1 /* This source code is a product of Sun Microsystems, Inc. and is provided
2  * for unrestricted use.  Users may copy or modify this source code without
3  * charge.
4  *
5  * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
6  * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
7  * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
8  *
9  * Sun source code is provided with no support and without any obligation on
10  * the part of Sun Microsystems, Inc. to assist in its use, correction,
11  * modification or enhancement.
12  *
13  * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
14  * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
15  * OR ANY PART THEREOF.
16  *
17  * In no event will Sun Microsystems, Inc. be liable for any lost revenue
18  * or profits or other special, indirect and consequential damages, even if
19  * Sun has been advised of the possibility of such damages.
20  *
21  * Sun Microsystems, Inc.
22  * 2550 Garcia Avenue
23  * Mountain View, California  94043
24  */
25 
26 /*
27  * g721.c
28  *
29  * Description:
30  *
31  * g721_encoder(), g721_decoder()
32  *
33  * These routines comprise an implementation of the CCITT G.721 ADPCM
34  * coding algorithm.  Essentially, this implementation is identical to
35  * the bit level description except for a few deviations which
36  * take advantage of work station attributes, such as hardware 2's
37  * complement arithmetic and large memory.  Specifically, certain time
38  * consuming operations such as multiplications are replaced
39  * with lookup tables and software 2's complement operations are
40  * replaced with hardware 2's complement.
41  *
42  * The deviation from the bit level specification (lookup tables)
43  * preserves the bit level performance specifications.
44  *
45  * As outlined in the G.721 Recommendation, the algorithm is broken
46  * down into modules.  Each section of code below is preceded by
47  * the name of the module which it is implementing.
48  *
49  */
50 
51 #include "sox_i.h"
52 #include "g72x.h"
53 #include "g711.h"
54 
55 static const short qtab_721[7] = {-124, 80, 178, 246, 300, 349, 400};
56 /*
57  * Maps G.721 code word to reconstructed scale factor normalized log
58  * magnitude values.
59  */
60 static const short	_dqlntab[16] = {-2048, 4, 135, 213, 273, 323, 373, 425,
61 				425, 373, 323, 273, 213, 135, 4, -2048};
62 
63 /* Maps G.721 code word to log of scale factor multiplier. */
64 static const short	_witab[16] = {-12, 18, 41, 64, 112, 198, 355, 1122,
65 				1122, 355, 198, 112, 64, 41, 18, -12};
66 /*
67  * Maps G.721 code words to a set of values whose long and short
68  * term averages are computed and then compared to give an indication
69  * how stationary (steady state) the signal is.
70  */
71 static const short	_fitab[16] = {0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
72 				0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0};
73 
74 /*
75  * g721_encoder()
76  *
77  * Encodes the input vale of linear PCM, A-law or u-law data sl and returns
78  * the resulting code. -1 is returned for unknown input coding value.
79  */
g721_encoder(int sl,int in_coding,struct g72x_state * state_ptr)80 int g721_encoder(int sl, int in_coding, struct g72x_state *state_ptr)
81 {
82 	short		sezi, se, sez;		/* ACCUM */
83 	short		d;			/* SUBTA */
84 	short		sr;			/* ADDB */
85 	short		y;			/* MIX */
86 	short		dqsez;			/* ADDC */
87 	short		dq, i;
88 
89 	switch (in_coding) {	/* linearize input sample to 14-bit PCM */
90 	case AUDIO_ENCODING_ALAW:
91 		sl = sox_alaw2linear16(sl) >> 2;
92 		break;
93 	case AUDIO_ENCODING_ULAW:
94 		sl = sox_ulaw2linear16(sl) >> 2;
95 		break;
96 	case AUDIO_ENCODING_LINEAR:
97 		sl >>= 2;			/* 14-bit dynamic range */
98 		break;
99 	default:
100 		return (-1);
101 	}
102 
103 	sezi = predictor_zero(state_ptr);
104 	sez = sezi >> 1;
105 	se = (sezi + predictor_pole(state_ptr)) >> 1;	/* estimated signal */
106 
107 	d = sl - se;				/* estimation difference */
108 
109 	/* quantize the prediction difference */
110 	y = step_size(state_ptr);		/* quantizer step size */
111 	i = quantize(d, y, qtab_721, 7);	/* i = ADPCM code */
112 
113 	dq = reconstruct(i & 8, _dqlntab[i], y);	/* quantized est diff */
114 
115 	sr = (dq < 0) ? se - (dq & 0x3FFF) : se + dq;	/* reconst. signal */
116 
117 	dqsez = sr + sez - se;			/* pole prediction diff. */
118 
119 	update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
120 
121 	return (i);
122 }
123 
124 /*
125  * g721_decoder()
126  *
127  * Description:
128  *
129  * Decodes a 4-bit code of G.721 encoded data of i and
130  * returns the resulting linear PCM, A-law or u-law value.
131  * return -1 for unknown out_coding value.
132  */
g721_decoder(int i,int out_coding,struct g72x_state * state_ptr)133 int g721_decoder(int i, int out_coding, struct g72x_state *state_ptr)
134 {
135 	short		sezi, sei, sez, se;	/* ACCUM */
136 	short		y;			/* MIX */
137 	short		sr;			/* ADDB */
138 	short		dq;
139 	short		dqsez;
140 
141 	i &= 0x0f;			/* mask to get proper bits */
142 	sezi = predictor_zero(state_ptr);
143 	sez = sezi >> 1;
144 	sei = sezi + predictor_pole(state_ptr);
145 	se = sei >> 1;			/* se = estimated signal */
146 
147 	y = step_size(state_ptr);	/* dynamic quantizer step size */
148 
149 	dq = reconstruct(i & 0x08, _dqlntab[i], y); /* quantized diff. */
150 
151 	sr = (dq < 0) ? (se - (dq & 0x3FFF)) : se + dq;	/* reconst. signal */
152 
153 	dqsez = sr - se + sez;			/* pole prediction diff. */
154 
155 	update(4, y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
156 
157 	switch (out_coding) {
158 	case AUDIO_ENCODING_ALAW:
159 		return (tandem_adjust_alaw(sr, se, y, i, 8, qtab_721));
160 	case AUDIO_ENCODING_ULAW:
161 		return (tandem_adjust_ulaw(sr, se, y, i, 8, qtab_721));
162 	case AUDIO_ENCODING_LINEAR:
163 		return (sr << 2);	/* sr was 14-bit dynamic range */
164 	default:
165 		return (-1);
166 	}
167 }
168