1 /* This source code is a product of Sun Microsystems, Inc. and is provided
2  * for unrestricted use.  Users may copy or modify this source code without
3  * charge.
4  *
5  * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
6  * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
7  * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
8  *
9  * Sun source code is provided with no support and without any obligation on
10  * the part of Sun Microsystems, Inc. to assist in its use, correction,
11  * modification or enhancement.
12  *
13  * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
14  * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
15  * OR ANY PART THEREOF.
16  *
17  * In no event will Sun Microsystems, Inc. be liable for any lost revenue
18  * or profits or other special, indirect and consequential damages, even if
19  * Sun has been advised of the possibility of such damages.
20  *
21  * Sun Microsystems, Inc.
22  * 2550 Garcia Avenue
23  * Mountain View, California  94043
24  */
25 
26 /*
27  * g723_40.c
28  *
29  * Description:
30  *
31  * g723_40_encoder(), g723_40_decoder()
32  *
33  * These routines comprise an implementation of the CCITT G.723 40Kbps
34  * ADPCM coding algorithm.  Essentially, this implementation is identical to
35  * the bit level description except for a few deviations which
36  * take advantage of workstation attributes, such as hardware 2's
37  * complement arithmetic.
38  *
39  * The deviation from the bit level specification (lookup tables),
40  * preserves the bit level performance specifications.
41  *
42  * As outlined in the G.723 Recommendation, the algorithm is broken
43  * down into modules.  Each section of code below is preceded by
44  * the name of the module which it is implementing.
45  *
46  */
47 #include "sox_i.h"
48 #include "g711.h"
49 #include "g72x.h"
50 
51 /*
52  * Maps G.723_40 code word to ructeconstructed scale factor normalized log
53  * magnitude values.
54  */
55 static const short	_dqlntab[32] = {-2048, -66, 28, 104, 169, 224, 274, 318,
56 				358, 395, 429, 459, 488, 514, 539, 566,
57 				566, 539, 514, 488, 459, 429, 395, 358,
58 				318, 274, 224, 169, 104, 28, -66, -2048};
59 
60 /* Maps G.723_40 code word to log of scale factor multiplier. */
61 static const short	_witab[32] = {448, 448, 768, 1248, 1280, 1312, 1856, 3200,
62 			4512, 5728, 7008, 8960, 11456, 14080, 16928, 22272,
63 			22272, 16928, 14080, 11456, 8960, 7008, 5728, 4512,
64 			3200, 1856, 1312, 1280, 1248, 768, 448, 448};
65 
66 /*
67  * Maps G.723_40 code words to a set of values whose long and short
68  * term averages are computed and then compared to give an indication
69  * how stationary (steady state) the signal is.
70  */
71 static const short	_fitab[32] = {0, 0, 0, 0, 0, 0x200, 0x200, 0x200,
72 			0x200, 0x200, 0x400, 0x600, 0x800, 0xA00, 0xC00, 0xC00,
73 			0xC00, 0xC00, 0xA00, 0x800, 0x600, 0x400, 0x200, 0x200,
74 			0x200, 0x200, 0x200, 0, 0, 0, 0, 0};
75 
76 static const short qtab_723_40[15] = {-122, -16, 68, 139, 198, 250, 298, 339,
77 				378, 413, 445, 475, 502, 528, 553};
78 
79 /*
80  * g723_40_encoder()
81  *
82  * Encodes a 16-bit linear PCM, A-law or u-law input sample and retuens
83  * the resulting 5-bit CCITT G.723 40Kbps code.
84  * Returns -1 if the input coding value is invalid.
85  */
g723_40_encoder(int sl,int in_coding,struct g72x_state * state_ptr)86 int g723_40_encoder(int sl, int in_coding, struct g72x_state *state_ptr)
87 {
88 	short		sei, sezi, se, sez;	/* ACCUM */
89 	short		d;			/* SUBTA */
90 	short		y;			/* MIX */
91 	short		sr;			/* ADDB */
92 	short		dqsez;			/* ADDC */
93 	short		dq, i;
94 
95 	switch (in_coding) {	/* linearize input sample to 14-bit PCM */
96 	case AUDIO_ENCODING_ALAW:
97 		sl = sox_alaw2linear16(sl) >> 2;
98 		break;
99 	case AUDIO_ENCODING_ULAW:
100 		sl = sox_ulaw2linear16(sl) >> 2;
101 		break;
102 	case AUDIO_ENCODING_LINEAR:
103 		sl >>= 2;		/* sl of 14-bit dynamic range */
104 		break;
105 	default:
106 		return (-1);
107 	}
108 
109 	sezi = predictor_zero(state_ptr);
110 	sez = sezi >> 1;
111 	sei = sezi + predictor_pole(state_ptr);
112 	se = sei >> 1;			/* se = estimated signal */
113 
114 	d = sl - se;			/* d = estimation difference */
115 
116 	/* quantize prediction difference */
117 	y = step_size(state_ptr);	/* adaptive quantizer step size */
118 	i = quantize(d, y, qtab_723_40, 15);	/* i = ADPCM code */
119 
120 	dq = reconstruct(i & 0x10, _dqlntab[i], y);	/* quantized diff */
121 
122 	sr = (dq < 0) ? se - (dq & 0x7FFF) : se + dq; /* reconstructed signal */
123 
124 	dqsez = sr + sez - se;		/* dqsez = pole prediction diff. */
125 
126 	update(5, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr);
127 
128 	return (i);
129 }
130 
131 /*
132  * g723_40_decoder()
133  *
134  * Decodes a 5-bit CCITT G.723 40Kbps code and returns
135  * the resulting 16-bit linear PCM, A-law or u-law sample value.
136  * -1 is returned if the output coding is unknown.
137  */
g723_40_decoder(int i,int out_coding,struct g72x_state * state_ptr)138 int g723_40_decoder(int i, int out_coding, struct g72x_state *state_ptr)
139 {
140 	short		sezi, sei, sez, se;	/* ACCUM */
141 	short		y;			/* MIX */
142 	short		sr;			/* ADDB */
143 	short		dq;
144 	short		dqsez;
145 
146 	i &= 0x1f;			/* mask to get proper bits */
147 	sezi = predictor_zero(state_ptr);
148 	sez = sezi >> 1;
149 	sei = sezi + predictor_pole(state_ptr);
150 	se = sei >> 1;			/* se = estimated signal */
151 
152 	y = step_size(state_ptr);	/* adaptive quantizer step size */
153 	dq = reconstruct(i & 0x10, _dqlntab[i], y);	/* estimation diff. */
154 
155 	sr = (dq < 0) ? (se - (dq & 0x7FFF)) : (se + dq); /* reconst. signal */
156 
157 	dqsez = sr - se + sez;		/* pole prediction diff. */
158 
159 	update(5, y, _witab[i], _fitab[i], dq, sr, dqsez, state_ptr);
160 
161 	switch (out_coding) {
162 	case AUDIO_ENCODING_ALAW:
163 		return (tandem_adjust_alaw(sr, se, y, i, 0x10, qtab_723_40));
164 	case AUDIO_ENCODING_ULAW:
165 		return (tandem_adjust_ulaw(sr, se, y, i, 0x10, qtab_723_40));
166 	case AUDIO_ENCODING_LINEAR:
167 		return (sr << 2);	/* sr was of 14-bit dynamic range */
168 	default:
169 		return (-1);
170 	}
171 }
172