelta> 22977 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 22978 [0.12500 0.10938 0.10938 ] 22979 </uv_hi_lvl2_gfdelta> 22980 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 22981 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 22982 </lvl0_gfsigma> 22983 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 22984 [0.12500 0.10938 0.10938 ] 22985 </lvl1_gfsigma> 22986 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 22987 [0.12500 0.10938 0.10938 ] 22988 </lvl2_gfsigma> 22989 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 22990 [0.12500 0.10938 0.10938 ] 22991 </lvl3_gfsigma> 22992 </cell> 22993 <cell index="6" type="struct" size="[1 1]"> 22994 <iso index="1" type="double" size="[1 1]"> 22995 [1600.0000 ] 22996 </iso> 22997 <weight_limit_y index="1" type="double" size="[1 4]"> 22998 [16.0000 16.0000 16.0000 16.0000 ] 22999 </weight_limit_y> 23000 <weight_limit_uv index="1" type="double" size="[1 3]"> 23001 [16.0000 16.0000 16.0000 ] 23002 </weight_limit_uv> 23003 <ratio_frq index="1" type="double" size="[1 4]"> 23004 [0.5000 2.0000 0.5000 2.0000 ] 23005 </ratio_frq> 23006 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 23007 [0.6500 0.6500 0.6500 ] 23008 </luma_w_in_chroma> 23009 <noise_curve index="1" type="double" size="[1 5]"> 23010 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 23011 </noise_curve> 23012 <noise_curve_x00 index="1" type="double" size="[1 1]"> 23013 [3.24400000000000e+003 ] 23014 </noise_curve_x00> 23015 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 23016 [1.00000 0.72770 0.46182 0.29414 ] 23017 </y_lo_noiseprofile> 23018 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 23019 [0.73231 0.60469 0.39427 0.00000 ] 23020 </y_hi_noiseprofile> 23021 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 23022 [1.0000 1.0000 1.0000 1.0000 ] 23023 </y_lo_denoiseweight> 23024 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 23025 [1.0000 1.0000 1.0000 1.0000 ] 23026 </y_hi_denoiseweight> 23027 <y_lo_bfscale index="1" type="double" size="[1 4]"> 23028 [0.5000 0.5000 0.5000 0.7000 ] 23029 </y_lo_bfscale> 23030 <y_hi_bfscale index="1" type="double" size="[1 4]"> 23031 [0.5000 0.5000 0.5000 0.7000 ] 23032 </y_hi_bfscale> 23033 <y_lumanrpoint index="1" type="double" size="[1 6]"> 23034 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 23035 </y_lumanrpoint> 23036 <y_lumanrcurve index="1" type="double" size="[1 6]"> 23037 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 23038 </y_lumanrcurve> 23039 <y_denoisestrength index="1" type="double" size="[1 1]"> 23040 [3.2000 ] 23041 </y_denoisestrength> 23042 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23043 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23044 </y_lo_lvl0_gfdelta> 23045 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23046 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23047 </y_hi_lvl0_gfdelta> 23048 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23049 [0.12500 0.10938 0.10938 ] 23050 </y_lo_lvl1_gfdelta> 23051 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23052 [0.12500 0.10938 0.10938 ] 23053 </y_hi_lvl1_gfdelta> 23054 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23055 [0.12500 0.10938 0.10938 ] 23056 </y_lo_lvl2_gfdelta> 23057 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23058 [0.12500 0.10938 0.10938 ] 23059 </y_hi_lvl2_gfdelta> 23060 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 23061 [0.12500 0.10938 0.10938 ] 23062 </y_lo_lvl3_gfdelta> 23063 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 23064 [0.12500 0.10938 0.10938 ] 23065 </y_hi_lvl3_gfdelta> 23066 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 23067 [1.00000 0.72770 0.46182 ] 23068 </uv_lo_noiseprofile> 23069 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 23070 [0.73231 0.60469 0.39427 ] 23071 </uv_hi_noiseprofile> 23072 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 23073 [1.0000 1.0000 1.0000 ] 23074 </uv_lo_denoiseweight> 23075 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 23076 [1.0000 1.0000 1.0000 ] 23077 </uv_hi_denoiseweight> 23078 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 23079 [0.5000 0.7000 0.7000 ] 23080 </uv_lo_bfscale> 23081 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 23082 [0.3000 0.4000 0.5000 ] 23083 </uv_hi_bfscale> 23084 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 23085 [0.0000 32.0000 64.0000 192.0000 232.0000 255.0000 ] 23086 </uv_lumanrpoint> 23087 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 23088 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 23089 </uv_lumanrcurve> 23090 <uv_denoisestrength index="1" type="double" size="[1 1]"> 23091 [3.2000 ] 23092 </uv_denoisestrength> 23093 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23094 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23095 </uv_lo_lvl0_gfdelta> 23096 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23097 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23098 </uv_hi_lvl0_gfdelta> 23099 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23100 [0.12500 0.10938 0.10938 ] 23101 </uv_lo_lvl1_gfdelta> 23102 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23103 [0.12500 0.10938 0.10938 ] 23104 </uv_hi_lvl1_gfdelta> 23105 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23106 [0.12500 0.10938 0.10938 ] 23107 </uv_lo_lvl2_gfdelta> 23108 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23109 [0.12500 0.10938 0.10938 ] 23110 </uv_hi_lvl2_gfdelta> 23111 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 23112 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23113 </lvl0_gfsigma> 23114 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 23115 [0.12500 0.10938 0.10938 ] 23116 </lvl1_gfsigma> 23117 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 23118 [0.12500 0.10938 0.10938 ] 23119 </lvl2_gfsigma> 23120 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 23121 [0.12500 0.10938 0.10938 ] 23122 </lvl3_gfsigma> 23123 </cell> 23124 <cell index="7" type="struct" size="[1 1]"> 23125 <iso index="1" type="double" size="[1 1]"> 23126 [3200.0000 ] 23127 </iso> 23128 <weight_limit_y index="1" type="double" size="[1 4]"> 23129 [16.0000 16.0000 16.0000 16.0000 ] 23130 </weight_limit_y> 23131 <weight_limit_uv index="1" type="double" size="[1 3]"> 23132 [16.0000 16.0000 16.0000 ] 23133 </weight_limit_uv> 23134 <ratio_frq index="1" type="double" size="[1 4]"> 23135 [0.5000 2.0000 0.5000 2.0000 ] 23136 </ratio_frq> 23137 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 23138 [0.7000 0.7000 0.7000 ] 23139 </luma_w_in_chroma> 23140 <noise_curve index="1" type="double" size="[1 5]"> 23141 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 23142 </noise_curve> 23143 <noise_curve_x00 index="1" type="double" size="[1 1]"> 23144 [3.17000000000000e+003 ] 23145 </noise_curve_x00> 23146 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 23147 [1.00000 0.72924 0.45749 0.28517 ] 23148 </y_lo_noiseprofile> 23149 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 23150 [0.72960 0.61071 0.39626 0.00000 ] 23151 </y_hi_noiseprofile> 23152 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 23153 [1.0000 1.0000 1.0000 1.0000 ] 23154 </y_lo_denoiseweight> 23155 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 23156 [1.0000 1.0000 1.0000 1.0000 ] 23157 </y_hi_denoiseweight> 23158 <y_lo_bfscale index="1" type="double" size="[1 4]"> 23159 [0.5000 0.5000 0.5000 0.7000 ] 23160 </y_lo_bfscale> 23161 <y_hi_bfscale index="1" type="double" size="[1 4]"> 23162 [0.5000 0.5000 0.5000 0.7000 ] 23163 </y_hi_bfscale> 23164 <y_lumanrpoint index="1" type="double" size="[1 6]"> 23165 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 23166 </y_lumanrpoint> 23167 <y_lumanrcurve index="1" type="double" size="[1 6]"> 23168 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 23169 </y_lumanrcurve> 23170 <y_denoisestrength index="1" type="double" size="[1 1]"> 23171 [1.4000 ] 23172 </y_denoisestrength> 23173 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23174 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23175 </y_lo_lvl0_gfdelta> 23176 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23177 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23178 </y_hi_lvl0_gfdelta> 23179 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23180 [0.12500 0.10938 0.10938 ] 23181 </y_lo_lvl1_gfdelta> 23182 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23183 [0.12500 0.10938 0.10938 ] 23184 </y_hi_lvl1_gfdelta> 23185 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23186 [0.12500 0.10938 0.10938 ] 23187 </y_lo_lvl2_gfdelta> 23188 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23189 [0.12500 0.10938 0.10938 ] 23190 </y_hi_lvl2_gfdelta> 23191 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 23192 [0.12500 0.10938 0.10938 ] 23193 </y_lo_lvl3_gfdelta> 23194 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 23195 [0.12500 0.10938 0.10938 ] 23196 </y_hi_lvl3_gfdelta> 23197 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 23198 [1.00000 0.72924 0.45749 ] 23199 </uv_lo_noiseprofile> 23200 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 23201 [0.72960 0.61071 0.39626 ] 23202 </uv_hi_noiseprofile> 23203 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 23204 [1.0000 1.0000 1.0000 ] 23205 </uv_lo_denoiseweight> 23206 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 23207 [1.0000 1.0000 1.0000 ] 23208 </uv_hi_denoiseweight> 23209 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 23210 [0.5000 0.7000 0.7000 ] 23211 </uv_lo_bfscale> 23212 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 23213 [0.3000 0.3000 0.4000 ] 23214 </uv_hi_bfscale> 23215 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 23216 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 23217 </uv_lumanrpoint> 23218 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 23219 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 23220 </uv_lumanrcurve> 23221 <uv_denoisestrength index="1" type="double" size="[1 1]"> 23222 [1.4000 ] 23223 </uv_denoisestrength> 23224 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23225 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23226 </uv_lo_lvl0_gfdelta> 23227 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23228 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23229 </uv_hi_lvl0_gfdelta> 23230 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23231 [0.12500 0.10938 0.10938 ] 23232 </uv_lo_lvl1_gfdelta> 23233 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23234 [0.12500 0.10938 0.10938 ] 23235 </uv_hi_lvl1_gfdelta> 23236 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23237 [0.12500 0.10938 0.10938 ] 23238 </uv_lo_lvl2_gfdelta> 23239 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23240 [0.12500 0.10938 0.10938 ] 23241 </uv_hi_lvl2_gfdelta> 23242 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 23243 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23244 </lvl0_gfsigma> 23245 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 23246 [0.12500 0.10938 0.10938 ] 23247 </lvl1_gfsigma> 23248 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 23249 [0.12500 0.10938 0.10938 ] 23250 </lvl2_gfsigma> 23251 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 23252 [0.12500 0.10938 0.10938 ] 23253 </lvl3_gfsigma> 23254 </cell> 23255 <cell index="8" type="struct" size="[1 1]"> 23256 <iso index="1" type="double" size="[1 1]"> 23257 [6400.0000 ] 23258 </iso> 23259 <weight_limit_y index="1" type="double" size="[1 4]"> 23260 [4.0000 4.0000 4.0000 4.0000 ] 23261 </weight_limit_y> 23262 <weight_limit_uv index="1" type="double" size="[1 3]"> 23263 [4.0000 4.0000 4.0000 ] 23264 </weight_limit_uv> 23265 <ratio_frq index="1" type="double" size="[1 4]"> 23266 [0.5000 2.0000 0.5000 2.0000 ] 23267 </ratio_frq> 23268 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 23269 [0.7500 0.7500 0.7500 ] 23270 </luma_w_in_chroma> 23271 <noise_curve index="1" type="double" size="[1 5]"> 23272 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 23273 </noise_curve> 23274 <noise_curve_x00 index="1" type="double" size="[1 1]"> 23275 [3.17000000000000e+003 ] 23276 </noise_curve_x00> 23277 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 23278 [1.00000 0.72924 0.45749 0.28517 ] 23279 </y_lo_noiseprofile> 23280 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 23281 [0.72960 0.61071 0.39626 0.00000 ] 23282 </y_hi_noiseprofile> 23283 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 23284 [1.0000 1.0000 1.0000 1.0000 ] 23285 </y_lo_denoiseweight> 23286 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 23287 [1.0000 1.0000 1.0000 1.0000 ] 23288 </y_hi_denoiseweight> 23289 <y_lo_bfscale index="1" type="double" size="[1 4]"> 23290 [0.5000 0.5000 0.5000 0.7000 ] 23291 </y_lo_bfscale> 23292 <y_hi_bfscale index="1" type="double" size="[1 4]"> 23293 [0.5000 0.5000 0.5000 0.7000 ] 23294 </y_hi_bfscale> 23295 <y_lumanrpoint index="1" type="double" size="[1 6]"> 23296 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 23297 </y_lumanrpoint> 23298 <y_lumanrcurve index="1" type="double" size="[1 6]"> 23299 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 23300 </y_lumanrcurve> 23301 <y_denoisestrength index="1" type="double" size="[1 1]"> 23302 [1.6000 ] 23303 </y_denoisestrength> 23304 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23305 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23306 </y_lo_lvl0_gfdelta> 23307 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23308 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23309 </y_hi_lvl0_gfdelta> 23310 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23311 [0.12500 0.10938 0.10938 ] 23312 </y_lo_lvl1_gfdelta> 23313 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23314 [0.12500 0.10938 0.10938 ] 23315 </y_hi_lvl1_gfdelta> 23316 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23317 [0.12500 0.10938 0.10938 ] 23318 </y_lo_lvl2_gfdelta> 23319 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23320 [0.12500 0.10938 0.10938 ] 23321 </y_hi_lvl2_gfdelta> 23322 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 23323 [0.12500 0.10938 0.10938 ] 23324 </y_lo_lvl3_gfdelta> 23325 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 23326 [0.12500 0.10938 0.10938 ] 23327 </y_hi_lvl3_gfdelta> 23328 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 23329 [1.00000 0.72924 0.45749 ] 23330 </uv_lo_noiseprofile> 23331 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 23332 [0.72960 0.61071 0.39626 ] 23333 </uv_hi_noiseprofile> 23334 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 23335 [1.0000 1.0000 1.0000 ] 23336 </uv_lo_denoiseweight> 23337 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 23338 [1.0000 1.0000 1.0000 ] 23339 </uv_hi_denoiseweight> 23340 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 23341 [0.5000 0.7000 0.7000 ] 23342 </uv_lo_bfscale> 23343 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 23344 [0.3000 0.3000 0.4000 ] 23345 </uv_hi_bfscale> 23346 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 23347 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 23348 </uv_lumanrpoint> 23349 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 23350 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 23351 </uv_lumanrcurve> 23352 <uv_denoisestrength index="1" type="double" size="[1 1]"> 23353 [1.6000 ] 23354 </uv_denoisestrength> 23355 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23356 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23357 </uv_lo_lvl0_gfdelta> 23358 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23359 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23360 </uv_hi_lvl0_gfdelta> 23361 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23362 [0.12500 0.10938 0.10938 ] 23363 </uv_lo_lvl1_gfdelta> 23364 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23365 [0.12500 0.10938 0.10938 ] 23366 </uv_hi_lvl1_gfdelta> 23367 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23368 [0.12500 0.10938 0.10938 ] 23369 </uv_lo_lvl2_gfdelta> 23370 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23371 [0.12500 0.10938 0.10938 ] 23372 </uv_hi_lvl2_gfdelta> 23373 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 23374 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23375 </lvl0_gfsigma> 23376 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 23377 [0.12500 0.10938 0.10938 ] 23378 </lvl1_gfsigma> 23379 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 23380 [0.12500 0.10938 0.10938 ] 23381 </lvl2_gfsigma> 23382 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 23383 [0.12500 0.10938 0.10938 ] 23384 </lvl3_gfsigma> 23385 </cell> 23386 <cell index="9" type="struct" size="[1 1]"> 23387 <iso index="1" type="double" size="[1 1]"> 23388 [12800.0000 ] 23389 </iso> 23390 <weight_limit_y index="1" type="double" size="[1 4]"> 23391 [4.0000 4.0000 4.0000 4.0000 ] 23392 </weight_limit_y> 23393 <weight_limit_uv index="1" type="double" size="[1 3]"> 23394 [4.0000 4.0000 4.0000 ] 23395 </weight_limit_uv> 23396 <ratio_frq index="1" type="double" size="[1 4]"> 23397 [0.5000 2.0000 0.5000 2.0000 ] 23398 </ratio_frq> 23399 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 23400 [0.8000 0.8000 0.8000 ] 23401 </luma_w_in_chroma> 23402 <noise_curve index="1" type="double" size="[1 5]"> 23403 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 23404 </noise_curve> 23405 <noise_curve_x00 index="1" type="double" size="[1 1]"> 23406 [3.17000000000000e+003 ] 23407 </noise_curve_x00> 23408 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 23409 [1.00000 0.72924 0.45749 0.28517 ] 23410 </y_lo_noiseprofile> 23411 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 23412 [0.72960 0.61071 0.39626 0.00000 ] 23413 </y_hi_noiseprofile> 23414 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 23415 [1.0000 1.0000 1.0000 1.0000 ] 23416 </y_lo_denoiseweight> 23417 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 23418 [1.0000 1.0000 1.0000 1.0000 ] 23419 </y_hi_denoiseweight> 23420 <y_lo_bfscale index="1" type="double" size="[1 4]"> 23421 [0.5000 0.5000 0.5000 0.7000 ] 23422 </y_lo_bfscale> 23423 <y_hi_bfscale index="1" type="double" size="[1 4]"> 23424 [0.5000 0.5000 0.5000 0.7000 ] 23425 </y_hi_bfscale> 23426 <y_lumanrpoint index="1" type="double" size="[1 6]"> 23427 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 23428 </y_lumanrpoint> 23429 <y_lumanrcurve index="1" type="double" size="[1 6]"> 23430 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 23431 </y_lumanrcurve> 23432 <y_denoisestrength index="1" type="double" size="[1 1]"> 23433 [1.8000 ] 23434 </y_denoisestrength> 23435 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23436 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23437 </y_lo_lvl0_gfdelta> 23438 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23439 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23440 </y_hi_lvl0_gfdelta> 23441 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23442 [0.12500 0.10938 0.10938 ] 23443 </y_lo_lvl1_gfdelta> 23444 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23445 [0.12500 0.10938 0.10938 ] 23446 </y_hi_lvl1_gfdelta> 23447 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23448 [0.12500 0.10938 0.10938 ] 23449 </y_lo_lvl2_gfdelta> 23450 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23451 [0.12500 0.10938 0.10938 ] 23452 </y_hi_lvl2_gfdelta> 23453 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 23454 [0.12500 0.10938 0.10938 ] 23455 </y_lo_lvl3_gfdelta> 23456 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 23457 [0.12500 0.10938 0.10938 ] 23458 </y_hi_lvl3_gfdelta> 23459 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 23460 [1.00000 0.72924 0.45749 ] 23461 </uv_lo_noiseprofile> 23462 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 23463 [0.72960 0.61071 0.39626 ] 23464 </uv_hi_noiseprofile> 23465 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 23466 [1.0000 1.0000 1.0000 ] 23467 </uv_lo_denoiseweight> 23468 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 23469 [1.0000 1.0000 1.0000 ] 23470 </uv_hi_denoiseweight> 23471 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 23472 [0.5000 0.7000 0.7000 ] 23473 </uv_lo_bfscale> 23474 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 23475 [0.3000 0.3000 0.4000 ] 23476 </uv_hi_bfscale> 23477 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 23478 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 23479 </uv_lumanrpoint> 23480 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 23481 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 23482 </uv_lumanrcurve> 23483 <uv_denoisestrength index="1" type="double" size="[1 1]"> 23484 [1.8000 ] 23485 </uv_denoisestrength> 23486 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23487 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23488 </uv_lo_lvl0_gfdelta> 23489 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23490 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23491 </uv_hi_lvl0_gfdelta> 23492 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23493 [0.12500 0.10938 0.10938 ] 23494 </uv_lo_lvl1_gfdelta> 23495 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23496 [0.12500 0.10938 0.10938 ] 23497 </uv_hi_lvl1_gfdelta> 23498 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23499 [0.12500 0.10938 0.10938 ] 23500 </uv_lo_lvl2_gfdelta> 23501 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23502 [0.12500 0.10938 0.10938 ] 23503 </uv_hi_lvl2_gfdelta> 23504 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 23505 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23506 </lvl0_gfsigma> 23507 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 23508 [0.12500 0.10938 0.10938 ] 23509 </lvl1_gfsigma> 23510 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 23511 [0.12500 0.10938 0.10938 ] 23512 </lvl2_gfsigma> 23513 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 23514 [0.12500 0.10938 0.10938 ] 23515 </lvl3_gfsigma> 23516 </cell> 23517 <cell index="10" type="struct" size="[1 1]"> 23518 <iso index="1" type="double" size="[1 1]"> 23519 [25600.0000 ] 23520 </iso> 23521 <weight_limit_y index="1" type="double" size="[1 4]"> 23522 [4.0000 4.0000 4.0000 4.0000 ] 23523 </weight_limit_y> 23524 <weight_limit_uv index="1" type="double" size="[1 3]"> 23525 [4.0000 4.0000 4.0000 ] 23526 </weight_limit_uv> 23527 <ratio_frq index="1" type="double" size="[1 4]"> 23528 [0.5000 2.0000 0.5000 2.0000 ] 23529 </ratio_frq> 23530 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 23531 [0.8000 0.8000 0.8000 ] 23532 </luma_w_in_chroma> 23533 <noise_curve index="1" type="double" size="[1 5]"> 23534 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 23535 </noise_curve> 23536 <noise_curve_x00 index="1" type="double" size="[1 1]"> 23537 [3.17000000000000e+003 ] 23538 </noise_curve_x00> 23539 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 23540 [1.00000 0.72924 0.45749 0.28517 ] 23541 </y_lo_noiseprofile> 23542 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 23543 [0.72960 0.61071 0.39626 0.00000 ] 23544 </y_hi_noiseprofile> 23545 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 23546 [1.0000 1.0000 1.0000 1.0000 ] 23547 </y_lo_denoiseweight> 23548 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 23549 [1.0000 1.0000 1.0000 1.0000 ] 23550 </y_hi_denoiseweight> 23551 <y_lo_bfscale index="1" type="double" size="[1 4]"> 23552 [0.5000 0.5000 0.5000 0.7000 ] 23553 </y_lo_bfscale> 23554 <y_hi_bfscale index="1" type="double" size="[1 4]"> 23555 [0.5000 0.5000 0.5000 0.7000 ] 23556 </y_hi_bfscale> 23557 <y_lumanrpoint index="1" type="double" size="[1 6]"> 23558 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 23559 </y_lumanrpoint> 23560 <y_lumanrcurve index="1" type="double" size="[1 6]"> 23561 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 23562 </y_lumanrcurve> 23563 <y_denoisestrength index="1" type="double" size="[1 1]"> 23564 [1.8000 ] 23565 </y_denoisestrength> 23566 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23567 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23568 </y_lo_lvl0_gfdelta> 23569 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23570 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23571 </y_hi_lvl0_gfdelta> 23572 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23573 [0.12500 0.10938 0.10938 ] 23574 </y_lo_lvl1_gfdelta> 23575 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23576 [0.12500 0.10938 0.10938 ] 23577 </y_hi_lvl1_gfdelta> 23578 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23579 [0.12500 0.10938 0.10938 ] 23580 </y_lo_lvl2_gfdelta> 23581 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23582 [0.12500 0.10938 0.10938 ] 23583 </y_hi_lvl2_gfdelta> 23584 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 23585 [0.12500 0.10938 0.10938 ] 23586 </y_lo_lvl3_gfdelta> 23587 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 23588 [0.12500 0.10938 0.10938 ] 23589 </y_hi_lvl3_gfdelta> 23590 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 23591 [1.00000 0.72924 0.45749 ] 23592 </uv_lo_noiseprofile> 23593 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 23594 [0.72960 0.61071 0.39626 ] 23595 </uv_hi_noiseprofile> 23596 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 23597 [1.0000 1.0000 1.0000 ] 23598 </uv_lo_denoiseweight> 23599 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 23600 [1.0000 1.0000 1.0000 ] 23601 </uv_hi_denoiseweight> 23602 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 23603 [0.5000 0.7000 0.7000 ] 23604 </uv_lo_bfscale> 23605 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 23606 [0.3000 0.3000 0.4000 ] 23607 </uv_hi_bfscale> 23608 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 23609 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 23610 </uv_lumanrpoint> 23611 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 23612 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 23613 </uv_lumanrcurve> 23614 <uv_denoisestrength index="1" type="double" size="[1 1]"> 23615 [1.8000 ] 23616 </uv_denoisestrength> 23617 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23618 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23619 </uv_lo_lvl0_gfdelta> 23620 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23621 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23622 </uv_hi_lvl0_gfdelta> 23623 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23624 [0.12500 0.10938 0.10938 ] 23625 </uv_lo_lvl1_gfdelta> 23626 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23627 [0.12500 0.10938 0.10938 ] 23628 </uv_hi_lvl1_gfdelta> 23629 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23630 [0.12500 0.10938 0.10938 ] 23631 </uv_lo_lvl2_gfdelta> 23632 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23633 [0.12500 0.10938 0.10938 ] 23634 </uv_hi_lvl2_gfdelta> 23635 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 23636 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23637 </lvl0_gfsigma> 23638 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 23639 [0.12500 0.10938 0.10938 ] 23640 </lvl1_gfsigma> 23641 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 23642 [0.12500 0.10938 0.10938 ] 23643 </lvl2_gfsigma> 23644 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 23645 [0.12500 0.10938 0.10938 ] 23646 </lvl3_gfsigma> 23647 </cell> 23648 <cell index="11" type="struct" size="[1 1]"> 23649 <iso index="1" type="double" size="[1 1]"> 23650 [51200.0000 ] 23651 </iso> 23652 <weight_limit_y index="1" type="double" size="[1 4]"> 23653 [4.0000 4.0000 4.0000 4.0000 ] 23654 </weight_limit_y> 23655 <weight_limit_uv index="1" type="double" size="[1 3]"> 23656 [4.0000 4.0000 4.0000 ] 23657 </weight_limit_uv> 23658 <ratio_frq index="1" type="double" size="[1 4]"> 23659 [0.5000 2.0000 0.5000 2.0000 ] 23660 </ratio_frq> 23661 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 23662 [0.8000 0.8000 0.8000 ] 23663 </luma_w_in_chroma> 23664 <noise_curve index="1" type="double" size="[1 5]"> 23665 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 23666 </noise_curve> 23667 <noise_curve_x00 index="1" type="double" size="[1 1]"> 23668 [3.17000000000000e+003 ] 23669 </noise_curve_x00> 23670 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 23671 [1.00000 0.72924 0.45749 0.28517 ] 23672 </y_lo_noiseprofile> 23673 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 23674 [0.72960 0.61071 0.39626 0.00000 ] 23675 </y_hi_noiseprofile> 23676 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 23677 [1.0000 1.0000 1.0000 1.0000 ] 23678 </y_lo_denoiseweight> 23679 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 23680 [1.0000 1.0000 1.0000 1.0000 ] 23681 </y_hi_denoiseweight> 23682 <y_lo_bfscale index="1" type="double" size="[1 4]"> 23683 [0.5000 0.5000 0.5000 0.7000 ] 23684 </y_lo_bfscale> 23685 <y_hi_bfscale index="1" type="double" size="[1 4]"> 23686 [0.5000 0.5000 0.5000 0.7000 ] 23687 </y_hi_bfscale> 23688 <y_lumanrpoint index="1" type="double" size="[1 6]"> 23689 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 23690 </y_lumanrpoint> 23691 <y_lumanrcurve index="1" type="double" size="[1 6]"> 23692 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 23693 </y_lumanrcurve> 23694 <y_denoisestrength index="1" type="double" size="[1 1]"> 23695 [1.8000 ] 23696 </y_denoisestrength> 23697 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23698 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23699 </y_lo_lvl0_gfdelta> 23700 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23701 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23702 </y_hi_lvl0_gfdelta> 23703 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23704 [0.12500 0.10938 0.10938 ] 23705 </y_lo_lvl1_gfdelta> 23706 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23707 [0.12500 0.10938 0.10938 ] 23708 </y_hi_lvl1_gfdelta> 23709 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23710 [0.12500 0.10938 0.10938 ] 23711 </y_lo_lvl2_gfdelta> 23712 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23713 [0.12500 0.10938 0.10938 ] 23714 </y_hi_lvl2_gfdelta> 23715 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 23716 [0.12500 0.10938 0.10938 ] 23717 </y_lo_lvl3_gfdelta> 23718 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 23719 [0.12500 0.10938 0.10938 ] 23720 </y_hi_lvl3_gfdelta> 23721 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 23722 [1.00000 0.72924 0.45749 ] 23723 </uv_lo_noiseprofile> 23724 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 23725 [0.72960 0.61071 0.39626 ] 23726 </uv_hi_noiseprofile> 23727 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 23728 [1.0000 1.0000 1.0000 ] 23729 </uv_lo_denoiseweight> 23730 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 23731 [1.0000 1.0000 1.0000 ] 23732 </uv_hi_denoiseweight> 23733 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 23734 [0.5000 0.7000 0.7000 ] 23735 </uv_lo_bfscale> 23736 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 23737 [0.3000 0.3000 0.4000 ] 23738 </uv_hi_bfscale> 23739 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 23740 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 23741 </uv_lumanrpoint> 23742 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 23743 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 23744 </uv_lumanrcurve> 23745 <uv_denoisestrength index="1" type="double" size="[1 1]"> 23746 [1.8000 ] 23747 </uv_denoisestrength> 23748 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23749 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23750 </uv_lo_lvl0_gfdelta> 23751 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23752 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23753 </uv_hi_lvl0_gfdelta> 23754 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23755 [0.12500 0.10938 0.10938 ] 23756 </uv_lo_lvl1_gfdelta> 23757 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23758 [0.12500 0.10938 0.10938 ] 23759 </uv_hi_lvl1_gfdelta> 23760 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23761 [0.12500 0.10938 0.10938 ] 23762 </uv_lo_lvl2_gfdelta> 23763 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23764 [0.12500 0.10938 0.10938 ] 23765 </uv_hi_lvl2_gfdelta> 23766 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 23767 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23768 </lvl0_gfsigma> 23769 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 23770 [0.12500 0.10938 0.10938 ] 23771 </lvl1_gfsigma> 23772 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 23773 [0.12500 0.10938 0.10938 ] 23774 </lvl2_gfsigma> 23775 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 23776 [0.12500 0.10938 0.10938 ] 23777 </lvl3_gfsigma> 23778 </cell> 23779 <cell index="12" type="struct" size="[1 1]"> 23780 <iso index="1" type="double" size="[1 1]"> 23781 [102400.0000 ] 23782 </iso> 23783 <weight_limit_y index="1" type="double" size="[1 4]"> 23784 [4.0000 4.0000 4.0000 4.0000 ] 23785 </weight_limit_y> 23786 <weight_limit_uv index="1" type="double" size="[1 3]"> 23787 [4.0000 4.0000 4.0000 ] 23788 </weight_limit_uv> 23789 <ratio_frq index="1" type="double" size="[1 4]"> 23790 [0.5000 2.0000 0.5000 2.0000 ] 23791 </ratio_frq> 23792 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 23793 [0.8000 0.8000 0.8000 ] 23794 </luma_w_in_chroma> 23795 <noise_curve index="1" type="double" size="[1 5]"> 23796 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 23797 </noise_curve> 23798 <noise_curve_x00 index="1" type="double" size="[1 1]"> 23799 [3.17000000000000e+003 ] 23800 </noise_curve_x00> 23801 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 23802 [1.00000 0.72924 0.45749 0.28517 ] 23803 </y_lo_noiseprofile> 23804 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 23805 [0.72960 0.61071 0.39626 0.00000 ] 23806 </y_hi_noiseprofile> 23807 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 23808 [1.0000 1.0000 1.0000 1.0000 ] 23809 </y_lo_denoiseweight> 23810 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 23811 [1.0000 1.0000 1.0000 1.0000 ] 23812 </y_hi_denoiseweight> 23813 <y_lo_bfscale index="1" type="double" size="[1 4]"> 23814 [0.5000 0.5000 0.5000 0.7000 ] 23815 </y_lo_bfscale> 23816 <y_hi_bfscale index="1" type="double" size="[1 4]"> 23817 [0.5000 0.5000 0.5000 0.7000 ] 23818 </y_hi_bfscale> 23819 <y_lumanrpoint index="1" type="double" size="[1 6]"> 23820 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 23821 </y_lumanrpoint> 23822 <y_lumanrcurve index="1" type="double" size="[1 6]"> 23823 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 23824 </y_lumanrcurve> 23825 <y_denoisestrength index="1" type="double" size="[1 1]"> 23826 [1.8000 ] 23827 </y_denoisestrength> 23828 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23829 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23830 </y_lo_lvl0_gfdelta> 23831 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23832 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23833 </y_hi_lvl0_gfdelta> 23834 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23835 [0.12500 0.10938 0.10938 ] 23836 </y_lo_lvl1_gfdelta> 23837 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23838 [0.12500 0.10938 0.10938 ] 23839 </y_hi_lvl1_gfdelta> 23840 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23841 [0.12500 0.10938 0.10938 ] 23842 </y_lo_lvl2_gfdelta> 23843 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23844 [0.12500 0.10938 0.10938 ] 23845 </y_hi_lvl2_gfdelta> 23846 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 23847 [0.12500 0.10938 0.10938 ] 23848 </y_lo_lvl3_gfdelta> 23849 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 23850 [0.12500 0.10938 0.10938 ] 23851 </y_hi_lvl3_gfdelta> 23852 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 23853 [1.00000 0.72924 0.45749 ] 23854 </uv_lo_noiseprofile> 23855 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 23856 [0.72960 0.61071 0.39626 ] 23857 </uv_hi_noiseprofile> 23858 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 23859 [1.0000 1.0000 1.0000 ] 23860 </uv_lo_denoiseweight> 23861 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 23862 [1.0000 1.0000 1.0000 ] 23863 </uv_hi_denoiseweight> 23864 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 23865 [0.5000 0.7000 0.7000 ] 23866 </uv_lo_bfscale> 23867 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 23868 [0.3000 0.3000 0.4000 ] 23869 </uv_hi_bfscale> 23870 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 23871 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 23872 </uv_lumanrpoint> 23873 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 23874 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 23875 </uv_lumanrcurve> 23876 <uv_denoisestrength index="1" type="double" size="[1 1]"> 23877 [1.8000 ] 23878 </uv_denoisestrength> 23879 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23880 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23881 </uv_lo_lvl0_gfdelta> 23882 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23883 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23884 </uv_hi_lvl0_gfdelta> 23885 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23886 [0.12500 0.10938 0.10938 ] 23887 </uv_lo_lvl1_gfdelta> 23888 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23889 [0.12500 0.10938 0.10938 ] 23890 </uv_hi_lvl1_gfdelta> 23891 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23892 [0.12500 0.10938 0.10938 ] 23893 </uv_lo_lvl2_gfdelta> 23894 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23895 [0.12500 0.10938 0.10938 ] 23896 </uv_hi_lvl2_gfdelta> 23897 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 23898 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23899 </lvl0_gfsigma> 23900 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 23901 [0.12500 0.10938 0.10938 ] 23902 </lvl1_gfsigma> 23903 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 23904 [0.12500 0.10938 0.10938 ] 23905 </lvl2_gfsigma> 23906 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 23907 [0.12500 0.10938 0.10938 ] 23908 </lvl3_gfsigma> 23909 </cell> 23910 <cell index="13" type="struct" size="[1 1]"> 23911 <iso index="1" type="double" size="[1 1]"> 23912 [204800.0000 ] 23913 </iso> 23914 <weight_limit_y index="1" type="double" size="[1 4]"> 23915 [4.0000 4.0000 4.0000 4.0000 ] 23916 </weight_limit_y> 23917 <weight_limit_uv index="1" type="double" size="[1 3]"> 23918 [4.0000 4.0000 4.0000 ] 23919 </weight_limit_uv> 23920 <ratio_frq index="1" type="double" size="[1 4]"> 23921 [0.5000 2.0000 0.5000 2.0000 ] 23922 </ratio_frq> 23923 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 23924 [0.8000 0.8000 0.8000 ] 23925 </luma_w_in_chroma> 23926 <noise_curve index="1" type="double" size="[1 5]"> 23927 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 23928 </noise_curve> 23929 <noise_curve_x00 index="1" type="double" size="[1 1]"> 23930 [3.17000000000000e+003 ] 23931 </noise_curve_x00> 23932 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 23933 [1.00000 0.72924 0.45749 0.28517 ] 23934 </y_lo_noiseprofile> 23935 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 23936 [0.72960 0.61071 0.39626 0.00000 ] 23937 </y_hi_noiseprofile> 23938 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 23939 [1.0000 1.0000 1.0000 1.0000 ] 23940 </y_lo_denoiseweight> 23941 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 23942 [1.0000 1.0000 1.0000 1.0000 ] 23943 </y_hi_denoiseweight> 23944 <y_lo_bfscale index="1" type="double" size="[1 4]"> 23945 [0.5000 0.5000 0.5000 0.7000 ] 23946 </y_lo_bfscale> 23947 <y_hi_bfscale index="1" type="double" size="[1 4]"> 23948 [0.5000 0.5000 0.5000 0.7000 ] 23949 </y_hi_bfscale> 23950 <y_lumanrpoint index="1" type="double" size="[1 6]"> 23951 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 23952 </y_lumanrpoint> 23953 <y_lumanrcurve index="1" type="double" size="[1 6]"> 23954 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 23955 </y_lumanrcurve> 23956 <y_denoisestrength index="1" type="double" size="[1 1]"> 23957 [1.8000 ] 23958 </y_denoisestrength> 23959 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23960 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23961 </y_lo_lvl0_gfdelta> 23962 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 23963 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 23964 </y_hi_lvl0_gfdelta> 23965 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23966 [0.12500 0.10938 0.10938 ] 23967 </y_lo_lvl1_gfdelta> 23968 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 23969 [0.12500 0.10938 0.10938 ] 23970 </y_hi_lvl1_gfdelta> 23971 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23972 [0.12500 0.10938 0.10938 ] 23973 </y_lo_lvl2_gfdelta> 23974 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 23975 [0.12500 0.10938 0.10938 ] 23976 </y_hi_lvl2_gfdelta> 23977 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 23978 [0.12500 0.10938 0.10938 ] 23979 </y_lo_lvl3_gfdelta> 23980 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 23981 [0.12500 0.10938 0.10938 ] 23982 </y_hi_lvl3_gfdelta> 23983 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 23984 [1.00000 0.72924 0.45749 ] 23985 </uv_lo_noiseprofile> 23986 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 23987 [0.72960 0.61071 0.39626 ] 23988 </uv_hi_noiseprofile> 23989 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 23990 [1.0000 1.0000 1.0000 ] 23991 </uv_lo_denoiseweight> 23992 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 23993 [1.0000 1.0000 1.0000 ] 23994 </uv_hi_denoiseweight> 23995 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 23996 [0.5000 0.7000 0.7000 ] 23997 </uv_lo_bfscale> 23998 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 23999 [0.3000 0.3000 0.4000 ] 24000 </uv_hi_bfscale> 24001 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 24002 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 24003 </uv_lumanrpoint> 24004 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 24005 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 24006 </uv_lumanrcurve> 24007 <uv_denoisestrength index="1" type="double" size="[1 1]"> 24008 [1.8000 ] 24009 </uv_denoisestrength> 24010 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24011 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24012 </uv_lo_lvl0_gfdelta> 24013 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24014 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24015 </uv_hi_lvl0_gfdelta> 24016 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24017 [0.12500 0.10938 0.10938 ] 24018 </uv_lo_lvl1_gfdelta> 24019 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24020 [0.12500 0.10938 0.10938 ] 24021 </uv_hi_lvl1_gfdelta> 24022 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24023 [0.12500 0.10938 0.10938 ] 24024 </uv_lo_lvl2_gfdelta> 24025 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24026 [0.12500 0.10938 0.10938 ] 24027 </uv_hi_lvl2_gfdelta> 24028 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 24029 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24030 </lvl0_gfsigma> 24031 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 24032 [0.12500 0.10938 0.10938 ] 24033 </lvl1_gfsigma> 24034 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 24035 [0.12500 0.10938 0.10938 ] 24036 </lvl2_gfsigma> 24037 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 24038 [0.12500 0.10938 0.10938 ] 24039 </lvl3_gfsigma> 24040 </cell> 24041 </MFNR_ISO> 24042 </cell> 24043 </Setting> 24044 <motion_detection index="1" type="struct" size="[1 1]"> 24045 <Enable index="1" type="double" size="[1 1]"> 24046 [0] 24047 </Enable> 24048 <ISO index="1" type="double" size="[1 13]"> 24049 [50.0000 100.0000 200.0000 400.0000 800.0000 1600.0000 3200.0000 6400.0000 12800.0000 25600.0000 51200.0000 102400.0000 204800.0000 ] 24050 </ISO> 24051 <sigmaHScale index="1" type="double" size="[1 13]"> 24052 [1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ] 24053 </sigmaHScale> 24054 <sigmaLScale index="1" type="double" size="[1 13]"> 24055 [0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ] 24056 </sigmaLScale> 24057 <light_clp index="1" type="double" size="[1 13]"> 24058 [32 32 32 32 32 32 32 32 32 32 32 32 32 ] 24059 </light_clp> 24060 <uv_weight index="1" type="double" size="[1 13]"> 24061 [1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ] 24062 </uv_weight> 24063 <mfnr_sigma_scale index="1" type="double" size="[1 13]"> 24064 [4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 ] 24065 </mfnr_sigma_scale> 24066 <yuvnr_gain_scale0 index="1" type="double" size="[1 13]"> 24067 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 24068 </yuvnr_gain_scale0> 24069 <yuvnr_gain_scale1 index="1" type="double" size="[1 13]"> 24070 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 24071 </yuvnr_gain_scale1> 24072 <yuvnr_gain_scale2 index="1" type="double" size="[1 13]"> 24073 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 24074 </yuvnr_gain_scale2> 24075 <frame_limit_y index="1" type="double" size="[1 13]"> 24076 [24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 ] 24077 </frame_limit_y> 24078 <frame_limit_uv index="1" type="double" size="[1 13]"> 24079 [24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 ] 24080 </frame_limit_uv> 24081 <reserved7 index="1" type="double" size="[1 13]"> 24082 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 24083 </reserved7> 24084 <reserved6 index="1" type="double" size="[1 13]"> 24085 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 24086 </reserved6> 24087 <reserved5 index="1" type="double" size="[1 13]"> 24088 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 24089 </reserved5> 24090 <reserved4 index="1" type="double" size="[1 13]"> 24091 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 24092 </reserved4> 24093 <reserved3 index="1" type="double" size="[1 13]"> 24094 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 24095 </reserved3> 24096 <reserved2 index="1" type="double" size="[1 13]"> 24097 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 24098 </reserved2> 24099 <reserved1 index="1" type="double" size="[1 13]"> 24100 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 24101 </reserved1> 24102 <reserved0 index="1" type="double" size="[1 13]"> 24103 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 24104 </reserved0> 24105 </motion_detection> 24106 </cell> 24107 <cell index="1" type="struct" size="[1 1]"> 24108 <Name index="1" type="char" size="[1 8]"> 24109 gray 24110 </Name> 24111 <Dynamic index="1" type="struct" size="[1 1]"> 24112 <Enable index="1" type="double" size="[1 1]"> 24113 [0] 24114 </Enable> 24115 <LowTh_iso index="1" type="double" size="[1 1]"> 24116 [50] 24117 </LowTh_iso> 24118 <LowTh_time index="1" type="double" size="[1 1]"> 24119 [0.01] 24120 </LowTh_time> 24121 <HighTh_iso index="1" type="double" size="[1 1]"> 24122 [50] 24123 </HighTh_iso> 24124 <HighTh_time index="1" type="double" size="[1 1]"> 24125 [0.025] 24126 </HighTh_time> 24127 </Dynamic> 24128 <Setting index="1" type="cell" size="[1 2]"> 24129 <cell index="1" type="struct" size="[1 1]"> 24130 <SNR_Mode index="1" type="char" size="[1 4]"> 24131 LSNR 24132 </SNR_Mode> 24133 <Sensor_Mode index="1" type="char" size="[1 3]"> 24134 lcg 24135 </Sensor_Mode> 24136 <MFNR_ISO index="1" type="cell" size="[1 13]"> 24137 <cell index="1" type="struct" size="[1 1]"> 24138 <iso index="1" type="double" size="[1 1]"> 24139 [50.0000 ] 24140 </iso> 24141 <weight_limit_y index="1" type="double" size="[1 4]"> 24142 [32.0000 320000 32.0000 32.0000 ] 24143 </weight_limit_y> 24144 <weight_limit_uv index="1" type="double" size="[1 3]"> 24145 [32.0000 32.0000 32.0000 ] 24146 </weight_limit_uv> 24147 <ratio_frq index="1" type="double" size="[1 4]"> 24148 [0.5000 2.0000 0.5000 2.0000 ] 24149 </ratio_frq> 24150 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 24151 [0.5000 0.5000 0.5000 ] 24152 </luma_w_in_chroma> 24153 <noise_curve index="1" type="double" size="[1 5]"> 24154 [-2.22683837604954e-013 2.70089733255463e-009 -1.19360265610630e-005 1.69475563290717e-002 2.21533631975799e+001 ] 24155 </noise_curve> 24156 <noise_curve_x00 index="1" type="double" size="[1 1]"> 24157 [3.64700000000000e+003 ] 24158 </noise_curve_x00> 24159 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 24160 [1.00000 0.72793 0.43887 0.24093 ] 24161 </y_lo_noiseprofile> 24162 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 24163 [0.73870 0.67642 0.47338 0.00000 ] 24164 </y_hi_noiseprofile> 24165 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 24166 [1.0000 1.0000 1.0000 1.0000 ] 24167 </y_lo_denoiseweight> 24168 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 24169 [1.0000 1.0000 1.0000 1.0000 ] 24170 </y_hi_denoiseweight> 24171 <y_lo_bfscale index="1" type="double" size="[1 4]"> 24172 [0.5000 0.5000 0.5000 0.5000 ] 24173 </y_lo_bfscale> 24174 <y_hi_bfscale index="1" type="double" size="[1 4]"> 24175 [0.5000 0.5000 0.5000 0.5000 ] 24176 </y_hi_bfscale> 24177 <y_lumanrpoint index="1" type="double" size="[1 6]"> 24178 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 24179 </y_lumanrpoint> 24180 <y_lumanrcurve index="1" type="double" size="[1 6]"> 24181 [1.2000 1.2000 1.2000 1.1000 1.1000 1.0000 ] 24182 </y_lumanrcurve> 24183 <y_denoisestrength index="1" type="double" size="[1 1]"> 24184 [2.0000 ] 24185 </y_denoisestrength> 24186 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24187 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24188 </y_lo_lvl0_gfdelta> 24189 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24190 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24191 </y_hi_lvl0_gfdelta> 24192 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24193 [0.12500 0.10938 0.10938 ] 24194 </y_lo_lvl1_gfdelta> 24195 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24196 [0.12500 0.10938 0.10938 ] 24197 </y_hi_lvl1_gfdelta> 24198 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24199 [0.12500 0.10938 0.10938 ] 24200 </y_lo_lvl2_gfdelta> 24201 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24202 [0.12500 0.10938 0.10938 ] 24203 </y_hi_lvl2_gfdelta> 24204 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 24205 [0.12500 0.10938 0.10938 ] 24206 </y_lo_lvl3_gfdelta> 24207 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 24208 [0.12500 0.10938 0.10938 ] 24209 </y_hi_lvl3_gfdelta> 24210 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 24211 [1.00000 0.72793 0.43887 ] 24212 </uv_lo_noiseprofile> 24213 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 24214 [0.73870 0.67642 0.35740 ] 24215 </uv_hi_noiseprofile> 24216 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 24217 [1.0000 1.0000 1.0000 ] 24218 </uv_lo_denoiseweight> 24219 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 24220 [1.0000 1.0000 1.0000 ] 24221 </uv_hi_denoiseweight> 24222 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 24223 [0.5000 0.5000 0.5000 ] 24224 </uv_lo_bfscale> 24225 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 24226 [0.5000 0.5000 0.5000 ] 24227 </uv_hi_bfscale> 24228 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 24229 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 24230 </uv_lumanrpoint> 24231 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 24232 [1.3000 1.2000 1.2000 1.1000 1.1000 1.0000 ] 24233 </uv_lumanrcurve> 24234 <uv_denoisestrength index="1" type="double" size="[1 1]"> 24235 [1.2000 ] 24236 </uv_denoisestrength> 24237 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24238 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24239 </uv_lo_lvl0_gfdelta> 24240 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24241 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24242 </uv_hi_lvl0_gfdelta> 24243 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24244 [0.12500 0.10938 0.10938 ] 24245 </uv_lo_lvl1_gfdelta> 24246 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24247 [0.12500 0.10938 0.10938 ] 24248 </uv_hi_lvl1_gfdelta> 24249 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24250 [0.12500 0.10938 0.10938 ] 24251 </uv_lo_lvl2_gfdelta> 24252 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24253 [0.12500 0.10938 0.10938 ] 24254 </uv_hi_lvl2_gfdelta> 24255 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 24256 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24257 </lvl0_gfsigma> 24258 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 24259 [0.12500 0.10938 0.10938 ] 24260 </lvl1_gfsigma> 24261 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 24262 [0.12500 0.10938 0.10938 ] 24263 </lvl2_gfsigma> 24264 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 24265 [0.12500 0.10938 0.10938 ] 24266 </lvl3_gfsigma> 24267 </cell> 24268 <cell index="2" type="struct" size="[1 1]"> 24269 <iso index="1" type="double" size="[1 1]"> 24270 [100.0000 ] 24271 </iso> 24272 <weight_limit_y index="1" type="double" size="[1 4]"> 24273 [32.0000 32.0000 32.0000 32.0000 ] 24274 </weight_limit_y> 24275 <weight_limit_uv index="1" type="double" size="[1 3]"> 24276 [32.0000 32.0000 32.0000 ] 24277 </weight_limit_uv> 24278 <ratio_frq index="1" type="double" size="[1 4]"> 24279 [0.5000 2.0000 0.5000 2.0000 ] 24280 </ratio_frq> 24281 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 24282 [0.5000 0.5000 0.5000 ] 24283 </luma_w_in_chroma> 24284 <noise_curve index="1" type="double" size="[1 5]"> 24285 [-6.12954260408810e-013 6.56213771001716e-009 -2.56271619105131e-005 3.53336500457644e-002 2.51344679667418e+001 ] 24286 </noise_curve> 24287 <noise_curve_x00 index="1" type="double" size="[1 1]"> 24288 [3.64700000000000e+003 ] 24289 </noise_curve_x00> 24290 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 24291 [1.00000 0.73076 0.43314 0.23422 ] 24292 </y_lo_noiseprofile> 24293 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 24294 [0.72929 0.65444 0.43454 0.00000 ] 24295 </y_hi_noiseprofile> 24296 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 24297 [1.0000 1.0000 1.0000 1.0000 ] 24298 </y_lo_denoiseweight> 24299 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 24300 [1.0000 1.0000 1.0000 1.0000 ] 24301 </y_hi_denoiseweight> 24302 <y_lo_bfscale index="1" type="double" size="[1 4]"> 24303 [0.45000 0.45000 0.45000 0.45000 ] 24304 </y_lo_bfscale> 24305 <y_hi_bfscale index="1" type="double" size="[1 4]"> 24306 [0.45000 0.45000 0.45000 0.45000 ] 24307 </y_hi_bfscale> 24308 <y_lumanrpoint index="1" type="double" size="[1 6]"> 24309 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 24310 </y_lumanrpoint> 24311 <y_lumanrcurve index="1" type="double" size="[1 6]"> 24312 [1.3000 1.2000 1.2000 1.2000 1.2000 1.1000 ] 24313 </y_lumanrcurve> 24314 <y_denoisestrength index="1" type="double" size="[1 1]"> 24315 [1.6000 ] 24316 </y_denoisestrength> 24317 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24318 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24319 </y_lo_lvl0_gfdelta> 24320 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24321 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24322 </y_hi_lvl0_gfdelta> 24323 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24324 [0.12500 0.10938 0.10938 ] 24325 </y_lo_lvl1_gfdelta> 24326 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24327 [0.12500 0.10938 0.10938 ] 24328 </y_hi_lvl1_gfdelta> 24329 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24330 [0.12500 0.10938 0.10938 ] 24331 </y_lo_lvl2_gfdelta> 24332 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24333 [0.12500 0.10938 0.10938 ] 24334 </y_hi_lvl2_gfdelta> 24335 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 24336 [0.12500 0.10938 0.10938 ] 24337 </y_lo_lvl3_gfdelta> 24338 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 24339 [0.12500 0.10938 0.10938 ] 24340 </y_hi_lvl3_gfdelta> 24341 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 24342 [1.00000 0.73076 0.43314 ] 24343 </uv_lo_noiseprofile> 24344 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 24345 [0.72929 0.65444 0.38596 ] 24346 </uv_hi_noiseprofile> 24347 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 24348 [1.0000 1.0000 1.0000 ] 24349 </uv_lo_denoiseweight> 24350 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 24351 [1.0000 1.0000 1.0000 ] 24352 </uv_hi_denoiseweight> 24353 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 24354 [0.5000 0.5000 0.5000 ] 24355 </uv_lo_bfscale> 24356 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 24357 [0.5000 0.5000 0.5000 ] 24358 </uv_hi_bfscale> 24359 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 24360 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 24361 </uv_lumanrpoint> 24362 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 24363 [1.3000 1.2000 1.2000 1.2000 1.2000 1.2000 ] 24364 </uv_lumanrcurve> 24365 <uv_denoisestrength index="1" type="double" size="[1 1]"> 24366 [1.4000 ] 24367 </uv_denoisestrength> 24368 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24369 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24370 </uv_lo_lvl0_gfdelta> 24371 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24372 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24373 </uv_hi_lvl0_gfdelta> 24374 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24375 [0.12500 0.10938 0.10938 ] 24376 </uv_lo_lvl1_gfdelta> 24377 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24378 [0.12500 0.10938 0.10938 ] 24379 </uv_hi_lvl1_gfdelta> 24380 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24381 [0.12500 0.10938 0.10938 ] 24382 </uv_lo_lvl2_gfdelta> 24383 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24384 [0.12500 0.10938 0.10938 ] 24385 </uv_hi_lvl2_gfdelta> 24386 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 24387 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24388 </lvl0_gfsigma> 24389 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 24390 [0.12500 0.10938 0.10938 ] 24391 </lvl1_gfsigma> 24392 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 24393 [0.12500 0.10938 0.10938 ] 24394 </lvl2_gfsigma> 24395 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 24396 [0.12500 0.10938 0.10938 ] 24397 </lvl3_gfsigma> 24398 </cell> 24399 <cell index="3" type="struct" size="[1 1]"> 24400 <iso index="1" type="double" size="[1 1]"> 24401 [200.0000 ] 24402 </iso> 24403 <weight_limit_y index="1" type="double" size="[1 4]"> 24404 [16.0000 16.0000 16.0000 16.0000 ] 24405 </weight_limit_y> 24406 <weight_limit_uv index="1" type="double" size="[1 3]"> 24407 [16.0000 16.0000 16.0000 ] 24408 </weight_limit_uv> 24409 <ratio_frq index="1" type="double" size="[1 4]"> 24410 [0.5000 2.0000 0.5000 2.0000 ] 24411 </ratio_frq> 24412 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 24413 [0.5000 0.5000 0.5000 ] 24414 </luma_w_in_chroma> 24415 <noise_curve index="1" type="double" size="[1 5]"> 24416 [-4.88118020793126e-013 5.17135216910485e-009 -2.12964081629935e-005 2.87181383407642e-002 4.47372008265083e+001 ] 24417 </noise_curve> 24418 <noise_curve_x00 index="1" type="double" size="[1 1]"> 24419 [3.79000000000000e+003 ] 24420 </noise_curve_x00> 24421 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 24422 [1.00000 0.73421 0.43242 0.23146 ] 24423 </y_lo_noiseprofile> 24424 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 24425 [0.72131 0.64365 0.41113 0.00000 ] 24426 </y_hi_noiseprofile> 24427 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 24428 [1.0000 1.0000 1.0000 1.0000 ] 24429 </y_lo_denoiseweight> 24430 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 24431 [1.0000 1.0000 1.0000 1.0000 ] 24432 </y_hi_denoiseweight> 24433 <y_lo_bfscale index="1" type="double" size="[1 4]"> 24434 [0.35000 0.35000 0.35000 0.35000 ] 24435 </y_lo_bfscale> 24436 <y_hi_bfscale index="1" type="double" size="[1 4]"> 24437 [0.35000 0.35000 0.35000 0.35000 ] 24438 </y_hi_bfscale> 24439 <y_lumanrpoint index="1" type="double" size="[1 6]"> 24440 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 24441 </y_lumanrpoint> 24442 <y_lumanrcurve index="1" type="double" size="[1 6]"> 24443 [1.4000 1.3000 1.3000 1.2500 1.3000 1.3000 ] 24444 </y_lumanrcurve> 24445 <y_denoisestrength index="1" type="double" size="[1 1]"> 24446 [1.6000 ] 24447 </y_denoisestrength> 24448 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24449 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24450 </y_lo_lvl0_gfdelta> 24451 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24452 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24453 </y_hi_lvl0_gfdelta> 24454 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24455 [0.12500 0.10938 0.10938 ] 24456 </y_lo_lvl1_gfdelta> 24457 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24458 [0.12500 0.10938 0.10938 ] 24459 </y_hi_lvl1_gfdelta> 24460 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24461 [0.12500 0.10938 0.10938 ] 24462 </y_lo_lvl2_gfdelta> 24463 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24464 [0.12500 0.10938 0.10938 ] 24465 </y_hi_lvl2_gfdelta> 24466 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 24467 [0.12500 0.10938 0.10938 ] 24468 </y_lo_lvl3_gfdelta> 24469 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 24470 [0.12500 0.10938 0.10938 ] 24471 </y_hi_lvl3_gfdelta> 24472 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 24473 [1.00000 0.73421 0.43242 ] 24474 </uv_lo_noiseprofile> 24475 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 24476 [0.72131 0.64365 0.35740 ] 24477 </uv_hi_noiseprofile> 24478 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 24479 [1.0000 1.0000 1.0000 ] 24480 </uv_lo_denoiseweight> 24481 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 24482 [1.0000 1.0000 1.0000 ] 24483 </uv_hi_denoiseweight> 24484 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 24485 [0.01000 0.01000 0.01000 ] 24486 </uv_lo_bfscale> 24487 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 24488 [0.01000 0.01000 0.01000 ] 24489 </uv_hi_bfscale> 24490 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 24491 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 24492 </uv_lumanrpoint> 24493 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 24494 [1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 ] 24495 </uv_lumanrcurve> 24496 <uv_denoisestrength index="1" type="double" size="[1 1]"> 24497 [2.2000 ] 24498 </uv_denoisestrength> 24499 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24500 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24501 </uv_lo_lvl0_gfdelta> 24502 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24503 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24504 </uv_hi_lvl0_gfdelta> 24505 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24506 [0.12500 0.10938 0.10938 ] 24507 </uv_lo_lvl1_gfdelta> 24508 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24509 [0.12500 0.10938 0.10938 ] 24510 </uv_hi_lvl1_gfdelta> 24511 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24512 [0.12500 0.10938 0.10938 ] 24513 </uv_lo_lvl2_gfdelta> 24514 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24515 [0.12500 0.10938 0.10938 ] 24516 </uv_hi_lvl2_gfdelta> 24517 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 24518 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24519 </lvl0_gfsigma> 24520 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 24521 [0.12500 0.10938 0.10938 ] 24522 </lvl1_gfsigma> 24523 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 24524 [0.12500 0.10938 0.10938 ] 24525 </lvl2_gfsigma> 24526 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 24527 [0.12500 0.10938 0.10938 ] 24528 </lvl3_gfsigma> 24529 </cell> 24530 <cell index="4" type="struct" size="[1 1]"> 24531 <iso index="1" type="double" size="[1 1]"> 24532 [400.0000 ] 24533 </iso> 24534 <weight_limit_y index="1" type="double" size="[1 4]"> 24535 [16.0000 16.0000 16.0000 16.0000 ] 24536 </weight_limit_y> 24537 <weight_limit_uv index="1" type="double" size="[1 3]"> 24538 [16.0000 16.0000 16.0000 ] 24539 </weight_limit_uv> 24540 <ratio_frq index="1" type="double" size="[1 4]"> 24541 [0.5000 2.0000 0.5000 2.0000 ] 24542 </ratio_frq> 24543 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 24544 [0.5000 0.5000 0.5000 ] 24545 </luma_w_in_chroma> 24546 <noise_curve index="1" type="double" size="[1 5]"> 24547 [-1.48119726941212e-012 1.56289236737456e-008 -5.98269836499521e-005 8.25287140888520e-002 4.27598482026588e+001 ] 24548 </noise_curve> 24549 <noise_curve_x00 index="1" type="double" size="[1 1]"> 24550 [3.71400000000000e+003 ] 24551 </noise_curve_x00> 24552 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 24553 [1.00000 0.74281 0.44399 0.23777 ] 24554 </y_lo_noiseprofile> 24555 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 24556 [0.70753 0.64029 0.40958 0.00000 ] 24557 </y_hi_noiseprofile> 24558 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 24559 [1.0000 1.0000 1.0000 1.0000 ] 24560 </y_lo_denoiseweight> 24561 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 24562 [1.0000 1.0000 1.0000 1.0000 ] 24563 </y_hi_denoiseweight> 24564 <y_lo_bfscale index="1" type="double" size="[1 4]"> 24565 [0.5000 0.5000 0.5000 0.5000 ] 24566 </y_lo_bfscale> 24567 <y_hi_bfscale index="1" type="double" size="[1 4]"> 24568 [0.5000 0.5000 0.5000 0.5000 ] 24569 </y_hi_bfscale> 24570 <y_lumanrpoint index="1" type="double" size="[1 6]"> 24571 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 24572 </y_lumanrpoint> 24573 <y_lumanrcurve index="1" type="double" size="[1 6]"> 24574 [1.6000 1.5000 1.3000 1.2500 1.3000 1.3000 ] 24575 </y_lumanrcurve> 24576 <y_denoisestrength index="1" type="double" size="[1 1]"> 24577 [2.2000 ] 24578 </y_denoisestrength> 24579 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24580 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24581 </y_lo_lvl0_gfdelta> 24582 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24583 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24584 </y_hi_lvl0_gfdelta> 24585 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24586 [0.12500 0.10938 0.10938 ] 24587 </y_lo_lvl1_gfdelta> 24588 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24589 [0.12500 0.10938 0.10938 ] 24590 </y_hi_lvl1_gfdelta> 24591 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24592 [0.12500 0.10938 0.10938 ] 24593 </y_lo_lvl2_gfdelta> 24594 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24595 [0.12500 0.10938 0.10938 ] 24596 </y_hi_lvl2_gfdelta> 24597 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 24598 [0.12500 0.10938 0.10938 ] 24599 </y_lo_lvl3_gfdelta> 24600 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 24601 [0.12500 0.10938 0.10938 ] 24602 </y_hi_lvl3_gfdelta> 24603 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 24604 [1.00000 0.74281 0.44399 ] 24605 </uv_lo_noiseprofile> 24606 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 24607 [0.70753 0.64029 0.39704 ] 24608 </uv_hi_noiseprofile> 24609 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 24610 [1.0000 1.0000 1.0000 ] 24611 </uv_lo_denoiseweight> 24612 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 24613 [1.0000 1.0000 1.0000 ] 24614 </uv_hi_denoiseweight> 24615 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 24616 [0.5000 0.5000 0.4000 ] 24617 </uv_lo_bfscale> 24618 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 24619 [0.4000 0.4000 0.4000 ] 24620 </uv_hi_bfscale> 24621 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 24622 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 24623 </uv_lumanrpoint> 24624 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 24625 [1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 ] 24626 </uv_lumanrcurve> 24627 <uv_denoisestrength index="1" type="double" size="[1 1]"> 24628 [2.2000 ] 24629 </uv_denoisestrength> 24630 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24631 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24632 </uv_lo_lvl0_gfdelta> 24633 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24634 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24635 </uv_hi_lvl0_gfdelta> 24636 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24637 [0.12500 0.10938 0.10938 ] 24638 </uv_lo_lvl1_gfdelta> 24639 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24640 [0.12500 0.10938 0.10938 ] 24641 </uv_hi_lvl1_gfdelta> 24642 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24643 [0.12500 0.10938 0.10938 ] 24644 </uv_lo_lvl2_gfdelta> 24645 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24646 [0.12500 0.10938 0.10938 ] 24647 </uv_hi_lvl2_gfdelta> 24648 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 24649 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24650 </lvl0_gfsigma> 24651 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 24652 [0.12500 0.10938 0.10938 ] 24653 </lvl1_gfsigma> 24654 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 24655 [0.12500 0.10938 0.10938 ] 24656 </lvl2_gfsigma> 24657 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 24658 [0.12500 0.10938 0.10938 ] 24659 </lvl3_gfsigma> 24660 </cell> 24661 <cell index="5" type="struct" size="[1 1]"> 24662 <iso index="1" type="double" size="[1 1]"> 24663 [800.0000 ] 24664 </iso> 24665 <weight_limit_y index="1" type="double" size="[1 4]"> 24666 [16.0000 16.0000 16.0000 16.0000 ] 24667 </weight_limit_y> 24668 <weight_limit_uv index="1" type="double" size="[1 3]"> 24669 [16.0000 16.0000 16.0000 ] 24670 </weight_limit_uv> 24671 <ratio_frq index="1" type="double" size="[1 4]"> 24672 [0.5000 2.0000 0.5000 2.0000 ] 24673 </ratio_frq> 24674 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 24675 [0.6000 0.6000 0.6000 ] 24676 </luma_w_in_chroma> 24677 <noise_curve index="1" type="double" size="[1 5]"> 24678 [-1.63594828480084e-012 1.75614677431381e-008 -6.92401591106118e-005 9.58142896234051e-002 7.18496259606400e+001 ] 24679 </noise_curve> 24680 <noise_curve_x00 index="1" type="double" size="[1 1]"> 24681 [3.33100000000000e+003 ] 24682 </noise_curve_x00> 24683 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 24684 [1.00000 0.73992 0.43785 0.23198 ] 24685 </y_lo_noiseprofile> 24686 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 24687 [0.71187 0.63271 0.39725 0.00000 ] 24688 </y_hi_noiseprofile> 24689 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 24690 [1.0000 1.0000 1.0000 1.0000 ] 24691 </y_lo_denoiseweight> 24692 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 24693 [1.0000 1.0000 1.0000 1.0000 ] 24694 </y_hi_denoiseweight> 24695 <y_lo_bfscale index="1" type="double" size="[1 4]"> 24696 [0.3000 0.3000 0.3000 0.3000 ] 24697 </y_lo_bfscale> 24698 <y_hi_bfscale index="1" type="double" size="[1 4]"> 24699 [0.3000 0.3000 0.3000 0.3000 ] 24700 </y_hi_bfscale> 24701 <y_lumanrpoint index="1" type="double" size="[1 6]"> 24702 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 24703 </y_lumanrpoint> 24704 <y_lumanrcurve index="1" type="double" size="[1 6]"> 24705 [1.7000 1.5000 1.3000 1.3500 1.4000 1.4000 ] 24706 </y_lumanrcurve> 24707 <y_denoisestrength index="1" type="double" size="[1 1]"> 24708 [2.0000 ] 24709 </y_denoisestrength> 24710 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24711 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24712 </y_lo_lvl0_gfdelta> 24713 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24714 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24715 </y_hi_lvl0_gfdelta> 24716 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24717 [0.12500 0.10938 0.10938 ] 24718 </y_lo_lvl1_gfdelta> 24719 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24720 [0.12500 0.10938 0.10938 ] 24721 </y_hi_lvl1_gfdelta> 24722 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24723 [0.12500 0.10938 0.10938 ] 24724 </y_lo_lvl2_gfdelta> 24725 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24726 [0.12500 0.10938 0.10938 ] 24727 </y_hi_lvl2_gfdelta> 24728 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 24729 [0.12500 0.10938 0.10938 ] 24730 </y_lo_lvl3_gfdelta> 24731 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 24732 [0.12500 0.10938 0.10938 ] 24733 </y_hi_lvl3_gfdelta> 24734 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 24735 [1.00000 0.73992 0.43785 ] 24736 </uv_lo_noiseprofile> 24737 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 24738 [0.71187 0.63271 0.39342 ] 24739 </uv_hi_noiseprofile> 24740 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 24741 [1.0000 1.0000 1.0000 ] 24742 </uv_lo_denoiseweight> 24743 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 24744 [1.0000 1.0000 1.0000 ] 24745 </uv_hi_denoiseweight> 24746 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 24747 [0.3000 0.3000 0.3000 ] 24748 </uv_lo_bfscale> 24749 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 24750 [0.3000 0.3000 0.3000 ] 24751 </uv_hi_bfscale> 24752 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 24753 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 24754 </uv_lumanrpoint> 24755 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 24756 [1.8000 1.7000 1.5000 1.5000 1.5000 1.5000 ] 24757 </uv_lumanrcurve> 24758 <uv_denoisestrength index="1" type="double" size="[1 1]"> 24759 [2.0000 ] 24760 </uv_denoisestrength> 24761 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24762 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24763 </uv_lo_lvl0_gfdelta> 24764 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24765 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24766 </uv_hi_lvl0_gfdelta> 24767 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24768 [0.12500 0.10938 0.10938 ] 24769 </uv_lo_lvl1_gfdelta> 24770 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24771 [0.12500 0.10938 0.10938 ] 24772 </uv_hi_lvl1_gfdelta> 24773 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24774 [0.12500 0.10938 0.10938 ] 24775 </uv_lo_lvl2_gfdelta> 24776 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24777 [0.12500 0.10938 0.10938 ] 24778 </uv_hi_lvl2_gfdelta> 24779 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 24780 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24781 </lvl0_gfsigma> 24782 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 24783 [0.12500 0.10938 0.10938 ] 24784 </lvl1_gfsigma> 24785 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 24786 [0.12500 0.10938 0.10938 ] 24787 </lvl2_gfsigma> 24788 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 24789 [0.12500 0.10938 0.10938 ] 24790 </lvl3_gfsigma> 24791 </cell> 24792 <cell index="6" type="struct" size="[1 1]"> 24793 <iso index="1" type="double" size="[1 1]"> 24794 [1600.0000 ] 24795 </iso> 24796 <weight_limit_y index="1" type="double" size="[1 4]"> 24797 [4.0000 4.0000 4.0000 4.0000 ] 24798 </weight_limit_y> 24799 <weight_limit_uv index="1" type="double" size="[1 3]"> 24800 [4.0000 4.0000 4.0000 ] 24801 </weight_limit_uv> 24802 <ratio_frq index="1" type="double" size="[1 4]"> 24803 [0.5000 2.0000 0.5000 2.0000 ] 24804 </ratio_frq> 24805 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 24806 [0.6500 0.6500 0.6500 ] 24807 </luma_w_in_chroma> 24808 <noise_curve index="1" type="double" size="[1 5]"> 24809 [-3.54429850049432e-012 3.60287476727038e-008 -1.31984529909812e-004 1.75061075984246e-001 8.74586517163552e+001 ] 24810 </noise_curve> 24811 <noise_curve_x00 index="1" type="double" size="[1 1]"> 24812 [3.24400000000000e+003 ] 24813 </noise_curve_x00> 24814 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 24815 [1.00000 0.73294 0.42965 0.22624 ] 24816 </y_lo_noiseprofile> 24817 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 24818 [0.71960 0.62684 0.38632 0.00000 ] 24819 </y_hi_noiseprofile> 24820 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 24821 [1.0000 1.0000 1.0000 1.0000 ] 24822 </y_lo_denoiseweight> 24823 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 24824 [1.0000 1.0000 1.0000 1.0000 ] 24825 </y_hi_denoiseweight> 24826 <y_lo_bfscale index="1" type="double" size="[1 4]"> 24827 [0.300 0.300 0.300 0.300 ] 24828 </y_lo_bfscale> 24829 <y_hi_bfscale index="1" type="double" size="[1 4]"> 24830 [0.300 0.300 0.300 0.300 ] 24831 </y_hi_bfscale> 24832 <y_lumanrpoint index="1" type="double" size="[1 6]"> 24833 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 24834 </y_lumanrpoint> 24835 <y_lumanrcurve index="1" type="double" size="[1 6]"> 24836 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 24837 </y_lumanrcurve> 24838 <y_denoisestrength index="1" type="double" size="[1 1]"> 24839 [3.0000 ] 24840 </y_denoisestrength> 24841 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24842 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24843 </y_lo_lvl0_gfdelta> 24844 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24845 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24846 </y_hi_lvl0_gfdelta> 24847 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24848 [0.12500 0.10938 0.10938 ] 24849 </y_lo_lvl1_gfdelta> 24850 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24851 [0.12500 0.10938 0.10938 ] 24852 </y_hi_lvl1_gfdelta> 24853 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24854 [0.12500 0.10938 0.10938 ] 24855 </y_lo_lvl2_gfdelta> 24856 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24857 [0.12500 0.10938 0.10938 ] 24858 </y_hi_lvl2_gfdelta> 24859 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 24860 [0.12500 0.10938 0.10938 ] 24861 </y_lo_lvl3_gfdelta> 24862 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 24863 [0.12500 0.10938 0.10938 ] 24864 </y_hi_lvl3_gfdelta> 24865 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 24866 [1.00000 0.73294 0.42965 ] 24867 </uv_lo_noiseprofile> 24868 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 24869 [0.71960 0.62684 0.39427 ] 24870 </uv_hi_noiseprofile> 24871 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 24872 [1.0000 1.0000 1.0000 ] 24873 </uv_lo_denoiseweight> 24874 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 24875 [1.0000 1.0000 1.0000 ] 24876 </uv_hi_denoiseweight> 24877 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 24878 [0.300 0.300 0.300 ] 24879 </uv_lo_bfscale> 24880 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 24881 [0.300 0.300 0.300 ] 24882 </uv_hi_bfscale> 24883 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 24884 [0.0000 32.0000 64.0000 192.0000 232.0000 255.0000 ] 24885 </uv_lumanrpoint> 24886 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 24887 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 24888 </uv_lumanrcurve> 24889 <uv_denoisestrength index="1" type="double" size="[1 1]"> 24890 [3.0000 ] 24891 </uv_denoisestrength> 24892 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24893 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24894 </uv_lo_lvl0_gfdelta> 24895 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24896 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24897 </uv_hi_lvl0_gfdelta> 24898 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24899 [0.12500 0.10938 0.10938 ] 24900 </uv_lo_lvl1_gfdelta> 24901 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24902 [0.12500 0.10938 0.10938 ] 24903 </uv_hi_lvl1_gfdelta> 24904 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24905 [0.12500 0.10938 0.10938 ] 24906 </uv_lo_lvl2_gfdelta> 24907 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24908 [0.12500 0.10938 0.10938 ] 24909 </uv_hi_lvl2_gfdelta> 24910 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 24911 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24912 </lvl0_gfsigma> 24913 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 24914 [0.12500 0.10938 0.10938 ] 24915 </lvl1_gfsigma> 24916 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 24917 [0.12500 0.10938 0.10938 ] 24918 </lvl2_gfsigma> 24919 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 24920 [0.12500 0.10938 0.10938 ] 24921 </lvl3_gfsigma> 24922 </cell> 24923 <cell index="7" type="struct" size="[1 1]"> 24924 <iso index="1" type="double" size="[1 1]"> 24925 [3200.0000 ] 24926 </iso> 24927 <weight_limit_y index="1" type="double" size="[1 4]"> 24928 [4.0000 4.0000 4.0000 4.0000 ] 24929 </weight_limit_y> 24930 <weight_limit_uv index="1" type="double" size="[1 3]"> 24931 [4.0000 4.0000 4.0000 ] 24932 </weight_limit_uv> 24933 <ratio_frq index="1" type="double" size="[1 4]"> 24934 [0.5000 2.0000 0.5000 2.0000 ] 24935 </ratio_frq> 24936 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 24937 [0.7000 0.7000 0.7000 ] 24938 </luma_w_in_chroma> 24939 <noise_curve index="1" type="double" size="[1 5]"> 24940 [-3.50549752881191e-012 3.76368052960353e-008 -1.51293815921383e-004 2.17945943756604e-001 1.33106751935557e+002 ] 24941 </noise_curve> 24942 <noise_curve_x00 index="1" type="double" size="[1 1]"> 24943 [3.17000000000000e+003 ] 24944 </noise_curve_x00> 24945 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 24946 [1.00000 0.74047 0.43176 0.23232 ] 24947 </y_lo_noiseprofile> 24948 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 24949 [0.70863 0.62708 0.38287 0.00000 ] 24950 </y_hi_noiseprofile> 24951 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 24952 [1.0000 1.0000 1.0000 1.0000 ] 24953 </y_lo_denoiseweight> 24954 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 24955 [1.0000 1.0000 1.0000 1.0000 ] 24956 </y_hi_denoiseweight> 24957 <y_lo_bfscale index="1" type="double" size="[1 4]"> 24958 [0.3000 0.3000 0.3000 0.3000 ] 24959 </y_lo_bfscale> 24960 <y_hi_bfscale index="1" type="double" size="[1 4]"> 24961 [0.3000 0.3000 0.3000 0.3000 ] 24962 </y_hi_bfscale> 24963 <y_lumanrpoint index="1" type="double" size="[1 6]"> 24964 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 24965 </y_lumanrpoint> 24966 <y_lumanrcurve index="1" type="double" size="[1 6]"> 24967 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 24968 </y_lumanrcurve> 24969 <y_denoisestrength index="1" type="double" size="[1 1]"> 24970 [3.0000 ] 24971 </y_denoisestrength> 24972 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24973 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24974 </y_lo_lvl0_gfdelta> 24975 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 24976 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 24977 </y_hi_lvl0_gfdelta> 24978 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24979 [0.12500 0.10938 0.10938 ] 24980 </y_lo_lvl1_gfdelta> 24981 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 24982 [0.12500 0.10938 0.10938 ] 24983 </y_hi_lvl1_gfdelta> 24984 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24985 [0.12500 0.10938 0.10938 ] 24986 </y_lo_lvl2_gfdelta> 24987 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 24988 [0.12500 0.10938 0.10938 ] 24989 </y_hi_lvl2_gfdelta> 24990 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 24991 [0.12500 0.10938 0.10938 ] 24992 </y_lo_lvl3_gfdelta> 24993 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 24994 [0.12500 0.10938 0.10938 ] 24995 </y_hi_lvl3_gfdelta> 24996 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 24997 [1.00000 0.74047 0.43176 ] 24998 </uv_lo_noiseprofile> 24999 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 25000 [0.70863 0.62708 0.39626 ] 25001 </uv_hi_noiseprofile> 25002 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 25003 [1.0000 1.0000 1.0000 ] 25004 </uv_lo_denoiseweight> 25005 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 25006 [1.0000 1.0000 1.0000 ] 25007 </uv_hi_denoiseweight> 25008 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 25009 [0.3000 0.3000 0.3000 ] 25010 </uv_lo_bfscale> 25011 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 25012 [0.3000 0.3000 0.3000 ] 25013 </uv_hi_bfscale> 25014 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 25015 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 25016 </uv_lumanrpoint> 25017 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 25018 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 25019 </uv_lumanrcurve> 25020 <uv_denoisestrength index="1" type="double" size="[1 1]"> 25021 [3.0000 ] 25022 </uv_denoisestrength> 25023 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25024 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25025 </uv_lo_lvl0_gfdelta> 25026 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25027 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25028 </uv_hi_lvl0_gfdelta> 25029 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25030 [0.12500 0.10938 0.10938 ] 25031 </uv_lo_lvl1_gfdelta> 25032 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25033 [0.12500 0.10938 0.10938 ] 25034 </uv_hi_lvl1_gfdelta> 25035 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25036 [0.12500 0.10938 0.10938 ] 25037 </uv_lo_lvl2_gfdelta> 25038 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25039 [0.12500 0.10938 0.10938 ] 25040 </uv_hi_lvl2_gfdelta> 25041 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 25042 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25043 </lvl0_gfsigma> 25044 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 25045 [0.12500 0.10938 0.10938 ] 25046 </lvl1_gfsigma> 25047 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 25048 [0.12500 0.10938 0.10938 ] 25049 </lvl2_gfsigma> 25050 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 25051 [0.12500 0.10938 0.10938 ] 25052 </lvl3_gfsigma> 25053 </cell> 25054 <cell index="8" type="struct" size="[1 1]"> 25055 <iso index="1" type="double" size="[1 1]"> 25056 [6400.0000 ] 25057 </iso> 25058 <weight_limit_y index="1" type="double" size="[1 4]"> 25059 [8.0000 8.0000 8.0000 8.0000 ] 25060 </weight_limit_y> 25061 <weight_limit_uv index="1" type="double" size="[1 3]"> 25062 [4.0000 4.0000 64.0000 ] 25063 </weight_limit_uv> 25064 <ratio_frq index="1" type="double" size="[1 4]"> 25065 [0.5000 2.0000 0.5000 2.0000 ] 25066 </ratio_frq> 25067 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 25068 [0.7500 0.7500 0.7500 ] 25069 </luma_w_in_chroma> 25070 <noise_curve index="1" type="double" size="[1 5]"> 25071 [-1.17756545286079e-011 1.12670434028526e-007 -4.05537564186043e-004 5.71448012221026e-001 6.52947928690119e+001 ] 25072 </noise_curve> 25073 <noise_curve_x00 index="1" type="double" size="[1 1]"> 25074 [3.17000000000000e+003 ] 25075 </noise_curve_x00> 25076 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 25077 [1.00000 0.75478 0.45723 0.24457 ] 25078 </y_lo_noiseprofile> 25079 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 25080 [0.69157 0.63395 0.40685 0.00000 ] 25081 </y_hi_noiseprofile> 25082 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 25083 [1.0000 1.0000 1.0000 1.0000 ] 25084 </y_lo_denoiseweight> 25085 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 25086 [1.0000 1.0000 1.0000 1.0000 ] 25087 </y_hi_denoiseweight> 25088 <y_lo_bfscale index="1" type="double" size="[1 4]"> 25089 [0.2000 0.2000 0.2000 0.2000 ] 25090 </y_lo_bfscale> 25091 <y_hi_bfscale index="1" type="double" size="[1 4]"> 25092 [0.2000 0.2000 0.2000 0.2000 ] 25093 </y_hi_bfscale> 25094 <y_lumanrpoint index="1" type="double" size="[1 6]"> 25095 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 25096 </y_lumanrpoint> 25097 <y_lumanrcurve index="1" type="double" size="[1 6]"> 25098 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 25099 </y_lumanrcurve> 25100 <y_denoisestrength index="1" type="double" size="[1 1]"> 25101 [5.0000 ] 25102 </y_denoisestrength> 25103 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25104 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25105 </y_lo_lvl0_gfdelta> 25106 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25107 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25108 </y_hi_lvl0_gfdelta> 25109 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25110 [0.12500 0.10938 0.10938 ] 25111 </y_lo_lvl1_gfdelta> 25112 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25113 [0.12500 0.10938 0.10938 ] 25114 </y_hi_lvl1_gfdelta> 25115 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25116 [0.12500 0.10938 0.10938 ] 25117 </y_lo_lvl2_gfdelta> 25118 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25119 [0.12500 0.10938 0.10938 ] 25120 </y_hi_lvl2_gfdelta> 25121 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 25122 [0.12500 0.10938 0.10938 ] 25123 </y_lo_lvl3_gfdelta> 25124 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 25125 [0.12500 0.10938 0.10938 ] 25126 </y_hi_lvl3_gfdelta> 25127 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 25128 [1.00000 0.75478 0.45723 ] 25129 </uv_lo_noiseprofile> 25130 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 25131 [0.69157 0.63395 0.39626 ] 25132 </uv_hi_noiseprofile> 25133 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 25134 [1.0000 1.0000 1.0000 ] 25135 </uv_lo_denoiseweight> 25136 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 25137 [1.0000 1.0000 1.0000 ] 25138 </uv_hi_denoiseweight> 25139 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 25140 [0.2000 0.2000 0.2000 ] 25141 </uv_lo_bfscale> 25142 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 25143 [0.2000 0.2000 0.2000 ] 25144 </uv_hi_bfscale> 25145 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 25146 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 25147 </uv_lumanrpoint> 25148 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 25149 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 25150 </uv_lumanrcurve> 25151 <uv_denoisestrength index="1" type="double" size="[1 1]"> 25152 [5.0000 ] 25153 </uv_denoisestrength> 25154 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25155 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25156 </uv_lo_lvl0_gfdelta> 25157 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25158 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25159 </uv_hi_lvl0_gfdelta> 25160 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25161 [0.12500 0.10938 0.10938 ] 25162 </uv_lo_lvl1_gfdelta> 25163 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25164 [0.12500 0.10938 0.10938 ] 25165 </uv_hi_lvl1_gfdelta> 25166 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25167 [0.12500 0.10938 0.10938 ] 25168 </uv_lo_lvl2_gfdelta> 25169 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25170 [0.12500 0.10938 0.10938 ] 25171 </uv_hi_lvl2_gfdelta> 25172 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 25173 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25174 </lvl0_gfsigma> 25175 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 25176 [0.12500 0.10938 0.10938 ] 25177 </lvl1_gfsigma> 25178 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 25179 [0.12500 0.10938 0.10938 ] 25180 </lvl2_gfsigma> 25181 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 25182 [0.12500 0.10938 0.10938 ] 25183 </lvl3_gfsigma> 25184 </cell> 25185 <cell index="9" type="struct" size="[1 1]"> 25186 <iso index="1" type="double" size="[1 1]"> 25187 [12800.0000 ] 25188 </iso> 25189 <weight_limit_y index="1" type="double" size="[1 4]"> 25190 [4.0000 4.0000 4.0000 4.0000 ] 25191 </weight_limit_y> 25192 <weight_limit_uv index="1" type="double" size="[1 3]"> 25193 [4.0000 4.0000 4.0000 ] 25194 </weight_limit_uv> 25195 <ratio_frq index="1" type="double" size="[1 4]"> 25196 [0.5000 2.0000 0.5000 2.0000 ] 25197 </ratio_frq> 25198 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 25199 [0.8000 0.8000 0.8000 ] 25200 </luma_w_in_chroma> 25201 <noise_curve index="1" type="double" size="[1 5]"> 25202 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 25203 </noise_curve> 25204 <noise_curve_x00 index="1" type="double" size="[1 1]"> 25205 [3.17000000000000e+003 ] 25206 </noise_curve_x00> 25207 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 25208 [1.00000 0.72924 0.45749 0.28517 ] 25209 </y_lo_noiseprofile> 25210 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 25211 [0.72960 0.61071 0.39626 0.00000 ] 25212 </y_hi_noiseprofile> 25213 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 25214 [1.0000 1.0000 1.0000 1.0000 ] 25215 </y_lo_denoiseweight> 25216 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 25217 [1.0000 1.0000 1.0000 1.0000 ] 25218 </y_hi_denoiseweight> 25219 <y_lo_bfscale index="1" type="double" size="[1 4]"> 25220 [0.2000 0.2000 0.2000 0.2000 ] 25221 </y_lo_bfscale> 25222 <y_hi_bfscale index="1" type="double" size="[1 4]"> 25223 [0.2000 0.2000 0.2000 0.2000] 25224 </y_hi_bfscale> 25225 <y_lumanrpoint index="1" type="double" size="[1 6]"> 25226 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 25227 </y_lumanrpoint> 25228 <y_lumanrcurve index="1" type="double" size="[1 6]"> 25229 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 25230 </y_lumanrcurve> 25231 <y_denoisestrength index="1" type="double" size="[1 1]"> 25232 [5.0000 ] 25233 </y_denoisestrength> 25234 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25235 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25236 </y_lo_lvl0_gfdelta> 25237 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25238 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25239 </y_hi_lvl0_gfdelta> 25240 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25241 [0.12500 0.10938 0.10938 ] 25242 </y_lo_lvl1_gfdelta> 25243 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25244 [0.12500 0.10938 0.10938 ] 25245 </y_hi_lvl1_gfdelta> 25246 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25247 [0.12500 0.10938 0.10938 ] 25248 </y_lo_lvl2_gfdelta> 25249 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25250 [0.12500 0.10938 0.10938 ] 25251 </y_hi_lvl2_gfdelta> 25252 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 25253 [0.12500 0.10938 0.10938 ] 25254 </y_lo_lvl3_gfdelta> 25255 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 25256 [0.12500 0.10938 0.10938 ] 25257 </y_hi_lvl3_gfdelta> 25258 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 25259 [1.00000 0.72924 0.45749 ] 25260 </uv_lo_noiseprofile> 25261 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 25262 [0.72960 0.61071 0.39626 ] 25263 </uv_hi_noiseprofile> 25264 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 25265 [1.0000 1.0000 1.0000 ] 25266 </uv_lo_denoiseweight> 25267 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 25268 [1.0000 1.0000 1.0000 ] 25269 </uv_hi_denoiseweight> 25270 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 25271 [0.2000 0.2000 0.2000 ] 25272 </uv_lo_bfscale> 25273 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 25274 [0.2000 0.2000 0.2000 ] 25275 </uv_hi_bfscale> 25276 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 25277 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 25278 </uv_lumanrpoint> 25279 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 25280 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 25281 </uv_lumanrcurve> 25282 <uv_denoisestrength index="1" type="double" size="[1 1]"> 25283 [5.0000 ] 25284 </uv_denoisestrength> 25285 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25286 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25287 </uv_lo_lvl0_gfdelta> 25288 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25289 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25290 </uv_hi_lvl0_gfdelta> 25291 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25292 [0.12500 0.10938 0.10938 ] 25293 </uv_lo_lvl1_gfdelta> 25294 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25295 [0.12500 0.10938 0.10938 ] 25296 </uv_hi_lvl1_gfdelta> 25297 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25298 [0.12500 0.10938 0.10938 ] 25299 </uv_lo_lvl2_gfdelta> 25300 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25301 [0.12500 0.10938 0.10938 ] 25302 </uv_hi_lvl2_gfdelta> 25303 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 25304 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25305 </lvl0_gfsigma> 25306 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 25307 [0.12500 0.10938 0.10938 ] 25308 </lvl1_gfsigma> 25309 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 25310 [0.12500 0.10938 0.10938 ] 25311 </lvl2_gfsigma> 25312 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 25313 [0.12500 0.10938 0.10938 ] 25314 </lvl3_gfsigma> 25315 </cell> 25316 <cell index="10" type="struct" size="[1 1]"> 25317 <iso index="1" type="double" size="[1 1]"> 25318 [25600.0000 ] 25319 </iso> 25320 <weight_limit_y index="1" type="double" size="[1 4]"> 25321 [4.0000 4.0000 4.0000 4.0000 ] 25322 </weight_limit_y> 25323 <weight_limit_uv index="1" type="double" size="[1 3]"> 25324 [4.0000 4.0000 4.0000 ] 25325 </weight_limit_uv> 25326 <ratio_frq index="1" type="double" size="[1 4]"> 25327 [0.5000 2.0000 0.5000 2.0000 ] 25328 </ratio_frq> 25329 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 25330 [0.8000 0.8000 0.8000 ] 25331 </luma_w_in_chroma> 25332 <noise_curve index="1" type="double" size="[1 5]"> 25333 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 25334 </noise_curve> 25335 <noise_curve_x00 index="1" type="double" size="[1 1]"> 25336 [3.17000000000000e+003 ] 25337 </noise_curve_x00> 25338 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 25339 [1.00000 0.72924 0.45749 0.28517 ] 25340 </y_lo_noiseprofile> 25341 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 25342 [0.72960 0.61071 0.39626 0.00000 ] 25343 </y_hi_noiseprofile> 25344 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 25345 [1.0000 1.0000 1.0000 1.0000 ] 25346 </y_lo_denoiseweight> 25347 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 25348 [1.0000 1.0000 1.0000 1.0000 ] 25349 </y_hi_denoiseweight> 25350 <y_lo_bfscale index="1" type="double" size="[1 4]"> 25351 [0.5000 0.5000 0.5000 0.7000 ] 25352 </y_lo_bfscale> 25353 <y_hi_bfscale index="1" type="double" size="[1 4]"> 25354 [0.5000 0.5000 0.5000 0.7000 ] 25355 </y_hi_bfscale> 25356 <y_lumanrpoint index="1" type="double" size="[1 6]"> 25357 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 25358 </y_lumanrpoint> 25359 <y_lumanrcurve index="1" type="double" size="[1 6]"> 25360 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 25361 </y_lumanrcurve> 25362 <y_denoisestrength index="1" type="double" size="[1 1]"> 25363 [1.8000 ] 25364 </y_denoisestrength> 25365 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25366 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25367 </y_lo_lvl0_gfdelta> 25368 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25369 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25370 </y_hi_lvl0_gfdelta> 25371 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25372 [0.12500 0.10938 0.10938 ] 25373 </y_lo_lvl1_gfdelta> 25374 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25375 [0.12500 0.10938 0.10938 ] 25376 </y_hi_lvl1_gfdelta> 25377 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25378 [0.12500 0.10938 0.10938 ] 25379 </y_lo_lvl2_gfdelta> 25380 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25381 [0.12500 0.10938 0.10938 ] 25382 </y_hi_lvl2_gfdelta> 25383 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 25384 [0.12500 0.10938 0.10938 ] 25385 </y_lo_lvl3_gfdelta> 25386 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 25387 [0.12500 0.10938 0.10938 ] 25388 </y_hi_lvl3_gfdelta> 25389 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 25390 [1.00000 0.72924 0.45749 ] 25391 </uv_lo_noiseprofile> 25392 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 25393 [0.72960 0.61071 0.39626 ] 25394 </uv_hi_noiseprofile> 25395 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 25396 [1.0000 1.0000 1.0000 ] 25397 </uv_lo_denoiseweight> 25398 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 25399 [1.0000 1.0000 1.0000 ] 25400 </uv_hi_denoiseweight> 25401 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 25402 [0.5000 0.7000 0.7000 ] 25403 </uv_lo_bfscale> 25404 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 25405 [0.3000 0.3000 0.4000 ] 25406 </uv_hi_bfscale> 25407 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 25408 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 25409 </uv_lumanrpoint> 25410 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 25411 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 25412 </uv_lumanrcurve> 25413 <uv_denoisestrength index="1" type="double" size="[1 1]"> 25414 [1.8000 ] 25415 </uv_denoisestrength> 25416 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25417 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25418 </uv_lo_lvl0_gfdelta> 25419 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25420 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25421 </uv_hi_lvl0_gfdelta> 25422 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25423 [0.12500 0.10938 0.10938 ] 25424 </uv_lo_lvl1_gfdelta> 25425 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25426 [0.12500 0.10938 0.10938 ] 25427 </uv_hi_lvl1_gfdelta> 25428 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25429 [0.12500 0.10938 0.10938 ] 25430 </uv_lo_lvl2_gfdelta> 25431 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25432 [0.12500 0.10938 0.10938 ] 25433 </uv_hi_lvl2_gfdelta> 25434 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 25435 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25436 </lvl0_gfsigma> 25437 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 25438 [0.12500 0.10938 0.10938 ] 25439 </lvl1_gfsigma> 25440 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 25441 [0.12500 0.10938 0.10938 ] 25442 </lvl2_gfsigma> 25443 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 25444 [0.12500 0.10938 0.10938 ] 25445 </lvl3_gfsigma> 25446 </cell> 25447 <cell index="11" type="struct" size="[1 1]"> 25448 <iso index="1" type="double" size="[1 1]"> 25449 [51200.0000 ] 25450 </iso> 25451 <weight_limit_y index="1" type="double" size="[1 4]"> 25452 [4.0000 4.0000 4.0000 4.0000 ] 25453 </weight_limit_y> 25454 <weight_limit_uv index="1" type="double" size="[1 3]"> 25455 [4.0000 4.0000 4.0000 ] 25456 </weight_limit_uv> 25457 <ratio_frq index="1" type="double" size="[1 4]"> 25458 [0.5000 2.0000 0.5000 2.0000 ] 25459 </ratio_frq> 25460 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 25461 [0.8000 0.8000 0.8000 ] 25462 </luma_w_in_chroma> 25463 <noise_curve index="1" type="double" size="[1 5]"> 25464 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 25465 </noise_curve> 25466 <noise_curve_x00 index="1" type="double" size="[1 1]"> 25467 [3.17000000000000e+003 ] 25468 </noise_curve_x00> 25469 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 25470 [1.00000 0.72924 0.45749 0.28517 ] 25471 </y_lo_noiseprofile> 25472 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 25473 [0.72960 0.61071 0.39626 0.00000 ] 25474 </y_hi_noiseprofile> 25475 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 25476 [1.0000 1.0000 1.0000 1.0000 ] 25477 </y_lo_denoiseweight> 25478 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 25479 [1.0000 1.0000 1.0000 1.0000 ] 25480 </y_hi_denoiseweight> 25481 <y_lo_bfscale index="1" type="double" size="[1 4]"> 25482 [0.5000 0.5000 0.5000 0.7000 ] 25483 </y_lo_bfscale> 25484 <y_hi_bfscale index="1" type="double" size="[1 4]"> 25485 [0.5000 0.5000 0.5000 0.7000 ] 25486 </y_hi_bfscale> 25487 <y_lumanrpoint index="1" type="double" size="[1 6]"> 25488 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 25489 </y_lumanrpoint> 25490 <y_lumanrcurve index="1" type="double" size="[1 6]"> 25491 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 25492 </y_lumanrcurve> 25493 <y_denoisestrength index="1" type="double" size="[1 1]"> 25494 [1.8000 ] 25495 </y_denoisestrength> 25496 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25497 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25498 </y_lo_lvl0_gfdelta> 25499 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25500 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25501 </y_hi_lvl0_gfdelta> 25502 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25503 [0.12500 0.10938 0.10938 ] 25504 </y_lo_lvl1_gfdelta> 25505 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25506 [0.12500 0.10938 0.10938 ] 25507 </y_hi_lvl1_gfdelta> 25508 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25509 [0.12500 0.10938 0.10938 ] 25510 </y_lo_lvl2_gfdelta> 25511 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25512 [0.12500 0.10938 0.10938 ] 25513 </y_hi_lvl2_gfdelta> 25514 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 25515 [0.12500 0.10938 0.10938 ] 25516 </y_lo_lvl3_gfdelta> 25517 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 25518 [0.12500 0.10938 0.10938 ] 25519 </y_hi_lvl3_gfdelta> 25520 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 25521 [1.00000 0.72924 0.45749 ] 25522 </uv_lo_noiseprofile> 25523 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 25524 [0.72960 0.61071 0.39626 ] 25525 </uv_hi_noiseprofile> 25526 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 25527 [1.0000 1.0000 1.0000 ] 25528 </uv_lo_denoiseweight> 25529 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 25530 [1.0000 1.0000 1.0000 ] 25531 </uv_hi_denoiseweight> 25532 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 25533 [0.5000 0.7000 0.7000 ] 25534 </uv_lo_bfscale> 25535 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 25536 [0.3000 0.3000 0.4000 ] 25537 </uv_hi_bfscale> 25538 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 25539 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 25540 </uv_lumanrpoint> 25541 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 25542 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 25543 </uv_lumanrcurve> 25544 <uv_denoisestrength index="1" type="double" size="[1 1]"> 25545 [1.8000 ] 25546 </uv_denoisestrength> 25547 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25548 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25549 </uv_lo_lvl0_gfdelta> 25550 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25551 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25552 </uv_hi_lvl0_gfdelta> 25553 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25554 [0.12500 0.10938 0.10938 ] 25555 </uv_lo_lvl1_gfdelta> 25556 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25557 [0.12500 0.10938 0.10938 ] 25558 </uv_hi_lvl1_gfdelta> 25559 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25560 [0.12500 0.10938 0.10938 ] 25561 </uv_lo_lvl2_gfdelta> 25562 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25563 [0.12500 0.10938 0.10938 ] 25564 </uv_hi_lvl2_gfdelta> 25565 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 25566 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25567 </lvl0_gfsigma> 25568 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 25569 [0.12500 0.10938 0.10938 ] 25570 </lvl1_gfsigma> 25571 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 25572 [0.12500 0.10938 0.10938 ] 25573 </lvl2_gfsigma> 25574 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 25575 [0.12500 0.10938 0.10938 ] 25576 </lvl3_gfsigma> 25577 </cell> 25578 <cell index="12" type="struct" size="[1 1]"> 25579 <iso index="1" type="double" size="[1 1]"> 25580 [102400.0000 ] 25581 </iso> 25582 <weight_limit_y index="1" type="double" size="[1 4]"> 25583 [4.0000 4.0000 4.0000 4.0000 ] 25584 </weight_limit_y> 25585 <weight_limit_uv index="1" type="double" size="[1 3]"> 25586 [4.0000 4.0000 4.0000 ] 25587 </weight_limit_uv> 25588 <ratio_frq index="1" type="double" size="[1 4]"> 25589 [0.5000 2.0000 0.5000 2.0000 ] 25590 </ratio_frq> 25591 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 25592 [0.8000 0.8000 0.8000 ] 25593 </luma_w_in_chroma> 25594 <noise_curve index="1" type="double" size="[1 5]"> 25595 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 25596 </noise_curve> 25597 <noise_curve_x00 index="1" type="double" size="[1 1]"> 25598 [3.17000000000000e+003 ] 25599 </noise_curve_x00> 25600 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 25601 [1.00000 0.72924 0.45749 0.28517 ] 25602 </y_lo_noiseprofile> 25603 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 25604 [0.72960 0.61071 0.39626 0.00000 ] 25605 </y_hi_noiseprofile> 25606 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 25607 [1.0000 1.0000 1.0000 1.0000 ] 25608 </y_lo_denoiseweight> 25609 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 25610 [1.0000 1.0000 1.0000 1.0000 ] 25611 </y_hi_denoiseweight> 25612 <y_lo_bfscale index="1" type="double" size="[1 4]"> 25613 [0.5000 0.5000 0.5000 0.7000 ] 25614 </y_lo_bfscale> 25615 <y_hi_bfscale index="1" type="double" size="[1 4]"> 25616 [0.5000 0.5000 0.5000 0.7000 ] 25617 </y_hi_bfscale> 25618 <y_lumanrpoint index="1" type="double" size="[1 6]"> 25619 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 25620 </y_lumanrpoint> 25621 <y_lumanrcurve index="1" type="double" size="[1 6]"> 25622 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 25623 </y_lumanrcurve> 25624 <y_denoisestrength index="1" type="double" size="[1 1]"> 25625 [1.8000 ] 25626 </y_denoisestrength> 25627 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25628 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25629 </y_lo_lvl0_gfdelta> 25630 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25631 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25632 </y_hi_lvl0_gfdelta> 25633 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25634 [0.12500 0.10938 0.10938 ] 25635 </y_lo_lvl1_gfdelta> 25636 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25637 [0.12500 0.10938 0.10938 ] 25638 </y_hi_lvl1_gfdelta> 25639 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25640 [0.12500 0.10938 0.10938 ] 25641 </y_lo_lvl2_gfdelta> 25642 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25643 [0.12500 0.10938 0.10938 ] 25644 </y_hi_lvl2_gfdelta> 25645 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 25646 [0.12500 0.10938 0.10938 ] 25647 </y_lo_lvl3_gfdelta> 25648 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 25649 [0.12500 0.10938 0.10938 ] 25650 </y_hi_lvl3_gfdelta> 25651 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 25652 [1.00000 0.72924 0.45749 ] 25653 </uv_lo_noiseprofile> 25654 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 25655 [0.72960 0.61071 0.39626 ] 25656 </uv_hi_noiseprofile> 25657 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 25658 [1.0000 1.0000 1.0000 ] 25659 </uv_lo_denoiseweight> 25660 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 25661 [1.0000 1.0000 1.0000 ] 25662 </uv_hi_denoiseweight> 25663 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 25664 [0.5000 0.7000 0.7000 ] 25665 </uv_lo_bfscale> 25666 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 25667 [0.3000 0.3000 0.4000 ] 25668 </uv_hi_bfscale> 25669 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 25670 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 25671 </uv_lumanrpoint> 25672 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 25673 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 25674 </uv_lumanrcurve> 25675 <uv_denoisestrength index="1" type="double" size="[1 1]"> 25676 [1.8000 ] 25677 </uv_denoisestrength> 25678 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25679 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25680 </uv_lo_lvl0_gfdelta> 25681 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25682 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25683 </uv_hi_lvl0_gfdelta> 25684 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25685 [0.12500 0.10938 0.10938 ] 25686 </uv_lo_lvl1_gfdelta> 25687 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25688 [0.12500 0.10938 0.10938 ] 25689 </uv_hi_lvl1_gfdelta> 25690 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25691 [0.12500 0.10938 0.10938 ] 25692 </uv_lo_lvl2_gfdelta> 25693 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25694 [0.12500 0.10938 0.10938 ] 25695 </uv_hi_lvl2_gfdelta> 25696 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 25697 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25698 </lvl0_gfsigma> 25699 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 25700 [0.12500 0.10938 0.10938 ] 25701 </lvl1_gfsigma> 25702 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 25703 [0.12500 0.10938 0.10938 ] 25704 </lvl2_gfsigma> 25705 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 25706 [0.12500 0.10938 0.10938 ] 25707 </lvl3_gfsigma> 25708 </cell> 25709 <cell index="13" type="struct" size="[1 1]"> 25710 <iso index="1" type="double" size="[1 1]"> 25711 [204800.0000 ] 25712 </iso> 25713 <weight_limit_y index="1" type="double" size="[1 4]"> 25714 [4.0000 4.0000 4.0000 4.0000 ] 25715 </weight_limit_y> 25716 <weight_limit_uv index="1" type="double" size="[1 3]"> 25717 [4.0000 4.0000 4.0000 ] 25718 </weight_limit_uv> 25719 <ratio_frq index="1" type="double" size="[1 4]"> 25720 [0.5000 2.0000 0.5000 2.0000 ] 25721 </ratio_frq> 25722 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 25723 [0.8000 0.8000 0.8000 ] 25724 </luma_w_in_chroma> 25725 <noise_curve index="1" type="double" size="[1 5]"> 25726 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 25727 </noise_curve> 25728 <noise_curve_x00 index="1" type="double" size="[1 1]"> 25729 [3.17000000000000e+003 ] 25730 </noise_curve_x00> 25731 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 25732 [1.00000 0.72924 0.45749 0.28517 ] 25733 </y_lo_noiseprofile> 25734 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 25735 [0.72960 0.61071 0.39626 0.00000 ] 25736 </y_hi_noiseprofile> 25737 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 25738 [1.0000 1.0000 1.0000 1.0000 ] 25739 </y_lo_denoiseweight> 25740 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 25741 [1.0000 1.0000 1.0000 1.0000 ] 25742 </y_hi_denoiseweight> 25743 <y_lo_bfscale index="1" type="double" size="[1 4]"> 25744 [0.5000 0.5000 0.5000 0.7000 ] 25745 </y_lo_bfscale> 25746 <y_hi_bfscale index="1" type="double" size="[1 4]"> 25747 [0.5000 0.5000 0.5000 0.7000 ] 25748 </y_hi_bfscale> 25749 <y_lumanrpoint index="1" type="double" size="[1 6]"> 25750 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 25751 </y_lumanrpoint> 25752 <y_lumanrcurve index="1" type="double" size="[1 6]"> 25753 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 25754 </y_lumanrcurve> 25755 <y_denoisestrength index="1" type="double" size="[1 1]"> 25756 [1.8000 ] 25757 </y_denoisestrength> 25758 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25759 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25760 </y_lo_lvl0_gfdelta> 25761 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25762 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25763 </y_hi_lvl0_gfdelta> 25764 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25765 [0.12500 0.10938 0.10938 ] 25766 </y_lo_lvl1_gfdelta> 25767 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25768 [0.12500 0.10938 0.10938 ] 25769 </y_hi_lvl1_gfdelta> 25770 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25771 [0.12500 0.10938 0.10938 ] 25772 </y_lo_lvl2_gfdelta> 25773 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25774 [0.12500 0.10938 0.10938 ] 25775 </y_hi_lvl2_gfdelta> 25776 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 25777 [0.12500 0.10938 0.10938 ] 25778 </y_lo_lvl3_gfdelta> 25779 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 25780 [0.12500 0.10938 0.10938 ] 25781 </y_hi_lvl3_gfdelta> 25782 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 25783 [1.00000 0.72924 0.45749 ] 25784 </uv_lo_noiseprofile> 25785 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 25786 [0.72960 0.61071 0.39626 ] 25787 </uv_hi_noiseprofile> 25788 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 25789 [1.0000 1.0000 1.0000 ] 25790 </uv_lo_denoiseweight> 25791 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 25792 [1.0000 1.0000 1.0000 ] 25793 </uv_hi_denoiseweight> 25794 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 25795 [0.5000 0.7000 0.7000 ] 25796 </uv_lo_bfscale> 25797 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 25798 [0.3000 0.3000 0.4000 ] 25799 </uv_hi_bfscale> 25800 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 25801 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 25802 </uv_lumanrpoint> 25803 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 25804 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 25805 </uv_lumanrcurve> 25806 <uv_denoisestrength index="1" type="double" size="[1 1]"> 25807 [1.8000 ] 25808 </uv_denoisestrength> 25809 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25810 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25811 </uv_lo_lvl0_gfdelta> 25812 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25813 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25814 </uv_hi_lvl0_gfdelta> 25815 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25816 [0.12500 0.10938 0.10938 ] 25817 </uv_lo_lvl1_gfdelta> 25818 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25819 [0.12500 0.10938 0.10938 ] 25820 </uv_hi_lvl1_gfdelta> 25821 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25822 [0.12500 0.10938 0.10938 ] 25823 </uv_lo_lvl2_gfdelta> 25824 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25825 [0.12500 0.10938 0.10938 ] 25826 </uv_hi_lvl2_gfdelta> 25827 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 25828 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25829 </lvl0_gfsigma> 25830 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 25831 [0.12500 0.10938 0.10938 ] 25832 </lvl1_gfsigma> 25833 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 25834 [0.12500 0.10938 0.10938 ] 25835 </lvl2_gfsigma> 25836 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 25837 [0.12500 0.10938 0.10938 ] 25838 </lvl3_gfsigma> 25839 </cell> 25840 </MFNR_ISO> 25841 </cell> 25842 <cell index="2" type="struct" size="[1 1]"> 25843 <SNR_Mode index="1" type="char" size="[1 4]"> 25844 HSNR 25845 </SNR_Mode> 25846 <Sensor_Mode index="1" type="char" size="[1 3]"> 25847 hcg 25848 </Sensor_Mode> 25849 <MFNR_ISO index="1" type="cell" size="[1 13]"> 25850 <cell index="1" type="struct" size="[1 1]"> 25851 <iso index="1" type="double" size="[1 1]"> 25852 [50.0000 ] 25853 </iso> 25854 <weight_limit_y index="1" type="double" size="[1 4]"> 25855 [64.0000 64.0000 64.0000 64.0000 ] 25856 </weight_limit_y> 25857 <weight_limit_uv index="1" type="double" size="[1 3]"> 25858 [64.0000 64.0000 64.0000 ] 25859 </weight_limit_uv> 25860 <ratio_frq index="1" type="double" size="[1 4]"> 25861 [0.5000 2.0000 0.5000 2.0000 ] 25862 </ratio_frq> 25863 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 25864 [0.5000 0.5000 0.5000 ] 25865 </luma_w_in_chroma> 25866 <noise_curve index="1" type="double" size="[1 5]"> 25867 [-8.43031629716230e-013 7.96403418022611e-009 -2.69124846208717e-005 3.30491353997608e-002 1.82112440798101e+001 ] 25868 </noise_curve> 25869 <noise_curve_x00 index="1" type="double" size="[1 1]"> 25870 [3.64700000000000e+003 ] 25871 </noise_curve_x00> 25872 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 25873 [1.00000 0.68993 0.41986 0.24798 ] 25874 </y_lo_noiseprofile> 25875 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 25876 [0.77114 0.62293 0.46145 0.00000 ] 25877 </y_hi_noiseprofile> 25878 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 25879 [1.0000 1.0000 1.0000 1.0000 ] 25880 </y_lo_denoiseweight> 25881 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 25882 [1.0000 1.0000 1.0000 1.0000 ] 25883 </y_hi_denoiseweight> 25884 <y_lo_bfscale index="1" type="double" size="[1 4]"> 25885 [0.5000 0.5000 0.5000 0.5000 ] 25886 </y_lo_bfscale> 25887 <y_hi_bfscale index="1" type="double" size="[1 4]"> 25888 [0.5000 0.5000 0.5000 0.5000 ] 25889 </y_hi_bfscale> 25890 <y_lumanrpoint index="1" type="double" size="[1 6]"> 25891 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 25892 </y_lumanrpoint> 25893 <y_lumanrcurve index="1" type="double" size="[1 6]"> 25894 [1.2000 1.2000 1.2000 1.1000 1.1000 1.0000 ] 25895 </y_lumanrcurve> 25896 <y_denoisestrength index="1" type="double" size="[1 1]"> 25897 [1.2000 ] 25898 </y_denoisestrength> 25899 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25900 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25901 </y_lo_lvl0_gfdelta> 25902 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25903 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25904 </y_hi_lvl0_gfdelta> 25905 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25906 [0.12500 0.10938 0.10938 ] 25907 </y_lo_lvl1_gfdelta> 25908 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25909 [0.12500 0.10938 0.10938 ] 25910 </y_hi_lvl1_gfdelta> 25911 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25912 [0.12500 0.10938 0.10938 ] 25913 </y_lo_lvl2_gfdelta> 25914 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25915 [0.12500 0.10938 0.10938 ] 25916 </y_hi_lvl2_gfdelta> 25917 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 25918 [0.12500 0.10938 0.10938 ] 25919 </y_lo_lvl3_gfdelta> 25920 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 25921 [0.12500 0.10938 0.10938 ] 25922 </y_hi_lvl3_gfdelta> 25923 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 25924 [1.00000 0.68993 0.41986 ] 25925 </uv_lo_noiseprofile> 25926 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 25927 [0.77114 0.62293 0.35740 ] 25928 </uv_hi_noiseprofile> 25929 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 25930 [1.0000 1.0000 1.0000 ] 25931 </uv_lo_denoiseweight> 25932 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 25933 [1.0000 1.0000 1.0000 ] 25934 </uv_hi_denoiseweight> 25935 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 25936 [0.5000 0.5000 0.5000 ] 25937 </uv_lo_bfscale> 25938 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 25939 [0.5000 0.5000 0.5000 ] 25940 </uv_hi_bfscale> 25941 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 25942 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 25943 </uv_lumanrpoint> 25944 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 25945 [1.3000 1.2000 1.2000 1.1000 1.1000 1.0000 ] 25946 </uv_lumanrcurve> 25947 <uv_denoisestrength index="1" type="double" size="[1 1]"> 25948 [1.2000 ] 25949 </uv_denoisestrength> 25950 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25951 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25952 </uv_lo_lvl0_gfdelta> 25953 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 25954 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25955 </uv_hi_lvl0_gfdelta> 25956 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25957 [0.12500 0.10938 0.10938 ] 25958 </uv_lo_lvl1_gfdelta> 25959 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 25960 [0.12500 0.10938 0.10938 ] 25961 </uv_hi_lvl1_gfdelta> 25962 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25963 [0.12500 0.10938 0.10938 ] 25964 </uv_lo_lvl2_gfdelta> 25965 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 25966 [0.12500 0.10938 0.10938 ] 25967 </uv_hi_lvl2_gfdelta> 25968 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 25969 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 25970 </lvl0_gfsigma> 25971 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 25972 [0.12500 0.10938 0.10938 ] 25973 </lvl1_gfsigma> 25974 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 25975 [0.12500 0.10938 0.10938 ] 25976 </lvl2_gfsigma> 25977 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 25978 [0.12500 0.10938 0.10938 ] 25979 </lvl3_gfsigma> 25980 </cell> 25981 <cell index="2" type="struct" size="[1 1]"> 25982 <iso index="1" type="double" size="[1 1]"> 25983 [100.0000 ] 25984 </iso> 25985 <weight_limit_y index="1" type="double" size="[1 4]"> 25986 [64.0000 64.0000 64.0000 64.0000 ] 25987 </weight_limit_y> 25988 <weight_limit_uv index="1" type="double" size="[1 3]"> 25989 [64.0000 64.0000 64.0000 ] 25990 </weight_limit_uv> 25991 <ratio_frq index="1" type="double" size="[1 4]"> 25992 [0.5000 2.0000 0.5000 2.0000 ] 25993 </ratio_frq> 25994 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 25995 [0.5000 0.5000 0.5000 ] 25996 </luma_w_in_chroma> 25997 <noise_curve index="1" type="double" size="[1 5]"> 25998 [-9.07873071141055e-013 9.05495555543235e-009 -3.21717261013016e-005 4.12882265916323e-002 2.10344756396116e+001 ] 25999 </noise_curve> 26000 <noise_curve_x00 index="1" type="double" size="[1 1]"> 26001 [3.64700000000000e+003 ] 26002 </noise_curve_x00> 26003 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 26004 [1.00000 0.73721 0.47316 0.28630 ] 26005 </y_lo_noiseprofile> 26006 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 26007 [0.70806 0.62814 0.46846 0.00000 ] 26008 </y_hi_noiseprofile> 26009 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 26010 [1.0000 1.0000 1.0000 1.0000 ] 26011 </y_lo_denoiseweight> 26012 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 26013 [1.0000 1.0000 1.0000 1.0000 ] 26014 </y_hi_denoiseweight> 26015 <y_lo_bfscale index="1" type="double" size="[1 4]"> 26016 [0.5000 0.5000 0.5000 0.5000 ] 26017 </y_lo_bfscale> 26018 <y_hi_bfscale index="1" type="double" size="[1 4]"> 26019 [0.5000 0.5000 0.5000 0.5000 ] 26020 </y_hi_bfscale> 26021 <y_lumanrpoint index="1" type="double" size="[1 6]"> 26022 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 26023 </y_lumanrpoint> 26024 <y_lumanrcurve index="1" type="double" size="[1 6]"> 26025 [1.3000 1.2000 1.2000 1.2000 1.2000 1.1000 ] 26026 </y_lumanrcurve> 26027 <y_denoisestrength index="1" type="double" size="[1 1]"> 26028 [1.4000 ] 26029 </y_denoisestrength> 26030 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26031 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26032 </y_lo_lvl0_gfdelta> 26033 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26034 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26035 </y_hi_lvl0_gfdelta> 26036 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26037 [0.12500 0.10938 0.10938 ] 26038 </y_lo_lvl1_gfdelta> 26039 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26040 [0.12500 0.10938 0.10938 ] 26041 </y_hi_lvl1_gfdelta> 26042 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26043 [0.12500 0.10938 0.10938 ] 26044 </y_lo_lvl2_gfdelta> 26045 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26046 [0.12500 0.10938 0.10938 ] 26047 </y_hi_lvl2_gfdelta> 26048 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 26049 [0.12500 0.10938 0.10938 ] 26050 </y_lo_lvl3_gfdelta> 26051 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 26052 [0.12500 0.10938 0.10938 ] 26053 </y_hi_lvl3_gfdelta> 26054 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 26055 [1.00000 0.73721 0.47316 ] 26056 </uv_lo_noiseprofile> 26057 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 26058 [0.70806 0.62814 0.38596 ] 26059 </uv_hi_noiseprofile> 26060 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 26061 [1.0000 1.0000 1.0000 ] 26062 </uv_lo_denoiseweight> 26063 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 26064 [1.0000 1.0000 1.0000 ] 26065 </uv_hi_denoiseweight> 26066 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 26067 [0.5000 0.5000 0.5000 ] 26068 </uv_lo_bfscale> 26069 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 26070 [0.5000 0.5000 0.5000 ] 26071 </uv_hi_bfscale> 26072 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 26073 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 26074 </uv_lumanrpoint> 26075 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 26076 [1.3000 1.2000 1.2000 1.2000 1.2000 1.2000 ] 26077 </uv_lumanrcurve> 26078 <uv_denoisestrength index="1" type="double" size="[1 1]"> 26079 [1.4000 ] 26080 </uv_denoisestrength> 26081 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26082 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26083 </uv_lo_lvl0_gfdelta> 26084 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26085 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26086 </uv_hi_lvl0_gfdelta> 26087 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26088 [0.12500 0.10938 0.10938 ] 26089 </uv_lo_lvl1_gfdelta> 26090 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26091 [0.12500 0.10938 0.10938 ] 26092 </uv_hi_lvl1_gfdelta> 26093 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26094 [0.12500 0.10938 0.10938 ] 26095 </uv_lo_lvl2_gfdelta> 26096 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26097 [0.12500 0.10938 0.10938 ] 26098 </uv_hi_lvl2_gfdelta> 26099 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 26100 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26101 </lvl0_gfsigma> 26102 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 26103 [0.12500 0.10938 0.10938 ] 26104 </lvl1_gfsigma> 26105 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 26106 [0.12500 0.10938 0.10938 ] 26107 </lvl2_gfsigma> 26108 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 26109 [0.12500 0.10938 0.10938 ] 26110 </lvl3_gfsigma> 26111 </cell> 26112 <cell index="3" type="struct" size="[1 1]"> 26113 <iso index="1" type="double" size="[1 1]"> 26114 [200.0000 ] 26115 </iso> 26116 <weight_limit_y index="1" type="double" size="[1 4]"> 26117 [32.0000 32.0000 32.0000 32.0000 ] 26118 </weight_limit_y> 26119 <weight_limit_uv index="1" type="double" size="[1 3]"> 26120 [32.0000 32.0000 32.0000 ] 26121 </weight_limit_uv> 26122 <ratio_frq index="1" type="double" size="[1 4]"> 26123 [0.5000 2.0000 0.5000 2.0000 ] 26124 </ratio_frq> 26125 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 26126 [0.5000 0.5000 0.5000 ] 26127 </luma_w_in_chroma> 26128 <noise_curve index="1" type="double" size="[1 5]"> 26129 [-1.52155493457974e-012 1.40665186878902e-008 -4.69371860616144e-005 5.84762430174166e-002 2.60227194063991e+001 ] 26130 </noise_curve> 26131 <noise_curve_x00 index="1" type="double" size="[1 1]"> 26132 [3.79000000000000e+003 ] 26133 </noise_curve_x00> 26134 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 26135 [1.00000 0.77354 0.53926 0.36661 ] 26136 </y_lo_noiseprofile> 26137 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 26138 [0.65807 0.59759 0.44849 0.00000 ] 26139 </y_hi_noiseprofile> 26140 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 26141 [1.0000 1.0000 1.0000 1.0000 ] 26142 </y_lo_denoiseweight> 26143 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 26144 [1.0000 1.0000 1.0000 1.0000 ] 26145 </y_hi_denoiseweight> 26146 <y_lo_bfscale index="1" type="double" size="[1 4]"> 26147 [0.5000 0.5000 0.5000 0.5000 ] 26148 </y_lo_bfscale> 26149 <y_hi_bfscale index="1" type="double" size="[1 4]"> 26150 [0.4500 0.4500 0.4500 0.4500 ] 26151 </y_hi_bfscale> 26152 <y_lumanrpoint index="1" type="double" size="[1 6]"> 26153 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 26154 </y_lumanrpoint> 26155 <y_lumanrcurve index="1" type="double" size="[1 6]"> 26156 [1.4000 1.3000 1.3000 1.2500 1.3000 1.3000 ] 26157 </y_lumanrcurve> 26158 <y_denoisestrength index="1" type="double" size="[1 1]"> 26159 [1.7000 ] 26160 </y_denoisestrength> 26161 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26162 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26163 </y_lo_lvl0_gfdelta> 26164 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26165 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26166 </y_hi_lvl0_gfdelta> 26167 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26168 [0.12500 0.10938 0.10938 ] 26169 </y_lo_lvl1_gfdelta> 26170 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26171 [0.12500 0.10938 0.10938 ] 26172 </y_hi_lvl1_gfdelta> 26173 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26174 [0.12500 0.10938 0.10938 ] 26175 </y_lo_lvl2_gfdelta> 26176 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26177 [0.12500 0.10938 0.10938 ] 26178 </y_hi_lvl2_gfdelta> 26179 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 26180 [0.12500 0.10938 0.10938 ] 26181 </y_lo_lvl3_gfdelta> 26182 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 26183 [0.12500 0.10938 0.10938 ] 26184 </y_hi_lvl3_gfdelta> 26185 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 26186 [1.00000 0.77354 0.53926 ] 26187 </uv_lo_noiseprofile> 26188 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 26189 [0.65807 0.59759 0.35740 ] 26190 </uv_hi_noiseprofile> 26191 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 26192 [1.0000 1.0000 1.0000 ] 26193 </uv_lo_denoiseweight> 26194 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 26195 [1.0000 1.0000 1.0000 ] 26196 </uv_hi_denoiseweight> 26197 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 26198 [0.5000 0.5000 0.5000 ] 26199 </uv_lo_bfscale> 26200 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 26201 [0.4000 0.4500 0.5000 ] 26202 </uv_hi_bfscale> 26203 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 26204 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 26205 </uv_lumanrpoint> 26206 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 26207 [1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 ] 26208 </uv_lumanrcurve> 26209 <uv_denoisestrength index="1" type="double" size="[1 1]"> 26210 [1.8000 ] 26211 </uv_denoisestrength> 26212 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26213 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26214 </uv_lo_lvl0_gfdelta> 26215 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26216 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26217 </uv_hi_lvl0_gfdelta> 26218 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26219 [0.12500 0.10938 0.10938 ] 26220 </uv_lo_lvl1_gfdelta> 26221 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26222 [0.12500 0.10938 0.10938 ] 26223 </uv_hi_lvl1_gfdelta> 26224 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26225 [0.12500 0.10938 0.10938 ] 26226 </uv_lo_lvl2_gfdelta> 26227 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26228 [0.12500 0.10938 0.10938 ] 26229 </uv_hi_lvl2_gfdelta> 26230 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 26231 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26232 </lvl0_gfsigma> 26233 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 26234 [0.12500 0.10938 0.10938 ] 26235 </lvl1_gfsigma> 26236 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 26237 [0.12500 0.10938 0.10938 ] 26238 </lvl2_gfsigma> 26239 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 26240 [0.12500 0.10938 0.10938 ] 26241 </lvl3_gfsigma> 26242 </cell> 26243 <cell index="4" type="struct" size="[1 1]"> 26244 <iso index="1" type="double" size="[1 1]"> 26245 [400.0000 ] 26246 </iso> 26247 <weight_limit_y index="1" type="double" size="[1 4]"> 26248 [32.0000 32.0000 32.0000 32.0000 ] 26249 </weight_limit_y> 26250 <weight_limit_uv index="1" type="double" size="[1 3]"> 26251 [32.0000 32.0000 32.0000 ] 26252 </weight_limit_uv> 26253 <ratio_frq index="1" type="double" size="[1 4]"> 26254 [0.5000 2.0000 0.5000 2.0000 ] 26255 </ratio_frq> 26256 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 26257 [0.5000 0.5000 0.5000 ] 26258 </luma_w_in_chroma> 26259 <noise_curve index="1" type="double" size="[1 5]"> 26260 [-2.78200837475752e-012 2.61174369092566e-008 -8.77094728358591e-005 1.11980382041814e-001 2.36814539463394e+001 ] 26261 </noise_curve> 26262 <noise_curve_x00 index="1" type="double" size="[1 1]"> 26263 [3.71400000000000e+003 ] 26264 </noise_curve_x00> 26265 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 26266 [1.00000 0.80420 0.59319 0.43480 ] 26267 </y_lo_noiseprofile> 26268 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 26269 [0.60811 0.56888 0.41942 0.00000 ] 26270 </y_hi_noiseprofile> 26271 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 26272 [1.0000 1.0000 1.0000 1.0000 ] 26273 </y_lo_denoiseweight> 26274 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 26275 [1.0000 1.0000 1.0000 1.0000 ] 26276 </y_hi_denoiseweight> 26277 <y_lo_bfscale index="1" type="double" size="[1 4]"> 26278 [0.5000 0.5000 0.4000 0.4000 ] 26279 </y_lo_bfscale> 26280 <y_hi_bfscale index="1" type="double" size="[1 4]"> 26281 [0.4000 0.4000 0.4000 0.4000 ] 26282 </y_hi_bfscale> 26283 <y_lumanrpoint index="1" type="double" size="[1 6]"> 26284 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 26285 </y_lumanrpoint> 26286 <y_lumanrcurve index="1" type="double" size="[1 6]"> 26287 [1.6000 1.5000 1.3000 1.2500 1.3000 1.3000 ] 26288 </y_lumanrcurve> 26289 <y_denoisestrength index="1" type="double" size="[1 1]"> 26290 [2.2000 ] 26291 </y_denoisestrength> 26292 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26293 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26294 </y_lo_lvl0_gfdelta> 26295 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26296 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26297 </y_hi_lvl0_gfdelta> 26298 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26299 [0.12500 0.10938 0.10938 ] 26300 </y_lo_lvl1_gfdelta> 26301 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26302 [0.12500 0.10938 0.10938 ] 26303 </y_hi_lvl1_gfdelta> 26304 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26305 [0.12500 0.10938 0.10938 ] 26306 </y_lo_lvl2_gfdelta> 26307 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26308 [0.12500 0.10938 0.10938 ] 26309 </y_hi_lvl2_gfdelta> 26310 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 26311 [0.12500 0.10938 0.10938 ] 26312 </y_lo_lvl3_gfdelta> 26313 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 26314 [0.12500 0.10938 0.10938 ] 26315 </y_hi_lvl3_gfdelta> 26316 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 26317 [1.00000 0.80420 0.59319 ] 26318 </uv_lo_noiseprofile> 26319 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 26320 [0.60811 0.56888 0.39704 ] 26321 </uv_hi_noiseprofile> 26322 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 26323 [1.0000 1.0000 1.0000 ] 26324 </uv_lo_denoiseweight> 26325 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 26326 [1.0000 1.0000 1.0000 ] 26327 </uv_hi_denoiseweight> 26328 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 26329 [0.5000 0.5000 0.4000 ] 26330 </uv_lo_bfscale> 26331 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 26332 [0.4000 0.4000 0.4000 ] 26333 </uv_hi_bfscale> 26334 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 26335 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 26336 </uv_lumanrpoint> 26337 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 26338 [1.5000 1.5000 1.5000 1.5000 1.5000 1.5000 ] 26339 </uv_lumanrcurve> 26340 <uv_denoisestrength index="1" type="double" size="[1 1]"> 26341 [2.2000 ] 26342 </uv_denoisestrength> 26343 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26344 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26345 </uv_lo_lvl0_gfdelta> 26346 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26347 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26348 </uv_hi_lvl0_gfdelta> 26349 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26350 [0.12500 0.10938 0.10938 ] 26351 </uv_lo_lvl1_gfdelta> 26352 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26353 [0.12500 0.10938 0.10938 ] 26354 </uv_hi_lvl1_gfdelta> 26355 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26356 [0.12500 0.10938 0.10938 ] 26357 </uv_lo_lvl2_gfdelta> 26358 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26359 [0.12500 0.10938 0.10938 ] 26360 </uv_hi_lvl2_gfdelta> 26361 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 26362 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26363 </lvl0_gfsigma> 26364 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 26365 [0.12500 0.10938 0.10938 ] 26366 </lvl1_gfsigma> 26367 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 26368 [0.12500 0.10938 0.10938 ] 26369 </lvl2_gfsigma> 26370 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 26371 [0.12500 0.10938 0.10938 ] 26372 </lvl3_gfsigma> 26373 </cell> 26374 <cell index="5" type="struct" size="[1 1]"> 26375 <iso index="1" type="double" size="[1 1]"> 26376 [800.0000 ] 26377 </iso> 26378 <weight_limit_y index="1" type="double" size="[1 4]"> 26379 [32.0000 32.0000 32.0000 32.0000 ] 26380 </weight_limit_y> 26381 <weight_limit_uv index="1" type="double" size="[1 3]"> 26382 [32.0000 32.0000 32.0000 ] 26383 </weight_limit_uv> 26384 <ratio_frq index="1" type="double" size="[1 4]"> 26385 [0.5000 2.0000 0.5000 2.0000 ] 26386 </ratio_frq> 26387 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 26388 [0.6000 0.6000 0.6000 ] 26389 </luma_w_in_chroma> 26390 <noise_curve index="1" type="double" size="[1 5]"> 26391 [-2.23709690355328e-012 2.11901816670340e-008 -7.26688079299778e-005 9.60394777007423e-002 2.24640616934303e+001 ] 26392 </noise_curve> 26393 <noise_curve_x00 index="1" type="double" size="[1 1]"> 26394 [3.33100000000000e+003 ] 26395 </noise_curve_x00> 26396 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 26397 [1.00000 0.82405 0.62343 0.46180 ] 26398 </y_lo_noiseprofile> 26399 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 26400 [0.57401 0.56317 0.43568 0.00000 ] 26401 </y_hi_noiseprofile> 26402 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 26403 [1.0000 1.0000 1.0000 1.0000 ] 26404 </y_lo_denoiseweight> 26405 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 26406 [1.0000 1.0000 1.0000 1.0000 ] 26407 </y_hi_denoiseweight> 26408 <y_lo_bfscale index="1" type="double" size="[1 4]"> 26409 [0.5000 0.5000 0.4000 0.4000 ] 26410 </y_lo_bfscale> 26411 <y_hi_bfscale index="1" type="double" size="[1 4]"> 26412 [0.4000 0.4000 0.4000 0.4000 ] 26413 </y_hi_bfscale> 26414 <y_lumanrpoint index="1" type="double" size="[1 6]"> 26415 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 26416 </y_lumanrpoint> 26417 <y_lumanrcurve index="1" type="double" size="[1 6]"> 26418 [1.7000 1.5000 1.3000 1.3500 1.4000 1.4000 ] 26419 </y_lumanrcurve> 26420 <y_denoisestrength index="1" type="double" size="[1 1]"> 26421 [2.8000 ] 26422 </y_denoisestrength> 26423 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26424 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26425 </y_lo_lvl0_gfdelta> 26426 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26427 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26428 </y_hi_lvl0_gfdelta> 26429 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26430 [0.12500 0.10938 0.10938 ] 26431 </y_lo_lvl1_gfdelta> 26432 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26433 [0.12500 0.10938 0.10938 ] 26434 </y_hi_lvl1_gfdelta> 26435 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26436 [0.12500 0.10938 0.10938 ] 26437 </y_lo_lvl2_gfdelta> 26438 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26439 [0.12500 0.10938 0.10938 ] 26440 </y_hi_lvl2_gfdelta> 26441 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 26442 [0.12500 0.10938 0.10938 ] 26443 </y_lo_lvl3_gfdelta> 26444 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 26445 [0.12500 0.10938 0.10938 ] 26446 </y_hi_lvl3_gfdelta> 26447 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 26448 [1.00000 0.82405 0.62343 ] 26449 </uv_lo_noiseprofile> 26450 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 26451 [0.57401 0.56317 0.39342 ] 26452 </uv_hi_noiseprofile> 26453 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 26454 [1.0000 1.0000 1.0000 ] 26455 </uv_lo_denoiseweight> 26456 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 26457 [1.0000 1.0000 1.0000 ] 26458 </uv_hi_denoiseweight> 26459 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 26460 [0.5000 0.5000 0.4000 ] 26461 </uv_lo_bfscale> 26462 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 26463 [0.4000 0.4000 0.4000 ] 26464 </uv_hi_bfscale> 26465 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 26466 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 26467 </uv_lumanrpoint> 26468 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 26469 [1.8000 1.7000 1.5000 1.5000 1.5000 1.5000 ] 26470 </uv_lumanrcurve> 26471 <uv_denoisestrength index="1" type="double" size="[1 1]"> 26472 [2.8000 ] 26473 </uv_denoisestrength> 26474 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26475 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26476 </uv_lo_lvl0_gfdelta> 26477 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26478 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26479 </uv_hi_lvl0_gfdelta> 26480 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26481 [0.12500 0.10938 0.10938 ] 26482 </uv_lo_lvl1_gfdelta> 26483 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26484 [0.12500 0.10938 0.10938 ] 26485 </uv_hi_lvl1_gfdelta> 26486 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26487 [0.12500 0.10938 0.10938 ] 26488 </uv_lo_lvl2_gfdelta> 26489 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26490 [0.12500 0.10938 0.10938 ] 26491 </uv_hi_lvl2_gfdelta> 26492 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 26493 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26494 </lvl0_gfsigma> 26495 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 26496 [0.12500 0.10938 0.10938 ] 26497 </lvl1_gfsigma> 26498 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 26499 [0.12500 0.10938 0.10938 ] 26500 </lvl2_gfsigma> 26501 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 26502 [0.12500 0.10938 0.10938 ] 26503 </lvl3_gfsigma> 26504 </cell> 26505 <cell index="6" type="struct" size="[1 1]"> 26506 <iso index="1" type="double" size="[1 1]"> 26507 [1600.0000 ] 26508 </iso> 26509 <weight_limit_y index="1" type="double" size="[1 4]"> 26510 [16.0000 16.0000 16.0000 16.0000 ] 26511 </weight_limit_y> 26512 <weight_limit_uv index="1" type="double" size="[1 3]"> 26513 [16.0000 16.0000 16.0000 ] 26514 </weight_limit_uv> 26515 <ratio_frq index="1" type="double" size="[1 4]"> 26516 [0.5000 2.0000 0.5000 2.0000 ] 26517 </ratio_frq> 26518 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 26519 [0.6500 0.6500 0.6500 ] 26520 </luma_w_in_chroma> 26521 <noise_curve index="1" type="double" size="[1 5]"> 26522 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 26523 </noise_curve> 26524 <noise_curve_x00 index="1" type="double" size="[1 1]"> 26525 [3.24400000000000e+003 ] 26526 </noise_curve_x00> 26527 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 26528 [1.00000 0.72770 0.46182 0.29414 ] 26529 </y_lo_noiseprofile> 26530 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 26531 [0.73231 0.60469 0.39427 0.00000 ] 26532 </y_hi_noiseprofile> 26533 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 26534 [1.0000 1.0000 1.0000 1.0000 ] 26535 </y_lo_denoiseweight> 26536 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 26537 [1.0000 1.0000 1.0000 1.0000 ] 26538 </y_hi_denoiseweight> 26539 <y_lo_bfscale index="1" type="double" size="[1 4]"> 26540 [0.5000 0.5000 0.5000 0.7000 ] 26541 </y_lo_bfscale> 26542 <y_hi_bfscale index="1" type="double" size="[1 4]"> 26543 [0.5000 0.5000 0.5000 0.7000 ] 26544 </y_hi_bfscale> 26545 <y_lumanrpoint index="1" type="double" size="[1 6]"> 26546 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 26547 </y_lumanrpoint> 26548 <y_lumanrcurve index="1" type="double" size="[1 6]"> 26549 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 26550 </y_lumanrcurve> 26551 <y_denoisestrength index="1" type="double" size="[1 1]"> 26552 [3.2000 ] 26553 </y_denoisestrength> 26554 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26555 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26556 </y_lo_lvl0_gfdelta> 26557 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26558 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26559 </y_hi_lvl0_gfdelta> 26560 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26561 [0.12500 0.10938 0.10938 ] 26562 </y_lo_lvl1_gfdelta> 26563 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26564 [0.12500 0.10938 0.10938 ] 26565 </y_hi_lvl1_gfdelta> 26566 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26567 [0.12500 0.10938 0.10938 ] 26568 </y_lo_lvl2_gfdelta> 26569 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26570 [0.12500 0.10938 0.10938 ] 26571 </y_hi_lvl2_gfdelta> 26572 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 26573 [0.12500 0.10938 0.10938 ] 26574 </y_lo_lvl3_gfdelta> 26575 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 26576 [0.12500 0.10938 0.10938 ] 26577 </y_hi_lvl3_gfdelta> 26578 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 26579 [1.00000 0.72770 0.46182 ] 26580 </uv_lo_noiseprofile> 26581 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 26582 [0.73231 0.60469 0.39427 ] 26583 </uv_hi_noiseprofile> 26584 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 26585 [1.0000 1.0000 1.0000 ] 26586 </uv_lo_denoiseweight> 26587 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 26588 [1.0000 1.0000 1.0000 ] 26589 </uv_hi_denoiseweight> 26590 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 26591 [0.5000 0.7000 0.7000 ] 26592 </uv_lo_bfscale> 26593 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 26594 [0.3000 0.4000 0.5000 ] 26595 </uv_hi_bfscale> 26596 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 26597 [0.0000 32.0000 64.0000 192.0000 232.0000 255.0000 ] 26598 </uv_lumanrpoint> 26599 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 26600 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 26601 </uv_lumanrcurve> 26602 <uv_denoisestrength index="1" type="double" size="[1 1]"> 26603 [3.2000 ] 26604 </uv_denoisestrength> 26605 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26606 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26607 </uv_lo_lvl0_gfdelta> 26608 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26609 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26610 </uv_hi_lvl0_gfdelta> 26611 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26612 [0.12500 0.10938 0.10938 ] 26613 </uv_lo_lvl1_gfdelta> 26614 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26615 [0.12500 0.10938 0.10938 ] 26616 </uv_hi_lvl1_gfdelta> 26617 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26618 [0.12500 0.10938 0.10938 ] 26619 </uv_lo_lvl2_gfdelta> 26620 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26621 [0.12500 0.10938 0.10938 ] 26622 </uv_hi_lvl2_gfdelta> 26623 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 26624 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26625 </lvl0_gfsigma> 26626 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 26627 [0.12500 0.10938 0.10938 ] 26628 </lvl1_gfsigma> 26629 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 26630 [0.12500 0.10938 0.10938 ] 26631 </lvl2_gfsigma> 26632 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 26633 [0.12500 0.10938 0.10938 ] 26634 </lvl3_gfsigma> 26635 </cell> 26636 <cell index="7" type="struct" size="[1 1]"> 26637 <iso index="1" type="double" size="[1 1]"> 26638 [3200.0000 ] 26639 </iso> 26640 <weight_limit_y index="1" type="double" size="[1 4]"> 26641 [16.0000 16.0000 16.0000 16.0000 ] 26642 </weight_limit_y> 26643 <weight_limit_uv index="1" type="double" size="[1 3]"> 26644 [16.0000 16.0000 16.0000 ] 26645 </weight_limit_uv> 26646 <ratio_frq index="1" type="double" size="[1 4]"> 26647 [0.5000 2.0000 0.5000 2.0000 ] 26648 </ratio_frq> 26649 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 26650 [0.7000 0.7000 0.7000 ] 26651 </luma_w_in_chroma> 26652 <noise_curve index="1" type="double" size="[1 5]"> 26653 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 26654 </noise_curve> 26655 <noise_curve_x00 index="1" type="double" size="[1 1]"> 26656 [3.17000000000000e+003 ] 26657 </noise_curve_x00> 26658 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 26659 [1.00000 0.72924 0.45749 0.28517 ] 26660 </y_lo_noiseprofile> 26661 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 26662 [0.72960 0.61071 0.39626 0.00000 ] 26663 </y_hi_noiseprofile> 26664 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 26665 [1.0000 1.0000 1.0000 1.0000 ] 26666 </y_lo_denoiseweight> 26667 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 26668 [1.0000 1.0000 1.0000 1.0000 ] 26669 </y_hi_denoiseweight> 26670 <y_lo_bfscale index="1" type="double" size="[1 4]"> 26671 [0.5000 0.5000 0.5000 0.7000 ] 26672 </y_lo_bfscale> 26673 <y_hi_bfscale index="1" type="double" size="[1 4]"> 26674 [0.5000 0.5000 0.5000 0.7000 ] 26675 </y_hi_bfscale> 26676 <y_lumanrpoint index="1" type="double" size="[1 6]"> 26677 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 26678 </y_lumanrpoint> 26679 <y_lumanrcurve index="1" type="double" size="[1 6]"> 26680 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 26681 </y_lumanrcurve> 26682 <y_denoisestrength index="1" type="double" size="[1 1]"> 26683 [1.4000 ] 26684 </y_denoisestrength> 26685 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26686 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26687 </y_lo_lvl0_gfdelta> 26688 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26689 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26690 </y_hi_lvl0_gfdelta> 26691 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26692 [0.12500 0.10938 0.10938 ] 26693 </y_lo_lvl1_gfdelta> 26694 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26695 [0.12500 0.10938 0.10938 ] 26696 </y_hi_lvl1_gfdelta> 26697 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26698 [0.12500 0.10938 0.10938 ] 26699 </y_lo_lvl2_gfdelta> 26700 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26701 [0.12500 0.10938 0.10938 ] 26702 </y_hi_lvl2_gfdelta> 26703 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 26704 [0.12500 0.10938 0.10938 ] 26705 </y_lo_lvl3_gfdelta> 26706 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 26707 [0.12500 0.10938 0.10938 ] 26708 </y_hi_lvl3_gfdelta> 26709 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 26710 [1.00000 0.72924 0.45749 ] 26711 </uv_lo_noiseprofile> 26712 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 26713 [0.72960 0.61071 0.39626 ] 26714 </uv_hi_noiseprofile> 26715 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 26716 [1.0000 1.0000 1.0000 ] 26717 </uv_lo_denoiseweight> 26718 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 26719 [1.0000 1.0000 1.0000 ] 26720 </uv_hi_denoiseweight> 26721 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 26722 [0.5000 0.7000 0.7000 ] 26723 </uv_lo_bfscale> 26724 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 26725 [0.3000 0.3000 0.4000 ] 26726 </uv_hi_bfscale> 26727 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 26728 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 26729 </uv_lumanrpoint> 26730 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 26731 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 26732 </uv_lumanrcurve> 26733 <uv_denoisestrength index="1" type="double" size="[1 1]"> 26734 [1.4000 ] 26735 </uv_denoisestrength> 26736 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26737 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26738 </uv_lo_lvl0_gfdelta> 26739 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26740 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26741 </uv_hi_lvl0_gfdelta> 26742 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26743 [0.12500 0.10938 0.10938 ] 26744 </uv_lo_lvl1_gfdelta> 26745 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26746 [0.12500 0.10938 0.10938 ] 26747 </uv_hi_lvl1_gfdelta> 26748 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26749 [0.12500 0.10938 0.10938 ] 26750 </uv_lo_lvl2_gfdelta> 26751 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26752 [0.12500 0.10938 0.10938 ] 26753 </uv_hi_lvl2_gfdelta> 26754 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 26755 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26756 </lvl0_gfsigma> 26757 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 26758 [0.12500 0.10938 0.10938 ] 26759 </lvl1_gfsigma> 26760 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 26761 [0.12500 0.10938 0.10938 ] 26762 </lvl2_gfsigma> 26763 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 26764 [0.12500 0.10938 0.10938 ] 26765 </lvl3_gfsigma> 26766 </cell> 26767 <cell index="8" type="struct" size="[1 1]"> 26768 <iso index="1" type="double" size="[1 1]"> 26769 [6400.0000 ] 26770 </iso> 26771 <weight_limit_y index="1" type="double" size="[1 4]"> 26772 [4.0000 4.0000 4.0000 4.0000 ] 26773 </weight_limit_y> 26774 <weight_limit_uv index="1" type="double" size="[1 3]"> 26775 [4.0000 4.0000 4.0000 ] 26776 </weight_limit_uv> 26777 <ratio_frq index="1" type="double" size="[1 4]"> 26778 [0.5000 2.0000 0.5000 2.0000 ] 26779 </ratio_frq> 26780 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 26781 [0.7500 0.7500 0.7500 ] 26782 </luma_w_in_chroma> 26783 <noise_curve index="1" type="double" size="[1 5]"> 26784 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 26785 </noise_curve> 26786 <noise_curve_x00 index="1" type="double" size="[1 1]"> 26787 [3.17000000000000e+003 ] 26788 </noise_curve_x00> 26789 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 26790 [1.00000 0.72924 0.45749 0.28517 ] 26791 </y_lo_noiseprofile> 26792 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 26793 [0.72960 0.61071 0.39626 0.00000 ] 26794 </y_hi_noiseprofile> 26795 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 26796 [1.0000 1.0000 1.0000 1.0000 ] 26797 </y_lo_denoiseweight> 26798 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 26799 [1.0000 1.0000 1.0000 1.0000 ] 26800 </y_hi_denoiseweight> 26801 <y_lo_bfscale index="1" type="double" size="[1 4]"> 26802 [0.5000 0.5000 0.5000 0.7000 ] 26803 </y_lo_bfscale> 26804 <y_hi_bfscale index="1" type="double" size="[1 4]"> 26805 [0.5000 0.5000 0.5000 0.7000 ] 26806 </y_hi_bfscale> 26807 <y_lumanrpoint index="1" type="double" size="[1 6]"> 26808 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 26809 </y_lumanrpoint> 26810 <y_lumanrcurve index="1" type="double" size="[1 6]"> 26811 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 26812 </y_lumanrcurve> 26813 <y_denoisestrength index="1" type="double" size="[1 1]"> 26814 [1.6000 ] 26815 </y_denoisestrength> 26816 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26817 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26818 </y_lo_lvl0_gfdelta> 26819 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26820 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26821 </y_hi_lvl0_gfdelta> 26822 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26823 [0.12500 0.10938 0.10938 ] 26824 </y_lo_lvl1_gfdelta> 26825 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26826 [0.12500 0.10938 0.10938 ] 26827 </y_hi_lvl1_gfdelta> 26828 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26829 [0.12500 0.10938 0.10938 ] 26830 </y_lo_lvl2_gfdelta> 26831 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26832 [0.12500 0.10938 0.10938 ] 26833 </y_hi_lvl2_gfdelta> 26834 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 26835 [0.12500 0.10938 0.10938 ] 26836 </y_lo_lvl3_gfdelta> 26837 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 26838 [0.12500 0.10938 0.10938 ] 26839 </y_hi_lvl3_gfdelta> 26840 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 26841 [1.00000 0.72924 0.45749 ] 26842 </uv_lo_noiseprofile> 26843 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 26844 [0.72960 0.61071 0.39626 ] 26845 </uv_hi_noiseprofile> 26846 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 26847 [1.0000 1.0000 1.0000 ] 26848 </uv_lo_denoiseweight> 26849 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 26850 [1.0000 1.0000 1.0000 ] 26851 </uv_hi_denoiseweight> 26852 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 26853 [0.5000 0.7000 0.7000 ] 26854 </uv_lo_bfscale> 26855 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 26856 [0.3000 0.3000 0.4000 ] 26857 </uv_hi_bfscale> 26858 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 26859 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 26860 </uv_lumanrpoint> 26861 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 26862 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 26863 </uv_lumanrcurve> 26864 <uv_denoisestrength index="1" type="double" size="[1 1]"> 26865 [1.6000 ] 26866 </uv_denoisestrength> 26867 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26868 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26869 </uv_lo_lvl0_gfdelta> 26870 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26871 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26872 </uv_hi_lvl0_gfdelta> 26873 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26874 [0.12500 0.10938 0.10938 ] 26875 </uv_lo_lvl1_gfdelta> 26876 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26877 [0.12500 0.10938 0.10938 ] 26878 </uv_hi_lvl1_gfdelta> 26879 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26880 [0.12500 0.10938 0.10938 ] 26881 </uv_lo_lvl2_gfdelta> 26882 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26883 [0.12500 0.10938 0.10938 ] 26884 </uv_hi_lvl2_gfdelta> 26885 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 26886 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26887 </lvl0_gfsigma> 26888 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 26889 [0.12500 0.10938 0.10938 ] 26890 </lvl1_gfsigma> 26891 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 26892 [0.12500 0.10938 0.10938 ] 26893 </lvl2_gfsigma> 26894 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 26895 [0.12500 0.10938 0.10938 ] 26896 </lvl3_gfsigma> 26897 </cell> 26898 <cell index="9" type="struct" size="[1 1]"> 26899 <iso index="1" type="double" size="[1 1]"> 26900 [12800.0000 ] 26901 </iso> 26902 <weight_limit_y index="1" type="double" size="[1 4]"> 26903 [4.0000 4.0000 4.0000 4.0000 ] 26904 </weight_limit_y> 26905 <weight_limit_uv index="1" type="double" size="[1 3]"> 26906 [4.0000 4.0000 4.0000 ] 26907 </weight_limit_uv> 26908 <ratio_frq index="1" type="double" size="[1 4]"> 26909 [0.5000 2.0000 0.5000 2.0000 ] 26910 </ratio_frq> 26911 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 26912 [0.8000 0.8000 0.8000 ] 26913 </luma_w_in_chroma> 26914 <noise_curve index="1" type="double" size="[1 5]"> 26915 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 26916 </noise_curve> 26917 <noise_curve_x00 index="1" type="double" size="[1 1]"> 26918 [3.17000000000000e+003 ] 26919 </noise_curve_x00> 26920 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 26921 [1.00000 0.72924 0.45749 0.28517 ] 26922 </y_lo_noiseprofile> 26923 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 26924 [0.72960 0.61071 0.39626 0.00000 ] 26925 </y_hi_noiseprofile> 26926 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 26927 [1.0000 1.0000 1.0000 1.0000 ] 26928 </y_lo_denoiseweight> 26929 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 26930 [1.0000 1.0000 1.0000 1.0000 ] 26931 </y_hi_denoiseweight> 26932 <y_lo_bfscale index="1" type="double" size="[1 4]"> 26933 [0.5000 0.5000 0.5000 0.7000 ] 26934 </y_lo_bfscale> 26935 <y_hi_bfscale index="1" type="double" size="[1 4]"> 26936 [0.5000 0.5000 0.5000 0.7000 ] 26937 </y_hi_bfscale> 26938 <y_lumanrpoint index="1" type="double" size="[1 6]"> 26939 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 26940 </y_lumanrpoint> 26941 <y_lumanrcurve index="1" type="double" size="[1 6]"> 26942 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 26943 </y_lumanrcurve> 26944 <y_denoisestrength index="1" type="double" size="[1 1]"> 26945 [1.8000 ] 26946 </y_denoisestrength> 26947 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26948 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26949 </y_lo_lvl0_gfdelta> 26950 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26951 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 26952 </y_hi_lvl0_gfdelta> 26953 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26954 [0.12500 0.10938 0.10938 ] 26955 </y_lo_lvl1_gfdelta> 26956 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 26957 [0.12500 0.10938 0.10938 ] 26958 </y_hi_lvl1_gfdelta> 26959 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26960 [0.12500 0.10938 0.10938 ] 26961 </y_lo_lvl2_gfdelta> 26962 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 26963 [0.12500 0.10938 0.10938 ] 26964 </y_hi_lvl2_gfdelta> 26965 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 26966 [0.12500 0.10938 0.10938 ] 26967 </y_lo_lvl3_gfdelta> 26968 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 26969 [0.12500 0.10938 0.10938 ] 26970 </y_hi_lvl3_gfdelta> 26971 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 26972 [1.00000 0.72924 0.45749 ] 26973 </uv_lo_noiseprofile> 26974 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 26975 [0.72960 0.61071 0.39626 ] 26976 </uv_hi_noiseprofile> 26977 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 26978 [1.0000 1.0000 1.0000 ] 26979 </uv_lo_denoiseweight> 26980 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 26981 [1.0000 1.0000 1.0000 ] 26982 </uv_hi_denoiseweight> 26983 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 26984 [0.5000 0.7000 0.7000 ] 26985 </uv_lo_bfscale> 26986 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 26987 [0.3000 0.3000 0.4000 ] 26988 </uv_hi_bfscale> 26989 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 26990 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 26991 </uv_lumanrpoint> 26992 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 26993 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 26994 </uv_lumanrcurve> 26995 <uv_denoisestrength index="1" type="double" size="[1 1]"> 26996 [1.8000 ] 26997 </uv_denoisestrength> 26998 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 26999 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 27000 </uv_lo_lvl0_gfdelta> 27001 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 27002 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 27003 </uv_hi_lvl0_gfdelta> 27004 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 27005 [0.12500 0.10938 0.10938 ] 27006 </uv_lo_lvl1_gfdelta> 27007 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 27008 [0.12500 0.10938 0.10938 ] 27009 </uv_hi_lvl1_gfdelta> 27010 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 27011 [0.12500 0.10938 0.10938 ] 27012 </uv_lo_lvl2_gfdelta> 27013 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 27014 [0.12500 0.10938 0.10938 ] 27015 </uv_hi_lvl2_gfdelta> 27016 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 27017 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 27018 </lvl0_gfsigma> 27019 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 27020 [0.12500 0.10938 0.10938 ] 27021 </lvl1_gfsigma> 27022 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 27023 [0.12500 0.10938 0.10938 ] 27024 </lvl2_gfsigma> 27025 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 27026 [0.12500 0.10938 0.10938 ] 27027 </lvl3_gfsigma> 27028 </cell> 27029 <cell index="10" type="struct" size="[1 1]"> 27030 <iso index="1" type="double" size="[1 1]"> 27031 [25600.0000 ] 27032 </iso> 27033 <weight_limit_y index="1" type="double" size="[1 4]"> 27034 [4.0000 4.0000 4.0000 4.0000 ] 27035 </weight_limit_y> 27036 <weight_limit_uv index="1" type="double" size="[1 3]"> 27037 [4.0000 4.0000 4.0000 ] 27038 </weight_limit_uv> 27039 <ratio_frq index="1" type="double" size="[1 4]"> 27040 [0.5000 2.0000 0.5000 2.0000 ] 27041 </ratio_frq> 27042 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 27043 [0.8000 0.8000 0.8000 ] 27044 </luma_w_in_chroma> 27045 <noise_curve index="1" type="double" size="[1 5]"> 27046 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 27047 </noise_curve> 27048 <noise_curve_x00 index="1" type="double" size="[1 1]"> 27049 [3.17000000000000e+003 ] 27050 </noise_curve_x00> 27051 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 27052 [1.00000 0.72924 0.45749 0.28517 ] 27053 </y_lo_noiseprofile> 27054 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 27055 [0.72960 0.61071 0.39626 0.00000 ] 27056 </y_hi_noiseprofile> 27057 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 27058 [1.0000 1.0000 1.0000 1.0000 ] 27059 </y_lo_denoiseweight> 27060 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 27061 [1.0000 1.0000 1.0000 1.0000 ] 27062 </y_hi_denoiseweight> 27063 <y_lo_bfscale index="1" type="double" size="[1 4]"> 27064 [0.5000 0.5000 0.5000 0.7000 ] 27065 </y_lo_bfscale> 27066 <y_hi_bfscale index="1" type="double" size="[1 4]"> 27067 [0.5000 0.5000 0.5000 0.7000 ] 27068 </y_hi_bfscale> 27069 <y_lumanrpoint index="1" type="double" size="[1 6]"> 27070 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 27071 </y_lumanrpoint> 27072 <y_lumanrcurve index="1" type="double" size="[1 6]"> 27073 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 27074 </y_lumanrcurve> 27075 <y_denoisestrength index="1" type="double" size="[1 1]"> 27076 [1.8000 ] 27077 </y_denoisestrength> 27078 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 27079 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 27080 </y_lo_lvl0_gfdelta> 27081 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 27082 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 27083 </y_hi_lvl0_gfdelta> 27084 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 27085 [0.12500 0.10938 0.10938 ] 27086 </y_lo_lvl1_gfdelta> 27087 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 27088 [0.12500 0.10938 0.10938 ] 27089 </y_hi_lvl1_gfdelta> 27090 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 27091 [0.12500 0.10938 0.10938 ] 27092 </y_lo_lvl2_gfdelta> 27093 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 27094 [0.12500 0.10938 0.10938 ] 27095 </y_hi_lvl2_gfdelta> 27096 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 27097 [0.12500 0.10938 0.10938 ] 27098 </y_lo_lvl3_gfdelta> 27099 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 27100 [0.12500 0.10938 0.10938 ] 27101 </y_hi_lvl3_gfdelta> 27102 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 27103 [1.00000 0.72924 0.45749 ] 27104 </uv_lo_noiseprofile> 27105 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 27106 [0.72960 0.61071 0.39626 ] 27107 </uv_hi_noiseprofile> 27108 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 27109 [1.0000 1.0000 1.0000 ] 27110 </uv_lo_denoiseweight> 27111 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 27112 [1.0000 1.0000 1.0000 ] 27113 </uv_hi_denoiseweight> 27114 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 27115 [0.5000 0.7000 0.7000 ] 27116 </uv_lo_bfscale> 27117 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 27118 [0.3000 0.3000 0.4000 ] 27119 </uv_hi_bfscale> 27120 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 27121 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 27122 </uv_lumanrpoint> 27123 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 27124 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 27125 </uv_lumanrcurve> 27126 <uv_denoisestrength index="1" type="double" size="[1 1]"> 27127 [1.8000 ] 27128 </uv_denoisestrength> 27129 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 27130 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 27131 </uv_lo_lvl0_gfdelta> 27132 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 27133 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 27134 </uv_hi_lvl0_gfdelta> 27135 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 27136 [0.12500 0.10938 0.10938 ] 27137 </uv_lo_lvl1_gfdelta> 27138 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 27139 [0.12500 0.10938 0.10938 ] 27140 </uv_hi_lvl1_gfdelta> 27141 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 27142 [0.12500 0.10938 0.10938 ] 27143 </uv_lo_lvl2_gfdelta> 27144 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 27145 [0.12500 0.10938 0.10938 ] 27146 </uv_hi_lvl2_gfdelta> 27147 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 27148 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 27149 </lvl0_gfsigma> 27150 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 27151 [0.12500 0.10938 0.10938 ] 27152 </lvl1_gfsigma> 27153 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 27154 [0.12500 0.10938 0.10938 ] 27155 </lvl2_gfsigma> 27156 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 27157 [0.12500 0.10938 0.10938 ] 27158 </lvl3_gfsigma> 27159 </cell> 27160 <cell index="11" type="struct" size="[1 1]"> 27161 <iso index="1" type="double" size="[1 1]"> 27162 [51200.0000 ] 27163 </iso> 27164 <weight_limit_y index="1" type="double" size="[1 4]"> 27165 [4.0000 4.0000 4.0000 4.0000 ] 27166 </weight_limit_y> 27167 <weight_limit_uv index="1" type="double" size="[1 3]"> 27168 [4.0000 4.0000 4.0000 ] 27169 </weight_limit_uv> 27170 <ratio_frq index="1" type="double" size="[1 4]"> 27171 [0.5000 2.0000 0.5000 2.0000 ] 27172 </ratio_frq> 27173 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 27174 [0.8000 0.8000 0.8000 ] 27175 </luma_w_in_chroma> 27176 <noise_curve index="1" type="double" size="[1 5]"> 27177 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 27178 </noise_curve> 27179 <noise_curve_x00 index="1" type="double" size="[1 1]"> 27180 [3.17000000000000e+003 ] 27181 </noise_curve_x00> 27182 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 27183 [1.00000 0.72924 0.45749 0.28517 ] 27184 </y_lo_noiseprofile> 27185 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 27186 [0.72960 0.61071 0.39626 0.00000 ] 27187 </y_hi_noiseprofile> 27188 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 27189 [1.0000 1.0000 1.0000 1.0000 ] 27190 </y_lo_denoiseweight> 27191 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 27192 [1.0000 1.0000 1.0000 1.0000 ] 27193 </y_hi_denoiseweight> 27194 <y_lo_bfscale index="1" type="double" size="[1 4]"> 27195 [0.5000 0.5000 0.5000 0.7000 ] 27196 </y_lo_bfscale> 27197 <y_hi_bfscale index="1" type="double" size="[1 4]"> 27198 [0.5000 0.5000 0.5000 0.7000 ] 27199 </y_hi_bfscale> 27200 <y_lumanrpoint index="1" type="double" size="[1 6]"> 27201 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 27202 </y_lumanrpoint> 27203 <y_lumanrcurve index="1" type="double" size="[1 6]"> 27204 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 27205 </y_lumanrcurve> 27206 <y_denoisestrength index="1" type="double" size="[1 1]"> 27207 [1.8000 ] 27208 </y_denoisestrength> 27209 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 27210 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 27211 </y_lo_lvl0_gfdelta> 27212 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 27213 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 27214 </y_hi_lvl0_gfdelta> 27215 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 27216 [0.12500 0.10938 0.10938 ] 27217 </y_lo_lvl1_gfdelta> 27218 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 27219 [0.12500 0.10938 0.10938 ] 27220 </y_hi_lvl1_gfdelta> 27221 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 27222 [0.12500 0.10938 0.10938 ] 27223 </y_lo_lvl2_gfdelta> 27224 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 27225 [0.12500 0.10938 0.10938 ] 27226 </y_hi_lvl2_gfdelta> 27227 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 27228 [0.12500 0.10938 0.10938 ] 27229 </y_lo_lvl3_gfdelta> 27230 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 27231 [0.12500 0.10938 0.10938 ] 27232 </y_hi_lvl3_gfdelta> 27233 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 27234 [1.00000 0.72924 0.45749 ] 27235 </uv_lo_noiseprofile> 27236 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 27237 [0.72960 0.61071 0.39626 ] 27238 </uv_hi_noiseprofile> 27239 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 27240 [1.0000 1.0000 1.0000 ] 27241 </uv_lo_denoiseweight> 27242 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 27243 [1.0000 1.0000 1.0000 ] 27244 </uv_hi_denoiseweight> 27245 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 27246 [0.5000 0.7000 0.7000 ] 27247 </uv_lo_bfscale> 27248 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 27249 [0.3000 0.3000 0.4000 ] 27250 </uv_hi_bfscale> 27251 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 27252 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 27253 </uv_lumanrpoint> 27254 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 27255 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 27256 </uv_lumanrcurve> 27257 <uv_denoisestrength index="1" type="double" size="[1 1]"> 27258 [1.8000 ] 27259 </uv_denoisestrength> 27260 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 27261 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 27262 </uv_lo_lvl0_gfdelta> 27263 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 27264 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 27265 </uv_hi_lvl0_gfdelta> 27266 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 27267 [0.12500 0.10938 0.10938 ] 27268 </uv_lo_lvl1_gfdelta> 27269 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 27270 [0.12500 0.10938 0.10938 ] 27271 </uv_hi_lvl1_gfdelta> 27272 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 27273 [0.12500 0.10938 0.10938 ] 27274 </uv_lo_lvl2_gfdelta> 27275 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 27276 [0.12500 0.10938 0.10938 ] 27277 </uv_hi_lvl2_gfdelta> 27278 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 27279 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 27280 </lvl0_gfsigma> 27281 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 27282 [0.12500 0.10938 0.10938 ] 27283 </lvl1_gfsigma> 27284 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 27285 [0.12500 0.10938 0.10938 ] 27286 </lvl2_gfsigma> 27287 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 27288 [0.12500 0.10938 0.10938 ] 27289 </lvl3_gfsigma> 27290 </cell> 27291 <cell index="12" type="struct" size="[1 1]"> 27292 <iso index="1" type="double" size="[1 1]"> 27293 [102400.0000 ] 27294 </iso> 27295 <weight_limit_y index="1" type="double" size="[1 4]"> 27296 [4.0000 4.0000 4.0000 4.0000 ] 27297 </weight_limit_y> 27298 <weight_limit_uv index="1" type="double" size="[1 3]"> 27299 [4.0000 4.0000 4.0000 ] 27300 </weight_limit_uv> 27301 <ratio_frq index="1" type="double" size="[1 4]"> 27302 [0.5000 2.0000 0.5000 2.0000 ] 27303 </ratio_frq> 27304 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 27305 [0.8000 0.8000 0.8000 ] 27306 </luma_w_in_chroma> 27307 <noise_curve index="1" type="double" size="[1 5]"> 27308 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 27309 </noise_curve> 27310 <noise_curve_x00 index="1" type="double" size="[1 1]"> 27311 [3.17000000000000e+003 ] 27312 </noise_curve_x00> 27313 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 27314 [1.00000 0.72924 0.45749 0.28517 ] 27315 </y_lo_noiseprofile> 27316 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 27317 [0.72960 0.61071 0.39626 0.00000 ] 27318 </y_hi_noiseprofile> 27319 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 27320 [1.0000 1.0000 1.0000 1.0000 ] 27321 </y_lo_denoiseweight> 27322 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 27323 [1.0000 1.0000 1.0000 1.0000 ] 27324 </y_hi_denoiseweight> 27325 <y_lo_bfscale index="1" type="double" size="[1 4]"> 27326 [0.5000 0.5000 0.5000 0.7000 ] 27327 </y_lo_bfscale> 27328 <y_hi_bfscale index="1" type="double" size="[1 4]"> 27329 [0.5000 0.5000 0.5000 0.7000 ] 27330 </y_hi_bfscale> 27331 <y_lumanrpoint index="1" type="double" size="[1 6]"> 27332 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 27333 </y_lumanrpoint> 27334 <y_lumanrcurve index="1" type="double" size="[1 6]"> 27335 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 27336 </y_lumanrcurve> 27337 <y_denoisestrength index="1" type="double" size="[1 1]"> 27338 [1.8000 ] 27339 </y_denoisestrength> 27340 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 27341 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 27342 </y_lo_lvl0_gfdelta> 27343 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 27344 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 27345 </y_hi_lvl0_gfdelta> 27346 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 27347 [0.12500 0.10938 0.10938 ] 27348 </y_lo_lvl1_gfdelta> 27349 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 27350 [0.12500 0.10938 0.10938 ] 27351 </y_hi_lvl1_gfdelta> 27352 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 27353 [0.12500 0.10938 0.10938 ] 27354 </y_lo_lvl2_gfdelta> 27355 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 27356 [0.12500 0.10938 0.10938 ] 27357 </y_hi_lvl2_gfdelta> 27358 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 27359 [0.12500 0.10938 0.10938 ] 27360 </y_lo_lvl3_gfdelta> 27361 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 27362 [0.12500 0.10938 0.10938 ] 27363 </y_hi_lvl3_gfdelta> 27364 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 27365 [1.00000 0.72924 0.45749 ] 27366 </uv_lo_noiseprofile> 27367 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 27368 [0.72960 0.61071 0.39626 ] 27369 </uv_hi_noiseprofile> 27370 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 27371 [1.0000 1.0000 1.0000 ] 27372 </uv_lo_denoiseweight> 27373 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 27374 [1.0000 1.0000 1.0000 ] 27375 </uv_hi_denoiseweight> 27376 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 27377 [0.5000 0.7000 0.7000 ] 27378 </uv_lo_bfscale> 27379 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 27380 [0.3000 0.3000 0.4000 ] 27381 </uv_hi_bfscale> 27382 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 27383 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 27384 </uv_lumanrpoint> 27385 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 27386 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 27387 </uv_lumanrcurve> 27388 <uv_denoisestrength index="1" type="double" size="[1 1]"> 27389 [1.8000 ] 27390 </uv_denoisestrength> 27391 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 27392 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 27393 </uv_lo_lvl0_gfdelta> 27394 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 27395 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 27396 </uv_hi_lvl0_gfdelta> 27397 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 27398 [0.12500 0.10938 0.10938 ] 27399 </uv_lo_lvl1_gfdelta> 27400 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 27401 [0.12500 0.10938 0.10938 ] 27402 </uv_hi_lvl1_gfdelta> 27403 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 27404 [0.12500 0.10938 0.10938 ] 27405 </uv_lo_lvl2_gfdelta> 27406 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 27407 [0.12500 0.10938 0.10938 ] 27408 </uv_hi_lvl2_gfdelta> 27409 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 27410 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 27411 </lvl0_gfsigma> 27412 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 27413 [0.12500 0.10938 0.10938 ] 27414 </lvl1_gfsigma> 27415 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 27416 [0.12500 0.10938 0.10938 ] 27417 </lvl2_gfsigma> 27418 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 27419 [0.12500 0.10938 0.10938 ] 27420 </lvl3_gfsigma> 27421 </cell> 27422 <cell index="13" type="struct" size="[1 1]"> 27423 <iso index="1" type="double" size="[1 1]"> 27424 [204800.0000 ] 27425 </iso> 27426 <weight_limit_y index="1" type="double" size="[1 4]"> 27427 [4.0000 4.0000 4.0000 4.0000 ] 27428 </weight_limit_y> 27429 <weight_limit_uv index="1" type="double" size="[1 3]"> 27430 [4.0000 4.0000 4.0000 ] 27431 </weight_limit_uv> 27432 <ratio_frq index="1" type="double" size="[1 4]"> 27433 [0.5000 2.0000 0.5000 2.0000 ] 27434 </ratio_frq> 27435 <luma_w_in_chroma index="1" type="double" size="[1 3]"> 27436 [0.8000 0.8000 0.8000 ] 27437 </luma_w_in_chroma> 27438 <noise_curve index="1" type="double" size="[1 5]"> 27439 [-5.24186459287474e-012 4.83761295342097e-008 -1.58009865773703e-004 2.05697200837108e-001 -2.46859972726306e+001 ] 27440 </noise_curve> 27441 <noise_curve_x00 index="1" type="double" size="[1 1]"> 27442 [3.17000000000000e+003 ] 27443 </noise_curve_x00> 27444 <y_lo_noiseprofile index="1" type="double" size="[1 4]"> 27445 [1.00000 0.72924 0.45749 0.28517 ] 27446 </y_lo_noiseprofile> 27447 <y_hi_noiseprofile index="1" type="double" size="[1 4]"> 27448 [0.72960 0.61071 0.39626 0.00000 ] 27449 </y_hi_noiseprofile> 27450 <y_lo_denoiseweight index="1" type="double" size="[1 4]"> 27451 [1.0000 1.0000 1.0000 1.0000 ] 27452 </y_lo_denoiseweight> 27453 <y_hi_denoiseweight index="1" type="double" size="[1 4]"> 27454 [1.0000 1.0000 1.0000 1.0000 ] 27455 </y_hi_denoiseweight> 27456 <y_lo_bfscale index="1" type="double" size="[1 4]"> 27457 [0.5000 0.5000 0.5000 0.7000 ] 27458 </y_lo_bfscale> 27459 <y_hi_bfscale index="1" type="double" size="[1 4]"> 27460 [0.5000 0.5000 0.5000 0.7000 ] 27461 </y_hi_bfscale> 27462 <y_lumanrpoint index="1" type="double" size="[1 6]"> 27463 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 27464 </y_lumanrpoint> 27465 <y_lumanrcurve index="1" type="double" size="[1 6]"> 27466 [1.0000 1.0000 1.0000 1.4000 1.4000 1.4000 ] 27467 </y_lumanrcurve> 27468 <y_denoisestrength index="1" type="double" size="[1 1]"> 27469 [1.8000 ] 27470 </y_denoisestrength> 27471 <y_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 27472 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 27473 </y_lo_lvl0_gfdelta> 27474 <y_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 27475 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 27476 </y_hi_lvl0_gfdelta> 27477 <y_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 27478 [0.12500 0.10938 0.10938 ] 27479 </y_lo_lvl1_gfdelta> 27480 <y_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 27481 [0.12500 0.10938 0.10938 ] 27482 </y_hi_lvl1_gfdelta> 27483 <y_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 27484 [0.12500 0.10938 0.10938 ] 27485 </y_lo_lvl2_gfdelta> 27486 <y_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 27487 [0.12500 0.10938 0.10938 ] 27488 </y_hi_lvl2_gfdelta> 27489 <y_lo_lvl3_gfdelta index="1" type="double" size="[1 3]"> 27490 [0.12500 0.10938 0.10938 ] 27491 </y_lo_lvl3_gfdelta> 27492 <y_hi_lvl3_gfdelta index="1" type="double" size="[1 3]"> 27493 [0.12500 0.10938 0.10938 ] 27494 </y_hi_lvl3_gfdelta> 27495 <uv_lo_noiseprofile index="1" type="double" size="[1 3]"> 27496 [1.00000 0.72924 0.45749 ] 27497 </uv_lo_noiseprofile> 27498 <uv_hi_noiseprofile index="1" type="double" size="[1 3]"> 27499 [0.72960 0.61071 0.39626 ] 27500 </uv_hi_noiseprofile> 27501 <uv_lo_denoiseweight index="1" type="double" size="[1 3]"> 27502 [1.0000 1.0000 1.0000 ] 27503 </uv_lo_denoiseweight> 27504 <uv_hi_denoiseweight index="1" type="double" size="[1 3]"> 27505 [1.0000 1.0000 1.0000 ] 27506 </uv_hi_denoiseweight> 27507 <uv_lo_bfscale index="1" type="double" size="[1 3]"> 27508 [0.5000 0.7000 0.7000 ] 27509 </uv_lo_bfscale> 27510 <uv_hi_bfscale index="1" type="double" size="[1 3]"> 27511 [0.3000 0.3000 0.4000 ] 27512 </uv_hi_bfscale> 27513 <uv_lumanrpoint index="1" type="double" size="[1 6]"> 27514 [0.0000 32.0000 64.0000 192.0000 232.0000 256.0000 ] 27515 </uv_lumanrpoint> 27516 <uv_lumanrcurve index="1" type="double" size="[1 6]"> 27517 [1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 ] 27518 </uv_lumanrcurve> 27519 <uv_denoisestrength index="1" type="double" size="[1 1]"> 27520 [1.8000 ] 27521 </uv_denoisestrength> 27522 <uv_lo_lvl0_gfdelta index="1" type="double" size="[1 6]"> 27523 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 27524 </uv_lo_lvl0_gfdelta> 27525 <uv_hi_lvl0_gfdelta index="1" type="double" size="[1 6]"> 27526 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 27527 </uv_hi_lvl0_gfdelta> 27528 <uv_lo_lvl1_gfdelta index="1" type="double" size="[1 3]"> 27529 [0.12500 0.10938 0.10938 ] 27530 </uv_lo_lvl1_gfdelta> 27531 <uv_hi_lvl1_gfdelta index="1" type="double" size="[1 3]"> 27532 [0.12500 0.10938 0.10938 ] 27533 </uv_hi_lvl1_gfdelta> 27534 <uv_lo_lvl2_gfdelta index="1" type="double" size="[1 3]"> 27535 [0.12500 0.10938 0.10938 ] 27536 </uv_lo_lvl2_gfdelta> 27537 <uv_hi_lvl2_gfdelta index="1" type="double" size="[1 3]"> 27538 [0.12500 0.10938 0.10938 ] 27539 </uv_hi_lvl2_gfdelta> 27540 <lvl0_gfsigma index="1" type="double" size="[1 6]"> 27541 [0.06250 0.03906 0.03906 0.03906 0.03906 0.03906 ] 27542 </lvl0_gfsigma> 27543 <lvl1_gfsigma index="1" type="double" size="[1 3]"> 27544 [0.12500 0.10938 0.10938 ] 27545 </lvl1_gfsigma> 27546 <lvl2_gfsigma index="1" type="double" size="[1 3]"> 27547 [0.12500 0.10938 0.10938 ] 27548 </lvl2_gfsigma> 27549 <lvl3_gfsigma index="1" type="double" size="[1 3]"> 27550 [0.12500 0.10938 0.10938 ] 27551 </lvl3_gfsigma> 27552 </cell> 27553 </MFNR_ISO> 27554 </cell> 27555 </Setting> 27556 <motion_detection index="1" type="struct" size="[1 1]"> 27557 <Enable index="1" type="double" size="[1 1]"> 27558 [0] 27559 </Enable> 27560 <ISO index="1" type="double" size="[1 13]"> 27561 [50.0000 100.0000 200.0000 400.0000 800.0000 1600.0000 3200.0000 6400.0000 12800.0000 25600.0000 51200.0000 102400.0000 204800.0000 ] 27562 </ISO> 27563 <sigmaHScale index="1" type="double" size="[1 13]"> 27564 [1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ] 27565 </sigmaHScale> 27566 <sigmaLScale index="1" type="double" size="[1 13]"> 27567 [0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ] 27568 </sigmaLScale> 27569 <light_clp index="1" type="double" size="[1 13]"> 27570 [32 32 32 32 32 32 32 32 32 32 32 32 32 ] 27571 </light_clp> 27572 <uv_weight index="1" type="double" size="[1 13]"> 27573 [1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 ] 27574 </uv_weight> 27575 <mfnr_sigma_scale index="1" type="double" size="[1 13]"> 27576 [4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 ] 27577 </mfnr_sigma_scale> 27578 <yuvnr_gain_scale0 index="1" type="double" size="[1 13]"> 27579 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 27580 </yuvnr_gain_scale0> 27581 <yuvnr_gain_scale1 index="1" type="double" size="[1 13]"> 27582 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 27583 </yuvnr_gain_scale1> 27584 <yuvnr_gain_scale2 index="1" type="double" size="[1 13]"> 27585 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 27586 </yuvnr_gain_scale2> 27587 <frame_limit_y index="1" type="double" size="[1 13]"> 27588 [24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 ] 27589 </frame_limit_y> 27590 <frame_limit_uv index="1" type="double" size="[1 13]"> 27591 [24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 ] 27592 </frame_limit_uv> 27593 <reserved7 index="1" type="double" size="[1 13]"> 27594 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 27595 </reserved7> 27596 <reserved6 index="1" type="double" size="[1 13]"> 27597 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 27598 </reserved6> 27599 <reserved5 index="1" type="double" size="[1 13]"> 27600 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 27601 </reserved5> 27602 <reserved4 index="1" type="double" size="[1 13]"> 27603 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 27604 </reserved4> 27605 <reserved3 index="1" type="double" size="[1 13]"> 27606 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 27607 </reserved3> 27608 <reserved2 index="1" type="double" size="[1 13]"> 27609 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 27610 </reserved2> 27611 <reserved1 index="1" type="double" size="[1 13]"> 27612 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 27613 </reserved1> 27614 <reserved0 index="1" type="double" size="[1 13]"> 27615 [2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 ] 27616 </reserved0> 27617 </motion_detection> 27618 </cell> 27619 </Mode> 27620 </MFNR> 27621 <SHARP index="1" type="struct" size="[1 1]"> 27622 <Enable index="1" type="double" size="[1 1]"> 27623 [1] 27624 </Enable> 27625 <Version index="1" type="char" size="[1 2]"> 27626 V1 27627 </Version> 27628 <luma_point index="1" type="double" size="[1 8]"> 27629 [0 16 32 64 96 160 224 256] 27630 </luma_point> 27631 <Mode index="1" type="cell" size="[1 3]"> 27632 <cell index="1" type="struct" size="[1 1]"> 27633 <Name index="1" type="char" size="[1 8]"> 27634 normal 27635 </Name> 27636 <gauss_luma_coeff index="1" type="double" size="[3 3]"> 27637 [0.0625 0.125 0.0625 27638 0.125 0.25 0.125 27639 0.0625 0.125 0.0625] 27640 </gauss_luma_coeff> 27641 <pbf_coeff_l index="1" type="double" size="[3 3]"> 27642 [0.15625 0.25 0.15625 27643 0.25 0.375 0.25 27644 0.15625 0.25 0.15625] 27645 </pbf_coeff_l> 27646 <pbf_coeff_h index="1" type="double" size="[3 3]"> 27647 [0.15625 0.25 0.15625 27648 0.25 0.375 0.25 27649 0.15625 0.25 0.15625] 27650 </pbf_coeff_h> 27651 <rf_m_coeff_l index="1" type="double" size="[5 5]"> 27652 [0.023438 0.03125 0.039063 0.03125 0.023438 27653 0.03125 0.046875 0.054688 0.046875 0.03125 27654 0.039063 0.054688 0.09375 0.054688 0.039063 27655 0.03125 0.046875 0.054688 0.046875 0.03125 27656 0.023438 0.03125 0.039063 0.03125 0.023438] 27657 </rf_m_coeff_l> 27658 <rf_m_coeff_h index="1" type="double" size="[5 5]"> 27659 [0.023438 0.03125 0.039063 0.03125 0.023438 27660 0.03125 0.046875 0.054688 0.046875 0.03125 27661 0.039063 0.054688 0.09375 0.054688 0.039063 27662 0.03125 0.046875 0.054688 0.046875 0.03125 27663 0.023438 0.03125 0.039063 0.03125 0.023438] 27664 </rf_m_coeff_h> 27665 <mbf_coeff index="1" type="double" size="[17 13]"> 27666 [0 0 0 0 0.40625 0 0 0 0 0 0 0 0.40625 0 0 0 0 27667 0 0 0 0 0 0 0.34375 0 0.328125 0 0.34375 0 0 0 0 0 0 27668 0 0 0.40625 0 0.359375 0 0 0 0 0 0 0 0.359375 0 0.40625 0 0 27669 0 0 0 0 0 0.296875 0 0.234375 0 0.234375 0 0.296875 0 0 0 0 0 27670 0 0.40625 0 0.34375 0 0 0 0 0.171875 0 0 0 0 0.34375 0 0.40625 0 27671 0 0 0 0 0 0.234375 0 0.140625 0.109375 0.140625 0 0.234375 0 0 0 0 0 27672 0.4375 0 0 0.328125 0 0 0.171875 0.109375 0 0.109375 0.171875 0 0 0.328125 0 0 0.4375 27673 0 0 0 0 0 0.234375 0 0.140625 0.109375 0.140625 0 0.234375 0 0 0 0 0 27674 0 0.40625 0 0.34375 0 0 0 0 0.171875 0 0 0 0 0.34375 0 0.40625 0 27675 0 0 0 0 0 0.296875 0 0.234375 0 0.234375 0 0.296875 0 0 0 0 0 27676 0 0 0.40625 0 0.359375 0 0 0 0 0 0 0 0.359375 0 0.40625 0 0 27677 0 0 0 0 0 0 0.34375 0 0.328125 0 0.34375 0 0 0 0 0 0 27678 0 0 0 0 0.40625 0 0 0 0 0 0 0 0.40625 0 0 0 0] 27679 </mbf_coeff> 27680 <rf_h_coeff_l index="1" type="double" size="[5 5]"> 27681 [0 0.015625 0.023438 0.015625 0 27682 0.015625 0.0625 0.101563 0.0625 0.015625 27683 0.023438 0.101563 0.125 0.101563 0.023438 27684 0.015625 0.0625 0.101563 0.0625 0.015625 27685 0 0.015625 0.023438 0.015625 0] 27686 </rf_h_coeff_l> 27687 <rf_h_coeff_h index="1" type="double" size="[5 5]"> 27688 [0 0.015625 0.023438 0.015625 0 27689 0.015625 0.0625 0.101563 0.0625 0.015625 27690 0.023438 0.101563 0.125 0.101563 0.023438 27691 0.015625 0.0625 0.101563 0.0625 0.015625 27692 0 0.015625 0.023438 0.015625 0] 27693 </rf_h_coeff_h> 27694 <hbf_coeff_l index="1" type="double" size="[3 3]"> 27695 [0.15625 0.25 0.15625 27696 0.25 0.375 0.25 27697 0.15625 0.25 0.15625] 27698 </hbf_coeff_l> 27699 <hbf_coeff_h index="1" type="double" size="[3 3]"> 27700 [0.15625 0.25 0.15625 27701 0.25 0.375 0.25 27702 0.15625 0.25 0.15625] 27703 </hbf_coeff_h> 27704 <Setting index="1" type="cell" size="[1 2]"> 27705 <cell index="1" type="struct" size="[1 1]"> 27706 <SNR_Mode index="1" type="char" size="[1 4]"> 27707 LSNR 27708 </SNR_Mode> 27709 <Sensor_Mode index="1" type="char" size="[1 3]"> 27710 lcg 27711 </Sensor_Mode> 27712 <SHARP_ISO index="1" type="cell" size="[1 13]"> 27713 <cell index="1" type="struct" size="[1 1]"> 27714 <iso index="1" type="double" size="[1 1]"> 27715 [50] 27716 </iso> 27717 <lratio index="1" type="double" size="[1 1]"> 27718 [0.65] 27719 </lratio> 27720 <hratio index="1" type="double" size="[1 1]"> 27721 [1.5] 27722 </hratio> 27723 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 27724 [3] 27725 </mf_sharp_ratio> 27726 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 27727 [3] 27728 </hf_sharp_ratio> 27729 <luma_sigma index="1" type="double" size="[1 8]"> 27730 [2 3 4 4 6 5 4 4] 27731 </luma_sigma> 27732 <pbf_gain index="1" type="double" size="[1 1]"> 27733 [0.3] 27734 </pbf_gain> 27735 <pbf_ratio index="1" type="double" size="[1 1]"> 27736 [0.6] 27737 </pbf_ratio> 27738 <pbf_add index="1" type="double" size="[1 1]"> 27739 [0] 27740 </pbf_add> 27741 <mf_clip_pos index="1" type="double" size="[1 8]"> 27742 [4 6 10 16 16 12 5 0] 27743 </mf_clip_pos> 27744 <mf_clip_neg index="1" type="double" size="[1 8]"> 27745 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 27746 </mf_clip_neg> 27747 <hf_clip index="1" type="double" size="[1 8]"> 27748 [10 12 16 24 32 32 10 0] 27749 </hf_clip> 27750 <mbf_gain index="1" type="double" size="[1 1]"> 27751 [0.6] 27752 </mbf_gain> 27753 <hbf_gain index="1" type="double" size="[1 1]"> 27754 [0.6] 27755 </hbf_gain> 27756 <hbf_ratio index="1" type="double" size="[1 1]"> 27757 [0.6] 27758 </hbf_ratio> 27759 <mbf_add index="1" type="double" size="[1 1]"> 27760 [2] 27761 </mbf_add> 27762 <hbf_add index="1" type="double" size="[1 1]"> 27763 [1] 27764 </hbf_add> 27765 <local_sharp_strength index="1" type="double" size="[1 1]"> 27766 [32] 27767 </local_sharp_strength> 27768 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 27769 [0.6] 27770 </pbf_coeff_percent> 27771 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 27772 [0.6] 27773 </rf_m_coeff_Percent> 27774 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 27775 [0.6] 27776 </rf_h_coeff_percent> 27777 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 27778 [0.6] 27779 </hbf_coeff_percent> 27780 </cell> 27781 <cell index="2" type="struct" size="[1 1]"> 27782 <iso index="1" type="double" size="[1 1]"> 27783 [100] 27784 </iso> 27785 <lratio index="1" type="double" size="[1 1]"> 27786 [0.65] 27787 </lratio> 27788 <hratio index="1" type="double" size="[1 1]"> 27789 [1.5] 27790 </hratio> 27791 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 27792 [4] 27793 </mf_sharp_ratio> 27794 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 27795 [4] 27796 </hf_sharp_ratio> 27797 <luma_sigma index="1" type="double" size="[1 8]"> 27798 [3 4 5 6 6 5 4 3] 27799 </luma_sigma> 27800 <pbf_gain index="1" type="double" size="[1 1]"> 27801 [0.5] 27802 </pbf_gain> 27803 <pbf_ratio index="1" type="double" size="[1 1]"> 27804 [0.6] 27805 </pbf_ratio> 27806 <pbf_add index="1" type="double" size="[1 1]"> 27807 [0] 27808 </pbf_add> 27809 <mf_clip_pos index="1" type="double" size="[1 8]"> 27810 [4 6 10 14 16 10 7 0] 27811 </mf_clip_pos> 27812 <mf_clip_neg index="1" type="double" size="[1 8]"> 27813 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 27814 </mf_clip_neg> 27815 <hf_clip index="1" type="double" size="[1 8]"> 27816 [10 12 18 24 32 32 10 0] 27817 </hf_clip> 27818 <mbf_gain index="1" type="double" size="[1 1]"> 27819 [0.7] 27820 </mbf_gain> 27821 <hbf_gain index="1" type="double" size="[1 1]"> 27822 [0.7] 27823 </hbf_gain> 27824 <hbf_ratio index="1" type="double" size="[1 1]"> 27825 [0.6] 27826 </hbf_ratio> 27827 <mbf_add index="1" type="double" size="[1 1]"> 27828 [2] 27829 </mbf_add> 27830 <hbf_add index="1" type="double" size="[1 1]"> 27831 [1] 27832 </hbf_add> 27833 <local_sharp_strength index="1" type="double" size="[1 1]"> 27834 [32] 27835 </local_sharp_strength> 27836 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 27837 [0.6] 27838 </pbf_coeff_percent> 27839 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 27840 [0.6] 27841 </rf_m_coeff_Percent> 27842 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 27843 [0.6] 27844 </rf_h_coeff_percent> 27845 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 27846 [0.6] 27847 </hbf_coeff_percent> 27848 </cell> 27849 <cell index="3" type="struct" size="[1 1]"> 27850 <iso index="1" type="double" size="[1 1]"> 27851 [200] 27852 </iso> 27853 <lratio index="1" type="double" size="[1 1]"> 27854 [0.67] 27855 </lratio> 27856 <hratio index="1" type="double" size="[1 1]"> 27857 [1.5] 27858 </hratio> 27859 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 27860 [3.3] 27861 </mf_sharp_ratio> 27862 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 27863 [3.5] 27864 </hf_sharp_ratio> 27865 <luma_sigma index="1" type="double" size="[1 8]"> 27866 [3 4 5 6 6 5 4 3] 27867 </luma_sigma> 27868 <pbf_gain index="1" type="double" size="[1 1]"> 27869 [0.8] 27870 </pbf_gain> 27871 <pbf_ratio index="1" type="double" size="[1 1]"> 27872 [0.9] 27873 </pbf_ratio> 27874 <pbf_add index="1" type="double" size="[1 1]"> 27875 [0] 27876 </pbf_add> 27877 <mf_clip_pos index="1" type="double" size="[1 8]"> 27878 [4 6 10 16 16 14 8 0] 27879 </mf_clip_pos> 27880 <mf_clip_neg index="1" type="double" size="[1 8]"> 27881 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 27882 </mf_clip_neg> 27883 <hf_clip index="1" type="double" size="[1 8]"> 27884 [10 12 20 24 28 28 10 0] 27885 </hf_clip> 27886 <mbf_gain index="1" type="double" size="[1 1]"> 27887 [0.9] 27888 </mbf_gain> 27889 <hbf_gain index="1" type="double" size="[1 1]"> 27890 [0.8] 27891 </hbf_gain> 27892 <hbf_ratio index="1" type="double" size="[1 1]"> 27893 [0.7] 27894 </hbf_ratio> 27895 <mbf_add index="1" type="double" size="[1 1]"> 27896 [2] 27897 </mbf_add> 27898 <hbf_add index="1" type="double" size="[1 1]"> 27899 [1] 27900 </hbf_add> 27901 <local_sharp_strength index="1" type="double" size="[1 1]"> 27902 [32] 27903 </local_sharp_strength> 27904 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 27905 [0.6] 27906 </pbf_coeff_percent> 27907 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 27908 [0.6] 27909 </rf_m_coeff_Percent> 27910 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 27911 [0.6] 27912 </rf_h_coeff_percent> 27913 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 27914 [0.6] 27915 </hbf_coeff_percent> 27916 </cell> 27917 <cell index="4" type="struct" size="[1 1]"> 27918 <iso index="1" type="double" size="[1 1]"> 27919 [400] 27920 </iso> 27921 <lratio index="1" type="double" size="[1 1]"> 27922 [0.67] 27923 </lratio> 27924 <hratio index="1" type="double" size="[1 1]"> 27925 [1.5] 27926 </hratio> 27927 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 27928 [3.2] 27929 </mf_sharp_ratio> 27930 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 27931 [3.5] 27932 </hf_sharp_ratio> 27933 <luma_sigma index="1" type="double" size="[1 8]"> 27934 [3 4 5 6 6 5 4 3] 27935 </luma_sigma> 27936 <pbf_gain index="1" type="double" size="[1 1]"> 27937 [0.8] 27938 </pbf_gain> 27939 <pbf_ratio index="1" type="double" size="[1 1]"> 27940 [1] 27941 </pbf_ratio> 27942 <pbf_add index="1" type="double" size="[1 1]"> 27943 [0] 27944 </pbf_add> 27945 <mf_clip_pos index="1" type="double" size="[1 8]"> 27946 [4 6 8 10 14 14 7 0] 27947 </mf_clip_pos> 27948 <mf_clip_neg index="1" type="double" size="[1 8]"> 27949 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 27950 </mf_clip_neg> 27951 <hf_clip index="1" type="double" size="[1 8]"> 27952 [6 10 16 24 28 28 12 0] 27953 </hf_clip> 27954 <mbf_gain index="1" type="double" size="[1 1]"> 27955 [0.8] 27956 </mbf_gain> 27957 <hbf_gain index="1" type="double" size="[1 1]"> 27958 [0.8] 27959 </hbf_gain> 27960 <hbf_ratio index="1" type="double" size="[1 1]"> 27961 [0.7] 27962 </hbf_ratio> 27963 <mbf_add index="1" type="double" size="[1 1]"> 27964 [2] 27965 </mbf_add> 27966 <hbf_add index="1" type="double" size="[1 1]"> 27967 [1] 27968 </hbf_add> 27969 <local_sharp_strength index="1" type="double" size="[1 1]"> 27970 [32] 27971 </local_sharp_strength> 27972 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 27973 [0.6] 27974 </pbf_coeff_percent> 27975 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 27976 [0.6] 27977 </rf_m_coeff_Percent> 27978 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 27979 [0.6] 27980 </rf_h_coeff_percent> 27981 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 27982 [0.6] 27983 </hbf_coeff_percent> 27984 </cell> 27985 <cell index="5" type="struct" size="[1 1]"> 27986 <iso index="1" type="double" size="[1 1]"> 27987 [800] 27988 </iso> 27989 <lratio index="1" type="double" size="[1 1]"> 27990 [0.67] 27991 </lratio> 27992 <hratio index="1" type="double" size="[1 1]"> 27993 [1.5] 27994 </hratio> 27995 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 27996 [3] 27997 </mf_sharp_ratio> 27998 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 27999 [3.2] 28000 </hf_sharp_ratio> 28001 <luma_sigma index="1" type="double" size="[1 8]"> 28002 [4 5 6 8 8 8 7 6] 28003 </luma_sigma> 28004 <pbf_gain index="1" type="double" size="[1 1]"> 28005 [0.8] 28006 </pbf_gain> 28007 <pbf_ratio index="1" type="double" size="[1 1]"> 28008 [1] 28009 </pbf_ratio> 28010 <pbf_add index="1" type="double" size="[1 1]"> 28011 [0] 28012 </pbf_add> 28013 <mf_clip_pos index="1" type="double" size="[1 8]"> 28014 [8 8 12 14 16 16 7 0] 28015 </mf_clip_pos> 28016 <mf_clip_neg index="1" type="double" size="[1 8]"> 28017 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 28018 </mf_clip_neg> 28019 <hf_clip index="1" type="double" size="[1 8]"> 28020 [6 10 15 22 28 28 12 0] 28021 </hf_clip> 28022 <mbf_gain index="1" type="double" size="[1 1]"> 28023 [0.9] 28024 </mbf_gain> 28025 <hbf_gain index="1" type="double" size="[1 1]"> 28026 [0.85] 28027 </hbf_gain> 28028 <hbf_ratio index="1" type="double" size="[1 1]"> 28029 [0.65] 28030 </hbf_ratio> 28031 <mbf_add index="1" type="double" size="[1 1]"> 28032 [2] 28033 </mbf_add> 28034 <hbf_add index="1" type="double" size="[1 1]"> 28035 [1] 28036 </hbf_add> 28037 <local_sharp_strength index="1" type="double" size="[1 1]"> 28038 [24] 28039 </local_sharp_strength> 28040 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 28041 [0.6] 28042 </pbf_coeff_percent> 28043 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 28044 [0.6] 28045 </rf_m_coeff_Percent> 28046 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 28047 [0.6] 28048 </rf_h_coeff_percent> 28049 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 28050 [0.6] 28051 </hbf_coeff_percent> 28052 </cell> 28053 <cell index="6" type="struct" size="[1 1]"> 28054 <iso index="1" type="double" size="[1 1]"> 28055 [1600] 28056 </iso> 28057 <lratio index="1" type="double" size="[1 1]"> 28058 [0.72] 28059 </lratio> 28060 <hratio index="1" type="double" size="[1 1]"> 28061 [1.5] 28062 </hratio> 28063 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 28064 [3] 28065 </mf_sharp_ratio> 28066 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 28067 [3.2] 28068 </hf_sharp_ratio> 28069 <luma_sigma index="1" type="double" size="[1 8]"> 28070 [5 5 6 8 9 8 8 7] 28071 </luma_sigma> 28072 <pbf_gain index="1" type="double" size="[1 1]"> 28073 [0.9] 28074 </pbf_gain> 28075 <pbf_ratio index="1" type="double" size="[1 1]"> 28076 [1] 28077 </pbf_ratio> 28078 <pbf_add index="1" type="double" size="[1 1]"> 28079 [0] 28080 </pbf_add> 28081 <mf_clip_pos index="1" type="double" size="[1 8]"> 28082 [4 6 8 8 10 8 4 0] 28083 </mf_clip_pos> 28084 <mf_clip_neg index="1" type="double" size="[1 8]"> 28085 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 28086 </mf_clip_neg> 28087 <hf_clip index="1" type="double" size="[1 8]"> 28088 [6 10 12 16 20 20 8 0] 28089 </hf_clip> 28090 <mbf_gain index="1" type="double" size="[1 1]"> 28091 [0.9] 28092 </mbf_gain> 28093 <hbf_gain index="1" type="double" size="[1 1]"> 28094 [0.9] 28095 </hbf_gain> 28096 <hbf_ratio index="1" type="double" size="[1 1]"> 28097 [0.8] 28098 </hbf_ratio> 28099 <mbf_add index="1" type="double" size="[1 1]"> 28100 [2] 28101 </mbf_add> 28102 <hbf_add index="1" type="double" size="[1 1]"> 28103 [1] 28104 </hbf_add> 28105 <local_sharp_strength index="1" type="double" size="[1 1]"> 28106 [12] 28107 </local_sharp_strength> 28108 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 28109 [0.6] 28110 </pbf_coeff_percent> 28111 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 28112 [0.6] 28113 </rf_m_coeff_Percent> 28114 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 28115 [0.6] 28116 </rf_h_coeff_percent> 28117 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 28118 [0.6] 28119 </hbf_coeff_percent> 28120 </cell> 28121 <cell index="7" type="struct" size="[1 1]"> 28122 <iso index="1" type="double" size="[1 1]"> 28123 [3200] 28124 </iso> 28125 <lratio index="1" type="double" size="[1 1]"> 28126 [0.72] 28127 </lratio> 28128 <hratio index="1" type="double" size="[1 1]"> 28129 [1.5] 28130 </hratio> 28131 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 28132 [3.2] 28133 </mf_sharp_ratio> 28134 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 28135 [3.5] 28136 </hf_sharp_ratio> 28137 <luma_sigma index="1" type="double" size="[1 8]"> 28138 [6 8 10 12 14 12 12 10] 28139 </luma_sigma> 28140 <pbf_gain index="1" type="double" size="[1 1]"> 28141 [0.9] 28142 </pbf_gain> 28143 <pbf_ratio index="1" type="double" size="[1 1]"> 28144 [0.9] 28145 </pbf_ratio> 28146 <pbf_add index="1" type="double" size="[1 1]"> 28147 [0] 28148 </pbf_add> 28149 <mf_clip_pos index="1" type="double" size="[1 8]"> 28150 [4 6 8 8 10 8 4 0] 28151 </mf_clip_pos> 28152 <mf_clip_neg index="1" type="double" size="[1 8]"> 28153 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 28154 </mf_clip_neg> 28155 <hf_clip index="1" type="double" size="[1 8]"> 28156 [6 10 12 16 20 20 8 0] 28157 </hf_clip> 28158 <mbf_gain index="1" type="double" size="[1 1]"> 28159 [0.9] 28160 </mbf_gain> 28161 <hbf_gain index="1" type="double" size="[1 1]"> 28162 [0.9] 28163 </hbf_gain> 28164 <hbf_ratio index="1" type="double" size="[1 1]"> 28165 [0.9] 28166 </hbf_ratio> 28167 <mbf_add index="1" type="double" size="[1 1]"> 28168 [2] 28169 </mbf_add> 28170 <hbf_add index="1" type="double" size="[1 1]"> 28171 [1] 28172 </hbf_add> 28173 <local_sharp_strength index="1" type="double" size="[1 1]"> 28174 [12] 28175 </local_sharp_strength> 28176 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 28177 [0.6] 28178 </pbf_coeff_percent> 28179 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 28180 [0.6] 28181 </rf_m_coeff_Percent> 28182 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 28183 [0.6] 28184 </rf_h_coeff_percent> 28185 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 28186 [0.6] 28187 </hbf_coeff_percent> 28188 </cell> 28189 <cell index="8" type="struct" size="[1 1]"> 28190 <iso index="1" type="double" size="[1 1]"> 28191 [6400] 28192 </iso> 28193 <lratio index="1" type="double" size="[1 1]"> 28194 [0.75] 28195 </lratio> 28196 <hratio index="1" type="double" size="[1 1]"> 28197 [1.5] 28198 </hratio> 28199 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 28200 [3] 28201 </mf_sharp_ratio> 28202 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 28203 [3] 28204 </hf_sharp_ratio> 28205 <luma_sigma index="1" type="double" size="[1 8]"> 28206 [6 8 10 12 14 12 12 10] 28207 </luma_sigma> 28208 <pbf_gain index="1" type="double" size="[1 1]"> 28209 [0.95] 28210 </pbf_gain> 28211 <pbf_ratio index="1" type="double" size="[1 1]"> 28212 [0.95] 28213 </pbf_ratio> 28214 <pbf_add index="1" type="double" size="[1 1]"> 28215 [0] 28216 </pbf_add> 28217 <mf_clip_pos index="1" type="double" size="[1 8]"> 28218 [4 6 8 8 10 8 4 0] 28219 </mf_clip_pos> 28220 <mf_clip_neg index="1" type="double" size="[1 8]"> 28221 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 28222 </mf_clip_neg> 28223 <hf_clip index="1" type="double" size="[1 8]"> 28224 [6 10 12 16 20 20 8 0] 28225 </hf_clip> 28226 <mbf_gain index="1" type="double" size="[1 1]"> 28227 [0.95] 28228 </mbf_gain> 28229 <hbf_gain index="1" type="double" size="[1 1]"> 28230 [0.95] 28231 </hbf_gain> 28232 <hbf_ratio index="1" type="double" size="[1 1]"> 28233 [0.95] 28234 </hbf_ratio> 28235 <mbf_add index="1" type="double" size="[1 1]"> 28236 [2] 28237 </mbf_add> 28238 <hbf_add index="1" type="double" size="[1 1]"> 28239 [1] 28240 </hbf_add> 28241 <local_sharp_strength index="1" type="double" size="[1 1]"> 28242 [8] 28243 </local_sharp_strength> 28244 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 28245 [0.6] 28246 </pbf_coeff_percent> 28247 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 28248 [0.6] 28249 </rf_m_coeff_Percent> 28250 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 28251 [0.6] 28252 </rf_h_coeff_percent> 28253 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 28254 [0.6] 28255 </hbf_coeff_percent> 28256 </cell> 28257 <cell index="9" type="struct" size="[1 1]"> 28258 <iso index="1" type="double" size="[1 1]"> 28259 [12800] 28260 </iso> 28261 <lratio index="1" type="double" size="[1 1]"> 28262 [0.67] 28263 </lratio> 28264 <hratio index="1" type="double" size="[1 1]"> 28265 [1.5] 28266 </hratio> 28267 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 28268 [3] 28269 </mf_sharp_ratio> 28270 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 28271 [3] 28272 </hf_sharp_ratio> 28273 <luma_sigma index="1" type="double" size="[1 8]"> 28274 [6 8 10 12 14 12 12 10] 28275 </luma_sigma> 28276 <pbf_gain index="1" type="double" size="[1 1]"> 28277 [0.6] 28278 </pbf_gain> 28279 <pbf_ratio index="1" type="double" size="[1 1]"> 28280 [0.5] 28281 </pbf_ratio> 28282 <pbf_add index="1" type="double" size="[1 1]"> 28283 [0] 28284 </pbf_add> 28285 <mf_clip_pos index="1" type="double" size="[1 8]"> 28286 [4 6 8 8 10 8 4 0] 28287 </mf_clip_pos> 28288 <mf_clip_neg index="1" type="double" size="[1 8]"> 28289 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 28290 </mf_clip_neg> 28291 <hf_clip index="1" type="double" size="[1 8]"> 28292 [6 10 12 16 20 20 8 0] 28293 </hf_clip> 28294 <mbf_gain index="1" type="double" size="[1 1]"> 28295 [0.7] 28296 </mbf_gain> 28297 <hbf_gain index="1" type="double" size="[1 1]"> 28298 [0.7] 28299 </hbf_gain> 28300 <hbf_ratio index="1" type="double" size="[1 1]"> 28301 [0.7] 28302 </hbf_ratio> 28303 <mbf_add index="1" type="double" size="[1 1]"> 28304 [2] 28305 </mbf_add> 28306 <hbf_add index="1" type="double" size="[1 1]"> 28307 [1] 28308 </hbf_add> 28309 <local_sharp_strength index="1" type="double" size="[1 1]"> 28310 [16] 28311 </local_sharp_strength> 28312 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 28313 [0.6] 28314 </pbf_coeff_percent> 28315 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 28316 [0.6] 28317 </rf_m_coeff_Percent> 28318 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 28319 [0.6] 28320 </rf_h_coeff_percent> 28321 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 28322 [0.6] 28323 </hbf_coeff_percent> 28324 </cell> 28325 <cell index="10" type="struct" size="[1 1]"> 28326 <iso index="1" type="double" size="[1 1]"> 28327 [25600] 28328 </iso> 28329 <lratio index="1" type="double" size="[1 1]"> 28330 [0.67] 28331 </lratio> 28332 <hratio index="1" type="double" size="[1 1]"> 28333 [1.5] 28334 </hratio> 28335 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 28336 [3] 28337 </mf_sharp_ratio> 28338 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 28339 [3] 28340 </hf_sharp_ratio> 28341 <luma_sigma index="1" type="double" size="[1 8]"> 28342 [6 8 10 12 14 12 12 10] 28343 </luma_sigma> 28344 <pbf_gain index="1" type="double" size="[1 1]"> 28345 [0.6] 28346 </pbf_gain> 28347 <pbf_ratio index="1" type="double" size="[1 1]"> 28348 [0.5] 28349 </pbf_ratio> 28350 <pbf_add index="1" type="double" size="[1 1]"> 28351 [0] 28352 </pbf_add> 28353 <mf_clip_pos index="1" type="double" size="[1 8]"> 28354 [4 6 8 8 10 8 4 0] 28355 </mf_clip_pos> 28356 <mf_clip_neg index="1" type="double" size="[1 8]"> 28357 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 28358 </mf_clip_neg> 28359 <hf_clip index="1" type="double" size="[1 8]"> 28360 [6 10 12 16 20 20 8 0] 28361 </hf_clip> 28362 <mbf_gain index="1" type="double" size="[1 1]"> 28363 [0.7] 28364 </mbf_gain> 28365 <hbf_gain index="1" type="double" size="[1 1]"> 28366 [0.7] 28367 </hbf_gain> 28368 <hbf_ratio index="1" type="double" size="[1 1]"> 28369 [0.7] 28370 </hbf_ratio> 28371 <mbf_add index="1" type="double" size="[1 1]"> 28372 [2] 28373 </mbf_add> 28374 <hbf_add index="1" type="double" size="[1 1]"> 28375 [1] 28376 </hbf_add> 28377 <local_sharp_strength index="1" type="double" size="[1 1]"> 28378 [16] 28379 </local_sharp_strength> 28380 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 28381 [0.6] 28382 </pbf_coeff_percent> 28383 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 28384 [0.6] 28385 </rf_m_coeff_Percent> 28386 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 28387 [0.6] 28388 </rf_h_coeff_percent> 28389 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 28390 [0.6] 28391 </hbf_coeff_percent> 28392 </cell> 28393 <cell index="11" type="struct" size="[1 1]"> 28394 <iso index="1" type="double" size="[1 1]"> 28395 [51200] 28396 </iso> 28397 <lratio index="1" type="double" size="[1 1]"> 28398 [0.67] 28399 </lratio> 28400 <hratio index="1" type="double" size="[1 1]"> 28401 [1.5] 28402 </hratio> 28403 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 28404 [3] 28405 </mf_sharp_ratio> 28406 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 28407 [3] 28408 </hf_sharp_ratio> 28409 <luma_sigma index="1" type="double" size="[1 8]"> 28410 [6 8 10 12 14 12 12 10] 28411 </luma_sigma> 28412 <pbf_gain index="1" type="double" size="[1 1]"> 28413 [0.6] 28414 </pbf_gain> 28415 <pbf_ratio index="1" type="double" size="[1 1]"> 28416 [0.5] 28417 </pbf_ratio> 28418 <pbf_add index="1" type="double" size="[1 1]"> 28419 [0] 28420 </pbf_add> 28421 <mf_clip_pos index="1" type="double" size="[1 8]"> 28422 [4 6 8 8 10 8 4 0] 28423 </mf_clip_pos> 28424 <mf_clip_neg index="1" type="double" size="[1 8]"> 28425 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 28426 </mf_clip_neg> 28427 <hf_clip index="1" type="double" size="[1 8]"> 28428 [6 10 12 16 20 20 8 0] 28429 </hf_clip> 28430 <mbf_gain index="1" type="double" size="[1 1]"> 28431 [0.7] 28432 </mbf_gain> 28433 <hbf_gain index="1" type="double" size="[1 1]"> 28434 [0.7] 28435 </hbf_gain> 28436 <hbf_ratio index="1" type="double" size="[1 1]"> 28437 [0.7] 28438 </hbf_ratio> 28439 <mbf_add index="1" type="double" size="[1 1]"> 28440 [2] 28441 </mbf_add> 28442 <hbf_add index="1" type="double" size="[1 1]"> 28443 [1] 28444 </hbf_add> 28445 <local_sharp_strength index="1" type="double" size="[1 1]"> 28446 [16] 28447 </local_sharp_strength> 28448 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 28449 [0.6] 28450 </pbf_coeff_percent> 28451 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 28452 [0.6] 28453 </rf_m_coeff_Percent> 28454 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 28455 [0.6] 28456 </rf_h_coeff_percent> 28457 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 28458 [0.6] 28459 </hbf_coeff_percent> 28460 </cell> 28461 <cell index="12" type="struct" size="[1 1]"> 28462 <iso index="1" type="double" size="[1 1]"> 28463 [102400] 28464 </iso> 28465 <lratio index="1" type="double" size="[1 1]"> 28466 [0.67] 28467 </lratio> 28468 <hratio index="1" type="double" size="[1 1]"> 28469 [1.5] 28470 </hratio> 28471 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 28472 [3] 28473 </mf_sharp_ratio> 28474 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 28475 [3] 28476 </hf_sharp_ratio> 28477 <luma_sigma index="1" type="double" size="[1 8]"> 28478 [6 8 10 12 14 12 12 10] 28479 </luma_sigma> 28480 <pbf_gain index="1" type="double" size="[1 1]"> 28481 [0.6] 28482 </pbf_gain> 28483 <pbf_ratio index="1" type="double" size="[1 1]"> 28484 [0.5] 28485 </pbf_ratio> 28486 <pbf_add index="1" type="double" size="[1 1]"> 28487 [0] 28488 </pbf_add> 28489 <mf_clip_pos index="1" type="double" size="[1 8]"> 28490 [4 6 8 8 10 8 4 0] 28491 </mf_clip_pos> 28492 <mf_clip_neg index="1" type="double" size="[1 8]"> 28493 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 28494 </mf_clip_neg> 28495 <hf_clip index="1" type="double" size="[1 8]"> 28496 [6 10 12 16 20 20 8 0] 28497 </hf_clip> 28498 <mbf_gain index="1" type="double" size="[1 1]"> 28499 [0.7] 28500 </mbf_gain> 28501 <hbf_gain index="1" type="double" size="[1 1]"> 28502 [0.7] 28503 </hbf_gain> 28504 <hbf_ratio index="1" type="double" size="[1 1]"> 28505 [0.7] 28506 </hbf_ratio> 28507 <mbf_add index="1" type="double" size="[1 1]"> 28508 [2] 28509 </mbf_add> 28510 <hbf_add index="1" type="double" size="[1 1]"> 28511 [1] 28512 </hbf_add> 28513 <local_sharp_strength index="1" type="double" size="[1 1]"> 28514 [16] 28515 </local_sharp_strength> 28516 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 28517 [0.6] 28518 </pbf_coeff_percent> 28519 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 28520 [0.6] 28521 </rf_m_coeff_Percent> 28522 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 28523 [0.6] 28524 </rf_h_coeff_percent> 28525 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 28526 [0.6] 28527 </hbf_coeff_percent> 28528 </cell> 28529 <cell index="13" type="struct" size="[1 1]"> 28530 <iso index="1" type="double" size="[1 1]"> 28531 [204800] 28532 </iso> 28533 <lratio index="1" type="double" size="[1 1]"> 28534 [0.67] 28535 </lratio> 28536 <hratio index="1" type="double" size="[1 1]"> 28537 [1.5] 28538 </hratio> 28539 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 28540 [3] 28541 </mf_sharp_ratio> 28542 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 28543 [3] 28544 </hf_sharp_ratio> 28545 <luma_sigma index="1" type="double" size="[1 8]"> 28546 [6 8 10 12 14 12 12 10] 28547 </luma_sigma> 28548 <pbf_gain index="1" type="double" size="[1 1]"> 28549 [0.6] 28550 </pbf_gain> 28551 <pbf_ratio index="1" type="double" size="[1 1]"> 28552 [0.5] 28553 </pbf_ratio> 28554 <pbf_add index="1" type="double" size="[1 1]"> 28555 [0] 28556 </pbf_add> 28557 <mf_clip_pos index="1" type="double" size="[1 8]"> 28558 [4 6 8 8 10 8 4 0] 28559 </mf_clip_pos> 28560 <mf_clip_neg index="1" type="double" size="[1 8]"> 28561 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 28562 </mf_clip_neg> 28563 <hf_clip index="1" type="double" size="[1 8]"> 28564 [6 10 12 16 20 20 8 0] 28565 </hf_clip> 28566 <mbf_gain index="1" type="double" size="[1 1]"> 28567 [0.7] 28568 </mbf_gain> 28569 <hbf_gain index="1" type="double" size="[1 1]"> 28570 [0.7] 28571 </hbf_gain> 28572 <hbf_ratio index="1" type="double" size="[1 1]"> 28573 [0.7] 28574 </hbf_ratio> 28575 <mbf_add index="1" type="double" size="[1 1]"> 28576 [2] 28577 </mbf_add> 28578 <hbf_add index="1" type="double" size="[1 1]"> 28579 [1] 28580 </hbf_add> 28581 <local_sharp_strength index="1" type="double" size="[1 1]"> 28582 [16] 28583 </local_sharp_strength> 28584 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 28585 [0.6] 28586 </pbf_coeff_percent> 28587 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 28588 [0.6] 28589 </rf_m_coeff_Percent> 28590 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 28591 [0.6] 28592 </rf_h_coeff_percent> 28593 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 28594 [0.6] 28595 </hbf_coeff_percent> 28596 </cell> 28597 </SHARP_ISO> 28598 </cell> 28599 <cell index="2" type="struct" size="[1 1]"> 28600 <SNR_Mode index="1" type="char" size="[1 4]"> 28601 HSNR 28602 </SNR_Mode> 28603 <Sensor_Mode index="1" type="char" size="[1 3]"> 28604 hcg 28605 </Sensor_Mode> 28606 <SHARP_ISO index="1" type="cell" size="[1 13]"> 28607 <cell index="1" type="struct" size="[1 1]"> 28608 <iso index="1" type="double" size="[1 1]"> 28609 [50] 28610 </iso> 28611 <lratio index="1" type="double" size="[1 1]"> 28612 [0.65] 28613 </lratio> 28614 <hratio index="1" type="double" size="[1 1]"> 28615 [1.5] 28616 </hratio> 28617 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 28618 [4.2] 28619 </mf_sharp_ratio> 28620 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 28621 [4.2] 28622 </hf_sharp_ratio> 28623 <luma_sigma index="1" type="double" size="[1 8]"> 28624 [2 3 4 4 6 5 4 4] 28625 </luma_sigma> 28626 <pbf_gain index="1" type="double" size="[1 1]"> 28627 [0.3] 28628 </pbf_gain> 28629 <pbf_ratio index="1" type="double" size="[1 1]"> 28630 [0.6] 28631 </pbf_ratio> 28632 <pbf_add index="1" type="double" size="[1 1]"> 28633 [0] 28634 </pbf_add> 28635 <mf_clip_pos index="1" type="double" size="[1 8]"> 28636 [4 6 10 16 16 12 5 0] 28637 </mf_clip_pos> 28638 <mf_clip_neg index="1" type="double" size="[1 8]"> 28639 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 28640 </mf_clip_neg> 28641 <hf_clip index="1" type="double" size="[1 8]"> 28642 [10 12 16 24 32 32 10 0] 28643 </hf_clip> 28644 <mbf_gain index="1" type="double" size="[1 1]"> 28645 [0.6] 28646 </mbf_gain> 28647 <hbf_gain index="1" type="double" size="[1 1]"> 28648 [0.6] 28649 </hbf_gain> 28650 <hbf_ratio index="1" type="double" size="[1 1]"> 28651 [0.6] 28652 </hbf_ratio> 28653 <mbf_add index="1" type="double" size="[1 1]"> 28654 [2] 28655 </mbf_add> 28656 <hbf_add index="1" type="double" size="[1 1]"> 28657 [1] 28658 </hbf_add> 28659 <local_sharp_strength index="1" type="double" size="[1 1]"> 28660 [32] 28661 </local_sharp_strength> 28662 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 28663 [0.6] 28664 </pbf_coeff_percent> 28665 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 28666 [0.6] 28667 </rf_m_coeff_Percent> 28668 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 28669 [0.6] 28670 </rf_h_coeff_percent> 28671 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 28672 [0.6] 28673 </hbf_coeff_percent> 28674 </cell> 28675 <cell index="2" type="struct" size="[1 1]"> 28676 <iso index="1" type="double" size="[1 1]"> 28677 [100] 28678 </iso> 28679 <lratio index="1" type="double" size="[1 1]"> 28680 [0.65] 28681 </lratio> 28682 <hratio index="1" type="double" size="[1 1]"> 28683 [1.5] 28684 </hratio> 28685 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 28686 [4] 28687 </mf_sharp_ratio> 28688 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 28689 [4] 28690 </hf_sharp_ratio> 28691 <luma_sigma index="1" type="double" size="[1 8]"> 28692 [3 4 5 6 6 5 4 3] 28693 </luma_sigma> 28694 <pbf_gain index="1" type="double" size="[1 1]"> 28695 [0.5] 28696 </pbf_gain> 28697 <pbf_ratio index="1" type="double" size="[1 1]"> 28698 [0.6] 28699 </pbf_ratio> 28700 <pbf_add index="1" type="double" size="[1 1]"> 28701 [0] 28702 </pbf_add> 28703 <mf_clip_pos index="1" type="double" size="[1 8]"> 28704 [4 6 10 14 16 10 7 0] 28705 </mf_clip_pos> 28706 <mf_clip_neg index="1" type="double" size="[1 8]"> 28707 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 28708 </mf_clip_neg> 28709 <hf_clip index="1" type="double" size="[1 8]"> 28710 [10 12 18 24 32 32 10 0] 28711 </hf_clip> 28712 <mbf_gain index="1" type="double" size="[1 1]"> 28713 [0.7] 28714 </mbf_gain> 28715 <hbf_gain index="1" type="double" size="[1 1]"> 28716 [0.7] 28717 </hbf_gain> 28718 <hbf_ratio index="1" type="double" size="[1 1]"> 28719 [0.6] 28720 </hbf_ratio> 28721 <mbf_add index="1" type="double" size="[1 1]"> 28722 [2] 28723 </mbf_add> 28724 <hbf_add index="1" type="double" size="[1 1]"> 28725 [1] 28726 </hbf_add> 28727 <local_sharp_strength index="1" type="double" size="[1 1]"> 28728 [32] 28729 </local_sharp_strength> 28730 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 28731 [0.6] 28732 </pbf_coeff_percent> 28733 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 28734 [0.6] 28735 </rf_m_coeff_Percent> 28736 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 28737 [0.6] 28738 </rf_h_coeff_percent> 28739 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 28740 [0.6] 28741 </hbf_coeff_percent> 28742 </cell> 28743 <cell index="3" type="struct" size="[1 1]"> 28744 <iso index="1" type="double" size="[1 1]"> 28745 [200] 28746 </iso> 28747 <lratio index="1" type="double" size="[1 1]"> 28748 [0.67] 28749 </lratio> 28750 <hratio index="1" type="double" size="[1 1]"> 28751 [1.5] 28752 </hratio> 28753 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 28754 [3.3] 28755 </mf_sharp_ratio> 28756 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 28757 [3.5] 28758 </hf_sharp_ratio> 28759 <luma_sigma index="1" type="double" size="[1 8]"> 28760 [3 4 5 6 6 5 4 3] 28761 </luma_sigma> 28762 <pbf_gain index="1" type="double" size="[1 1]"> 28763 [0.8] 28764 </pbf_gain> 28765 <pbf_ratio index="1" type="double" size="[1 1]"> 28766 [0.9] 28767 </pbf_ratio> 28768 <pbf_add index="1" type="double" size="[1 1]"> 28769 [0] 28770 </pbf_add> 28771 <mf_clip_pos index="1" type="double" size="[1 8]"> 28772 [4 6 10 16 16 14 8 0] 28773 </mf_clip_pos> 28774 <mf_clip_neg index="1" type="double" size="[1 8]"> 28775 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 28776 </mf_clip_neg> 28777 <hf_clip index="1" type="double" size="[1 8]"> 28778 [10 12 20 24 28 28 10 0] 28779 </hf_clip> 28780 <mbf_gain index="1" type="double" size="[1 1]"> 28781 [0.9] 28782 </mbf_gain> 28783 <hbf_gain index="1" type="double" size="[1 1]"> 28784 [0.8] 28785 </hbf_gain> 28786 <hbf_ratio index="1" type="double" size="[1 1]"> 28787 [0.7] 28788 </hbf_ratio> 28789 <mbf_add index="1" type="double" size="[1 1]"> 28790 [2] 28791 </mbf_add> 28792 <hbf_add index="1" type="double" size="[1 1]"> 28793 [1] 28794 </hbf_add> 28795 <local_sharp_strength index="1" type="double" size="[1 1]"> 28796 [32] 28797 </local_sharp_strength> 28798 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 28799 [0.6] 28800 </pbf_coeff_percent> 28801 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 28802 [0.6] 28803 </rf_m_coeff_Percent> 28804 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 28805 [0.6] 28806 </rf_h_coeff_percent> 28807 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 28808 [0.6] 28809 </hbf_coeff_percent> 28810 </cell> 28811 <cell index="4" type="struct" size="[1 1]"> 28812 <iso index="1" type="double" size="[1 1]"> 28813 [400] 28814 </iso> 28815 <lratio index="1" type="double" size="[1 1]"> 28816 [0.67] 28817 </lratio> 28818 <hratio index="1" type="double" size="[1 1]"> 28819 [1.5] 28820 </hratio> 28821 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 28822 [3.2] 28823 </mf_sharp_ratio> 28824 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 28825 [3.5] 28826 </hf_sharp_ratio> 28827 <luma_sigma index="1" type="double" size="[1 8]"> 28828 [3 4 5 6 6 5 4 3] 28829 </luma_sigma> 28830 <pbf_gain index="1" type="double" size="[1 1]"> 28831 [0.8] 28832 </pbf_gain> 28833 <pbf_ratio index="1" type="double" size="[1 1]"> 28834 [1] 28835 </pbf_ratio> 28836 <pbf_add index="1" type="double" size="[1 1]"> 28837 [0] 28838 </pbf_add> 28839 <mf_clip_pos index="1" type="double" size="[1 8]"> 28840 [4 6 8 10 14 14 7 0] 28841 </mf_clip_pos> 28842 <mf_clip_neg index="1" type="double" size="[1 8]"> 28843 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 28844 </mf_clip_neg> 28845 <hf_clip index="1" type="double" size="[1 8]"> 28846 [6 10 16 24 28 28 12 0] 28847 </hf_clip> 28848 <mbf_gain index="1" type="double" size="[1 1]"> 28849 [0.8] 28850 </mbf_gain> 28851 <hbf_gain index="1" type="double" size="[1 1]"> 28852 [0.8] 28853 </hbf_gain> 28854 <hbf_ratio index="1" type="double" size="[1 1]"> 28855 [0.7] 28856 </hbf_ratio> 28857 <mbf_add index="1" type="double" size="[1 1]"> 28858 [2] 28859 </mbf_add> 28860 <hbf_add index="1" type="double" size="[1 1]"> 28861 [1] 28862 </hbf_add> 28863 <local_sharp_strength index="1" type="double" size="[1 1]"> 28864 [32] 28865 </local_sharp_strength> 28866 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 28867 [0.6] 28868 </pbf_coeff_percent> 28869 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 28870 [0.6] 28871 </rf_m_coeff_Percent> 28872 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 28873 [0.6] 28874 </rf_h_coeff_percent> 28875 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 28876 [0.6] 28877 </hbf_coeff_percent> 28878 </cell> 28879 <cell index="5" type="struct" size="[1 1]"> 28880 <iso index="1" type="double" size="[1 1]"> 28881 [800] 28882 </iso> 28883 <lratio index="1" type="double" size="[1 1]"> 28884 [0.67] 28885 </lratio> 28886 <hratio index="1" type="double" size="[1 1]"> 28887 [1.5] 28888 </hratio> 28889 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 28890 [3.5] 28891 </mf_sharp_ratio> 28892 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 28893 [3.5] 28894 </hf_sharp_ratio> 28895 <luma_sigma index="1" type="double" size="[1 8]"> 28896 [4 5 6 8 8 8 7 6] 28897 </luma_sigma> 28898 <pbf_gain index="1" type="double" size="[1 1]"> 28899 [0.7] 28900 </pbf_gain> 28901 <pbf_ratio index="1" type="double" size="[1 1]"> 28902 [1] 28903 </pbf_ratio> 28904 <pbf_add index="1" type="double" size="[1 1]"> 28905 [0] 28906 </pbf_add> 28907 <mf_clip_pos index="1" type="double" size="[1 8]"> 28908 [8 8 12 14 16 16 7 0] 28909 </mf_clip_pos> 28910 <mf_clip_neg index="1" type="double" size="[1 8]"> 28911 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 28912 </mf_clip_neg> 28913 <hf_clip index="1" type="double" size="[1 8]"> 28914 [6 10 15 22 28 28 12 0] 28915 </hf_clip> 28916 <mbf_gain index="1" type="double" size="[1 1]"> 28917 [0.8] 28918 </mbf_gain> 28919 <hbf_gain index="1" type="double" size="[1 1]"> 28920 [0.75] 28921 </hbf_gain> 28922 <hbf_ratio index="1" type="double" size="[1 1]"> 28923 [0.5] 28924 </hbf_ratio> 28925 <mbf_add index="1" type="double" size="[1 1]"> 28926 [2] 28927 </mbf_add> 28928 <hbf_add index="1" type="double" size="[1 1]"> 28929 [1] 28930 </hbf_add> 28931 <local_sharp_strength index="1" type="double" size="[1 1]"> 28932 [32] 28933 </local_sharp_strength> 28934 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 28935 [0.6] 28936 </pbf_coeff_percent> 28937 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 28938 [0.6] 28939 </rf_m_coeff_Percent> 28940 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 28941 [0.6] 28942 </rf_h_coeff_percent> 28943 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 28944 [0.6] 28945 </hbf_coeff_percent> 28946 </cell> 28947 <cell index="6" type="struct" size="[1 1]"> 28948 <iso index="1" type="double" size="[1 1]"> 28949 [1600] 28950 </iso> 28951 <lratio index="1" type="double" size="[1 1]"> 28952 [0.67] 28953 </lratio> 28954 <hratio index="1" type="double" size="[1 1]"> 28955 [1.5] 28956 </hratio> 28957 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 28958 [3] 28959 </mf_sharp_ratio> 28960 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 28961 [4] 28962 </hf_sharp_ratio> 28963 <luma_sigma index="1" type="double" size="[1 8]"> 28964 [5 5 6 8 9 8 8 7] 28965 </luma_sigma> 28966 <pbf_gain index="1" type="double" size="[1 1]"> 28967 [0.6] 28968 </pbf_gain> 28969 <pbf_ratio index="1" type="double" size="[1 1]"> 28970 [0.5] 28971 </pbf_ratio> 28972 <pbf_add index="1" type="double" size="[1 1]"> 28973 [0] 28974 </pbf_add> 28975 <mf_clip_pos index="1" type="double" size="[1 8]"> 28976 [4 6 8 8 10 8 4 0] 28977 </mf_clip_pos> 28978 <mf_clip_neg index="1" type="double" size="[1 8]"> 28979 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 28980 </mf_clip_neg> 28981 <hf_clip index="1" type="double" size="[1 8]"> 28982 [6 10 12 16 20 20 8 0] 28983 </hf_clip> 28984 <mbf_gain index="1" type="double" size="[1 1]"> 28985 [0.7] 28986 </mbf_gain> 28987 <hbf_gain index="1" type="double" size="[1 1]"> 28988 [0.7] 28989 </hbf_gain> 28990 <hbf_ratio index="1" type="double" size="[1 1]"> 28991 [0.4] 28992 </hbf_ratio> 28993 <mbf_add index="1" type="double" size="[1 1]"> 28994 [2] 28995 </mbf_add> 28996 <hbf_add index="1" type="double" size="[1 1]"> 28997 [1] 28998 </hbf_add> 28999 <local_sharp_strength index="1" type="double" size="[1 1]"> 29000 [16] 29001 </local_sharp_strength> 29002 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 29003 [0.6] 29004 </pbf_coeff_percent> 29005 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 29006 [0.6] 29007 </rf_m_coeff_Percent> 29008 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 29009 [0.6] 29010 </rf_h_coeff_percent> 29011 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 29012 [0.6] 29013 </hbf_coeff_percent> 29014 </cell> 29015 <cell index="7" type="struct" size="[1 1]"> 29016 <iso index="1" type="double" size="[1 1]"> 29017 [3200] 29018 </iso> 29019 <lratio index="1" type="double" size="[1 1]"> 29020 [0.67] 29021 </lratio> 29022 <hratio index="1" type="double" size="[1 1]"> 29023 [1.5] 29024 </hratio> 29025 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 29026 [3] 29027 </mf_sharp_ratio> 29028 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 29029 [3] 29030 </hf_sharp_ratio> 29031 <luma_sigma index="1" type="double" size="[1 8]"> 29032 [6 8 10 12 14 12 12 10] 29033 </luma_sigma> 29034 <pbf_gain index="1" type="double" size="[1 1]"> 29035 [0.6] 29036 </pbf_gain> 29037 <pbf_ratio index="1" type="double" size="[1 1]"> 29038 [0.5] 29039 </pbf_ratio> 29040 <pbf_add index="1" type="double" size="[1 1]"> 29041 [0] 29042 </pbf_add> 29043 <mf_clip_pos index="1" type="double" size="[1 8]"> 29044 [4 6 8 8 10 8 4 0] 29045 </mf_clip_pos> 29046 <mf_clip_neg index="1" type="double" size="[1 8]"> 29047 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 29048 </mf_clip_neg> 29049 <hf_clip index="1" type="double" size="[1 8]"> 29050 [6 10 12 16 20 20 8 0] 29051 </hf_clip> 29052 <mbf_gain index="1" type="double" size="[1 1]"> 29053 [0.7] 29054 </mbf_gain> 29055 <hbf_gain index="1" type="double" size="[1 1]"> 29056 [0.7] 29057 </hbf_gain> 29058 <hbf_ratio index="1" type="double" size="[1 1]"> 29059 [0.7] 29060 </hbf_ratio> 29061 <mbf_add index="1" type="double" size="[1 1]"> 29062 [2] 29063 </mbf_add> 29064 <hbf_add index="1" type="double" size="[1 1]"> 29065 [1] 29066 </hbf_add> 29067 <local_sharp_strength index="1" type="double" size="[1 1]"> 29068 [16] 29069 </local_sharp_strength> 29070 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 29071 [0.6] 29072 </pbf_coeff_percent> 29073 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 29074 [0.6] 29075 </rf_m_coeff_Percent> 29076 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 29077 [0.6] 29078 </rf_h_coeff_percent> 29079 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 29080 [0.6] 29081 </hbf_coeff_percent> 29082 </cell> 29083 <cell index="8" type="struct" size="[1 1]"> 29084 <iso index="1" type="double" size="[1 1]"> 29085 [6400] 29086 </iso> 29087 <lratio index="1" type="double" size="[1 1]"> 29088 [0.67] 29089 </lratio> 29090 <hratio index="1" type="double" size="[1 1]"> 29091 [1.5] 29092 </hratio> 29093 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 29094 [3] 29095 </mf_sharp_ratio> 29096 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 29097 [3] 29098 </hf_sharp_ratio> 29099 <luma_sigma index="1" type="double" size="[1 8]"> 29100 [6 8 10 12 14 12 12 10] 29101 </luma_sigma> 29102 <pbf_gain index="1" type="double" size="[1 1]"> 29103 [0.6] 29104 </pbf_gain> 29105 <pbf_ratio index="1" type="double" size="[1 1]"> 29106 [0.5] 29107 </pbf_ratio> 29108 <pbf_add index="1" type="double" size="[1 1]"> 29109 [0] 29110 </pbf_add> 29111 <mf_clip_pos index="1" type="double" size="[1 8]"> 29112 [4 6 8 8 10 8 4 0] 29113 </mf_clip_pos> 29114 <mf_clip_neg index="1" type="double" size="[1 8]"> 29115 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 29116 </mf_clip_neg> 29117 <hf_clip index="1" type="double" size="[1 8]"> 29118 [6 10 12 16 20 20 8 0] 29119 </hf_clip> 29120 <mbf_gain index="1" type="double" size="[1 1]"> 29121 [0.7] 29122 </mbf_gain> 29123 <hbf_gain index="1" type="double" size="[1 1]"> 29124 [0.7] 29125 </hbf_gain> 29126 <hbf_ratio index="1" type="double" size="[1 1]"> 29127 [0.7] 29128 </hbf_ratio> 29129 <mbf_add index="1" type="double" size="[1 1]"> 29130 [2] 29131 </mbf_add> 29132 <hbf_add index="1" type="double" size="[1 1]"> 29133 [1] 29134 </hbf_add> 29135 <local_sharp_strength index="1" type="double" size="[1 1]"> 29136 [16] 29137 </local_sharp_strength> 29138 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 29139 [0.6] 29140 </pbf_coeff_percent> 29141 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 29142 [0.6] 29143 </rf_m_coeff_Percent> 29144 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 29145 [0.6] 29146 </rf_h_coeff_percent> 29147 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 29148 [0.6] 29149 </hbf_coeff_percent> 29150 </cell> 29151 <cell index="9" type="struct" size="[1 1]"> 29152 <iso index="1" type="double" size="[1 1]"> 29153 [12800] 29154 </iso> 29155 <lratio index="1" type="double" size="[1 1]"> 29156 [0.67] 29157 </lratio> 29158 <hratio index="1" type="double" size="[1 1]"> 29159 [1.5] 29160 </hratio> 29161 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 29162 [3] 29163 </mf_sharp_ratio> 29164 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 29165 [3] 29166 </hf_sharp_ratio> 29167 <luma_sigma index="1" type="double" size="[1 8]"> 29168 [6 8 10 12 14 12 12 10] 29169 </luma_sigma> 29170 <pbf_gain index="1" type="double" size="[1 1]"> 29171 [0.6] 29172 </pbf_gain> 29173 <pbf_ratio index="1" type="double" size="[1 1]"> 29174 [0.5] 29175 </pbf_ratio> 29176 <pbf_add index="1" type="double" size="[1 1]"> 29177 [0] 29178 </pbf_add> 29179 <mf_clip_pos index="1" type="double" size="[1 8]"> 29180 [4 6 8 8 10 8 4 0] 29181 </mf_clip_pos> 29182 <mf_clip_neg index="1" type="double" size="[1 8]"> 29183 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 29184 </mf_clip_neg> 29185 <hf_clip index="1" type="double" size="[1 8]"> 29186 [6 10 12 16 20 20 8 0] 29187 </hf_clip> 29188 <mbf_gain index="1" type="double" size="[1 1]"> 29189 [0.7] 29190 </mbf_gain> 29191 <hbf_gain index="1" type="double" size="[1 1]"> 29192 [0.7] 29193 </hbf_gain> 29194 <hbf_ratio index="1" type="double" size="[1 1]"> 29195 [0.7] 29196 </hbf_ratio> 29197 <mbf_add index="1" type="double" size="[1 1]"> 29198 [2] 29199 </mbf_add> 29200 <hbf_add index="1" type="double" size="[1 1]"> 29201 [1] 29202 </hbf_add> 29203 <local_sharp_strength index="1" type="double" size="[1 1]"> 29204 [16] 29205 </local_sharp_strength> 29206 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 29207 [0.6] 29208 </pbf_coeff_percent> 29209 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 29210 [0.6] 29211 </rf_m_coeff_Percent> 29212 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 29213 [0.6] 29214 </rf_h_coeff_percent> 29215 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 29216 [0.6] 29217 </hbf_coeff_percent> 29218 </cell> 29219 <cell index="10" type="struct" size="[1 1]"> 29220 <iso index="1" type="double" size="[1 1]"> 29221 [25600] 29222 </iso> 29223 <lratio index="1" type="double" size="[1 1]"> 29224 [0.67] 29225 </lratio> 29226 <hratio index="1" type="double" size="[1 1]"> 29227 [1.5] 29228 </hratio> 29229 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 29230 [3] 29231 </mf_sharp_ratio> 29232 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 29233 [3] 29234 </hf_sharp_ratio> 29235 <luma_sigma index="1" type="double" size="[1 8]"> 29236 [6 8 10 12 14 12 12 10] 29237 </luma_sigma> 29238 <pbf_gain index="1" type="double" size="[1 1]"> 29239 [0.6] 29240 </pbf_gain> 29241 <pbf_ratio index="1" type="double" size="[1 1]"> 29242 [0.5] 29243 </pbf_ratio> 29244 <pbf_add index="1" type="double" size="[1 1]"> 29245 [0] 29246 </pbf_add> 29247 <mf_clip_pos index="1" type="double" size="[1 8]"> 29248 [4 6 8 8 10 8 4 0] 29249 </mf_clip_pos> 29250 <mf_clip_neg index="1" type="double" size="[1 8]"> 29251 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 29252 </mf_clip_neg> 29253 <hf_clip index="1" type="double" size="[1 8]"> 29254 [6 10 12 16 20 20 8 0] 29255 </hf_clip> 29256 <mbf_gain index="1" type="double" size="[1 1]"> 29257 [0.7] 29258 </mbf_gain> 29259 <hbf_gain index="1" type="double" size="[1 1]"> 29260 [0.7] 29261 </hbf_gain> 29262 <hbf_ratio index="1" type="double" size="[1 1]"> 29263 [0.7] 29264 </hbf_ratio> 29265 <mbf_add index="1" type="double" size="[1 1]"> 29266 [2] 29267 </mbf_add> 29268 <hbf_add index="1" type="double" size="[1 1]"> 29269 [1] 29270 </hbf_add> 29271 <local_sharp_strength index="1" type="double" size="[1 1]"> 29272 [16] 29273 </local_sharp_strength> 29274 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 29275 [0.6] 29276 </pbf_coeff_percent> 29277 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 29278 [0.6] 29279 </rf_m_coeff_Percent> 29280 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 29281 [0.6] 29282 </rf_h_coeff_percent> 29283 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 29284 [0.6] 29285 </hbf_coeff_percent> 29286 </cell> 29287 <cell index="11" type="struct" size="[1 1]"> 29288 <iso index="1" type="double" size="[1 1]"> 29289 [51200] 29290 </iso> 29291 <lratio index="1" type="double" size="[1 1]"> 29292 [0.67] 29293 </lratio> 29294 <hratio index="1" type="double" size="[1 1]"> 29295 [1.5] 29296 </hratio> 29297 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 29298 [3] 29299 </mf_sharp_ratio> 29300 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 29301 [3] 29302 </hf_sharp_ratio> 29303 <luma_sigma index="1" type="double" size="[1 8]"> 29304 [6 8 10 12 14 12 12 10] 29305 </luma_sigma> 29306 <pbf_gain index="1" type="double" size="[1 1]"> 29307 [0.6] 29308 </pbf_gain> 29309 <pbf_ratio index="1" type="double" size="[1 1]"> 29310 [0.5] 29311 </pbf_ratio> 29312 <pbf_add index="1" type="double" size="[1 1]"> 29313 [0] 29314 </pbf_add> 29315 <mf_clip_pos index="1" type="double" size="[1 8]"> 29316 [4 6 8 8 10 8 4 0] 29317 </mf_clip_pos> 29318 <mf_clip_neg index="1" type="double" size="[1 8]"> 29319 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 29320 </mf_clip_neg> 29321 <hf_clip index="1" type="double" size="[1 8]"> 29322 [6 10 12 16 20 20 8 0] 29323 </hf_clip> 29324 <mbf_gain index="1" type="double" size="[1 1]"> 29325 [0.7] 29326 </mbf_gain> 29327 <hbf_gain index="1" type="double" size="[1 1]"> 29328 [0.7] 29329 </hbf_gain> 29330 <hbf_ratio index="1" type="double" size="[1 1]"> 29331 [0.7] 29332 </hbf_ratio> 29333 <mbf_add index="1" type="double" size="[1 1]"> 29334 [2] 29335 </mbf_add> 29336 <hbf_add index="1" type="double" size="[1 1]"> 29337 [1] 29338 </hbf_add> 29339 <local_sharp_strength index="1" type="double" size="[1 1]"> 29340 [16] 29341 </local_sharp_strength> 29342 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 29343 [0.6] 29344 </pbf_coeff_percent> 29345 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 29346 [0.6] 29347 </rf_m_coeff_Percent> 29348 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 29349 [0.6] 29350 </rf_h_coeff_percent> 29351 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 29352 [0.6] 29353 </hbf_coeff_percent> 29354 </cell> 29355 <cell index="12" type="struct" size="[1 1]"> 29356 <iso index="1" type="double" size="[1 1]"> 29357 [102400] 29358 </iso> 29359 <lratio index="1" type="double" size="[1 1]"> 29360 [0.67] 29361 </lratio> 29362 <hratio index="1" type="double" size="[1 1]"> 29363 [1.5] 29364 </hratio> 29365 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 29366 [3] 29367 </mf_sharp_ratio> 29368 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 29369 [3] 29370 </hf_sharp_ratio> 29371 <luma_sigma index="1" type="double" size="[1 8]"> 29372 [6 8 10 12 14 12 12 10] 29373 </luma_sigma> 29374 <pbf_gain index="1" type="double" size="[1 1]"> 29375 [0.6] 29376 </pbf_gain> 29377 <pbf_ratio index="1" type="double" size="[1 1]"> 29378 [0.5] 29379 </pbf_ratio> 29380 <pbf_add index="1" type="double" size="[1 1]"> 29381 [0] 29382 </pbf_add> 29383 <mf_clip_pos index="1" type="double" size="[1 8]"> 29384 [4 6 8 8 10 8 4 0] 29385 </mf_clip_pos> 29386 <mf_clip_neg index="1" type="double" size="[1 8]"> 29387 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 29388 </mf_clip_neg> 29389 <hf_clip index="1" type="double" size="[1 8]"> 29390 [6 10 12 16 20 20 8 0] 29391 </hf_clip> 29392 <mbf_gain index="1" type="double" size="[1 1]"> 29393 [0.7] 29394 </mbf_gain> 29395 <hbf_gain index="1" type="double" size="[1 1]"> 29396 [0.7] 29397 </hbf_gain> 29398 <hbf_ratio index="1" type="double" size="[1 1]"> 29399 [0.7] 29400 </hbf_ratio> 29401 <mbf_add index="1" type="double" size="[1 1]"> 29402 [2] 29403 </mbf_add> 29404 <hbf_add index="1" type="double" size="[1 1]"> 29405 [1] 29406 </hbf_add> 29407 <local_sharp_strength index="1" type="double" size="[1 1]"> 29408 [16] 29409 </local_sharp_strength> 29410 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 29411 [0.6] 29412 </pbf_coeff_percent> 29413 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 29414 [0.6] 29415 </rf_m_coeff_Percent> 29416 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 29417 [0.6] 29418 </rf_h_coeff_percent> 29419 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 29420 [0.6] 29421 </hbf_coeff_percent> 29422 </cell> 29423 <cell index="13" type="struct" size="[1 1]"> 29424 <iso index="1" type="double" size="[1 1]"> 29425 [204800] 29426 </iso> 29427 <lratio index="1" type="double" size="[1 1]"> 29428 [0.67] 29429 </lratio> 29430 <hratio index="1" type="double" size="[1 1]"> 29431 [1.5] 29432 </hratio> 29433 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 29434 [3] 29435 </mf_sharp_ratio> 29436 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 29437 [3] 29438 </hf_sharp_ratio> 29439 <luma_sigma index="1" type="double" size="[1 8]"> 29440 [6 8 10 12 14 12 12 10] 29441 </luma_sigma> 29442 <pbf_gain index="1" type="double" size="[1 1]"> 29443 [0.6] 29444 </pbf_gain> 29445 <pbf_ratio index="1" type="double" size="[1 1]"> 29446 [0.5] 29447 </pbf_ratio> 29448 <pbf_add index="1" type="double" size="[1 1]"> 29449 [0] 29450 </pbf_add> 29451 <mf_clip_pos index="1" type="double" size="[1 8]"> 29452 [4 6 8 8 10 8 4 0] 29453 </mf_clip_pos> 29454 <mf_clip_neg index="1" type="double" size="[1 8]"> 29455 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 29456 </mf_clip_neg> 29457 <hf_clip index="1" type="double" size="[1 8]"> 29458 [6 10 12 16 20 20 8 0] 29459 </hf_clip> 29460 <mbf_gain index="1" type="double" size="[1 1]"> 29461 [0.7] 29462 </mbf_gain> 29463 <hbf_gain index="1" type="double" size="[1 1]"> 29464 [0.7] 29465 </hbf_gain> 29466 <hbf_ratio index="1" type="double" size="[1 1]"> 29467 [0.7] 29468 </hbf_ratio> 29469 <mbf_add index="1" type="double" size="[1 1]"> 29470 [2] 29471 </mbf_add> 29472 <hbf_add index="1" type="double" size="[1 1]"> 29473 [1] 29474 </hbf_add> 29475 <local_sharp_strength index="1" type="double" size="[1 1]"> 29476 [16] 29477 </local_sharp_strength> 29478 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 29479 [0.6] 29480 </pbf_coeff_percent> 29481 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 29482 [0.6] 29483 </rf_m_coeff_Percent> 29484 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 29485 [0.6] 29486 </rf_h_coeff_percent> 29487 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 29488 [0.6] 29489 </hbf_coeff_percent> 29490 </cell> 29491 </SHARP_ISO> 29492 </cell> 29493 </Setting> 29494 </cell> 29495 <cell index="1" type="struct" size="[1 1]"> 29496 <Name index="1" type="char" size="[1 8]"> 29497 hdr 29498 </Name> 29499 <gauss_luma_coeff index="1" type="double" size="[3 3]"> 29500 [0.0625 0.125 0.0625 29501 0.125 0.25 0.125 29502 0.0625 0.125 0.0625] 29503 </gauss_luma_coeff> 29504 <pbf_coeff_l index="1" type="double" size="[3 3]"> 29505 [0.15625 0.25 0.15625 29506 0.25 0.375 0.25 29507 0.15625 0.25 0.15625] 29508 </pbf_coeff_l> 29509 <pbf_coeff_h index="1" type="double" size="[3 3]"> 29510 [0.15625 0.25 0.15625 29511 0.25 0.375 0.25 29512 0.15625 0.25 0.15625] 29513 </pbf_coeff_h> 29514 <rf_m_coeff_l index="1" type="double" size="[5 5]"> 29515 [0.023438 0.03125 0.039063 0.03125 0.023438 29516 0.03125 0.046875 0.054688 0.046875 0.03125 29517 0.039063 0.054688 0.09375 0.054688 0.039063 29518 0.03125 0.046875 0.054688 0.046875 0.03125 29519 0.023438 0.03125 0.039063 0.03125 0.023438] 29520 </rf_m_coeff_l> 29521 <rf_m_coeff_h index="1" type="double" size="[5 5]"> 29522 [0.023438 0.03125 0.039063 0.03125 0.023438 29523 0.03125 0.046875 0.054688 0.046875 0.03125 29524 0.039063 0.054688 0.09375 0.054688 0.039063 29525 0.03125 0.046875 0.054688 0.046875 0.03125 29526 0.023438 0.03125 0.039063 0.03125 0.023438] 29527 </rf_m_coeff_h> 29528 <mbf_coeff index="1" type="double" size="[17 13]"> 29529 [0 0 0 0 0.40625 0 0 0 0 0 0 0 0.40625 0 0 0 0 29530 0 0 0 0 0 0 0.34375 0 0.328125 0 0.34375 0 0 0 0 0 0 29531 0 0 0.40625 0 0.359375 0 0 0 0 0 0 0 0.359375 0 0.40625 0 0 29532 0 0 0 0 0 0.296875 0 0.234375 0 0.234375 0 0.296875 0 0 0 0 0 29533 0 0.40625 0 0.34375 0 0 0 0 0.171875 0 0 0 0 0.34375 0 0.40625 0 29534 0 0 0 0 0 0.234375 0 0.140625 0.109375 0.140625 0 0.234375 0 0 0 0 0 29535 0.4375 0 0 0.328125 0 0 0.171875 0.109375 0 0.109375 0.171875 0 0 0.328125 0 0 0.4375 29536 0 0 0 0 0 0.234375 0 0.140625 0.109375 0.140625 0 0.234375 0 0 0 0 0 29537 0 0.40625 0 0.34375 0 0 0 0 0.171875 0 0 0 0 0.34375 0 0.40625 0 29538 0 0 0 0 0 0.296875 0 0.234375 0 0.234375 0 0.296875 0 0 0 0 0 29539 0 0 0.40625 0 0.359375 0 0 0 0 0 0 0 0.359375 0 0.40625 0 0 29540 0 0 0 0 0 0 0.34375 0 0.328125 0 0.34375 0 0 0 0 0 0 29541 0 0 0 0 0.40625 0 0 0 0 0 0 0 0.40625 0 0 0 0] 29542 </mbf_coeff> 29543 <rf_h_coeff_l index="1" type="double" size="[5 5]"> 29544 [0 0.015625 0.023438 0.015625 0 29545 0.015625 0.0625 0.101563 0.0625 0.015625 29546 0.023438 0.101563 0.125 0.101563 0.023438 29547 0.015625 0.0625 0.101563 0.0625 0.015625 29548 0 0.015625 0.023438 0.015625 0] 29549 </rf_h_coeff_l> 29550 <rf_h_coeff_h index="1" type="double" size="[5 5]"> 29551 [0 0.015625 0.023438 0.015625 0 29552 0.015625 0.0625 0.101563 0.0625 0.015625 29553 0.023438 0.101563 0.125 0.101563 0.023438 29554 0.015625 0.0625 0.101563 0.0625 0.015625 29555 0 0.015625 0.023438 0.015625 0] 29556 </rf_h_coeff_h> 29557 <hbf_coeff_l index="1" type="double" size="[3 3]"> 29558 [0.15625 0.25 0.15625 29559 0.25 0.375 0.25 29560 0.15625 0.25 0.15625] 29561 </hbf_coeff_l> 29562 <hbf_coeff_h index="1" type="double" size="[3 3]"> 29563 [0.15625 0.25 0.15625 29564 0.25 0.375 0.25 29565 0.15625 0.25 0.15625] 29566 </hbf_coeff_h> 29567 <Setting index="1" type="cell" size="[1 2]"> 29568 <cell index="1" type="struct" size="[1 1]"> 29569 <SNR_Mode index="1" type="char" size="[1 4]"> 29570 LSNR 29571 </SNR_Mode> 29572 <Sensor_Mode index="1" type="char" size="[1 3]"> 29573 lcg 29574 </Sensor_Mode> 29575 <SHARP_ISO index="1" type="cell" size="[1 13]"> 29576 <cell index="1" type="struct" size="[1 1]"> 29577 <iso index="1" type="double" size="[1 1]"> 29578 [50] 29579 </iso> 29580 <lratio index="1" type="double" size="[1 1]"> 29581 [0.65] 29582 </lratio> 29583 <hratio index="1" type="double" size="[1 1]"> 29584 [1.5] 29585 </hratio> 29586 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 29587 [3] 29588 </mf_sharp_ratio> 29589 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 29590 [3] 29591 </hf_sharp_ratio> 29592 <luma_sigma index="1" type="double" size="[1 8]"> 29593 [2 3 4 4 6 5 4 4] 29594 </luma_sigma> 29595 <pbf_gain index="1" type="double" size="[1 1]"> 29596 [0.3] 29597 </pbf_gain> 29598 <pbf_ratio index="1" type="double" size="[1 1]"> 29599 [0.6] 29600 </pbf_ratio> 29601 <pbf_add index="1" type="double" size="[1 1]"> 29602 [0] 29603 </pbf_add> 29604 <mf_clip_pos index="1" type="double" size="[1 8]"> 29605 [4 6 10 16 16 12 5 0] 29606 </mf_clip_pos> 29607 <mf_clip_neg index="1" type="double" size="[1 8]"> 29608 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 29609 </mf_clip_neg> 29610 <hf_clip index="1" type="double" size="[1 8]"> 29611 [10 12 16 24 32 32 10 0] 29612 </hf_clip> 29613 <mbf_gain index="1" type="double" size="[1 1]"> 29614 [0.6] 29615 </mbf_gain> 29616 <hbf_gain index="1" type="double" size="[1 1]"> 29617 [0.6] 29618 </hbf_gain> 29619 <hbf_ratio index="1" type="double" size="[1 1]"> 29620 [0.6] 29621 </hbf_ratio> 29622 <mbf_add index="1" type="double" size="[1 1]"> 29623 [2] 29624 </mbf_add> 29625 <hbf_add index="1" type="double" size="[1 1]"> 29626 [1] 29627 </hbf_add> 29628 <local_sharp_strength index="1" type="double" size="[1 1]"> 29629 [32] 29630 </local_sharp_strength> 29631 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 29632 [0.6] 29633 </pbf_coeff_percent> 29634 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 29635 [0.6] 29636 </rf_m_coeff_Percent> 29637 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 29638 [0.6] 29639 </rf_h_coeff_percent> 29640 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 29641 [0.6] 29642 </hbf_coeff_percent> 29643 </cell> 29644 <cell index="2" type="struct" size="[1 1]"> 29645 <iso index="1" type="double" size="[1 1]"> 29646 [100] 29647 </iso> 29648 <lratio index="1" type="double" size="[1 1]"> 29649 [0.65] 29650 </lratio> 29651 <hratio index="1" type="double" size="[1 1]"> 29652 [1.5] 29653 </hratio> 29654 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 29655 [4] 29656 </mf_sharp_ratio> 29657 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 29658 [4] 29659 </hf_sharp_ratio> 29660 <luma_sigma index="1" type="double" size="[1 8]"> 29661 [3 4 5 6 6 5 4 3] 29662 </luma_sigma> 29663 <pbf_gain index="1" type="double" size="[1 1]"> 29664 [0.5] 29665 </pbf_gain> 29666 <pbf_ratio index="1" type="double" size="[1 1]"> 29667 [0.6] 29668 </pbf_ratio> 29669 <pbf_add index="1" type="double" size="[1 1]"> 29670 [0] 29671 </pbf_add> 29672 <mf_clip_pos index="1" type="double" size="[1 8]"> 29673 [4 6 10 14 16 10 7 0] 29674 </mf_clip_pos> 29675 <mf_clip_neg index="1" type="double" size="[1 8]"> 29676 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 29677 </mf_clip_neg> 29678 <hf_clip index="1" type="double" size="[1 8]"> 29679 [10 12 18 24 32 32 10 0] 29680 </hf_clip> 29681 <mbf_gain index="1" type="double" size="[1 1]"> 29682 [0.7] 29683 </mbf_gain> 29684 <hbf_gain index="1" type="double" size="[1 1]"> 29685 [0.7] 29686 </hbf_gain> 29687 <hbf_ratio index="1" type="double" size="[1 1]"> 29688 [0.6] 29689 </hbf_ratio> 29690 <mbf_add index="1" type="double" size="[1 1]"> 29691 [2] 29692 </mbf_add> 29693 <hbf_add index="1" type="double" size="[1 1]"> 29694 [1] 29695 </hbf_add> 29696 <local_sharp_strength index="1" type="double" size="[1 1]"> 29697 [32] 29698 </local_sharp_strength> 29699 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 29700 [0.6] 29701 </pbf_coeff_percent> 29702 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 29703 [0.6] 29704 </rf_m_coeff_Percent> 29705 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 29706 [0.6] 29707 </rf_h_coeff_percent> 29708 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 29709 [0.6] 29710 </hbf_coeff_percent> 29711 </cell> 29712 <cell index="3" type="struct" size="[1 1]"> 29713 <iso index="1" type="double" size="[1 1]"> 29714 [200] 29715 </iso> 29716 <lratio index="1" type="double" size="[1 1]"> 29717 [0.67] 29718 </lratio> 29719 <hratio index="1" type="double" size="[1 1]"> 29720 [1.5] 29721 </hratio> 29722 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 29723 [3.3] 29724 </mf_sharp_ratio> 29725 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 29726 [3.5] 29727 </hf_sharp_ratio> 29728 <luma_sigma index="1" type="double" size="[1 8]"> 29729 [3 4 5 6 6 5 4 3] 29730 </luma_sigma> 29731 <pbf_gain index="1" type="double" size="[1 1]"> 29732 [0.8] 29733 </pbf_gain> 29734 <pbf_ratio index="1" type="double" size="[1 1]"> 29735 [0.9] 29736 </pbf_ratio> 29737 <pbf_add index="1" type="double" size="[1 1]"> 29738 [0] 29739 </pbf_add> 29740 <mf_clip_pos index="1" type="double" size="[1 8]"> 29741 [4 6 10 16 16 14 8 0] 29742 </mf_clip_pos> 29743 <mf_clip_neg index="1" type="double" size="[1 8]"> 29744 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 29745 </mf_clip_neg> 29746 <hf_clip index="1" type="double" size="[1 8]"> 29747 [10 12 20 24 28 28 10 0] 29748 </hf_clip> 29749 <mbf_gain index="1" type="double" size="[1 1]"> 29750 [0.9] 29751 </mbf_gain> 29752 <hbf_gain index="1" type="double" size="[1 1]"> 29753 [0.8] 29754 </hbf_gain> 29755 <hbf_ratio index="1" type="double" size="[1 1]"> 29756 [0.7] 29757 </hbf_ratio> 29758 <mbf_add index="1" type="double" size="[1 1]"> 29759 [2] 29760 </mbf_add> 29761 <hbf_add index="1" type="double" size="[1 1]"> 29762 [1] 29763 </hbf_add> 29764 <local_sharp_strength index="1" type="double" size="[1 1]"> 29765 [32] 29766 </local_sharp_strength> 29767 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 29768 [0.6] 29769 </pbf_coeff_percent> 29770 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 29771 [0.6] 29772 </rf_m_coeff_Percent> 29773 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 29774 [0.6] 29775 </rf_h_coeff_percent> 29776 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 29777 [0.6] 29778 </hbf_coeff_percent> 29779 </cell> 29780 <cell index="4" type="struct" size="[1 1]"> 29781 <iso index="1" type="double" size="[1 1]"> 29782 [400] 29783 </iso> 29784 <lratio index="1" type="double" size="[1 1]"> 29785 [0.67] 29786 </lratio> 29787 <hratio index="1" type="double" size="[1 1]"> 29788 [1.5] 29789 </hratio> 29790 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 29791 [3.2] 29792 </mf_sharp_ratio> 29793 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 29794 [3.5] 29795 </hf_sharp_ratio> 29796 <luma_sigma index="1" type="double" size="[1 8]"> 29797 [3 4 5 6 6 5 4 3] 29798 </luma_sigma> 29799 <pbf_gain index="1" type="double" size="[1 1]"> 29800 [0.8] 29801 </pbf_gain> 29802 <pbf_ratio index="1" type="double" size="[1 1]"> 29803 [1] 29804 </pbf_ratio> 29805 <pbf_add index="1" type="double" size="[1 1]"> 29806 [0] 29807 </pbf_add> 29808 <mf_clip_pos index="1" type="double" size="[1 8]"> 29809 [4 6 8 10 14 14 7 0] 29810 </mf_clip_pos> 29811 <mf_clip_neg index="1" type="double" size="[1 8]"> 29812 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 29813 </mf_clip_neg> 29814 <hf_clip index="1" type="double" size="[1 8]"> 29815 [6 10 16 24 28 28 12 0] 29816 </hf_clip> 29817 <mbf_gain index="1" type="double" size="[1 1]"> 29818 [0.8] 29819 </mbf_gain> 29820 <hbf_gain index="1" type="double" size="[1 1]"> 29821 [0.8] 29822 </hbf_gain> 29823 <hbf_ratio index="1" type="double" size="[1 1]"> 29824 [0.7] 29825 </hbf_ratio> 29826 <mbf_add index="1" type="double" size="[1 1]"> 29827 [2] 29828 </mbf_add> 29829 <hbf_add index="1" type="double" size="[1 1]"> 29830 [1] 29831 </hbf_add> 29832 <local_sharp_strength index="1" type="double" size="[1 1]"> 29833 [32] 29834 </local_sharp_strength> 29835 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 29836 [0.6] 29837 </pbf_coeff_percent> 29838 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 29839 [0.6] 29840 </rf_m_coeff_Percent> 29841 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 29842 [0.6] 29843 </rf_h_coeff_percent> 29844 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 29845 [0.6] 29846 </hbf_coeff_percent> 29847 </cell> 29848 <cell index="5" type="struct" size="[1 1]"> 29849 <iso index="1" type="double" size="[1 1]"> 29850 [800] 29851 </iso> 29852 <lratio index="1" type="double" size="[1 1]"> 29853 [0.67] 29854 </lratio> 29855 <hratio index="1" type="double" size="[1 1]"> 29856 [1.5] 29857 </hratio> 29858 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 29859 [3] 29860 </mf_sharp_ratio> 29861 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 29862 [3.2] 29863 </hf_sharp_ratio> 29864 <luma_sigma index="1" type="double" size="[1 8]"> 29865 [4 5 6 8 8 8 7 6] 29866 </luma_sigma> 29867 <pbf_gain index="1" type="double" size="[1 1]"> 29868 [0.8] 29869 </pbf_gain> 29870 <pbf_ratio index="1" type="double" size="[1 1]"> 29871 [1] 29872 </pbf_ratio> 29873 <pbf_add index="1" type="double" size="[1 1]"> 29874 [0] 29875 </pbf_add> 29876 <mf_clip_pos index="1" type="double" size="[1 8]"> 29877 [8 8 12 14 16 16 7 0] 29878 </mf_clip_pos> 29879 <mf_clip_neg index="1" type="double" size="[1 8]"> 29880 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 29881 </mf_clip_neg> 29882 <hf_clip index="1" type="double" size="[1 8]"> 29883 [6 10 15 22 28 28 12 0] 29884 </hf_clip> 29885 <mbf_gain index="1" type="double" size="[1 1]"> 29886 [0.9] 29887 </mbf_gain> 29888 <hbf_gain index="1" type="double" size="[1 1]"> 29889 [0.85] 29890 </hbf_gain> 29891 <hbf_ratio index="1" type="double" size="[1 1]"> 29892 [0.65] 29893 </hbf_ratio> 29894 <mbf_add index="1" type="double" size="[1 1]"> 29895 [2] 29896 </mbf_add> 29897 <hbf_add index="1" type="double" size="[1 1]"> 29898 [1] 29899 </hbf_add> 29900 <local_sharp_strength index="1" type="double" size="[1 1]"> 29901 [24] 29902 </local_sharp_strength> 29903 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 29904 [0.6] 29905 </pbf_coeff_percent> 29906 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 29907 [0.6] 29908 </rf_m_coeff_Percent> 29909 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 29910 [0.6] 29911 </rf_h_coeff_percent> 29912 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 29913 [0.6] 29914 </hbf_coeff_percent> 29915 </cell> 29916 <cell index="6" type="struct" size="[1 1]"> 29917 <iso index="1" type="double" size="[1 1]"> 29918 [1600] 29919 </iso> 29920 <lratio index="1" type="double" size="[1 1]"> 29921 [0.72] 29922 </lratio> 29923 <hratio index="1" type="double" size="[1 1]"> 29924 [1.5] 29925 </hratio> 29926 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 29927 [3] 29928 </mf_sharp_ratio> 29929 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 29930 [3.2] 29931 </hf_sharp_ratio> 29932 <luma_sigma index="1" type="double" size="[1 8]"> 29933 [5 5 6 8 9 8 8 7] 29934 </luma_sigma> 29935 <pbf_gain index="1" type="double" size="[1 1]"> 29936 [0.9] 29937 </pbf_gain> 29938 <pbf_ratio index="1" type="double" size="[1 1]"> 29939 [1] 29940 </pbf_ratio> 29941 <pbf_add index="1" type="double" size="[1 1]"> 29942 [0] 29943 </pbf_add> 29944 <mf_clip_pos index="1" type="double" size="[1 8]"> 29945 [4 6 8 8 10 8 4 0] 29946 </mf_clip_pos> 29947 <mf_clip_neg index="1" type="double" size="[1 8]"> 29948 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 29949 </mf_clip_neg> 29950 <hf_clip index="1" type="double" size="[1 8]"> 29951 [6 10 12 16 20 20 8 0] 29952 </hf_clip> 29953 <mbf_gain index="1" type="double" size="[1 1]"> 29954 [0.9] 29955 </mbf_gain> 29956 <hbf_gain index="1" type="double" size="[1 1]"> 29957 [0.9] 29958 </hbf_gain> 29959 <hbf_ratio index="1" type="double" size="[1 1]"> 29960 [0.8] 29961 </hbf_ratio> 29962 <mbf_add index="1" type="double" size="[1 1]"> 29963 [2] 29964 </mbf_add> 29965 <hbf_add index="1" type="double" size="[1 1]"> 29966 [1] 29967 </hbf_add> 29968 <local_sharp_strength index="1" type="double" size="[1 1]"> 29969 [12] 29970 </local_sharp_strength> 29971 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 29972 [0.6] 29973 </pbf_coeff_percent> 29974 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 29975 [0.6] 29976 </rf_m_coeff_Percent> 29977 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 29978 [0.6] 29979 </rf_h_coeff_percent> 29980 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 29981 [0.6] 29982 </hbf_coeff_percent> 29983 </cell> 29984 <cell index="7" type="struct" size="[1 1]"> 29985 <iso index="1" type="double" size="[1 1]"> 29986 [3200] 29987 </iso> 29988 <lratio index="1" type="double" size="[1 1]"> 29989 [0.72] 29990 </lratio> 29991 <hratio index="1" type="double" size="[1 1]"> 29992 [1.5] 29993 </hratio> 29994 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 29995 [3.2] 29996 </mf_sharp_ratio> 29997 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 29998 [3.5] 29999 </hf_sharp_ratio> 30000 <luma_sigma index="1" type="double" size="[1 8]"> 30001 [6 8 10 12 14 12 12 10] 30002 </luma_sigma> 30003 <pbf_gain index="1" type="double" size="[1 1]"> 30004 [0.9] 30005 </pbf_gain> 30006 <pbf_ratio index="1" type="double" size="[1 1]"> 30007 [0.9] 30008 </pbf_ratio> 30009 <pbf_add index="1" type="double" size="[1 1]"> 30010 [0] 30011 </pbf_add> 30012 <mf_clip_pos index="1" type="double" size="[1 8]"> 30013 [4 6 8 8 10 8 4 0] 30014 </mf_clip_pos> 30015 <mf_clip_neg index="1" type="double" size="[1 8]"> 30016 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 30017 </mf_clip_neg> 30018 <hf_clip index="1" type="double" size="[1 8]"> 30019 [6 10 12 16 20 20 8 0] 30020 </hf_clip> 30021 <mbf_gain index="1" type="double" size="[1 1]"> 30022 [0.9] 30023 </mbf_gain> 30024 <hbf_gain index="1" type="double" size="[1 1]"> 30025 [0.9] 30026 </hbf_gain> 30027 <hbf_ratio index="1" type="double" size="[1 1]"> 30028 [0.9] 30029 </hbf_ratio> 30030 <mbf_add index="1" type="double" size="[1 1]"> 30031 [2] 30032 </mbf_add> 30033 <hbf_add index="1" type="double" size="[1 1]"> 30034 [1] 30035 </hbf_add> 30036 <local_sharp_strength index="1" type="double" size="[1 1]"> 30037 [12] 30038 </local_sharp_strength> 30039 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 30040 [0.6] 30041 </pbf_coeff_percent> 30042 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 30043 [0.6] 30044 </rf_m_coeff_Percent> 30045 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 30046 [0.6] 30047 </rf_h_coeff_percent> 30048 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 30049 [0.6] 30050 </hbf_coeff_percent> 30051 </cell> 30052 <cell index="8" type="struct" size="[1 1]"> 30053 <iso index="1" type="double" size="[1 1]"> 30054 [6400] 30055 </iso> 30056 <lratio index="1" type="double" size="[1 1]"> 30057 [0.75] 30058 </lratio> 30059 <hratio index="1" type="double" size="[1 1]"> 30060 [1.5] 30061 </hratio> 30062 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 30063 [3] 30064 </mf_sharp_ratio> 30065 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 30066 [3] 30067 </hf_sharp_ratio> 30068 <luma_sigma index="1" type="double" size="[1 8]"> 30069 [6 8 10 12 14 12 12 10] 30070 </luma_sigma> 30071 <pbf_gain index="1" type="double" size="[1 1]"> 30072 [0.95] 30073 </pbf_gain> 30074 <pbf_ratio index="1" type="double" size="[1 1]"> 30075 [0.95] 30076 </pbf_ratio> 30077 <pbf_add index="1" type="double" size="[1 1]"> 30078 [0] 30079 </pbf_add> 30080 <mf_clip_pos index="1" type="double" size="[1 8]"> 30081 [4 6 8 8 10 8 4 0] 30082 </mf_clip_pos> 30083 <mf_clip_neg index="1" type="double" size="[1 8]"> 30084 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 30085 </mf_clip_neg> 30086 <hf_clip index="1" type="double" size="[1 8]"> 30087 [6 10 12 16 20 20 8 0] 30088 </hf_clip> 30089 <mbf_gain index="1" type="double" size="[1 1]"> 30090 [0.95] 30091 </mbf_gain> 30092 <hbf_gain index="1" type="double" size="[1 1]"> 30093 [0.95] 30094 </hbf_gain> 30095 <hbf_ratio index="1" type="double" size="[1 1]"> 30096 [0.95] 30097 </hbf_ratio> 30098 <mbf_add index="1" type="double" size="[1 1]"> 30099 [2] 30100 </mbf_add> 30101 <hbf_add index="1" type="double" size="[1 1]"> 30102 [1] 30103 </hbf_add> 30104 <local_sharp_strength index="1" type="double" size="[1 1]"> 30105 [8] 30106 </local_sharp_strength> 30107 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 30108 [0.6] 30109 </pbf_coeff_percent> 30110 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 30111 [0.6] 30112 </rf_m_coeff_Percent> 30113 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 30114 [0.6] 30115 </rf_h_coeff_percent> 30116 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 30117 [0.6] 30118 </hbf_coeff_percent> 30119 </cell> 30120 <cell index="9" type="struct" size="[1 1]"> 30121 <iso index="1" type="double" size="[1 1]"> 30122 [12800] 30123 </iso> 30124 <lratio index="1" type="double" size="[1 1]"> 30125 [0.67] 30126 </lratio> 30127 <hratio index="1" type="double" size="[1 1]"> 30128 [1.5] 30129 </hratio> 30130 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 30131 [3] 30132 </mf_sharp_ratio> 30133 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 30134 [3] 30135 </hf_sharp_ratio> 30136 <luma_sigma index="1" type="double" size="[1 8]"> 30137 [6 8 10 12 14 12 12 10] 30138 </luma_sigma> 30139 <pbf_gain index="1" type="double" size="[1 1]"> 30140 [0.6] 30141 </pbf_gain> 30142 <pbf_ratio index="1" type="double" size="[1 1]"> 30143 [0.5] 30144 </pbf_ratio> 30145 <pbf_add index="1" type="double" size="[1 1]"> 30146 [0] 30147 </pbf_add> 30148 <mf_clip_pos index="1" type="double" size="[1 8]"> 30149 [4 6 8 8 10 8 4 0] 30150 </mf_clip_pos> 30151 <mf_clip_neg index="1" type="double" size="[1 8]"> 30152 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 30153 </mf_clip_neg> 30154 <hf_clip index="1" type="double" size="[1 8]"> 30155 [6 10 12 16 20 20 8 0] 30156 </hf_clip> 30157 <mbf_gain index="1" type="double" size="[1 1]"> 30158 [0.7] 30159 </mbf_gain> 30160 <hbf_gain index="1" type="double" size="[1 1]"> 30161 [0.7] 30162 </hbf_gain> 30163 <hbf_ratio index="1" type="double" size="[1 1]"> 30164 [0.7] 30165 </hbf_ratio> 30166 <mbf_add index="1" type="double" size="[1 1]"> 30167 [2] 30168 </mbf_add> 30169 <hbf_add index="1" type="double" size="[1 1]"> 30170 [1] 30171 </hbf_add> 30172 <local_sharp_strength index="1" type="double" size="[1 1]"> 30173 [16] 30174 </local_sharp_strength> 30175 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 30176 [0.6] 30177 </pbf_coeff_percent> 30178 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 30179 [0.6] 30180 </rf_m_coeff_Percent> 30181 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 30182 [0.6] 30183 </rf_h_coeff_percent> 30184 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 30185 [0.6] 30186 </hbf_coeff_percent> 30187 </cell> 30188 <cell index="10" type="struct" size="[1 1]"> 30189 <iso index="1" type="double" size="[1 1]"> 30190 [25600] 30191 </iso> 30192 <lratio index="1" type="double" size="[1 1]"> 30193 [0.67] 30194 </lratio> 30195 <hratio index="1" type="double" size="[1 1]"> 30196 [1.5] 30197 </hratio> 30198 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 30199 [3] 30200 </mf_sharp_ratio> 30201 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 30202 [3] 30203 </hf_sharp_ratio> 30204 <luma_sigma index="1" type="double" size="[1 8]"> 30205 [6 8 10 12 14 12 12 10] 30206 </luma_sigma> 30207 <pbf_gain index="1" type="double" size="[1 1]"> 30208 [0.6] 30209 </pbf_gain> 30210 <pbf_ratio index="1" type="double" size="[1 1]"> 30211 [0.5] 30212 </pbf_ratio> 30213 <pbf_add index="1" type="double" size="[1 1]"> 30214 [0] 30215 </pbf_add> 30216 <mf_clip_pos index="1" type="double" size="[1 8]"> 30217 [4 6 8 8 10 8 4 0] 30218 </mf_clip_pos> 30219 <mf_clip_neg index="1" type="double" size="[1 8]"> 30220 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 30221 </mf_clip_neg> 30222 <hf_clip index="1" type="double" size="[1 8]"> 30223 [6 10 12 16 20 20 8 0] 30224 </hf_clip> 30225 <mbf_gain index="1" type="double" size="[1 1]"> 30226 [0.7] 30227 </mbf_gain> 30228 <hbf_gain index="1" type="double" size="[1 1]"> 30229 [0.7] 30230 </hbf_gain> 30231 <hbf_ratio index="1" type="double" size="[1 1]"> 30232 [0.7] 30233 </hbf_ratio> 30234 <mbf_add index="1" type="double" size="[1 1]"> 30235 [2] 30236 </mbf_add> 30237 <hbf_add index="1" type="double" size="[1 1]"> 30238 [1] 30239 </hbf_add> 30240 <local_sharp_strength index="1" type="double" size="[1 1]"> 30241 [16] 30242 </local_sharp_strength> 30243 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 30244 [0.6] 30245 </pbf_coeff_percent> 30246 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 30247 [0.6] 30248 </rf_m_coeff_Percent> 30249 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 30250 [0.6] 30251 </rf_h_coeff_percent> 30252 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 30253 [0.6] 30254 </hbf_coeff_percent> 30255 </cell> 30256 <cell index="11" type="struct" size="[1 1]"> 30257 <iso index="1" type="double" size="[1 1]"> 30258 [51200] 30259 </iso> 30260 <lratio index="1" type="double" size="[1 1]"> 30261 [0.67] 30262 </lratio> 30263 <hratio index="1" type="double" size="[1 1]"> 30264 [1.5] 30265 </hratio> 30266 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 30267 [3] 30268 </mf_sharp_ratio> 30269 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 30270 [3] 30271 </hf_sharp_ratio> 30272 <luma_sigma index="1" type="double" size="[1 8]"> 30273 [6 8 10 12 14 12 12 10] 30274 </luma_sigma> 30275 <pbf_gain index="1" type="double" size="[1 1]"> 30276 [0.6] 30277 </pbf_gain> 30278 <pbf_ratio index="1" type="double" size="[1 1]"> 30279 [0.5] 30280 </pbf_ratio> 30281 <pbf_add index="1" type="double" size="[1 1]"> 30282 [0] 30283 </pbf_add> 30284 <mf_clip_pos index="1" type="double" size="[1 8]"> 30285 [4 6 8 8 10 8 4 0] 30286 </mf_clip_pos> 30287 <mf_clip_neg index="1" type="double" size="[1 8]"> 30288 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 30289 </mf_clip_neg> 30290 <hf_clip index="1" type="double" size="[1 8]"> 30291 [6 10 12 16 20 20 8 0] 30292 </hf_clip> 30293 <mbf_gain index="1" type="double" size="[1 1]"> 30294 [0.7] 30295 </mbf_gain> 30296 <hbf_gain index="1" type="double" size="[1 1]"> 30297 [0.7] 30298 </hbf_gain> 30299 <hbf_ratio index="1" type="double" size="[1 1]"> 30300 [0.7] 30301 </hbf_ratio> 30302 <mbf_add index="1" type="double" size="[1 1]"> 30303 [2] 30304 </mbf_add> 30305 <hbf_add index="1" type="double" size="[1 1]"> 30306 [1] 30307 </hbf_add> 30308 <local_sharp_strength index="1" type="double" size="[1 1]"> 30309 [16] 30310 </local_sharp_strength> 30311 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 30312 [0.6] 30313 </pbf_coeff_percent> 30314 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 30315 [0.6] 30316 </rf_m_coeff_Percent> 30317 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 30318 [0.6] 30319 </rf_h_coeff_percent> 30320 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 30321 [0.6] 30322 </hbf_coeff_percent> 30323 </cell> 30324 <cell index="12" type="struct" size="[1 1]"> 30325 <iso index="1" type="double" size="[1 1]"> 30326 [102400] 30327 </iso> 30328 <lratio index="1" type="double" size="[1 1]"> 30329 [0.67] 30330 </lratio> 30331 <hratio index="1" type="double" size="[1 1]"> 30332 [1.5] 30333 </hratio> 30334 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 30335 [3] 30336 </mf_sharp_ratio> 30337 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 30338 [3] 30339 </hf_sharp_ratio> 30340 <luma_sigma index="1" type="double" size="[1 8]"> 30341 [6 8 10 12 14 12 12 10] 30342 </luma_sigma> 30343 <pbf_gain index="1" type="double" size="[1 1]"> 30344 [0.6] 30345 </pbf_gain> 30346 <pbf_ratio index="1" type="double" size="[1 1]"> 30347 [0.5] 30348 </pbf_ratio> 30349 <pbf_add index="1" type="double" size="[1 1]"> 30350 [0] 30351 </pbf_add> 30352 <mf_clip_pos index="1" type="double" size="[1 8]"> 30353 [4 6 8 8 10 8 4 0] 30354 </mf_clip_pos> 30355 <mf_clip_neg index="1" type="double" size="[1 8]"> 30356 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 30357 </mf_clip_neg> 30358 <hf_clip index="1" type="double" size="[1 8]"> 30359 [6 10 12 16 20 20 8 0] 30360 </hf_clip> 30361 <mbf_gain index="1" type="double" size="[1 1]"> 30362 [0.7] 30363 </mbf_gain> 30364 <hbf_gain index="1" type="double" size="[1 1]"> 30365 [0.7] 30366 </hbf_gain> 30367 <hbf_ratio index="1" type="double" size="[1 1]"> 30368 [0.7] 30369 </hbf_ratio> 30370 <mbf_add index="1" type="double" size="[1 1]"> 30371 [2] 30372 </mbf_add> 30373 <hbf_add index="1" type="double" size="[1 1]"> 30374 [1] 30375 </hbf_add> 30376 <local_sharp_strength index="1" type="double" size="[1 1]"> 30377 [16] 30378 </local_sharp_strength> 30379 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 30380 [0.6] 30381 </pbf_coeff_percent> 30382 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 30383 [0.6] 30384 </rf_m_coeff_Percent> 30385 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 30386 [0.6] 30387 </rf_h_coeff_percent> 30388 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 30389 [0.6] 30390 </hbf_coeff_percent> 30391 </cell> 30392 <cell index="13" type="struct" size="[1 1]"> 30393 <iso index="1" type="double" size="[1 1]"> 30394 [204800] 30395 </iso> 30396 <lratio index="1" type="double" size="[1 1]"> 30397 [0.67] 30398 </lratio> 30399 <hratio index="1" type="double" size="[1 1]"> 30400 [1.5] 30401 </hratio> 30402 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 30403 [3] 30404 </mf_sharp_ratio> 30405 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 30406 [3] 30407 </hf_sharp_ratio> 30408 <luma_sigma index="1" type="double" size="[1 8]"> 30409 [6 8 10 12 14 12 12 10] 30410 </luma_sigma> 30411 <pbf_gain index="1" type="double" size="[1 1]"> 30412 [0.6] 30413 </pbf_gain> 30414 <pbf_ratio index="1" type="double" size="[1 1]"> 30415 [0.5] 30416 </pbf_ratio> 30417 <pbf_add index="1" type="double" size="[1 1]"> 30418 [0] 30419 </pbf_add> 30420 <mf_clip_pos index="1" type="double" size="[1 8]"> 30421 [4 6 8 8 10 8 4 0] 30422 </mf_clip_pos> 30423 <mf_clip_neg index="1" type="double" size="[1 8]"> 30424 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 30425 </mf_clip_neg> 30426 <hf_clip index="1" type="double" size="[1 8]"> 30427 [6 10 12 16 20 20 8 0] 30428 </hf_clip> 30429 <mbf_gain index="1" type="double" size="[1 1]"> 30430 [0.7] 30431 </mbf_gain> 30432 <hbf_gain index="1" type="double" size="[1 1]"> 30433 [0.7] 30434 </hbf_gain> 30435 <hbf_ratio index="1" type="double" size="[1 1]"> 30436 [0.7] 30437 </hbf_ratio> 30438 <mbf_add index="1" type="double" size="[1 1]"> 30439 [2] 30440 </mbf_add> 30441 <hbf_add index="1" type="double" size="[1 1]"> 30442 [1] 30443 </hbf_add> 30444 <local_sharp_strength index="1" type="double" size="[1 1]"> 30445 [16] 30446 </local_sharp_strength> 30447 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 30448 [0.6] 30449 </pbf_coeff_percent> 30450 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 30451 [0.6] 30452 </rf_m_coeff_Percent> 30453 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 30454 [0.6] 30455 </rf_h_coeff_percent> 30456 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 30457 [0.6] 30458 </hbf_coeff_percent> 30459 </cell> 30460 </SHARP_ISO> 30461 </cell> 30462 <cell index="2" type="struct" size="[1 1]"> 30463 <SNR_Mode index="1" type="char" size="[1 4]"> 30464 HSNR 30465 </SNR_Mode> 30466 <Sensor_Mode index="1" type="char" size="[1 3]"> 30467 hcg 30468 </Sensor_Mode> 30469 <SHARP_ISO index="1" type="cell" size="[1 13]"> 30470 <cell index="1" type="struct" size="[1 1]"> 30471 <iso index="1" type="double" size="[1 1]"> 30472 [50] 30473 </iso> 30474 <lratio index="1" type="double" size="[1 1]"> 30475 [0.65] 30476 </lratio> 30477 <hratio index="1" type="double" size="[1 1]"> 30478 [1.5] 30479 </hratio> 30480 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 30481 [4.2] 30482 </mf_sharp_ratio> 30483 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 30484 [4.2] 30485 </hf_sharp_ratio> 30486 <luma_sigma index="1" type="double" size="[1 8]"> 30487 [2 3 4 4 6 5 4 4] 30488 </luma_sigma> 30489 <pbf_gain index="1" type="double" size="[1 1]"> 30490 [0.3] 30491 </pbf_gain> 30492 <pbf_ratio index="1" type="double" size="[1 1]"> 30493 [0.6] 30494 </pbf_ratio> 30495 <pbf_add index="1" type="double" size="[1 1]"> 30496 [0] 30497 </pbf_add> 30498 <mf_clip_pos index="1" type="double" size="[1 8]"> 30499 [4 6 10 16 16 12 5 0] 30500 </mf_clip_pos> 30501 <mf_clip_neg index="1" type="double" size="[1 8]"> 30502 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 30503 </mf_clip_neg> 30504 <hf_clip index="1" type="double" size="[1 8]"> 30505 [10 12 16 24 32 32 10 0] 30506 </hf_clip> 30507 <mbf_gain index="1" type="double" size="[1 1]"> 30508 [0.6] 30509 </mbf_gain> 30510 <hbf_gain index="1" type="double" size="[1 1]"> 30511 [0.6] 30512 </hbf_gain> 30513 <hbf_ratio index="1" type="double" size="[1 1]"> 30514 [0.6] 30515 </hbf_ratio> 30516 <mbf_add index="1" type="double" size="[1 1]"> 30517 [2] 30518 </mbf_add> 30519 <hbf_add index="1" type="double" size="[1 1]"> 30520 [1] 30521 </hbf_add> 30522 <local_sharp_strength index="1" type="double" size="[1 1]"> 30523 [32] 30524 </local_sharp_strength> 30525 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 30526 [0.6] 30527 </pbf_coeff_percent> 30528 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 30529 [0.6] 30530 </rf_m_coeff_Percent> 30531 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 30532 [0.6] 30533 </rf_h_coeff_percent> 30534 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 30535 [0.6] 30536 </hbf_coeff_percent> 30537 </cell> 30538 <cell index="2" type="struct" size="[1 1]"> 30539 <iso index="1" type="double" size="[1 1]"> 30540 [100] 30541 </iso> 30542 <lratio index="1" type="double" size="[1 1]"> 30543 [0.65] 30544 </lratio> 30545 <hratio index="1" type="double" size="[1 1]"> 30546 [1.5] 30547 </hratio> 30548 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 30549 [4] 30550 </mf_sharp_ratio> 30551 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 30552 [4] 30553 </hf_sharp_ratio> 30554 <luma_sigma index="1" type="double" size="[1 8]"> 30555 [3 4 5 6 6 5 4 3] 30556 </luma_sigma> 30557 <pbf_gain index="1" type="double" size="[1 1]"> 30558 [0.5] 30559 </pbf_gain> 30560 <pbf_ratio index="1" type="double" size="[1 1]"> 30561 [0.6] 30562 </pbf_ratio> 30563 <pbf_add index="1" type="double" size="[1 1]"> 30564 [0] 30565 </pbf_add> 30566 <mf_clip_pos index="1" type="double" size="[1 8]"> 30567 [4 6 10 14 16 10 7 0] 30568 </mf_clip_pos> 30569 <mf_clip_neg index="1" type="double" size="[1 8]"> 30570 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 30571 </mf_clip_neg> 30572 <hf_clip index="1" type="double" size="[1 8]"> 30573 [10 12 18 24 32 32 10 0] 30574 </hf_clip> 30575 <mbf_gain index="1" type="double" size="[1 1]"> 30576 [0.7] 30577 </mbf_gain> 30578 <hbf_gain index="1" type="double" size="[1 1]"> 30579 [0.7] 30580 </hbf_gain> 30581 <hbf_ratio index="1" type="double" size="[1 1]"> 30582 [0.6] 30583 </hbf_ratio> 30584 <mbf_add index="1" type="double" size="[1 1]"> 30585 [2] 30586 </mbf_add> 30587 <hbf_add index="1" type="double" size="[1 1]"> 30588 [1] 30589 </hbf_add> 30590 <local_sharp_strength index="1" type="double" size="[1 1]"> 30591 [32] 30592 </local_sharp_strength> 30593 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 30594 [0.6] 30595 </pbf_coeff_percent> 30596 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 30597 [0.6] 30598 </rf_m_coeff_Percent> 30599 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 30600 [0.6] 30601 </rf_h_coeff_percent> 30602 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 30603 [0.6] 30604 </hbf_coeff_percent> 30605 </cell> 30606 <cell index="3" type="struct" size="[1 1]"> 30607 <iso index="1" type="double" size="[1 1]"> 30608 [200] 30609 </iso> 30610 <lratio index="1" type="double" size="[1 1]"> 30611 [0.67] 30612 </lratio> 30613 <hratio index="1" type="double" size="[1 1]"> 30614 [1.5] 30615 </hratio> 30616 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 30617 [3.3] 30618 </mf_sharp_ratio> 30619 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 30620 [3.5] 30621 </hf_sharp_ratio> 30622 <luma_sigma index="1" type="double" size="[1 8]"> 30623 [3 4 5 6 6 5 4 3] 30624 </luma_sigma> 30625 <pbf_gain index="1" type="double" size="[1 1]"> 30626 [0.8] 30627 </pbf_gain> 30628 <pbf_ratio index="1" type="double" size="[1 1]"> 30629 [0.9] 30630 </pbf_ratio> 30631 <pbf_add index="1" type="double" size="[1 1]"> 30632 [0] 30633 </pbf_add> 30634 <mf_clip_pos index="1" type="double" size="[1 8]"> 30635 [4 6 10 16 16 14 8 0] 30636 </mf_clip_pos> 30637 <mf_clip_neg index="1" type="double" size="[1 8]"> 30638 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 30639 </mf_clip_neg> 30640 <hf_clip index="1" type="double" size="[1 8]"> 30641 [10 12 20 24 28 28 10 0] 30642 </hf_clip> 30643 <mbf_gain index="1" type="double" size="[1 1]"> 30644 [0.9] 30645 </mbf_gain> 30646 <hbf_gain index="1" type="double" size="[1 1]"> 30647 [0.8] 30648 </hbf_gain> 30649 <hbf_ratio index="1" type="double" size="[1 1]"> 30650 [0.7] 30651 </hbf_ratio> 30652 <mbf_add index="1" type="double" size="[1 1]"> 30653 [2] 30654 </mbf_add> 30655 <hbf_add index="1" type="double" size="[1 1]"> 30656 [1] 30657 </hbf_add> 30658 <local_sharp_strength index="1" type="double" size="[1 1]"> 30659 [32] 30660 </local_sharp_strength> 30661 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 30662 [0.6] 30663 </pbf_coeff_percent> 30664 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 30665 [0.6] 30666 </rf_m_coeff_Percent> 30667 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 30668 [0.6] 30669 </rf_h_coeff_percent> 30670 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 30671 [0.6] 30672 </hbf_coeff_percent> 30673 </cell> 30674 <cell index="4" type="struct" size="[1 1]"> 30675 <iso index="1" type="double" size="[1 1]"> 30676 [400] 30677 </iso> 30678 <lratio index="1" type="double" size="[1 1]"> 30679 [0.67] 30680 </lratio> 30681 <hratio index="1" type="double" size="[1 1]"> 30682 [1.5] 30683 </hratio> 30684 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 30685 [3.2] 30686 </mf_sharp_ratio> 30687 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 30688 [3.5] 30689 </hf_sharp_ratio> 30690 <luma_sigma index="1" type="double" size="[1 8]"> 30691 [3 4 5 6 6 5 4 3] 30692 </luma_sigma> 30693 <pbf_gain index="1" type="double" size="[1 1]"> 30694 [0.8] 30695 </pbf_gain> 30696 <pbf_ratio index="1" type="double" size="[1 1]"> 30697 [1] 30698 </pbf_ratio> 30699 <pbf_add index="1" type="double" size="[1 1]"> 30700 [0] 30701 </pbf_add> 30702 <mf_clip_pos index="1" type="double" size="[1 8]"> 30703 [4 6 8 10 14 14 7 0] 30704 </mf_clip_pos> 30705 <mf_clip_neg index="1" type="double" size="[1 8]"> 30706 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 30707 </mf_clip_neg> 30708 <hf_clip index="1" type="double" size="[1 8]"> 30709 [6 10 16 24 28 28 12 0] 30710 </hf_clip> 30711 <mbf_gain index="1" type="double" size="[1 1]"> 30712 [0.8] 30713 </mbf_gain> 30714 <hbf_gain index="1" type="double" size="[1 1]"> 30715 [0.8] 30716 </hbf_gain> 30717 <hbf_ratio index="1" type="double" size="[1 1]"> 30718 [0.7] 30719 </hbf_ratio> 30720 <mbf_add index="1" type="double" size="[1 1]"> 30721 [2] 30722 </mbf_add> 30723 <hbf_add index="1" type="double" size="[1 1]"> 30724 [1] 30725 </hbf_add> 30726 <local_sharp_strength index="1" type="double" size="[1 1]"> 30727 [32] 30728 </local_sharp_strength> 30729 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 30730 [0.6] 30731 </pbf_coeff_percent> 30732 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 30733 [0.6] 30734 </rf_m_coeff_Percent> 30735 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 30736 [0.6] 30737 </rf_h_coeff_percent> 30738 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 30739 [0.6] 30740 </hbf_coeff_percent> 30741 </cell> 30742 <cell index="5" type="struct" size="[1 1]"> 30743 <iso index="1" type="double" size="[1 1]"> 30744 [800] 30745 </iso> 30746 <lratio index="1" type="double" size="[1 1]"> 30747 [0.67] 30748 </lratio> 30749 <hratio index="1" type="double" size="[1 1]"> 30750 [1.5] 30751 </hratio> 30752 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 30753 [3.5] 30754 </mf_sharp_ratio> 30755 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 30756 [3.5] 30757 </hf_sharp_ratio> 30758 <luma_sigma index="1" type="double" size="[1 8]"> 30759 [4 5 6 8 8 8 7 6] 30760 </luma_sigma> 30761 <pbf_gain index="1" type="double" size="[1 1]"> 30762 [0.7] 30763 </pbf_gain> 30764 <pbf_ratio index="1" type="double" size="[1 1]"> 30765 [1] 30766 </pbf_ratio> 30767 <pbf_add index="1" type="double" size="[1 1]"> 30768 [0] 30769 </pbf_add> 30770 <mf_clip_pos index="1" type="double" size="[1 8]"> 30771 [8 8 12 14 16 16 7 0] 30772 </mf_clip_pos> 30773 <mf_clip_neg index="1" type="double" size="[1 8]"> 30774 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 30775 </mf_clip_neg> 30776 <hf_clip index="1" type="double" size="[1 8]"> 30777 [6 10 15 22 28 28 12 0] 30778 </hf_clip> 30779 <mbf_gain index="1" type="double" size="[1 1]"> 30780 [0.8] 30781 </mbf_gain> 30782 <hbf_gain index="1" type="double" size="[1 1]"> 30783 [0.75] 30784 </hbf_gain> 30785 <hbf_ratio index="1" type="double" size="[1 1]"> 30786 [0.5] 30787 </hbf_ratio> 30788 <mbf_add index="1" type="double" size="[1 1]"> 30789 [2] 30790 </mbf_add> 30791 <hbf_add index="1" type="double" size="[1 1]"> 30792 [1] 30793 </hbf_add> 30794 <local_sharp_strength index="1" type="double" size="[1 1]"> 30795 [32] 30796 </local_sharp_strength> 30797 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 30798 [0.6] 30799 </pbf_coeff_percent> 30800 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 30801 [0.6] 30802 </rf_m_coeff_Percent> 30803 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 30804 [0.6] 30805 </rf_h_coeff_percent> 30806 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 30807 [0.6] 30808 </hbf_coeff_percent> 30809 </cell> 30810 <cell index="6" type="struct" size="[1 1]"> 30811 <iso index="1" type="double" size="[1 1]"> 30812 [1600] 30813 </iso> 30814 <lratio index="1" type="double" size="[1 1]"> 30815 [0.67] 30816 </lratio> 30817 <hratio index="1" type="double" size="[1 1]"> 30818 [1.5] 30819 </hratio> 30820 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 30821 [3] 30822 </mf_sharp_ratio> 30823 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 30824 [4] 30825 </hf_sharp_ratio> 30826 <luma_sigma index="1" type="double" size="[1 8]"> 30827 [5 5 6 8 9 8 8 7] 30828 </luma_sigma> 30829 <pbf_gain index="1" type="double" size="[1 1]"> 30830 [0.6] 30831 </pbf_gain> 30832 <pbf_ratio index="1" type="double" size="[1 1]"> 30833 [0.5] 30834 </pbf_ratio> 30835 <pbf_add index="1" type="double" size="[1 1]"> 30836 [0] 30837 </pbf_add> 30838 <mf_clip_pos index="1" type="double" size="[1 8]"> 30839 [4 6 8 8 10 8 4 0] 30840 </mf_clip_pos> 30841 <mf_clip_neg index="1" type="double" size="[1 8]"> 30842 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 30843 </mf_clip_neg> 30844 <hf_clip index="1" type="double" size="[1 8]"> 30845 [6 10 12 16 20 20 8 0] 30846 </hf_clip> 30847 <mbf_gain index="1" type="double" size="[1 1]"> 30848 [0.7] 30849 </mbf_gain> 30850 <hbf_gain index="1" type="double" size="[1 1]"> 30851 [0.7] 30852 </hbf_gain> 30853 <hbf_ratio index="1" type="double" size="[1 1]"> 30854 [0.4] 30855 </hbf_ratio> 30856 <mbf_add index="1" type="double" size="[1 1]"> 30857 [2] 30858 </mbf_add> 30859 <hbf_add index="1" type="double" size="[1 1]"> 30860 [1] 30861 </hbf_add> 30862 <local_sharp_strength index="1" type="double" size="[1 1]"> 30863 [16] 30864 </local_sharp_strength> 30865 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 30866 [0.6] 30867 </pbf_coeff_percent> 30868 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 30869 [0.6] 30870 </rf_m_coeff_Percent> 30871 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 30872 [0.6] 30873 </rf_h_coeff_percent> 30874 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 30875 [0.6] 30876 </hbf_coeff_percent> 30877 </cell> 30878 <cell index="7" type="struct" size="[1 1]"> 30879 <iso index="1" type="double" size="[1 1]"> 30880 [3200] 30881 </iso> 30882 <lratio index="1" type="double" size="[1 1]"> 30883 [0.67] 30884 </lratio> 30885 <hratio index="1" type="double" size="[1 1]"> 30886 [1.5] 30887 </hratio> 30888 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 30889 [3] 30890 </mf_sharp_ratio> 30891 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 30892 [3] 30893 </hf_sharp_ratio> 30894 <luma_sigma index="1" type="double" size="[1 8]"> 30895 [6 8 10 12 14 12 12 10] 30896 </luma_sigma> 30897 <pbf_gain index="1" type="double" size="[1 1]"> 30898 [0.6] 30899 </pbf_gain> 30900 <pbf_ratio index="1" type="double" size="[1 1]"> 30901 [0.5] 30902 </pbf_ratio> 30903 <pbf_add index="1" type="double" size="[1 1]"> 30904 [0] 30905 </pbf_add> 30906 <mf_clip_pos index="1" type="double" size="[1 8]"> 30907 [4 6 8 8 10 8 4 0] 30908 </mf_clip_pos> 30909 <mf_clip_neg index="1" type="double" size="[1 8]"> 30910 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 30911 </mf_clip_neg> 30912 <hf_clip index="1" type="double" size="[1 8]"> 30913 [6 10 12 16 20 20 8 0] 30914 </hf_clip> 30915 <mbf_gain index="1" type="double" size="[1 1]"> 30916 [0.7] 30917 </mbf_gain> 30918 <hbf_gain index="1" type="double" size="[1 1]"> 30919 [0.7] 30920 </hbf_gain> 30921 <hbf_ratio index="1" type="double" size="[1 1]"> 30922 [0.7] 30923 </hbf_ratio> 30924 <mbf_add index="1" type="double" size="[1 1]"> 30925 [2] 30926 </mbf_add> 30927 <hbf_add index="1" type="double" size="[1 1]"> 30928 [1] 30929 </hbf_add> 30930 <local_sharp_strength index="1" type="double" size="[1 1]"> 30931 [16] 30932 </local_sharp_strength> 30933 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 30934 [0.6] 30935 </pbf_coeff_percent> 30936 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 30937 [0.6] 30938 </rf_m_coeff_Percent> 30939 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 30940 [0.6] 30941 </rf_h_coeff_percent> 30942 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 30943 [0.6] 30944 </hbf_coeff_percent> 30945 </cell> 30946 <cell index="8" type="struct" size="[1 1]"> 30947 <iso index="1" type="double" size="[1 1]"> 30948 [6400] 30949 </iso> 30950 <lratio index="1" type="double" size="[1 1]"> 30951 [0.67] 30952 </lratio> 30953 <hratio index="1" type="double" size="[1 1]"> 30954 [1.5] 30955 </hratio> 30956 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 30957 [3] 30958 </mf_sharp_ratio> 30959 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 30960 [3] 30961 </hf_sharp_ratio> 30962 <luma_sigma index="1" type="double" size="[1 8]"> 30963 [6 8 10 12 14 12 12 10] 30964 </luma_sigma> 30965 <pbf_gain index="1" type="double" size="[1 1]"> 30966 [0.6] 30967 </pbf_gain> 30968 <pbf_ratio index="1" type="double" size="[1 1]"> 30969 [0.5] 30970 </pbf_ratio> 30971 <pbf_add index="1" type="double" size="[1 1]"> 30972 [0] 30973 </pbf_add> 30974 <mf_clip_pos index="1" type="double" size="[1 8]"> 30975 [4 6 8 8 10 8 4 0] 30976 </mf_clip_pos> 30977 <mf_clip_neg index="1" type="double" size="[1 8]"> 30978 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 30979 </mf_clip_neg> 30980 <hf_clip index="1" type="double" size="[1 8]"> 30981 [6 10 12 16 20 20 8 0] 30982 </hf_clip> 30983 <mbf_gain index="1" type="double" size="[1 1]"> 30984 [0.7] 30985 </mbf_gain> 30986 <hbf_gain index="1" type="double" size="[1 1]"> 30987 [0.7] 30988 </hbf_gain> 30989 <hbf_ratio index="1" type="double" size="[1 1]"> 30990 [0.7] 30991 </hbf_ratio> 30992 <mbf_add index="1" type="double" size="[1 1]"> 30993 [2] 30994 </mbf_add> 30995 <hbf_add index="1" type="double" size="[1 1]"> 30996 [1] 30997 </hbf_add> 30998 <local_sharp_strength index="1" type="double" size="[1 1]"> 30999 [16] 31000 </local_sharp_strength> 31001 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 31002 [0.6] 31003 </pbf_coeff_percent> 31004 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 31005 [0.6] 31006 </rf_m_coeff_Percent> 31007 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 31008 [0.6] 31009 </rf_h_coeff_percent> 31010 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 31011 [0.6] 31012 </hbf_coeff_percent> 31013 </cell> 31014 <cell index="9" type="struct" size="[1 1]"> 31015 <iso index="1" type="double" size="[1 1]"> 31016 [12800] 31017 </iso> 31018 <lratio index="1" type="double" size="[1 1]"> 31019 [0.67] 31020 </lratio> 31021 <hratio index="1" type="double" size="[1 1]"> 31022 [1.5] 31023 </hratio> 31024 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 31025 [3] 31026 </mf_sharp_ratio> 31027 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 31028 [3] 31029 </hf_sharp_ratio> 31030 <luma_sigma index="1" type="double" size="[1 8]"> 31031 [6 8 10 12 14 12 12 10] 31032 </luma_sigma> 31033 <pbf_gain index="1" type="double" size="[1 1]"> 31034 [0.6] 31035 </pbf_gain> 31036 <pbf_ratio index="1" type="double" size="[1 1]"> 31037 [0.5] 31038 </pbf_ratio> 31039 <pbf_add index="1" type="double" size="[1 1]"> 31040 [0] 31041 </pbf_add> 31042 <mf_clip_pos index="1" type="double" size="[1 8]"> 31043 [4 6 8 8 10 8 4 0] 31044 </mf_clip_pos> 31045 <mf_clip_neg index="1" type="double" size="[1 8]"> 31046 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 31047 </mf_clip_neg> 31048 <hf_clip index="1" type="double" size="[1 8]"> 31049 [6 10 12 16 20 20 8 0] 31050 </hf_clip> 31051 <mbf_gain index="1" type="double" size="[1 1]"> 31052 [0.7] 31053 </mbf_gain> 31054 <hbf_gain index="1" type="double" size="[1 1]"> 31055 [0.7] 31056 </hbf_gain> 31057 <hbf_ratio index="1" type="double" size="[1 1]"> 31058 [0.7] 31059 </hbf_ratio> 31060 <mbf_add index="1" type="double" size="[1 1]"> 31061 [2] 31062 </mbf_add> 31063 <hbf_add index="1" type="double" size="[1 1]"> 31064 [1] 31065 </hbf_add> 31066 <local_sharp_strength index="1" type="double" size="[1 1]"> 31067 [16] 31068 </local_sharp_strength> 31069 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 31070 [0.6] 31071 </pbf_coeff_percent> 31072 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 31073 [0.6] 31074 </rf_m_coeff_Percent> 31075 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 31076 [0.6] 31077 </rf_h_coeff_percent> 31078 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 31079 [0.6] 31080 </hbf_coeff_percent> 31081 </cell> 31082 <cell index="10" type="struct" size="[1 1]"> 31083 <iso index="1" type="double" size="[1 1]"> 31084 [25600] 31085 </iso> 31086 <lratio index="1" type="double" size="[1 1]"> 31087 [0.67] 31088 </lratio> 31089 <hratio index="1" type="double" size="[1 1]"> 31090 [1.5] 31091 </hratio> 31092 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 31093 [3] 31094 </mf_sharp_ratio> 31095 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 31096 [3] 31097 </hf_sharp_ratio> 31098 <luma_sigma index="1" type="double" size="[1 8]"> 31099 [6 8 10 12 14 12 12 10] 31100 </luma_sigma> 31101 <pbf_gain index="1" type="double" size="[1 1]"> 31102 [0.6] 31103 </pbf_gain> 31104 <pbf_ratio index="1" type="double" size="[1 1]"> 31105 [0.5] 31106 </pbf_ratio> 31107 <pbf_add index="1" type="double" size="[1 1]"> 31108 [0] 31109 </pbf_add> 31110 <mf_clip_pos index="1" type="double" size="[1 8]"> 31111 [4 6 8 8 10 8 4 0] 31112 </mf_clip_pos> 31113 <mf_clip_neg index="1" type="double" size="[1 8]"> 31114 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 31115 </mf_clip_neg> 31116 <hf_clip index="1" type="double" size="[1 8]"> 31117 [6 10 12 16 20 20 8 0] 31118 </hf_clip> 31119 <mbf_gain index="1" type="double" size="[1 1]"> 31120 [0.7] 31121 </mbf_gain> 31122 <hbf_gain index="1" type="double" size="[1 1]"> 31123 [0.7] 31124 </hbf_gain> 31125 <hbf_ratio index="1" type="double" size="[1 1]"> 31126 [0.7] 31127 </hbf_ratio> 31128 <mbf_add index="1" type="double" size="[1 1]"> 31129 [2] 31130 </mbf_add> 31131 <hbf_add index="1" type="double" size="[1 1]"> 31132 [1] 31133 </hbf_add> 31134 <local_sharp_strength index="1" type="double" size="[1 1]"> 31135 [16] 31136 </local_sharp_strength> 31137 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 31138 [0.6] 31139 </pbf_coeff_percent> 31140 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 31141 [0.6] 31142 </rf_m_coeff_Percent> 31143 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 31144 [0.6] 31145 </rf_h_coeff_percent> 31146 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 31147 [0.6] 31148 </hbf_coeff_percent> 31149 </cell> 31150 <cell index="11" type="struct" size="[1 1]"> 31151 <iso index="1" type="double" size="[1 1]"> 31152 [51200] 31153 </iso> 31154 <lratio index="1" type="double" size="[1 1]"> 31155 [0.67] 31156 </lratio> 31157 <hratio index="1" type="double" size="[1 1]"> 31158 [1.5] 31159 </hratio> 31160 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 31161 [3] 31162 </mf_sharp_ratio> 31163 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 31164 [3] 31165 </hf_sharp_ratio> 31166 <luma_sigma index="1" type="double" size="[1 8]"> 31167 [6 8 10 12 14 12 12 10] 31168 </luma_sigma> 31169 <pbf_gain index="1" type="double" size="[1 1]"> 31170 [0.6] 31171 </pbf_gain> 31172 <pbf_ratio index="1" type="double" size="[1 1]"> 31173 [0.5] 31174 </pbf_ratio> 31175 <pbf_add index="1" type="double" size="[1 1]"> 31176 [0] 31177 </pbf_add> 31178 <mf_clip_pos index="1" type="double" size="[1 8]"> 31179 [4 6 8 8 10 8 4 0] 31180 </mf_clip_pos> 31181 <mf_clip_neg index="1" type="double" size="[1 8]"> 31182 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 31183 </mf_clip_neg> 31184 <hf_clip index="1" type="double" size="[1 8]"> 31185 [6 10 12 16 20 20 8 0] 31186 </hf_clip> 31187 <mbf_gain index="1" type="double" size="[1 1]"> 31188 [0.7] 31189 </mbf_gain> 31190 <hbf_gain index="1" type="double" size="[1 1]"> 31191 [0.7] 31192 </hbf_gain> 31193 <hbf_ratio index="1" type="double" size="[1 1]"> 31194 [0.7] 31195 </hbf_ratio> 31196 <mbf_add index="1" type="double" size="[1 1]"> 31197 [2] 31198 </mbf_add> 31199 <hbf_add index="1" type="double" size="[1 1]"> 31200 [1] 31201 </hbf_add> 31202 <local_sharp_strength index="1" type="double" size="[1 1]"> 31203 [16] 31204 </local_sharp_strength> 31205 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 31206 [0.6] 31207 </pbf_coeff_percent> 31208 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 31209 [0.6] 31210 </rf_m_coeff_Percent> 31211 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 31212 [0.6] 31213 </rf_h_coeff_percent> 31214 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 31215 [0.6] 31216 </hbf_coeff_percent> 31217 </cell> 31218 <cell index="12" type="struct" size="[1 1]"> 31219 <iso index="1" type="double" size="[1 1]"> 31220 [102400] 31221 </iso> 31222 <lratio index="1" type="double" size="[1 1]"> 31223 [0.67] 31224 </lratio> 31225 <hratio index="1" type="double" size="[1 1]"> 31226 [1.5] 31227 </hratio> 31228 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 31229 [3] 31230 </mf_sharp_ratio> 31231 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 31232 [3] 31233 </hf_sharp_ratio> 31234 <luma_sigma index="1" type="double" size="[1 8]"> 31235 [6 8 10 12 14 12 12 10] 31236 </luma_sigma> 31237 <pbf_gain index="1" type="double" size="[1 1]"> 31238 [0.6] 31239 </pbf_gain> 31240 <pbf_ratio index="1" type="double" size="[1 1]"> 31241 [0.5] 31242 </pbf_ratio> 31243 <pbf_add index="1" type="double" size="[1 1]"> 31244 [0] 31245 </pbf_add> 31246 <mf_clip_pos index="1" type="double" size="[1 8]"> 31247 [4 6 8 8 10 8 4 0] 31248 </mf_clip_pos> 31249 <mf_clip_neg index="1" type="double" size="[1 8]"> 31250 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 31251 </mf_clip_neg> 31252 <hf_clip index="1" type="double" size="[1 8]"> 31253 [6 10 12 16 20 20 8 0] 31254 </hf_clip> 31255 <mbf_gain index="1" type="double" size="[1 1]"> 31256 [0.7] 31257 </mbf_gain> 31258 <hbf_gain index="1" type="double" size="[1 1]"> 31259 [0.7] 31260 </hbf_gain> 31261 <hbf_ratio index="1" type="double" size="[1 1]"> 31262 [0.7] 31263 </hbf_ratio> 31264 <mbf_add index="1" type="double" size="[1 1]"> 31265 [2] 31266 </mbf_add> 31267 <hbf_add index="1" type="double" size="[1 1]"> 31268 [1] 31269 </hbf_add> 31270 <local_sharp_strength index="1" type="double" size="[1 1]"> 31271 [16] 31272 </local_sharp_strength> 31273 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 31274 [0.6] 31275 </pbf_coeff_percent> 31276 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 31277 [0.6] 31278 </rf_m_coeff_Percent> 31279 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 31280 [0.6] 31281 </rf_h_coeff_percent> 31282 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 31283 [0.6] 31284 </hbf_coeff_percent> 31285 </cell> 31286 <cell index="13" type="struct" size="[1 1]"> 31287 <iso index="1" type="double" size="[1 1]"> 31288 [204800] 31289 </iso> 31290 <lratio index="1" type="double" size="[1 1]"> 31291 [0.67] 31292 </lratio> 31293 <hratio index="1" type="double" size="[1 1]"> 31294 [1.5] 31295 </hratio> 31296 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 31297 [3] 31298 </mf_sharp_ratio> 31299 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 31300 [3] 31301 </hf_sharp_ratio> 31302 <luma_sigma index="1" type="double" size="[1 8]"> 31303 [6 8 10 12 14 12 12 10] 31304 </luma_sigma> 31305 <pbf_gain index="1" type="double" size="[1 1]"> 31306 [0.6] 31307 </pbf_gain> 31308 <pbf_ratio index="1" type="double" size="[1 1]"> 31309 [0.5] 31310 </pbf_ratio> 31311 <pbf_add index="1" type="double" size="[1 1]"> 31312 [0] 31313 </pbf_add> 31314 <mf_clip_pos index="1" type="double" size="[1 8]"> 31315 [4 6 8 8 10 8 4 0] 31316 </mf_clip_pos> 31317 <mf_clip_neg index="1" type="double" size="[1 8]"> 31318 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 31319 </mf_clip_neg> 31320 <hf_clip index="1" type="double" size="[1 8]"> 31321 [6 10 12 16 20 20 8 0] 31322 </hf_clip> 31323 <mbf_gain index="1" type="double" size="[1 1]"> 31324 [0.7] 31325 </mbf_gain> 31326 <hbf_gain index="1" type="double" size="[1 1]"> 31327 [0.7] 31328 </hbf_gain> 31329 <hbf_ratio index="1" type="double" size="[1 1]"> 31330 [0.7] 31331 </hbf_ratio> 31332 <mbf_add index="1" type="double" size="[1 1]"> 31333 [2] 31334 </mbf_add> 31335 <hbf_add index="1" type="double" size="[1 1]"> 31336 [1] 31337 </hbf_add> 31338 <local_sharp_strength index="1" type="double" size="[1 1]"> 31339 [16] 31340 </local_sharp_strength> 31341 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 31342 [0.6] 31343 </pbf_coeff_percent> 31344 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 31345 [0.6] 31346 </rf_m_coeff_Percent> 31347 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 31348 [0.6] 31349 </rf_h_coeff_percent> 31350 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 31351 [0.6] 31352 </hbf_coeff_percent> 31353 </cell> 31354 </SHARP_ISO> 31355 </cell> 31356 </Setting> 31357 </cell> 31358 <cell index="1" type="struct" size="[1 1]"> 31359 <Name index="1" type="char" size="[1 8]"> 31360 gray 31361 </Name> 31362 <gauss_luma_coeff index="1" type="double" size="[3 3]"> 31363 [0.0625 0.125 0.0625 31364 0.125 0.25 0.125 31365 0.0625 0.125 0.0625] 31366 </gauss_luma_coeff> 31367 <pbf_coeff_l index="1" type="double" size="[3 3]"> 31368 [0.15625 0.25 0.15625 31369 0.25 0.375 0.25 31370 0.15625 0.25 0.15625] 31371 </pbf_coeff_l> 31372 <pbf_coeff_h index="1" type="double" size="[3 3]"> 31373 [0.15625 0.25 0.15625 31374 0.25 0.375 0.25 31375 0.15625 0.25 0.15625] 31376 </pbf_coeff_h> 31377 <rf_m_coeff_l index="1" type="double" size="[5 5]"> 31378 [0.023438 0.03125 0.039063 0.03125 0.023438 31379 0.03125 0.046875 0.054688 0.046875 0.03125 31380 0.039063 0.054688 0.09375 0.054688 0.039063 31381 0.03125 0.046875 0.054688 0.046875 0.03125 31382 0.023438 0.03125 0.039063 0.03125 0.023438] 31383 </rf_m_coeff_l> 31384 <rf_m_coeff_h index="1" type="double" size="[5 5]"> 31385 [0.023438 0.03125 0.039063 0.03125 0.023438 31386 0.03125 0.046875 0.054688 0.046875 0.03125 31387 0.039063 0.054688 0.09375 0.054688 0.039063 31388 0.03125 0.046875 0.054688 0.046875 0.03125 31389 0.023438 0.03125 0.039063 0.03125 0.023438] 31390 </rf_m_coeff_h> 31391 <mbf_coeff index="1" type="double" size="[17 13]"> 31392 [0 0 0 0 0.40625 0 0 0 0 0 0 0 0.40625 0 0 0 0 31393 0 0 0 0 0 0 0.34375 0 0.328125 0 0.34375 0 0 0 0 0 0 31394 0 0 0.40625 0 0.359375 0 0 0 0 0 0 0 0.359375 0 0.40625 0 0 31395 0 0 0 0 0 0.296875 0 0.234375 0 0.234375 0 0.296875 0 0 0 0 0 31396 0 0.40625 0 0.34375 0 0 0 0 0.171875 0 0 0 0 0.34375 0 0.40625 0 31397 0 0 0 0 0 0.234375 0 0.140625 0.109375 0.140625 0 0.234375 0 0 0 0 0 31398 0.4375 0 0 0.328125 0 0 0.171875 0.109375 0 0.109375 0.171875 0 0 0.328125 0 0 0.4375 31399 0 0 0 0 0 0.234375 0 0.140625 0.109375 0.140625 0 0.234375 0 0 0 0 0 31400 0 0.40625 0 0.34375 0 0 0 0 0.171875 0 0 0 0 0.34375 0 0.40625 0 31401 0 0 0 0 0 0.296875 0 0.234375 0 0.234375 0 0.296875 0 0 0 0 0 31402 0 0 0.40625 0 0.359375 0 0 0 0 0 0 0 0.359375 0 0.40625 0 0 31403 0 0 0 0 0 0 0.34375 0 0.328125 0 0.34375 0 0 0 0 0 0 31404 0 0 0 0 0.40625 0 0 0 0 0 0 0 0.40625 0 0 0 0] 31405 </mbf_coeff> 31406 <rf_h_coeff_l index="1" type="double" size="[5 5]"> 31407 [0 0.015625 0.023438 0.015625 0 31408 0.015625 0.0625 0.101563 0.0625 0.015625 31409 0.023438 0.101563 0.125 0.101563 0.023438 31410 0.015625 0.0625 0.101563 0.0625 0.015625 31411 0 0.015625 0.023438 0.015625 0] 31412 </rf_h_coeff_l> 31413 <rf_h_coeff_h index="1" type="double" size="[5 5]"> 31414 [0 0.015625 0.023438 0.015625 0 31415 0.015625 0.0625 0.101563 0.0625 0.015625 31416 0.023438 0.101563 0.125 0.101563 0.023438 31417 0.015625 0.0625 0.101563 0.0625 0.015625 31418 0 0.015625 0.023438 0.015625 0] 31419 </rf_h_coeff_h> 31420 <hbf_coeff_l index="1" type="double" size="[3 3]"> 31421 [0.15625 0.25 0.15625 31422 0.25 0.375 0.25 31423 0.15625 0.25 0.15625] 31424 </hbf_coeff_l> 31425 <hbf_coeff_h index="1" type="double" size="[3 3]"> 31426 [0.15625 0.25 0.15625 31427 0.25 0.375 0.25 31428 0.15625 0.25 0.15625] 31429 </hbf_coeff_h> 31430 <Setting index="1" type="cell" size="[1 2]"> 31431 <cell index="1" type="struct" size="[1 1]"> 31432 <SNR_Mode index="1" type="char" size="[1 4]"> 31433 LSNR 31434 </SNR_Mode> 31435 <Sensor_Mode index="1" type="char" size="[1 3]"> 31436 lcg 31437 </Sensor_Mode> 31438 <SHARP_ISO index="1" type="cell" size="[1 13]"> 31439 <cell index="1" type="struct" size="[1 1]"> 31440 <iso index="1" type="double" size="[1 1]"> 31441 [50] 31442 </iso> 31443 <lratio index="1" type="double" size="[1 1]"> 31444 [0.65] 31445 </lratio> 31446 <hratio index="1" type="double" size="[1 1]"> 31447 [1.5] 31448 </hratio> 31449 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 31450 [3] 31451 </mf_sharp_ratio> 31452 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 31453 [3] 31454 </hf_sharp_ratio> 31455 <luma_sigma index="1" type="double" size="[1 8]"> 31456 [2 3 4 4 6 5 4 4] 31457 </luma_sigma> 31458 <pbf_gain index="1" type="double" size="[1 1]"> 31459 [0.3] 31460 </pbf_gain> 31461 <pbf_ratio index="1" type="double" size="[1 1]"> 31462 [0.6] 31463 </pbf_ratio> 31464 <pbf_add index="1" type="double" size="[1 1]"> 31465 [0] 31466 </pbf_add> 31467 <mf_clip_pos index="1" type="double" size="[1 8]"> 31468 [4 6 10 16 16 12 5 0] 31469 </mf_clip_pos> 31470 <mf_clip_neg index="1" type="double" size="[1 8]"> 31471 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 31472 </mf_clip_neg> 31473 <hf_clip index="1" type="double" size="[1 8]"> 31474 [10 12 16 24 32 32 10 0] 31475 </hf_clip> 31476 <mbf_gain index="1" type="double" size="[1 1]"> 31477 [0.6] 31478 </mbf_gain> 31479 <hbf_gain index="1" type="double" size="[1 1]"> 31480 [0.6] 31481 </hbf_gain> 31482 <hbf_ratio index="1" type="double" size="[1 1]"> 31483 [0.6] 31484 </hbf_ratio> 31485 <mbf_add index="1" type="double" size="[1 1]"> 31486 [2] 31487 </mbf_add> 31488 <hbf_add index="1" type="double" size="[1 1]"> 31489 [1] 31490 </hbf_add> 31491 <local_sharp_strength index="1" type="double" size="[1 1]"> 31492 [32] 31493 </local_sharp_strength> 31494 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 31495 [0.6] 31496 </pbf_coeff_percent> 31497 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 31498 [0.6] 31499 </rf_m_coeff_Percent> 31500 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 31501 [0.6] 31502 </rf_h_coeff_percent> 31503 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 31504 [0.6] 31505 </hbf_coeff_percent> 31506 </cell> 31507 <cell index="2" type="struct" size="[1 1]"> 31508 <iso index="1" type="double" size="[1 1]"> 31509 [100] 31510 </iso> 31511 <lratio index="1" type="double" size="[1 1]"> 31512 [0.65] 31513 </lratio> 31514 <hratio index="1" type="double" size="[1 1]"> 31515 [1.5] 31516 </hratio> 31517 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 31518 [4] 31519 </mf_sharp_ratio> 31520 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 31521 [4] 31522 </hf_sharp_ratio> 31523 <luma_sigma index="1" type="double" size="[1 8]"> 31524 [3 4 5 6 6 5 4 3] 31525 </luma_sigma> 31526 <pbf_gain index="1" type="double" size="[1 1]"> 31527 [0.5] 31528 </pbf_gain> 31529 <pbf_ratio index="1" type="double" size="[1 1]"> 31530 [0.6] 31531 </pbf_ratio> 31532 <pbf_add index="1" type="double" size="[1 1]"> 31533 [0] 31534 </pbf_add> 31535 <mf_clip_pos index="1" type="double" size="[1 8]"> 31536 [4 6 10 14 16 10 7 0] 31537 </mf_clip_pos> 31538 <mf_clip_neg index="1" type="double" size="[1 8]"> 31539 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 31540 </mf_clip_neg> 31541 <hf_clip index="1" type="double" size="[1 8]"> 31542 [10 12 18 24 32 32 10 0] 31543 </hf_clip> 31544 <mbf_gain index="1" type="double" size="[1 1]"> 31545 [0.7] 31546 </mbf_gain> 31547 <hbf_gain index="1" type="double" size="[1 1]"> 31548 [0.7] 31549 </hbf_gain> 31550 <hbf_ratio index="1" type="double" size="[1 1]"> 31551 [0.6] 31552 </hbf_ratio> 31553 <mbf_add index="1" type="double" size="[1 1]"> 31554 [2] 31555 </mbf_add> 31556 <hbf_add index="1" type="double" size="[1 1]"> 31557 [1] 31558 </hbf_add> 31559 <local_sharp_strength index="1" type="double" size="[1 1]"> 31560 [32] 31561 </local_sharp_strength> 31562 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 31563 [0.6] 31564 </pbf_coeff_percent> 31565 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 31566 [0.6] 31567 </rf_m_coeff_Percent> 31568 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 31569 [0.6] 31570 </rf_h_coeff_percent> 31571 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 31572 [0.6] 31573 </hbf_coeff_percent> 31574 </cell> 31575 <cell index="3" type="struct" size="[1 1]"> 31576 <iso index="1" type="double" size="[1 1]"> 31577 [200] 31578 </iso> 31579 <lratio index="1" type="double" size="[1 1]"> 31580 [0.67] 31581 </lratio> 31582 <hratio index="1" type="double" size="[1 1]"> 31583 [1.5] 31584 </hratio> 31585 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 31586 [3.3] 31587 </mf_sharp_ratio> 31588 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 31589 [3.5] 31590 </hf_sharp_ratio> 31591 <luma_sigma index="1" type="double" size="[1 8]"> 31592 [3 4 5 6 6 5 4 3] 31593 </luma_sigma> 31594 <pbf_gain index="1" type="double" size="[1 1]"> 31595 [0.8] 31596 </pbf_gain> 31597 <pbf_ratio index="1" type="double" size="[1 1]"> 31598 [0.9] 31599 </pbf_ratio> 31600 <pbf_add index="1" type="double" size="[1 1]"> 31601 [0] 31602 </pbf_add> 31603 <mf_clip_pos index="1" type="double" size="[1 8]"> 31604 [4 6 10 16 16 14 8 0] 31605 </mf_clip_pos> 31606 <mf_clip_neg index="1" type="double" size="[1 8]"> 31607 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 31608 </mf_clip_neg> 31609 <hf_clip index="1" type="double" size="[1 8]"> 31610 [10 12 20 24 28 28 10 0] 31611 </hf_clip> 31612 <mbf_gain index="1" type="double" size="[1 1]"> 31613 [0.9] 31614 </mbf_gain> 31615 <hbf_gain index="1" type="double" size="[1 1]"> 31616 [0.8] 31617 </hbf_gain> 31618 <hbf_ratio index="1" type="double" size="[1 1]"> 31619 [0.7] 31620 </hbf_ratio> 31621 <mbf_add index="1" type="double" size="[1 1]"> 31622 [2] 31623 </mbf_add> 31624 <hbf_add index="1" type="double" size="[1 1]"> 31625 [1] 31626 </hbf_add> 31627 <local_sharp_strength index="1" type="double" size="[1 1]"> 31628 [32] 31629 </local_sharp_strength> 31630 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 31631 [0.6] 31632 </pbf_coeff_percent> 31633 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 31634 [0.6] 31635 </rf_m_coeff_Percent> 31636 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 31637 [0.6] 31638 </rf_h_coeff_percent> 31639 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 31640 [0.6] 31641 </hbf_coeff_percent> 31642 </cell> 31643 <cell index="4" type="struct" size="[1 1]"> 31644 <iso index="1" type="double" size="[1 1]"> 31645 [400] 31646 </iso> 31647 <lratio index="1" type="double" size="[1 1]"> 31648 [0.67] 31649 </lratio> 31650 <hratio index="1" type="double" size="[1 1]"> 31651 [1.5] 31652 </hratio> 31653 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 31654 [3.2] 31655 </mf_sharp_ratio> 31656 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 31657 [3.5] 31658 </hf_sharp_ratio> 31659 <luma_sigma index="1" type="double" size="[1 8]"> 31660 [3 4 5 6 6 5 4 3] 31661 </luma_sigma> 31662 <pbf_gain index="1" type="double" size="[1 1]"> 31663 [0.8] 31664 </pbf_gain> 31665 <pbf_ratio index="1" type="double" size="[1 1]"> 31666 [1] 31667 </pbf_ratio> 31668 <pbf_add index="1" type="double" size="[1 1]"> 31669 [0] 31670 </pbf_add> 31671 <mf_clip_pos index="1" type="double" size="[1 8]"> 31672 [4 6 8 10 14 14 7 0] 31673 </mf_clip_pos> 31674 <mf_clip_neg index="1" type="double" size="[1 8]"> 31675 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 31676 </mf_clip_neg> 31677 <hf_clip index="1" type="double" size="[1 8]"> 31678 [6 10 16 24 28 28 12 0] 31679 </hf_clip> 31680 <mbf_gain index="1" type="double" size="[1 1]"> 31681 [0.8] 31682 </mbf_gain> 31683 <hbf_gain index="1" type="double" size="[1 1]"> 31684 [0.8] 31685 </hbf_gain> 31686 <hbf_ratio index="1" type="double" size="[1 1]"> 31687 [0.7] 31688 </hbf_ratio> 31689 <mbf_add index="1" type="double" size="[1 1]"> 31690 [2] 31691 </mbf_add> 31692 <hbf_add index="1" type="double" size="[1 1]"> 31693 [1] 31694 </hbf_add> 31695 <local_sharp_strength index="1" type="double" size="[1 1]"> 31696 [32] 31697 </local_sharp_strength> 31698 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 31699 [0.6] 31700 </pbf_coeff_percent> 31701 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 31702 [0.6] 31703 </rf_m_coeff_Percent> 31704 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 31705 [0.6] 31706 </rf_h_coeff_percent> 31707 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 31708 [0.6] 31709 </hbf_coeff_percent> 31710 </cell> 31711 <cell index="5" type="struct" size="[1 1]"> 31712 <iso index="1" type="double" size="[1 1]"> 31713 [800] 31714 </iso> 31715 <lratio index="1" type="double" size="[1 1]"> 31716 [0.67] 31717 </lratio> 31718 <hratio index="1" type="double" size="[1 1]"> 31719 [1.5] 31720 </hratio> 31721 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 31722 [3] 31723 </mf_sharp_ratio> 31724 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 31725 [3.2] 31726 </hf_sharp_ratio> 31727 <luma_sigma index="1" type="double" size="[1 8]"> 31728 [4 5 6 8 8 8 7 6] 31729 </luma_sigma> 31730 <pbf_gain index="1" type="double" size="[1 1]"> 31731 [0.8] 31732 </pbf_gain> 31733 <pbf_ratio index="1" type="double" size="[1 1]"> 31734 [1] 31735 </pbf_ratio> 31736 <pbf_add index="1" type="double" size="[1 1]"> 31737 [0] 31738 </pbf_add> 31739 <mf_clip_pos index="1" type="double" size="[1 8]"> 31740 [8 8 12 14 16 16 7 0] 31741 </mf_clip_pos> 31742 <mf_clip_neg index="1" type="double" size="[1 8]"> 31743 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 31744 </mf_clip_neg> 31745 <hf_clip index="1" type="double" size="[1 8]"> 31746 [6 10 15 22 28 28 12 0] 31747 </hf_clip> 31748 <mbf_gain index="1" type="double" size="[1 1]"> 31749 [0.9] 31750 </mbf_gain> 31751 <hbf_gain index="1" type="double" size="[1 1]"> 31752 [0.85] 31753 </hbf_gain> 31754 <hbf_ratio index="1" type="double" size="[1 1]"> 31755 [0.65] 31756 </hbf_ratio> 31757 <mbf_add index="1" type="double" size="[1 1]"> 31758 [2] 31759 </mbf_add> 31760 <hbf_add index="1" type="double" size="[1 1]"> 31761 [1] 31762 </hbf_add> 31763 <local_sharp_strength index="1" type="double" size="[1 1]"> 31764 [24] 31765 </local_sharp_strength> 31766 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 31767 [0.6] 31768 </pbf_coeff_percent> 31769 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 31770 [0.6] 31771 </rf_m_coeff_Percent> 31772 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 31773 [0.6] 31774 </rf_h_coeff_percent> 31775 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 31776 [0.6] 31777 </hbf_coeff_percent> 31778 </cell> 31779 <cell index="6" type="struct" size="[1 1]"> 31780 <iso index="1" type="double" size="[1 1]"> 31781 [1600] 31782 </iso> 31783 <lratio index="1" type="double" size="[1 1]"> 31784 [0.72] 31785 </lratio> 31786 <hratio index="1" type="double" size="[1 1]"> 31787 [1.5] 31788 </hratio> 31789 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 31790 [3] 31791 </mf_sharp_ratio> 31792 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 31793 [3.2] 31794 </hf_sharp_ratio> 31795 <luma_sigma index="1" type="double" size="[1 8]"> 31796 [5 5 6 8 9 8 8 7] 31797 </luma_sigma> 31798 <pbf_gain index="1" type="double" size="[1 1]"> 31799 [0.9] 31800 </pbf_gain> 31801 <pbf_ratio index="1" type="double" size="[1 1]"> 31802 [1] 31803 </pbf_ratio> 31804 <pbf_add index="1" type="double" size="[1 1]"> 31805 [0] 31806 </pbf_add> 31807 <mf_clip_pos index="1" type="double" size="[1 8]"> 31808 [4 6 8 8 10 8 4 0] 31809 </mf_clip_pos> 31810 <mf_clip_neg index="1" type="double" size="[1 8]"> 31811 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 31812 </mf_clip_neg> 31813 <hf_clip index="1" type="double" size="[1 8]"> 31814 [6 10 12 16 20 20 8 0] 31815 </hf_clip> 31816 <mbf_gain index="1" type="double" size="[1 1]"> 31817 [0.9] 31818 </mbf_gain> 31819 <hbf_gain index="1" type="double" size="[1 1]"> 31820 [0.9] 31821 </hbf_gain> 31822 <hbf_ratio index="1" type="double" size="[1 1]"> 31823 [0.8] 31824 </hbf_ratio> 31825 <mbf_add index="1" type="double" size="[1 1]"> 31826 [2] 31827 </mbf_add> 31828 <hbf_add index="1" type="double" size="[1 1]"> 31829 [1] 31830 </hbf_add> 31831 <local_sharp_strength index="1" type="double" size="[1 1]"> 31832 [12] 31833 </local_sharp_strength> 31834 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 31835 [0.6] 31836 </pbf_coeff_percent> 31837 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 31838 [0.6] 31839 </rf_m_coeff_Percent> 31840 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 31841 [0.6] 31842 </rf_h_coeff_percent> 31843 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 31844 [0.6] 31845 </hbf_coeff_percent> 31846 </cell> 31847 <cell index="7" type="struct" size="[1 1]"> 31848 <iso index="1" type="double" size="[1 1]"> 31849 [3200] 31850 </iso> 31851 <lratio index="1" type="double" size="[1 1]"> 31852 [0.72] 31853 </lratio> 31854 <hratio index="1" type="double" size="[1 1]"> 31855 [1.5] 31856 </hratio> 31857 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 31858 [3.2] 31859 </mf_sharp_ratio> 31860 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 31861 [3.5] 31862 </hf_sharp_ratio> 31863 <luma_sigma index="1" type="double" size="[1 8]"> 31864 [6 8 10 12 14 12 12 10] 31865 </luma_sigma> 31866 <pbf_gain index="1" type="double" size="[1 1]"> 31867 [0.9] 31868 </pbf_gain> 31869 <pbf_ratio index="1" type="double" size="[1 1]"> 31870 [0.9] 31871 </pbf_ratio> 31872 <pbf_add index="1" type="double" size="[1 1]"> 31873 [0] 31874 </pbf_add> 31875 <mf_clip_pos index="1" type="double" size="[1 8]"> 31876 [4 6 8 8 10 8 4 0] 31877 </mf_clip_pos> 31878 <mf_clip_neg index="1" type="double" size="[1 8]"> 31879 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 31880 </mf_clip_neg> 31881 <hf_clip index="1" type="double" size="[1 8]"> 31882 [6 10 12 16 20 20 8 0] 31883 </hf_clip> 31884 <mbf_gain index="1" type="double" size="[1 1]"> 31885 [0.9] 31886 </mbf_gain> 31887 <hbf_gain index="1" type="double" size="[1 1]"> 31888 [0.9] 31889 </hbf_gain> 31890 <hbf_ratio index="1" type="double" size="[1 1]"> 31891 [0.9] 31892 </hbf_ratio> 31893 <mbf_add index="1" type="double" size="[1 1]"> 31894 [2] 31895 </mbf_add> 31896 <hbf_add index="1" type="double" size="[1 1]"> 31897 [1] 31898 </hbf_add> 31899 <local_sharp_strength index="1" type="double" size="[1 1]"> 31900 [12] 31901 </local_sharp_strength> 31902 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 31903 [0.6] 31904 </pbf_coeff_percent> 31905 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 31906 [0.6] 31907 </rf_m_coeff_Percent> 31908 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 31909 [0.6] 31910 </rf_h_coeff_percent> 31911 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 31912 [0.6] 31913 </hbf_coeff_percent> 31914 </cell> 31915 <cell index="8" type="struct" size="[1 1]"> 31916 <iso index="1" type="double" size="[1 1]"> 31917 [6400] 31918 </iso> 31919 <lratio index="1" type="double" size="[1 1]"> 31920 [0.75] 31921 </lratio> 31922 <hratio index="1" type="double" size="[1 1]"> 31923 [1.5] 31924 </hratio> 31925 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 31926 [3] 31927 </mf_sharp_ratio> 31928 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 31929 [3] 31930 </hf_sharp_ratio> 31931 <luma_sigma index="1" type="double" size="[1 8]"> 31932 [6 8 10 12 14 12 12 10] 31933 </luma_sigma> 31934 <pbf_gain index="1" type="double" size="[1 1]"> 31935 [0.95] 31936 </pbf_gain> 31937 <pbf_ratio index="1" type="double" size="[1 1]"> 31938 [0.95] 31939 </pbf_ratio> 31940 <pbf_add index="1" type="double" size="[1 1]"> 31941 [0] 31942 </pbf_add> 31943 <mf_clip_pos index="1" type="double" size="[1 8]"> 31944 [4 6 8 8 10 8 4 0] 31945 </mf_clip_pos> 31946 <mf_clip_neg index="1" type="double" size="[1 8]"> 31947 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 31948 </mf_clip_neg> 31949 <hf_clip index="1" type="double" size="[1 8]"> 31950 [6 10 12 16 20 20 8 0] 31951 </hf_clip> 31952 <mbf_gain index="1" type="double" size="[1 1]"> 31953 [0.95] 31954 </mbf_gain> 31955 <hbf_gain index="1" type="double" size="[1 1]"> 31956 [0.95] 31957 </hbf_gain> 31958 <hbf_ratio index="1" type="double" size="[1 1]"> 31959 [0.95] 31960 </hbf_ratio> 31961 <mbf_add index="1" type="double" size="[1 1]"> 31962 [2] 31963 </mbf_add> 31964 <hbf_add index="1" type="double" size="[1 1]"> 31965 [1] 31966 </hbf_add> 31967 <local_sharp_strength index="1" type="double" size="[1 1]"> 31968 [8] 31969 </local_sharp_strength> 31970 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 31971 [0.6] 31972 </pbf_coeff_percent> 31973 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 31974 [0.6] 31975 </rf_m_coeff_Percent> 31976 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 31977 [0.6] 31978 </rf_h_coeff_percent> 31979 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 31980 [0.6] 31981 </hbf_coeff_percent> 31982 </cell> 31983 <cell index="9" type="struct" size="[1 1]"> 31984 <iso index="1" type="double" size="[1 1]"> 31985 [12800] 31986 </iso> 31987 <lratio index="1" type="double" size="[1 1]"> 31988 [0.67] 31989 </lratio> 31990 <hratio index="1" type="double" size="[1 1]"> 31991 [1.5] 31992 </hratio> 31993 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 31994 [3] 31995 </mf_sharp_ratio> 31996 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 31997 [3] 31998 </hf_sharp_ratio> 31999 <luma_sigma index="1" type="double" size="[1 8]"> 32000 [6 8 10 12 14 12 12 10] 32001 </luma_sigma> 32002 <pbf_gain index="1" type="double" size="[1 1]"> 32003 [0.6] 32004 </pbf_gain> 32005 <pbf_ratio index="1" type="double" size="[1 1]"> 32006 [0.5] 32007 </pbf_ratio> 32008 <pbf_add index="1" type="double" size="[1 1]"> 32009 [0] 32010 </pbf_add> 32011 <mf_clip_pos index="1" type="double" size="[1 8]"> 32012 [4 6 8 8 10 8 4 0] 32013 </mf_clip_pos> 32014 <mf_clip_neg index="1" type="double" size="[1 8]"> 32015 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 32016 </mf_clip_neg> 32017 <hf_clip index="1" type="double" size="[1 8]"> 32018 [6 10 12 16 20 20 8 0] 32019 </hf_clip> 32020 <mbf_gain index="1" type="double" size="[1 1]"> 32021 [0.7] 32022 </mbf_gain> 32023 <hbf_gain index="1" type="double" size="[1 1]"> 32024 [0.7] 32025 </hbf_gain> 32026 <hbf_ratio index="1" type="double" size="[1 1]"> 32027 [0.7] 32028 </hbf_ratio> 32029 <mbf_add index="1" type="double" size="[1 1]"> 32030 [2] 32031 </mbf_add> 32032 <hbf_add index="1" type="double" size="[1 1]"> 32033 [1] 32034 </hbf_add> 32035 <local_sharp_strength index="1" type="double" size="[1 1]"> 32036 [16] 32037 </local_sharp_strength> 32038 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 32039 [0.6] 32040 </pbf_coeff_percent> 32041 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 32042 [0.6] 32043 </rf_m_coeff_Percent> 32044 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 32045 [0.6] 32046 </rf_h_coeff_percent> 32047 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 32048 [0.6] 32049 </hbf_coeff_percent> 32050 </cell> 32051 <cell index="10" type="struct" size="[1 1]"> 32052 <iso index="1" type="double" size="[1 1]"> 32053 [25600] 32054 </iso> 32055 <lratio index="1" type="double" size="[1 1]"> 32056 [0.67] 32057 </lratio> 32058 <hratio index="1" type="double" size="[1 1]"> 32059 [1.5] 32060 </hratio> 32061 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 32062 [3] 32063 </mf_sharp_ratio> 32064 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 32065 [3] 32066 </hf_sharp_ratio> 32067 <luma_sigma index="1" type="double" size="[1 8]"> 32068 [6 8 10 12 14 12 12 10] 32069 </luma_sigma> 32070 <pbf_gain index="1" type="double" size="[1 1]"> 32071 [0.6] 32072 </pbf_gain> 32073 <pbf_ratio index="1" type="double" size="[1 1]"> 32074 [0.5] 32075 </pbf_ratio> 32076 <pbf_add index="1" type="double" size="[1 1]"> 32077 [0] 32078 </pbf_add> 32079 <mf_clip_pos index="1" type="double" size="[1 8]"> 32080 [4 6 8 8 10 8 4 0] 32081 </mf_clip_pos> 32082 <mf_clip_neg index="1" type="double" size="[1 8]"> 32083 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 32084 </mf_clip_neg> 32085 <hf_clip index="1" type="double" size="[1 8]"> 32086 [6 10 12 16 20 20 8 0] 32087 </hf_clip> 32088 <mbf_gain index="1" type="double" size="[1 1]"> 32089 [0.7] 32090 </mbf_gain> 32091 <hbf_gain index="1" type="double" size="[1 1]"> 32092 [0.7] 32093 </hbf_gain> 32094 <hbf_ratio index="1" type="double" size="[1 1]"> 32095 [0.7] 32096 </hbf_ratio> 32097 <mbf_add index="1" type="double" size="[1 1]"> 32098 [2] 32099 </mbf_add> 32100 <hbf_add index="1" type="double" size="[1 1]"> 32101 [1] 32102 </hbf_add> 32103 <local_sharp_strength index="1" type="double" size="[1 1]"> 32104 [16] 32105 </local_sharp_strength> 32106 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 32107 [0.6] 32108 </pbf_coeff_percent> 32109 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 32110 [0.6] 32111 </rf_m_coeff_Percent> 32112 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 32113 [0.6] 32114 </rf_h_coeff_percent> 32115 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 32116 [0.6] 32117 </hbf_coeff_percent> 32118 </cell> 32119 <cell index="11" type="struct" size="[1 1]"> 32120 <iso index="1" type="double" size="[1 1]"> 32121 [51200] 32122 </iso> 32123 <lratio index="1" type="double" size="[1 1]"> 32124 [0.67] 32125 </lratio> 32126 <hratio index="1" type="double" size="[1 1]"> 32127 [1.5] 32128 </hratio> 32129 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 32130 [3] 32131 </mf_sharp_ratio> 32132 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 32133 [3] 32134 </hf_sharp_ratio> 32135 <luma_sigma index="1" type="double" size="[1 8]"> 32136 [6 8 10 12 14 12 12 10] 32137 </luma_sigma> 32138 <pbf_gain index="1" type="double" size="[1 1]"> 32139 [0.6] 32140 </pbf_gain> 32141 <pbf_ratio index="1" type="double" size="[1 1]"> 32142 [0.5] 32143 </pbf_ratio> 32144 <pbf_add index="1" type="double" size="[1 1]"> 32145 [0] 32146 </pbf_add> 32147 <mf_clip_pos index="1" type="double" size="[1 8]"> 32148 [4 6 8 8 10 8 4 0] 32149 </mf_clip_pos> 32150 <mf_clip_neg index="1" type="double" size="[1 8]"> 32151 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 32152 </mf_clip_neg> 32153 <hf_clip index="1" type="double" size="[1 8]"> 32154 [6 10 12 16 20 20 8 0] 32155 </hf_clip> 32156 <mbf_gain index="1" type="double" size="[1 1]"> 32157 [0.7] 32158 </mbf_gain> 32159 <hbf_gain index="1" type="double" size="[1 1]"> 32160 [0.7] 32161 </hbf_gain> 32162 <hbf_ratio index="1" type="double" size="[1 1]"> 32163 [0.7] 32164 </hbf_ratio> 32165 <mbf_add index="1" type="double" size="[1 1]"> 32166 [2] 32167 </mbf_add> 32168 <hbf_add index="1" type="double" size="[1 1]"> 32169 [1] 32170 </hbf_add> 32171 <local_sharp_strength index="1" type="double" size="[1 1]"> 32172 [16] 32173 </local_sharp_strength> 32174 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 32175 [0.6] 32176 </pbf_coeff_percent> 32177 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 32178 [0.6] 32179 </rf_m_coeff_Percent> 32180 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 32181 [0.6] 32182 </rf_h_coeff_percent> 32183 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 32184 [0.6] 32185 </hbf_coeff_percent> 32186 </cell> 32187 <cell index="12" type="struct" size="[1 1]"> 32188 <iso index="1" type="double" size="[1 1]"> 32189 [102400] 32190 </iso> 32191 <lratio index="1" type="double" size="[1 1]"> 32192 [0.67] 32193 </lratio> 32194 <hratio index="1" type="double" size="[1 1]"> 32195 [1.5] 32196 </hratio> 32197 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 32198 [3] 32199 </mf_sharp_ratio> 32200 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 32201 [3] 32202 </hf_sharp_ratio> 32203 <luma_sigma index="1" type="double" size="[1 8]"> 32204 [6 8 10 12 14 12 12 10] 32205 </luma_sigma> 32206 <pbf_gain index="1" type="double" size="[1 1]"> 32207 [0.6] 32208 </pbf_gain> 32209 <pbf_ratio index="1" type="double" size="[1 1]"> 32210 [0.5] 32211 </pbf_ratio> 32212 <pbf_add index="1" type="double" size="[1 1]"> 32213 [0] 32214 </pbf_add> 32215 <mf_clip_pos index="1" type="double" size="[1 8]"> 32216 [4 6 8 8 10 8 4 0] 32217 </mf_clip_pos> 32218 <mf_clip_neg index="1" type="double" size="[1 8]"> 32219 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 32220 </mf_clip_neg> 32221 <hf_clip index="1" type="double" size="[1 8]"> 32222 [6 10 12 16 20 20 8 0] 32223 </hf_clip> 32224 <mbf_gain index="1" type="double" size="[1 1]"> 32225 [0.7] 32226 </mbf_gain> 32227 <hbf_gain index="1" type="double" size="[1 1]"> 32228 [0.7] 32229 </hbf_gain> 32230 <hbf_ratio index="1" type="double" size="[1 1]"> 32231 [0.7] 32232 </hbf_ratio> 32233 <mbf_add index="1" type="double" size="[1 1]"> 32234 [2] 32235 </mbf_add> 32236 <hbf_add index="1" type="double" size="[1 1]"> 32237 [1] 32238 </hbf_add> 32239 <local_sharp_strength index="1" type="double" size="[1 1]"> 32240 [16] 32241 </local_sharp_strength> 32242 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 32243 [0.6] 32244 </pbf_coeff_percent> 32245 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 32246 [0.6] 32247 </rf_m_coeff_Percent> 32248 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 32249 [0.6] 32250 </rf_h_coeff_percent> 32251 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 32252 [0.6] 32253 </hbf_coeff_percent> 32254 </cell> 32255 <cell index="13" type="struct" size="[1 1]"> 32256 <iso index="1" type="double" size="[1 1]"> 32257 [204800] 32258 </iso> 32259 <lratio index="1" type="double" size="[1 1]"> 32260 [0.67] 32261 </lratio> 32262 <hratio index="1" type="double" size="[1 1]"> 32263 [1.5] 32264 </hratio> 32265 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 32266 [3] 32267 </mf_sharp_ratio> 32268 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 32269 [3] 32270 </hf_sharp_ratio> 32271 <luma_sigma index="1" type="double" size="[1 8]"> 32272 [6 8 10 12 14 12 12 10] 32273 </luma_sigma> 32274 <pbf_gain index="1" type="double" size="[1 1]"> 32275 [0.6] 32276 </pbf_gain> 32277 <pbf_ratio index="1" type="double" size="[1 1]"> 32278 [0.5] 32279 </pbf_ratio> 32280 <pbf_add index="1" type="double" size="[1 1]"> 32281 [0] 32282 </pbf_add> 32283 <mf_clip_pos index="1" type="double" size="[1 8]"> 32284 [4 6 8 8 10 8 4 0] 32285 </mf_clip_pos> 32286 <mf_clip_neg index="1" type="double" size="[1 8]"> 32287 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 32288 </mf_clip_neg> 32289 <hf_clip index="1" type="double" size="[1 8]"> 32290 [6 10 12 16 20 20 8 0] 32291 </hf_clip> 32292 <mbf_gain index="1" type="double" size="[1 1]"> 32293 [0.7] 32294 </mbf_gain> 32295 <hbf_gain index="1" type="double" size="[1 1]"> 32296 [0.7] 32297 </hbf_gain> 32298 <hbf_ratio index="1" type="double" size="[1 1]"> 32299 [0.7] 32300 </hbf_ratio> 32301 <mbf_add index="1" type="double" size="[1 1]"> 32302 [2] 32303 </mbf_add> 32304 <hbf_add index="1" type="double" size="[1 1]"> 32305 [1] 32306 </hbf_add> 32307 <local_sharp_strength index="1" type="double" size="[1 1]"> 32308 [16] 32309 </local_sharp_strength> 32310 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 32311 [0.6] 32312 </pbf_coeff_percent> 32313 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 32314 [0.6] 32315 </rf_m_coeff_Percent> 32316 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 32317 [0.6] 32318 </rf_h_coeff_percent> 32319 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 32320 [0.6] 32321 </hbf_coeff_percent> 32322 </cell> 32323 </SHARP_ISO> 32324 </cell> 32325 <cell index="2" type="struct" size="[1 1]"> 32326 <SNR_Mode index="1" type="char" size="[1 4]"> 32327 HSNR 32328 </SNR_Mode> 32329 <Sensor_Mode index="1" type="char" size="[1 3]"> 32330 hcg 32331 </Sensor_Mode> 32332 <SHARP_ISO index="1" type="cell" size="[1 13]"> 32333 <cell index="1" type="struct" size="[1 1]"> 32334 <iso index="1" type="double" size="[1 1]"> 32335 [50] 32336 </iso> 32337 <lratio index="1" type="double" size="[1 1]"> 32338 [0.65] 32339 </lratio> 32340 <hratio index="1" type="double" size="[1 1]"> 32341 [1.5] 32342 </hratio> 32343 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 32344 [4.2] 32345 </mf_sharp_ratio> 32346 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 32347 [4.2] 32348 </hf_sharp_ratio> 32349 <luma_sigma index="1" type="double" size="[1 8]"> 32350 [2 3 4 4 6 5 4 4] 32351 </luma_sigma> 32352 <pbf_gain index="1" type="double" size="[1 1]"> 32353 [0.3] 32354 </pbf_gain> 32355 <pbf_ratio index="1" type="double" size="[1 1]"> 32356 [0.6] 32357 </pbf_ratio> 32358 <pbf_add index="1" type="double" size="[1 1]"> 32359 [0] 32360 </pbf_add> 32361 <mf_clip_pos index="1" type="double" size="[1 8]"> 32362 [4 6 10 16 16 12 5 0] 32363 </mf_clip_pos> 32364 <mf_clip_neg index="1" type="double" size="[1 8]"> 32365 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 32366 </mf_clip_neg> 32367 <hf_clip index="1" type="double" size="[1 8]"> 32368 [10 12 16 24 32 32 10 0] 32369 </hf_clip> 32370 <mbf_gain index="1" type="double" size="[1 1]"> 32371 [0.6] 32372 </mbf_gain> 32373 <hbf_gain index="1" type="double" size="[1 1]"> 32374 [0.6] 32375 </hbf_gain> 32376 <hbf_ratio index="1" type="double" size="[1 1]"> 32377 [0.6] 32378 </hbf_ratio> 32379 <mbf_add index="1" type="double" size="[1 1]"> 32380 [2] 32381 </mbf_add> 32382 <hbf_add index="1" type="double" size="[1 1]"> 32383 [1] 32384 </hbf_add> 32385 <local_sharp_strength index="1" type="double" size="[1 1]"> 32386 [32] 32387 </local_sharp_strength> 32388 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 32389 [0.6] 32390 </pbf_coeff_percent> 32391 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 32392 [0.6] 32393 </rf_m_coeff_Percent> 32394 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 32395 [0.6] 32396 </rf_h_coeff_percent> 32397 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 32398 [0.6] 32399 </hbf_coeff_percent> 32400 </cell> 32401 <cell index="2" type="struct" size="[1 1]"> 32402 <iso index="1" type="double" size="[1 1]"> 32403 [100] 32404 </iso> 32405 <lratio index="1" type="double" size="[1 1]"> 32406 [0.65] 32407 </lratio> 32408 <hratio index="1" type="double" size="[1 1]"> 32409 [1.5] 32410 </hratio> 32411 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 32412 [4] 32413 </mf_sharp_ratio> 32414 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 32415 [4] 32416 </hf_sharp_ratio> 32417 <luma_sigma index="1" type="double" size="[1 8]"> 32418 [3 4 5 6 6 5 4 3] 32419 </luma_sigma> 32420 <pbf_gain index="1" type="double" size="[1 1]"> 32421 [0.5] 32422 </pbf_gain> 32423 <pbf_ratio index="1" type="double" size="[1 1]"> 32424 [0.6] 32425 </pbf_ratio> 32426 <pbf_add index="1" type="double" size="[1 1]"> 32427 [0] 32428 </pbf_add> 32429 <mf_clip_pos index="1" type="double" size="[1 8]"> 32430 [4 6 10 14 16 10 7 0] 32431 </mf_clip_pos> 32432 <mf_clip_neg index="1" type="double" size="[1 8]"> 32433 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 32434 </mf_clip_neg> 32435 <hf_clip index="1" type="double" size="[1 8]"> 32436 [10 12 18 24 32 32 10 0] 32437 </hf_clip> 32438 <mbf_gain index="1" type="double" size="[1 1]"> 32439 [0.7] 32440 </mbf_gain> 32441 <hbf_gain index="1" type="double" size="[1 1]"> 32442 [0.7] 32443 </hbf_gain> 32444 <hbf_ratio index="1" type="double" size="[1 1]"> 32445 [0.6] 32446 </hbf_ratio> 32447 <mbf_add index="1" type="double" size="[1 1]"> 32448 [2] 32449 </mbf_add> 32450 <hbf_add index="1" type="double" size="[1 1]"> 32451 [1] 32452 </hbf_add> 32453 <local_sharp_strength index="1" type="double" size="[1 1]"> 32454 [32] 32455 </local_sharp_strength> 32456 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 32457 [0.6] 32458 </pbf_coeff_percent> 32459 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 32460 [0.6] 32461 </rf_m_coeff_Percent> 32462 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 32463 [0.6] 32464 </rf_h_coeff_percent> 32465 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 32466 [0.6] 32467 </hbf_coeff_percent> 32468 </cell> 32469 <cell index="3" type="struct" size="[1 1]"> 32470 <iso index="1" type="double" size="[1 1]"> 32471 [200] 32472 </iso> 32473 <lratio index="1" type="double" size="[1 1]"> 32474 [0.67] 32475 </lratio> 32476 <hratio index="1" type="double" size="[1 1]"> 32477 [1.5] 32478 </hratio> 32479 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 32480 [3.3] 32481 </mf_sharp_ratio> 32482 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 32483 [3.5] 32484 </hf_sharp_ratio> 32485 <luma_sigma index="1" type="double" size="[1 8]"> 32486 [3 4 5 6 6 5 4 3] 32487 </luma_sigma> 32488 <pbf_gain index="1" type="double" size="[1 1]"> 32489 [0.8] 32490 </pbf_gain> 32491 <pbf_ratio index="1" type="double" size="[1 1]"> 32492 [0.9] 32493 </pbf_ratio> 32494 <pbf_add index="1" type="double" size="[1 1]"> 32495 [0] 32496 </pbf_add> 32497 <mf_clip_pos index="1" type="double" size="[1 8]"> 32498 [4 6 10 16 16 14 8 0] 32499 </mf_clip_pos> 32500 <mf_clip_neg index="1" type="double" size="[1 8]"> 32501 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 32502 </mf_clip_neg> 32503 <hf_clip index="1" type="double" size="[1 8]"> 32504 [10 12 20 24 28 28 10 0] 32505 </hf_clip> 32506 <mbf_gain index="1" type="double" size="[1 1]"> 32507 [0.9] 32508 </mbf_gain> 32509 <hbf_gain index="1" type="double" size="[1 1]"> 32510 [0.8] 32511 </hbf_gain> 32512 <hbf_ratio index="1" type="double" size="[1 1]"> 32513 [0.7] 32514 </hbf_ratio> 32515 <mbf_add index="1" type="double" size="[1 1]"> 32516 [2] 32517 </mbf_add> 32518 <hbf_add index="1" type="double" size="[1 1]"> 32519 [1] 32520 </hbf_add> 32521 <local_sharp_strength index="1" type="double" size="[1 1]"> 32522 [32] 32523 </local_sharp_strength> 32524 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 32525 [0.6] 32526 </pbf_coeff_percent> 32527 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 32528 [0.6] 32529 </rf_m_coeff_Percent> 32530 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 32531 [0.6] 32532 </rf_h_coeff_percent> 32533 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 32534 [0.6] 32535 </hbf_coeff_percent> 32536 </cell> 32537 <cell index="4" type="struct" size="[1 1]"> 32538 <iso index="1" type="double" size="[1 1]"> 32539 [400] 32540 </iso> 32541 <lratio index="1" type="double" size="[1 1]"> 32542 [0.67] 32543 </lratio> 32544 <hratio index="1" type="double" size="[1 1]"> 32545 [1.5] 32546 </hratio> 32547 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 32548 [3.2] 32549 </mf_sharp_ratio> 32550 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 32551 [3.5] 32552 </hf_sharp_ratio> 32553 <luma_sigma index="1" type="double" size="[1 8]"> 32554 [3 4 5 6 6 5 4 3] 32555 </luma_sigma> 32556 <pbf_gain index="1" type="double" size="[1 1]"> 32557 [0.8] 32558 </pbf_gain> 32559 <pbf_ratio index="1" type="double" size="[1 1]"> 32560 [1] 32561 </pbf_ratio> 32562 <pbf_add index="1" type="double" size="[1 1]"> 32563 [0] 32564 </pbf_add> 32565 <mf_clip_pos index="1" type="double" size="[1 8]"> 32566 [4 6 8 10 14 14 7 0] 32567 </mf_clip_pos> 32568 <mf_clip_neg index="1" type="double" size="[1 8]"> 32569 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 32570 </mf_clip_neg> 32571 <hf_clip index="1" type="double" size="[1 8]"> 32572 [6 10 16 24 28 28 12 0] 32573 </hf_clip> 32574 <mbf_gain index="1" type="double" size="[1 1]"> 32575 [0.8] 32576 </mbf_gain> 32577 <hbf_gain index="1" type="double" size="[1 1]"> 32578 [0.8] 32579 </hbf_gain> 32580 <hbf_ratio index="1" type="double" size="[1 1]"> 32581 [0.7] 32582 </hbf_ratio> 32583 <mbf_add index="1" type="double" size="[1 1]"> 32584 [2] 32585 </mbf_add> 32586 <hbf_add index="1" type="double" size="[1 1]"> 32587 [1] 32588 </hbf_add> 32589 <local_sharp_strength index="1" type="double" size="[1 1]"> 32590 [32] 32591 </local_sharp_strength> 32592 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 32593 [0.6] 32594 </pbf_coeff_percent> 32595 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 32596 [0.6] 32597 </rf_m_coeff_Percent> 32598 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 32599 [0.6] 32600 </rf_h_coeff_percent> 32601 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 32602 [0.6] 32603 </hbf_coeff_percent> 32604 </cell> 32605 <cell index="5" type="struct" size="[1 1]"> 32606 <iso index="1" type="double" size="[1 1]"> 32607 [800] 32608 </iso> 32609 <lratio index="1" type="double" size="[1 1]"> 32610 [0.67] 32611 </lratio> 32612 <hratio index="1" type="double" size="[1 1]"> 32613 [1.5] 32614 </hratio> 32615 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 32616 [3.5] 32617 </mf_sharp_ratio> 32618 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 32619 [3.5] 32620 </hf_sharp_ratio> 32621 <luma_sigma index="1" type="double" size="[1 8]"> 32622 [4 5 6 8 8 8 7 6] 32623 </luma_sigma> 32624 <pbf_gain index="1" type="double" size="[1 1]"> 32625 [0.7] 32626 </pbf_gain> 32627 <pbf_ratio index="1" type="double" size="[1 1]"> 32628 [1] 32629 </pbf_ratio> 32630 <pbf_add index="1" type="double" size="[1 1]"> 32631 [0] 32632 </pbf_add> 32633 <mf_clip_pos index="1" type="double" size="[1 8]"> 32634 [8 8 12 14 16 16 7 0] 32635 </mf_clip_pos> 32636 <mf_clip_neg index="1" type="double" size="[1 8]"> 32637 [-1 -0.5 -0.4 -0.3 -0.3 -0.25 -0.1 0] 32638 </mf_clip_neg> 32639 <hf_clip index="1" type="double" size="[1 8]"> 32640 [6 10 15 22 28 28 12 0] 32641 </hf_clip> 32642 <mbf_gain index="1" type="double" size="[1 1]"> 32643 [0.8] 32644 </mbf_gain> 32645 <hbf_gain index="1" type="double" size="[1 1]"> 32646 [0.75] 32647 </hbf_gain> 32648 <hbf_ratio index="1" type="double" size="[1 1]"> 32649 [0.5] 32650 </hbf_ratio> 32651 <mbf_add index="1" type="double" size="[1 1]"> 32652 [2] 32653 </mbf_add> 32654 <hbf_add index="1" type="double" size="[1 1]"> 32655 [1] 32656 </hbf_add> 32657 <local_sharp_strength index="1" type="double" size="[1 1]"> 32658 [32] 32659 </local_sharp_strength> 32660 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 32661 [0.6] 32662 </pbf_coeff_percent> 32663 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 32664 [0.6] 32665 </rf_m_coeff_Percent> 32666 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 32667 [0.6] 32668 </rf_h_coeff_percent> 32669 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 32670 [0.6] 32671 </hbf_coeff_percent> 32672 </cell> 32673 <cell index="6" type="struct" size="[1 1]"> 32674 <iso index="1" type="double" size="[1 1]"> 32675 [1600] 32676 </iso> 32677 <lratio index="1" type="double" size="[1 1]"> 32678 [0.67] 32679 </lratio> 32680 <hratio index="1" type="double" size="[1 1]"> 32681 [1.5] 32682 </hratio> 32683 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 32684 [3] 32685 </mf_sharp_ratio> 32686 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 32687 [4] 32688 </hf_sharp_ratio> 32689 <luma_sigma index="1" type="double" size="[1 8]"> 32690 [5 5 6 8 9 8 8 7] 32691 </luma_sigma> 32692 <pbf_gain index="1" type="double" size="[1 1]"> 32693 [0.6] 32694 </pbf_gain> 32695 <pbf_ratio index="1" type="double" size="[1 1]"> 32696 [0.5] 32697 </pbf_ratio> 32698 <pbf_add index="1" type="double" size="[1 1]"> 32699 [0] 32700 </pbf_add> 32701 <mf_clip_pos index="1" type="double" size="[1 8]"> 32702 [4 6 8 8 10 8 4 0] 32703 </mf_clip_pos> 32704 <mf_clip_neg index="1" type="double" size="[1 8]"> 32705 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 32706 </mf_clip_neg> 32707 <hf_clip index="1" type="double" size="[1 8]"> 32708 [6 10 12 16 20 20 8 0] 32709 </hf_clip> 32710 <mbf_gain index="1" type="double" size="[1 1]"> 32711 [0.7] 32712 </mbf_gain> 32713 <hbf_gain index="1" type="double" size="[1 1]"> 32714 [0.7] 32715 </hbf_gain> 32716 <hbf_ratio index="1" type="double" size="[1 1]"> 32717 [0.4] 32718 </hbf_ratio> 32719 <mbf_add index="1" type="double" size="[1 1]"> 32720 [2] 32721 </mbf_add> 32722 <hbf_add index="1" type="double" size="[1 1]"> 32723 [1] 32724 </hbf_add> 32725 <local_sharp_strength index="1" type="double" size="[1 1]"> 32726 [16] 32727 </local_sharp_strength> 32728 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 32729 [0.6] 32730 </pbf_coeff_percent> 32731 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 32732 [0.6] 32733 </rf_m_coeff_Percent> 32734 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 32735 [0.6] 32736 </rf_h_coeff_percent> 32737 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 32738 [0.6] 32739 </hbf_coeff_percent> 32740 </cell> 32741 <cell index="7" type="struct" size="[1 1]"> 32742 <iso index="1" type="double" size="[1 1]"> 32743 [3200] 32744 </iso> 32745 <lratio index="1" type="double" size="[1 1]"> 32746 [0.67] 32747 </lratio> 32748 <hratio index="1" type="double" size="[1 1]"> 32749 [1.5] 32750 </hratio> 32751 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 32752 [3] 32753 </mf_sharp_ratio> 32754 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 32755 [3] 32756 </hf_sharp_ratio> 32757 <luma_sigma index="1" type="double" size="[1 8]"> 32758 [6 8 10 12 14 12 12 10] 32759 </luma_sigma> 32760 <pbf_gain index="1" type="double" size="[1 1]"> 32761 [0.6] 32762 </pbf_gain> 32763 <pbf_ratio index="1" type="double" size="[1 1]"> 32764 [0.5] 32765 </pbf_ratio> 32766 <pbf_add index="1" type="double" size="[1 1]"> 32767 [0] 32768 </pbf_add> 32769 <mf_clip_pos index="1" type="double" size="[1 8]"> 32770 [4 6 8 8 10 8 4 0] 32771 </mf_clip_pos> 32772 <mf_clip_neg index="1" type="double" size="[1 8]"> 32773 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 32774 </mf_clip_neg> 32775 <hf_clip index="1" type="double" size="[1 8]"> 32776 [6 10 12 16 20 20 8 0] 32777 </hf_clip> 32778 <mbf_gain index="1" type="double" size="[1 1]"> 32779 [0.7] 32780 </mbf_gain> 32781 <hbf_gain index="1" type="double" size="[1 1]"> 32782 [0.7] 32783 </hbf_gain> 32784 <hbf_ratio index="1" type="double" size="[1 1]"> 32785 [0.7] 32786 </hbf_ratio> 32787 <mbf_add index="1" type="double" size="[1 1]"> 32788 [2] 32789 </mbf_add> 32790 <hbf_add index="1" type="double" size="[1 1]"> 32791 [1] 32792 </hbf_add> 32793 <local_sharp_strength index="1" type="double" size="[1 1]"> 32794 [16] 32795 </local_sharp_strength> 32796 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 32797 [0.6] 32798 </pbf_coeff_percent> 32799 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 32800 [0.6] 32801 </rf_m_coeff_Percent> 32802 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 32803 [0.6] 32804 </rf_h_coeff_percent> 32805 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 32806 [0.6] 32807 </hbf_coeff_percent> 32808 </cell> 32809 <cell index="8" type="struct" size="[1 1]"> 32810 <iso index="1" type="double" size="[1 1]"> 32811 [6400] 32812 </iso> 32813 <lratio index="1" type="double" size="[1 1]"> 32814 [0.67] 32815 </lratio> 32816 <hratio index="1" type="double" size="[1 1]"> 32817 [1.5] 32818 </hratio> 32819 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 32820 [3] 32821 </mf_sharp_ratio> 32822 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 32823 [3] 32824 </hf_sharp_ratio> 32825 <luma_sigma index="1" type="double" size="[1 8]"> 32826 [6 8 10 12 14 12 12 10] 32827 </luma_sigma> 32828 <pbf_gain index="1" type="double" size="[1 1]"> 32829 [0.6] 32830 </pbf_gain> 32831 <pbf_ratio index="1" type="double" size="[1 1]"> 32832 [0.5] 32833 </pbf_ratio> 32834 <pbf_add index="1" type="double" size="[1 1]"> 32835 [0] 32836 </pbf_add> 32837 <mf_clip_pos index="1" type="double" size="[1 8]"> 32838 [4 6 8 8 10 8 4 0] 32839 </mf_clip_pos> 32840 <mf_clip_neg index="1" type="double" size="[1 8]"> 32841 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 32842 </mf_clip_neg> 32843 <hf_clip index="1" type="double" size="[1 8]"> 32844 [6 10 12 16 20 20 8 0] 32845 </hf_clip> 32846 <mbf_gain index="1" type="double" size="[1 1]"> 32847 [0.7] 32848 </mbf_gain> 32849 <hbf_gain index="1" type="double" size="[1 1]"> 32850 [0.7] 32851 </hbf_gain> 32852 <hbf_ratio index="1" type="double" size="[1 1]"> 32853 [0.7] 32854 </hbf_ratio> 32855 <mbf_add index="1" type="double" size="[1 1]"> 32856 [2] 32857 </mbf_add> 32858 <hbf_add index="1" type="double" size="[1 1]"> 32859 [1] 32860 </hbf_add> 32861 <local_sharp_strength index="1" type="double" size="[1 1]"> 32862 [16] 32863 </local_sharp_strength> 32864 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 32865 [0.6] 32866 </pbf_coeff_percent> 32867 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 32868 [0.6] 32869 </rf_m_coeff_Percent> 32870 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 32871 [0.6] 32872 </rf_h_coeff_percent> 32873 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 32874 [0.6] 32875 </hbf_coeff_percent> 32876 </cell> 32877 <cell index="9" type="struct" size="[1 1]"> 32878 <iso index="1" type="double" size="[1 1]"> 32879 [12800] 32880 </iso> 32881 <lratio index="1" type="double" size="[1 1]"> 32882 [0.67] 32883 </lratio> 32884 <hratio index="1" type="double" size="[1 1]"> 32885 [1.5] 32886 </hratio> 32887 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 32888 [3] 32889 </mf_sharp_ratio> 32890 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 32891 [3] 32892 </hf_sharp_ratio> 32893 <luma_sigma index="1" type="double" size="[1 8]"> 32894 [6 8 10 12 14 12 12 10] 32895 </luma_sigma> 32896 <pbf_gain index="1" type="double" size="[1 1]"> 32897 [0.6] 32898 </pbf_gain> 32899 <pbf_ratio index="1" type="double" size="[1 1]"> 32900 [0.5] 32901 </pbf_ratio> 32902 <pbf_add index="1" type="double" size="[1 1]"> 32903 [0] 32904 </pbf_add> 32905 <mf_clip_pos index="1" type="double" size="[1 8]"> 32906 [4 6 8 8 10 8 4 0] 32907 </mf_clip_pos> 32908 <mf_clip_neg index="1" type="double" size="[1 8]"> 32909 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 32910 </mf_clip_neg> 32911 <hf_clip index="1" type="double" size="[1 8]"> 32912 [6 10 12 16 20 20 8 0] 32913 </hf_clip> 32914 <mbf_gain index="1" type="double" size="[1 1]"> 32915 [0.7] 32916 </mbf_gain> 32917 <hbf_gain index="1" type="double" size="[1 1]"> 32918 [0.7] 32919 </hbf_gain> 32920 <hbf_ratio index="1" type="double" size="[1 1]"> 32921 [0.7] 32922 </hbf_ratio> 32923 <mbf_add index="1" type="double" size="[1 1]"> 32924 [2] 32925 </mbf_add> 32926 <hbf_add index="1" type="double" size="[1 1]"> 32927 [1] 32928 </hbf_add> 32929 <local_sharp_strength index="1" type="double" size="[1 1]"> 32930 [16] 32931 </local_sharp_strength> 32932 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 32933 [0.6] 32934 </pbf_coeff_percent> 32935 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 32936 [0.6] 32937 </rf_m_coeff_Percent> 32938 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 32939 [0.6] 32940 </rf_h_coeff_percent> 32941 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 32942 [0.6] 32943 </hbf_coeff_percent> 32944 </cell> 32945 <cell index="10" type="struct" size="[1 1]"> 32946 <iso index="1" type="double" size="[1 1]"> 32947 [25600] 32948 </iso> 32949 <lratio index="1" type="double" size="[1 1]"> 32950 [0.67] 32951 </lratio> 32952 <hratio index="1" type="double" size="[1 1]"> 32953 [1.5] 32954 </hratio> 32955 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 32956 [3] 32957 </mf_sharp_ratio> 32958 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 32959 [3] 32960 </hf_sharp_ratio> 32961 <luma_sigma index="1" type="double" size="[1 8]"> 32962 [6 8 10 12 14 12 12 10] 32963 </luma_sigma> 32964 <pbf_gain index="1" type="double" size="[1 1]"> 32965 [0.6] 32966 </pbf_gain> 32967 <pbf_ratio index="1" type="double" size="[1 1]"> 32968 [0.5] 32969 </pbf_ratio> 32970 <pbf_add index="1" type="double" size="[1 1]"> 32971 [0] 32972 </pbf_add> 32973 <mf_clip_pos index="1" type="double" size="[1 8]"> 32974 [4 6 8 8 10 8 4 0] 32975 </mf_clip_pos> 32976 <mf_clip_neg index="1" type="double" size="[1 8]"> 32977 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 32978 </mf_clip_neg> 32979 <hf_clip index="1" type="double" size="[1 8]"> 32980 [6 10 12 16 20 20 8 0] 32981 </hf_clip> 32982 <mbf_gain index="1" type="double" size="[1 1]"> 32983 [0.7] 32984 </mbf_gain> 32985 <hbf_gain index="1" type="double" size="[1 1]"> 32986 [0.7] 32987 </hbf_gain> 32988 <hbf_ratio index="1" type="double" size="[1 1]"> 32989 [0.7] 32990 </hbf_ratio> 32991 <mbf_add index="1" type="double" size="[1 1]"> 32992 [2] 32993 </mbf_add> 32994 <hbf_add index="1" type="double" size="[1 1]"> 32995 [1] 32996 </hbf_add> 32997 <local_sharp_strength index="1" type="double" size="[1 1]"> 32998 [16] 32999 </local_sharp_strength> 33000 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 33001 [0.6] 33002 </pbf_coeff_percent> 33003 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 33004 [0.6] 33005 </rf_m_coeff_Percent> 33006 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 33007 [0.6] 33008 </rf_h_coeff_percent> 33009 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 33010 [0.6] 33011 </hbf_coeff_percent> 33012 </cell> 33013 <cell index="11" type="struct" size="[1 1]"> 33014 <iso index="1" type="double" size="[1 1]"> 33015 [51200] 33016 </iso> 33017 <lratio index="1" type="double" size="[1 1]"> 33018 [0.67] 33019 </lratio> 33020 <hratio index="1" type="double" size="[1 1]"> 33021 [1.5] 33022 </hratio> 33023 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 33024 [3] 33025 </mf_sharp_ratio> 33026 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 33027 [3] 33028 </hf_sharp_ratio> 33029 <luma_sigma index="1" type="double" size="[1 8]"> 33030 [6 8 10 12 14 12 12 10] 33031 </luma_sigma> 33032 <pbf_gain index="1" type="double" size="[1 1]"> 33033 [0.6] 33034 </pbf_gain> 33035 <pbf_ratio index="1" type="double" size="[1 1]"> 33036 [0.5] 33037 </pbf_ratio> 33038 <pbf_add index="1" type="double" size="[1 1]"> 33039 [0] 33040 </pbf_add> 33041 <mf_clip_pos index="1" type="double" size="[1 8]"> 33042 [4 6 8 8 10 8 4 0] 33043 </mf_clip_pos> 33044 <mf_clip_neg index="1" type="double" size="[1 8]"> 33045 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 33046 </mf_clip_neg> 33047 <hf_clip index="1" type="double" size="[1 8]"> 33048 [6 10 12 16 20 20 8 0] 33049 </hf_clip> 33050 <mbf_gain index="1" type="double" size="[1 1]"> 33051 [0.7] 33052 </mbf_gain> 33053 <hbf_gain index="1" type="double" size="[1 1]"> 33054 [0.7] 33055 </hbf_gain> 33056 <hbf_ratio index="1" type="double" size="[1 1]"> 33057 [0.7] 33058 </hbf_ratio> 33059 <mbf_add index="1" type="double" size="[1 1]"> 33060 [2] 33061 </mbf_add> 33062 <hbf_add index="1" type="double" size="[1 1]"> 33063 [1] 33064 </hbf_add> 33065 <local_sharp_strength index="1" type="double" size="[1 1]"> 33066 [16] 33067 </local_sharp_strength> 33068 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 33069 [0.6] 33070 </pbf_coeff_percent> 33071 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 33072 [0.6] 33073 </rf_m_coeff_Percent> 33074 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 33075 [0.6] 33076 </rf_h_coeff_percent> 33077 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 33078 [0.6] 33079 </hbf_coeff_percent> 33080 </cell> 33081 <cell index="12" type="struct" size="[1 1]"> 33082 <iso index="1" type="double" size="[1 1]"> 33083 [102400] 33084 </iso> 33085 <lratio index="1" type="double" size="[1 1]"> 33086 [0.67] 33087 </lratio> 33088 <hratio index="1" type="double" size="[1 1]"> 33089 [1.5] 33090 </hratio> 33091 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 33092 [3] 33093 </mf_sharp_ratio> 33094 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 33095 [3] 33096 </hf_sharp_ratio> 33097 <luma_sigma index="1" type="double" size="[1 8]"> 33098 [6 8 10 12 14 12 12 10] 33099 </luma_sigma> 33100 <pbf_gain index="1" type="double" size="[1 1]"> 33101 [0.6] 33102 </pbf_gain> 33103 <pbf_ratio index="1" type="double" size="[1 1]"> 33104 [0.5] 33105 </pbf_ratio> 33106 <pbf_add index="1" type="double" size="[1 1]"> 33107 [0] 33108 </pbf_add> 33109 <mf_clip_pos index="1" type="double" size="[1 8]"> 33110 [4 6 8 8 10 8 4 0] 33111 </mf_clip_pos> 33112 <mf_clip_neg index="1" type="double" size="[1 8]"> 33113 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 33114 </mf_clip_neg> 33115 <hf_clip index="1" type="double" size="[1 8]"> 33116 [6 10 12 16 20 20 8 0] 33117 </hf_clip> 33118 <mbf_gain index="1" type="double" size="[1 1]"> 33119 [0.7] 33120 </mbf_gain> 33121 <hbf_gain index="1" type="double" size="[1 1]"> 33122 [0.7] 33123 </hbf_gain> 33124 <hbf_ratio index="1" type="double" size="[1 1]"> 33125 [0.7] 33126 </hbf_ratio> 33127 <mbf_add index="1" type="double" size="[1 1]"> 33128 [2] 33129 </mbf_add> 33130 <hbf_add index="1" type="double" size="[1 1]"> 33131 [1] 33132 </hbf_add> 33133 <local_sharp_strength index="1" type="double" size="[1 1]"> 33134 [16] 33135 </local_sharp_strength> 33136 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 33137 [0.6] 33138 </pbf_coeff_percent> 33139 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 33140 [0.6] 33141 </rf_m_coeff_Percent> 33142 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 33143 [0.6] 33144 </rf_h_coeff_percent> 33145 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 33146 [0.6] 33147 </hbf_coeff_percent> 33148 </cell> 33149 <cell index="13" type="struct" size="[1 1]"> 33150 <iso index="1" type="double" size="[1 1]"> 33151 [204800] 33152 </iso> 33153 <lratio index="1" type="double" size="[1 1]"> 33154 [0.67] 33155 </lratio> 33156 <hratio index="1" type="double" size="[1 1]"> 33157 [1.5] 33158 </hratio> 33159 <mf_sharp_ratio index="1" type="double" size="[1 1]"> 33160 [3] 33161 </mf_sharp_ratio> 33162 <hf_sharp_ratio index="1" type="double" size="[1 1]"> 33163 [3] 33164 </hf_sharp_ratio> 33165 <luma_sigma index="1" type="double" size="[1 8]"> 33166 [6 8 10 12 14 12 12 10] 33167 </luma_sigma> 33168 <pbf_gain index="1" type="double" size="[1 1]"> 33169 [0.6] 33170 </pbf_gain> 33171 <pbf_ratio index="1" type="double" size="[1 1]"> 33172 [0.5] 33173 </pbf_ratio> 33174 <pbf_add index="1" type="double" size="[1 1]"> 33175 [0] 33176 </pbf_add> 33177 <mf_clip_pos index="1" type="double" size="[1 8]"> 33178 [4 6 8 8 10 8 4 0] 33179 </mf_clip_pos> 33180 <mf_clip_neg index="1" type="double" size="[1 8]"> 33181 [-1 -0.5 -0.25 -0.25 -0.2 -0.2 -0.1 0] 33182 </mf_clip_neg> 33183 <hf_clip index="1" type="double" size="[1 8]"> 33184 [6 10 12 16 20 20 8 0] 33185 </hf_clip> 33186 <mbf_gain index="1" type="double" size="[1 1]"> 33187 [0.7] 33188 </mbf_gain> 33189 <hbf_gain index="1" type="double" size="[1 1]"> 33190 [0.7] 33191 </hbf_gain> 33192 <hbf_ratio index="1" type="double" size="[1 1]"> 33193 [0.7] 33194 </hbf_ratio> 33195 <mbf_add index="1" type="double" size="[1 1]"> 33196 [2] 33197 </mbf_add> 33198 <hbf_add index="1" type="double" size="[1 1]"> 33199 [1] 33200 </hbf_add> 33201 <local_sharp_strength index="1" type="double" size="[1 1]"> 33202 [16] 33203 </local_sharp_strength> 33204 <pbf_coeff_percent index="1" type="double" size="[1 1]"> 33205 [0.6] 33206 </pbf_coeff_percent> 33207 <rf_m_coeff_Percent index="1" type="double" size="[1 1]"> 33208 [0.6] 33209 </rf_m_coeff_Percent> 33210 <rf_h_coeff_percent index="1" type="double" size="[1 1]"> 33211 [0.6] 33212 </rf_h_coeff_percent> 33213 <hbf_coeff_percent index="1" type="double" size="[1 1]"> 33214 [0.6] 33215 </hbf_coeff_percent> 33216 </cell> 33217 </SHARP_ISO> 33218 </cell> 33219 </Setting> 33220 </cell> 33221 </Mode> 33222 </SHARP> 33223 <EDGEFILTER index="1" type="struct" size="[1 1]"> 33224 <Enable index="1" type="double" size="[1 1]"> 33225 [1] 33226 </Enable> 33227 <Version index="1" type="char" size="[1 2]"> 33228 V1 33229 </Version> 33230 <luma_point index="1" type="double" size="[1 8]"> 33231 [0 16 32 64 96 160 224 256] 33232 </luma_point> 33233 <Mode index="1" type="cell" size="[1 3]"> 33234 <cell index="1" type="struct" size="[1 1]"> 33235 <Name index="1" type="char" size="[1 8]"> 33236 normal 33237 </Name> 33238 <dog_kernel_l index="1" type="double" size="[5 5]"> 33239 [-0.0625 -0.109375 -0.140625 -0.109375 -0.0625 33240 -0.109375 0.078125 0.234375 0.078125 -0.109375 33241 -0.140625 0.234375 0.4375 0.234375 -0.140625 33242 -0.109375 0.078125 0.234375 0.078125 -0.109375 33243 -0.0625 -0.109375 -0.140625 -0.109375 -0.0625] 33244 </dog_kernel_l> 33245 <dog_kernel_h index="1" type="double" size="[5 5]"> 33246 [-0.0625 -0.109375 -0.140625 -0.109375 -0.0625 33247 -0.109375 0.078125 0.234375 0.078125 -0.109375 33248 -0.140625 0.234375 0.4375 0.234375 -0.140625 33249 -0.109375 0.078125 0.234375 0.078125 -0.109375 33250 -0.0625 -0.109375 -0.140625 -0.109375 -0.0625] 33251 </dog_kernel_h> 33252 <Setting index="1" type="cell" size="[1 2]"> 33253 <cell index="1" type="struct" size="[1 1]"> 33254 <SNR_Mode index="1" type="char" size="[1 4]"> 33255 LSNR 33256 </SNR_Mode> 33257 <Sensor_Mode index="1" type="char" size="[1 8]"> 33258 lcg 33259 </Sensor_Mode> 33260 <EDGEFILTER_ISO index="1" type="cell" size="[1 13]"> 33261 <cell index="1" type="struct" size="[1 1]"> 33262 <iso index="1" type="double" size="[1 1]"> 33263 [50] 33264 </iso> 33265 <edge_thed index="1" type="double" size="[1 1]"> 33266 [3] 33267 </edge_thed> 33268 <src_wgt index="1" type="double" size="[1 1]"> 33269 [0] 33270 </src_wgt> 33271 <alpha_adp_en index="1" type="char" size="[1 1]"> 33272 [1] 33273 </alpha_adp_en> 33274 <local_alpha index="1" type="double" size="[1 1]"> 33275 [1] 33276 </local_alpha> 33277 <global_alpha index="1" type="double" size="[1 1]"> 33278 [1] 33279 </global_alpha> 33280 <noise_clip index="1" type="double" size="[1 8]"> 33281 [2 6 8 10 16 16 14 10] 33282 </noise_clip> 33283 <dog_clip_pos index="1" type="double" size="[1 8]"> 33284 [3 4 4 5 6 5 5 4] 33285 </dog_clip_pos> 33286 <dog_clip_neg index="1" type="double" size="[1 8]"> 33287 [3 4 4 5 6 5 5 4] 33288 </dog_clip_neg> 33289 <dog_alpha index="1" type="double" size="[1 8]"> 33290 [0.15 0.2 0.3 0.4 0.4 0.3 0.2 0.2] 33291 </dog_alpha> 33292 <direct_filter_coeff index="1" type="double" size="[1 5]"> 33293 [0.1 0.2 0.4 0.2 0.1] 33294 </direct_filter_coeff> 33295 <dog_kernel_percent index="1" type="double" size="[1 1]"> 33296 [0.5] 33297 </dog_kernel_percent> 33298 </cell> 33299 <cell index="2" type="struct" size="[1 1]"> 33300 <iso index="1" type="double" size="[1 1]"> 33301 [100] 33302 </iso> 33303 <edge_thed index="1" type="double" size="[1 1]"> 33304 [3] 33305 </edge_thed> 33306 <src_wgt index="1" type="double" size="[1 1]"> 33307 [0] 33308 </src_wgt> 33309 <alpha_adp_en index="1" type="char" size="[1 1]"> 33310 [1] 33311 </alpha_adp_en> 33312 <local_alpha index="1" type="double" size="[1 1]"> 33313 [1] 33314 </local_alpha> 33315 <global_alpha index="1" type="double" size="[1 1]"> 33316 [1] 33317 </global_alpha> 33318 <noise_clip index="1" type="double" size="[1 8]"> 33319 [2 6 8 10 16 16 14 10] 33320 </noise_clip> 33321 <dog_clip_pos index="1" type="double" size="[1 8]"> 33322 [3 4 4 5 6 5 5 4] 33323 </dog_clip_pos> 33324 <dog_clip_neg index="1" type="double" size="[1 8]"> 33325 [3 4 4 5 6 5 5 4] 33326 </dog_clip_neg> 33327 <dog_alpha index="1" type="double" size="[1 8]"> 33328 [0.15 0.2 0.3 0.4 0.4 0.3 0.2 0.2] 33329 </dog_alpha> 33330 <direct_filter_coeff index="1" type="double" size="[1 5]"> 33331 [0.1 0.2 0.4 0.2 0.1] 33332 </direct_filter_coeff> 33333 <dog_kernel_percent index="1" type="double" size="[1 1]"> 33334 [0.5] 33335 </dog_kernel_percent> 33336 </cell> 33337 <cell index="3" type="struct" size="[1 1]"> 33338 <iso index="1" type="double" size="[1 1]"> 33339 [200] 33340 </iso> 33341 <edge_thed index="1" type="double" size="[1 1]"> 33342 [3] 33343 </edge_thed> 33344 <src_wgt index="1" type="double" size="[1 1]"> 33345 [0] 33346 </src_wgt> 33347 <alpha_adp_en index="1" type="char" size="[1 1]"> 33348 [1] 33349 </alpha_adp_en> 33350 <local_alpha index="1" type="double" size="[1 1]"> 33351 [1] 33352 </local_alpha> 33353 <global_alpha index="1" type="double" size="[1 1]"> 33354 [1] 33355 </global_alpha> 33356 <noise_clip index="1" type="double" size="[1 8]"> 33357 [4 8 16 24 24 16 16 16] 33358 </noise_clip> 33359 <dog_clip_pos index="1" type="double" size="[1 8]"> 33360 [5 6 6 7 8 7 7 6] 33361 </dog_clip_pos> 33362 <dog_clip_neg index="1" type="double" size="[1 8]"> 33363 [5 6 6 7 8 7 7 6] 33364 </dog_clip_neg> 33365 <dog_alpha index="1" type="double" size="[1 8]"> 33366 [0.15 0.2 0.3 0.4 0.4 0.3 0.2 0.2] 33367 </dog_alpha> 33368 <direct_filter_coeff index="1" type="double" size="[1 5]"> 33369 [0.1 0.2 0.4 0.2 0.1] 33370 </direct_filter_coeff> 33371 <dog_kernel_percent index="1" type="double" size="[1 1]"> 33372 [0.5] 33373 </dog_kernel_percent> 33374 </cell> 33375 <cell index="4" type="struct" size="[1 1]"> 33376 <iso index="1" type="double" size="[1 1]"> 33377 [400] 33378 </iso> 33379 <edge_thed index="1" type="double" size="[1 1]"> 33380 [24] 33381 </edge_thed> 33382 <src_wgt index="1" type="double" size="[1 1]"> 33383 [0] 33384 </src_wgt> 33385 <alpha_adp_en index="1" type="char" size="[1 1]"> 33386 [1] 33387 </alpha_adp_en> 33388 <local_alpha index="1" type="double" size="[1 1]"> 33389 [1] 33390 </local_alpha> 33391 <global_alpha index="1" type="double" size="[1 1]"> 33392 [1] 33393 </global_alpha> 33394 <noise_clip index="1" type="double" size="[1 8]"> 33395 [4 8 16 32 32 24 16 16] 33396 </noise_clip> 33397 <dog_clip_pos index="1" type="double" size="[1 8]"> 33398 [5 6 6 8 9 8 7 6] 33399 </dog_clip_pos> 33400 <dog_clip_neg index="1" type="double" size="[1 8]"> 33401 [5 6 6 8 9 8 7 6] 33402 </dog_clip_neg> 33403 <dog_alpha index="1" type="double" size="[1 8]"> 33404 [0.3 0.4 0.5 0.5 0.5 0.4 0.3 0.2] 33405 </dog_alpha> 33406 <direct_filter_coeff index="1" type="double" size="[1 5]"> 33407 [0.1 0.2 0.4 0.2 0.1] 33408 </direct_filter_coeff> 33409 <dog_kernel_percent index="1" type="double" size="[1 1]"> 33410 [0.5] 33411 </dog_kernel_percent> 33412 </cell> 33413 <cell index="5" type="struct" size="[1 1]"> 33414 <iso index="1" type="double" size="[1 1]"> 33415 [800] 33416 </iso> 33417 <edge_thed index="1" type="double" size="[1 1]"> 33418 [32] 33419 </edge_thed> 33420 <src_wgt index="1" type="double" size="[1 1]"> 33421 [0] 33422 </src_wgt> 33423 <alpha_adp_en index="1" type="char" size="[1 1]"> 33424 [1] 33425 </alpha_adp_en> 33426 <local_alpha index="1" type="double" size="[1 1]"> 33427 [1] 33428 </local_alpha> 33429 <global_alpha index="1" type="double" size="[1 1]"> 33430 [1] 33431 </global_alpha> 33432 <noise_clip index="1" type="double" size="[1 8]"> 33433 [4 8 16 32 32 24 16 16] 33434 </noise_clip> 33435 <dog_clip_pos index="1" type="double" size="[1 8]"> 33436 [6 8 8 8 8 8 8 8] 33437 </dog_clip_pos> 33438 <dog_clip_neg index="1" type="double" size="[1 8]"> 33439 [6 8 8 8 8 8 8 8] 33440 </dog_clip_neg> 33441 <dog_alpha index="1" type="double" size="[1 8]"> 33442 [0.3 0.4 0.4 0.4 0.4 0.4 0.3 0.2] 33443 </dog_alpha> 33444 <direct_filter_coeff index="1" type="double" size="[1 5]"> 33445 [0.1 0.2 0.4 0.2 0.1] 33446 </direct_filter_coeff> 33447 <dog_kernel_percent index="1" type="double" size="[1 1]"> 33448 [0.5] 33449 </dog_kernel_percent> 33450 </cell> 33451 <cell index="6" type="struct" size="[1 1]"> 33452 <iso index="1" type="double" size="[1 1]"> 33453 [1600] 33454 </iso> 33455 <edge_thed index="1" type="double" size="[1 1]"> 33456 [24] 33457 </edge_thed> 33458 <src_wgt index="1" type="double" size="[1 1]"> 33459 [0] 33460 </src_wgt> 33461 <alpha_adp_en index="1" type="char" size="[1 1]"> 33462 [0] 33463 </alpha_adp_en> 33464 <local_alpha index="1" type="double" size="[1 1]"> 33465 [1] 33466 </local_alpha> 33467 <global_alpha index="1" type="double" size="[1 1]"> 33468 [1] 33469 </global_alpha> 33470 <noise_clip index="1" type="double" size="[1 8]"> 33471 [4 8 16 24 24 16 16 16] 33472 </noise_clip> 33473 <dog_clip_pos index="1" type="double" size="[1 8]"> 33474 [6 8 8 8 8 8 8 8] 33475 </dog_clip_pos> 33476 <dog_clip_neg index="1" type="double" size="[1 8]"> 33477 [6 8 8 8 8 8 8 8] 33478 </dog_clip_neg> 33479 <dog_alpha index="1" type="double" size="[1 8]"> 33480 [0.3 0.3 0.4 0.4 0.4 0.3 0.3 0.2] 33481 </dog_alpha> 33482 <direct_filter_coeff index="1" type="double" size="[1 5]"> 33483 [0.1 0.2 0.4 0.2 0.1] 33484 </direct_filter_coeff> 33485 <dog_kernel_percent index="1" type="double" size="[1 1]"> 33486 [0.5] 33487 </dog_kernel_percent> 33488 </cell> 33489 <cell index="7" type="struct" size="[1 1]"> 33490 <iso index="1" type="double" size="[1 1]"> 33491 [3200] 33492 </iso> 33493 <edge_thed index="1" type="double" size="[1 1]"> 33494 [24] 33495 </edge_thed> 33496 <src_wgt index="1" type="double" size="[1 1]"> 33497 [0] 33498 </src_wgt> 33499 <alpha_adp_en index="1" type="char" size="[1 1]"> 33500 [0] 33501 </alpha_adp_en> 33502 <local_alpha index="1" type="double" size="[1 1]"> 33503 [1] 33504 </local_alpha> 33505 <global_alpha index="1" type="double" size="[1 1]"> 33506 [1] 33507 </global_alpha> 33508 <noise_clip index="1" type="double" size="[1 8]"> 33509 [4 8 16 24 24 16 16 16] 33510 </noise_clip> 33511 <dog_clip_pos index="1" type="double" size="[1 8]"> 33512 [6 8 8 8 8 8 8 8] 33513 </dog_clip_pos> 33514 <dog_clip_neg index="1" type="double" size="[1 8]"> 33515 [6 8 8 8 8 8 8 8] 33516 </dog_clip_neg> 33517 <dog_alpha index="1" type="double" size="[1 8]"> 33518 [0.2 0.2 0.3 0.3 0.3 0.3 0.2 0.1] 33519 </dog_alpha> 33520 <direct_filter_coeff index="1" type="double" size="[1 5]"> 33521 [0.1 0.2 0.4 0.2 0.1] 33522 </direct_filter_coeff> 33523 <dog_kernel_percent index="1" type="double" size="[1 1]"> 33524 [0.5] 33525 </dog_kernel_percent> 33526 </cell> 33527 <cell index="8" type="struct" size="[1 1]"> 33528 <iso index="1" type="double" size="[1 1]"> 33529 [6400] 33530 </iso> 33531 <edge_thed index="1" type="double" size="[1 1]"> 33532 [20] 33533 </edge_thed> 33534 <src_wgt index="1" type="double" size="[1 1]"> 33535 [0] 33536 </src_wgt> 33537 <alpha_adp_en index="1" type="char" size="[1 1]"> 33538 [1] 33539 </alpha_adp_en> 33540 <local_alpha index="1" type="double" size="[1 1]"> 33541 [1] 33542 </local_alpha> 33543 <global_alpha index="1" type="double" size="[1 1]"> 33544 [1] 33545 </global_alpha> 33546 <noise_clip index="1" type="double" size="[1 8]"> 33547 [4 8 16 24 24 16 16 16] 33548 </noise_clip> 33549 <dog_clip_pos index="1" type="double" size="[1 8]"> 33550 [6 8 8 8 8 8 8 8] 33551 </dog_clip_pos> 33552 <dog_clip_neg index="1" type="double" size="[1 8]"> 33553 [6 8 8 8 8 8 8 8] 33554 </dog_clip_neg> 33555 <dog_alpha index="1" type="double" size="[1 8]"> 33556 [0.3 0.2 0.3 0.3 0.3 0.2 0.2 0.1] 33557 </dog_alpha> 33558 <direct_filter_coeff index="1" type="double" size="[1 5]"> 33559 [0.1 0.2 0.4 0.2 0.1] 33560 </direct_filter_coeff> 33561 <dog_kernel_percent index="1" type="double" size="[1 1]"> 33562 [0.5] 33563 </dog_kernel_percent> 33564 </cell> 33565 <cell index="9" type="struct" size="[1 1]"> 33566 <iso index="1" type="double" size="[1 1]"> 33567 [12800] 33568 </iso> 33569 <edge_thed index="1" type="double" size="[1 1]"> 33570 [5] 33571 </edge_thed> 33572 <src_wgt index="1" type="double" size="[1 1]"> 33573 [0] 33574 </src_wgt> 33575 <alpha_adp_en index="1" type="char" size="[1 1]"> 33576 [1] 33577 </alpha_adp_en> 33578 <local_alpha index="1" type="double" size="[1 1]"> 33579 [1] 33580 </local_alpha> 33581 <global_alpha index="1" type="double" size="[1 1]"> 33582 [1] 33583 </global_alpha> 33584 <noise_clip index="1" type="double" size="[1 8]"> 33585 [4 8 16 24 24 16 16 16] 33586 </noise_clip> 33587 <dog_clip_pos index="1" type="double" size="[1 8]"> 33588 [6 8 8 8 8 8 8 8] 33589 </dog_clip_pos> 33590 <dog_clip_neg index="1" type="double" size="[1 8]"> 33591 [6 8 8 8 8 8 8 8] 33592 </dog_clip_neg> 33593 <dog_alpha index="1" type="double" size="[1 8]"> 33594 [0.9 0.9 1 1 1 0.8 0.6 0.5] 33595 </dog_alpha> 33596 <direct_filter_coeff index="1" type="double" size="[1 5]"> 33597 [0.1 0.2 0.4 0.2 0.1] 33598 </direct_filter_coeff> 33599 <dog_kernel_percent index="1" type="double" size="[1 1]"> 33600 [0.5] 33601 </dog_kernel_percent> 33602 </cell> 33603 <cell index="10" type="struct" size="[1 1]"> 33604 <iso index="1" type="double" size="[1 1]"> 33605 [25600] 33606 </iso> 33607 <edge_thed index="1" type="double" size="[1 1]"> 33608 [5] 33609 </edge_thed> 33610 <src_wgt index="1" type="double" size="[1 1]"> 33611 [0] 33612 </src_wgt> 33613 <alpha_adp_en index="1" type="char" size="[1 1]"> 33614 [1] 33615 </alpha_adp_en> 33616 <local_alpha index="1" type="double" size="[1 1]"> 33617 [1] 33618 </local_alpha> 33619 <global_alpha index="1" type="double" size="[1 1]"> 33620 [1] 33621 </global_alpha> 33622 <noise_clip index="1" type="double" size="[1 8]"> 33623 [4 8 16 24 24 16 16 16] 33624 </noise_clip> 33625 <dog_clip_pos index="1" type="double" size="[1 8]"> 33626 [6 8 8 8 8 8 8 8] 33627 </dog_clip_pos> 33628 <dog_clip_neg index="1" type="double" size="[1 8]"> 33629 [6 8 8 8 8 8 8 8] 33630 </dog_clip_neg> 33631 <dog_alpha index="1" type="double" size="[1 8]"> 33632 [0.9 0.9 1 1 1 0.8 0.6 0.5] 33633 </dog_alpha> 33634 <direct_filter_coeff index="1" type="double" size="[1 5]"> 33635 [0.1 0.2 0.4 0.2 0.1] 33636 </direct_filter_coeff> 33637 <dog_kernel_percent index="1" type="double" size="[1 1]"> 33638 [0.5] 33639 </dog_kernel_percent> 33640 </cell> 33641 <cell index="11" type="struct" size="[1 1]"> 33642 <iso index="1" type="double" size="[1 1]"> 33643 [51200] 33644 </iso> 33645 <edge_thed index="1" type="double" size="[1 1]"> 33646 [5] 33647 </edge_thed> 33648 <src_wgt index="1" type="double" size="[1 1]"> 33649 [0] 33650 </src_wgt> 33651 <alpha_adp_en index="1" type="char" size="[1 1]"> 33652 [1] 33653 </alpha_adp_en> 33654 <local_alpha index="1" type="double" size="[1 1]"> 33655 [1] 33656 </local_alpha> 33657 <global_alpha index="1" type="double" size="[1 1]"> 33658 [1] 33659 </global_alpha> 33660 <noise_clip index="1" type="double" size="[1 8]"> 33661 [4 8 16 24 24 16 16 16] 33662 </noise_clip> 33663 <dog_clip_pos index="1" type="double" size="[1 8]"> 33664 [6 8 8 8 8 8 8 8] 33665 </dog_clip_pos> 33666 <dog_clip_neg index="1" type="double" size="[1 8]"> 33667 [6 8 8 8 8 8 8 8] 33668 </dog_clip_neg> 33669 <dog_alpha index="1" type="double" size="[1 8]"> 33670 [0.9 0.9 1 1 1 0.8 0.6 0.5] 33671 </dog_alpha> 33672 <direct_filter_coeff index="1" type="double" size="[1 5]"> 33673 [0.1 0.2 0.4 0.2 0.1] 33674 </direct_filter_coeff> 33675 <dog_kernel_percent index="1" type="double" size="[1 1]"> 33676 [0.5] 33677 </dog_kernel_percent> 33678 </cell> 33679 <cell index="12" type="struct" size="[1 1]"> 33680 <iso index="1" type="double" size="[1 1]"> 33681 [102400] 33682 </iso> 33683 <edge_thed index="1" type="double" size="[1 1]"> 33684 [5] 33685 </edge_thed> 33686 <src_wgt index="1" type="double" size="[1 1]"> 33687 [0] 33688 </src_wgt> 33689 <alpha_adp_en index="1" type="char" size="[1 1]"> 33690 [1] 33691 </alpha_adp_en> 33692 <local_alpha index="1" type="double" size="[1 1]"> 33693 [1] 33694 </local_alpha> 33695 <global_alpha index="1" type="double" size="[1 1]"> 33696 [1] 33697 </global_alpha> 33698 <noise_clip index="1" type="double" size="[1 8]"> 33699 [4 8 16 24 24 16 16 16] 33700 </noise_clip> 33701 <dog_clip_pos index="1" type="double" size="[1 8]"> 33702 [6 8 8 8 8 8 8 8] 33703 </dog_clip_pos> 33704 <dog_clip_neg index="1" type="double" size="[1 8]"> 33705 [6 8 8 8 8 8 8 8] 33706 </dog_clip_neg> 33707 <dog_alpha index="1" type="double" size="[1 8]"> 33708 [0.9 0.9 1 1 1 0.8 0.6 0.5] 33709 </dog_alpha> 33710 <direct_filter_coeff index="1" type="double" size="[1 5]"> 33711 [0.1 0.2 0.4 0.2 0.1] 33712 </direct_filter_coeff> 33713 <dog_kernel_percent index="1" type="double" size="[1 1]"> 33714 [0.5] 33715 </dog_kernel_percent> 33716 </cell> 33717 <cell index="13" type="struct" size="[1 1]"> 33718 <iso index="1" type="double" size="[1 1]"> 33719 [204800] 33720 </iso> 33721 <edge_thed index="1" type="double" size="[1 1]"> 33722 [5] 33723 </edge_thed> 33724 <src_wgt index="1" type="double" size="[1 1]"> 33725 [0] 33726 </src_wgt> 33727 <alpha_adp_en index="1" type="char" size="[1 1]"> 33728 [1] 33729 </alpha_adp_en> 33730 <local_alpha index="1" type="double" size="[1 1]"> 33731 [1] 33732 </local_alpha> 33733 <global_alpha index="1" type="double" size="[1 1]"> 33734 [1] 33735 </global_alpha> 33736 <noise_clip index="1" type="double" size="[1 8]"> 33737 [4 8 16 24 24 16 16 16] 33738 </noise_clip> 33739 <dog_clip_pos index="1" type="double" size="[1 8]"> 33740 [6 8 8 8 8 8 8 8] 33741 </dog_clip_pos> 33742 <dog_clip_neg index="1" type="double" size="[1 8]"> 33743 [6 8 8 8 8 8 8 8] 33744 </dog_clip_neg> 33745 <dog_alpha index="1" type="double" size="[1 8]"> 33746 [0.9 0.9 1 1 1 0.8 0.6 0.5] 33747 </dog_alpha> 33748 <direct_filter_coeff index="1" type="double" size="[1 5]"> 33749 [0.1 0.2 0.4 0.2 0.1] 33750 </direct_filter_coeff> 33751 <dog_kernel_percent index="1" type="double" size="[1 1]"> 33752 [0.5] 33753 </dog_kernel_percent> 33754 </cell> 33755 </EDGEFILTER_ISO> 33756 </cell> 33757 <cell index="2" type="struct" size="[1 1]"> 33758 <SNR_Mode index="1" type="char" size="[1 4]"> 33759 HSNR 33760 </SNR_Mode> 33761 <Sensor_Mode index="1" type="char" size="[1 8]"> 33762 hcg 33763 </Sensor_Mode> 33764 <EDGEFILTER_ISO index="1" type="cell" size="[1 13]"> 33765 <cell index="1" type="struct" size="[1 1]"> 33766 <iso index="1" type="double" size="[1 1]"> 33767 [50] 33768 </iso> 33769 <edge_thed index="1" type="double" size="[1 1]"> 33770 [3] 33771 </edge_thed> 33772 <src_wgt index="1" type="double" size="[1 1]"> 33773 [0] 33774 </src_wgt> 33775 <alpha_adp_en index="1" type="char" size="[1 1]"> 33776 [1] 33777 </alpha_adp_en> 33778 <local_alpha index="1" type="double" size="[1 1]"> 33779 [1] 33780 </local_alpha> 33781 <global_alpha index="1" type="double" size="[1 1]"> 33782 [1] 33783 </global_alpha> 33784 <noise_clip index="1" type="double" size="[1 8]"> 33785 [2 6 8 10 16 16 14 10] 33786 </noise_clip> 33787 <dog_clip_pos index="1" type="double" size="[1 8]"> 33788 [3 4 4 5 6 5 5 4] 33789 </dog_clip_pos> 33790 <dog_clip_neg index="1" type="double" size="[1 8]"> 33791 [3 4 4 5 6 5 5 4] 33792 </dog_clip_neg> 33793 <dog_alpha index="1" type="double" size="[1 8]"> 33794 [0.15 0.2 0.3 0.4 0.4 0.3 0.2 0.2] 33795 </dog_alpha> 33796 <direct_filter_coeff index="1" type="double" size="[1 5]"> 33797 [0.1 0.2 0.4 0.2 0.1] 33798 </direct_filter_coeff> 33799 <dog_kernel_percent index="1" type="double" size="[1 1]"> 33800 [0.5] 33801 </dog_kernel_percent> 33802 </cell> 33803 <cell index="2" type="struct" size="[1 1]"> 33804 <iso index="1" type="double" size="[1 1]"> 33805 [100] 33806 </iso> 33807 <edge_thed index="1" type="double" size="[1 1]"> 33808 [3] 33809 </edge_thed> 33810 <src_wgt index="1" type="double" size="[1 1]"> 33811 [0] 33812 </src_wgt> 33813 <alpha_adp_en index="1" type="char" size="[1 1]"> 33814 [1] 33815 </alpha_adp_en> 33816 <local_alpha index="1" type="double" size="[1 1]"> 33817 [1] 33818 </local_alpha> 33819 <global_alpha index="1" type="double" size="[1 1]"> 33820 [1] 33821 </global_alpha> 33822 <noise_clip index="1" type="double" size="[1 8]"> 33823 [2 6 8 10 16 16 14 10] 33824 </noise_clip> 33825 <dog_clip_pos index="1" type="double" size="[1 8]"> 33826 [3 4 4 5 6 5 5 4] 33827 </dog_clip_pos> 33828 <dog_clip_neg index="1" type="double" size="[1 8]"> 33829 [3 4 4 5 6 5 5 4] 33830 </dog_clip_neg> 33831 <dog_alpha index="1" type="double" size="[1 8]"> 33832 [0.15 0.2 0.3 0.4 0.4 0.3 0.2 0.2] 33833 </dog_alpha> 33834 <direct_filter_coeff index="1" type="double" size="[1 5]"> 33835 [0.1 0.2 0.4 0.2 0.1] 33836 </direct_filter_coeff> 33837 <dog_kernel_percent index="1" type="double" size="[1 1]"> 33838 [0.5] 33839 </dog_kernel_percent> 33840 </cell> 33841 <cell index="3" type="struct" size="[1 1]"> 33842 <iso index="1" type="double" size="[1 1]"> 33843 [200] 33844 </iso> 33845 <edge_thed index="1" type="double" size="[1 1]"> 33846 [3] 33847 </edge_thed> 33848 <src_wgt index="1" type="double" size="[1 1]"> 33849 [0] 33850 </src_wgt> 33851 <alpha_adp_en index="1" type="char" size="[1 1]"> 33852 [1] 33853 </alpha_adp_en> 33854 <local_alpha index="1" type="double" size="[1 1]"> 33855 [1] 33856 </local_alpha> 33857 <global_alpha index="1" type="double" size="[1 1]"> 33858 [1] 33859 </global_alpha> 33860 <noise_clip index="1" type="double" size="[1 8]"> 33861 [4 8 16 24 24 16 16 16] 33862 </noise_clip> 33863 <dog_clip_pos index="1" type="double" size="[1 8]"> 33864 [5 6 6 7 8 7 7 6] 33865 </dog_clip_pos> 33866 <dog_clip_neg index="1" type="double" size="[1 8]"> 33867 [5 6 6 7 8 7 7 6] 33868 </dog_clip_neg> 33869 <dog_alpha index="1" type="double" size="[1 8]"> 33870 [0.15 0.2 0.3 0.4 0.4 0.3 0.2 0.2] 33871 </dog_alpha> 33872 <direct_filter_coeff index="1" type="double" size="[1 5]"> 33873 [0.1 0.2 0.4 0.2 0.1] 33874 </direct_filter_coeff> 33875 <dog_kernel_percent index="1" type="double" size="[1 1]"> 33876 [0.5] 33877 </dog_kernel_percent> 33878 </cell> 33879 <cell index="4" type="struct" size="[1 1]"> 33880 <iso index="1" type="double" size="[1 1]"> 33881 [400] 33882 </iso> 33883 <edge_thed index="1" type="double" size="[1 1]"> 33884 [24] 33885 </edge_thed> 33886 <src_wgt index="1" type="double" size="[1 1]"> 33887 [0] 33888 </src_wgt> 33889 <alpha_adp_en index="1" type="char" size="[1 1]"> 33890 [1] 33891 </alpha_adp_en> 33892 <local_alpha index="1" type="double" size="[1 1]"> 33893 [1] 33894 </local_alpha> 33895 <global_alpha index="1" type="double" size="[1 1]"> 33896 [1] 33897 </global_alpha> 33898 <noise_clip index="1" type="double" size="[1 8]"> 33899 [4 8 16 32 32 24 16 16] 33900 </noise_clip> 33901 <dog_clip_pos index="1" type="double" size="[1 8]"> 33902 [5 6 6 8 9 8 7 6] 33903 </dog_clip_pos> 33904 <dog_clip_neg index="1" type="double" size="[1 8]"> 33905 [5 6 6 8 9 8 7 6] 33906 </dog_clip_neg> 33907 <dog_alpha index="1" type="double" size="[1 8]"> 33908 [0.3 0.4 0.5 0.5 0.5 0.4 0.3 0.2] 33909 </dog_alpha> 33910 <direct_filter_coeff index="1" type="double" size="[1 5]"> 33911 [0.1 0.2 0.4 0.2 0.1] 33912 </direct_filter_coeff> 33913 <dog_kernel_percent index="1" type="double" size="[1 1]"> 33914 [0.5] 33915 </dog_kernel_percent> 33916 </cell> 33917 <cell index="5" type="struct" size="[1 1]"> 33918 <iso index="1" type="double" size="[1 1]"> 33919 [800] 33920 </iso> 33921 <edge_thed index="1" type="double" size="[1 1]"> 33922 [64] 33923 </edge_thed> 33924 <src_wgt index="1" type="double" size="[1 1]"> 33925 [0] 33926 </src_wgt> 33927 <alpha_adp_en index="1" type="char" size="[1 1]"> 33928 [1] 33929 </alpha_adp_en> 33930 <local_alpha index="1" type="double" size="[1 1]"> 33931 [1] 33932 </local_alpha> 33933 <global_alpha index="1" type="double" size="[1 1]"> 33934 [1] 33935 </global_alpha> 33936 <noise_clip index="1" type="double" size="[1 8]"> 33937 [4 8 16 32 32 24 16 16] 33938 </noise_clip> 33939 <dog_clip_pos index="1" type="double" size="[1 8]"> 33940 [6 8 8 8 8 8 8 8] 33941 </dog_clip_pos> 33942 <dog_clip_neg index="1" type="double" size="[1 8]"> 33943 [6 8 8 8 8 8 8 8] 33944 </dog_clip_neg> 33945 <dog_alpha index="1" type="double" size="[1 8]"> 33946 [0.5 0.6 0.6 0.6 0.6 0.6 0.5 0.4] 33947 </dog_alpha> 33948 <direct_filter_coeff index="1" type="double" size="[1 5]"> 33949 [0.1 0.2 0.4 0.2 0.1] 33950 </direct_filter_coeff> 33951 <dog_kernel_percent index="1" type="double" size="[1 1]"> 33952 [0.5] 33953 </dog_kernel_percent> 33954 </cell> 33955 <cell index="6" type="struct" size="[1 1]"> 33956 <iso index="1" type="double" size="[1 1]"> 33957 [1600] 33958 </iso> 33959 <edge_thed index="1" type="double" size="[1 1]"> 33960 [5] 33961 </edge_thed> 33962 <src_wgt index="1" type="double" size="[1 1]"> 33963 [0] 33964 </src_wgt> 33965 <alpha_adp_en index="1" type="char" size="[1 1]"> 33966 [1] 33967 </alpha_adp_en> 33968 <local_alpha index="1" type="double" size="[1 1]"> 33969 [1] 33970 </local_alpha> 33971 <global_alpha index="1" type="double" size="[1 1]"> 33972 [1] 33973 </global_alpha> 33974 <noise_clip index="1" type="double" size="[1 8]"> 33975 [4 8 16 24 24 16 16 16] 33976 </noise_clip> 33977 <dog_clip_pos index="1" type="double" size="[1 8]"> 33978 [6 8 8 8 8 8 8 8] 33979 </dog_clip_pos> 33980 <dog_clip_neg index="1" type="double" size="[1 8]"> 33981 [6 8 8 8 8 8 8 8] 33982 </dog_clip_neg> 33983 <dog_alpha index="1" type="double" size="[1 8]"> 33984 [0.5 0.5 0.6 0.6 0.6 0.5 0.5 0.5] 33985 </dog_alpha> 33986 <direct_filter_coeff index="1" type="double" size="[1 5]"> 33987 [0.1 0.2 0.4 0.2 0.1] 33988 </direct_filter_coeff> 33989 <dog_kernel_percent index="1" type="double" size="[1 1]"> 33990 [0.5] 33991 </dog_kernel_percent> 33992 </cell> 33993 <cell index="7" type="struct" size="[1 1]"> 33994 <iso index="1" type="double" size="[1 1]"> 33995 [3200] 33996 </iso> 33997 <edge_thed index="1" type="double" size="[1 1]"> 33998 [5] 33999 </edge_thed> 34000 <src_wgt index="1" type="double" size="[1 1]"> 34001 [0] 34002 </src_wgt> 34003 <alpha_adp_en index="1" type="char" size="[1 1]"> 34004 [1] 34005 </alpha_adp_en> 34006 <local_alpha index="1" type="double" size="[1 1]"> 34007 [1] 34008 </local_alpha> 34009 <global_alpha index="1" type="double" size="[1 1]"> 34010 [1] 34011 </global_alpha> 34012 <noise_clip index="1" type="double" size="[1 8]"> 34013 [4 8 16 24 24 16 16 16] 34014 </noise_clip> 34015 <dog_clip_pos index="1" type="double" size="[1 8]"> 34016 [6 8 8 8 8 8 8 8] 34017 </dog_clip_pos> 34018 <dog_clip_neg index="1" type="double" size="[1 8]"> 34019 [6 8 8 8 8 8 8 8] 34020 </dog_clip_neg> 34021 <dog_alpha index="1" type="double" size="[1 8]"> 34022 [0.9 0.9 1 1 1 0.8 0.6 0.5] 34023 </dog_alpha> 34024 <direct_filter_coeff index="1" type="double" size="[1 5]"> 34025 [0.1 0.2 0.4 0.2 0.1] 34026 </direct_filter_coeff> 34027 <dog_kernel_percent index="1" type="double" size="[1 1]"> 34028 [0.5] 34029 </dog_kernel_percent> 34030 </cell> 34031 <cell index="8" type="struct" size="[1 1]"> 34032 <iso index="1" type="double" size="[1 1]"> 34033 [6400] 34034 </iso> 34035 <edge_thed index="1" type="double" size="[1 1]"> 34036 [5] 34037 </edge_thed> 34038 <src_wgt index="1" type="double" size="[1 1]"> 34039 [0] 34040 </src_wgt> 34041 <alpha_adp_en index="1" type="char" size="[1 1]"> 34042 [1] 34043 </alpha_adp_en> 34044 <local_alpha index="1" type="double" size="[1 1]"> 34045 [1] 34046 </local_alpha> 34047 <global_alpha index="1" type="double" size="[1 1]"> 34048 [1] 34049 </global_alpha> 34050 <noise_clip index="1" type="double" size="[1 8]"> 34051 [4 8 16 24 24 16 16 16] 34052 </noise_clip> 34053 <dog_clip_pos index="1" type="double" size="[1 8]"> 34054 [6 8 8 8 8 8 8 8] 34055 </dog_clip_pos> 34056 <dog_clip_neg index="1" type="double" size="[1 8]"> 34057 [6 8 8 8 8 8 8 8] 34058 </dog_clip_neg> 34059 <dog_alpha index="1" type="double" size="[1 8]"> 34060 [0.9 0.9 1 1 1 0.8 0.6 0.5] 34061 </dog_alpha> 34062 <direct_filter_coeff index="1" type="double" size="[1 5]"> 34063 [0.1 0.2 0.4 0.2 0.1] 34064 </direct_filter_coeff> 34065 <dog_kernel_percent index="1" type="double" size="[1 1]"> 34066 [0.5] 34067 </dog_kernel_percent> 34068 </cell> 34069 <cell index="9" type="struct" size="[1 1]"> 34070 <iso index="1" type="double" size="[1 1]"> 34071 [12800] 34072 </iso> 34073 <edge_thed index="1" type="double" size="[1 1]"> 34074 [5] 34075 </edge_thed> 34076 <src_wgt index="1" type="double" size="[1 1]"> 34077 [0] 34078 </src_wgt> 34079 <alpha_adp_en index="1" type="char" size="[1 1]"> 34080 [1] 34081 </alpha_adp_en> 34082 <local_alpha index="1" type="double" size="[1 1]"> 34083 [1] 34084 </local_alpha> 34085 <global_alpha index="1" type="double" size="[1 1]"> 34086 [1] 34087 </global_alpha> 34088 <noise_clip index="1" type="double" size="[1 8]"> 34089 [4 8 16 24 24 16 16 16] 34090 </noise_clip> 34091 <dog_clip_pos index="1" type="double" size="[1 8]"> 34092 [6 8 8 8 8 8 8 8] 34093 </dog_clip_pos> 34094 <dog_clip_neg index="1" type="double" size="[1 8]"> 34095 [6 8 8 8 8 8 8 8] 34096 </dog_clip_neg> 34097 <dog_alpha index="1" type="double" size="[1 8]"> 34098 [0.9 0.9 1 1 1 0.8 0.6 0.5] 34099 </dog_alpha> 34100 <direct_filter_coeff index="1" type="double" size="[1 5]"> 34101 [0.1 0.2 0.4 0.2 0.1] 34102 </direct_filter_coeff> 34103 <dog_kernel_percent index="1" type="double" size="[1 1]"> 34104 [0.5] 34105 </dog_kernel_percent> 34106 </cell> 34107 <cell index="10" type="struct" size="[1 1]"> 34108 <iso index="1" type="double" size="[1 1]"> 34109 [25600] 34110 </iso> 34111 <edge_thed index="1" type="double" size="[1 1]"> 34112 [5] 34113 </edge_thed> 34114 <src_wgt index="1" type="double" size="[1 1]"> 34115 [0] 34116 </src_wgt> 34117 <alpha_adp_en index="1" type="char" size="[1 1]"> 34118 [1] 34119 </alpha_adp_en> 34120 <local_alpha index="1" type="double" size="[1 1]"> 34121 [1] 34122 </local_alpha> 34123 <global_alpha index="1" type="double" size="[1 1]"> 34124 [1] 34125 </global_alpha> 34126 <noise_clip index="1" type="double" size="[1 8]"> 34127 [4 8 16 24 24 16 16 16] 34128 </noise_clip> 34129 <dog_clip_pos index="1" type="double" size="[1 8]"> 34130 [6 8 8 8 8 8 8 8] 34131 </dog_clip_pos> 34132 <dog_clip_neg index="1" type="double" size="[1 8]"> 34133 [6 8 8 8 8 8 8 8] 34134 </dog_clip_neg> 34135 <dog_alpha index="1" type="double" size="[1 8]"> 34136 [0.9 0.9 1 1 1 0.8 0.6 0.5] 34137 </dog_alpha> 34138 <direct_filter_coeff index="1" type="double" size="[1 5]"> 34139 [0.1 0.2 0.4 0.2 0.1] 34140 </direct_filter_coeff> 34141 <dog_kernel_percent index="1" type="double" size="[1 1]"> 34142 [0.5] 34143 </dog_kernel_percent> 34144 </cell> 34145 <cell index="11" type="struct" size="[1 1]"> 34146 <iso index="1" type="double" size="[1 1]"> 34147 [51200] 34148 </iso> 34149 <edge_thed index="1" type="double" size="[1 1]"> 34150 [5] 34151 </edge_thed> 34152 <src_wgt index="1" type="double" size="[1 1]"> 34153 [0] 34154 </src_wgt> 34155 <alpha_adp_en index="1" type="char" size="[1 1]"> 34156 [1] 34157 </alpha_adp_en> 34158 <local_alpha index="1" type="double" size="[1 1]"> 34159 [1] 34160 </local_alpha> 34161 <global_alpha index="1" type="double" size="[1 1]"> 34162 [1] 34163 </global_alpha> 34164 <noise_clip index="1" type="double" size="[1 8]"> 34165 [4 8 16 24 24 16 16 16] 34166 </noise_clip> 34167 <dog_clip_pos index="1" type="double" size="[1 8]"> 34168 [6 8 8 8 8 8 8 8] 34169 </dog_clip_pos> 34170 <dog_clip_neg index="1" type="double" size="[1 8]"> 34171 [6 8 8 8 8 8 8 8] 34172 </dog_clip_neg> 34173 <dog_alpha index="1" type="double" size="[1 8]"> 34174 [0.9 0.9 1 1 1 0.8 0.6 0.5] 34175 </dog_alpha> 34176 <direct_filter_coeff index="1" type="double" size="[1 5]"> 34177 [0.1 0.2 0.4 0.2 0.1] 34178 </direct_filter_coeff> 34179 <dog_kernel_percent index="1" type="double" size="[1 1]"> 34180 [0.5] 34181 </dog_kernel_percent> 34182 </cell> 34183 <cell index="12" type="struct" size="[1 1]"> 34184 <iso index="1" type="double" size="[1 1]"> 34185 [102400] 34186 </iso> 34187 <edge_thed index="1" type="double" size="[1 1]"> 34188 [5] 34189 </edge_thed> 34190 <src_wgt index="1" type="double" size="[1 1]"> 34191 [0] 34192 </src_wgt> 34193 <alpha_adp_en index="1" type="char" size="[1 1]"> 34194 [1] 34195 </alpha_adp_en> 34196 <local_alpha index="1" type="double" size="[1 1]"> 34197 [1] 34198 </local_alpha> 34199 <global_alpha index="1" type="double" size="[1 1]"> 34200 [1] 34201 </global_alpha> 34202 <noise_clip index="1" type="double" size="[1 8]"> 34203 [4 8 16 24 24 16 16 16] 34204 </noise_clip> 34205 <dog_clip_pos index="1" type="double" size="[1 8]"> 34206 [6 8 8 8 8 8 8 8] 34207 </dog_clip_pos> 34208 <dog_clip_neg index="1" type="double" size="[1 8]"> 34209 [6 8 8 8 8 8 8 8] 34210 </dog_clip_neg> 34211 <dog_alpha index="1" type="double" size="[1 8]"> 34212 [0.9 0.9 1 1 1 0.8 0.6 0.5] 34213 </dog_alpha> 34214 <direct_filter_coeff index="1" type="double" size="[1 5]"> 34215 [0.1 0.2 0.4 0.2 0.1] 34216 </direct_filter_coeff> 34217 <dog_kernel_percent index="1" type="double" size="[1 1]"> 34218 [0.5] 34219 </dog_kernel_percent> 34220 </cell> 34221 <cell index="13" type="struct" size="[1 1]"> 34222 <iso index="1" type="double" size="[1 1]"> 34223 [204800] 34224 </iso> 34225 <edge_thed index="1" type="double" size="[1 1]"> 34226 [5] 34227 </edge_thed> 34228 <src_wgt index="1" type="double" size="[1 1]"> 34229 [0] 34230 </src_wgt> 34231 <alpha_adp_en index="1" type="char" size="[1 1]"> 34232 [1] 34233 </alpha_adp_en> 34234 <local_alpha index="1" type="double" size="[1 1]"> 34235 [1] 34236 </local_alpha> 34237 <global_alpha index="1" type="double" size="[1 1]"> 34238 [1] 34239 </global_alpha> 34240 <noise_clip index="1" type="double" size="[1 8]"> 34241 [4 8 16 24 24 16 16 16] 34242 </noise_clip> 34243 <dog_clip_pos index="1" type="double" size="[1 8]"> 34244 [6 8 8 8 8 8 8 8] 34245 </dog_clip_pos> 34246 <dog_clip_neg index="1" type="double" size="[1 8]"> 34247 [6 8 8 8 8 8 8 8] 34248 </dog_clip_neg> 34249 <dog_alpha index="1" type="double" size="[1 8]"> 34250 [0.9 0.9 1 1 1 0.8 0.6 0.5] 34251 </dog_alpha> 34252 <direct_filter_coeff index="1" type="double" size="[1 5]"> 34253 [0.1 0.2 0.4 0.2 0.1] 34254 </direct_filter_coeff> 34255 <dog_kernel_percent index="1" type="double" size="[1 1]"> 34256 [0.5] 34257 </dog_kernel_percent> 34258 </cell> 34259 </EDGEFILTER_ISO> 34260 </cell> 34261 </Setting> 34262 </cell> 34263 <cell index="1" type="struct" size="[1 1]"> 34264 <Name index="1" type="char" size="[1 8]"> 34265 hdr 34266 </Name> 34267 <dog_kernel_l index="1" type="double" size="[5 5]"> 34268 [-0.0625 -0.109375 -0.140625 -0.109375 -0.0625 34269 -0.109375 0.078125 0.234375 0.078125 -0.109375 34270 -0.140625 0.234375 0.4375 0.234375 -0.140625 34271 -0.109375 0.078125 0.234375 0.078125 -0.109375 34272 -0.0625 -0.109375 -0.140625 -0.109375 -0.0625] 34273 </dog_kernel_l> 34274 <dog_kernel_h index="1" type="double" size="[5 5]"> 34275 [-0.0625 -0.109375 -0.140625 -0.109375 -0.0625 34276 -0.109375 0.078125 0.234375 0.078125 -0.109375 34277 -0.140625 0.234375 0.4375 0.234375 -0.140625 34278 -0.109375 0.078125 0.234375 0.078125 -0.109375 34279 -0.0625 -0.109375 -0.140625 -0.109375 -0.0625] 34280 </dog_kernel_h> 34281 <Setting index="1" type="cell" size="[1 2]"> 34282 <cell index="1" type="struct" size="[1 1]"> 34283 <SNR_Mode index="1" type="char" size="[1 4]"> 34284 LSNR 34285 </SNR_Mode> 34286 <Sensor_Mode index="1" type="char" size="[1 8]"> 34287 lcg 34288 </Sensor_Mode> 34289 <EDGEFILTER_ISO index="1" type="cell" size="[1 13]"> 34290 <cell index="1" type="struct" size="[1 1]"> 34291 <iso index="1" type="double" size="[1 1]"> 34292 [50] 34293 </iso> 34294 <edge_thed index="1" type="double" size="[1 1]"> 34295 [3] 34296 </edge_thed> 34297 <src_wgt index="1" type="double" size="[1 1]"> 34298 [0] 34299 </src_wgt> 34300 <alpha_adp_en index="1" type="char" size="[1 1]"> 34301 [1] 34302 </alpha_adp_en> 34303 <local_alpha index="1" type="double" size="[1 1]"> 34304 [1] 34305 </local_alpha> 34306 <global_alpha index="1" type="double" size="[1 1]"> 34307 [1] 34308 </global_alpha> 34309 <noise_clip index="1" type="double" size="[1 8]"> 34310 [2 6 8 10 16 16 14 10] 34311 </noise_clip> 34312 <dog_clip_pos index="1" type="double" size="[1 8]"> 34313 [3 4 4 5 6 5 5 4] 34314 </dog_clip_pos> 34315 <dog_clip_neg index="1" type="double" size="[1 8]"> 34316 [3 4 4 5 6 5 5 4] 34317 </dog_clip_neg> 34318 <dog_alpha index="1" type="double" size="[1 8]"> 34319 [0.15 0.2 0.3 0.4 0.4 0.3 0.2 0.2] 34320 </dog_alpha> 34321 <direct_filter_coeff index="1" type="double" size="[1 5]"> 34322 [0.1 0.2 0.4 0.2 0.1] 34323 </direct_filter_coeff> 34324 <dog_kernel_percent index="1" type="double" size="[1 1]"> 34325 [0.5] 34326 </dog_kernel_percent> 34327 </cell> 34328 <cell index="2" type="struct" size="[1 1]"> 34329 <iso index="1" type="double" size="[1 1]"> 34330 [100] 34331 </iso> 34332 <edge_thed index="1" type="double" size="[1 1]"> 34333 [3] 34334 </edge_thed> 34335 <src_wgt index="1" type="double" size="[1 1]"> 34336 [0] 34337 </src_wgt> 34338 <alpha_adp_en index="1" type="char" size="[1 1]"> 34339 [1] 34340 </alpha_adp_en> 34341 <local_alpha index="1" type="double" size="[1 1]"> 34342 [1] 34343 </local_alpha> 34344 <global_alpha index="1" type="double" size="[1 1]"> 34345 [1] 34346 </global_alpha> 34347 <noise_clip index="1" type="double" size="[1 8]"> 34348 [2 6 8 10 16 16 14 10] 34349 </noise_clip> 34350 <dog_clip_pos index="1" type="double" size="[1 8]"> 34351 [3 4 4 5 6 5 5 4] 34352 </dog_clip_pos> 34353 <dog_clip_neg index="1" type="double" size="[1 8]"> 34354 [3 4 4 5 6 5 5 4] 34355 </dog_clip_neg> 34356 <dog_alpha index="1" type="double" size="[1 8]"> 34357 [0.15 0.2 0.3 0.4 0.4 0.3 0.2 0.2] 34358 </dog_alpha> 34359 <direct_filter_coeff index="1" type="double" size="[1 5]"> 34360 [0.1 0.2 0.4 0.2 0.1] 34361 </direct_filter_coeff> 34362 <dog_kernel_percent index="1" type="double" size="[1 1]"> 34363 [0.5] 34364 </dog_kernel_percent> 34365 </cell> 34366 <cell index="3" type="struct" size="[1 1]"> 34367 <iso index="1" type="double" size="[1 1]"> 34368 [200] 34369 </iso> 34370 <edge_thed index="1" type="double" size="[1 1]"> 34371 [3] 34372 </edge_thed> 34373 <src_wgt index="1" type="double" size="[1 1]"> 34374 [0] 34375 </src_wgt> 34376 <alpha_adp_en index="1" type="char" size="[1 1]"> 34377 [1] 34378 </alpha_adp_en> 34379 <local_alpha index="1" type="double" size="[1 1]"> 34380 [1] 34381 </local_alpha> 34382 <global_alpha index="1" type="double" size="[1 1]"> 34383 [1] 34384 </global_alpha> 34385 <noise_clip index="1" type="double" size="[1 8]"> 34386 [4 8 16 24 24 16 16 16] 34387 </noise_clip> 34388 <dog_clip_pos index="1" type="double" size="[1 8]"> 34389 [5 6 6 7 8 7 7 6] 34390 </dog_clip_pos> 34391 <dog_clip_neg index="1" type="double" size="[1 8]"> 34392 [5 6 6 7 8 7 7 6] 34393 </dog_clip_neg> 34394 <dog_alpha index="1" type="double" size="[1 8]"> 34395 [0.15 0.2 0.3 0.4 0.4 0.3 0.2 0.2] 34396 </dog_alpha> 34397 <direct_filter_coeff index="1" type="double" size="[1 5]"> 34398 [0.1 0.2 0.4 0.2 0.1] 34399 </direct_filter_coeff> 34400 <dog_kernel_percent index="1" type="double" size="[1 1]"> 34401 [0.5] 34402 </dog_kernel_percent> 34403 </cell> 34404 <cell index="4" type="struct" size="[1 1]"> 34405 <iso index="1" type="double" size="[1 1]"> 34406 [400] 34407 </iso> 34408 <edge_thed index="1" type="double" size="[1 1]"> 34409 [24] 34410 </edge_thed> 34411 <src_wgt index="1" type="double" size="[1 1]"> 34412 [0] 34413 </src_wgt> 34414 <alpha_adp_en index="1" type="char" size="[1 1]"> 34415 [1] 34416 </alpha_adp_en> 34417 <local_alpha index="1" type="double" size="[1 1]"> 34418 [1] 34419 </local_alpha> 34420 <global_alpha index="1" type="double" size="[1 1]"> 34421 [1] 34422 </global_alpha> 34423 <noise_clip index="1" type="double" size="[1 8]"> 34424 [4 8 16 32 32 24 16 16] 34425 </noise_clip> 34426 <dog_clip_pos index="1" type="double" size="[1 8]"> 34427 [5 6 6 8 9 8 7 6] 34428 </dog_clip_pos> 34429 <dog_clip_neg index="1" type="double" size="[1 8]"> 34430 [5 6 6 8 9 8 7 6] 34431 </dog_clip_neg> 34432 <dog_alpha index="1" type="double" size="[1 8]"> 34433 [0.3 0.4 0.5 0.5 0.5 0.4 0.3 0.2] 34434 </dog_alpha> 34435 <direct_filter_coeff index="1" type="double" size="[1 5]"> 34436 [0.1 0.2 0.4 0.2 0.1] 34437 </direct_filter_coeff> 34438 <dog_kernel_percent index="1" type="double" size="[1 1]"> 34439 [0.5] 34440 </dog_kernel_percent> 34441 </cell> 34442 <cell index="5" type="struct" size="[1 1]"> 34443 <iso index="1" type="double" size="[1 1]"> 34444 [800] 34445 </iso> 34446 <edge_thed index="1" type="double" size="[1 1]"> 34447 [32] 34448 </edge_thed> 34449 <src_wgt index="1" type="double" size="[1 1]"> 34450 [0] 34451 </src_wgt> 34452 <alpha_adp_en index="1" type="char" size="[1 1]"> 34453 [1] 34454 </alpha_adp_en> 34455 <local_alpha index="1" type="double" size="[1 1]"> 34456 [1] 34457 </local_alpha> 34458 <global_alpha index="1" type="double" size="[1 1]"> 34459 [1] 34460 </global_alpha> 34461 <noise_clip index="1" type="double" size="[1 8]"> 34462 [4 8 16 32 32 24 16 16] 34463 </noise_clip> 34464 <dog_clip_pos index="1" type="double" size="[1 8]"> 34465 [6 8 8 8 8 8 8 8] 34466 </dog_clip_pos> 34467 <dog_clip_neg index="1" type="double" size="[1 8]"> 34468 [6 8 8 8 8 8 8 8] 34469 </dog_clip_neg> 34470 <dog_alpha index="1" type="double" size="[1 8]"> 34471 [0.3 0.4 0.4 0.4 0.4 0.4 0.3 0.2] 34472 </dog_alpha> 34473 <direct_filter_coeff index="1" type="double" size="[1 5]"> 34474 [0.1 0.2 0.4 0.2 0.1] 34475 </direct_filter_coeff> 34476 <dog_kernel_percent index="1" type="double" size="[1 1]"> 34477 [0.5] 34478 </dog_kernel_percent> 34479 </cell> 34480 <cell index="6" type="struct" size="[1 1]"> 34481 <iso index="1" type="double" size="[1 1]"> 34482 [1600] 34483 </iso> 34484 <edge_thed index="1" type="double" size="[1 1]"> 34485 [24] 34486 </edge_thed> 34487 <src_wgt index="1" type="double" size="[1 1]"> 34488 [0] 34489 </src_wgt> 34490 <alpha_adp_en index="1" type="char" size="[1 1]"> 34491 [0] 34492 </alpha_adp_en> 34493 <local_alpha index="1" type="double" size="[1 1]"> 34494 [1] 34495 </local_alpha> 34496 <global_alpha index="1" type="double" size="[1 1]"> 34497 [1] 34498 </global_alpha> 34499 <noise_clip index="1" type="double" size="[1 8]"> 34500 [4 8 16 24 24 16 16 16] 34501 </noise_clip> 34502 <dog_clip_pos index="1" type="double" size="[1 8]"> 34503 [6 8 8 8 8 8 8 8] 34504 </dog_clip_pos> 34505 <dog_clip_neg index="1" type="double" size="[1 8]"> 34506 [6 8 8 8 8 8 8 8] 34507 </dog_clip_neg> 34508 <dog_alpha index="1" type="double" size="[1 8]"> 34509 [0.3 0.3 0.4 0.4 0.4 0.3 0.3 0.2] 34510 </dog_alpha> 34511 <direct_filter_coeff index="1" type="double" size="[1 5]"> 34512 [0.1 0.2 0.4 0.2 0.1] 34513 </direct_filter_coeff> 34514 <dog_kernel_percent index="1" type="double" size="[1 1]"> 34515 [0.5] 34516 </dog_kernel_percent> 34517 </cell> 34518 <cell index="7" type="struct" size="[1 1]"> 34519 <iso index="1" type="double" size="[1 1]"> 34520 [3200] 34521 </iso> 34522 <edge_thed index="1" type="double" size="[1 1]"> 34523 [24] 34524 </edge_thed> 34525 <src_wgt index="1" type="double" size="[1 1]"> 34526 [0] 34527 </src_wgt> 34528 <alpha_adp_en index="1" type="char" size="[1 1]"> 34529 [0] 34530 </alpha_adp_en> 34531 <local_alpha index="1" type="double" size="[1 1]"> 34532 [1] 34533 </local_alpha> 34534 <global_alpha index="1" type="double" size="[1 1]"> 34535 [1] 34536 </global_alpha> 34537 <noise_clip index="1" type="double" size="[1 8]"> 34538 [4 8 16 24 24 16 16 16] 34539 </noise_clip> 34540 <dog_clip_pos index="1" type="double" size="[1 8]"> 34541 [6 8 8 8 8 8 8 8] 34542 </dog_clip_pos> 34543 <dog_clip_neg index="1" type="double" size="[1 8]"> 34544 [6 8 8 8 8 8 8 8] 34545 </dog_clip_neg> 34546 <dog_alpha index="1" type="double" size="[1 8]"> 34547 [0.2 0.2 0.3 0.3 0.3 0.3 0.2 0.1] 34548 </dog_alpha> 34549 <direct_filter_coeff index="1" type="double" size="[1 5]"> 34550 [0.1 0.2 0.4 0.2 0.1] 34551 </direct_filter_coeff> 34552 <dog_kernel_percent index="1" type="double" size="[1 1]"> 34553 [0.5] 34554 </dog_kernel_percent> 34555 </cell> 34556 <cell index="8" type="struct" size="[1 1]"> 34557 <iso index="1" type="double" size="[1 1]"> 34558 [6400] 34559 </iso> 34560 <edge_thed index="1" type="double" size="[1 1]"> 34561 [20] 34562 </edge_thed> 34563 <src_wgt index="1" type="double" size="[1 1]"> 34564 [0] 34565 </src_wgt> 34566 <alpha_adp_en index="1" type="char" size="[1 1]"> 34567 [1] 34568 </alpha_adp_en> 34569 <local_alpha index="1" type="double" size="[1 1]"> 34570 [1] 34571 </local_alpha> 34572 <global_alpha index="1" type="double" size="[1 1]"> 34573 [1] 34574 </global_alpha> 34575 <noise_clip index="1" type="double" size="[1 8]"> 34576 [4 8 16 24 24 16 16 16] 34577 </noise_clip> 34578 <dog_clip_pos index="1" type="double" size="[1 8]"> 34579 [6 8 8 8 8 8 8 8] 34580 </dog_clip_pos> 34581 <dog_clip_neg index="1" type="double" size="[1 8]"> 34582 [6 8 8 8 8 8 8 8] 34583 </dog_clip_neg> 34584 <dog_alpha index="1" type="double" size="[1 8]"> 34585 [0.3 0.2 0.3 0.3 0.3 0.2 0.2 0.1] 34586 </dog_alpha> 34587 <direct_filter_coeff index="1" type="double" size="[1 5]"> 34588 [0.1 0.2 0.4 0.2 0.1] 34589 </direct_filter_coeff> 34590 <dog_kernel_percent index="1" type="double" size="[1 1]"> 34591 [0.5] 34592 </dog_kernel_percent> 34593 </cell> 34594 <cell index="9" type="struct" size="[1 1]"> 34595 <iso index="1" type="double" size="[1 1]"> 34596 [12800] 34597 </iso> 34598 <edge_thed index="1" type="double" size="[1 1]"> 34599 [5] 34600 </edge_thed> 34601 <src_wgt index="1" type="double" size="[1 1]"> 34602 [0] 34603 </src_wgt> 34604 <alpha_adp_en index="1" type="char" size="[1 1]"> 34605 [1] 34606 </alpha_adp_en> 34607 <local_alpha index="1" type="double" size="[1 1]"> 34608 [1] 34609 </local_alpha> 34610 <global_alpha index="1" type="double" size="[1 1]"> 34611 [1] 34612 </global_alpha> 34613 <noise_clip index="1" type="double" size="[1 8]"> 34614 [4 8 16 24 24 16 16 16] 34615 </noise_clip> 34616 <dog_clip_pos index="1" type="double" size="[1 8]"> 34617 [6 8 8 8 8 8 8 8] 34618 </dog_clip_pos> 34619 <dog_clip_neg index="1" type="double" size="[1 8]"> 34620 [6 8 8 8 8 8 8 8] 34621 </dog_clip_neg> 34622 <dog_alpha index="1" type="double" size="[1 8]"> 34623 [0.9 0.9 1 1 1 0.8 0.6 0.5] 34624 </dog_alpha> 34625 <direct_filter_coeff index="1" type="double" size="[1 5]"> 34626 [0.1 0.2 0.4 0.2 0.1] 34627 </direct_filter_coeff> 34628 <dog_kernel_percent index="1" type="double" size="[1 1]"> 34629 [0.5] 34630 </dog_kernel_percent> 34631 </cell> 34632 <cell index="10" type="struct" size="[1 1]"> 34633 <iso index="1" type="double" size="[1 1]"> 34634 [25600] 34635 </iso> 34636 <edge_thed index="1" type="double" size="[1 1]"> 34637 [5] 34638 </edge_thed> 34639 <src_wgt index="1" type="double" size="[1 1]"> 34640 [0] 34641 </src_wgt> 34642 <alpha_adp_en index="1" type="char" size="[1 1]"> 34643 [1] 34644 </alpha_adp_en> 34645 <local_alpha index="1" type="double" size="[1 1]"> 34646 [1] 34647 </local_alpha> 34648 <global_alpha index="1" type="double" size="[1 1]"> 34649 [1] 34650 </global_alpha> 34651 <noise_clip index="1" type="double" size="[1 8]"> 34652 [4 8 16 24 24 16 16 16] 34653 </noise_clip> 34654 <dog_clip_pos index="1" type="double" size="[1 8]"> 34655 [6 8 8 8 8 8 8 8] 34656 </dog_clip_pos> 34657 <dog_clip_neg index="1" type="double" size="[1 8]"> 34658 [6 8 8 8 8 8 8 8] 34659 </dog_clip_neg> 34660 <dog_alpha index="1" type="double" size="[1 8]"> 34661 [0.9 0.9 1 1 1 0.8 0.6 0.5] 34662 </dog_alpha> 34663 <direct_filter_coeff index="1" type="double" size="[1 5]"> 34664 [0.1 0.2 0.4 0.2 0.1] 34665 </direct_filter_coeff> 34666 <dog_kernel_percent index="1" type="double" size="[1 1]"> 34667 [0.5] 34668 </dog_kernel_percent> 34669 </cell> 34670 <cell index="11" type="struct" size="[1 1]"> 34671 <iso index="1" type="double" size="[1 1]"> 34672 [51200] 34673 </iso> 34674 <edge_thed index="1" type="double" size="[1 1]"> 34675 [5] 34676 </edge_thed> 34677 <src_wgt index="1" type="double" size="[1 1]"> 34678 [0] 34679 </src_wgt> 34680 <alpha_adp_en index="1" type="char" size="[1 1]"> 34681 [1] 34682 </alpha_adp_en> 34683 <local_alpha index="1" type="double" size="[1 1]"> 34684 [1] 34685 </local_alpha> 34686 <global_alpha index="1" type="double" size="[1 1]"> 34687 [1] 34688 </global_alpha> 34689 <noise_clip index="1" type="double" size="[1 8]"> 34690 [4 8 16 24 24 16 16 16] 34691 </noise_clip> 34692 <dog_clip_pos index="1" type="double" size="[1 8]"> 34693 [6 8 8 8 8 8 8 8] 34694 </dog_clip_pos> 34695 <dog_clip_neg index="1" type="double" size="[1 8]"> 34696 [6 8 8 8 8 8 8 8] 34697 </dog_clip_neg> 34698 <dog_alpha index="1" type="double" size="[1 8]"> 34699 [0.9 0.9 1 1 1 0.8 0.6 0.5] 34700 </dog_alpha> 34701 <direct_filter_coeff index="1" type="double" size="[1 5]"> 34702 [0.1 0.2 0.4 0.2 0.1] 34703 </direct_filter_coeff> 34704 <dog_kernel_percent index="1" type="double" size="[1 1]"> 34705 [0.5] 34706 </dog_kernel_percent> 34707 </cell> 34708 <cell index="12" type="struct" size="[1 1]"> 34709 <iso index="1" type="double" size="[1 1]"> 34710 [102400] 34711 </iso> 34712 <edge_thed index="1" type="double" size="[1 1]"> 34713 [5] 34714 </edge_thed> 34715 <src_wgt index="1" type="double" size="[1 1]"> 34716 [0] 34717 </src_wgt> 34718 <alpha_adp_en index="1" type="char" size="[1 1]"> 34719 [1] 34720 </alpha_adp_en> 34721 <local_alpha index="1" type="double" size="[1 1]"> 34722 [1] 34723 </local_alpha> 34724 <global_alpha index="1" type="double" size="[1 1]"> 34725 [1] 34726 </global_alpha> 34727 <noise_clip index="1" type="double" size="[1 8]"> 34728 [4 8 16 24 24 16 16 16] 34729 </noise_clip> 34730 <dog_clip_pos index="1" type="double" size="[1 8]"> 34731 [6 8 8 8 8 8 8 8] 34732 </dog_clip_pos> 34733 <dog_clip_neg index="1" type="double" size="[1 8]"> 34734 [6 8 8 8 8 8 8 8] 34735 </dog_clip_neg> 34736 <dog_alpha index="1" type="double" size="[1 8]"> 34737 [0.9 0.9 1 1 1 0.8 0.6 0.5] 34738 </dog_alpha> 34739 <direct_filter_coeff index="1" type="double" size="[1 5]"> 34740 [0.1 0.2 0.4 0.2 0.1] 34741 </direct_filter_coeff> 34742 <dog_kernel_percent index="1" type="double" size="[1 1]"> 34743 [0.5] 34744 </dog_kernel_percent> 34745 </cell> 34746 <cell index="13" type="struct" size="[1 1]"> 34747 <iso index="1" type="double" size="[1 1]"> 34748 [204800] 34749 </iso> 34750 <edge_thed index="1" type="double" size="[1 1]"> 34751 [5] 34752 </edge_thed> 34753 <src_wgt index="1" type="double" size="[1 1]"> 34754 [0] 34755 </src_wgt> 34756 <alpha_adp_en index="1" type="char" size="[1 1]"> 34757 [1] 34758 </alpha_adp_en> 34759 <local_alpha index="1" type="double" size="[1 1]"> 34760 [1] 34761 </local_alpha> 34762 <global_alpha index="1" type="double" size="[1 1]"> 34763 [1] 34764 </global_alpha> 34765 <noise_clip index="1" type="double" size="[1 8]"> 34766 [4 8 16 24 24 16 16 16] 34767 </noise_clip> 34768 <dog_clip_pos index="1" type="double" size="[1 8]"> 34769 [6 8 8 8 8 8 8 8] 34770 </dog_clip_pos> 34771 <dog_clip_neg index="1" type="double" size="[1 8]"> 34772 [6 8 8 8 8 8 8 8] 34773 </dog_clip_neg> 34774 <dog_alpha index="1" type="double" size="[1 8]"> 34775 [0.9 0.9 1 1 1 0.8 0.6 0.5] 34776 </dog_alpha> 34777 <direct_filter_coeff index="1" type="double" size="[1 5]"> 34778 [0.1 0.2 0.4 0.2 0.1] 34779 </direct_filter_coeff> 34780 <dog_kernel_percent index="1" type="double" size="[1 1]"> 34781 [0.5] 34782 </dog_kernel_percent> 34783 </cell> 34784 </EDGEFILTER_ISO> 34785 </cell> 34786 <cell index="2" type="struct" size="[1 1]"> 34787 <SNR_Mode index="1" type="char" size="[1 4]"> 34788 HSNR 34789 </SNR_Mode> 34790 <Sensor_Mode index="1" type="char" size="[1 8]"> 34791 hcg 34792 </Sensor_Mode> 34793 <EDGEFILTER_ISO index="1" type="cell" size="[1 13]"> 34794 <cell index="1" type="struct" size="[1 1]"> 34795 <iso index="1" type="double" size="[1 1]"> 34796 [50] 34797 </iso> 34798 <edge_thed index="1" type="double" size="[1 1]"> 34799 [3] 34800 </edge_thed> 34801 <src_wgt index="1" type="double" size="[1 1]"> 34802 [0] 34803 </src_wgt> 34804 <alpha_adp_en index="1" type="char" size="[1 1]"> 34805 [1] 34806 </alpha_adp_en> 34807 <local_alpha index="1" type="double" size="[1 1]"> 34808 [1] 34809 </local_alpha> 34810 <global_alpha index="1" type="double" size="[1 1]"> 34811 [1] 34812 </global_alpha> 34813 <noise_clip index="1" type="double" size="[1 8]"> 34814 [2 6 8 10 16 16 14 10] 34815 </noise_clip> 34816 <dog_clip_pos index="1" type="double" size="[1 8]"> 34817 [3 4 4 5 6 5 5 4] 34818 </dog_clip_pos> 34819 <dog_clip_neg index="1" type="double" size="[1 8]"> 34820 [3 4 4 5 6 5 5 4] 34821 </dog_clip_neg> 34822 <dog_alpha index="1" type="double" size="[1 8]"> 34823 [0.15 0.2 0.3 0.4 0.4 0.3 0.2 0.2] 34824 </dog_alpha> 34825 <direct_filter_coeff index="1" type="double" size="[1 5]"> 34826 [0.1 0.2 0.4 0.2 0.1] 34827 </direct_filter_coeff> 34828 <dog_kernel_percent index="1" type="double" size="[1 1]"> 34829 [0.5] 34830 </dog_kernel_percent> 34831 </cell> 34832 <cell index="2" type="struct" size="[1 1]"> 34833 <iso index="1" type="double" size="[1 1]"> 34834 [100] 34835 </iso> 34836 <edge_thed index="1" type="double" size="[1 1]"> 34837 [3] 34838 </edge_thed> 34839 <src_wgt index="1" type="double" size="[1 1]"> 34840 [0] 34841 </src_wgt> 34842 <alpha_adp_en index="1" type="char" size="[1 1]"> 34843 [1] 34844 </alpha_adp_en> 34845 <local_alpha index="1" type="double" size="[1 1]"> 34846 [1] 34847 </local_alpha> 34848 <global_alpha index="1" type="double" size="[1 1]"> 34849 [1] 34850 </global_alpha> 34851 <noise_clip index="1" type="double" size="[1 8]"> 34852 [2 6 8 10 16 16 14 10] 34853 </noise_clip> 34854 <dog_clip_pos index="1" type="double" size="[1 8]"> 34855 [3 4 4 5 6 5 5 4] 34856 </dog_clip_pos> 34857 <dog_clip_neg index="1" type="double" size="[1 8]"> 34858 [3 4 4 5 6 5 5 4] 34859 </dog_clip_neg> 34860 <dog_alpha index="1" type="double" size="[1 8]"> 34861 [0.15 0.2 0.3 0.4 0.4 0.3 0.2 0.2] 34862 </dog_alpha> 34863 <direct_filter_coeff index="1" type="double" size="[1 5]"> 34864 [0.1 0.2 0.4 0.2 0.1] 34865 </direct_filter_coeff> 34866 <dog_kernel_percent index="1" type="double" size="[1 1]"> 34867 [0.5] 34868 </dog_kernel_percent> 34869 </cell> 34870 <cell index="3" type="struct" size="[1 1]"> 34871 <iso index="1" type="double" size="[1 1]"> 34872 [200] 34873 </iso> 34874 <edge_thed index="1" type="double" size="[1 1]"> 34875 [3] 34876 </edge_thed> 34877 <src_wgt index="1" type="double" size="[1 1]"> 34878 [0] 34879 </src_wgt> 34880 <alpha_adp_en index="1" type="char" size="[1 1]"> 34881 [1] 34882 </alpha_adp_en> 34883 <local_alpha index="1" type="double" size="[1 1]"> 34884 [1] 34885 </local_alpha> 34886 <global_alpha index="1" type="double" size="[1 1]"> 34887 [1] 34888 </global_alpha> 34889 <noise_clip index="1" type="double" size="[1 8]"> 34890 [4 8 16 24 24 16 16 16] 34891 </noise_clip> 34892 <dog_clip_pos index="1" type="double" size="[1 8]"> 34893 [5 6 6 7 8 7 7 6] 34894 </dog_clip_pos> 34895 <dog_clip_neg index="1" type="double" size="[1 8]"> 34896 [5 6 6 7 8 7 7 6] 34897 </dog_clip_neg> 34898 <dog_alpha index="1" type="double" size="[1 8]"> 34899 [0.15 0.2 0.3 0.4 0.4 0.3 0.2 0.2] 34900 </dog_alpha> 34901 <direct_filter_coeff index="1" type="double" size="[1 5]"> 34902 [0.1 0.2 0.4 0.2 0.1] 34903 </direct_filter_coeff> 34904 <dog_kernel_percent index="1" type="double" size="[1 1]"> 34905 [0.5] 34906 </dog_kernel_percent> 34907 </cell> 34908 <cell index="4" type="struct" size="[1 1]"> 34909 <iso index="1" type="double" size="[1 1]"> 34910 [400] 34911 </iso> 34912 <edge_thed index="1" type="double" size="[1 1]"> 34913 [24] 34914 </edge_thed> 34915 <src_wgt index="1" type="double" size="[1 1]"> 34916 [0] 34917 </src_wgt> 34918 <alpha_adp_en index="1" type="char" size="[1 1]"> 34919 [1] 34920 </alpha_adp_en> 34921 <local_alpha index="1" type="double" size="[1 1]"> 34922 [1] 34923 </local_alpha> 34924 <global_alpha index="1" type="double" size="[1 1]"> 34925 [1] 34926 </global_alpha> 34927 <noise_clip index="1" type="double" size="[1 8]"> 34928 [4 8 16 32 32 24 16 16] 34929 </noise_clip> 34930 <dog_clip_pos index="1" type="double" size="[1 8]"> 34931 [5 6 6 8 9 8 7 6] 34932 </dog_clip_pos> 34933 <dog_clip_neg index="1" type="double" size="[1 8]"> 34934 [5 6 6 8 9 8 7 6] 34935 </dog_clip_neg> 34936 <dog_alpha index="1" type="double" size="[1 8]"> 34937 [0.3 0.4 0.5 0.5 0.5 0.4 0.3 0.2] 34938 </dog_alpha> 34939 <direct_filter_coeff index="1" type="double" size="[1 5]"> 34940 [0.1 0.2 0.4 0.2 0.1] 34941 </direct_filter_coeff> 34942 <dog_kernel_percent index="1" type="double" size="[1 1]"> 34943 [0.5] 34944 </dog_kernel_percent> 34945 </cell> 34946 <cell index="5" type="struct" size="[1 1]"> 34947 <iso index="1" type="double" size="[1 1]"> 34948 [800] 34949 </iso> 34950 <edge_thed index="1" type="double" size="[1 1]"> 34951 [64] 34952 </edge_thed> 34953 <src_wgt index="1" type="double" size="[1 1]"> 34954 [0] 34955 </src_wgt> 34956 <alpha_adp_en index="1" type="char" size="[1 1]"> 34957 [1] 34958 </alpha_adp_en> 34959 <local_alpha index="1" type="double" size="[1 1]"> 34960 [1] 34961 </local_alpha> 34962 <global_alpha index="1" type="double" size="[1 1]"> 34963 [1] 34964 </global_alpha> 34965 <noise_clip index="1" type="double" size="[1 8]"> 34966 [4 8 16 32 32 24 16 16] 34967 </noise_clip> 34968 <dog_clip_pos index="1" type="double" size="[1 8]"> 34969 [6 8 8 8 8 8 8 8] 34970 </dog_clip_pos> 34971 <dog_clip_neg index="1" type="double" size="[1 8]"> 34972 [6 8 8 8 8 8 8 8] 34973 </dog_clip_neg> 34974 <dog_alpha index="1" type="double" size="[1 8]"> 34975 [0.5 0.6 0.6 0.6 0.6 0.6 0.5 0.4] 34976 </dog_alpha> 34977 <direct_filter_coeff index="1" type="double" size="[1 5]"> 34978 [0.1 0.2 0.4 0.2 0.1] 34979 </direct_filter_coeff> 34980 <dog_kernel_percent index="1" type="double" size="[1 1]"> 34981 [0.5] 34982 </dog_kernel_percent> 34983 </cell> 34984 <cell index="6" type="struct" size="[1 1]"> 34985 <iso index="1" type="double" size="[1 1]"> 34986 [1600] 34987 </iso> 34988 <edge_thed index="1" type="double" size="[1 1]"> 34989 [5] 34990 </edge_thed> 34991 <src_wgt index="1" type="double" size="[1 1]"> 34992 [0] 34993 </src_wgt> 34994 <alpha_adp_en index="1" type="char" size="[1 1]"> 34995 [1] 34996 </alpha_adp_en> 34997 <local_alpha index="1" type="double" size="[1 1]"> 34998 [1] 34999 </local_alpha> 35000 <global_alpha index="1" type="double" size="[1 1]"> 35001 [1] 35002 </global_alpha> 35003 <noise_clip index="1" type="double" size="[1 8]"> 35004 [4 8 16 24 24 16 16 16] 35005 </noise_clip> 35006 <dog_clip_pos index="1" type="double" size="[1 8]"> 35007 [6 8 8 8 8 8 8 8] 35008 </dog_clip_pos> 35009 <dog_clip_neg index="1" type="double" size="[1 8]"> 35010 [6 8 8 8 8 8 8 8] 35011 </dog_clip_neg> 35012 <dog_alpha index="1" type="double" size="[1 8]"> 35013 [0.5 0.5 0.6 0.6 0.6 0.5 0.5 0.5] 35014 </dog_alpha> 35015 <direct_filter_coeff index="1" type="double" size="[1 5]"> 35016 [0.1 0.2 0.4 0.2 0.1] 35017 </direct_filter_coeff> 35018 <dog_kernel_percent index="1" type="double" size="[1 1]"> 35019 [0.5] 35020 </dog_kernel_percent> 35021 </cell> 35022 <cell index="7" type="struct" size="[1 1]"> 35023 <iso index="1" type="double" size="[1 1]"> 35024 [3200] 35025 </iso> 35026 <edge_thed index="1" type="double" size="[1 1]"> 35027 [5] 35028 </edge_thed> 35029 <src_wgt index="1" type="double" size="[1 1]"> 35030 [0] 35031 </src_wgt> 35032 <alpha_adp_en index="1" type="char" size="[1 1]"> 35033 [1] 35034 </alpha_adp_en> 35035 <local_alpha index="1" type="double" size="[1 1]"> 35036 [1] 35037 </local_alpha> 35038 <global_alpha index="1" type="double" size="[1 1]"> 35039 [1] 35040 </global_alpha> 35041 <noise_clip index="1" type="double" size="[1 8]"> 35042 [4 8 16 24 24 16 16 16] 35043 </noise_clip> 35044 <dog_clip_pos index="1" type="double" size="[1 8]"> 35045 [6 8 8 8 8 8 8 8] 35046 </dog_clip_pos> 35047 <dog_clip_neg index="1" type="double" size="[1 8]"> 35048 [6 8 8 8 8 8 8 8] 35049 </dog_clip_neg> 35050 <dog_alpha index="1" type="double" size="[1 8]"> 35051 [0.9 0.9 1 1 1 0.8 0.6 0.5] 35052 </dog_alpha> 35053 <direct_filter_coeff index="1" type="double" size="[1 5]"> 35054 [0.1 0.2 0.4 0.2 0.1] 35055 </direct_filter_coeff> 35056 <dog_kernel_percent index="1" type="double" size="[1 1]"> 35057 [0.5] 35058 </dog_kernel_percent> 35059 </cell> 35060 <cell index="8" type="struct" size="[1 1]"> 35061 <iso index="1" type="double" size="[1 1]"> 35062 [6400] 35063 </iso> 35064 <edge_thed index="1" type="double" size="[1 1]"> 35065 [5] 35066 </edge_thed> 35067 <src_wgt index="1" type="double" size="[1 1]"> 35068 [0] 35069 </src_wgt> 35070 <alpha_adp_en index="1" type="char" size="[1 1]"> 35071 [1] 35072 </alpha_adp_en> 35073 <local_alpha index="1" type="double" size="[1 1]"> 35074 [1] 35075 </local_alpha> 35076 <global_alpha index="1" type="double" size="[1 1]"> 35077 [1] 35078 </global_alpha> 35079 <noise_clip index="1" type="double" size="[1 8]"> 35080 [4 8 16 24 24 16 16 16] 35081 </noise_clip> 35082 <dog_clip_pos index="1" type="double" size="[1 8]"> 35083 [6 8 8 8 8 8 8 8] 35084 </dog_clip_pos> 35085 <dog_clip_neg index="1" type="double" size="[1 8]"> 35086 [6 8 8 8 8 8 8 8] 35087 </dog_clip_neg> 35088 <dog_alpha index="1" type="double" size="[1 8]"> 35089 [0.9 0.9 1 1 1 0.8 0.6 0.5] 35090 </dog_alpha> 35091 <direct_filter_coeff index="1" type="double" size="[1 5]"> 35092 [0.1 0.2 0.4 0.2 0.1] 35093 </direct_filter_coeff> 35094 <dog_kernel_percent index="1" type="double" size="[1 1]"> 35095 [0.5] 35096 </dog_kernel_percent> 35097 </cell> 35098 <cell index="9" type="struct" size="[1 1]"> 35099 <iso index="1" type="double" size="[1 1]"> 35100 [12800] 35101 </iso> 35102 <edge_thed index="1" type="double" size="[1 1]"> 35103 [5] 35104 </edge_thed> 35105 <src_wgt index="1" type="double" size="[1 1]"> 35106 [0] 35107 </src_wgt> 35108 <alpha_adp_en index="1" type="char" size="[1 1]"> 35109 [1] 35110 </alpha_adp_en> 35111 <local_alpha index="1" type="double" size="[1 1]"> 35112 [1] 35113 </local_alpha> 35114 <global_alpha index="1" type="double" size="[1 1]"> 35115 [1] 35116 </global_alpha> 35117 <noise_clip index="1" type="double" size="[1 8]"> 35118 [4 8 16 24 24 16 16 16] 35119 </noise_clip> 35120 <dog_clip_pos index="1" type="double" size="[1 8]"> 35121 [6 8 8 8 8 8 8 8] 35122 </dog_clip_pos> 35123 <dog_clip_neg index="1" type="double" size="[1 8]"> 35124 [6 8 8 8 8 8 8 8] 35125 </dog_clip_neg> 35126 <dog_alpha index="1" type="double" size="[1 8]"> 35127 [0.9 0.9 1 1 1 0.8 0.6 0.5] 35128 </dog_alpha> 35129 <direct_filter_coeff index="1" type="double" size="[1 5]"> 35130 [0.1 0.2 0.4 0.2 0.1] 35131 </direct_filter_coeff> 35132 <dog_kernel_percent index="1" type="double" size="[1 1]"> 35133 [0.5] 35134 </dog_kernel_percent> 35135 </cell> 35136 <cell index="10" type="struct" size="[1 1]"> 35137 <iso index="1" type="double" size="[1 1]"> 35138 [25600] 35139 </iso> 35140 <edge_thed index="1" type="double" size="[1 1]"> 35141 [5] 35142 </edge_thed> 35143 <src_wgt index="1" type="double" size="[1 1]"> 35144 [0] 35145 </src_wgt> 35146 <alpha_adp_en index="1" type="char" size="[1 1]"> 35147 [1] 35148 </alpha_adp_en> 35149 <local_alpha index="1" type="double" size="[1 1]"> 35150 [1] 35151 </local_alpha> 35152 <global_alpha index="1" type="double" size="[1 1]"> 35153 [1] 35154 </global_alpha> 35155 <noise_clip index="1" type="double" size="[1 8]"> 35156 [4 8 16 24 24 16 16 16] 35157 </noise_clip> 35158 <dog_clip_pos index="1" type="double" size="[1 8]"> 35159 [6 8 8 8 8 8 8 8] 35160 </dog_clip_pos> 35161 <dog_clip_neg index="1" type="double" size="[1 8]"> 35162 [6 8 8 8 8 8 8 8] 35163 </dog_clip_neg> 35164 <dog_alpha index="1" type="double" size="[1 8]"> 35165 [0.9 0.9 1 1 1 0.8 0.6 0.5] 35166 </dog_alpha> 35167 <direct_filter_coeff index="1" type="double" size="[1 5]"> 35168 [0.1 0.2 0.4 0.2 0.1] 35169 </direct_filter_coeff> 35170 <dog_kernel_percent index="1" type="double" size="[1 1]"> 35171 [0.5] 35172 </dog_kernel_percent> 35173 </cell> 35174 <cell index="11" type="struct" size="[1 1]"> 35175 <iso index="1" type="double" size="[1 1]"> 35176 [51200] 35177 </iso> 35178 <edge_thed index="1" type="double" size="[1 1]"> 35179 [5] 35180 </edge_thed> 35181 <src_wgt index="1" type="double" size="[1 1]"> 35182 [0] 35183 </src_wgt> 35184 <alpha_adp_en index="1" type="char" size="[1 1]"> 35185 [1] 35186 </alpha_adp_en> 35187 <local_alpha index="1" type="double" size="[1 1]"> 35188 [1] 35189 </local_alpha> 35190 <global_alpha index="1" type="double" size="[1 1]"> 35191 [1] 35192 </global_alpha> 35193 <noise_clip index="1" type="double" size="[1 8]"> 35194 [4 8 16 24 24 16 16 16] 35195 </noise_clip> 35196 <dog_clip_pos index="1" type="double" size="[1 8]"> 35197 [6 8 8 8 8 8 8 8] 35198 </dog_clip_pos> 35199 <dog_clip_neg index="1" type="double" size="[1 8]"> 35200 [6 8 8 8 8 8 8 8] 35201 </dog_clip_neg> 35202 <dog_alpha index="1" type="double" size="[1 8]"> 35203 [0.9 0.9 1 1 1 0.8 0.6 0.5] 35204 </dog_alpha> 35205 <direct_filter_coeff index="1" type="double" size="[1 5]"> 35206 [0.1 0.2 0.4 0.2 0.1] 35207 </direct_filter_coeff> 35208 <dog_kernel_percent index="1" type="double" size="[1 1]"> 35209 [0.5] 35210 </dog_kernel_percent> 35211 </cell> 35212 <cell index="12" type="struct" size="[1 1]"> 35213 <iso index="1" type="double" size="[1 1]"> 35214 [102400] 35215 </iso> 35216 <edge_thed index="1" type="double" size="[1 1]"> 35217 [5] 35218 </edge_thed> 35219 <src_wgt index="1" type="double" size="[1 1]"> 35220 [0] 35221 </src_wgt> 35222 <alpha_adp_en index="1" type="char" size="[1 1]"> 35223 [1] 35224 </alpha_adp_en> 35225 <local_alpha index="1" type="double" size="[1 1]"> 35226 [1] 35227 </local_alpha> 35228 <global_alpha index="1" type="double" size="[1 1]"> 35229 [1] 35230 </global_alpha> 35231 <noise_clip index="1" type="double" size="[1 8]"> 35232 [4 8 16 24 24 16 16 16] 35233 </noise_clip> 35234 <dog_clip_pos index="1" type="double" size="[1 8]"> 35235 [6 8 8 8 8 8 8 8] 35236 </dog_clip_pos> 35237 <dog_clip_neg index="1" type="double" size="[1 8]"> 35238 [6 8 8 8 8 8 8 8] 35239 </dog_clip_neg> 35240 <dog_alpha index="1" type="double" size="[1 8]"> 35241 [0.9 0.9 1 1 1 0.8 0.6 0.5] 35242 </dog_alpha> 35243 <direct_filter_coeff index="1" type="double" size="[1 5]"> 35244 [0.1 0.2 0.4 0.2 0.1] 35245 </direct_filter_coeff> 35246 <dog_kernel_percent index="1" type="double" size="[1 1]"> 35247 [0.5] 35248 </dog_kernel_percent> 35249 </cell> 35250 <cell index="13" type="struct" size="[1 1]"> 35251 <iso index="1" type="double" size="[1 1]"> 35252 [204800] 35253 </iso> 35254 <edge_thed index="1" type="double" size="[1 1]"> 35255 [5] 35256 </edge_thed> 35257 <src_wgt index="1" type="double" size="[1 1]"> 35258 [0] 35259 </src_wgt> 35260 <alpha_adp_en index="1" type="char" size="[1 1]"> 35261 [1] 35262 </alpha_adp_en> 35263 <local_alpha index="1" type="double" size="[1 1]"> 35264 [1] 35265 </local_alpha> 35266 <global_alpha index="1" type="double" size="[1 1]"> 35267 [1] 35268 </global_alpha> 35269 <noise_clip index="1" type="double" size="[1 8]"> 35270 [4 8 16 24 24 16 16 16] 35271 </noise_clip> 35272 <dog_clip_pos index="1" type="double" size="[1 8]"> 35273 [6 8 8 8 8 8 8 8] 35274 </dog_clip_pos> 35275 <dog_clip_neg index="1" type="double" size="[1 8]"> 35276 [6 8 8 8 8 8 8 8] 35277 </dog_clip_neg> 35278 <dog_alpha index="1" type="double" size="[1 8]"> 35279 [0.9 0.9 1 1 1 0.8 0.6 0.5] 35280 </dog_alpha> 35281 <direct_filter_coeff index="1" type="double" size="[1 5]"> 35282 [0.1 0.2 0.4 0.2 0.1] 35283 </direct_filter_coeff> 35284 <dog_kernel_percent index="1" type="double" size="[1 1]"> 35285 [0.5] 35286 </dog_kernel_percent> 35287 </cell> 35288 </EDGEFILTER_ISO> 35289 </cell> 35290 </Setting> 35291 </cell> 35292 <cell index="1" type="struct" size="[1 1]"> 35293 <Name index="1" type="char" size="[1 8]"> 35294 gray 35295 </Name> 35296 <dog_kernel_l index="1" type="double" size="[5 5]"> 35297 [-0.0625 -0.109375 -0.140625 -0.109375 -0.0625 35298 -0.109375 0.078125 0.234375 0.078125 -0.109375 35299 -0.140625 0.234375 0.4375 0.234375 -0.140625 35300 -0.109375 0.078125 0.234375 0.078125 -0.109375 35301 -0.0625 -0.109375 -0.140625 -0.109375 -0.0625] 35302 </dog_kernel_l> 35303 <dog_kernel_h index="1" type="double" size="[5 5]"> 35304 [-0.0625 -0.109375 -0.140625 -0.109375 -0.0625 35305 -0.109375 0.078125 0.234375 0.078125 -0.109375 35306 -0.140625 0.234375 0.4375 0.234375 -0.140625 35307 -0.109375 0.078125 0.234375 0.078125 -0.109375 35308 -0.0625 -0.109375 -0.140625 -0.109375 -0.0625] 35309 </dog_kernel_h> 35310 <Setting index="1" type="cell" size="[1 2]"> 35311 <cell index="1" type="struct" size="[1 1]"> 35312 <SNR_Mode index="1" type="char" size="[1 4]"> 35313 LSNR 35314 </SNR_Mode> 35315 <Sensor_Mode index="1" type="char" size="[1 8]"> 35316 lcg 35317 </Sensor_Mode> 35318 <EDGEFILTER_ISO index="1" type="cell" size="[1 13]"> 35319 <cell index="1" type="struct" size="[1 1]"> 35320 <iso index="1" type="double" size="[1 1]"> 35321 [50] 35322 </iso> 35323 <edge_thed index="1" type="double" size="[1 1]"> 35324 [3] 35325 </edge_thed> 35326 <src_wgt index="1" type="double" size="[1 1]"> 35327 [0] 35328 </src_wgt> 35329 <alpha_adp_en index="1" type="char" size="[1 1]"> 35330 [1] 35331 </alpha_adp_en> 35332 <local_alpha index="1" type="double" size="[1 1]"> 35333 [1] 35334 </local_alpha> 35335 <global_alpha index="1" type="double" size="[1 1]"> 35336 [1] 35337 </global_alpha> 35338 <noise_clip index="1" type="double" size="[1 8]"> 35339 [2 6 8 10 16 16 14 10] 35340 </noise_clip> 35341 <dog_clip_pos index="1" type="double" size="[1 8]"> 35342 [3 4 4 5 6 5 5 4] 35343 </dog_clip_pos> 35344 <dog_clip_neg index="1" type="double" size="[1 8]"> 35345 [3 4 4 5 6 5 5 4] 35346 </dog_clip_neg> 35347 <dog_alpha index="1" type="double" size="[1 8]"> 35348 [0.15 0.2 0.3 0.4 0.4 0.3 0.2 0.2] 35349 </dog_alpha> 35350 <direct_filter_coeff index="1" type="double" size="[1 5]"> 35351 [0.1 0.2 0.4 0.2 0.1] 35352 </direct_filter_coeff> 35353 <dog_kernel_percent index="1" type="double" size="[1 1]"> 35354 [0.5] 35355 </dog_kernel_percent> 35356 </cell> 35357 <cell index="2" type="struct" size="[1 1]"> 35358 <iso index="1" type="double" size="[1 1]"> 35359 [100] 35360 </iso> 35361 <edge_thed index="1" type="double" size="[1 1]"> 35362 [3] 35363 </edge_thed> 35364 <src_wgt index="1" type="double" size="[1 1]"> 35365 [0] 35366 </src_wgt> 35367 <alpha_adp_en index="1" type="char" size="[1 1]"> 35368 [1] 35369 </alpha_adp_en> 35370 <local_alpha index="1" type="double" size="[1 1]"> 35371 [1] 35372 </local_alpha> 35373 <global_alpha index="1" type="double" size="[1 1]"> 35374 [1] 35375 </global_alpha> 35376 <noise_clip index="1" type="double" size="[1 8]"> 35377 [2 6 8 10 16 16 14 10] 35378 </noise_clip> 35379 <dog_clip_pos index="1" type="double" size="[1 8]"> 35380 [3 4 4 5 6 5 5 4] 35381 </dog_clip_pos> 35382 <dog_clip_neg index="1" type="double" size="[1 8]"> 35383 [3 4 4 5 6 5 5 4] 35384 </dog_clip_neg> 35385 <dog_alpha index="1" type="double" size="[1 8]"> 35386 [0.15 0.2 0.3 0.4 0.4 0.3 0.2 0.2] 35387 </dog_alpha> 35388 <direct_filter_coeff index="1" type="double" size="[1 5]"> 35389 [0.1 0.2 0.4 0.2 0.1] 35390 </direct_filter_coeff> 35391 <dog_kernel_percent index="1" type="double" size="[1 1]"> 35392 [0.5] 35393 </dog_kernel_percent> 35394 </cell> 35395 <cell index="3" type="struct" size="[1 1]"> 35396 <iso index="1" type="double" size="[1 1]"> 35397 [200] 35398 </iso> 35399 <edge_thed index="1" type="double" size="[1 1]"> 35400 [3] 35401 </edge_thed> 35402 <src_wgt index="1" type="double" size="[1 1]"> 35403 [0] 35404 </src_wgt> 35405 <alpha_adp_en index="1" type="char" size="[1 1]"> 35406 [1] 35407 </alpha_adp_en> 35408 <local_alpha index="1" type="double" size="[1 1]"> 35409 [1] 35410 </local_alpha> 35411 <global_alpha index="1" type="double" size="[1 1]"> 35412 [1] 35413 </global_alpha> 35414 <noise_clip index="1" type="double" size="[1 8]"> 35415 [4 8 16 24 24 16 16 16] 35416 </noise_clip> 35417 <dog_clip_pos index="1" type="double" size="[1 8]"> 35418 [5 6 6 7 8 7 7 6] 35419 </dog_clip_pos> 35420 <dog_clip_neg index="1" type="double" size="[1 8]"> 35421 [5 6 6 7 8 7 7 6] 35422 </dog_clip_neg> 35423 <dog_alpha index="1" type="double" size="[1 8]"> 35424 [0.15 0.2 0.3 0.4 0.4 0.3 0.2 0.2] 35425 </dog_alpha> 35426 <direct_filter_coeff index="1" type="double" size="[1 5]"> 35427 [0.1 0.2 0.4 0.2 0.1] 35428 </direct_filter_coeff> 35429 <dog_kernel_percent index="1" type="double" size="[1 1]"> 35430 [0.5] 35431 </dog_kernel_percent> 35432 </cell> 35433 <cell index="4" type="struct" size="[1 1]"> 35434 <iso index="1" type="double" size="[1 1]"> 35435 [400] 35436 </iso> 35437 <edge_thed index="1" type="double" size="[1 1]"> 35438 [24] 35439 </edge_thed> 35440 <src_wgt index="1" type="double" size="[1 1]"> 35441 [0] 35442 </src_wgt> 35443 <alpha_adp_en index="1" type="char" size="[1 1]"> 35444 [1] 35445 </alpha_adp_en> 35446 <local_alpha index="1" type="double" size="[1 1]"> 35447 [1] 35448 </local_alpha> 35449 <global_alpha index="1" type="double" size="[1 1]"> 35450 [1] 35451 </global_alpha> 35452 <noise_clip index="1" type="double" size="[1 8]"> 35453 [4 8 16 32 32 24 16 16] 35454 </noise_clip> 35455 <dog_clip_pos index="1" type="double" size="[1 8]"> 35456 [5 6 6 8 9 8 7 6] 35457 </dog_clip_pos> 35458 <dog_clip_neg index="1" type="double" size="[1 8]"> 35459 [5 6 6 8 9 8 7 6] 35460 </dog_clip_neg> 35461 <dog_alpha index="1" type="double" size="[1 8]"> 35462 [0.3 0.4 0.5 0.5 0.5 0.4 0.3 0.2] 35463 </dog_alpha> 35464 <direct_filter_coeff index="1" type="double" size="[1 5]"> 35465 [0.1 0.2 0.4 0.2 0.1] 35466 </direct_filter_coeff> 35467 <dog_kernel_percent index="1" type="double" size="[1 1]"> 35468 [0.5] 35469 </dog_kernel_percent> 35470 </cell> 35471 <cell index="5" type="struct" size="[1 1]"> 35472 <iso index="1" type="double" size="[1 1]"> 35473 [800] 35474 </iso> 35475 <edge_thed index="1" type="double" size="[1 1]"> 35476 [32] 35477 </edge_thed> 35478 <src_wgt index="1" type="double" size="[1 1]"> 35479 [0] 35480 </src_wgt> 35481 <alpha_adp_en index="1" type="char" size="[1 1]"> 35482 [1] 35483 </alpha_adp_en> 35484 <local_alpha index="1" type="double" size="[1 1]"> 35485 [1] 35486 </local_alpha> 35487 <global_alpha index="1" type="double" size="[1 1]"> 35488 [1] 35489 </global_alpha> 35490 <noise_clip index="1" type="double" size="[1 8]"> 35491 [4 8 16 32 32 24 16 16] 35492 </noise_clip> 35493 <dog_clip_pos index="1" type="double" size="[1 8]"> 35494 [6 8 8 8 8 8 8 8] 35495 </dog_clip_pos> 35496 <dog_clip_neg index="1" type="double" size="[1 8]"> 35497 [6 8 8 8 8 8 8 8] 35498 </dog_clip_neg> 35499 <dog_alpha index="1" type="double" size="[1 8]"> 35500 [0.3 0.4 0.4 0.4 0.4 0.4 0.3 0.2] 35501 </dog_alpha> 35502 <direct_filter_coeff index="1" type="double" size="[1 5]"> 35503 [0.1 0.2 0.4 0.2 0.1] 35504 </direct_filter_coeff> 35505 <dog_kernel_percent index="1" type="double" size="[1 1]"> 35506 [0.5] 35507 </dog_kernel_percent> 35508 </cell> 35509 <cell index="6" type="struct" size="[1 1]"> 35510 <iso index="1" type="double" size="[1 1]"> 35511 [1600] 35512 </iso> 35513 <edge_thed index="1" type="double" size="[1 1]"> 35514 [24] 35515 </edge_thed> 35516 <src_wgt index="1" type="double" size="[1 1]"> 35517 [0] 35518 </src_wgt> 35519 <alpha_adp_en index="1" type="char" size="[1 1]"> 35520 [0] 35521 </alpha_adp_en> 35522 <local_alpha index="1" type="double" size="[1 1]"> 35523 [1] 35524 </local_alpha> 35525 <global_alpha index="1" type="double" size="[1 1]"> 35526 [1] 35527 </global_alpha> 35528 <noise_clip index="1" type="double" size="[1 8]"> 35529 [4 8 16 24 24 16 16 16] 35530 </noise_clip> 35531 <dog_clip_pos index="1" type="double" size="[1 8]"> 35532 [6 8 8 8 8 8 8 8] 35533 </dog_clip_pos> 35534 <dog_clip_neg index="1" type="double" size="[1 8]"> 35535 [6 8 8 8 8 8 8 8] 35536 </dog_clip_neg> 35537 <dog_alpha index="1" type="double" size="[1 8]"> 35538 [0.3 0.3 0.4 0.4 0.4 0.3 0.3 0.2] 35539 </dog_alpha> 35540 <direct_filter_coeff index="1" type="double" size="[1 5]"> 35541 [0.1 0.2 0.4 0.2 0.1] 35542 </direct_filter_coeff> 35543 <dog_kernel_percent index="1" type="double" size="[1 1]"> 35544 [0.5] 35545 </dog_kernel_percent> 35546 </cell> 35547 <cell index="7" type="struct" size="[1 1]"> 35548 <iso index="1" type="double" size="[1 1]"> 35549 [3200] 35550 </iso> 35551 <edge_thed index="1" type="double" size="[1 1]"> 35552 [24] 35553 </edge_thed> 35554 <src_wgt index="1" type="double" size="[1 1]"> 35555 [0] 35556 </src_wgt> 35557 <alpha_adp_en index="1" type="char" size="[1 1]"> 35558 [0] 35559 </alpha_adp_en> 35560 <local_alpha index="1" type="double" size="[1 1]"> 35561 [1] 35562 </local_alpha> 35563 <global_alpha index="1" type="double" size="[1 1]"> 35564 [1] 35565 </global_alpha> 35566 <noise_clip index="1" type="double" size="[1 8]"> 35567 [4 8 16 24 24 16 16 16] 35568 </noise_clip> 35569 <dog_clip_pos index="1" type="double" size="[1 8]"> 35570 [6 8 8 8 8 8 8 8] 35571 </dog_clip_pos> 35572 <dog_clip_neg index="1" type="double" size="[1 8]"> 35573 [6 8 8 8 8 8 8 8] 35574 </dog_clip_neg> 35575 <dog_alpha index="1" type="double" size="[1 8]"> 35576 [0.2 0.2 0.3 0.3 0.3 0.3 0.2 0.1] 35577 </dog_alpha> 35578 <direct_filter_coeff index="1" type="double" size="[1 5]"> 35579 [0.1 0.2 0.4 0.2 0.1] 35580 </direct_filter_coeff> 35581 <dog_kernel_percent index="1" type="double" size="[1 1]"> 35582 [0.5] 35583 </dog_kernel_percent> 35584 </cell> 35585 <cell index="8" type="struct" size="[1 1]"> 35586 <iso index="1" type="double" size="[1 1]"> 35587 [6400] 35588 </iso> 35589 <edge_thed index="1" type="double" size="[1 1]"> 35590 [20] 35591 </edge_thed> 35592 <src_wgt index="1" type="double" size="[1 1]"> 35593 [0] 35594 </src_wgt> 35595 <alpha_adp_en index="1" type="char" size="[1 1]"> 35596 [1] 35597 </alpha_adp_en> 35598 <local_alpha index="1" type="double" size="[1 1]"> 35599 [1] 35600 </local_alpha> 35601 <global_alpha index="1" type="double" size="[1 1]"> 35602 [1] 35603 </global_alpha> 35604 <noise_clip index="1" type="double" size="[1 8]"> 35605 [4 8 16 24 24 16 16 16] 35606 </noise_clip> 35607 <dog_clip_pos index="1" type="double" size="[1 8]"> 35608 [6 8 8 8 8 8 8 8] 35609 </dog_clip_pos> 35610 <dog_clip_neg index="1" type="double" size="[1 8]"> 35611 [6 8 8 8 8 8 8 8] 35612 </dog_clip_neg> 35613 <dog_alpha index="1" type="double" size="[1 8]"> 35614 [0.3 0.2 0.3 0.3 0.3 0.2 0.2 0.1] 35615 </dog_alpha> 35616 <direct_filter_coeff index="1" type="double" size="[1 5]"> 35617 [0.1 0.2 0.4 0.2 0.1] 35618 </direct_filter_coeff> 35619 <dog_kernel_percent index="1" type="double" size="[1 1]"> 35620 [0.5] 35621 </dog_kernel_percent> 35622 </cell> 35623 <cell index="9" type="struct" size="[1 1]"> 35624 <iso index="1" type="double" size="[1 1]"> 35625 [12800] 35626 </iso> 35627 <edge_thed index="1" type="double" size="[1 1]"> 35628 [5] 35629 </edge_thed> 35630 <src_wgt index="1" type="double" size="[1 1]"> 35631 [0] 35632 </src_wgt> 35633 <alpha_adp_en index="1" type="char" size="[1 1]"> 35634 [1] 35635 </alpha_adp_en> 35636 <local_alpha index="1" type="double" size="[1 1]"> 35637 [1] 35638 </local_alpha> 35639 <global_alpha index="1" type="double" size="[1 1]"> 35640 [1] 35641 </global_alpha> 35642 <noise_clip index="1" type="double" size="[1 8]"> 35643 [4 8 16 24 24 16 16 16] 35644 </noise_clip> 35645 <dog_clip_pos index="1" type="double" size="[1 8]"> 35646 [6 8 8 8 8 8 8 8] 35647 </dog_clip_pos> 35648 <dog_clip_neg index="1" type="double" size="[1 8]"> 35649 [6 8 8 8 8 8 8 8] 35650 </dog_clip_neg> 35651 <dog_alpha index="1" type="double" size="[1 8]"> 35652 [0.9 0.9 1 1 1 0.8 0.6 0.5] 35653 </dog_alpha> 35654 <direct_filter_coeff index="1" type="double" size="[1 5]"> 35655 [0.1 0.2 0.4 0.2 0.1] 35656 </direct_filter_coeff> 35657 <dog_kernel_percent index="1" type="double" size="[1 1]"> 35658 [0.5] 35659 </dog_kernel_percent> 35660 </cell> 35661 <cell index="10" type="struct" size="[1 1]"> 35662 <iso index="1" type="double" size="[1 1]"> 35663 [25600] 35664 </iso> 35665 <edge_thed index="1" type="double" size="[1 1]"> 35666 [5] 35667 </edge_thed> 35668 <src_wgt index="1" type="double" size="[1 1]"> 35669 [0] 35670 </src_wgt> 35671 <alpha_adp_en index="1" type="char" size="[1 1]"> 35672 [1] 35673 </alpha_adp_en> 35674 <local_alpha index="1" type="double" size="[1 1]"> 35675 [1] 35676 </local_alpha> 35677 <global_alpha index="1" type="double" size="[1 1]"> 35678 [1] 35679 </global_alpha> 35680 <noise_clip index="1" type="double" size="[1 8]"> 35681 [4 8 16 24 24 16 16 16] 35682 </noise_clip> 35683 <dog_clip_pos index="1" type="double" size="[1 8]"> 35684 [6 8 8 8 8 8 8 8] 35685 </dog_clip_pos> 35686 <dog_clip_neg index="1" type="double" size="[1 8]"> 35687 [6 8 8 8 8 8 8 8] 35688 </dog_clip_neg> 35689 <dog_alpha index="1" type="double" size="[1 8]"> 35690 [0.9 0.9 1 1 1 0.8 0.6 0.5] 35691 </dog_alpha> 35692 <direct_filter_coeff index="1" type="double" size="[1 5]"> 35693 [0.1 0.2 0.4 0.2 0.1] 35694 </direct_filter_coeff> 35695 <dog_kernel_percent index="1" type="double" size="[1 1]"> 35696 [0.5] 35697 </dog_kernel_percent> 35698 </cell> 35699 <cell index="11" type="struct" size="[1 1]"> 35700 <iso index="1" type="double" size="[1 1]"> 35701 [51200] 35702 </iso> 35703 <edge_thed index="1" type="double" size="[1 1]"> 35704 [5] 35705 </edge_thed> 35706 <src_wgt index="1" type="double" size="[1 1]"> 35707 [0] 35708 </src_wgt> 35709 <alpha_adp_en index="1" type="char" size="[1 1]"> 35710 [1] 35711 </alpha_adp_en> 35712 <local_alpha index="1" type="double" size="[1 1]"> 35713 [1] 35714 </local_alpha> 35715 <global_alpha index="1" type="double" size="[1 1]"> 35716 [1] 35717 </global_alpha> 35718 <noise_clip index="1" type="double" size="[1 8]"> 35719 [4 8 16 24 24 16 16 16] 35720 </noise_clip> 35721 <dog_clip_pos index="1" type="double" size="[1 8]"> 35722 [6 8 8 8 8 8 8 8] 35723 </dog_clip_pos> 35724 <dog_clip_neg index="1" type="double" size="[1 8]"> 35725 [6 8 8 8 8 8 8 8] 35726 </dog_clip_neg> 35727 <dog_alpha index="1" type="double" size="[1 8]"> 35728 [0.9 0.9 1 1 1 0.8 0.6 0.5] 35729 </dog_alpha> 35730 <direct_filter_coeff index="1" type="double" size="[1 5]"> 35731 [0.1 0.2 0.4 0.2 0.1] 35732 </direct_filter_coeff> 35733 <dog_kernel_percent index="1" type="double" size="[1 1]"> 35734 [0.5] 35735 </dog_kernel_percent> 35736 </cell> 35737 <cell index="12" type="struct" size="[1 1]"> 35738 <iso index="1" type="double" size="[1 1]"> 35739 [102400] 35740 </iso> 35741 <edge_thed index="1" type="double" size="[1 1]"> 35742 [5] 35743 </edge_thed> 35744 <src_wgt index="1" type="double" size="[1 1]"> 35745 [0] 35746 </src_wgt> 35747 <alpha_adp_en index="1" type="char" size="[1 1]"> 35748 [1] 35749 </alpha_adp_en> 35750 <local_alpha index="1" type="double" size="[1 1]"> 35751 [1] 35752 </local_alpha> 35753 <global_alpha index="1" type="double" size="[1 1]"> 35754 [1] 35755 </global_alpha> 35756 <noise_clip index="1" type="double" size="[1 8]"> 35757 [4 8 16 24 24 16 16 16] 35758 </noise_clip> 35759 <dog_clip_pos index="1" type="double" size="[1 8]"> 35760 [6 8 8 8 8 8 8 8] 35761 </dog_clip_pos> 35762 <dog_clip_neg index="1" type="double" size="[1 8]"> 35763 [6 8 8 8 8 8 8 8] 35764 </dog_clip_neg> 35765 <dog_alpha index="1" type="double" size="[1 8]"> 35766 [0.9 0.9 1 1 1 0.8 0.6 0.5] 35767 </dog_alpha> 35768 <direct_filter_coeff index="1" type="double" size="[1 5]"> 35769 [0.1 0.2 0.4 0.2 0.1] 35770 </direct_filter_coeff> 35771 <dog_kernel_percent index="1" type="double" size="[1 1]"> 35772 [0.5] 35773 </dog_kernel_percent> 35774 </cell> 35775 <cell index="13" type="struct" size="[1 1]"> 35776 <iso index="1" type="double" size="[1 1]"> 35777 [204800] 35778 </iso> 35779 <edge_thed index="1" type="double" size="[1 1]"> 35780 [5] 35781 </edge_thed> 35782 <src_wgt index="1" type="double" size="[1 1]"> 35783 [0] 35784 </src_wgt> 35785 <alpha_adp_en index="1" type="char" size="[1 1]"> 35786 [1] 35787 </alpha_adp_en> 35788 <local_alpha index="1" type="double" size="[1 1]"> 35789 [1] 35790 </local_alpha> 35791 <global_alpha index="1" type="double" size="[1 1]"> 35792 [1] 35793 </global_alpha> 35794 <noise_clip index="1" type="double" size="[1 8]"> 35795 [4 8 16 24 24 16 16 16] 35796 </noise_clip> 35797 <dog_clip_pos index="1" type="double" size="[1 8]"> 35798 [6 8 8 8 8 8 8 8] 35799 </dog_clip_pos> 35800 <dog_clip_neg index="1" type="double" size="[1 8]"> 35801 [6 8 8 8 8 8 8 8] 35802 </dog_clip_neg> 35803 <dog_alpha index="1" type="double" size="[1 8]"> 35804 [0.9 0.9 1 1 1 0.8 0.6 0.5] 35805 </dog_alpha> 35806 <direct_filter_coeff index="1" type="double" size="[1 5]"> 35807 [0.1 0.2 0.4 0.2 0.1] 35808 </direct_filter_coeff> 35809 <dog_kernel_percent index="1" type="double" size="[1 1]"> 35810 [0.5] 35811 </dog_kernel_percent> 35812 </cell> 35813 </EDGEFILTER_ISO> 35814 </cell> 35815 <cell index="2" type="struct" size="[1 1]"> 35816 <SNR_Mode index="1" type="char" size="[1 4]"> 35817 HSNR 35818 </SNR_Mode> 35819 <Sensor_Mode index="1" type="char" size="[1 8]"> 35820 hcg 35821 </Sensor_Mode> 35822 <EDGEFILTER_ISO index="1" type="cell" size="[1 13]"> 35823 <cell index="1" type="struct" size="[1 1]"> 35824 <iso index="1" type="double" size="[1 1]"> 35825 [50] 35826 </iso> 35827 <edge_thed index="1" type="double" size="[1 1]"> 35828 [3] 35829 </edge_thed> 35830 <src_wgt index="1" type="double" size="[1 1]"> 35831 [0] 35832 </src_wgt> 35833 <alpha_adp_en index="1" type="char" size="[1 1]"> 35834 [1] 35835 </alpha_adp_en> 35836 <local_alpha index="1" type="double" size="[1 1]"> 35837 [1] 35838 </local_alpha> 35839 <global_alpha index="1" type="double" size="[1 1]"> 35840 [1] 35841 </global_alpha> 35842 <noise_clip index="1" type="double" size="[1 8]"> 35843 [2 6 8 10 16 16 14 10] 35844 </noise_clip> 35845 <dog_clip_pos index="1" type="double" size="[1 8]"> 35846 [3 4 4 5 6 5 5 4] 35847 </dog_clip_pos> 35848 <dog_clip_neg index="1" type="double" size="[1 8]"> 35849 [3 4 4 5 6 5 5 4] 35850 </dog_clip_neg> 35851 <dog_alpha index="1" type="double" size="[1 8]"> 35852 [0.15 0.2 0.3 0.4 0.4 0.3 0.2 0.2] 35853 </dog_alpha> 35854 <direct_filter_coeff index="1" type="double" size="[1 5]"> 35855 [0.1 0.2 0.4 0.2 0.1] 35856 </direct_filter_coeff> 35857 <dog_kernel_percent index="1" type="double" size="[1 1]"> 35858 [0.5] 35859 </dog_kernel_percent> 35860 </cell> 35861 <cell index="2" type="struct" size="[1 1]"> 35862 <iso index="1" type="double" size="[1 1]"> 35863 [100] 35864 </iso> 35865 <edge_thed index="1" type="double" size="[1 1]"> 35866 [3] 35867 </edge_thed> 35868 <src_wgt index="1" type="double" size="[1 1]"> 35869 [0] 35870 </src_wgt> 35871 <alpha_adp_en index="1" type="char" size="[1 1]"> 35872 [1] 35873 </alpha_adp_en> 35874 <local_alpha index="1" type="double" size="[1 1]"> 35875 [1] 35876 </local_alpha> 35877 <global_alpha index="1" type="double" size="[1 1]"> 35878 [1] 35879 </global_alpha> 35880 <noise_clip index="1" type="double" size="[1 8]"> 35881 [2 6 8 10 16 16 14 10] 35882 </noise_clip> 35883 <dog_clip_pos index="1" type="double" size="[1 8]"> 35884 [3 4 4 5 6 5 5 4] 35885 </dog_clip_pos> 35886 <dog_clip_neg index="1" type="double" size="[1 8]"> 35887 [3 4 4 5 6 5 5 4] 35888 </dog_clip_neg> 35889 <dog_alpha index="1" type="double" size="[1 8]"> 35890 [0.15 0.2 0.3 0.4 0.4 0.3 0.2 0.2] 35891 </dog_alpha> 35892 <direct_filter_coeff index="1" type="double" size="[1 5]"> 35893 [0.1 0.2 0.4 0.2 0.1] 35894 </direct_filter_coeff> 35895 <dog_kernel_percent index="1" type="double" size="[1 1]"> 35896 [0.5] 35897 </dog_kernel_percent> 35898 </cell> 35899 <cell index="3" type="struct" size="[1 1]"> 35900 <iso index="1" type="double" size="[1 1]"> 35901 [200] 35902 </iso> 35903 <edge_thed index="1" type="double" size="[1 1]"> 35904 [3] 35905 </edge_thed> 35906 <src_wgt index="1" type="double" size="[1 1]"> 35907 [0] 35908 </src_wgt> 35909 <alpha_adp_en index="1" type="char" size="[1 1]"> 35910 [1] 35911 </alpha_adp_en> 35912 <local_alpha index="1" type="double" size="[1 1]"> 35913 [1] 35914 </local_alpha> 35915 <global_alpha index="1" type="double" size="[1 1]"> 35916 [1] 35917 </global_alpha> 35918 <noise_clip index="1" type="double" size="[1 8]"> 35919 [4 8 16 24 24 16 16 16] 35920 </noise_clip> 35921 <dog_clip_pos index="1" type="double" size="[1 8]"> 35922 [5 6 6 7 8 7 7 6] 35923 </dog_clip_pos> 35924 <dog_clip_neg index="1" type="double" size="[1 8]"> 35925 [5 6 6 7 8 7 7 6] 35926 </dog_clip_neg> 35927 <dog_alpha index="1" type="double" size="[1 8]"> 35928 [0.15 0.2 0.3 0.4 0.4 0.3 0.2 0.2] 35929 </dog_alpha> 35930 <direct_filter_coeff index="1" type="double" size="[1 5]"> 35931 [0.1 0.2 0.4 0.2 0.1] 35932 </direct_filter_coeff> 35933 <dog_kernel_percent index="1" type="double" size="[1 1]"> 35934 [0.5] 35935 </dog_kernel_percent> 35936 </cell> 35937 <cell index="4" type="struct" size="[1 1]"> 35938 <iso index="1" type="double" size="[1 1]"> 35939 [400] 35940 </iso> 35941 <edge_thed index="1" type="double" size="[1 1]"> 35942 [24] 35943 </edge_thed> 35944 <src_wgt index="1" type="double" size="[1 1]"> 35945 [0] 35946 </src_wgt> 35947 <alpha_adp_en index="1" type="char" size="[1 1]"> 35948 [1] 35949 </alpha_adp_en> 35950 <local_alpha index="1" type="double" size="[1 1]"> 35951 [1] 35952 </local_alpha> 35953 <global_alpha index="1" type="double" size="[1 1]"> 35954 [1] 35955 </global_alpha> 35956 <noise_clip index="1" type="double" size="[1 8]"> 35957 [4 8 16 32 32 24 16 16] 35958 </noise_clip> 35959 <dog_clip_pos index="1" type="double" size="[1 8]"> 35960 [5 6 6 8 9 8 7 6] 35961 </dog_clip_pos> 35962 <dog_clip_neg index="1" type="double" size="[1 8]"> 35963 [5 6 6 8 9 8 7 6] 35964 </dog_clip_neg> 35965 <dog_alpha index="1" type="double" size="[1 8]"> 35966 [0.3 0.4 0.5 0.5 0.5 0.4 0.3 0.2] 35967 </dog_alpha> 35968 <direct_filter_coeff index="1" type="double" size="[1 5]"> 35969 [0.1 0.2 0.4 0.2 0.1] 35970 </direct_filter_coeff> 35971 <dog_kernel_percent index="1" type="double" size="[1 1]"> 35972 [0.5] 35973 </dog_kernel_percent> 35974 </cell> 35975 <cell index="5" type="struct" size="[1 1]"> 35976 <iso index="1" type="double" size="[1 1]"> 35977 [800] 35978 </iso> 35979 <edge_thed index="1" type="double" size="[1 1]"> 35980 [64] 35981 </edge_thed> 35982 <src_wgt index="1" type="double" size="[1 1]"> 35983 [0] 35984 </src_wgt> 35985 <alpha_adp_en index="1" type="char" size="[1 1]"> 35986 [1] 35987 </alpha_adp_en> 35988 <local_alpha index="1" type="double" size="[1 1]"> 35989 [1] 35990 </local_alpha> 35991 <global_alpha index="1" type="double" size="[1 1]"> 35992 [1] 35993 </global_alpha> 35994 <noise_clip index="1" type="double" size="[1 8]"> 35995 [4 8 16 32 32 24 16 16] 35996 </noise_clip> 35997 <dog_clip_pos index="1" type="double" size="[1 8]"> 35998 [6 8 8 8 8 8 8 8] 35999 </dog_clip_pos> 36000 <dog_clip_neg index="1" type="double" size="[1 8]"> 36001 [6 8 8 8 8 8 8 8] 36002 </dog_clip_neg> 36003 <dog_alpha index="1" type="double" size="[1 8]"> 36004 [0.5 0.6 0.6 0.6 0.6 0.6 0.5 0.4] 36005 </dog_alpha> 36006 <direct_filter_coeff index="1" type="double" size="[1 5]"> 36007 [0.1 0.2 0.4 0.2 0.1] 36008 </direct_filter_coeff> 36009 <dog_kernel_percent index="1" type="double" size="[1 1]"> 36010 [0.5] 36011 </dog_kernel_percent> 36012 </cell> 36013 <cell index="6" type="struct" size="[1 1]"> 36014 <iso index="1" type="double" size="[1 1]"> 36015 [1600] 36016 </iso> 36017 <edge_thed index="1" type="double" size="[1 1]"> 36018 [5] 36019 </edge_thed> 36020 <src_wgt index="1" type="double" size="[1 1]"> 36021 [0] 36022 </src_wgt> 36023 <alpha_adp_en index="1" type="char" size="[1 1]"> 36024 [1] 36025 </alpha_adp_en> 36026 <local_alpha index="1" type="double" size="[1 1]"> 36027 [1] 36028 </local_alpha> 36029 <global_alpha index="1" type="double" size="[1 1]"> 36030 [1] 36031 </global_alpha> 36032 <noise_clip index="1" type="double" size="[1 8]"> 36033 [4 8 16 24 24 16 16 16] 36034 </noise_clip> 36035 <dog_clip_pos index="1" type="double" size="[1 8]"> 36036 [6 8 8 8 8 8 8 8] 36037 </dog_clip_pos> 36038 <dog_clip_neg index="1" type="double" size="[1 8]"> 36039 [6 8 8 8 8 8 8 8] 36040 </dog_clip_neg> 36041 <dog_alpha index="1" type="double" size="[1 8]"> 36042 [0.5 0.5 0.6 0.6 0.6 0.5 0.5 0.5] 36043 </dog_alpha> 36044 <direct_filter_coeff index="1" type="double" size="[1 5]"> 36045 [0.1 0.2 0.4 0.2 0.1] 36046 </direct_filter_coeff> 36047 <dog_kernel_percent index="1" type="double" size="[1 1]"> 36048 [0.5] 36049 </dog_kernel_percent> 36050 </cell> 36051 <cell index="7" type="struct" size="[1 1]"> 36052 <iso index="1" type="double" size="[1 1]"> 36053 [3200] 36054 </iso> 36055 <edge_thed index="1" type="double" size="[1 1]"> 36056 [5] 36057 </edge_thed> 36058 <src_wgt index="1" type="double" size="[1 1]"> 36059 [0] 36060 </src_wgt> 36061 <alpha_adp_en index="1" type="char" size="[1 1]"> 36062 [1] 36063 </alpha_adp_en> 36064 <local_alpha index="1" type="double" size="[1 1]"> 36065 [1] 36066 </local_alpha> 36067 <global_alpha index="1" type="double" size="[1 1]"> 36068 [1] 36069 </global_alpha> 36070 <noise_clip index="1" type="double" size="[1 8]"> 36071 [4 8 16 24 24 16 16 16] 36072 </noise_clip> 36073 <dog_clip_pos index="1" type="double" size="[1 8]"> 36074 [6 8 8 8 8 8 8 8] 36075 </dog_clip_pos> 36076 <dog_clip_neg index="1" type="double" size="[1 8]"> 36077 [6 8 8 8 8 8 8 8] 36078 </dog_clip_neg> 36079 <dog_alpha index="1" type="double" size="[1 8]"> 36080 [0.9 0.9 1 1 1 0.8 0.6 0.5] 36081 </dog_alpha> 36082 <direct_filter_coeff index="1" type="double" size="[1 5]"> 36083 [0.1 0.2 0.4 0.2 0.1] 36084 </direct_filter_coeff> 36085 <dog_kernel_percent index="1" type="double" size="[1 1]"> 36086 [0.5] 36087 </dog_kernel_percent> 36088 </cell> 36089 <cell index="8" type="struct" size="[1 1]"> 36090 <iso index="1" type="double" size="[1 1]"> 36091 [6400] 36092 </iso> 36093 <edge_thed index="1" type="double" size="[1 1]"> 36094 [5] 36095 </edge_thed> 36096 <src_wgt index="1" type="double" size="[1 1]"> 36097 [0] 36098 </src_wgt> 36099 <alpha_adp_en index="1" type="char" size="[1 1]"> 36100 [1] 36101 </alpha_adp_en> 36102 <local_alpha index="1" type="double" size="[1 1]"> 36103 [1] 36104 </local_alpha> 36105 <global_alpha index="1" type="double" size="[1 1]"> 36106 [1] 36107 </global_alpha> 36108 <noise_clip index="1" type="double" size="[1 8]"> 36109 [4 8 16 24 24 16 16 16] 36110 </noise_clip> 36111 <dog_clip_pos index="1" type="double" size="[1 8]"> 36112 [6 8 8 8 8 8 8 8] 36113 </dog_clip_pos> 36114 <dog_clip_neg index="1" type="double" size="[1 8]"> 36115 [6 8 8 8 8 8 8 8] 36116 </dog_clip_neg> 36117 <dog_alpha index="1" type="double" size="[1 8]"> 36118 [0.9 0.9 1 1 1 0.8 0.6 0.5] 36119 </dog_alpha> 36120 <direct_filter_coeff index="1" type="double" size="[1 5]"> 36121 [0.1 0.2 0.4 0.2 0.1] 36122 </direct_filter_coeff> 36123 <dog_kernel_percent index="1" type="double" size="[1 1]"> 36124 [0.5] 36125 </dog_kernel_percent> 36126 </cell> 36127 <cell index="9" type="struct" size="[1 1]"> 36128 <iso index="1" type="double" size="[1 1]"> 36129 [12800] 36130 </iso> 36131 <edge_thed index="1" type="double" size="[1 1]"> 36132 [5] 36133 </edge_thed> 36134 <src_wgt index="1" type="double" size="[1 1]"> 36135 [0] 36136 </src_wgt> 36137 <alpha_adp_en index="1" type="char" size="[1 1]"> 36138 [1] 36139 </alpha_adp_en> 36140 <local_alpha index="1" type="double" size="[1 1]"> 36141 [1] 36142 </local_alpha> 36143 <global_alpha index="1" type="double" size="[1 1]"> 36144 [1] 36145 </global_alpha> 36146 <noise_clip index="1" type="double" size="[1 8]"> 36147 [4 8 16 24 24 16 16 16] 36148 </noise_clip> 36149 <dog_clip_pos index="1" type="double" size="[1 8]"> 36150 [6 8 8 8 8 8 8 8] 36151 </dog_clip_pos> 36152 <dog_clip_neg index="1" type="double" size="[1 8]"> 36153 [6 8 8 8 8 8 8 8] 36154 </dog_clip_neg> 36155 <dog_alpha index="1" type="double" size="[1 8]"> 36156 [0.9 0.9 1 1 1 0.8 0.6 0.5] 36157 </dog_alpha> 36158 <direct_filter_coeff index="1" type="double" size="[1 5]"> 36159 [0.1 0.2 0.4 0.2 0.1] 36160 </direct_filter_coeff> 36161 <dog_kernel_percent index="1" type="double" size="[1 1]"> 36162 [0.5] 36163 </dog_kernel_percent> 36164 </cell> 36165 <cell index="10" type="struct" size="[1 1]"> 36166 <iso index="1" type="double" size="[1 1]"> 36167 [25600] 36168 </iso> 36169 <edge_thed index="1" type="double" size="[1 1]"> 36170 [5] 36171 </edge_thed> 36172 <src_wgt index="1" type="double" size="[1 1]"> 36173 [0] 36174 </src_wgt> 36175 <alpha_adp_en index="1" type="char" size="[1 1]"> 36176 [1] 36177 </alpha_adp_en> 36178 <local_alpha index="1" type="double" size="[1 1]"> 36179 [1] 36180 </local_alpha> 36181 <global_alpha index="1" type="double" size="[1 1]"> 36182 [1] 36183 </global_alpha> 36184 <noise_clip index="1" type="double" size="[1 8]"> 36185 [4 8 16 24 24 16 16 16] 36186 </noise_clip> 36187 <dog_clip_pos index="1" type="double" size="[1 8]"> 36188 [6 8 8 8 8 8 8 8] 36189 </dog_clip_pos> 36190 <dog_clip_neg index="1" type="double" size="[1 8]"> 36191 [6 8 8 8 8 8 8 8] 36192 </dog_clip_neg> 36193 <dog_alpha index="1" type="double" size="[1 8]"> 36194 [0.9 0.9 1 1 1 0.8 0.6 0.5] 36195 </dog_alpha> 36196 <direct_filter_coeff index="1" type="double" size="[1 5]"> 36197 [0.1 0.2 0.4 0.2 0.1] 36198 </direct_filter_coeff> 36199 <dog_kernel_percent index="1" type="double" size="[1 1]"> 36200 [0.5] 36201 </dog_kernel_percent> 36202 </cell> 36203 <cell index="11" type="struct" size="[1 1]"> 36204 <iso index="1" type="double" size="[1 1]"> 36205 [51200] 36206 </iso> 36207 <edge_thed index="1" type="double" size="[1 1]"> 36208 [5] 36209 </edge_thed> 36210 <src_wgt index="1" type="double" size="[1 1]"> 36211 [0] 36212 </src_wgt> 36213 <alpha_adp_en index="1" type="char" size="[1 1]"> 36214 [1] 36215 </alpha_adp_en> 36216 <local_alpha index="1" type="double" size="[1 1]"> 36217 [1] 36218 </local_alpha> 36219 <global_alpha index="1" type="double" size="[1 1]"> 36220 [1] 36221 </global_alpha> 36222 <noise_clip index="1" type="double" size="[1 8]"> 36223 [4 8 16 24 24 16 16 16] 36224 </noise_clip> 36225 <dog_clip_pos index="1" type="double" size="[1 8]"> 36226 [6 8 8 8 8 8 8 8] 36227 </dog_clip_pos> 36228 <dog_clip_neg index="1" type="double" size="[1 8]"> 36229 [6 8 8 8 8 8 8 8] 36230 </dog_clip_neg> 36231 <dog_alpha index="1" type="double" size="[1 8]"> 36232 [0.9 0.9 1 1 1 0.8 0.6 0.5] 36233 </dog_alpha> 36234 <direct_filter_coeff index="1" type="double" size="[1 5]"> 36235 [0.1 0.2 0.4 0.2 0.1] 36236 </direct_filter_coeff> 36237 <dog_kernel_percent index="1" type="double" size="[1 1]"> 36238 [0.5] 36239 </dog_kernel_percent> 36240 </cell> 36241 <cell index="12" type="struct" size="[1 1]"> 36242 <iso index="1" type="double" size="[1 1]"> 36243 [102400] 36244 </iso> 36245 <edge_thed index="1" type="double" size="[1 1]"> 36246 [5] 36247 </edge_thed> 36248 <src_wgt index="1" type="double" size="[1 1]"> 36249 [0] 36250 </src_wgt> 36251 <alpha_adp_en index="1" type="char" size="[1 1]"> 36252 [1] 36253 </alpha_adp_en> 36254 <local_alpha index="1" type="double" size="[1 1]"> 36255 [1] 36256 </local_alpha> 36257 <global_alpha index="1" type="double" size="[1 1]"> 36258 [1] 36259 </global_alpha> 36260 <noise_clip index="1" type="double" size="[1 8]"> 36261 [4 8 16 24 24 16 16 16] 36262 </noise_clip> 36263 <dog_clip_pos index="1" type="double" size="[1 8]"> 36264 [6 8 8 8 8 8 8 8] 36265 </dog_clip_pos> 36266 <dog_clip_neg index="1" type="double" size="[1 8]"> 36267 [6 8 8 8 8 8 8 8] 36268 </dog_clip_neg> 36269 <dog_alpha index="1" type="double" size="[1 8]"> 36270 [0.9 0.9 1 1 1 0.8 0.6 0.5] 36271 </dog_alpha> 36272 <direct_filter_coeff index="1" type="double" size="[1 5]"> 36273 [0.1 0.2 0.4 0.2 0.1] 36274 </direct_filter_coeff> 36275 <dog_kernel_percent index="1" type="double" size="[1 1]"> 36276 [0.5] 36277 </dog_kernel_percent> 36278 </cell> 36279 <cell index="13" type="struct" size="[1 1]"> 36280 <iso index="1" type="double" size="[1 1]"> 36281 [204800] 36282 </iso> 36283 <edge_thed index="1" type="double" size="[1 1]"> 36284 [5] 36285 </edge_thed> 36286 <src_wgt index="1" type="double" size="[1 1]"> 36287 [0] 36288 </src_wgt> 36289 <alpha_adp_en index="1" type="char" size="[1 1]"> 36290 [1] 36291 </alpha_adp_en> 36292 <local_alpha index="1" type="double" size="[1 1]"> 36293 [1] 36294 </local_alpha> 36295 <global_alpha index="1" type="double" size="[1 1]"> 36296 [1] 36297 </global_alpha> 36298 <noise_clip index="1" type="double" size="[1 8]"> 36299 [4 8 16 24 24 16 16 16] 36300 </noise_clip> 36301 <dog_clip_pos index="1" type="double" size="[1 8]"> 36302 [6 8 8 8 8 8 8 8] 36303 </dog_clip_pos> 36304 <dog_clip_neg index="1" type="double" size="[1 8]"> 36305 [6 8 8 8 8 8 8 8] 36306 </dog_clip_neg> 36307 <dog_alpha index="1" type="double" size="[1 8]"> 36308 [0.9 0.9 1 1 1 0.8 0.6 0.5] 36309 </dog_alpha> 36310 <direct_filter_coeff index="1" type="double" size="[1 5]"> 36311 [0.1 0.2 0.4 0.2 0.1] 36312 </direct_filter_coeff> 36313 <dog_kernel_percent index="1" type="double" size="[1 1]"> 36314 [0.5] 36315 </dog_kernel_percent> 36316 </cell> 36317 </EDGEFILTER_ISO> 36318 </cell> 36319 </Setting> 36320 </cell> 36321 </Mode> 36322 </EDGEFILTER> 36323 <DEHAZE index="1" type="struct" size="[1 1]"> 36324 <Enable index="1" type="double" size="[1 1]"> 36325 [1] 36326 </Enable> 36327 <cfg_alpha_normal index="1" type="double" size="[1 1]"> 36328 [0.0000 ] 36329 </cfg_alpha_normal> 36330 <cfg_alpha_HDR index="1" type="double" size="[1 1]"> 36331 [0.0000 ] 36332 </cfg_alpha_HDR> 36333 <cfg_alpha_night index="1" type="double" size="[1 1]"> 36334 [0.0000 ] 36335 </cfg_alpha_night> 36336 <Dehaze_Setting index="1" type="cell" size="[1 3]"> 36337 <cell index="1" type="struct" size="[1 1]"> 36338 <Name index="1" type="char" size="[1 8]"> 36339 normal 36340 </Name> 36341 <Dehaze_en index="1" type="double" size="[1 1]"> 36342 [1] 36343 </Dehaze_en> 36344 <ISO index="1" type="double" size="[1 9]"> 36345 [50 100 200 400 800 1600 3200 6400 12800] 36346 </ISO> 36347 <dc_min_th index="1" type="double" size="[1 9]"> 36348 [64 64 64 64 64 64 64 64 64 ] 36349 </dc_min_th> 36350 <dc_max_th index="1" type="double" size="[1 9]"> 36351 [192 192 192 192 192 192 192 192 192] 36352 </dc_max_th> 36353 <yhist_th index="1" type="double" size="[1 9]"> 36354 [249 249 249 249 249 249 249 249 249] 36355 </yhist_th> 36356 <yblk_th index="1" type="double" size="[1 9]"> 36357 [0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020] 36358 </yblk_th> 36359 <dark_th index="1" type="double" size="[1 9]"> 36360 [250 250 250 250 250 250 250 250 250] 36361 </dark_th> 36362 <bright_min index="1" type="double" size="[1 9]"> 36363 [180 180 180 180 180 180 180 180 180 ] 36364 </bright_min> 36365 <bright_max index="1" type="double" size="[1 9]"> 36366 [240 240 240 240 240 240 240 240 240] 36367 </bright_max> 36368 <wt_max index="1" type="double" size="[1 9]"> 36369 [0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000] 36370 </wt_max> 36371 <air_min index="1" type="double" size="[1 9]"> 36372 [200 200 200 200 200 200 200 200 200] 36373 </air_min> 36374 <air_max index="1" type="double" size="[1 9]"> 36375 [250 250 250 250 250 250 250 250 250] 36376 </air_max> 36377 <tmax_base index="1" type="double" size="[1 9]"> 36378 [125 125 125 125 125 125 125 125 125 ] 36379 </tmax_base> 36380 <tmax_off index="1" type="double" size="[1 9]"> 36381 [0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000] 36382 </tmax_off> 36383 <tmax_max index="1" type="double" size="[1 9]"> 36384 [0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000] 36385 </tmax_max> 36386 <cfg_wt index="1" type="double" size="[1 9]"> 36387 [0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000] 36388 </cfg_wt> 36389 <cfg_air index="1" type="double" size="[1 9]"> 36390 [210 210 210 210 210 210 210 210 210 ] 36391 </cfg_air> 36392 <cfg_tmax index="1" type="double" size="[1 9]"> 36393 [0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000] 36394 </cfg_tmax> 36395 <dc_thed index="1" type="double" size="[1 9]"> 36396 [2 2 2 2 2 2 2 2 2] 36397 </dc_thed> 36398 <dc_weitcur index="1" type="double" size="[1 9]"> 36399 [1 1 1 1 1 1 1 1 1 ] 36400 </dc_weitcur> 36401 <air_thed index="1" type="double" size="[1 9]"> 36402 [2 2 2 2 2 2 2 2 2] 36403 </air_thed> 36404 <air_weitcur index="1" type="double" size="[1 9]"> 36405 [0.1400 0.1400 0.1400 0.1400 0.1400 0.1400 0.1400 0.1400 0.1400] 36406 </air_weitcur> 36407 <stab_fnum index="1" type="double" size="[1 1]"> 36408 [8.0] 36409 </stab_fnum> 36410 <sigma index="1" type="double" size="[1 1]"> 36411 [6.0000 ] 36412 </sigma> 36413 <wt_sigma index="1" type="double" size="[1 1]"> 36414 [8.0000 ] 36415 </wt_sigma> 36416 <air_sigma index="1" type="double" size="[1 1]"> 36417 [120.0000 ] 36418 </air_sigma> 36419 <tmax_sigma index="1" type="double" size="[1 1]"> 36420 [0.0100 ] 36421 </tmax_sigma> 36422 </cell> 36423 <cell index="2" type="struct" size="[1 1]"> 36424 <Name index="1" type="char" size="[1 8]"> 36425 HDR 36426 </Name> 36427 <Dehaze_en index="1" type="double" size="[1 1]"> 36428 [1] 36429 </Dehaze_en> 36430 <ISO index="1" type="double" size="[1 9]"> 36431 [50 100 200 400 800 1600 3200 6400 12800] 36432 </ISO> 36433 <dc_min_th index="1" type="double" size="[1 9]"> 36434 [64 64 64 64 64 64 64 64 64 ] 36435 </dc_min_th> 36436 <dc_max_th index="1" type="double" size="[1 9]"> 36437 [192 192 192 192 192 192 192 192 192] 36438 </dc_max_th> 36439 <yhist_th index="1" type="double" size="[1 9]"> 36440 [249 249 249 249 249 249 249 249 249] 36441 </yhist_th> 36442 <yblk_th index="1" type="double" size="[1 9]"> 36443 [0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020] 36444 </yblk_th> 36445 <dark_th index="1" type="double" size="[1 9]"> 36446 [250 250 250 250 250 250 250 250 250] 36447 </dark_th> 36448 <bright_min index="1" type="double" size="[1 9]"> 36449 [180 180 180 180 180 180 180 180 180 ] 36450 </bright_min> 36451 <bright_max index="1" type="double" size="[1 9]"> 36452 [240 240 240 240 240 240 240 240 240] 36453 </bright_max> 36454 <wt_max index="1" type="double" size="[1 9]"> 36455 [0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000] 36456 </wt_max> 36457 <air_min index="1" type="double" size="[1 9]"> 36458 [200 200 200 200 200 200 200 200 200] 36459 </air_min> 36460 <air_max index="1" type="double" size="[1 9]"> 36461 [250 250 250 250 250 250 250 250 250] 36462 </air_max> 36463 <tmax_base index="1" type="double" size="[1 9]"> 36464 [125 125 125 125 125 125 125 125 125 ] 36465 </tmax_base> 36466 <tmax_off index="1" type="double" size="[1 9]"> 36467 [0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000] 36468 </tmax_off> 36469 <tmax_max index="1" type="double" size="[1 9]"> 36470 [0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000] 36471 </tmax_max> 36472 <cfg_wt index="1" type="double" size="[1 9]"> 36473 [0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000] 36474 </cfg_wt> 36475 <cfg_air index="1" type="double" size="[1 9]"> 36476 [210 210 210 210 210 210 210 210 210 ] 36477 </cfg_air> 36478 <cfg_tmax index="1" type="double" size="[1 9]"> 36479 [0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000] 36480 </cfg_tmax> 36481 <dc_thed index="1" type="double" size="[1 9]"> 36482 [2 2 2 2 2 2 2 2 2] 36483 </dc_thed> 36484 <dc_weitcur index="1" type="double" size="[1 9]"> 36485 [1 1 1 1 1 1 1 1 1 ] 36486 </dc_weitcur> 36487 <air_thed index="1" type="double" size="[1 9]"> 36488 [2 2 2 2 2 2 2 2 2] 36489 </air_thed> 36490 <air_weitcur index="1" type="double" size="[1 9]"> 36491 [0.1400 0.1400 0.1400 0.1400 0.1400 0.1400 0.1400 0.1400 0.1400] 36492 </air_weitcur> 36493 <stab_fnum index="1" type="double" size="[1 1]"> 36494 [8.0] 36495 </stab_fnum> 36496 <sigma index="1" type="double" size="[1 1]"> 36497 [6.0000 ] 36498 </sigma> 36499 <wt_sigma index="1" type="double" size="[1 1]"> 36500 [8.0000 ] 36501 </wt_sigma> 36502 <air_sigma index="1" type="double" size="[1 1]"> 36503 [120.0000 ] 36504 </air_sigma> 36505 <tmax_sigma index="1" type="double" size="[1 1]"> 36506 [0.0100 ] 36507 </tmax_sigma> 36508 </cell> 36509 <cell index="3" type="struct" size="[1 1]"> 36510 <Name index="1" type="char" size="[1 8]"> 36511 night 36512 </Name> 36513 <Dehaze_en index="1" type="double" size="[1 1]"> 36514 [1] 36515 </Dehaze_en> 36516 <ISO index="1" type="double" size="[1 9]"> 36517 [50 100 200 400 800 1600 3200 6400 12800] 36518 </ISO> 36519 <dc_min_th index="1" type="double" size="[1 9]"> 36520 [64 64 64 64 64 64 64 64 64 ] 36521 </dc_min_th> 36522 <dc_max_th index="1" type="double" size="[1 9]"> 36523 [192 192 192 192 192 192 192 192 192] 36524 </dc_max_th> 36525 <yhist_th index="1" type="double" size="[1 9]"> 36526 [249 249 249 249 249 249 249 249 249] 36527 </yhist_th> 36528 <yblk_th index="1" type="double" size="[1 9]"> 36529 [0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020] 36530 </yblk_th> 36531 <dark_th index="1" type="double" size="[1 9]"> 36532 [250 250 250 250 250 250 250 250 250] 36533 </dark_th> 36534 <bright_min index="1" type="double" size="[1 9]"> 36535 [180 180 180 180 180 180 180 180 180 ] 36536 </bright_min> 36537 <bright_max index="1" type="double" size="[1 9]"> 36538 [240 240 240 240 240 240 240 240 240] 36539 </bright_max> 36540 <wt_max index="1" type="double" size="[1 9]"> 36541 [0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000] 36542 </wt_max> 36543 <air_min index="1" type="double" size="[1 9]"> 36544 [200 200 200 200 200 200 200 200 200] 36545 </air_min> 36546 <air_max index="1" type="double" size="[1 9]"> 36547 [250 250 250 250 250 250 250 250 250] 36548 </air_max> 36549 <tmax_base index="1" type="double" size="[1 9]"> 36550 [125 125 125 125 125 125 125 125 125 ] 36551 </tmax_base> 36552 <tmax_off index="1" type="double" size="[1 9]"> 36553 [0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000] 36554 </tmax_off> 36555 <tmax_max index="1" type="double" size="[1 9]"> 36556 [0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000] 36557 </tmax_max> 36558 <cfg_wt index="1" type="double" size="[1 9]"> 36559 [0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000] 36560 </cfg_wt> 36561 <cfg_air index="1" type="double" size="[1 9]"> 36562 [210 210 210 210 210 210 210 210 210 ] 36563 </cfg_air> 36564 <cfg_tmax index="1" type="double" size="[1 9]"> 36565 [0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000 0.2000] 36566 </cfg_tmax> 36567 <dc_thed index="1" type="double" size="[1 9]"> 36568 [2 2 2 2 2 2 2 2 2] 36569 </dc_thed> 36570 <dc_weitcur index="1" type="double" size="[1 9]"> 36571 [1 1 1 1 1 1 1 1 1 ] 36572 </dc_weitcur> 36573 <air_thed index="1" type="double" size="[1 9]"> 36574 [2 2 2 2 2 2 2 2 2] 36575 </air_thed> 36576 <air_weitcur index="1" type="double" size="[1 9]"> 36577 [0.1400 0.1400 0.1400 0.1400 0.1400 0.1400 0.1400 0.1400 0.1400] 36578 </air_weitcur> 36579 <stab_fnum index="1" type="double" size="[1 1]"> 36580 [8.0] 36581 </stab_fnum> 36582 <sigma index="1" type="double" size="[1 1]"> 36583 [6.0000 ] 36584 </sigma> 36585 <wt_sigma index="1" type="double" size="[1 1]"> 36586 [8.0000 ] 36587 </wt_sigma> 36588 <air_sigma index="1" type="double" size="[1 1]"> 36589 [120.0000 ] 36590 </air_sigma> 36591 <tmax_sigma index="1" type="double" size="[1 1]"> 36592 [0.0100 ] 36593 </tmax_sigma> 36594 </cell> 36595 </Dehaze_Setting> 36596 <Enhance_Setting index="1" type="cell" size="[1 3]"> 36597 <cell index="1" type="struct" size="[1 1]"> 36598 <Name index="1" type="char" size="[1 8]"> 36599 normal 36600 </Name> 36601 <Enhance_en index="1" type="double" size="[1 1]"> 36602 [1 ] 36603 </Enhance_en> 36604 <ISO index="1" type="double" size="[1 9]"> 36605 [50 100 200 400 800 1600 3200 6400 12800] 36606 </ISO> 36607 <enhance_value index="1" type="double" size="[1 9]"> 36608 [1.25 1.25 1.25 1.2 1.2 1.2 1.1 1.1 1] 36609 </enhance_value> 36610 </cell> 36611 <cell index="2" type="struct" size="[1 1]"> 36612 <Name index="1" type="char" size="[1 8]"> 36613 HDR 36614 </Name> 36615 <Enhance_en index="1" type="double" size="[1 1]"> 36616 [1 ] 36617 </Enhance_en> 36618 <ISO index="1" type="double" size="[1 9]"> 36619 [50 100 200 400 800 1600 3200 6400 12800] 36620 </ISO> 36621 <enhance_value index="1" type="double" size="[1 9]"> 36622 [1.25 1.25 1.25 1.2 1.2 1.2 1.1 1.1 1] 36623 </enhance_value> 36624 </cell> 36625 <cell index="3" type="struct" size="[1 1]"> 36626 <Name index="1" type="char" size="[1 8]"> 36627 night 36628 </Name> 36629 <Enhance_en index="1" type="double" size="[1 1]"> 36630 [1 ] 36631 </Enhance_en> 36632 <ISO index="1" type="double" size="[1 9]"> 36633 [50 100 200 400 800 1600 3200 6400 12800] 36634 </ISO> 36635 <enhance_value index="1" type="double" size="[1 9]"> 36636 [1.25 1.25 1.25 1.2 1.2 1.2 1.1 1.1 1] 36637 </enhance_value> 36638 </cell> 36639 </Enhance_Setting> 36640 <Hist_Setting index="1" type="cell" size="[1 3]"> 36641 <cell index="1" type="struct" size="[1 1]"> 36642 <Name index="1" type="char" size="[1 8]"> 36643 normal 36644 </Name> 36645 <Hist_en index="1" type="double" size="[1 1]"> 36646 [1 ] 36647 </Hist_en> 36648 <ISO index="1" type="double" size="[1 9]"> 36649 [50 100 200 400 800 1600 3200 6400 12800 ] 36650 </ISO> 36651 <hist_channel index="1" type="double" size="[1 9]"> 36652 [0 0 0 0 0 0 0 0 0] 36653 </hist_channel> 36654 <hist_para_en index="1" type="double" size="[1 9]"> 36655 [1 1 1 1 1 1 1 1 1] 36656 </hist_para_en> 36657 <hist_gratio index="1" type="double" size="[1 9]"> 36658 [2 2 2 2 2 2 2 2 2 ] 36659 </hist_gratio> 36660 <hist_th_off index="1" type="double" size="[1 9]"> 36661 [64 64 64 64 64 64 64 64 64 ] 36662 </hist_th_off> 36663 <hist_k index="1" type="double" size="[1 9]"> 36664 [2 2 2 2 2 2 2 2 2 ] 36665 </hist_k> 36666 <hist_scale index="1" type="double" size="[1 9]"> 36667 [0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 ] 36668 </hist_scale> 36669 <hist_min index="1" type="double" size="[1 9]"> 36670 [0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150] 36671 </hist_min> 36672 <cfg_gratio index="1" type="double" size="[1 9]"> 36673 [2 2 2 2 2 2 2 2 2 ] 36674 </cfg_gratio> 36675 </cell> 36676 <cell index="2" type="struct" size="[1 1]"> 36677 <Name index="1" type="char" size="[1 8]"> 36678 HDR 36679 </Name> 36680 <Hist_en index="1" type="double" size="[1 1]"> 36681 [1 ] 36682 </Hist_en> 36683 <ISO index="1" type="double" size="[1 9]"> 36684 [50 100 200 400 800 1600 3200 6400 12800 ] 36685 </ISO> 36686 <hist_channel index="1" type="double" size="[1 9]"> 36687 [0 0 0 0 0 0 0 0 0] 36688 </hist_channel> 36689 <hist_para_en index="1" type="double" size="[1 9]"> 36690 [1 1 1 1 1 1 1 1 1] 36691 </hist_para_en> 36692 <hist_gratio index="1" type="double" size="[1 9]"> 36693 [2 2 2 2 2 2 2 2 2 ] 36694 </hist_gratio> 36695 <hist_th_off index="1" type="double" size="[1 9]"> 36696 [64 64 64 64 64 64 64 64 64 ] 36697 </hist_th_off> 36698 <hist_k index="1" type="double" size="[1 9]"> 36699 [2 2 2 2 2 2 2 2 2 ] 36700 </hist_k> 36701 <hist_scale index="1" type="double" size="[1 9]"> 36702 [0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 ] 36703 </hist_scale> 36704 <hist_min index="1" type="double" size="[1 9]"> 36705 [0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150] 36706 </hist_min> 36707 <cfg_gratio index="1" type="double" size="[1 9]"> 36708 [2 2 2 2 2 2 2 2 2 ] 36709 </cfg_gratio> 36710 </cell> 36711 <cell index="3" type="struct" size="[1 1]"> 36712 <Name index="1" type="char" size="[1 8]"> 36713 night 36714 </Name> 36715 <Hist_en index="1" type="double" size="[1 1]"> 36716 [1 ] 36717 </Hist_en> 36718 <ISO index="1" type="double" size="[1 9]"> 36719 [50 100 200 400 800 1600 3200 6400 12800 ] 36720 </ISO> 36721 <hist_channel index="1" type="double" size="[1 9]"> 36722 [0 0 0 0 0 0 0 0 0] 36723 </hist_channel> 36724 <hist_para_en index="1" type="double" size="[1 9]"> 36725 [1 1 1 1 1 1 1 1 1] 36726 </hist_para_en> 36727 <hist_gratio index="1" type="double" size="[1 9]"> 36728 [2 2 2 2 2 2 2 2 2 ] 36729 </hist_gratio> 36730 <hist_th_off index="1" type="double" size="[1 9]"> 36731 [64 64 64 64 64 64 64 64 64 ] 36732 </hist_th_off> 36733 <hist_k index="1" type="double" size="[1 9]"> 36734 [2 2 2 2 2 2 2 2 2 ] 36735 </hist_k> 36736 <hist_scale index="1" type="double" size="[1 9]"> 36737 [0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 ] 36738 </hist_scale> 36739 <hist_min index="1" type="double" size="[1 9]"> 36740 [0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150 0.0150] 36741 </hist_min> 36742 <cfg_gratio index="1" type="double" size="[1 9]"> 36743 [2 2 2 2 2 2 2 2 2 ] 36744 </cfg_gratio> 36745 </cell> 36746 </Hist_Setting> 36747 </DEHAZE> 36748 <SENSORINFO index="1" type="struct" size="[1 1]"> 36749 <GainRange index="1" type="struct" size="[1 1]"> 36750 <IsLinear index="1" type="double" size="[1 1]"> 36751 [1] 36752 </IsLinear> 36753 <Linear index="1" type="double" size="[1 7]"> 36754 [1.0000 128.0000 64.0000 0.0000 1.0000 64.0000 8192.0000 ] 36755 </Linear> 36756 <NonLinear index="1" type="char" size="[1 10]"> 36757 DB_MODE 36758 </NonLinear> 36759 </GainRange> 36760 <TimeFactor index="1" type="double" size="[1 4]"> 36761 [0.0000 0.0000 1.0000 0.5000 ] 36762 </TimeFactor> 36763 <CISLinTimeRegMaxFac index="1" type="double" size="[1 2]"> 36764 [1.0000 0.0000 ] 36765 </CISLinTimeRegMaxFac> 36766 <CISHdrTimeRegSumFac index="1" type="double" size="[1 2]"> 36767 [1.0000 0.0000 ] 36768 </CISHdrTimeRegSumFac> 36769 <CISTimeRegOdevity index="1" type="double" size="[1 2]"> 36770 [1.0000 0.0000 ] 36771 </CISTimeRegOdevity> 36772 <CISHdrTimeRegOdevity index="1" type="double" size="[1 2]"> 36773 [1 0] 36774 </CISHdrTimeRegOdevity> 36775 <CISTimeRegMin index="1" type="double" size="[1 1]"> 36776 [2] 36777 </CISTimeRegMin> 36778 <CISHdrTimeRegMin index="1" type="double" size="[1 1]"> 36779 [2] 36780 </CISHdrTimeRegMin> 36781 <CISHdrTimeRegMax index="1" type="double" size="[1 3]"> 36782 [0 0 0] 36783 </CISHdrTimeRegMax> 36784 <CISTimeRegUnEqualEn index="1" type="double" size="[1 1]"> 36785 [0 ] 36786 </CISTimeRegUnEqualEn> 36787 <CISMinFps index="1" type="double" size="[1 1]"> 36788 [10.0000 ] 36789 </CISMinFps> 36790 <CISAgainRange index="1" type="double" size="[1 2]"> 36791 [1.0000 128.0000 ] 36792 </CISAgainRange> 36793 <CISExtraAgainRange index="1" type="double" size="[1 2]"> 36794 [1.0000 1.0000 ] 36795 </CISExtraAgainRange> 36796 <CISDgainRange index="1" type="double" size="[1 2]"> 36797 [1.0000 1.0000 ] 36798 </CISDgainRange> 36799 <CISIspDgainRange index="1" type="double" size="[1 2]"> 36800 [1.0000 1.0000 ] 36801 </CISIspDgainRange> 36802 <CISHdrGainIndSetEn index="1" type="double" size="[1 1]"> 36803 [0] 36804 </CISHdrGainIndSetEn> 36805 <SensorFlip index="1" type="char" size="[1 1]"> 36806 [2] 36807 </SensorFlip> 36808 </SENSORINFO> 36809 <MODULEINFO index="1" type="struct" size="[1 1]"> 36810 <FNumber index="1" type="double" size="[1 1]"> 36811 [2] 36812 </FNumber> 36813 <EFL index="1" type="double" size="[1 1]"> 36814 [4.53] 36815 </EFL> 36816 <LensTavg index="1" type="double" size="[1 1]"> 36817 [90] 36818 </LensTavg> 36819 <IRCutTavg index="1" type="double" size="[1 1]"> 36820 [90] 36821 </IRCutTavg> 36822 </MODULEINFO> 36823 <LUT3D index="1" type="struct" size="[1 1]"> 36824 <enable index="1" type="double" size="[1 1]"> 36825 [0 ] 36826 </enable> 36827 <look_up_table_r index="1" type="double" size="[1 729]"> 36828 [0 20 205 415 626 829 1023 1023 1023 0 20 205 415 626 829 1023 1023 1023 0 20 205 415 626 829 1023 1023 1023 0 20 205 416 626 829 1023 1023 1023 0 20 205 415 626 829 1023 1023 1023 0 20 205 416 626 829 1023 1023 1023 0 20 205 415 626 829 1023 1023 1023 509 511 541 616 724 850 971 1023 1023 677 678 687 714 759 821 897 983 1023 0 20 205 415 626 829 1023 1023 1023 0 17 202 413 623 826 1023 1023 1023 0 17 202 413 623 826 1023 1023 1023 0 17 202 413 623 826 1023 1023 1023 0 17 202 413 623 826 1023 1023 1023 0 17 202 413 623 826 1023 1023 1023 0 17 202 413 623 826 1023 1023 1023 509 510 541 616 724 850 970 1023 1023 677 678 687 714 759 821 897 983 1023 0 20 205 415 626 829 1023 1023 1023 0 17 202 413 623 826 1023 1023 1023 0 17 178 386 596 800 997 1023 1023 0 17 178 386 596 800 997 1023 1023 0 17 178 386 596 800 997 1023 1023 0 17 178 386 596 800 997 1023 1023 0 17 178 386 596 800 997 1023 1023 511 512 539 614 723 849 969 1023 1023 677 678 686 713 758 820 896 982 1023 0 20 205 416 626 829 1023 1023 1023 0 17 202 413 623 826 1023 1023 1023 0 17 178 386 596 800 997 1023 1023 0 17 178 357 567 773 971 1023 1023 0 17 178 357 567 773 971 1023 1023 0 17 178 357 567 773 971 1023 1023 1 17 178 357 567 773 971 1023 1023 516 518 544 610 718 845 965 1023 1023 678 679 687 710 755 817 893 979 1023 0 20 205 415 626 829 1023 1023 1023 0 17 202 413 623 826 1023 1023 1023 0 17 178 386 596 800 997 1023 1023 0 17 178 357 567 773 971 1023 1023 0 17 178 357 537 745 944 1023 1023 0 17 178 357 537 745 944 1023 1023 0 17 178 357 537 745 944 1023 1023 526 528 554 618 713 841 957 1023 1023 680 680 688 711 750 811 888 974 1023 0 20 205 416 626 829 1023 1023 1023 0 17 202 413 623 826 1023 1023 1023 0 17 178 386 596 800 997 1023 1023 0 17 178 357 567 773 971 1023 1023 0 17 178 357 537 745 944 1023 1023 0 17 178 357 537 715 916 1023 1023 0 17 178 357 537 715 916 1023 1023 543 544 569 632 725 838 947 1023 1023 682 682 691 713 751 804 880 967 1023 0 20 205 415 626 829 1023 1023 1023 0 17 202 413 623 826 1023 1023 1023 0 17 178 386 596 800 997 1023 1023 1 17 178 357 567 773 971 1023 1023 0 17 178 357 537 745 944 1023 1023 0 17 178 357 537 715 916 1023 1023 1 17 178 357 537 715 886 1023 1023 569 570 594 654 745 853 935 1023 1023 685 686 694 716 754 806 871 957 1023 71 83 214 402 599 791 976 1023 1023 72 82 212 401 597 790 975 1023 1023 84 93 201 386 582 776 963 1023 1023 114 121 215 368 561 755 942 1023 1023 161 166 243 384 544 735 920 1023 1023 230 234 293 415 563 719 900 1023 1023 344 347 388 482 608 747 889 1023 1023 608 610 632 689 776 855 936 1023 1023 689 690 698 720 757 808 872 945 1023 247 250 299 407 545 693 840 978 1023 248 251 299 407 545 693 840 978 1023 268 271 311 413 547 693 837 975 1023 321 323 356 435 558 695 833 968 1023 402 403 428 489 578 700 830 960 1023 478 479 498 546 620 711 829 951 1023 556 557 571 608 667 743 832 943 1023 630 630 641 669 715 777 853 936 1023 695 695 703 725 761 811 874 946 1023 ] 36829 </look_up_table_r> 36830 <look_up_table_g index="1" type="double" size="[1 729]"> 36831 [0 0 0 1 0 1 1 637 1771 78 78 78 78 78 78 78 663 1778 821 820 821 821 821 821 821 1036 1899 1662 1662 1662 1662 1662 1662 1662 1703 2192 2503 2503 2503 2503 2503 2503 2503 2442 2596 3317 3317 3317 3317 3317 3317 3317 3170 3049 4095 4095 4095 4095 4095 4095 4095 3837 3501 4095 4095 4095 4095 4095 4095 4095 4095 3923 4095 4095 4095 4095 4095 4095 4095 4095 4095 0 0 1 1 1 0 0 637 1771 78 69 69 69 69 69 69 660 1778 820 810 810 810 810 810 810 1033 1898 1662 1650 1650 1650 1650 1650 1650 1700 2191 2503 2491 2491 2491 2491 2491 2491 2439 2595 3317 3305 3305 3305 3305 3305 3305 3168 3049 4095 4091 4091 4091 4091 4091 4091 3836 3501 4095 4095 4095 4095 4095 4095 4095 4095 3923 4095 4095 4095 4095 4095 4095 4095 4095 4095 0 1 0 1 1 1 0 640 1775 78 69 69 69 69 69 69 663 1781 821 810 713 713 713 713 713 990 1890 1662 1650 1543 1543 1543 1543 1543 1658 2183 2503 2491 2383 2383 2383 2383 2383 2404 2587 3317 3305 3202 3202 3202 3202 3202 3143 3042 4095 4091 3990 3990 3990 3990 3990 3821 3495 4095 4095 4095 4095 4095 4095 4095 4095 3918 4095 4095 4095 4095 4095 4095 4095 4095 4095 1 1 1 0 1 0 2 650 1786 78 69 69 69 69 69 69 673 1792 821 810 713 713 713 713 713 996 1899 1662 1650 1543 1428 1428 1428 1428 1579 2161 2503 2491 2383 2267 2267 2267 2267 2331 2567 3317 3305 3202 3091 3091 3091 3091 3085 3023 4095 4091 3990 3882 3882 3882 3882 3783 3479 4095 4095 4095 4095 4095 4095 4095 4095 3904 4095 4095 4095 4095 4095 4095 4095 4095 4095 0 1 1 1 0 1 0 668 1805 78 69 69 69 69 69 69 690 1811 821 810 713 713 713 713 713 1008 1916 1662 1650 1543 1428 1428 1428 1428 1587 2174 2503 2491 2383 2267 2149 2149 2149 2242 2534 3317 3305 3202 3091 2978 2978 2978 3008 2993 4095 4091 3990 3882 3775 3775 3775 3727 3452 4095 4095 4095 4095 4095 4095 4095 4095 3881 4095 4095 4095 4095 4095 4095 4095 4095 4095 1 0 1 0 1 1 0 697 1834 78 69 69 69 69 69 69 718 1840 821 810 713 713 713 713 713 1028 1942 1662 1650 1543 1428 1428 1428 1428 1599 2194 2503 2491 2383 2267 2149 2149 2149 2251 2548 3317 3305 3202 3091 2978 2860 2860 2920 2952 4095 4091 3990 3882 3775 3663 3663 3660 3415 4095 4095 4095 4095 4095 4095 4095 4095 3848 4095 4095 4095 4095 4095 4095 4095 4095 4095 1 0 0 2 0 0 3 737 1874 78 69 69 69 69 69 69 758 1880 821 810 713 713 713 713 713 1056 1979 1662 1650 1543 1428 1428 1428 1428 1618 2223 2503 2491 2383 2267 2149 2149 2149 2264 2567 3317 3305 3202 3091 2978 2860 2860 2931 2964 4095 4091 3990 3882 3775 3663 3545 3586 3368 4095 4095 4095 4095 4095 4095 4095 4095 3805 4095 4095 4095 4095 4095 4095 4095 4095 4095 283 284 299 339 405 501 628 793 1927 334 328 342 378 439 529 651 812 1932 866 861 802 820 852 903 981 1096 2026 1624 1619 1561 1474 1492 1522 1570 1645 2260 2403 2400 2351 2268 2177 2197 2230 2284 2593 3155 3152 3117 3047 2964 2877 2903 2948 2980 3847 3846 3823 3771 3702 3627 3557 3606 3377 4095 4095 4095 4095 4095 4095 4095 4095 3754 4095 4095 4095 4095 4095 4095 4095 4095 4095 988 989 1014 1082 1198 1367 1588 1785 1992 1003 1003 1027 1094 1209 1377 1596 1791 1997 1245 1244 1243 1299 1396 1543 1724 1899 2086 1751 1750 1745 1741 1813 1918 2029 2161 2307 2354 2354 2347 2330 2313 2366 2437 2525 2626 2923 2923 2916 2898 2873 2846 2887 2939 3000 3449 3449 3442 3425 3399 3365 3328 3355 3387 3916 3915 3910 3894 3869 3834 3792 3745 3758 4095 4095 4095 4095 4095 4095 4095 4095 4095 ] 36832 </look_up_table_g> 36833 <look_up_table_b index="1" type="double" size="[1 729]"> 36834 [0 0 0 0 0 0 0 159 443 0 0 0 0 0 0 0 160 443 0 0 0 0 0 0 0 168 452 0 0 0 0 0 0 1 193 476 0 0 0 0 0 0 0 237 514 0 0 0 0 0 0 0 313 563 0 0 0 1 0 0 1 461 617 509 509 515 531 563 623 709 724 673 677 677 678 680 684 691 700 711 725 20 20 20 20 20 20 20 165 444 20 17 17 17 17 17 17 165 444 20 17 17 17 17 17 17 173 453 20 17 17 17 17 17 17 197 477 20 17 17 17 17 17 17 240 515 20 17 17 17 17 17 17 316 564 20 17 17 17 17 17 17 462 618 510 510 516 532 565 623 709 725 673 678 678 678 681 685 691 700 711 725 205 205 205 205 205 205 205 254 467 205 202 202 202 202 202 202 253 467 205 202 178 178 178 178 178 247 472 205 202 178 178 178 178 178 264 495 205 202 178 178 178 178 178 297 530 205 202 178 178 178 178 178 359 576 205 202 178 178 178 178 178 490 628 537 537 539 554 584 640 720 734 681 687 687 686 689 693 699 707 718 731 415 415 415 416 415 416 415 417 525 415 413 413 413 413 413 413 416 525 415 413 386 386 386 386 386 407 529 416 413 386 357 357 357 357 395 540 415 413 386 357 357 357 357 415 570 416 413 386 357 357 357 357 458 610 415 413 386 357 357 357 357 557 656 606 606 606 610 636 684 747 760 704 712 712 712 710 714 719 727 737 749 626 626 626 626 626 626 626 601 614 626 623 623 623 623 623 623 600 614 626 623 596 596 596 596 596 590 616 626 623 596 567 567 567 567 573 622 626 623 596 567 537 537 537 560 634 626 623 596 567 537 537 537 587 665 626 623 596 567 537 537 537 654 702 706 706 706 707 713 752 793 803 741 755 755 755 753 750 754 761 769 780 829 829 829 829 829 829 829 789 724 829 826 826 826 826 826 826 788 724 829 826 800 800 800 800 800 777 724 829 826 800 773 773 773 773 759 726 829 826 800 773 745 745 745 741 730 829 826 800 773 745 715 715 730 738 829 826 800 773 745 715 715 771 765 829 829 827 825 825 838 856 863 794 816 816 815 813 809 804 809 816 823 1023 1023 1023 1023 1023 1023 1023 973 848 1023 1023 1023 1023 1023 1023 1023 972 848 1023 1023 997 997 997 997 997 961 846 1023 1023 997 971 971 971 971 942 843 1023 1023 997 971 944 944 944 921 841 1023 1023 997 971 944 916 916 902 840 1023 1023 997 971 944 916 886 897 842 961 961 959 953 947 946 935 938 861 893 893 892 889 884 878 871 875 880 1023 1023 1023 1023 1023 1023 1023 1023 977 1023 1023 1023 1023 1023 1023 1023 1023 977 1023 1023 1023 1023 1023 1023 1023 1023 975 1023 1023 1023 1023 1023 1023 1023 1023 969 1023 1023 1023 1023 1023 1023 1023 1023 961 1023 1023 1023 1023 1023 1023 1023 1023 952 1023 1023 1023 1023 1023 1023 1023 1023 945 1023 1023 1023 1023 1023 1023 1023 1023 938 982 982 980 977 972 965 956 945 948 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 1023 ] 36835 </look_up_table_b> 36836 </LUT3D> 36837 <LDCH index="1" type="struct" size="[1 1]"> 36838 <enable index="1" type="double" size="[1 1]"> 36839 [0 ] 36840 </enable> 36841 <mesh_file index="1" type="char" size="[1 31]"> 36842 LDCH_mesh_2688_1520_os04a10_4IR 36843 </mesh_file> 36844 <correct_level index="1" type="int" size="[1 1]"> 36845 [255] 36846 </correct_level> 36847 <correct_level_max index="1" type="int" size="[1 1]"> 36848 [255] 36849 </correct_level_max> 36850 <light_center index="1" type="double" size="[1 2]"> 36851 [1333.2695039999998698 728.1043200000000297] 36852 </light_center> 36853 <distortion_coeff index="1" type="double" size="[1 4]"> 36854 [-2653.9299617503911576 0.0001171174803799 -0.0000000150166870 0.0000000000087465] 36855 </distortion_coeff> 36856 </LDCH> 36857 <FEC index="1" type="struct" size="[1 1]"> 36858 <enable index="1" type="double" size="[1 1]"> 36859 [0 ] 36860 </enable> 36861 <mesh_file index="1" type="char" size="[1 30]"> 36862 FEC_mesh_2688_1520_os04a10_4IR 36863 </mesh_file> 36864 <correct_level index="1" type="int" size="[1 1]"> 36865 [255] 36866 </correct_level> 36867 <light_center index="1" type="double" size="[1 2]"> 36868 [1333.2695039999998698 728.1043200000000297] 36869 </light_center> 36870 <distortion_coeff index="1" type="double" size="[1 4]"> 36871 [-2653.9299617503911576 0.0001171174803799 -0.0000000150166870 0.0000000000087465] 36872 </distortion_coeff> 36873 </FEC> 36874 <ORB index="1" type="struct" size="[1 1]"> 36875 <enable index="1" type="double" size="[1 1]"> 36876 [0 ] 36877 </enable> 36878 </ORB> 36879 <CPSL index="1" type="struct" size="[1 1]"> 36880 <enable index="1" type="char" size="[1 1]"> 36881 [1] 36882 </enable> 36883 <mode index="1" type="int" size="[1 1]"> 36884 [0 ] 36885 </mode> 36886 <force_gray index="1" type="char" size="[1 1]"> 36887 [1 ] 36888 </force_gray> 36889 <light_src index="1" type="int" size="[1 1]"> 36890 [0 ] 36891 </light_src> 36892 <auto_adjust_sens index="1" type="double" size="[1 1]"> 36893 [50] 36894 </auto_adjust_sens> 36895 <auto_on2off_th index="1" type="int" size="[1 1]"> 36896 [3000 ] 36897 </auto_on2off_th> 36898 <auto_off2on_th index="1" type="int" size="[1 1]"> 36899 [100 ] 36900 </auto_off2on_th> 36901 <auto_sw_interval index="1" type="int" size="[1 1]"> 36902 [60 ] 36903 </auto_sw_interval> 36904 <manual_on index="1" type="char" size="[1 1]"> 36905 [0 ] 36906 </manual_on> 36907 <manual_strength index="1" type="double" size="[1 1]"> 36908 [100] 36909 </manual_strength> 36910 </CPSL> 36911 <LUMADETECT index="1" type="struct" size="[1 1]"> 36912 <enable index="1" type="double" size="[1 1]"> 36913 [1 ] 36914 </enable> 36915 <fixed_times index="1" type="int" size="[1 1]"> 36916 [0] 36917 </fixed_times> 36918 <threshold index="1" type="double" size="[1 1]"> 36919 [0.0002] 36920 </threshold> 36921 <threshold_level2 index="1" type="double" size="[1 1]"> 36922 [1000] 36923 </threshold_level2> 36924 </LUMADETECT> 36925 <CPROC index="1" type="struct" size="[1 1]"> 36926 <enable index="1" type="int" size="[1 1]"> 36927 [1] 36928 </enable> 36929 <brightness index="1" type="int" size="[1 1]"> 36930 [128] 36931 </brightness> 36932 <contrast index="1" type="int" size="[1 1]"> 36933 [128] 36934 </contrast> 36935 <saturation index="1" type="int" size="[1 1]"> 36936 [128] 36937 </saturation> 36938 <hue index="1" type="int" size="[1 1]"> 36939 [128] 36940 </hue> 36941 </CPROC> 36942 <IE index="1" type="struct" size="[1 1]"> 36943 <enable index="1" type="int" size="[1 1]"> 36944 [1] 36945 </enable> 36946 <mode index="1" type="int" size="[1 1]"> 36947 [0] 36948 </mode> 36949 </IE> 36950 <COLOR_AS_GREY index="1" type="struct" size="[1 1]"> 36951 <enable index="1" type="int" size="[1 1]"> 36952 [0] 36953 </enable> 36954 </COLOR_AS_GREY> 36955 </sensor> 36956 <system type="struct" size="[1 1]"> 36957 <HDR index="1" type="struct" size="[1 1]"> 36958 <enable index="1" type="double" size="[1 1]"> 36959 [0 ] 36960 </enable> 36961 <support_mode index="1" type="char" size="[1 16]">MODE_2_LINE</support_mode> 36962 <line_mode index="1" type="char" size="[1 10]">STAGGER</line_mode> 36963 </HDR> 36964 <DCG_SETTING index="1" type="struct" size="[1 1]"> 36965 <Normal index="1" type="struct" size="[1 1]"> 36966 <support_en index="1" type="double" size="[1 1]"> 36967 [0 ] 36968 </support_en> 36969 <dcg_optype index="1" type="char" size="[1 8]"> 36970 AUTO 36971 </dcg_optype> 36972 <dcgmode_init index="1" type="double" size="[1 1]"> 36973 [0] 36974 </dcgmode_init> 36975 <dcg_ratio index="1" type="double" size="[1 1]"> 36976 [1.0] 36977 </dcg_ratio> 36978 <gain_ctrl index="1" type="struct" size="[1 1]"> 36979 <enable index="1" type="double" size="[1 1]"> 36980 [1] 36981 </enable> 36982 <lcg2hcg_th index="1" type="double" size="[1 1]"> 36983 [32] 36984 </lcg2hcg_th> 36985 <hcg2lcg_th index="1" type="double" size="[1 1]"> 36986 [16] 36987 </hcg2lcg_th> 36988 </gain_ctrl> 36989 <env_ctrl index="1" type="struct" size="[1 1]"> 36990 <enable index="1" type="double" size="[1 1]"> 36991 [0] 36992 </enable> 36993 <lcg2hcg_th index="1" type="double" size="[1 1]"> 36994 [0.3125] 36995 </lcg2hcg_th> 36996 <hcg2lcg_th index="1" type="double" size="[1 1]"> 36997 [0.6] 36998 </hcg2lcg_th> 36999 </env_ctrl> 37000 </Normal> 37001 <Hdr index="1" type="struct" size="[1 1]"> 37002 <support_en index="1" type="double" size="[1 1]"> 37003 [0] 37004 </support_en> 37005 <dcg_optype index="1" type="char" size="[1 8]">AUTO</dcg_optype> 37006 <dcgmode_init index="1" type="double" size="[1 3]"> 37007 [0 0 0 ] 37008 </dcgmode_init> 37009 <dcg_ratio index="1" type="double" size="[1 1]"> 37010 [1.0] 37011 </dcg_ratio> 37012 <sync_switch index="1" type="double" size="[1 1]"> 37013 [1 ] 37014 </sync_switch> 37015 <gain_ctrl index="1" type="struct" size="[1 1]"> 37016 <enable index="1" type="double" size="[1 1]"> 37017 [1 ] 37018 </enable> 37019 <lcg2hcg_th index="1" type="double" size="[1 1]"> 37020 [32.0000 ] 37021 </lcg2hcg_th> 37022 <hcg2lcg_th index="1" type="double" size="[1 1]"> 37023 [16.0000 ] 37024 </hcg2lcg_th> 37025 </gain_ctrl> 37026 <env_ctrl index="1" type="struct" size="[1 1]"> 37027 <enable index="1" type="double" size="[1 1]"> 37028 [0 ] 37029 </enable> 37030 <lcg2hcg_th index="1" type="double" size="[1 1]"> 37031 [0.3125 ] 37032 </lcg2hcg_th> 37033 <hcg2lcg_th index="1" type="double" size="[1 1]"> 37034 [0.6000 ] 37035 </hcg2lcg_th> 37036 </env_ctrl> 37037 </Hdr> 37038 </DCG_SETTING> 37039 <EXP_DELAY index="1" type="struct" size="[1 1]"> 37040 <Normal index="1" type="struct" size="[1 1]"> 37041 <time_delay index="1" type="double" size="[1 1]"> 37042 [2 ] 37043 </time_delay> 37044 <gain_delay index="1" type="double" size="[1 1]"> 37045 [2 ] 37046 </gain_delay> 37047 <dcg_delay index="1" type="double" size="[1 1]"> 37048 [1 ] 37049 </dcg_delay> 37050 </Normal> 37051 <Hdr index="1" type="struct" size="[1 1]"> 37052 <time_delay index="1" type="double" size="[1 1]"> 37053 [2] 37054 </time_delay> 37055 <gain_delay index="1" type="double" size="[1 1]"> 37056 [2] 37057 </gain_delay> 37058 <dcg_delay index="1" type="double" size="[1 1]"> 37059 [1] 37060 </dcg_delay> 37061 </Hdr> 37062 </EXP_DELAY> 37063 </system> 37064</matfile> 37065