1 /* libSoX effect: splice audio   Copyright (c) 2008-9 robs@users.sourceforge.net
2  *
3  * This library is free software; you can redistribute it and/or modify it
4  * under the terms of the GNU Lesser General Public License as published by
5  * the Free Software Foundation; either version 2.1 of the License, or (at
6  * your option) any later version.
7  *
8  * This library is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU Lesser General Public License
14  * along with this library; if not, write to the Free Software Foundation,
15  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
16  */
17 
18 #include "sox_i.h"
19 
difference(const sox_sample_t * a,const sox_sample_t * b,size_t length)20 static double difference(
21     const sox_sample_t * a, const sox_sample_t * b, size_t length)
22 {
23   double diff = 0;
24   size_t i = 0;
25 
26   #define _ diff += sqr((double)a[i] - b[i]), ++i; /* Loop optimisation */
27   do {_ _ _ _ _ _ _ _} while (i < length); /* N.B. length ≡ 0 (mod 8) */
28   #undef _
29   return diff;
30 }
31 
32 /* Find where the two segments are most alike over the overlap period. */
best_overlap_position(sox_sample_t const * f1,sox_sample_t const * f2,uint64_t overlap,uint64_t search,size_t channels)33 static size_t best_overlap_position(sox_sample_t const * f1,
34     sox_sample_t const * f2, uint64_t overlap, uint64_t search, size_t channels)
35 {
36   size_t i, best_pos = 0;
37   double diff, least_diff = difference(f2, f1, (size_t) (channels * overlap));
38 
39   for (i = 1; i < search; ++i) { /* linear search */
40     diff = difference(f2 + channels * i, f1, (size_t) (channels * overlap));
41     if (diff < least_diff)
42       least_diff = diff, best_pos = i;
43   }
44   return best_pos;
45 }
46 
47 
48 typedef struct {
49   enum {Cosine_2, Cosine_4, Triangular} fade_type;
50   unsigned nsplices;     /* Number of splices requested */
51   struct {
52     char * str;          /* Command-line argument to parse for this splice */
53     uint64_t overlap;    /* Number of samples to overlap */
54     uint64_t search;     /* Number of samples to search */
55     uint64_t start;      /* Start splicing when in_pos equals this */
56   } * splices;
57 
58   uint64_t in_pos;       /* Number of samples read from the input stream */
59   unsigned splices_pos;  /* Number of splices completed so far */
60   size_t buffer_pos;     /* Number of samples through the current splice */
61   size_t max_buffer_size;
62   sox_sample_t * buffer;
63   unsigned state;
64 } priv_t;
65 
splice(sox_effect_t * effp,const sox_sample_t * in1,const sox_sample_t * in2,sox_sample_t * output,uint64_t overlap,size_t channels)66 static void splice(sox_effect_t * effp, const sox_sample_t * in1, const
67     sox_sample_t * in2, sox_sample_t * output, uint64_t overlap, size_t channels)
68 {
69   priv_t * p = (priv_t *)effp->priv;
70   size_t i, j, k = 0;
71 
72   if (p->fade_type == Cosine_4) {
73     double fade_step = M_PI_2 / overlap;
74     for (i = 0; i < overlap; ++i) {
75       double fade_in  = sin(i * fade_step);
76       double fade_out = cos(i * fade_step); /* constant RMS level (`power') */
77       for (j = 0; j < channels; ++j, ++k) {
78         double d = in1[k] * fade_out + in2[k] * fade_in;
79         output[k] = SOX_ROUND_CLIP_COUNT(d, effp->clips); /* Might clip */
80       }
81     }
82   }
83   else if (p->fade_type == Cosine_2) {
84     double fade_step = M_PI / overlap;
85     for (i = 0; i < overlap; ++i) {
86       double fade_in  = .5 - .5 * cos(i * fade_step);
87       double fade_out = 1 - fade_in;    /* constant peak level (`gain') */
88       for (j = 0; j < channels; ++j, ++k) {
89         double d = in1[k] * fade_out + in2[k] * fade_in;
90         output[k] = SOX_ROUND_CLIP_COUNT(d, effp->clips); /* Should not clip */
91       }
92     }
93   }
94   else /* Triangular */ {
95     double fade_step = 1. / overlap;
96     for (i = 0; i < overlap; ++i) {
97       double fade_in  = fade_step * i;
98       double fade_out = 1 - fade_in;    /* constant peak level (`gain') */
99       for (j = 0; j < channels; ++j, ++k) {
100         double d = in1[k] * fade_out + in2[k] * fade_in;
101         output[k] = SOX_ROUND_CLIP_COUNT(d, effp->clips); /* Should not clip */
102       }
103     }
104   }
105 }
106 
do_splice(sox_effect_t * effp,sox_sample_t * f,uint64_t overlap,uint64_t search,size_t channels)107 static uint64_t do_splice(sox_effect_t * effp,
108     sox_sample_t * f, uint64_t overlap, uint64_t search, size_t channels)
109 {
110   uint64_t offset = search? best_overlap_position(
111       f, f + overlap * channels, overlap, search, channels) : 0;
112   splice(effp, f, f + (overlap + offset) * channels,
113       f + (overlap + offset) * channels, overlap, channels);
114   return overlap + offset;
115 }
116 
parse(sox_effect_t * effp,char ** argv,sox_rate_t rate)117 static int parse(sox_effect_t * effp, char * * argv, sox_rate_t rate)
118 {
119   priv_t * p = (priv_t *)effp->priv;
120   char const * next;
121   size_t i, buffer_size;
122   uint64_t last_seen = 0;
123   const uint64_t in_length = argv ? 0 :
124     (effp->in_signal.length != SOX_UNKNOWN_LEN ?
125      effp->in_signal.length / effp->in_signal.channels : SOX_UNKNOWN_LEN);
126 
127   p->max_buffer_size = 0;
128   for (i = 0; i < p->nsplices; ++i) {
129     if (argv) /* 1st parse only */
130       p->splices[i].str = lsx_strdup(argv[i]);
131 
132     p->splices[i].overlap = rate * 0.01 + .5;
133     p->splices[i].search = p->fade_type == Cosine_4? 0 : p->splices[i].overlap;
134 
135     next = lsx_parseposition(rate, p->splices[i].str,
136              argv ? NULL : &p->splices[i].start, last_seen, in_length, '=');
137     if (next == NULL) break;
138     last_seen = p->splices[i].start;
139 
140     if (*next == ',') {
141       next = lsx_parsesamples(rate, next + 1, &p->splices[i].overlap, 't');
142       if (next == NULL) break;
143       p->splices[i].overlap *= 2;
144       if (*next == ',') {
145         next = lsx_parsesamples(rate, next + 1, &p->splices[i].search, 't');
146         if (next == NULL) break;
147         p->splices[i].search *= 2;
148       }
149     }
150     if (*next != '\0') break;
151     p->splices[i].overlap = max(p->splices[i].overlap + 4, 16);
152     p->splices[i].overlap &= ~7; /* Make divisible by 8 for loop optimisation */
153 
154     if (!argv) {
155       if (i > 0 && p->splices[i].start <= p->splices[i-1].start) break;
156       if (p->splices[i].start < p->splices[i].overlap) break;
157       p->splices[i].start -= p->splices[i].overlap;
158       buffer_size = 2 * p->splices[i].overlap + p->splices[i].search;
159       p->max_buffer_size = max(p->max_buffer_size, buffer_size);
160     }
161   }
162   if (i < p->nsplices)
163     return lsx_usage(effp);
164   return SOX_SUCCESS;
165 }
166 
create(sox_effect_t * effp,int argc,char ** argv)167 static int create(sox_effect_t * effp, int argc, char * * argv)
168 {
169   priv_t * p = (priv_t *)effp->priv;
170   --argc, ++argv;
171   if (argc) {
172     if      (!strcmp(*argv, "-t")) p->fade_type = Triangular, --argc, ++argv;
173     else if (!strcmp(*argv, "-q")) p->fade_type = Cosine_4  , --argc, ++argv;
174     else if (!strcmp(*argv, "-h")) p->fade_type = Cosine_2  , --argc, ++argv;
175   }
176   p->nsplices = argc;
177   p->splices = lsx_calloc(p->nsplices, sizeof(*p->splices));
178   return parse(effp, argv, 1e5); /* No rate yet; parse with dummy */
179 }
180 
start(sox_effect_t * effp)181 static int start(sox_effect_t * effp)
182 {
183   priv_t * p = (priv_t *)effp->priv;
184   unsigned i;
185 
186   parse(effp, 0, effp->in_signal.rate); /* Re-parse now rate is known */
187   p->buffer = lsx_calloc(p->max_buffer_size * effp->in_signal.channels, sizeof(*p->buffer));
188   p->in_pos = p->buffer_pos = p->splices_pos = 0;
189   p->state = p->splices_pos != p->nsplices && p->in_pos == p->splices[p->splices_pos].start;
190   effp->out_signal.length = SOX_UNKNOWN_LEN; /* depends on input data */
191   for (i = 0; i < p->nsplices; ++i)
192     if (p->splices[i].overlap) {
193       if (p->fade_type == Cosine_4 && effp->in_signal.mult)
194         *effp->in_signal.mult *= pow(.5, .5);
195       return SOX_SUCCESS;
196     }
197   return SOX_EFF_NULL;
198 }
199 
flow(sox_effect_t * effp,const sox_sample_t * ibuf,sox_sample_t * obuf,size_t * isamp,size_t * osamp)200 static int flow(sox_effect_t * effp, const sox_sample_t * ibuf,
201     sox_sample_t * obuf, size_t * isamp, size_t * osamp)
202 {
203   priv_t * p = (priv_t *)effp->priv;
204   size_t c, idone = 0, odone = 0;
205   *isamp /= effp->in_signal.channels;
206   *osamp /= effp->in_signal.channels;
207 
208   while (sox_true) {
209 copying:
210     if (p->state == 0) {
211       for (; idone < *isamp && odone < *osamp; ++idone, ++odone, ++p->in_pos) {
212         if (p->splices_pos != p->nsplices && p->in_pos == p->splices[p->splices_pos].start) {
213           p->state = 1;
214           goto buffering;
215         }
216         for (c = 0; c < effp->in_signal.channels; ++c)
217           *obuf++ = *ibuf++;
218       }
219       break;
220     }
221 
222 buffering:
223     if (p->state == 1) {
224       size_t buffer_size = (2 * p->splices[p->splices_pos].overlap + p->splices[p->splices_pos].search) * effp->in_signal.channels;
225       for (; idone < *isamp; ++idone, ++p->in_pos) {
226         if (p->buffer_pos == buffer_size) {
227           p->buffer_pos = do_splice(effp, p->buffer,
228               p->splices[p->splices_pos].overlap,
229               p->splices[p->splices_pos].search,
230               (size_t)effp->in_signal.channels) * effp->in_signal.channels;
231           p->state = 2;
232           goto flushing;
233           break;
234         }
235         for (c = 0; c < effp->in_signal.channels; ++c)
236           p->buffer[p->buffer_pos++] = *ibuf++;
237       }
238       break;
239     }
240 
241 flushing:
242     if (p->state == 2) {
243       size_t buffer_size = (2 * p->splices[p->splices_pos].overlap + p->splices[p->splices_pos].search) * effp->in_signal.channels;
244       for (; odone < *osamp; ++odone) {
245         if (p->buffer_pos == buffer_size) {
246           p->buffer_pos = 0;
247           ++p->splices_pos;
248           p->state = p->splices_pos != p->nsplices && p->in_pos == p->splices[p->splices_pos].start;
249           goto copying;
250         }
251         for (c = 0; c < effp->in_signal.channels; ++c)
252           *obuf++ = p->buffer[p->buffer_pos++];
253       }
254       break;
255     }
256   }
257 
258   *isamp = idone * effp->in_signal.channels;
259   *osamp = odone * effp->in_signal.channels;
260   return SOX_SUCCESS;
261 }
262 
drain(sox_effect_t * effp,sox_sample_t * obuf,size_t * osamp)263 static int drain(sox_effect_t * effp, sox_sample_t * obuf, size_t * osamp)
264 {
265   size_t isamp = 0;
266   return flow(effp, 0, obuf, &isamp, osamp);
267 }
268 
stop(sox_effect_t * effp)269 static int stop(sox_effect_t * effp)
270 {
271   priv_t * p = (priv_t *)effp->priv;
272   if (p->splices_pos != p->nsplices)
273     lsx_warn("Input audio too short; splices not made: %u", p->nsplices - p->splices_pos);
274   free(p->buffer);
275   return SOX_SUCCESS;
276 }
277 
lsx_kill(sox_effect_t * effp)278 static int lsx_kill(sox_effect_t * effp)
279 {
280   priv_t * p = (priv_t *)effp->priv;
281   unsigned i;
282   for (i = 0; i < p->nsplices; ++i)
283     free(p->splices[i].str);
284   free(p->splices);
285   return SOX_SUCCESS;
286 }
287 
lsx_splice_effect_fn(void)288 sox_effect_handler_t const * lsx_splice_effect_fn(void)
289 {
290   static sox_effect_handler_t handler = {
291     "splice", "[-h|-t|-q] {position[,excess[,leeway]]}"
292     "\n  -h        Half sine fade (default); constant gain (for correlated audio)"
293     "\n  -t        Triangular (linear) fade; constant gain (for correlated audio)"
294     "\n  -q        Quarter sine fade; constant power (for correlated audio e.g. x-fade)"
295     "\n  position  The length of part 1 (including the excess)"
296     "\n  excess    At the end of part 1 & the start of part2 (default 0.005)"
297     "\n  leeway    Before part2 (default 0.005; set to 0 for cross-fade)",
298     SOX_EFF_MCHAN | SOX_EFF_LENGTH,
299     create, start, flow, drain, stop, lsx_kill, sizeof(priv_t)
300   };
301   return &handler;
302 }
303