1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/page_owner.h>
43 #include "internal.h"
44
45 int hugetlb_max_hstate __read_mostly;
46 unsigned int default_hstate_idx;
47 struct hstate hstates[HUGE_MAX_HSTATE];
48
49 #ifdef CONFIG_CMA
50 static struct cma *hugetlb_cma[MAX_NUMNODES];
51 #endif
52 static unsigned long hugetlb_cma_size __initdata;
53
54 /*
55 * Minimum page order among possible hugepage sizes, set to a proper value
56 * at boot time.
57 */
58 static unsigned int minimum_order __read_mostly = UINT_MAX;
59
60 __initdata LIST_HEAD(huge_boot_pages);
61
62 /* for command line parsing */
63 static struct hstate * __initdata parsed_hstate;
64 static unsigned long __initdata default_hstate_max_huge_pages;
65 static bool __initdata parsed_valid_hugepagesz = true;
66 static bool __initdata parsed_default_hugepagesz;
67
68 /*
69 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
70 * free_huge_pages, and surplus_huge_pages.
71 */
72 DEFINE_SPINLOCK(hugetlb_lock);
73
74 /*
75 * Serializes faults on the same logical page. This is used to
76 * prevent spurious OOMs when the hugepage pool is fully utilized.
77 */
78 static int num_fault_mutexes;
79 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
80
PageHugeFreed(struct page * head)81 static inline bool PageHugeFreed(struct page *head)
82 {
83 return page_private(head + 4) == -1UL;
84 }
85
SetPageHugeFreed(struct page * head)86 static inline void SetPageHugeFreed(struct page *head)
87 {
88 set_page_private(head + 4, -1UL);
89 }
90
ClearPageHugeFreed(struct page * head)91 static inline void ClearPageHugeFreed(struct page *head)
92 {
93 set_page_private(head + 4, 0);
94 }
95
96 /* Forward declaration */
97 static int hugetlb_acct_memory(struct hstate *h, long delta);
98
unlock_or_release_subpool(struct hugepage_subpool * spool)99 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
100 {
101 bool free = (spool->count == 0) && (spool->used_hpages == 0);
102
103 spin_unlock(&spool->lock);
104
105 /* If no pages are used, and no other handles to the subpool
106 * remain, give up any reservations based on minimum size and
107 * free the subpool */
108 if (free) {
109 if (spool->min_hpages != -1)
110 hugetlb_acct_memory(spool->hstate,
111 -spool->min_hpages);
112 kfree(spool);
113 }
114 }
115
hugepage_new_subpool(struct hstate * h,long max_hpages,long min_hpages)116 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
117 long min_hpages)
118 {
119 struct hugepage_subpool *spool;
120
121 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
122 if (!spool)
123 return NULL;
124
125 spin_lock_init(&spool->lock);
126 spool->count = 1;
127 spool->max_hpages = max_hpages;
128 spool->hstate = h;
129 spool->min_hpages = min_hpages;
130
131 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
132 kfree(spool);
133 return NULL;
134 }
135 spool->rsv_hpages = min_hpages;
136
137 return spool;
138 }
139
hugepage_put_subpool(struct hugepage_subpool * spool)140 void hugepage_put_subpool(struct hugepage_subpool *spool)
141 {
142 spin_lock(&spool->lock);
143 BUG_ON(!spool->count);
144 spool->count--;
145 unlock_or_release_subpool(spool);
146 }
147
148 /*
149 * Subpool accounting for allocating and reserving pages.
150 * Return -ENOMEM if there are not enough resources to satisfy the
151 * request. Otherwise, return the number of pages by which the
152 * global pools must be adjusted (upward). The returned value may
153 * only be different than the passed value (delta) in the case where
154 * a subpool minimum size must be maintained.
155 */
hugepage_subpool_get_pages(struct hugepage_subpool * spool,long delta)156 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
157 long delta)
158 {
159 long ret = delta;
160
161 if (!spool)
162 return ret;
163
164 spin_lock(&spool->lock);
165
166 if (spool->max_hpages != -1) { /* maximum size accounting */
167 if ((spool->used_hpages + delta) <= spool->max_hpages)
168 spool->used_hpages += delta;
169 else {
170 ret = -ENOMEM;
171 goto unlock_ret;
172 }
173 }
174
175 /* minimum size accounting */
176 if (spool->min_hpages != -1 && spool->rsv_hpages) {
177 if (delta > spool->rsv_hpages) {
178 /*
179 * Asking for more reserves than those already taken on
180 * behalf of subpool. Return difference.
181 */
182 ret = delta - spool->rsv_hpages;
183 spool->rsv_hpages = 0;
184 } else {
185 ret = 0; /* reserves already accounted for */
186 spool->rsv_hpages -= delta;
187 }
188 }
189
190 unlock_ret:
191 spin_unlock(&spool->lock);
192 return ret;
193 }
194
195 /*
196 * Subpool accounting for freeing and unreserving pages.
197 * Return the number of global page reservations that must be dropped.
198 * The return value may only be different than the passed value (delta)
199 * in the case where a subpool minimum size must be maintained.
200 */
hugepage_subpool_put_pages(struct hugepage_subpool * spool,long delta)201 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
202 long delta)
203 {
204 long ret = delta;
205
206 if (!spool)
207 return delta;
208
209 spin_lock(&spool->lock);
210
211 if (spool->max_hpages != -1) /* maximum size accounting */
212 spool->used_hpages -= delta;
213
214 /* minimum size accounting */
215 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
216 if (spool->rsv_hpages + delta <= spool->min_hpages)
217 ret = 0;
218 else
219 ret = spool->rsv_hpages + delta - spool->min_hpages;
220
221 spool->rsv_hpages += delta;
222 if (spool->rsv_hpages > spool->min_hpages)
223 spool->rsv_hpages = spool->min_hpages;
224 }
225
226 /*
227 * If hugetlbfs_put_super couldn't free spool due to an outstanding
228 * quota reference, free it now.
229 */
230 unlock_or_release_subpool(spool);
231
232 return ret;
233 }
234
subpool_inode(struct inode * inode)235 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
236 {
237 return HUGETLBFS_SB(inode->i_sb)->spool;
238 }
239
subpool_vma(struct vm_area_struct * vma)240 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
241 {
242 return subpool_inode(file_inode(vma->vm_file));
243 }
244
245 /* Helper that removes a struct file_region from the resv_map cache and returns
246 * it for use.
247 */
248 static struct file_region *
get_file_region_entry_from_cache(struct resv_map * resv,long from,long to)249 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
250 {
251 struct file_region *nrg = NULL;
252
253 VM_BUG_ON(resv->region_cache_count <= 0);
254
255 resv->region_cache_count--;
256 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
257 list_del(&nrg->link);
258
259 nrg->from = from;
260 nrg->to = to;
261
262 return nrg;
263 }
264
copy_hugetlb_cgroup_uncharge_info(struct file_region * nrg,struct file_region * rg)265 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
266 struct file_region *rg)
267 {
268 #ifdef CONFIG_CGROUP_HUGETLB
269 nrg->reservation_counter = rg->reservation_counter;
270 nrg->css = rg->css;
271 if (rg->css)
272 css_get(rg->css);
273 #endif
274 }
275
276 /* Helper that records hugetlb_cgroup uncharge info. */
record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup * h_cg,struct hstate * h,struct resv_map * resv,struct file_region * nrg)277 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
278 struct hstate *h,
279 struct resv_map *resv,
280 struct file_region *nrg)
281 {
282 #ifdef CONFIG_CGROUP_HUGETLB
283 if (h_cg) {
284 nrg->reservation_counter =
285 &h_cg->rsvd_hugepage[hstate_index(h)];
286 nrg->css = &h_cg->css;
287 /*
288 * The caller will hold exactly one h_cg->css reference for the
289 * whole contiguous reservation region. But this area might be
290 * scattered when there are already some file_regions reside in
291 * it. As a result, many file_regions may share only one css
292 * reference. In order to ensure that one file_region must hold
293 * exactly one h_cg->css reference, we should do css_get for
294 * each file_region and leave the reference held by caller
295 * untouched.
296 */
297 css_get(&h_cg->css);
298 if (!resv->pages_per_hpage)
299 resv->pages_per_hpage = pages_per_huge_page(h);
300 /* pages_per_hpage should be the same for all entries in
301 * a resv_map.
302 */
303 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
304 } else {
305 nrg->reservation_counter = NULL;
306 nrg->css = NULL;
307 }
308 #endif
309 }
310
put_uncharge_info(struct file_region * rg)311 static void put_uncharge_info(struct file_region *rg)
312 {
313 #ifdef CONFIG_CGROUP_HUGETLB
314 if (rg->css)
315 css_put(rg->css);
316 #endif
317 }
318
has_same_uncharge_info(struct file_region * rg,struct file_region * org)319 static bool has_same_uncharge_info(struct file_region *rg,
320 struct file_region *org)
321 {
322 #ifdef CONFIG_CGROUP_HUGETLB
323 return rg && org &&
324 rg->reservation_counter == org->reservation_counter &&
325 rg->css == org->css;
326
327 #else
328 return true;
329 #endif
330 }
331
coalesce_file_region(struct resv_map * resv,struct file_region * rg)332 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
333 {
334 struct file_region *nrg = NULL, *prg = NULL;
335
336 prg = list_prev_entry(rg, link);
337 if (&prg->link != &resv->regions && prg->to == rg->from &&
338 has_same_uncharge_info(prg, rg)) {
339 prg->to = rg->to;
340
341 list_del(&rg->link);
342 put_uncharge_info(rg);
343 kfree(rg);
344
345 rg = prg;
346 }
347
348 nrg = list_next_entry(rg, link);
349 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
350 has_same_uncharge_info(nrg, rg)) {
351 nrg->from = rg->from;
352
353 list_del(&rg->link);
354 put_uncharge_info(rg);
355 kfree(rg);
356 }
357 }
358
359 /*
360 * Must be called with resv->lock held.
361 *
362 * Calling this with regions_needed != NULL will count the number of pages
363 * to be added but will not modify the linked list. And regions_needed will
364 * indicate the number of file_regions needed in the cache to carry out to add
365 * the regions for this range.
366 */
add_reservation_in_range(struct resv_map * resv,long f,long t,struct hugetlb_cgroup * h_cg,struct hstate * h,long * regions_needed)367 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
368 struct hugetlb_cgroup *h_cg,
369 struct hstate *h, long *regions_needed)
370 {
371 long add = 0;
372 struct list_head *head = &resv->regions;
373 long last_accounted_offset = f;
374 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
375
376 if (regions_needed)
377 *regions_needed = 0;
378
379 /* In this loop, we essentially handle an entry for the range
380 * [last_accounted_offset, rg->from), at every iteration, with some
381 * bounds checking.
382 */
383 list_for_each_entry_safe(rg, trg, head, link) {
384 /* Skip irrelevant regions that start before our range. */
385 if (rg->from < f) {
386 /* If this region ends after the last accounted offset,
387 * then we need to update last_accounted_offset.
388 */
389 if (rg->to > last_accounted_offset)
390 last_accounted_offset = rg->to;
391 continue;
392 }
393
394 /* When we find a region that starts beyond our range, we've
395 * finished.
396 */
397 if (rg->from > t)
398 break;
399
400 /* Add an entry for last_accounted_offset -> rg->from, and
401 * update last_accounted_offset.
402 */
403 if (rg->from > last_accounted_offset) {
404 add += rg->from - last_accounted_offset;
405 if (!regions_needed) {
406 nrg = get_file_region_entry_from_cache(
407 resv, last_accounted_offset, rg->from);
408 record_hugetlb_cgroup_uncharge_info(h_cg, h,
409 resv, nrg);
410 list_add(&nrg->link, rg->link.prev);
411 coalesce_file_region(resv, nrg);
412 } else
413 *regions_needed += 1;
414 }
415
416 last_accounted_offset = rg->to;
417 }
418
419 /* Handle the case where our range extends beyond
420 * last_accounted_offset.
421 */
422 if (last_accounted_offset < t) {
423 add += t - last_accounted_offset;
424 if (!regions_needed) {
425 nrg = get_file_region_entry_from_cache(
426 resv, last_accounted_offset, t);
427 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
428 list_add(&nrg->link, rg->link.prev);
429 coalesce_file_region(resv, nrg);
430 } else
431 *regions_needed += 1;
432 }
433
434 VM_BUG_ON(add < 0);
435 return add;
436 }
437
438 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
439 */
allocate_file_region_entries(struct resv_map * resv,int regions_needed)440 static int allocate_file_region_entries(struct resv_map *resv,
441 int regions_needed)
442 __must_hold(&resv->lock)
443 {
444 struct list_head allocated_regions;
445 int to_allocate = 0, i = 0;
446 struct file_region *trg = NULL, *rg = NULL;
447
448 VM_BUG_ON(regions_needed < 0);
449
450 INIT_LIST_HEAD(&allocated_regions);
451
452 /*
453 * Check for sufficient descriptors in the cache to accommodate
454 * the number of in progress add operations plus regions_needed.
455 *
456 * This is a while loop because when we drop the lock, some other call
457 * to region_add or region_del may have consumed some region_entries,
458 * so we keep looping here until we finally have enough entries for
459 * (adds_in_progress + regions_needed).
460 */
461 while (resv->region_cache_count <
462 (resv->adds_in_progress + regions_needed)) {
463 to_allocate = resv->adds_in_progress + regions_needed -
464 resv->region_cache_count;
465
466 /* At this point, we should have enough entries in the cache
467 * for all the existings adds_in_progress. We should only be
468 * needing to allocate for regions_needed.
469 */
470 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
471
472 spin_unlock(&resv->lock);
473 for (i = 0; i < to_allocate; i++) {
474 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
475 if (!trg)
476 goto out_of_memory;
477 list_add(&trg->link, &allocated_regions);
478 }
479
480 spin_lock(&resv->lock);
481
482 list_splice(&allocated_regions, &resv->region_cache);
483 resv->region_cache_count += to_allocate;
484 }
485
486 return 0;
487
488 out_of_memory:
489 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
490 list_del(&rg->link);
491 kfree(rg);
492 }
493 return -ENOMEM;
494 }
495
496 /*
497 * Add the huge page range represented by [f, t) to the reserve
498 * map. Regions will be taken from the cache to fill in this range.
499 * Sufficient regions should exist in the cache due to the previous
500 * call to region_chg with the same range, but in some cases the cache will not
501 * have sufficient entries due to races with other code doing region_add or
502 * region_del. The extra needed entries will be allocated.
503 *
504 * regions_needed is the out value provided by a previous call to region_chg.
505 *
506 * Return the number of new huge pages added to the map. This number is greater
507 * than or equal to zero. If file_region entries needed to be allocated for
508 * this operation and we were not able to allocate, it returns -ENOMEM.
509 * region_add of regions of length 1 never allocate file_regions and cannot
510 * fail; region_chg will always allocate at least 1 entry and a region_add for
511 * 1 page will only require at most 1 entry.
512 */
region_add(struct resv_map * resv,long f,long t,long in_regions_needed,struct hstate * h,struct hugetlb_cgroup * h_cg)513 static long region_add(struct resv_map *resv, long f, long t,
514 long in_regions_needed, struct hstate *h,
515 struct hugetlb_cgroup *h_cg)
516 {
517 long add = 0, actual_regions_needed = 0;
518
519 spin_lock(&resv->lock);
520 retry:
521
522 /* Count how many regions are actually needed to execute this add. */
523 add_reservation_in_range(resv, f, t, NULL, NULL,
524 &actual_regions_needed);
525
526 /*
527 * Check for sufficient descriptors in the cache to accommodate
528 * this add operation. Note that actual_regions_needed may be greater
529 * than in_regions_needed, as the resv_map may have been modified since
530 * the region_chg call. In this case, we need to make sure that we
531 * allocate extra entries, such that we have enough for all the
532 * existing adds_in_progress, plus the excess needed for this
533 * operation.
534 */
535 if (actual_regions_needed > in_regions_needed &&
536 resv->region_cache_count <
537 resv->adds_in_progress +
538 (actual_regions_needed - in_regions_needed)) {
539 /* region_add operation of range 1 should never need to
540 * allocate file_region entries.
541 */
542 VM_BUG_ON(t - f <= 1);
543
544 if (allocate_file_region_entries(
545 resv, actual_regions_needed - in_regions_needed)) {
546 return -ENOMEM;
547 }
548
549 goto retry;
550 }
551
552 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
553
554 resv->adds_in_progress -= in_regions_needed;
555
556 spin_unlock(&resv->lock);
557 VM_BUG_ON(add < 0);
558 return add;
559 }
560
561 /*
562 * Examine the existing reserve map and determine how many
563 * huge pages in the specified range [f, t) are NOT currently
564 * represented. This routine is called before a subsequent
565 * call to region_add that will actually modify the reserve
566 * map to add the specified range [f, t). region_chg does
567 * not change the number of huge pages represented by the
568 * map. A number of new file_region structures is added to the cache as a
569 * placeholder, for the subsequent region_add call to use. At least 1
570 * file_region structure is added.
571 *
572 * out_regions_needed is the number of regions added to the
573 * resv->adds_in_progress. This value needs to be provided to a follow up call
574 * to region_add or region_abort for proper accounting.
575 *
576 * Returns the number of huge pages that need to be added to the existing
577 * reservation map for the range [f, t). This number is greater or equal to
578 * zero. -ENOMEM is returned if a new file_region structure or cache entry
579 * is needed and can not be allocated.
580 */
region_chg(struct resv_map * resv,long f,long t,long * out_regions_needed)581 static long region_chg(struct resv_map *resv, long f, long t,
582 long *out_regions_needed)
583 {
584 long chg = 0;
585
586 spin_lock(&resv->lock);
587
588 /* Count how many hugepages in this range are NOT represented. */
589 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
590 out_regions_needed);
591
592 if (*out_regions_needed == 0)
593 *out_regions_needed = 1;
594
595 if (allocate_file_region_entries(resv, *out_regions_needed))
596 return -ENOMEM;
597
598 resv->adds_in_progress += *out_regions_needed;
599
600 spin_unlock(&resv->lock);
601 return chg;
602 }
603
604 /*
605 * Abort the in progress add operation. The adds_in_progress field
606 * of the resv_map keeps track of the operations in progress between
607 * calls to region_chg and region_add. Operations are sometimes
608 * aborted after the call to region_chg. In such cases, region_abort
609 * is called to decrement the adds_in_progress counter. regions_needed
610 * is the value returned by the region_chg call, it is used to decrement
611 * the adds_in_progress counter.
612 *
613 * NOTE: The range arguments [f, t) are not needed or used in this
614 * routine. They are kept to make reading the calling code easier as
615 * arguments will match the associated region_chg call.
616 */
region_abort(struct resv_map * resv,long f,long t,long regions_needed)617 static void region_abort(struct resv_map *resv, long f, long t,
618 long regions_needed)
619 {
620 spin_lock(&resv->lock);
621 VM_BUG_ON(!resv->region_cache_count);
622 resv->adds_in_progress -= regions_needed;
623 spin_unlock(&resv->lock);
624 }
625
626 /*
627 * Delete the specified range [f, t) from the reserve map. If the
628 * t parameter is LONG_MAX, this indicates that ALL regions after f
629 * should be deleted. Locate the regions which intersect [f, t)
630 * and either trim, delete or split the existing regions.
631 *
632 * Returns the number of huge pages deleted from the reserve map.
633 * In the normal case, the return value is zero or more. In the
634 * case where a region must be split, a new region descriptor must
635 * be allocated. If the allocation fails, -ENOMEM will be returned.
636 * NOTE: If the parameter t == LONG_MAX, then we will never split
637 * a region and possibly return -ENOMEM. Callers specifying
638 * t == LONG_MAX do not need to check for -ENOMEM error.
639 */
region_del(struct resv_map * resv,long f,long t)640 static long region_del(struct resv_map *resv, long f, long t)
641 {
642 struct list_head *head = &resv->regions;
643 struct file_region *rg, *trg;
644 struct file_region *nrg = NULL;
645 long del = 0;
646
647 retry:
648 spin_lock(&resv->lock);
649 list_for_each_entry_safe(rg, trg, head, link) {
650 /*
651 * Skip regions before the range to be deleted. file_region
652 * ranges are normally of the form [from, to). However, there
653 * may be a "placeholder" entry in the map which is of the form
654 * (from, to) with from == to. Check for placeholder entries
655 * at the beginning of the range to be deleted.
656 */
657 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
658 continue;
659
660 if (rg->from >= t)
661 break;
662
663 if (f > rg->from && t < rg->to) { /* Must split region */
664 /*
665 * Check for an entry in the cache before dropping
666 * lock and attempting allocation.
667 */
668 if (!nrg &&
669 resv->region_cache_count > resv->adds_in_progress) {
670 nrg = list_first_entry(&resv->region_cache,
671 struct file_region,
672 link);
673 list_del(&nrg->link);
674 resv->region_cache_count--;
675 }
676
677 if (!nrg) {
678 spin_unlock(&resv->lock);
679 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
680 if (!nrg)
681 return -ENOMEM;
682 goto retry;
683 }
684
685 del += t - f;
686 hugetlb_cgroup_uncharge_file_region(
687 resv, rg, t - f, false);
688
689 /* New entry for end of split region */
690 nrg->from = t;
691 nrg->to = rg->to;
692
693 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
694
695 INIT_LIST_HEAD(&nrg->link);
696
697 /* Original entry is trimmed */
698 rg->to = f;
699
700 list_add(&nrg->link, &rg->link);
701 nrg = NULL;
702 break;
703 }
704
705 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
706 del += rg->to - rg->from;
707 hugetlb_cgroup_uncharge_file_region(resv, rg,
708 rg->to - rg->from, true);
709 list_del(&rg->link);
710 kfree(rg);
711 continue;
712 }
713
714 if (f <= rg->from) { /* Trim beginning of region */
715 hugetlb_cgroup_uncharge_file_region(resv, rg,
716 t - rg->from, false);
717
718 del += t - rg->from;
719 rg->from = t;
720 } else { /* Trim end of region */
721 hugetlb_cgroup_uncharge_file_region(resv, rg,
722 rg->to - f, false);
723
724 del += rg->to - f;
725 rg->to = f;
726 }
727 }
728
729 spin_unlock(&resv->lock);
730 kfree(nrg);
731 return del;
732 }
733
734 /*
735 * A rare out of memory error was encountered which prevented removal of
736 * the reserve map region for a page. The huge page itself was free'ed
737 * and removed from the page cache. This routine will adjust the subpool
738 * usage count, and the global reserve count if needed. By incrementing
739 * these counts, the reserve map entry which could not be deleted will
740 * appear as a "reserved" entry instead of simply dangling with incorrect
741 * counts.
742 */
hugetlb_fix_reserve_counts(struct inode * inode)743 void hugetlb_fix_reserve_counts(struct inode *inode)
744 {
745 struct hugepage_subpool *spool = subpool_inode(inode);
746 long rsv_adjust;
747 bool reserved = false;
748
749 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
750 if (rsv_adjust > 0) {
751 struct hstate *h = hstate_inode(inode);
752
753 if (!hugetlb_acct_memory(h, 1))
754 reserved = true;
755 } else if (!rsv_adjust) {
756 reserved = true;
757 }
758
759 if (!reserved)
760 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
761 }
762
763 /*
764 * Count and return the number of huge pages in the reserve map
765 * that intersect with the range [f, t).
766 */
region_count(struct resv_map * resv,long f,long t)767 static long region_count(struct resv_map *resv, long f, long t)
768 {
769 struct list_head *head = &resv->regions;
770 struct file_region *rg;
771 long chg = 0;
772
773 spin_lock(&resv->lock);
774 /* Locate each segment we overlap with, and count that overlap. */
775 list_for_each_entry(rg, head, link) {
776 long seg_from;
777 long seg_to;
778
779 if (rg->to <= f)
780 continue;
781 if (rg->from >= t)
782 break;
783
784 seg_from = max(rg->from, f);
785 seg_to = min(rg->to, t);
786
787 chg += seg_to - seg_from;
788 }
789 spin_unlock(&resv->lock);
790
791 return chg;
792 }
793
794 /*
795 * Convert the address within this vma to the page offset within
796 * the mapping, in pagecache page units; huge pages here.
797 */
vma_hugecache_offset(struct hstate * h,struct vm_area_struct * vma,unsigned long address)798 static pgoff_t vma_hugecache_offset(struct hstate *h,
799 struct vm_area_struct *vma, unsigned long address)
800 {
801 return ((address - vma->vm_start) >> huge_page_shift(h)) +
802 (vma->vm_pgoff >> huge_page_order(h));
803 }
804
linear_hugepage_index(struct vm_area_struct * vma,unsigned long address)805 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
806 unsigned long address)
807 {
808 return vma_hugecache_offset(hstate_vma(vma), vma, address);
809 }
810 EXPORT_SYMBOL_GPL(linear_hugepage_index);
811
812 /*
813 * Return the size of the pages allocated when backing a VMA. In the majority
814 * cases this will be same size as used by the page table entries.
815 */
vma_kernel_pagesize(struct vm_area_struct * vma)816 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
817 {
818 if (vma->vm_ops && vma->vm_ops->pagesize)
819 return vma->vm_ops->pagesize(vma);
820 return PAGE_SIZE;
821 }
822 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
823
824 /*
825 * Return the page size being used by the MMU to back a VMA. In the majority
826 * of cases, the page size used by the kernel matches the MMU size. On
827 * architectures where it differs, an architecture-specific 'strong'
828 * version of this symbol is required.
829 */
vma_mmu_pagesize(struct vm_area_struct * vma)830 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
831 {
832 return vma_kernel_pagesize(vma);
833 }
834
835 /*
836 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
837 * bits of the reservation map pointer, which are always clear due to
838 * alignment.
839 */
840 #define HPAGE_RESV_OWNER (1UL << 0)
841 #define HPAGE_RESV_UNMAPPED (1UL << 1)
842 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
843
844 /*
845 * These helpers are used to track how many pages are reserved for
846 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
847 * is guaranteed to have their future faults succeed.
848 *
849 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
850 * the reserve counters are updated with the hugetlb_lock held. It is safe
851 * to reset the VMA at fork() time as it is not in use yet and there is no
852 * chance of the global counters getting corrupted as a result of the values.
853 *
854 * The private mapping reservation is represented in a subtly different
855 * manner to a shared mapping. A shared mapping has a region map associated
856 * with the underlying file, this region map represents the backing file
857 * pages which have ever had a reservation assigned which this persists even
858 * after the page is instantiated. A private mapping has a region map
859 * associated with the original mmap which is attached to all VMAs which
860 * reference it, this region map represents those offsets which have consumed
861 * reservation ie. where pages have been instantiated.
862 */
get_vma_private_data(struct vm_area_struct * vma)863 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
864 {
865 return (unsigned long)vma->vm_private_data;
866 }
867
set_vma_private_data(struct vm_area_struct * vma,unsigned long value)868 static void set_vma_private_data(struct vm_area_struct *vma,
869 unsigned long value)
870 {
871 vma->vm_private_data = (void *)value;
872 }
873
874 static void
resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map * resv_map,struct hugetlb_cgroup * h_cg,struct hstate * h)875 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
876 struct hugetlb_cgroup *h_cg,
877 struct hstate *h)
878 {
879 #ifdef CONFIG_CGROUP_HUGETLB
880 if (!h_cg || !h) {
881 resv_map->reservation_counter = NULL;
882 resv_map->pages_per_hpage = 0;
883 resv_map->css = NULL;
884 } else {
885 resv_map->reservation_counter =
886 &h_cg->rsvd_hugepage[hstate_index(h)];
887 resv_map->pages_per_hpage = pages_per_huge_page(h);
888 resv_map->css = &h_cg->css;
889 }
890 #endif
891 }
892
resv_map_alloc(void)893 struct resv_map *resv_map_alloc(void)
894 {
895 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
896 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
897
898 if (!resv_map || !rg) {
899 kfree(resv_map);
900 kfree(rg);
901 return NULL;
902 }
903
904 kref_init(&resv_map->refs);
905 spin_lock_init(&resv_map->lock);
906 INIT_LIST_HEAD(&resv_map->regions);
907
908 resv_map->adds_in_progress = 0;
909 /*
910 * Initialize these to 0. On shared mappings, 0's here indicate these
911 * fields don't do cgroup accounting. On private mappings, these will be
912 * re-initialized to the proper values, to indicate that hugetlb cgroup
913 * reservations are to be un-charged from here.
914 */
915 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
916
917 INIT_LIST_HEAD(&resv_map->region_cache);
918 list_add(&rg->link, &resv_map->region_cache);
919 resv_map->region_cache_count = 1;
920
921 return resv_map;
922 }
923
resv_map_release(struct kref * ref)924 void resv_map_release(struct kref *ref)
925 {
926 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
927 struct list_head *head = &resv_map->region_cache;
928 struct file_region *rg, *trg;
929
930 /* Clear out any active regions before we release the map. */
931 region_del(resv_map, 0, LONG_MAX);
932
933 /* ... and any entries left in the cache */
934 list_for_each_entry_safe(rg, trg, head, link) {
935 list_del(&rg->link);
936 kfree(rg);
937 }
938
939 VM_BUG_ON(resv_map->adds_in_progress);
940
941 kfree(resv_map);
942 }
943
inode_resv_map(struct inode * inode)944 static inline struct resv_map *inode_resv_map(struct inode *inode)
945 {
946 /*
947 * At inode evict time, i_mapping may not point to the original
948 * address space within the inode. This original address space
949 * contains the pointer to the resv_map. So, always use the
950 * address space embedded within the inode.
951 * The VERY common case is inode->mapping == &inode->i_data but,
952 * this may not be true for device special inodes.
953 */
954 return (struct resv_map *)(&inode->i_data)->private_data;
955 }
956
vma_resv_map(struct vm_area_struct * vma)957 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
958 {
959 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
960 if (vma->vm_flags & VM_MAYSHARE) {
961 struct address_space *mapping = vma->vm_file->f_mapping;
962 struct inode *inode = mapping->host;
963
964 return inode_resv_map(inode);
965
966 } else {
967 return (struct resv_map *)(get_vma_private_data(vma) &
968 ~HPAGE_RESV_MASK);
969 }
970 }
971
set_vma_resv_map(struct vm_area_struct * vma,struct resv_map * map)972 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
973 {
974 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
975 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
976
977 set_vma_private_data(vma, (get_vma_private_data(vma) &
978 HPAGE_RESV_MASK) | (unsigned long)map);
979 }
980
set_vma_resv_flags(struct vm_area_struct * vma,unsigned long flags)981 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
982 {
983 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
984 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
985
986 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
987 }
988
is_vma_resv_set(struct vm_area_struct * vma,unsigned long flag)989 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
990 {
991 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
992
993 return (get_vma_private_data(vma) & flag) != 0;
994 }
995
996 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
reset_vma_resv_huge_pages(struct vm_area_struct * vma)997 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
998 {
999 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1000 if (!(vma->vm_flags & VM_MAYSHARE))
1001 vma->vm_private_data = (void *)0;
1002 }
1003
1004 /* Returns true if the VMA has associated reserve pages */
vma_has_reserves(struct vm_area_struct * vma,long chg)1005 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1006 {
1007 if (vma->vm_flags & VM_NORESERVE) {
1008 /*
1009 * This address is already reserved by other process(chg == 0),
1010 * so, we should decrement reserved count. Without decrementing,
1011 * reserve count remains after releasing inode, because this
1012 * allocated page will go into page cache and is regarded as
1013 * coming from reserved pool in releasing step. Currently, we
1014 * don't have any other solution to deal with this situation
1015 * properly, so add work-around here.
1016 */
1017 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1018 return true;
1019 else
1020 return false;
1021 }
1022
1023 /* Shared mappings always use reserves */
1024 if (vma->vm_flags & VM_MAYSHARE) {
1025 /*
1026 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1027 * be a region map for all pages. The only situation where
1028 * there is no region map is if a hole was punched via
1029 * fallocate. In this case, there really are no reserves to
1030 * use. This situation is indicated if chg != 0.
1031 */
1032 if (chg)
1033 return false;
1034 else
1035 return true;
1036 }
1037
1038 /*
1039 * Only the process that called mmap() has reserves for
1040 * private mappings.
1041 */
1042 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1043 /*
1044 * Like the shared case above, a hole punch or truncate
1045 * could have been performed on the private mapping.
1046 * Examine the value of chg to determine if reserves
1047 * actually exist or were previously consumed.
1048 * Very Subtle - The value of chg comes from a previous
1049 * call to vma_needs_reserves(). The reserve map for
1050 * private mappings has different (opposite) semantics
1051 * than that of shared mappings. vma_needs_reserves()
1052 * has already taken this difference in semantics into
1053 * account. Therefore, the meaning of chg is the same
1054 * as in the shared case above. Code could easily be
1055 * combined, but keeping it separate draws attention to
1056 * subtle differences.
1057 */
1058 if (chg)
1059 return false;
1060 else
1061 return true;
1062 }
1063
1064 return false;
1065 }
1066
enqueue_huge_page(struct hstate * h,struct page * page)1067 static void enqueue_huge_page(struct hstate *h, struct page *page)
1068 {
1069 int nid = page_to_nid(page);
1070 list_move(&page->lru, &h->hugepage_freelists[nid]);
1071 h->free_huge_pages++;
1072 h->free_huge_pages_node[nid]++;
1073 SetPageHugeFreed(page);
1074 }
1075
dequeue_huge_page_node_exact(struct hstate * h,int nid)1076 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1077 {
1078 struct page *page;
1079 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1080
1081 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1082 if (nocma && is_migrate_cma_page(page))
1083 continue;
1084
1085 if (PageHWPoison(page))
1086 continue;
1087
1088 list_move(&page->lru, &h->hugepage_activelist);
1089 set_page_refcounted(page);
1090 ClearPageHugeFreed(page);
1091 h->free_huge_pages--;
1092 h->free_huge_pages_node[nid]--;
1093 return page;
1094 }
1095
1096 return NULL;
1097 }
1098
dequeue_huge_page_nodemask(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1099 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1100 nodemask_t *nmask)
1101 {
1102 unsigned int cpuset_mems_cookie;
1103 struct zonelist *zonelist;
1104 struct zone *zone;
1105 struct zoneref *z;
1106 int node = NUMA_NO_NODE;
1107
1108 zonelist = node_zonelist(nid, gfp_mask);
1109
1110 retry_cpuset:
1111 cpuset_mems_cookie = read_mems_allowed_begin();
1112 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1113 struct page *page;
1114
1115 if (!cpuset_zone_allowed(zone, gfp_mask))
1116 continue;
1117 /*
1118 * no need to ask again on the same node. Pool is node rather than
1119 * zone aware
1120 */
1121 if (zone_to_nid(zone) == node)
1122 continue;
1123 node = zone_to_nid(zone);
1124
1125 page = dequeue_huge_page_node_exact(h, node);
1126 if (page)
1127 return page;
1128 }
1129 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1130 goto retry_cpuset;
1131
1132 return NULL;
1133 }
1134
dequeue_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address,int avoid_reserve,long chg)1135 static struct page *dequeue_huge_page_vma(struct hstate *h,
1136 struct vm_area_struct *vma,
1137 unsigned long address, int avoid_reserve,
1138 long chg)
1139 {
1140 struct page *page;
1141 struct mempolicy *mpol;
1142 gfp_t gfp_mask;
1143 nodemask_t *nodemask;
1144 int nid;
1145
1146 /*
1147 * A child process with MAP_PRIVATE mappings created by their parent
1148 * have no page reserves. This check ensures that reservations are
1149 * not "stolen". The child may still get SIGKILLed
1150 */
1151 if (!vma_has_reserves(vma, chg) &&
1152 h->free_huge_pages - h->resv_huge_pages == 0)
1153 goto err;
1154
1155 /* If reserves cannot be used, ensure enough pages are in the pool */
1156 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1157 goto err;
1158
1159 gfp_mask = htlb_alloc_mask(h);
1160 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1161 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1162 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1163 SetPagePrivate(page);
1164 h->resv_huge_pages--;
1165 }
1166
1167 mpol_cond_put(mpol);
1168 return page;
1169
1170 err:
1171 return NULL;
1172 }
1173
1174 /*
1175 * common helper functions for hstate_next_node_to_{alloc|free}.
1176 * We may have allocated or freed a huge page based on a different
1177 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1178 * be outside of *nodes_allowed. Ensure that we use an allowed
1179 * node for alloc or free.
1180 */
next_node_allowed(int nid,nodemask_t * nodes_allowed)1181 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1182 {
1183 nid = next_node_in(nid, *nodes_allowed);
1184 VM_BUG_ON(nid >= MAX_NUMNODES);
1185
1186 return nid;
1187 }
1188
get_valid_node_allowed(int nid,nodemask_t * nodes_allowed)1189 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1190 {
1191 if (!node_isset(nid, *nodes_allowed))
1192 nid = next_node_allowed(nid, nodes_allowed);
1193 return nid;
1194 }
1195
1196 /*
1197 * returns the previously saved node ["this node"] from which to
1198 * allocate a persistent huge page for the pool and advance the
1199 * next node from which to allocate, handling wrap at end of node
1200 * mask.
1201 */
hstate_next_node_to_alloc(struct hstate * h,nodemask_t * nodes_allowed)1202 static int hstate_next_node_to_alloc(struct hstate *h,
1203 nodemask_t *nodes_allowed)
1204 {
1205 int nid;
1206
1207 VM_BUG_ON(!nodes_allowed);
1208
1209 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1210 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1211
1212 return nid;
1213 }
1214
1215 /*
1216 * helper for free_pool_huge_page() - return the previously saved
1217 * node ["this node"] from which to free a huge page. Advance the
1218 * next node id whether or not we find a free huge page to free so
1219 * that the next attempt to free addresses the next node.
1220 */
hstate_next_node_to_free(struct hstate * h,nodemask_t * nodes_allowed)1221 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1222 {
1223 int nid;
1224
1225 VM_BUG_ON(!nodes_allowed);
1226
1227 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1228 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1229
1230 return nid;
1231 }
1232
1233 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1234 for (nr_nodes = nodes_weight(*mask); \
1235 nr_nodes > 0 && \
1236 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1237 nr_nodes--)
1238
1239 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1240 for (nr_nodes = nodes_weight(*mask); \
1241 nr_nodes > 0 && \
1242 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1243 nr_nodes--)
1244
1245 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
destroy_compound_gigantic_page(struct page * page,unsigned int order)1246 static void destroy_compound_gigantic_page(struct page *page,
1247 unsigned int order)
1248 {
1249 int i;
1250 int nr_pages = 1 << order;
1251 struct page *p = page + 1;
1252
1253 atomic_set(compound_mapcount_ptr(page), 0);
1254 atomic_set(compound_pincount_ptr(page), 0);
1255
1256 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1257 clear_compound_head(p);
1258 set_page_refcounted(p);
1259 }
1260
1261 set_compound_order(page, 0);
1262 page[1].compound_nr = 0;
1263 __ClearPageHead(page);
1264 }
1265
free_gigantic_page(struct page * page,unsigned int order)1266 static void free_gigantic_page(struct page *page, unsigned int order)
1267 {
1268 /*
1269 * If the page isn't allocated using the cma allocator,
1270 * cma_release() returns false.
1271 */
1272 #ifdef CONFIG_CMA
1273 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1274 return;
1275 #endif
1276
1277 free_contig_range(page_to_pfn(page), 1 << order);
1278 }
1279
1280 #ifdef CONFIG_CONTIG_ALLOC
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1281 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1282 int nid, nodemask_t *nodemask)
1283 {
1284 unsigned long nr_pages = 1UL << huge_page_order(h);
1285 if (nid == NUMA_NO_NODE)
1286 nid = numa_mem_id();
1287
1288 #ifdef CONFIG_CMA
1289 {
1290 struct page *page;
1291 int node;
1292
1293 if (hugetlb_cma[nid]) {
1294 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1295 huge_page_order(h),
1296 GFP_KERNEL | __GFP_NOWARN);
1297 if (page)
1298 return page;
1299 }
1300
1301 if (!(gfp_mask & __GFP_THISNODE)) {
1302 for_each_node_mask(node, *nodemask) {
1303 if (node == nid || !hugetlb_cma[node])
1304 continue;
1305
1306 page = cma_alloc(hugetlb_cma[node], nr_pages,
1307 huge_page_order(h),
1308 GFP_KERNEL | __GFP_NOWARN);
1309 if (page)
1310 return page;
1311 }
1312 }
1313 }
1314 #endif
1315
1316 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1317 }
1318
1319 #else /* !CONFIG_CONTIG_ALLOC */
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1320 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1321 int nid, nodemask_t *nodemask)
1322 {
1323 return NULL;
1324 }
1325 #endif /* CONFIG_CONTIG_ALLOC */
1326
1327 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
alloc_gigantic_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nodemask)1328 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1329 int nid, nodemask_t *nodemask)
1330 {
1331 return NULL;
1332 }
free_gigantic_page(struct page * page,unsigned int order)1333 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
destroy_compound_gigantic_page(struct page * page,unsigned int order)1334 static inline void destroy_compound_gigantic_page(struct page *page,
1335 unsigned int order) { }
1336 #endif
1337
update_and_free_page(struct hstate * h,struct page * page)1338 static void update_and_free_page(struct hstate *h, struct page *page)
1339 {
1340 int i;
1341 struct page *subpage = page;
1342
1343 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1344 return;
1345
1346 h->nr_huge_pages--;
1347 h->nr_huge_pages_node[page_to_nid(page)]--;
1348 for (i = 0; i < pages_per_huge_page(h);
1349 i++, subpage = mem_map_next(subpage, page, i)) {
1350 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1351 1 << PG_referenced | 1 << PG_dirty |
1352 1 << PG_active | 1 << PG_private |
1353 1 << PG_writeback);
1354 }
1355 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1356 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1357 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1358 set_page_refcounted(page);
1359 if (hstate_is_gigantic(h)) {
1360 /*
1361 * Temporarily drop the hugetlb_lock, because
1362 * we might block in free_gigantic_page().
1363 */
1364 spin_unlock(&hugetlb_lock);
1365 destroy_compound_gigantic_page(page, huge_page_order(h));
1366 free_gigantic_page(page, huge_page_order(h));
1367 spin_lock(&hugetlb_lock);
1368 } else {
1369 __free_pages(page, huge_page_order(h));
1370 }
1371 }
1372
size_to_hstate(unsigned long size)1373 struct hstate *size_to_hstate(unsigned long size)
1374 {
1375 struct hstate *h;
1376
1377 for_each_hstate(h) {
1378 if (huge_page_size(h) == size)
1379 return h;
1380 }
1381 return NULL;
1382 }
1383
1384 /*
1385 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1386 * to hstate->hugepage_activelist.)
1387 *
1388 * This function can be called for tail pages, but never returns true for them.
1389 */
page_huge_active(struct page * page)1390 bool page_huge_active(struct page *page)
1391 {
1392 return PageHeadHuge(page) && PagePrivate(&page[1]);
1393 }
1394
1395 /* never called for tail page */
set_page_huge_active(struct page * page)1396 void set_page_huge_active(struct page *page)
1397 {
1398 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1399 SetPagePrivate(&page[1]);
1400 }
1401
clear_page_huge_active(struct page * page)1402 static void clear_page_huge_active(struct page *page)
1403 {
1404 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1405 ClearPagePrivate(&page[1]);
1406 }
1407
1408 /*
1409 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1410 * code
1411 */
PageHugeTemporary(struct page * page)1412 static inline bool PageHugeTemporary(struct page *page)
1413 {
1414 if (!PageHuge(page))
1415 return false;
1416
1417 return (unsigned long)page[2].mapping == -1U;
1418 }
1419
SetPageHugeTemporary(struct page * page)1420 static inline void SetPageHugeTemporary(struct page *page)
1421 {
1422 page[2].mapping = (void *)-1U;
1423 }
1424
ClearPageHugeTemporary(struct page * page)1425 static inline void ClearPageHugeTemporary(struct page *page)
1426 {
1427 page[2].mapping = NULL;
1428 }
1429
__free_huge_page(struct page * page)1430 static void __free_huge_page(struct page *page)
1431 {
1432 /*
1433 * Can't pass hstate in here because it is called from the
1434 * compound page destructor.
1435 */
1436 struct hstate *h = page_hstate(page);
1437 int nid = page_to_nid(page);
1438 struct hugepage_subpool *spool =
1439 (struct hugepage_subpool *)page_private(page);
1440 bool restore_reserve;
1441
1442 VM_BUG_ON_PAGE(page_count(page), page);
1443 VM_BUG_ON_PAGE(page_mapcount(page), page);
1444
1445 set_page_private(page, 0);
1446 page->mapping = NULL;
1447 restore_reserve = PagePrivate(page);
1448 ClearPagePrivate(page);
1449
1450 /*
1451 * If PagePrivate() was set on page, page allocation consumed a
1452 * reservation. If the page was associated with a subpool, there
1453 * would have been a page reserved in the subpool before allocation
1454 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1455 * reservtion, do not call hugepage_subpool_put_pages() as this will
1456 * remove the reserved page from the subpool.
1457 */
1458 if (!restore_reserve) {
1459 /*
1460 * A return code of zero implies that the subpool will be
1461 * under its minimum size if the reservation is not restored
1462 * after page is free. Therefore, force restore_reserve
1463 * operation.
1464 */
1465 if (hugepage_subpool_put_pages(spool, 1) == 0)
1466 restore_reserve = true;
1467 }
1468
1469 spin_lock(&hugetlb_lock);
1470 clear_page_huge_active(page);
1471 hugetlb_cgroup_uncharge_page(hstate_index(h),
1472 pages_per_huge_page(h), page);
1473 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1474 pages_per_huge_page(h), page);
1475 if (restore_reserve)
1476 h->resv_huge_pages++;
1477
1478 if (PageHugeTemporary(page)) {
1479 list_del(&page->lru);
1480 ClearPageHugeTemporary(page);
1481 update_and_free_page(h, page);
1482 } else if (h->surplus_huge_pages_node[nid]) {
1483 /* remove the page from active list */
1484 list_del(&page->lru);
1485 update_and_free_page(h, page);
1486 h->surplus_huge_pages--;
1487 h->surplus_huge_pages_node[nid]--;
1488 } else {
1489 arch_clear_hugepage_flags(page);
1490 enqueue_huge_page(h, page);
1491 }
1492 spin_unlock(&hugetlb_lock);
1493 }
1494
1495 /*
1496 * As free_huge_page() can be called from a non-task context, we have
1497 * to defer the actual freeing in a workqueue to prevent potential
1498 * hugetlb_lock deadlock.
1499 *
1500 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1501 * be freed and frees them one-by-one. As the page->mapping pointer is
1502 * going to be cleared in __free_huge_page() anyway, it is reused as the
1503 * llist_node structure of a lockless linked list of huge pages to be freed.
1504 */
1505 static LLIST_HEAD(hpage_freelist);
1506
free_hpage_workfn(struct work_struct * work)1507 static void free_hpage_workfn(struct work_struct *work)
1508 {
1509 struct llist_node *node;
1510 struct page *page;
1511
1512 node = llist_del_all(&hpage_freelist);
1513
1514 while (node) {
1515 page = container_of((struct address_space **)node,
1516 struct page, mapping);
1517 node = node->next;
1518 __free_huge_page(page);
1519 }
1520 }
1521 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1522
free_huge_page(struct page * page)1523 void free_huge_page(struct page *page)
1524 {
1525 /*
1526 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1527 */
1528 if (!in_task()) {
1529 /*
1530 * Only call schedule_work() if hpage_freelist is previously
1531 * empty. Otherwise, schedule_work() had been called but the
1532 * workfn hasn't retrieved the list yet.
1533 */
1534 if (llist_add((struct llist_node *)&page->mapping,
1535 &hpage_freelist))
1536 schedule_work(&free_hpage_work);
1537 return;
1538 }
1539
1540 __free_huge_page(page);
1541 }
1542
prep_new_huge_page(struct hstate * h,struct page * page,int nid)1543 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1544 {
1545 INIT_LIST_HEAD(&page->lru);
1546 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1547 set_hugetlb_cgroup(page, NULL);
1548 set_hugetlb_cgroup_rsvd(page, NULL);
1549 spin_lock(&hugetlb_lock);
1550 h->nr_huge_pages++;
1551 h->nr_huge_pages_node[nid]++;
1552 ClearPageHugeFreed(page);
1553 spin_unlock(&hugetlb_lock);
1554 }
1555
prep_compound_gigantic_page(struct page * page,unsigned int order)1556 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1557 {
1558 int i;
1559 int nr_pages = 1 << order;
1560 struct page *p = page + 1;
1561
1562 /* we rely on prep_new_huge_page to set the destructor */
1563 set_compound_order(page, order);
1564 __ClearPageReserved(page);
1565 __SetPageHead(page);
1566 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1567 /*
1568 * For gigantic hugepages allocated through bootmem at
1569 * boot, it's safer to be consistent with the not-gigantic
1570 * hugepages and clear the PG_reserved bit from all tail pages
1571 * too. Otherwise drivers using get_user_pages() to access tail
1572 * pages may get the reference counting wrong if they see
1573 * PG_reserved set on a tail page (despite the head page not
1574 * having PG_reserved set). Enforcing this consistency between
1575 * head and tail pages allows drivers to optimize away a check
1576 * on the head page when they need know if put_page() is needed
1577 * after get_user_pages().
1578 */
1579 __ClearPageReserved(p);
1580 set_page_count(p, 0);
1581 set_compound_head(p, page);
1582 }
1583 atomic_set(compound_mapcount_ptr(page), -1);
1584 atomic_set(compound_pincount_ptr(page), 0);
1585 }
1586
1587 /*
1588 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1589 * transparent huge pages. See the PageTransHuge() documentation for more
1590 * details.
1591 */
PageHuge(struct page * page)1592 int PageHuge(struct page *page)
1593 {
1594 if (!PageCompound(page))
1595 return 0;
1596
1597 page = compound_head(page);
1598 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1599 }
1600 EXPORT_SYMBOL_GPL(PageHuge);
1601
1602 /*
1603 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1604 * normal or transparent huge pages.
1605 */
PageHeadHuge(struct page * page_head)1606 int PageHeadHuge(struct page *page_head)
1607 {
1608 if (!PageHead(page_head))
1609 return 0;
1610
1611 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1612 }
1613
1614 /*
1615 * Find and lock address space (mapping) in write mode.
1616 *
1617 * Upon entry, the page is locked which means that page_mapping() is
1618 * stable. Due to locking order, we can only trylock_write. If we can
1619 * not get the lock, simply return NULL to caller.
1620 */
hugetlb_page_mapping_lock_write(struct page * hpage)1621 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1622 {
1623 struct address_space *mapping = page_mapping(hpage);
1624
1625 if (!mapping)
1626 return mapping;
1627
1628 if (i_mmap_trylock_write(mapping))
1629 return mapping;
1630
1631 return NULL;
1632 }
1633
hugetlb_basepage_index(struct page * page)1634 pgoff_t hugetlb_basepage_index(struct page *page)
1635 {
1636 struct page *page_head = compound_head(page);
1637 pgoff_t index = page_index(page_head);
1638 unsigned long compound_idx;
1639
1640 if (compound_order(page_head) >= MAX_ORDER)
1641 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1642 else
1643 compound_idx = page - page_head;
1644
1645 return (index << compound_order(page_head)) + compound_idx;
1646 }
1647
alloc_buddy_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1648 static struct page *alloc_buddy_huge_page(struct hstate *h,
1649 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1650 nodemask_t *node_alloc_noretry)
1651 {
1652 int order = huge_page_order(h);
1653 struct page *page;
1654 bool alloc_try_hard = true;
1655
1656 /*
1657 * By default we always try hard to allocate the page with
1658 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1659 * a loop (to adjust global huge page counts) and previous allocation
1660 * failed, do not continue to try hard on the same node. Use the
1661 * node_alloc_noretry bitmap to manage this state information.
1662 */
1663 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1664 alloc_try_hard = false;
1665 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1666 if (alloc_try_hard)
1667 gfp_mask |= __GFP_RETRY_MAYFAIL;
1668 if (nid == NUMA_NO_NODE)
1669 nid = numa_mem_id();
1670 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1671 if (page)
1672 __count_vm_event(HTLB_BUDDY_PGALLOC);
1673 else
1674 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1675
1676 /*
1677 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1678 * indicates an overall state change. Clear bit so that we resume
1679 * normal 'try hard' allocations.
1680 */
1681 if (node_alloc_noretry && page && !alloc_try_hard)
1682 node_clear(nid, *node_alloc_noretry);
1683
1684 /*
1685 * If we tried hard to get a page but failed, set bit so that
1686 * subsequent attempts will not try as hard until there is an
1687 * overall state change.
1688 */
1689 if (node_alloc_noretry && !page && alloc_try_hard)
1690 node_set(nid, *node_alloc_noretry);
1691
1692 return page;
1693 }
1694
1695 /*
1696 * Common helper to allocate a fresh hugetlb page. All specific allocators
1697 * should use this function to get new hugetlb pages
1698 */
alloc_fresh_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask,nodemask_t * node_alloc_noretry)1699 static struct page *alloc_fresh_huge_page(struct hstate *h,
1700 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1701 nodemask_t *node_alloc_noretry)
1702 {
1703 struct page *page;
1704
1705 if (hstate_is_gigantic(h))
1706 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1707 else
1708 page = alloc_buddy_huge_page(h, gfp_mask,
1709 nid, nmask, node_alloc_noretry);
1710 if (!page)
1711 return NULL;
1712
1713 if (hstate_is_gigantic(h))
1714 prep_compound_gigantic_page(page, huge_page_order(h));
1715 prep_new_huge_page(h, page, page_to_nid(page));
1716
1717 return page;
1718 }
1719
1720 /*
1721 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1722 * manner.
1723 */
alloc_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,nodemask_t * node_alloc_noretry)1724 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1725 nodemask_t *node_alloc_noretry)
1726 {
1727 struct page *page;
1728 int nr_nodes, node;
1729 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1730
1731 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1732 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1733 node_alloc_noretry);
1734 if (page)
1735 break;
1736 }
1737
1738 if (!page)
1739 return 0;
1740
1741 put_page(page); /* free it into the hugepage allocator */
1742
1743 return 1;
1744 }
1745
1746 /*
1747 * Free huge page from pool from next node to free.
1748 * Attempt to keep persistent huge pages more or less
1749 * balanced over allowed nodes.
1750 * Called with hugetlb_lock locked.
1751 */
free_pool_huge_page(struct hstate * h,nodemask_t * nodes_allowed,bool acct_surplus)1752 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1753 bool acct_surplus)
1754 {
1755 int nr_nodes, node;
1756 int ret = 0;
1757
1758 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1759 /*
1760 * If we're returning unused surplus pages, only examine
1761 * nodes with surplus pages.
1762 */
1763 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1764 !list_empty(&h->hugepage_freelists[node])) {
1765 struct page *page =
1766 list_entry(h->hugepage_freelists[node].next,
1767 struct page, lru);
1768 list_del(&page->lru);
1769 h->free_huge_pages--;
1770 h->free_huge_pages_node[node]--;
1771 if (acct_surplus) {
1772 h->surplus_huge_pages--;
1773 h->surplus_huge_pages_node[node]--;
1774 }
1775 update_and_free_page(h, page);
1776 ret = 1;
1777 break;
1778 }
1779 }
1780
1781 return ret;
1782 }
1783
1784 /*
1785 * Dissolve a given free hugepage into free buddy pages. This function does
1786 * nothing for in-use hugepages and non-hugepages.
1787 * This function returns values like below:
1788 *
1789 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1790 * (allocated or reserved.)
1791 * 0: successfully dissolved free hugepages or the page is not a
1792 * hugepage (considered as already dissolved)
1793 */
dissolve_free_huge_page(struct page * page)1794 int dissolve_free_huge_page(struct page *page)
1795 {
1796 int rc = -EBUSY;
1797
1798 retry:
1799 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1800 if (!PageHuge(page))
1801 return 0;
1802
1803 spin_lock(&hugetlb_lock);
1804 if (!PageHuge(page)) {
1805 rc = 0;
1806 goto out;
1807 }
1808
1809 if (!page_count(page)) {
1810 struct page *head = compound_head(page);
1811 struct hstate *h = page_hstate(head);
1812 int nid = page_to_nid(head);
1813 if (h->free_huge_pages - h->resv_huge_pages == 0)
1814 goto out;
1815
1816 /*
1817 * We should make sure that the page is already on the free list
1818 * when it is dissolved.
1819 */
1820 if (unlikely(!PageHugeFreed(head))) {
1821 spin_unlock(&hugetlb_lock);
1822 cond_resched();
1823
1824 /*
1825 * Theoretically, we should return -EBUSY when we
1826 * encounter this race. In fact, we have a chance
1827 * to successfully dissolve the page if we do a
1828 * retry. Because the race window is quite small.
1829 * If we seize this opportunity, it is an optimization
1830 * for increasing the success rate of dissolving page.
1831 */
1832 goto retry;
1833 }
1834
1835 /*
1836 * Move PageHWPoison flag from head page to the raw error page,
1837 * which makes any subpages rather than the error page reusable.
1838 */
1839 if (PageHWPoison(head) && page != head) {
1840 SetPageHWPoison(page);
1841 ClearPageHWPoison(head);
1842 }
1843 list_del(&head->lru);
1844 h->free_huge_pages--;
1845 h->free_huge_pages_node[nid]--;
1846 h->max_huge_pages--;
1847 update_and_free_page(h, head);
1848 rc = 0;
1849 }
1850 out:
1851 spin_unlock(&hugetlb_lock);
1852 return rc;
1853 }
1854
1855 /*
1856 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1857 * make specified memory blocks removable from the system.
1858 * Note that this will dissolve a free gigantic hugepage completely, if any
1859 * part of it lies within the given range.
1860 * Also note that if dissolve_free_huge_page() returns with an error, all
1861 * free hugepages that were dissolved before that error are lost.
1862 */
dissolve_free_huge_pages(unsigned long start_pfn,unsigned long end_pfn)1863 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1864 {
1865 unsigned long pfn;
1866 struct page *page;
1867 int rc = 0;
1868
1869 if (!hugepages_supported())
1870 return rc;
1871
1872 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1873 page = pfn_to_page(pfn);
1874 rc = dissolve_free_huge_page(page);
1875 if (rc)
1876 break;
1877 }
1878
1879 return rc;
1880 }
1881
1882 /*
1883 * Allocates a fresh surplus page from the page allocator.
1884 */
alloc_surplus_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1885 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1886 int nid, nodemask_t *nmask)
1887 {
1888 struct page *page = NULL;
1889
1890 if (hstate_is_gigantic(h))
1891 return NULL;
1892
1893 spin_lock(&hugetlb_lock);
1894 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1895 goto out_unlock;
1896 spin_unlock(&hugetlb_lock);
1897
1898 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1899 if (!page)
1900 return NULL;
1901
1902 spin_lock(&hugetlb_lock);
1903 /*
1904 * We could have raced with the pool size change.
1905 * Double check that and simply deallocate the new page
1906 * if we would end up overcommiting the surpluses. Abuse
1907 * temporary page to workaround the nasty free_huge_page
1908 * codeflow
1909 */
1910 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1911 SetPageHugeTemporary(page);
1912 spin_unlock(&hugetlb_lock);
1913 put_page(page);
1914 return NULL;
1915 } else {
1916 h->surplus_huge_pages++;
1917 h->surplus_huge_pages_node[page_to_nid(page)]++;
1918 }
1919
1920 out_unlock:
1921 spin_unlock(&hugetlb_lock);
1922
1923 return page;
1924 }
1925
alloc_migrate_huge_page(struct hstate * h,gfp_t gfp_mask,int nid,nodemask_t * nmask)1926 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1927 int nid, nodemask_t *nmask)
1928 {
1929 struct page *page;
1930
1931 if (hstate_is_gigantic(h))
1932 return NULL;
1933
1934 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1935 if (!page)
1936 return NULL;
1937
1938 /*
1939 * We do not account these pages as surplus because they are only
1940 * temporary and will be released properly on the last reference
1941 */
1942 SetPageHugeTemporary(page);
1943
1944 return page;
1945 }
1946
1947 /*
1948 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1949 */
1950 static
alloc_buddy_huge_page_with_mpol(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)1951 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1952 struct vm_area_struct *vma, unsigned long addr)
1953 {
1954 struct page *page;
1955 struct mempolicy *mpol;
1956 gfp_t gfp_mask = htlb_alloc_mask(h);
1957 int nid;
1958 nodemask_t *nodemask;
1959
1960 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1961 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1962 mpol_cond_put(mpol);
1963
1964 return page;
1965 }
1966
1967 /* page migration callback function */
alloc_huge_page_nodemask(struct hstate * h,int preferred_nid,nodemask_t * nmask,gfp_t gfp_mask)1968 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1969 nodemask_t *nmask, gfp_t gfp_mask)
1970 {
1971 spin_lock(&hugetlb_lock);
1972 if (h->free_huge_pages - h->resv_huge_pages > 0) {
1973 struct page *page;
1974
1975 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1976 if (page) {
1977 spin_unlock(&hugetlb_lock);
1978 return page;
1979 }
1980 }
1981 spin_unlock(&hugetlb_lock);
1982
1983 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1984 }
1985
1986 /* mempolicy aware migration callback */
alloc_huge_page_vma(struct hstate * h,struct vm_area_struct * vma,unsigned long address)1987 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1988 unsigned long address)
1989 {
1990 struct mempolicy *mpol;
1991 nodemask_t *nodemask;
1992 struct page *page;
1993 gfp_t gfp_mask;
1994 int node;
1995
1996 gfp_mask = htlb_alloc_mask(h);
1997 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1998 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1999 mpol_cond_put(mpol);
2000
2001 return page;
2002 }
2003
2004 /*
2005 * Increase the hugetlb pool such that it can accommodate a reservation
2006 * of size 'delta'.
2007 */
gather_surplus_pages(struct hstate * h,int delta)2008 static int gather_surplus_pages(struct hstate *h, int delta)
2009 __must_hold(&hugetlb_lock)
2010 {
2011 struct list_head surplus_list;
2012 struct page *page, *tmp;
2013 int ret, i;
2014 int needed, allocated;
2015 bool alloc_ok = true;
2016
2017 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2018 if (needed <= 0) {
2019 h->resv_huge_pages += delta;
2020 return 0;
2021 }
2022
2023 allocated = 0;
2024 INIT_LIST_HEAD(&surplus_list);
2025
2026 ret = -ENOMEM;
2027 retry:
2028 spin_unlock(&hugetlb_lock);
2029 for (i = 0; i < needed; i++) {
2030 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2031 NUMA_NO_NODE, NULL);
2032 if (!page) {
2033 alloc_ok = false;
2034 break;
2035 }
2036 list_add(&page->lru, &surplus_list);
2037 cond_resched();
2038 }
2039 allocated += i;
2040
2041 /*
2042 * After retaking hugetlb_lock, we need to recalculate 'needed'
2043 * because either resv_huge_pages or free_huge_pages may have changed.
2044 */
2045 spin_lock(&hugetlb_lock);
2046 needed = (h->resv_huge_pages + delta) -
2047 (h->free_huge_pages + allocated);
2048 if (needed > 0) {
2049 if (alloc_ok)
2050 goto retry;
2051 /*
2052 * We were not able to allocate enough pages to
2053 * satisfy the entire reservation so we free what
2054 * we've allocated so far.
2055 */
2056 goto free;
2057 }
2058 /*
2059 * The surplus_list now contains _at_least_ the number of extra pages
2060 * needed to accommodate the reservation. Add the appropriate number
2061 * of pages to the hugetlb pool and free the extras back to the buddy
2062 * allocator. Commit the entire reservation here to prevent another
2063 * process from stealing the pages as they are added to the pool but
2064 * before they are reserved.
2065 */
2066 needed += allocated;
2067 h->resv_huge_pages += delta;
2068 ret = 0;
2069
2070 /* Free the needed pages to the hugetlb pool */
2071 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2072 if ((--needed) < 0)
2073 break;
2074 /*
2075 * This page is now managed by the hugetlb allocator and has
2076 * no users -- drop the buddy allocator's reference.
2077 */
2078 put_page_testzero(page);
2079 VM_BUG_ON_PAGE(page_count(page), page);
2080 enqueue_huge_page(h, page);
2081 }
2082 free:
2083 spin_unlock(&hugetlb_lock);
2084
2085 /* Free unnecessary surplus pages to the buddy allocator */
2086 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2087 put_page(page);
2088 spin_lock(&hugetlb_lock);
2089
2090 return ret;
2091 }
2092
2093 /*
2094 * This routine has two main purposes:
2095 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2096 * in unused_resv_pages. This corresponds to the prior adjustments made
2097 * to the associated reservation map.
2098 * 2) Free any unused surplus pages that may have been allocated to satisfy
2099 * the reservation. As many as unused_resv_pages may be freed.
2100 *
2101 * Called with hugetlb_lock held. However, the lock could be dropped (and
2102 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2103 * we must make sure nobody else can claim pages we are in the process of
2104 * freeing. Do this by ensuring resv_huge_page always is greater than the
2105 * number of huge pages we plan to free when dropping the lock.
2106 */
return_unused_surplus_pages(struct hstate * h,unsigned long unused_resv_pages)2107 static void return_unused_surplus_pages(struct hstate *h,
2108 unsigned long unused_resv_pages)
2109 {
2110 unsigned long nr_pages;
2111
2112 /* Cannot return gigantic pages currently */
2113 if (hstate_is_gigantic(h))
2114 goto out;
2115
2116 /*
2117 * Part (or even all) of the reservation could have been backed
2118 * by pre-allocated pages. Only free surplus pages.
2119 */
2120 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2121
2122 /*
2123 * We want to release as many surplus pages as possible, spread
2124 * evenly across all nodes with memory. Iterate across these nodes
2125 * until we can no longer free unreserved surplus pages. This occurs
2126 * when the nodes with surplus pages have no free pages.
2127 * free_pool_huge_page() will balance the freed pages across the
2128 * on-line nodes with memory and will handle the hstate accounting.
2129 *
2130 * Note that we decrement resv_huge_pages as we free the pages. If
2131 * we drop the lock, resv_huge_pages will still be sufficiently large
2132 * to cover subsequent pages we may free.
2133 */
2134 while (nr_pages--) {
2135 h->resv_huge_pages--;
2136 unused_resv_pages--;
2137 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2138 goto out;
2139 cond_resched_lock(&hugetlb_lock);
2140 }
2141
2142 out:
2143 /* Fully uncommit the reservation */
2144 h->resv_huge_pages -= unused_resv_pages;
2145 }
2146
2147
2148 /*
2149 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2150 * are used by the huge page allocation routines to manage reservations.
2151 *
2152 * vma_needs_reservation is called to determine if the huge page at addr
2153 * within the vma has an associated reservation. If a reservation is
2154 * needed, the value 1 is returned. The caller is then responsible for
2155 * managing the global reservation and subpool usage counts. After
2156 * the huge page has been allocated, vma_commit_reservation is called
2157 * to add the page to the reservation map. If the page allocation fails,
2158 * the reservation must be ended instead of committed. vma_end_reservation
2159 * is called in such cases.
2160 *
2161 * In the normal case, vma_commit_reservation returns the same value
2162 * as the preceding vma_needs_reservation call. The only time this
2163 * is not the case is if a reserve map was changed between calls. It
2164 * is the responsibility of the caller to notice the difference and
2165 * take appropriate action.
2166 *
2167 * vma_add_reservation is used in error paths where a reservation must
2168 * be restored when a newly allocated huge page must be freed. It is
2169 * to be called after calling vma_needs_reservation to determine if a
2170 * reservation exists.
2171 */
2172 enum vma_resv_mode {
2173 VMA_NEEDS_RESV,
2174 VMA_COMMIT_RESV,
2175 VMA_END_RESV,
2176 VMA_ADD_RESV,
2177 };
__vma_reservation_common(struct hstate * h,struct vm_area_struct * vma,unsigned long addr,enum vma_resv_mode mode)2178 static long __vma_reservation_common(struct hstate *h,
2179 struct vm_area_struct *vma, unsigned long addr,
2180 enum vma_resv_mode mode)
2181 {
2182 struct resv_map *resv;
2183 pgoff_t idx;
2184 long ret;
2185 long dummy_out_regions_needed;
2186
2187 resv = vma_resv_map(vma);
2188 if (!resv)
2189 return 1;
2190
2191 idx = vma_hugecache_offset(h, vma, addr);
2192 switch (mode) {
2193 case VMA_NEEDS_RESV:
2194 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2195 /* We assume that vma_reservation_* routines always operate on
2196 * 1 page, and that adding to resv map a 1 page entry can only
2197 * ever require 1 region.
2198 */
2199 VM_BUG_ON(dummy_out_regions_needed != 1);
2200 break;
2201 case VMA_COMMIT_RESV:
2202 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2203 /* region_add calls of range 1 should never fail. */
2204 VM_BUG_ON(ret < 0);
2205 break;
2206 case VMA_END_RESV:
2207 region_abort(resv, idx, idx + 1, 1);
2208 ret = 0;
2209 break;
2210 case VMA_ADD_RESV:
2211 if (vma->vm_flags & VM_MAYSHARE) {
2212 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2213 /* region_add calls of range 1 should never fail. */
2214 VM_BUG_ON(ret < 0);
2215 } else {
2216 region_abort(resv, idx, idx + 1, 1);
2217 ret = region_del(resv, idx, idx + 1);
2218 }
2219 break;
2220 default:
2221 BUG();
2222 }
2223
2224 if (vma->vm_flags & VM_MAYSHARE)
2225 return ret;
2226 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2227 /*
2228 * In most cases, reserves always exist for private mappings.
2229 * However, a file associated with mapping could have been
2230 * hole punched or truncated after reserves were consumed.
2231 * As subsequent fault on such a range will not use reserves.
2232 * Subtle - The reserve map for private mappings has the
2233 * opposite meaning than that of shared mappings. If NO
2234 * entry is in the reserve map, it means a reservation exists.
2235 * If an entry exists in the reserve map, it means the
2236 * reservation has already been consumed. As a result, the
2237 * return value of this routine is the opposite of the
2238 * value returned from reserve map manipulation routines above.
2239 */
2240 if (ret)
2241 return 0;
2242 else
2243 return 1;
2244 }
2245 else
2246 return ret < 0 ? ret : 0;
2247 }
2248
vma_needs_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2249 static long vma_needs_reservation(struct hstate *h,
2250 struct vm_area_struct *vma, unsigned long addr)
2251 {
2252 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2253 }
2254
vma_commit_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2255 static long vma_commit_reservation(struct hstate *h,
2256 struct vm_area_struct *vma, unsigned long addr)
2257 {
2258 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2259 }
2260
vma_end_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2261 static void vma_end_reservation(struct hstate *h,
2262 struct vm_area_struct *vma, unsigned long addr)
2263 {
2264 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2265 }
2266
vma_add_reservation(struct hstate * h,struct vm_area_struct * vma,unsigned long addr)2267 static long vma_add_reservation(struct hstate *h,
2268 struct vm_area_struct *vma, unsigned long addr)
2269 {
2270 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2271 }
2272
2273 /*
2274 * This routine is called to restore a reservation on error paths. In the
2275 * specific error paths, a huge page was allocated (via alloc_huge_page)
2276 * and is about to be freed. If a reservation for the page existed,
2277 * alloc_huge_page would have consumed the reservation and set PagePrivate
2278 * in the newly allocated page. When the page is freed via free_huge_page,
2279 * the global reservation count will be incremented if PagePrivate is set.
2280 * However, free_huge_page can not adjust the reserve map. Adjust the
2281 * reserve map here to be consistent with global reserve count adjustments
2282 * to be made by free_huge_page.
2283 */
restore_reserve_on_error(struct hstate * h,struct vm_area_struct * vma,unsigned long address,struct page * page)2284 static void restore_reserve_on_error(struct hstate *h,
2285 struct vm_area_struct *vma, unsigned long address,
2286 struct page *page)
2287 {
2288 if (unlikely(PagePrivate(page))) {
2289 long rc = vma_needs_reservation(h, vma, address);
2290
2291 if (unlikely(rc < 0)) {
2292 /*
2293 * Rare out of memory condition in reserve map
2294 * manipulation. Clear PagePrivate so that
2295 * global reserve count will not be incremented
2296 * by free_huge_page. This will make it appear
2297 * as though the reservation for this page was
2298 * consumed. This may prevent the task from
2299 * faulting in the page at a later time. This
2300 * is better than inconsistent global huge page
2301 * accounting of reserve counts.
2302 */
2303 ClearPagePrivate(page);
2304 } else if (rc) {
2305 rc = vma_add_reservation(h, vma, address);
2306 if (unlikely(rc < 0))
2307 /*
2308 * See above comment about rare out of
2309 * memory condition.
2310 */
2311 ClearPagePrivate(page);
2312 } else
2313 vma_end_reservation(h, vma, address);
2314 }
2315 }
2316
alloc_huge_page(struct vm_area_struct * vma,unsigned long addr,int avoid_reserve)2317 struct page *alloc_huge_page(struct vm_area_struct *vma,
2318 unsigned long addr, int avoid_reserve)
2319 {
2320 struct hugepage_subpool *spool = subpool_vma(vma);
2321 struct hstate *h = hstate_vma(vma);
2322 struct page *page;
2323 long map_chg, map_commit;
2324 long gbl_chg;
2325 int ret, idx;
2326 struct hugetlb_cgroup *h_cg;
2327 bool deferred_reserve;
2328
2329 idx = hstate_index(h);
2330 /*
2331 * Examine the region/reserve map to determine if the process
2332 * has a reservation for the page to be allocated. A return
2333 * code of zero indicates a reservation exists (no change).
2334 */
2335 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2336 if (map_chg < 0)
2337 return ERR_PTR(-ENOMEM);
2338
2339 /*
2340 * Processes that did not create the mapping will have no
2341 * reserves as indicated by the region/reserve map. Check
2342 * that the allocation will not exceed the subpool limit.
2343 * Allocations for MAP_NORESERVE mappings also need to be
2344 * checked against any subpool limit.
2345 */
2346 if (map_chg || avoid_reserve) {
2347 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2348 if (gbl_chg < 0) {
2349 vma_end_reservation(h, vma, addr);
2350 return ERR_PTR(-ENOSPC);
2351 }
2352
2353 /*
2354 * Even though there was no reservation in the region/reserve
2355 * map, there could be reservations associated with the
2356 * subpool that can be used. This would be indicated if the
2357 * return value of hugepage_subpool_get_pages() is zero.
2358 * However, if avoid_reserve is specified we still avoid even
2359 * the subpool reservations.
2360 */
2361 if (avoid_reserve)
2362 gbl_chg = 1;
2363 }
2364
2365 /* If this allocation is not consuming a reservation, charge it now.
2366 */
2367 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2368 if (deferred_reserve) {
2369 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2370 idx, pages_per_huge_page(h), &h_cg);
2371 if (ret)
2372 goto out_subpool_put;
2373 }
2374
2375 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2376 if (ret)
2377 goto out_uncharge_cgroup_reservation;
2378
2379 spin_lock(&hugetlb_lock);
2380 /*
2381 * glb_chg is passed to indicate whether or not a page must be taken
2382 * from the global free pool (global change). gbl_chg == 0 indicates
2383 * a reservation exists for the allocation.
2384 */
2385 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2386 if (!page) {
2387 spin_unlock(&hugetlb_lock);
2388 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2389 if (!page)
2390 goto out_uncharge_cgroup;
2391 spin_lock(&hugetlb_lock);
2392 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2393 SetPagePrivate(page);
2394 h->resv_huge_pages--;
2395 }
2396 list_add(&page->lru, &h->hugepage_activelist);
2397 /* Fall through */
2398 }
2399 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2400 /* If allocation is not consuming a reservation, also store the
2401 * hugetlb_cgroup pointer on the page.
2402 */
2403 if (deferred_reserve) {
2404 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2405 h_cg, page);
2406 }
2407
2408 spin_unlock(&hugetlb_lock);
2409
2410 set_page_private(page, (unsigned long)spool);
2411
2412 map_commit = vma_commit_reservation(h, vma, addr);
2413 if (unlikely(map_chg > map_commit)) {
2414 /*
2415 * The page was added to the reservation map between
2416 * vma_needs_reservation and vma_commit_reservation.
2417 * This indicates a race with hugetlb_reserve_pages.
2418 * Adjust for the subpool count incremented above AND
2419 * in hugetlb_reserve_pages for the same page. Also,
2420 * the reservation count added in hugetlb_reserve_pages
2421 * no longer applies.
2422 */
2423 long rsv_adjust;
2424
2425 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2426 hugetlb_acct_memory(h, -rsv_adjust);
2427 if (deferred_reserve)
2428 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2429 pages_per_huge_page(h), page);
2430 }
2431 return page;
2432
2433 out_uncharge_cgroup:
2434 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2435 out_uncharge_cgroup_reservation:
2436 if (deferred_reserve)
2437 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2438 h_cg);
2439 out_subpool_put:
2440 if (map_chg || avoid_reserve)
2441 hugepage_subpool_put_pages(spool, 1);
2442 vma_end_reservation(h, vma, addr);
2443 return ERR_PTR(-ENOSPC);
2444 }
2445
2446 int alloc_bootmem_huge_page(struct hstate *h)
2447 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
__alloc_bootmem_huge_page(struct hstate * h)2448 int __alloc_bootmem_huge_page(struct hstate *h)
2449 {
2450 struct huge_bootmem_page *m;
2451 int nr_nodes, node;
2452
2453 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2454 void *addr;
2455
2456 addr = memblock_alloc_try_nid_raw(
2457 huge_page_size(h), huge_page_size(h),
2458 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2459 if (addr) {
2460 /*
2461 * Use the beginning of the huge page to store the
2462 * huge_bootmem_page struct (until gather_bootmem
2463 * puts them into the mem_map).
2464 */
2465 m = addr;
2466 goto found;
2467 }
2468 }
2469 return 0;
2470
2471 found:
2472 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2473 /* Put them into a private list first because mem_map is not up yet */
2474 INIT_LIST_HEAD(&m->list);
2475 list_add(&m->list, &huge_boot_pages);
2476 m->hstate = h;
2477 return 1;
2478 }
2479
2480 /*
2481 * Put bootmem huge pages into the standard lists after mem_map is up.
2482 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
2483 */
gather_bootmem_prealloc(void)2484 static void __init gather_bootmem_prealloc(void)
2485 {
2486 struct huge_bootmem_page *m;
2487
2488 list_for_each_entry(m, &huge_boot_pages, list) {
2489 struct page *page = virt_to_page(m);
2490 struct hstate *h = m->hstate;
2491
2492 VM_BUG_ON(!hstate_is_gigantic(h));
2493 WARN_ON(page_count(page) != 1);
2494 prep_compound_gigantic_page(page, huge_page_order(h));
2495 WARN_ON(PageReserved(page));
2496 prep_new_huge_page(h, page, page_to_nid(page));
2497 put_page(page); /* free it into the hugepage allocator */
2498
2499 /*
2500 * We need to restore the 'stolen' pages to totalram_pages
2501 * in order to fix confusing memory reports from free(1) and
2502 * other side-effects, like CommitLimit going negative.
2503 */
2504 adjust_managed_page_count(page, pages_per_huge_page(h));
2505 cond_resched();
2506 }
2507 }
2508
hugetlb_hstate_alloc_pages(struct hstate * h)2509 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2510 {
2511 unsigned long i;
2512 nodemask_t *node_alloc_noretry;
2513
2514 if (!hstate_is_gigantic(h)) {
2515 /*
2516 * Bit mask controlling how hard we retry per-node allocations.
2517 * Ignore errors as lower level routines can deal with
2518 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2519 * time, we are likely in bigger trouble.
2520 */
2521 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2522 GFP_KERNEL);
2523 } else {
2524 /* allocations done at boot time */
2525 node_alloc_noretry = NULL;
2526 }
2527
2528 /* bit mask controlling how hard we retry per-node allocations */
2529 if (node_alloc_noretry)
2530 nodes_clear(*node_alloc_noretry);
2531
2532 for (i = 0; i < h->max_huge_pages; ++i) {
2533 if (hstate_is_gigantic(h)) {
2534 if (hugetlb_cma_size) {
2535 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2536 goto free;
2537 }
2538 if (!alloc_bootmem_huge_page(h))
2539 break;
2540 } else if (!alloc_pool_huge_page(h,
2541 &node_states[N_MEMORY],
2542 node_alloc_noretry))
2543 break;
2544 cond_resched();
2545 }
2546 if (i < h->max_huge_pages) {
2547 char buf[32];
2548
2549 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2550 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2551 h->max_huge_pages, buf, i);
2552 h->max_huge_pages = i;
2553 }
2554 free:
2555 kfree(node_alloc_noretry);
2556 }
2557
hugetlb_init_hstates(void)2558 static void __init hugetlb_init_hstates(void)
2559 {
2560 struct hstate *h;
2561
2562 for_each_hstate(h) {
2563 if (minimum_order > huge_page_order(h))
2564 minimum_order = huge_page_order(h);
2565
2566 /* oversize hugepages were init'ed in early boot */
2567 if (!hstate_is_gigantic(h))
2568 hugetlb_hstate_alloc_pages(h);
2569 }
2570 VM_BUG_ON(minimum_order == UINT_MAX);
2571 }
2572
report_hugepages(void)2573 static void __init report_hugepages(void)
2574 {
2575 struct hstate *h;
2576
2577 for_each_hstate(h) {
2578 char buf[32];
2579
2580 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2581 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2582 buf, h->free_huge_pages);
2583 }
2584 }
2585
2586 #ifdef CONFIG_HIGHMEM
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)2587 static void try_to_free_low(struct hstate *h, unsigned long count,
2588 nodemask_t *nodes_allowed)
2589 {
2590 int i;
2591
2592 if (hstate_is_gigantic(h))
2593 return;
2594
2595 for_each_node_mask(i, *nodes_allowed) {
2596 struct page *page, *next;
2597 struct list_head *freel = &h->hugepage_freelists[i];
2598 list_for_each_entry_safe(page, next, freel, lru) {
2599 if (count >= h->nr_huge_pages)
2600 return;
2601 if (PageHighMem(page))
2602 continue;
2603 list_del(&page->lru);
2604 update_and_free_page(h, page);
2605 h->free_huge_pages--;
2606 h->free_huge_pages_node[page_to_nid(page)]--;
2607 }
2608 }
2609 }
2610 #else
try_to_free_low(struct hstate * h,unsigned long count,nodemask_t * nodes_allowed)2611 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2612 nodemask_t *nodes_allowed)
2613 {
2614 }
2615 #endif
2616
2617 /*
2618 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2619 * balanced by operating on them in a round-robin fashion.
2620 * Returns 1 if an adjustment was made.
2621 */
adjust_pool_surplus(struct hstate * h,nodemask_t * nodes_allowed,int delta)2622 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2623 int delta)
2624 {
2625 int nr_nodes, node;
2626
2627 VM_BUG_ON(delta != -1 && delta != 1);
2628
2629 if (delta < 0) {
2630 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2631 if (h->surplus_huge_pages_node[node])
2632 goto found;
2633 }
2634 } else {
2635 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2636 if (h->surplus_huge_pages_node[node] <
2637 h->nr_huge_pages_node[node])
2638 goto found;
2639 }
2640 }
2641 return 0;
2642
2643 found:
2644 h->surplus_huge_pages += delta;
2645 h->surplus_huge_pages_node[node] += delta;
2646 return 1;
2647 }
2648
2649 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
set_max_huge_pages(struct hstate * h,unsigned long count,int nid,nodemask_t * nodes_allowed)2650 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2651 nodemask_t *nodes_allowed)
2652 {
2653 unsigned long min_count, ret;
2654 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2655
2656 /*
2657 * Bit mask controlling how hard we retry per-node allocations.
2658 * If we can not allocate the bit mask, do not attempt to allocate
2659 * the requested huge pages.
2660 */
2661 if (node_alloc_noretry)
2662 nodes_clear(*node_alloc_noretry);
2663 else
2664 return -ENOMEM;
2665
2666 spin_lock(&hugetlb_lock);
2667
2668 /*
2669 * Check for a node specific request.
2670 * Changing node specific huge page count may require a corresponding
2671 * change to the global count. In any case, the passed node mask
2672 * (nodes_allowed) will restrict alloc/free to the specified node.
2673 */
2674 if (nid != NUMA_NO_NODE) {
2675 unsigned long old_count = count;
2676
2677 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2678 /*
2679 * User may have specified a large count value which caused the
2680 * above calculation to overflow. In this case, they wanted
2681 * to allocate as many huge pages as possible. Set count to
2682 * largest possible value to align with their intention.
2683 */
2684 if (count < old_count)
2685 count = ULONG_MAX;
2686 }
2687
2688 /*
2689 * Gigantic pages runtime allocation depend on the capability for large
2690 * page range allocation.
2691 * If the system does not provide this feature, return an error when
2692 * the user tries to allocate gigantic pages but let the user free the
2693 * boottime allocated gigantic pages.
2694 */
2695 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2696 if (count > persistent_huge_pages(h)) {
2697 spin_unlock(&hugetlb_lock);
2698 NODEMASK_FREE(node_alloc_noretry);
2699 return -EINVAL;
2700 }
2701 /* Fall through to decrease pool */
2702 }
2703
2704 /*
2705 * Increase the pool size
2706 * First take pages out of surplus state. Then make up the
2707 * remaining difference by allocating fresh huge pages.
2708 *
2709 * We might race with alloc_surplus_huge_page() here and be unable
2710 * to convert a surplus huge page to a normal huge page. That is
2711 * not critical, though, it just means the overall size of the
2712 * pool might be one hugepage larger than it needs to be, but
2713 * within all the constraints specified by the sysctls.
2714 */
2715 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2716 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2717 break;
2718 }
2719
2720 while (count > persistent_huge_pages(h)) {
2721 /*
2722 * If this allocation races such that we no longer need the
2723 * page, free_huge_page will handle it by freeing the page
2724 * and reducing the surplus.
2725 */
2726 spin_unlock(&hugetlb_lock);
2727
2728 /* yield cpu to avoid soft lockup */
2729 cond_resched();
2730
2731 ret = alloc_pool_huge_page(h, nodes_allowed,
2732 node_alloc_noretry);
2733 spin_lock(&hugetlb_lock);
2734 if (!ret)
2735 goto out;
2736
2737 /* Bail for signals. Probably ctrl-c from user */
2738 if (signal_pending(current))
2739 goto out;
2740 }
2741
2742 /*
2743 * Decrease the pool size
2744 * First return free pages to the buddy allocator (being careful
2745 * to keep enough around to satisfy reservations). Then place
2746 * pages into surplus state as needed so the pool will shrink
2747 * to the desired size as pages become free.
2748 *
2749 * By placing pages into the surplus state independent of the
2750 * overcommit value, we are allowing the surplus pool size to
2751 * exceed overcommit. There are few sane options here. Since
2752 * alloc_surplus_huge_page() is checking the global counter,
2753 * though, we'll note that we're not allowed to exceed surplus
2754 * and won't grow the pool anywhere else. Not until one of the
2755 * sysctls are changed, or the surplus pages go out of use.
2756 */
2757 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2758 min_count = max(count, min_count);
2759 try_to_free_low(h, min_count, nodes_allowed);
2760 while (min_count < persistent_huge_pages(h)) {
2761 if (!free_pool_huge_page(h, nodes_allowed, 0))
2762 break;
2763 cond_resched_lock(&hugetlb_lock);
2764 }
2765 while (count < persistent_huge_pages(h)) {
2766 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2767 break;
2768 }
2769 out:
2770 h->max_huge_pages = persistent_huge_pages(h);
2771 spin_unlock(&hugetlb_lock);
2772
2773 NODEMASK_FREE(node_alloc_noretry);
2774
2775 return 0;
2776 }
2777
2778 #define HSTATE_ATTR_RO(_name) \
2779 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2780
2781 #define HSTATE_ATTR(_name) \
2782 static struct kobj_attribute _name##_attr = \
2783 __ATTR(_name, 0644, _name##_show, _name##_store)
2784
2785 static struct kobject *hugepages_kobj;
2786 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2787
2788 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2789
kobj_to_hstate(struct kobject * kobj,int * nidp)2790 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2791 {
2792 int i;
2793
2794 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2795 if (hstate_kobjs[i] == kobj) {
2796 if (nidp)
2797 *nidp = NUMA_NO_NODE;
2798 return &hstates[i];
2799 }
2800
2801 return kobj_to_node_hstate(kobj, nidp);
2802 }
2803
nr_hugepages_show_common(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2804 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2805 struct kobj_attribute *attr, char *buf)
2806 {
2807 struct hstate *h;
2808 unsigned long nr_huge_pages;
2809 int nid;
2810
2811 h = kobj_to_hstate(kobj, &nid);
2812 if (nid == NUMA_NO_NODE)
2813 nr_huge_pages = h->nr_huge_pages;
2814 else
2815 nr_huge_pages = h->nr_huge_pages_node[nid];
2816
2817 return sprintf(buf, "%lu\n", nr_huge_pages);
2818 }
2819
__nr_hugepages_store_common(bool obey_mempolicy,struct hstate * h,int nid,unsigned long count,size_t len)2820 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2821 struct hstate *h, int nid,
2822 unsigned long count, size_t len)
2823 {
2824 int err;
2825 nodemask_t nodes_allowed, *n_mask;
2826
2827 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2828 return -EINVAL;
2829
2830 if (nid == NUMA_NO_NODE) {
2831 /*
2832 * global hstate attribute
2833 */
2834 if (!(obey_mempolicy &&
2835 init_nodemask_of_mempolicy(&nodes_allowed)))
2836 n_mask = &node_states[N_MEMORY];
2837 else
2838 n_mask = &nodes_allowed;
2839 } else {
2840 /*
2841 * Node specific request. count adjustment happens in
2842 * set_max_huge_pages() after acquiring hugetlb_lock.
2843 */
2844 init_nodemask_of_node(&nodes_allowed, nid);
2845 n_mask = &nodes_allowed;
2846 }
2847
2848 err = set_max_huge_pages(h, count, nid, n_mask);
2849
2850 return err ? err : len;
2851 }
2852
nr_hugepages_store_common(bool obey_mempolicy,struct kobject * kobj,const char * buf,size_t len)2853 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2854 struct kobject *kobj, const char *buf,
2855 size_t len)
2856 {
2857 struct hstate *h;
2858 unsigned long count;
2859 int nid;
2860 int err;
2861
2862 err = kstrtoul(buf, 10, &count);
2863 if (err)
2864 return err;
2865
2866 h = kobj_to_hstate(kobj, &nid);
2867 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2868 }
2869
nr_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2870 static ssize_t nr_hugepages_show(struct kobject *kobj,
2871 struct kobj_attribute *attr, char *buf)
2872 {
2873 return nr_hugepages_show_common(kobj, attr, buf);
2874 }
2875
nr_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)2876 static ssize_t nr_hugepages_store(struct kobject *kobj,
2877 struct kobj_attribute *attr, const char *buf, size_t len)
2878 {
2879 return nr_hugepages_store_common(false, kobj, buf, len);
2880 }
2881 HSTATE_ATTR(nr_hugepages);
2882
2883 #ifdef CONFIG_NUMA
2884
2885 /*
2886 * hstate attribute for optionally mempolicy-based constraint on persistent
2887 * huge page alloc/free.
2888 */
nr_hugepages_mempolicy_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2889 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2890 struct kobj_attribute *attr, char *buf)
2891 {
2892 return nr_hugepages_show_common(kobj, attr, buf);
2893 }
2894
nr_hugepages_mempolicy_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t len)2895 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2896 struct kobj_attribute *attr, const char *buf, size_t len)
2897 {
2898 return nr_hugepages_store_common(true, kobj, buf, len);
2899 }
2900 HSTATE_ATTR(nr_hugepages_mempolicy);
2901 #endif
2902
2903
nr_overcommit_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2904 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2905 struct kobj_attribute *attr, char *buf)
2906 {
2907 struct hstate *h = kobj_to_hstate(kobj, NULL);
2908 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2909 }
2910
nr_overcommit_hugepages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2911 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2912 struct kobj_attribute *attr, const char *buf, size_t count)
2913 {
2914 int err;
2915 unsigned long input;
2916 struct hstate *h = kobj_to_hstate(kobj, NULL);
2917
2918 if (hstate_is_gigantic(h))
2919 return -EINVAL;
2920
2921 err = kstrtoul(buf, 10, &input);
2922 if (err)
2923 return err;
2924
2925 spin_lock(&hugetlb_lock);
2926 h->nr_overcommit_huge_pages = input;
2927 spin_unlock(&hugetlb_lock);
2928
2929 return count;
2930 }
2931 HSTATE_ATTR(nr_overcommit_hugepages);
2932
free_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2933 static ssize_t free_hugepages_show(struct kobject *kobj,
2934 struct kobj_attribute *attr, char *buf)
2935 {
2936 struct hstate *h;
2937 unsigned long free_huge_pages;
2938 int nid;
2939
2940 h = kobj_to_hstate(kobj, &nid);
2941 if (nid == NUMA_NO_NODE)
2942 free_huge_pages = h->free_huge_pages;
2943 else
2944 free_huge_pages = h->free_huge_pages_node[nid];
2945
2946 return sprintf(buf, "%lu\n", free_huge_pages);
2947 }
2948 HSTATE_ATTR_RO(free_hugepages);
2949
resv_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2950 static ssize_t resv_hugepages_show(struct kobject *kobj,
2951 struct kobj_attribute *attr, char *buf)
2952 {
2953 struct hstate *h = kobj_to_hstate(kobj, NULL);
2954 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2955 }
2956 HSTATE_ATTR_RO(resv_hugepages);
2957
surplus_hugepages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2958 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2959 struct kobj_attribute *attr, char *buf)
2960 {
2961 struct hstate *h;
2962 unsigned long surplus_huge_pages;
2963 int nid;
2964
2965 h = kobj_to_hstate(kobj, &nid);
2966 if (nid == NUMA_NO_NODE)
2967 surplus_huge_pages = h->surplus_huge_pages;
2968 else
2969 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2970
2971 return sprintf(buf, "%lu\n", surplus_huge_pages);
2972 }
2973 HSTATE_ATTR_RO(surplus_hugepages);
2974
2975 static struct attribute *hstate_attrs[] = {
2976 &nr_hugepages_attr.attr,
2977 &nr_overcommit_hugepages_attr.attr,
2978 &free_hugepages_attr.attr,
2979 &resv_hugepages_attr.attr,
2980 &surplus_hugepages_attr.attr,
2981 #ifdef CONFIG_NUMA
2982 &nr_hugepages_mempolicy_attr.attr,
2983 #endif
2984 NULL,
2985 };
2986
2987 static const struct attribute_group hstate_attr_group = {
2988 .attrs = hstate_attrs,
2989 };
2990
hugetlb_sysfs_add_hstate(struct hstate * h,struct kobject * parent,struct kobject ** hstate_kobjs,const struct attribute_group * hstate_attr_group)2991 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2992 struct kobject **hstate_kobjs,
2993 const struct attribute_group *hstate_attr_group)
2994 {
2995 int retval;
2996 int hi = hstate_index(h);
2997
2998 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2999 if (!hstate_kobjs[hi])
3000 return -ENOMEM;
3001
3002 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3003 if (retval) {
3004 kobject_put(hstate_kobjs[hi]);
3005 hstate_kobjs[hi] = NULL;
3006 }
3007
3008 return retval;
3009 }
3010
hugetlb_sysfs_init(void)3011 static void __init hugetlb_sysfs_init(void)
3012 {
3013 struct hstate *h;
3014 int err;
3015
3016 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3017 if (!hugepages_kobj)
3018 return;
3019
3020 for_each_hstate(h) {
3021 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3022 hstate_kobjs, &hstate_attr_group);
3023 if (err)
3024 pr_err("HugeTLB: Unable to add hstate %s", h->name);
3025 }
3026 }
3027
3028 #ifdef CONFIG_NUMA
3029
3030 /*
3031 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3032 * with node devices in node_devices[] using a parallel array. The array
3033 * index of a node device or _hstate == node id.
3034 * This is here to avoid any static dependency of the node device driver, in
3035 * the base kernel, on the hugetlb module.
3036 */
3037 struct node_hstate {
3038 struct kobject *hugepages_kobj;
3039 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3040 };
3041 static struct node_hstate node_hstates[MAX_NUMNODES];
3042
3043 /*
3044 * A subset of global hstate attributes for node devices
3045 */
3046 static struct attribute *per_node_hstate_attrs[] = {
3047 &nr_hugepages_attr.attr,
3048 &free_hugepages_attr.attr,
3049 &surplus_hugepages_attr.attr,
3050 NULL,
3051 };
3052
3053 static const struct attribute_group per_node_hstate_attr_group = {
3054 .attrs = per_node_hstate_attrs,
3055 };
3056
3057 /*
3058 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3059 * Returns node id via non-NULL nidp.
3060 */
kobj_to_node_hstate(struct kobject * kobj,int * nidp)3061 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3062 {
3063 int nid;
3064
3065 for (nid = 0; nid < nr_node_ids; nid++) {
3066 struct node_hstate *nhs = &node_hstates[nid];
3067 int i;
3068 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3069 if (nhs->hstate_kobjs[i] == kobj) {
3070 if (nidp)
3071 *nidp = nid;
3072 return &hstates[i];
3073 }
3074 }
3075
3076 BUG();
3077 return NULL;
3078 }
3079
3080 /*
3081 * Unregister hstate attributes from a single node device.
3082 * No-op if no hstate attributes attached.
3083 */
hugetlb_unregister_node(struct node * node)3084 static void hugetlb_unregister_node(struct node *node)
3085 {
3086 struct hstate *h;
3087 struct node_hstate *nhs = &node_hstates[node->dev.id];
3088
3089 if (!nhs->hugepages_kobj)
3090 return; /* no hstate attributes */
3091
3092 for_each_hstate(h) {
3093 int idx = hstate_index(h);
3094 if (nhs->hstate_kobjs[idx]) {
3095 kobject_put(nhs->hstate_kobjs[idx]);
3096 nhs->hstate_kobjs[idx] = NULL;
3097 }
3098 }
3099
3100 kobject_put(nhs->hugepages_kobj);
3101 nhs->hugepages_kobj = NULL;
3102 }
3103
3104
3105 /*
3106 * Register hstate attributes for a single node device.
3107 * No-op if attributes already registered.
3108 */
hugetlb_register_node(struct node * node)3109 static void hugetlb_register_node(struct node *node)
3110 {
3111 struct hstate *h;
3112 struct node_hstate *nhs = &node_hstates[node->dev.id];
3113 int err;
3114
3115 if (nhs->hugepages_kobj)
3116 return; /* already allocated */
3117
3118 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3119 &node->dev.kobj);
3120 if (!nhs->hugepages_kobj)
3121 return;
3122
3123 for_each_hstate(h) {
3124 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3125 nhs->hstate_kobjs,
3126 &per_node_hstate_attr_group);
3127 if (err) {
3128 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3129 h->name, node->dev.id);
3130 hugetlb_unregister_node(node);
3131 break;
3132 }
3133 }
3134 }
3135
3136 /*
3137 * hugetlb init time: register hstate attributes for all registered node
3138 * devices of nodes that have memory. All on-line nodes should have
3139 * registered their associated device by this time.
3140 */
hugetlb_register_all_nodes(void)3141 static void __init hugetlb_register_all_nodes(void)
3142 {
3143 int nid;
3144
3145 for_each_node_state(nid, N_MEMORY) {
3146 struct node *node = node_devices[nid];
3147 if (node->dev.id == nid)
3148 hugetlb_register_node(node);
3149 }
3150
3151 /*
3152 * Let the node device driver know we're here so it can
3153 * [un]register hstate attributes on node hotplug.
3154 */
3155 register_hugetlbfs_with_node(hugetlb_register_node,
3156 hugetlb_unregister_node);
3157 }
3158 #else /* !CONFIG_NUMA */
3159
kobj_to_node_hstate(struct kobject * kobj,int * nidp)3160 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3161 {
3162 BUG();
3163 if (nidp)
3164 *nidp = -1;
3165 return NULL;
3166 }
3167
hugetlb_register_all_nodes(void)3168 static void hugetlb_register_all_nodes(void) { }
3169
3170 #endif
3171
hugetlb_init(void)3172 static int __init hugetlb_init(void)
3173 {
3174 int i;
3175
3176 if (!hugepages_supported()) {
3177 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3178 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3179 return 0;
3180 }
3181
3182 /*
3183 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3184 * architectures depend on setup being done here.
3185 */
3186 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3187 if (!parsed_default_hugepagesz) {
3188 /*
3189 * If we did not parse a default huge page size, set
3190 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3191 * number of huge pages for this default size was implicitly
3192 * specified, set that here as well.
3193 * Note that the implicit setting will overwrite an explicit
3194 * setting. A warning will be printed in this case.
3195 */
3196 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3197 if (default_hstate_max_huge_pages) {
3198 if (default_hstate.max_huge_pages) {
3199 char buf[32];
3200
3201 string_get_size(huge_page_size(&default_hstate),
3202 1, STRING_UNITS_2, buf, 32);
3203 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3204 default_hstate.max_huge_pages, buf);
3205 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3206 default_hstate_max_huge_pages);
3207 }
3208 default_hstate.max_huge_pages =
3209 default_hstate_max_huge_pages;
3210 }
3211 }
3212
3213 hugetlb_cma_check();
3214 hugetlb_init_hstates();
3215 gather_bootmem_prealloc();
3216 report_hugepages();
3217
3218 hugetlb_sysfs_init();
3219 hugetlb_register_all_nodes();
3220 hugetlb_cgroup_file_init();
3221
3222 #ifdef CONFIG_SMP
3223 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3224 #else
3225 num_fault_mutexes = 1;
3226 #endif
3227 hugetlb_fault_mutex_table =
3228 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3229 GFP_KERNEL);
3230 BUG_ON(!hugetlb_fault_mutex_table);
3231
3232 for (i = 0; i < num_fault_mutexes; i++)
3233 mutex_init(&hugetlb_fault_mutex_table[i]);
3234 return 0;
3235 }
3236 subsys_initcall(hugetlb_init);
3237
3238 /* Overwritten by architectures with more huge page sizes */
__init(weak)3239 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3240 {
3241 return size == HPAGE_SIZE;
3242 }
3243
hugetlb_add_hstate(unsigned int order)3244 void __init hugetlb_add_hstate(unsigned int order)
3245 {
3246 struct hstate *h;
3247 unsigned long i;
3248
3249 if (size_to_hstate(PAGE_SIZE << order)) {
3250 return;
3251 }
3252 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3253 BUG_ON(order == 0);
3254 h = &hstates[hugetlb_max_hstate++];
3255 h->order = order;
3256 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3257 h->nr_huge_pages = 0;
3258 h->free_huge_pages = 0;
3259 for (i = 0; i < MAX_NUMNODES; ++i)
3260 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3261 INIT_LIST_HEAD(&h->hugepage_activelist);
3262 h->next_nid_to_alloc = first_memory_node;
3263 h->next_nid_to_free = first_memory_node;
3264 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3265 huge_page_size(h)/1024);
3266
3267 parsed_hstate = h;
3268 }
3269
3270 /*
3271 * hugepages command line processing
3272 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3273 * specification. If not, ignore the hugepages value. hugepages can also
3274 * be the first huge page command line option in which case it implicitly
3275 * specifies the number of huge pages for the default size.
3276 */
hugepages_setup(char * s)3277 static int __init hugepages_setup(char *s)
3278 {
3279 unsigned long *mhp;
3280 static unsigned long *last_mhp;
3281
3282 if (!parsed_valid_hugepagesz) {
3283 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3284 parsed_valid_hugepagesz = true;
3285 return 0;
3286 }
3287
3288 /*
3289 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3290 * yet, so this hugepages= parameter goes to the "default hstate".
3291 * Otherwise, it goes with the previously parsed hugepagesz or
3292 * default_hugepagesz.
3293 */
3294 else if (!hugetlb_max_hstate)
3295 mhp = &default_hstate_max_huge_pages;
3296 else
3297 mhp = &parsed_hstate->max_huge_pages;
3298
3299 if (mhp == last_mhp) {
3300 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3301 return 0;
3302 }
3303
3304 if (sscanf(s, "%lu", mhp) <= 0)
3305 *mhp = 0;
3306
3307 /*
3308 * Global state is always initialized later in hugetlb_init.
3309 * But we need to allocate >= MAX_ORDER hstates here early to still
3310 * use the bootmem allocator.
3311 */
3312 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3313 hugetlb_hstate_alloc_pages(parsed_hstate);
3314
3315 last_mhp = mhp;
3316
3317 return 1;
3318 }
3319 __setup("hugepages=", hugepages_setup);
3320
3321 /*
3322 * hugepagesz command line processing
3323 * A specific huge page size can only be specified once with hugepagesz.
3324 * hugepagesz is followed by hugepages on the command line. The global
3325 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3326 * hugepagesz argument was valid.
3327 */
hugepagesz_setup(char * s)3328 static int __init hugepagesz_setup(char *s)
3329 {
3330 unsigned long size;
3331 struct hstate *h;
3332
3333 parsed_valid_hugepagesz = false;
3334 size = (unsigned long)memparse(s, NULL);
3335
3336 if (!arch_hugetlb_valid_size(size)) {
3337 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3338 return 0;
3339 }
3340
3341 h = size_to_hstate(size);
3342 if (h) {
3343 /*
3344 * hstate for this size already exists. This is normally
3345 * an error, but is allowed if the existing hstate is the
3346 * default hstate. More specifically, it is only allowed if
3347 * the number of huge pages for the default hstate was not
3348 * previously specified.
3349 */
3350 if (!parsed_default_hugepagesz || h != &default_hstate ||
3351 default_hstate.max_huge_pages) {
3352 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3353 return 0;
3354 }
3355
3356 /*
3357 * No need to call hugetlb_add_hstate() as hstate already
3358 * exists. But, do set parsed_hstate so that a following
3359 * hugepages= parameter will be applied to this hstate.
3360 */
3361 parsed_hstate = h;
3362 parsed_valid_hugepagesz = true;
3363 return 1;
3364 }
3365
3366 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3367 parsed_valid_hugepagesz = true;
3368 return 1;
3369 }
3370 __setup("hugepagesz=", hugepagesz_setup);
3371
3372 /*
3373 * default_hugepagesz command line input
3374 * Only one instance of default_hugepagesz allowed on command line.
3375 */
default_hugepagesz_setup(char * s)3376 static int __init default_hugepagesz_setup(char *s)
3377 {
3378 unsigned long size;
3379
3380 parsed_valid_hugepagesz = false;
3381 if (parsed_default_hugepagesz) {
3382 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3383 return 0;
3384 }
3385
3386 size = (unsigned long)memparse(s, NULL);
3387
3388 if (!arch_hugetlb_valid_size(size)) {
3389 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3390 return 0;
3391 }
3392
3393 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3394 parsed_valid_hugepagesz = true;
3395 parsed_default_hugepagesz = true;
3396 default_hstate_idx = hstate_index(size_to_hstate(size));
3397
3398 /*
3399 * The number of default huge pages (for this size) could have been
3400 * specified as the first hugetlb parameter: hugepages=X. If so,
3401 * then default_hstate_max_huge_pages is set. If the default huge
3402 * page size is gigantic (>= MAX_ORDER), then the pages must be
3403 * allocated here from bootmem allocator.
3404 */
3405 if (default_hstate_max_huge_pages) {
3406 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3407 if (hstate_is_gigantic(&default_hstate))
3408 hugetlb_hstate_alloc_pages(&default_hstate);
3409 default_hstate_max_huge_pages = 0;
3410 }
3411
3412 return 1;
3413 }
3414 __setup("default_hugepagesz=", default_hugepagesz_setup);
3415
allowed_mems_nr(struct hstate * h)3416 static unsigned int allowed_mems_nr(struct hstate *h)
3417 {
3418 int node;
3419 unsigned int nr = 0;
3420 nodemask_t *mpol_allowed;
3421 unsigned int *array = h->free_huge_pages_node;
3422 gfp_t gfp_mask = htlb_alloc_mask(h);
3423
3424 mpol_allowed = policy_nodemask_current(gfp_mask);
3425
3426 for_each_node_mask(node, cpuset_current_mems_allowed) {
3427 if (!mpol_allowed ||
3428 (mpol_allowed && node_isset(node, *mpol_allowed)))
3429 nr += array[node];
3430 }
3431
3432 return nr;
3433 }
3434
3435 #ifdef CONFIG_SYSCTL
proc_hugetlb_doulongvec_minmax(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos,unsigned long * out)3436 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3437 void *buffer, size_t *length,
3438 loff_t *ppos, unsigned long *out)
3439 {
3440 struct ctl_table dup_table;
3441
3442 /*
3443 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3444 * can duplicate the @table and alter the duplicate of it.
3445 */
3446 dup_table = *table;
3447 dup_table.data = out;
3448
3449 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3450 }
3451
hugetlb_sysctl_handler_common(bool obey_mempolicy,struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3452 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3453 struct ctl_table *table, int write,
3454 void *buffer, size_t *length, loff_t *ppos)
3455 {
3456 struct hstate *h = &default_hstate;
3457 unsigned long tmp = h->max_huge_pages;
3458 int ret;
3459
3460 if (!hugepages_supported())
3461 return -EOPNOTSUPP;
3462
3463 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3464 &tmp);
3465 if (ret)
3466 goto out;
3467
3468 if (write)
3469 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3470 NUMA_NO_NODE, tmp, *length);
3471 out:
3472 return ret;
3473 }
3474
hugetlb_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3475 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3476 void *buffer, size_t *length, loff_t *ppos)
3477 {
3478
3479 return hugetlb_sysctl_handler_common(false, table, write,
3480 buffer, length, ppos);
3481 }
3482
3483 #ifdef CONFIG_NUMA
hugetlb_mempolicy_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3484 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3485 void *buffer, size_t *length, loff_t *ppos)
3486 {
3487 return hugetlb_sysctl_handler_common(true, table, write,
3488 buffer, length, ppos);
3489 }
3490 #endif /* CONFIG_NUMA */
3491
hugetlb_overcommit_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)3492 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3493 void *buffer, size_t *length, loff_t *ppos)
3494 {
3495 struct hstate *h = &default_hstate;
3496 unsigned long tmp;
3497 int ret;
3498
3499 if (!hugepages_supported())
3500 return -EOPNOTSUPP;
3501
3502 tmp = h->nr_overcommit_huge_pages;
3503
3504 if (write && hstate_is_gigantic(h))
3505 return -EINVAL;
3506
3507 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3508 &tmp);
3509 if (ret)
3510 goto out;
3511
3512 if (write) {
3513 spin_lock(&hugetlb_lock);
3514 h->nr_overcommit_huge_pages = tmp;
3515 spin_unlock(&hugetlb_lock);
3516 }
3517 out:
3518 return ret;
3519 }
3520
3521 #endif /* CONFIG_SYSCTL */
3522
hugetlb_report_meminfo(struct seq_file * m)3523 void hugetlb_report_meminfo(struct seq_file *m)
3524 {
3525 struct hstate *h;
3526 unsigned long total = 0;
3527
3528 if (!hugepages_supported())
3529 return;
3530
3531 for_each_hstate(h) {
3532 unsigned long count = h->nr_huge_pages;
3533
3534 total += (PAGE_SIZE << huge_page_order(h)) * count;
3535
3536 if (h == &default_hstate)
3537 seq_printf(m,
3538 "HugePages_Total: %5lu\n"
3539 "HugePages_Free: %5lu\n"
3540 "HugePages_Rsvd: %5lu\n"
3541 "HugePages_Surp: %5lu\n"
3542 "Hugepagesize: %8lu kB\n",
3543 count,
3544 h->free_huge_pages,
3545 h->resv_huge_pages,
3546 h->surplus_huge_pages,
3547 (PAGE_SIZE << huge_page_order(h)) / 1024);
3548 }
3549
3550 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3551 }
3552
hugetlb_report_node_meminfo(char * buf,int len,int nid)3553 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3554 {
3555 struct hstate *h = &default_hstate;
3556
3557 if (!hugepages_supported())
3558 return 0;
3559
3560 return sysfs_emit_at(buf, len,
3561 "Node %d HugePages_Total: %5u\n"
3562 "Node %d HugePages_Free: %5u\n"
3563 "Node %d HugePages_Surp: %5u\n",
3564 nid, h->nr_huge_pages_node[nid],
3565 nid, h->free_huge_pages_node[nid],
3566 nid, h->surplus_huge_pages_node[nid]);
3567 }
3568
hugetlb_show_meminfo(void)3569 void hugetlb_show_meminfo(void)
3570 {
3571 struct hstate *h;
3572 int nid;
3573
3574 if (!hugepages_supported())
3575 return;
3576
3577 for_each_node_state(nid, N_MEMORY)
3578 for_each_hstate(h)
3579 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3580 nid,
3581 h->nr_huge_pages_node[nid],
3582 h->free_huge_pages_node[nid],
3583 h->surplus_huge_pages_node[nid],
3584 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3585 }
3586
hugetlb_report_usage(struct seq_file * m,struct mm_struct * mm)3587 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3588 {
3589 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3590 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3591 }
3592
3593 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
hugetlb_total_pages(void)3594 unsigned long hugetlb_total_pages(void)
3595 {
3596 struct hstate *h;
3597 unsigned long nr_total_pages = 0;
3598
3599 for_each_hstate(h)
3600 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3601 return nr_total_pages;
3602 }
3603
hugetlb_acct_memory(struct hstate * h,long delta)3604 static int hugetlb_acct_memory(struct hstate *h, long delta)
3605 {
3606 int ret = -ENOMEM;
3607
3608 spin_lock(&hugetlb_lock);
3609 /*
3610 * When cpuset is configured, it breaks the strict hugetlb page
3611 * reservation as the accounting is done on a global variable. Such
3612 * reservation is completely rubbish in the presence of cpuset because
3613 * the reservation is not checked against page availability for the
3614 * current cpuset. Application can still potentially OOM'ed by kernel
3615 * with lack of free htlb page in cpuset that the task is in.
3616 * Attempt to enforce strict accounting with cpuset is almost
3617 * impossible (or too ugly) because cpuset is too fluid that
3618 * task or memory node can be dynamically moved between cpusets.
3619 *
3620 * The change of semantics for shared hugetlb mapping with cpuset is
3621 * undesirable. However, in order to preserve some of the semantics,
3622 * we fall back to check against current free page availability as
3623 * a best attempt and hopefully to minimize the impact of changing
3624 * semantics that cpuset has.
3625 *
3626 * Apart from cpuset, we also have memory policy mechanism that
3627 * also determines from which node the kernel will allocate memory
3628 * in a NUMA system. So similar to cpuset, we also should consider
3629 * the memory policy of the current task. Similar to the description
3630 * above.
3631 */
3632 if (delta > 0) {
3633 if (gather_surplus_pages(h, delta) < 0)
3634 goto out;
3635
3636 if (delta > allowed_mems_nr(h)) {
3637 return_unused_surplus_pages(h, delta);
3638 goto out;
3639 }
3640 }
3641
3642 ret = 0;
3643 if (delta < 0)
3644 return_unused_surplus_pages(h, (unsigned long) -delta);
3645
3646 out:
3647 spin_unlock(&hugetlb_lock);
3648 return ret;
3649 }
3650
hugetlb_vm_op_open(struct vm_area_struct * vma)3651 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3652 {
3653 struct resv_map *resv = vma_resv_map(vma);
3654
3655 /*
3656 * This new VMA should share its siblings reservation map if present.
3657 * The VMA will only ever have a valid reservation map pointer where
3658 * it is being copied for another still existing VMA. As that VMA
3659 * has a reference to the reservation map it cannot disappear until
3660 * after this open call completes. It is therefore safe to take a
3661 * new reference here without additional locking.
3662 */
3663 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
3664 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
3665 kref_get(&resv->refs);
3666 }
3667 }
3668
hugetlb_vm_op_close(struct vm_area_struct * vma)3669 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3670 {
3671 struct hstate *h = hstate_vma(vma);
3672 struct resv_map *resv = vma_resv_map(vma);
3673 struct hugepage_subpool *spool = subpool_vma(vma);
3674 unsigned long reserve, start, end;
3675 long gbl_reserve;
3676
3677 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3678 return;
3679
3680 start = vma_hugecache_offset(h, vma, vma->vm_start);
3681 end = vma_hugecache_offset(h, vma, vma->vm_end);
3682
3683 reserve = (end - start) - region_count(resv, start, end);
3684 hugetlb_cgroup_uncharge_counter(resv, start, end);
3685 if (reserve) {
3686 /*
3687 * Decrement reserve counts. The global reserve count may be
3688 * adjusted if the subpool has a minimum size.
3689 */
3690 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3691 hugetlb_acct_memory(h, -gbl_reserve);
3692 }
3693
3694 kref_put(&resv->refs, resv_map_release);
3695 }
3696
hugetlb_vm_op_split(struct vm_area_struct * vma,unsigned long addr)3697 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3698 {
3699 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3700 return -EINVAL;
3701 return 0;
3702 }
3703
hugetlb_vm_op_pagesize(struct vm_area_struct * vma)3704 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3705 {
3706 struct hstate *hstate = hstate_vma(vma);
3707
3708 return 1UL << huge_page_shift(hstate);
3709 }
3710
3711 /*
3712 * We cannot handle pagefaults against hugetlb pages at all. They cause
3713 * handle_mm_fault() to try to instantiate regular-sized pages in the
3714 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3715 * this far.
3716 */
hugetlb_vm_op_fault(struct vm_fault * vmf)3717 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3718 {
3719 BUG();
3720 return 0;
3721 }
3722
3723 /*
3724 * When a new function is introduced to vm_operations_struct and added
3725 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3726 * This is because under System V memory model, mappings created via
3727 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3728 * their original vm_ops are overwritten with shm_vm_ops.
3729 */
3730 const struct vm_operations_struct hugetlb_vm_ops = {
3731 .fault = hugetlb_vm_op_fault,
3732 .open = hugetlb_vm_op_open,
3733 .close = hugetlb_vm_op_close,
3734 .split = hugetlb_vm_op_split,
3735 .pagesize = hugetlb_vm_op_pagesize,
3736 };
3737
make_huge_pte(struct vm_area_struct * vma,struct page * page,int writable)3738 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3739 int writable)
3740 {
3741 pte_t entry;
3742
3743 if (writable) {
3744 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3745 vma->vm_page_prot)));
3746 } else {
3747 entry = huge_pte_wrprotect(mk_huge_pte(page,
3748 vma->vm_page_prot));
3749 }
3750 entry = pte_mkyoung(entry);
3751 entry = pte_mkhuge(entry);
3752 entry = arch_make_huge_pte(entry, vma, page, writable);
3753
3754 return entry;
3755 }
3756
set_huge_ptep_writable(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)3757 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3758 unsigned long address, pte_t *ptep)
3759 {
3760 pte_t entry;
3761
3762 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3763 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3764 update_mmu_cache(vma, address, ptep);
3765 }
3766
is_hugetlb_entry_migration(pte_t pte)3767 bool is_hugetlb_entry_migration(pte_t pte)
3768 {
3769 swp_entry_t swp;
3770
3771 if (huge_pte_none(pte) || pte_present(pte))
3772 return false;
3773 swp = pte_to_swp_entry(pte);
3774 if (is_migration_entry(swp))
3775 return true;
3776 else
3777 return false;
3778 }
3779
is_hugetlb_entry_hwpoisoned(pte_t pte)3780 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3781 {
3782 swp_entry_t swp;
3783
3784 if (huge_pte_none(pte) || pte_present(pte))
3785 return false;
3786 swp = pte_to_swp_entry(pte);
3787 if (is_hwpoison_entry(swp))
3788 return true;
3789 else
3790 return false;
3791 }
3792
copy_hugetlb_page_range(struct mm_struct * dst,struct mm_struct * src,struct vm_area_struct * vma)3793 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3794 struct vm_area_struct *vma)
3795 {
3796 pte_t *src_pte, *dst_pte, entry, dst_entry;
3797 struct page *ptepage;
3798 unsigned long addr;
3799 int cow;
3800 struct hstate *h = hstate_vma(vma);
3801 unsigned long sz = huge_page_size(h);
3802 struct address_space *mapping = vma->vm_file->f_mapping;
3803 struct mmu_notifier_range range;
3804 int ret = 0;
3805
3806 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3807
3808 if (cow) {
3809 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3810 vma->vm_start,
3811 vma->vm_end);
3812 mmu_notifier_invalidate_range_start(&range);
3813 } else {
3814 /*
3815 * For shared mappings i_mmap_rwsem must be held to call
3816 * huge_pte_alloc, otherwise the returned ptep could go
3817 * away if part of a shared pmd and another thread calls
3818 * huge_pmd_unshare.
3819 */
3820 i_mmap_lock_read(mapping);
3821 }
3822
3823 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3824 spinlock_t *src_ptl, *dst_ptl;
3825 src_pte = huge_pte_offset(src, addr, sz);
3826 if (!src_pte)
3827 continue;
3828 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
3829 if (!dst_pte) {
3830 ret = -ENOMEM;
3831 break;
3832 }
3833
3834 /*
3835 * If the pagetables are shared don't copy or take references.
3836 * dst_pte == src_pte is the common case of src/dest sharing.
3837 *
3838 * However, src could have 'unshared' and dst shares with
3839 * another vma. If dst_pte !none, this implies sharing.
3840 * Check here before taking page table lock, and once again
3841 * after taking the lock below.
3842 */
3843 dst_entry = huge_ptep_get(dst_pte);
3844 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3845 continue;
3846
3847 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3848 src_ptl = huge_pte_lockptr(h, src, src_pte);
3849 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3850 entry = huge_ptep_get(src_pte);
3851 dst_entry = huge_ptep_get(dst_pte);
3852 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3853 /*
3854 * Skip if src entry none. Also, skip in the
3855 * unlikely case dst entry !none as this implies
3856 * sharing with another vma.
3857 */
3858 ;
3859 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3860 is_hugetlb_entry_hwpoisoned(entry))) {
3861 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3862
3863 if (is_write_migration_entry(swp_entry) && cow) {
3864 /*
3865 * COW mappings require pages in both
3866 * parent and child to be set to read.
3867 */
3868 make_migration_entry_read(&swp_entry);
3869 entry = swp_entry_to_pte(swp_entry);
3870 set_huge_swap_pte_at(src, addr, src_pte,
3871 entry, sz);
3872 }
3873 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3874 } else {
3875 if (cow) {
3876 /*
3877 * No need to notify as we are downgrading page
3878 * table protection not changing it to point
3879 * to a new page.
3880 *
3881 * See Documentation/vm/mmu_notifier.rst
3882 */
3883 huge_ptep_set_wrprotect(src, addr, src_pte);
3884 }
3885 entry = huge_ptep_get(src_pte);
3886 ptepage = pte_page(entry);
3887 get_page(ptepage);
3888 page_dup_rmap(ptepage, true);
3889 set_huge_pte_at(dst, addr, dst_pte, entry);
3890 hugetlb_count_add(pages_per_huge_page(h), dst);
3891 }
3892 spin_unlock(src_ptl);
3893 spin_unlock(dst_ptl);
3894 }
3895
3896 if (cow)
3897 mmu_notifier_invalidate_range_end(&range);
3898 else
3899 i_mmap_unlock_read(mapping);
3900
3901 return ret;
3902 }
3903
__unmap_hugepage_range(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)3904 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3905 unsigned long start, unsigned long end,
3906 struct page *ref_page)
3907 {
3908 struct mm_struct *mm = vma->vm_mm;
3909 unsigned long address;
3910 pte_t *ptep;
3911 pte_t pte;
3912 spinlock_t *ptl;
3913 struct page *page;
3914 struct hstate *h = hstate_vma(vma);
3915 unsigned long sz = huge_page_size(h);
3916 struct mmu_notifier_range range;
3917 bool force_flush = false;
3918
3919 WARN_ON(!is_vm_hugetlb_page(vma));
3920 BUG_ON(start & ~huge_page_mask(h));
3921 BUG_ON(end & ~huge_page_mask(h));
3922
3923 /*
3924 * This is a hugetlb vma, all the pte entries should point
3925 * to huge page.
3926 */
3927 tlb_change_page_size(tlb, sz);
3928 tlb_start_vma(tlb, vma);
3929
3930 /*
3931 * If sharing possible, alert mmu notifiers of worst case.
3932 */
3933 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3934 end);
3935 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3936 mmu_notifier_invalidate_range_start(&range);
3937 address = start;
3938 for (; address < end; address += sz) {
3939 ptep = huge_pte_offset(mm, address, sz);
3940 if (!ptep)
3941 continue;
3942
3943 ptl = huge_pte_lock(h, mm, ptep);
3944 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3945 spin_unlock(ptl);
3946 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
3947 force_flush = true;
3948 continue;
3949 }
3950
3951 pte = huge_ptep_get(ptep);
3952 if (huge_pte_none(pte)) {
3953 spin_unlock(ptl);
3954 continue;
3955 }
3956
3957 /*
3958 * Migrating hugepage or HWPoisoned hugepage is already
3959 * unmapped and its refcount is dropped, so just clear pte here.
3960 */
3961 if (unlikely(!pte_present(pte))) {
3962 huge_pte_clear(mm, address, ptep, sz);
3963 spin_unlock(ptl);
3964 continue;
3965 }
3966
3967 page = pte_page(pte);
3968 /*
3969 * If a reference page is supplied, it is because a specific
3970 * page is being unmapped, not a range. Ensure the page we
3971 * are about to unmap is the actual page of interest.
3972 */
3973 if (ref_page) {
3974 if (page != ref_page) {
3975 spin_unlock(ptl);
3976 continue;
3977 }
3978 /*
3979 * Mark the VMA as having unmapped its page so that
3980 * future faults in this VMA will fail rather than
3981 * looking like data was lost
3982 */
3983 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3984 }
3985
3986 pte = huge_ptep_get_and_clear(mm, address, ptep);
3987 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3988 if (huge_pte_dirty(pte))
3989 set_page_dirty(page);
3990
3991 hugetlb_count_sub(pages_per_huge_page(h), mm);
3992 page_remove_rmap(page, true);
3993
3994 spin_unlock(ptl);
3995 tlb_remove_page_size(tlb, page, huge_page_size(h));
3996 /*
3997 * Bail out after unmapping reference page if supplied
3998 */
3999 if (ref_page)
4000 break;
4001 }
4002 mmu_notifier_invalidate_range_end(&range);
4003 tlb_end_vma(tlb, vma);
4004
4005 /*
4006 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
4007 * could defer the flush until now, since by holding i_mmap_rwsem we
4008 * guaranteed that the last refernece would not be dropped. But we must
4009 * do the flushing before we return, as otherwise i_mmap_rwsem will be
4010 * dropped and the last reference to the shared PMDs page might be
4011 * dropped as well.
4012 *
4013 * In theory we could defer the freeing of the PMD pages as well, but
4014 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
4015 * detect sharing, so we cannot defer the release of the page either.
4016 * Instead, do flush now.
4017 */
4018 if (force_flush)
4019 tlb_flush_mmu_tlbonly(tlb);
4020 }
4021
__unmap_hugepage_range_final(struct mmu_gather * tlb,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)4022 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4023 struct vm_area_struct *vma, unsigned long start,
4024 unsigned long end, struct page *ref_page)
4025 {
4026 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4027
4028 /*
4029 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4030 * test will fail on a vma being torn down, and not grab a page table
4031 * on its way out. We're lucky that the flag has such an appropriate
4032 * name, and can in fact be safely cleared here. We could clear it
4033 * before the __unmap_hugepage_range above, but all that's necessary
4034 * is to clear it before releasing the i_mmap_rwsem. This works
4035 * because in the context this is called, the VMA is about to be
4036 * destroyed and the i_mmap_rwsem is held.
4037 */
4038 vma->vm_flags &= ~VM_MAYSHARE;
4039 }
4040
unmap_hugepage_range(struct vm_area_struct * vma,unsigned long start,unsigned long end,struct page * ref_page)4041 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4042 unsigned long end, struct page *ref_page)
4043 {
4044 struct mm_struct *mm;
4045 struct mmu_gather tlb;
4046 unsigned long tlb_start = start;
4047 unsigned long tlb_end = end;
4048
4049 /*
4050 * If shared PMDs were possibly used within this vma range, adjust
4051 * start/end for worst case tlb flushing.
4052 * Note that we can not be sure if PMDs are shared until we try to
4053 * unmap pages. However, we want to make sure TLB flushing covers
4054 * the largest possible range.
4055 */
4056 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4057
4058 mm = vma->vm_mm;
4059
4060 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4061 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4062 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4063 }
4064
4065 /*
4066 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4067 * mappping it owns the reserve page for. The intention is to unmap the page
4068 * from other VMAs and let the children be SIGKILLed if they are faulting the
4069 * same region.
4070 */
unmap_ref_private(struct mm_struct * mm,struct vm_area_struct * vma,struct page * page,unsigned long address)4071 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4072 struct page *page, unsigned long address)
4073 {
4074 struct hstate *h = hstate_vma(vma);
4075 struct vm_area_struct *iter_vma;
4076 struct address_space *mapping;
4077 pgoff_t pgoff;
4078
4079 /*
4080 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4081 * from page cache lookup which is in HPAGE_SIZE units.
4082 */
4083 address = address & huge_page_mask(h);
4084 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4085 vma->vm_pgoff;
4086 mapping = vma->vm_file->f_mapping;
4087
4088 /*
4089 * Take the mapping lock for the duration of the table walk. As
4090 * this mapping should be shared between all the VMAs,
4091 * __unmap_hugepage_range() is called as the lock is already held
4092 */
4093 i_mmap_lock_write(mapping);
4094 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4095 /* Do not unmap the current VMA */
4096 if (iter_vma == vma)
4097 continue;
4098
4099 /*
4100 * Shared VMAs have their own reserves and do not affect
4101 * MAP_PRIVATE accounting but it is possible that a shared
4102 * VMA is using the same page so check and skip such VMAs.
4103 */
4104 if (iter_vma->vm_flags & VM_MAYSHARE)
4105 continue;
4106
4107 /*
4108 * Unmap the page from other VMAs without their own reserves.
4109 * They get marked to be SIGKILLed if they fault in these
4110 * areas. This is because a future no-page fault on this VMA
4111 * could insert a zeroed page instead of the data existing
4112 * from the time of fork. This would look like data corruption
4113 */
4114 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4115 unmap_hugepage_range(iter_vma, address,
4116 address + huge_page_size(h), page);
4117 }
4118 i_mmap_unlock_write(mapping);
4119 }
4120
4121 /*
4122 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4123 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4124 * cannot race with other handlers or page migration.
4125 * Keep the pte_same checks anyway to make transition from the mutex easier.
4126 */
hugetlb_cow(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,pte_t * ptep,struct page * pagecache_page,spinlock_t * ptl)4127 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4128 unsigned long address, pte_t *ptep,
4129 struct page *pagecache_page, spinlock_t *ptl)
4130 {
4131 pte_t pte;
4132 struct hstate *h = hstate_vma(vma);
4133 struct page *old_page, *new_page;
4134 int outside_reserve = 0;
4135 vm_fault_t ret = 0;
4136 unsigned long haddr = address & huge_page_mask(h);
4137 struct mmu_notifier_range range;
4138
4139 pte = huge_ptep_get(ptep);
4140 old_page = pte_page(pte);
4141
4142 retry_avoidcopy:
4143 /* If no-one else is actually using this page, avoid the copy
4144 * and just make the page writable */
4145 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4146 page_move_anon_rmap(old_page, vma);
4147 set_huge_ptep_writable(vma, haddr, ptep);
4148 return 0;
4149 }
4150
4151 /*
4152 * If the process that created a MAP_PRIVATE mapping is about to
4153 * perform a COW due to a shared page count, attempt to satisfy
4154 * the allocation without using the existing reserves. The pagecache
4155 * page is used to determine if the reserve at this address was
4156 * consumed or not. If reserves were used, a partial faulted mapping
4157 * at the time of fork() could consume its reserves on COW instead
4158 * of the full address range.
4159 */
4160 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4161 old_page != pagecache_page)
4162 outside_reserve = 1;
4163
4164 get_page(old_page);
4165
4166 /*
4167 * Drop page table lock as buddy allocator may be called. It will
4168 * be acquired again before returning to the caller, as expected.
4169 */
4170 spin_unlock(ptl);
4171 new_page = alloc_huge_page(vma, haddr, outside_reserve);
4172
4173 if (IS_ERR(new_page)) {
4174 /*
4175 * If a process owning a MAP_PRIVATE mapping fails to COW,
4176 * it is due to references held by a child and an insufficient
4177 * huge page pool. To guarantee the original mappers
4178 * reliability, unmap the page from child processes. The child
4179 * may get SIGKILLed if it later faults.
4180 */
4181 if (outside_reserve) {
4182 struct address_space *mapping = vma->vm_file->f_mapping;
4183 pgoff_t idx;
4184 u32 hash;
4185
4186 put_page(old_page);
4187 BUG_ON(huge_pte_none(pte));
4188 /*
4189 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4190 * unmapping. unmapping needs to hold i_mmap_rwsem
4191 * in write mode. Dropping i_mmap_rwsem in read mode
4192 * here is OK as COW mappings do not interact with
4193 * PMD sharing.
4194 *
4195 * Reacquire both after unmap operation.
4196 */
4197 idx = vma_hugecache_offset(h, vma, haddr);
4198 hash = hugetlb_fault_mutex_hash(mapping, idx);
4199 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4200 i_mmap_unlock_read(mapping);
4201
4202 unmap_ref_private(mm, vma, old_page, haddr);
4203
4204 i_mmap_lock_read(mapping);
4205 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4206 spin_lock(ptl);
4207 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4208 if (likely(ptep &&
4209 pte_same(huge_ptep_get(ptep), pte)))
4210 goto retry_avoidcopy;
4211 /*
4212 * race occurs while re-acquiring page table
4213 * lock, and our job is done.
4214 */
4215 return 0;
4216 }
4217
4218 ret = vmf_error(PTR_ERR(new_page));
4219 goto out_release_old;
4220 }
4221
4222 /*
4223 * When the original hugepage is shared one, it does not have
4224 * anon_vma prepared.
4225 */
4226 if (unlikely(anon_vma_prepare(vma))) {
4227 ret = VM_FAULT_OOM;
4228 goto out_release_all;
4229 }
4230
4231 copy_user_huge_page(new_page, old_page, address, vma,
4232 pages_per_huge_page(h));
4233 __SetPageUptodate(new_page);
4234
4235 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4236 haddr + huge_page_size(h));
4237 mmu_notifier_invalidate_range_start(&range);
4238
4239 /*
4240 * Retake the page table lock to check for racing updates
4241 * before the page tables are altered
4242 */
4243 spin_lock(ptl);
4244 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4245 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4246 ClearPagePrivate(new_page);
4247
4248 /* Break COW */
4249 huge_ptep_clear_flush(vma, haddr, ptep);
4250 mmu_notifier_invalidate_range(mm, range.start, range.end);
4251 set_huge_pte_at(mm, haddr, ptep,
4252 make_huge_pte(vma, new_page, 1));
4253 page_remove_rmap(old_page, true);
4254 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4255 set_page_huge_active(new_page);
4256 /* Make the old page be freed below */
4257 new_page = old_page;
4258 }
4259 spin_unlock(ptl);
4260 mmu_notifier_invalidate_range_end(&range);
4261 out_release_all:
4262 restore_reserve_on_error(h, vma, haddr, new_page);
4263 put_page(new_page);
4264 out_release_old:
4265 put_page(old_page);
4266
4267 spin_lock(ptl); /* Caller expects lock to be held */
4268 return ret;
4269 }
4270
4271 /* Return the pagecache page at a given address within a VMA */
hugetlbfs_pagecache_page(struct hstate * h,struct vm_area_struct * vma,unsigned long address)4272 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4273 struct vm_area_struct *vma, unsigned long address)
4274 {
4275 struct address_space *mapping;
4276 pgoff_t idx;
4277
4278 mapping = vma->vm_file->f_mapping;
4279 idx = vma_hugecache_offset(h, vma, address);
4280
4281 return find_lock_page(mapping, idx);
4282 }
4283
4284 /*
4285 * Return whether there is a pagecache page to back given address within VMA.
4286 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4287 */
hugetlbfs_pagecache_present(struct hstate * h,struct vm_area_struct * vma,unsigned long address)4288 static bool hugetlbfs_pagecache_present(struct hstate *h,
4289 struct vm_area_struct *vma, unsigned long address)
4290 {
4291 struct address_space *mapping;
4292 pgoff_t idx;
4293 struct page *page;
4294
4295 mapping = vma->vm_file->f_mapping;
4296 idx = vma_hugecache_offset(h, vma, address);
4297
4298 page = find_get_page(mapping, idx);
4299 if (page)
4300 put_page(page);
4301 return page != NULL;
4302 }
4303
huge_add_to_page_cache(struct page * page,struct address_space * mapping,pgoff_t idx)4304 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4305 pgoff_t idx)
4306 {
4307 struct inode *inode = mapping->host;
4308 struct hstate *h = hstate_inode(inode);
4309 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4310
4311 if (err)
4312 return err;
4313 ClearPagePrivate(page);
4314
4315 /*
4316 * set page dirty so that it will not be removed from cache/file
4317 * by non-hugetlbfs specific code paths.
4318 */
4319 set_page_dirty(page);
4320
4321 spin_lock(&inode->i_lock);
4322 inode->i_blocks += blocks_per_huge_page(h);
4323 spin_unlock(&inode->i_lock);
4324 return 0;
4325 }
4326
hugetlb_handle_userfault(struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned int flags,unsigned long haddr,unsigned long reason)4327 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4328 struct address_space *mapping,
4329 pgoff_t idx,
4330 unsigned int flags,
4331 unsigned long haddr,
4332 unsigned long reason)
4333 {
4334 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
4335 struct vm_fault vmf = {
4336 .vma = vma,
4337 .address = haddr,
4338 .flags = flags,
4339 /*
4340 * Hard to debug if it ends up being
4341 * used by a callee that assumes
4342 * something about the other
4343 * uninitialized fields... same as in
4344 * memory.c
4345 */
4346 };
4347
4348 /*
4349 * vma_lock and hugetlb_fault_mutex must be dropped
4350 * before handling userfault. Also mmap_lock will
4351 * be dropped during handling userfault, any vma
4352 * operation should be careful from here.
4353 */
4354 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4355 i_mmap_unlock_read(mapping);
4356 return handle_userfault(&vmf, VM_UFFD_MISSING);
4357 }
4358
hugetlb_no_page(struct mm_struct * mm,struct vm_area_struct * vma,struct address_space * mapping,pgoff_t idx,unsigned long address,pte_t * ptep,unsigned int flags)4359 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4360 struct vm_area_struct *vma,
4361 struct address_space *mapping, pgoff_t idx,
4362 unsigned long address, pte_t *ptep, unsigned int flags)
4363 {
4364 struct hstate *h = hstate_vma(vma);
4365 vm_fault_t ret = VM_FAULT_SIGBUS;
4366 int anon_rmap = 0;
4367 unsigned long size;
4368 struct page *page;
4369 pte_t new_pte;
4370 spinlock_t *ptl;
4371 unsigned long haddr = address & huge_page_mask(h);
4372 bool new_page = false;
4373 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
4374
4375 /*
4376 * Currently, we are forced to kill the process in the event the
4377 * original mapper has unmapped pages from the child due to a failed
4378 * COW. Warn that such a situation has occurred as it may not be obvious
4379 */
4380 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4381 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4382 current->pid);
4383 goto out;
4384 }
4385
4386 /*
4387 * We can not race with truncation due to holding i_mmap_rwsem.
4388 * i_size is modified when holding i_mmap_rwsem, so check here
4389 * once for faults beyond end of file.
4390 */
4391 size = i_size_read(mapping->host) >> huge_page_shift(h);
4392 if (idx >= size)
4393 goto out;
4394
4395 retry:
4396 page = find_lock_page(mapping, idx);
4397 if (!page) {
4398 /* Check for page in userfault range */
4399 if (userfaultfd_missing(vma)) {
4400 ret = hugetlb_handle_userfault(vma, mapping, idx,
4401 flags, haddr,
4402 VM_UFFD_MISSING);
4403 goto out;
4404 }
4405
4406 page = alloc_huge_page(vma, haddr, 0);
4407 if (IS_ERR(page)) {
4408 /*
4409 * Returning error will result in faulting task being
4410 * sent SIGBUS. The hugetlb fault mutex prevents two
4411 * tasks from racing to fault in the same page which
4412 * could result in false unable to allocate errors.
4413 * Page migration does not take the fault mutex, but
4414 * does a clear then write of pte's under page table
4415 * lock. Page fault code could race with migration,
4416 * notice the clear pte and try to allocate a page
4417 * here. Before returning error, get ptl and make
4418 * sure there really is no pte entry.
4419 */
4420 ptl = huge_pte_lock(h, mm, ptep);
4421 if (!huge_pte_none(huge_ptep_get(ptep))) {
4422 ret = 0;
4423 spin_unlock(ptl);
4424 goto out;
4425 }
4426 spin_unlock(ptl);
4427 ret = vmf_error(PTR_ERR(page));
4428 goto out;
4429 }
4430 clear_huge_page(page, address, pages_per_huge_page(h));
4431 __SetPageUptodate(page);
4432 new_page = true;
4433
4434 if (vma->vm_flags & VM_MAYSHARE) {
4435 int err = huge_add_to_page_cache(page, mapping, idx);
4436 if (err) {
4437 put_page(page);
4438 if (err == -EEXIST)
4439 goto retry;
4440 goto out;
4441 }
4442 } else {
4443 lock_page(page);
4444 if (unlikely(anon_vma_prepare(vma))) {
4445 ret = VM_FAULT_OOM;
4446 goto backout_unlocked;
4447 }
4448 anon_rmap = 1;
4449 }
4450 } else {
4451 /*
4452 * If memory error occurs between mmap() and fault, some process
4453 * don't have hwpoisoned swap entry for errored virtual address.
4454 * So we need to block hugepage fault by PG_hwpoison bit check.
4455 */
4456 if (unlikely(PageHWPoison(page))) {
4457 ret = VM_FAULT_HWPOISON_LARGE |
4458 VM_FAULT_SET_HINDEX(hstate_index(h));
4459 goto backout_unlocked;
4460 }
4461
4462 /* Check for page in userfault range. */
4463 if (userfaultfd_minor(vma)) {
4464 unlock_page(page);
4465 put_page(page);
4466 ret = hugetlb_handle_userfault(vma, mapping, idx,
4467 flags, haddr,
4468 VM_UFFD_MINOR);
4469 goto out;
4470 }
4471 }
4472
4473 /*
4474 * If we are going to COW a private mapping later, we examine the
4475 * pending reservations for this page now. This will ensure that
4476 * any allocations necessary to record that reservation occur outside
4477 * the spinlock.
4478 */
4479 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4480 if (vma_needs_reservation(h, vma, haddr) < 0) {
4481 ret = VM_FAULT_OOM;
4482 goto backout_unlocked;
4483 }
4484 /* Just decrements count, does not deallocate */
4485 vma_end_reservation(h, vma, haddr);
4486 }
4487
4488 ptl = huge_pte_lock(h, mm, ptep);
4489 ret = 0;
4490 if (!huge_pte_none(huge_ptep_get(ptep)))
4491 goto backout;
4492
4493 if (anon_rmap) {
4494 ClearPagePrivate(page);
4495 hugepage_add_new_anon_rmap(page, vma, haddr);
4496 } else
4497 page_dup_rmap(page, true);
4498 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4499 && (vma->vm_flags & VM_SHARED)));
4500 set_huge_pte_at(mm, haddr, ptep, new_pte);
4501
4502 hugetlb_count_add(pages_per_huge_page(h), mm);
4503 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4504 /* Optimization, do the COW without a second fault */
4505 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4506 }
4507
4508 spin_unlock(ptl);
4509
4510 /*
4511 * Only make newly allocated pages active. Existing pages found
4512 * in the pagecache could be !page_huge_active() if they have been
4513 * isolated for migration.
4514 */
4515 if (new_page)
4516 set_page_huge_active(page);
4517
4518 unlock_page(page);
4519 out:
4520 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4521 i_mmap_unlock_read(mapping);
4522 return ret;
4523
4524 backout:
4525 spin_unlock(ptl);
4526 backout_unlocked:
4527 unlock_page(page);
4528 restore_reserve_on_error(h, vma, haddr, page);
4529 put_page(page);
4530 goto out;
4531 }
4532
4533 #ifdef CONFIG_SMP
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)4534 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4535 {
4536 unsigned long key[2];
4537 u32 hash;
4538
4539 key[0] = (unsigned long) mapping;
4540 key[1] = idx;
4541
4542 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4543
4544 return hash & (num_fault_mutexes - 1);
4545 }
4546 #else
4547 /*
4548 * For uniprocesor systems we always use a single mutex, so just
4549 * return 0 and avoid the hashing overhead.
4550 */
hugetlb_fault_mutex_hash(struct address_space * mapping,pgoff_t idx)4551 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4552 {
4553 return 0;
4554 }
4555 #endif
4556
hugetlb_fault(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long address,unsigned int flags)4557 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4558 unsigned long address, unsigned int flags)
4559 {
4560 pte_t *ptep, entry;
4561 spinlock_t *ptl;
4562 vm_fault_t ret;
4563 u32 hash;
4564 pgoff_t idx;
4565 struct page *page = NULL;
4566 struct page *pagecache_page = NULL;
4567 struct hstate *h = hstate_vma(vma);
4568 struct address_space *mapping;
4569 int need_wait_lock = 0;
4570 unsigned long haddr = address & huge_page_mask(h);
4571
4572 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4573 if (ptep) {
4574 /*
4575 * Since we hold no locks, ptep could be stale. That is
4576 * OK as we are only making decisions based on content and
4577 * not actually modifying content here.
4578 */
4579 entry = huge_ptep_get(ptep);
4580 if (unlikely(is_hugetlb_entry_migration(entry))) {
4581 migration_entry_wait_huge(vma, mm, ptep);
4582 return 0;
4583 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4584 return VM_FAULT_HWPOISON_LARGE |
4585 VM_FAULT_SET_HINDEX(hstate_index(h));
4586 }
4587
4588 /*
4589 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4590 * until finished with ptep. This serves two purposes:
4591 * 1) It prevents huge_pmd_unshare from being called elsewhere
4592 * and making the ptep no longer valid.
4593 * 2) It synchronizes us with i_size modifications during truncation.
4594 *
4595 * ptep could have already be assigned via huge_pte_offset. That
4596 * is OK, as huge_pte_alloc will return the same value unless
4597 * something has changed.
4598 */
4599 mapping = vma->vm_file->f_mapping;
4600 i_mmap_lock_read(mapping);
4601 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
4602 if (!ptep) {
4603 i_mmap_unlock_read(mapping);
4604 return VM_FAULT_OOM;
4605 }
4606
4607 /*
4608 * Serialize hugepage allocation and instantiation, so that we don't
4609 * get spurious allocation failures if two CPUs race to instantiate
4610 * the same page in the page cache.
4611 */
4612 idx = vma_hugecache_offset(h, vma, haddr);
4613 hash = hugetlb_fault_mutex_hash(mapping, idx);
4614 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4615
4616 entry = huge_ptep_get(ptep);
4617 if (huge_pte_none(entry))
4618 /*
4619 * hugetlb_no_page will drop vma lock and hugetlb fault
4620 * mutex internally, which make us return immediately.
4621 */
4622 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4623
4624 ret = 0;
4625
4626 /*
4627 * entry could be a migration/hwpoison entry at this point, so this
4628 * check prevents the kernel from going below assuming that we have
4629 * an active hugepage in pagecache. This goto expects the 2nd page
4630 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4631 * properly handle it.
4632 */
4633 if (!pte_present(entry))
4634 goto out_mutex;
4635
4636 /*
4637 * If we are going to COW the mapping later, we examine the pending
4638 * reservations for this page now. This will ensure that any
4639 * allocations necessary to record that reservation occur outside the
4640 * spinlock. For private mappings, we also lookup the pagecache
4641 * page now as it is used to determine if a reservation has been
4642 * consumed.
4643 */
4644 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4645 if (vma_needs_reservation(h, vma, haddr) < 0) {
4646 ret = VM_FAULT_OOM;
4647 goto out_mutex;
4648 }
4649 /* Just decrements count, does not deallocate */
4650 vma_end_reservation(h, vma, haddr);
4651
4652 if (!(vma->vm_flags & VM_MAYSHARE))
4653 pagecache_page = hugetlbfs_pagecache_page(h,
4654 vma, haddr);
4655 }
4656
4657 ptl = huge_pte_lock(h, mm, ptep);
4658
4659 /* Check for a racing update before calling hugetlb_cow */
4660 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4661 goto out_ptl;
4662
4663 /*
4664 * hugetlb_cow() requires page locks of pte_page(entry) and
4665 * pagecache_page, so here we need take the former one
4666 * when page != pagecache_page or !pagecache_page.
4667 */
4668 page = pte_page(entry);
4669 if (page != pagecache_page)
4670 if (!trylock_page(page)) {
4671 need_wait_lock = 1;
4672 goto out_ptl;
4673 }
4674
4675 get_page(page);
4676
4677 if (flags & FAULT_FLAG_WRITE) {
4678 if (!huge_pte_write(entry)) {
4679 ret = hugetlb_cow(mm, vma, address, ptep,
4680 pagecache_page, ptl);
4681 goto out_put_page;
4682 }
4683 entry = huge_pte_mkdirty(entry);
4684 }
4685 entry = pte_mkyoung(entry);
4686 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4687 flags & FAULT_FLAG_WRITE))
4688 update_mmu_cache(vma, haddr, ptep);
4689 out_put_page:
4690 if (page != pagecache_page)
4691 unlock_page(page);
4692 put_page(page);
4693 out_ptl:
4694 spin_unlock(ptl);
4695
4696 if (pagecache_page) {
4697 unlock_page(pagecache_page);
4698 put_page(pagecache_page);
4699 }
4700 out_mutex:
4701 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4702 i_mmap_unlock_read(mapping);
4703 /*
4704 * Generally it's safe to hold refcount during waiting page lock. But
4705 * here we just wait to defer the next page fault to avoid busy loop and
4706 * the page is not used after unlocked before returning from the current
4707 * page fault. So we are safe from accessing freed page, even if we wait
4708 * here without taking refcount.
4709 */
4710 if (need_wait_lock)
4711 wait_on_page_locked(page);
4712 return ret;
4713 }
4714
4715 #ifdef CONFIG_USERFAULTFD
4716 /*
4717 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4718 * modifications for huge pages.
4719 */
hugetlb_mcopy_atomic_pte(struct mm_struct * dst_mm,pte_t * dst_pte,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,enum mcopy_atomic_mode mode,struct page ** pagep)4720 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4721 pte_t *dst_pte,
4722 struct vm_area_struct *dst_vma,
4723 unsigned long dst_addr,
4724 unsigned long src_addr,
4725 enum mcopy_atomic_mode mode,
4726 struct page **pagep)
4727 {
4728 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
4729 struct address_space *mapping;
4730 pgoff_t idx;
4731 unsigned long size;
4732 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4733 struct hstate *h = hstate_vma(dst_vma);
4734 pte_t _dst_pte;
4735 spinlock_t *ptl;
4736 int ret;
4737 struct page *page;
4738 int writable;
4739
4740 mapping = dst_vma->vm_file->f_mapping;
4741 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4742
4743 if (is_continue) {
4744 ret = -EFAULT;
4745 page = find_lock_page(mapping, idx);
4746 if (!page)
4747 goto out;
4748 } else if (!*pagep) {
4749 /* If a page already exists, then it's UFFDIO_COPY for
4750 * a non-missing case. Return -EEXIST.
4751 */
4752 if (vm_shared &&
4753 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
4754 ret = -EEXIST;
4755 goto out;
4756 }
4757
4758 page = alloc_huge_page(dst_vma, dst_addr, 0);
4759 if (IS_ERR(page)) {
4760 ret = -ENOMEM;
4761 goto out;
4762 }
4763
4764 ret = copy_huge_page_from_user(page,
4765 (const void __user *) src_addr,
4766 pages_per_huge_page(h), false);
4767
4768 /* fallback to copy_from_user outside mmap_lock */
4769 if (unlikely(ret)) {
4770 ret = -ENOENT;
4771 *pagep = page;
4772 /* don't free the page */
4773 goto out;
4774 }
4775 } else {
4776 page = *pagep;
4777 *pagep = NULL;
4778 }
4779
4780 /*
4781 * The memory barrier inside __SetPageUptodate makes sure that
4782 * preceding stores to the page contents become visible before
4783 * the set_pte_at() write.
4784 */
4785 __SetPageUptodate(page);
4786
4787 /* Add shared, newly allocated pages to the page cache. */
4788 if (vm_shared && !is_continue) {
4789 size = i_size_read(mapping->host) >> huge_page_shift(h);
4790 ret = -EFAULT;
4791 if (idx >= size)
4792 goto out_release_nounlock;
4793
4794 /*
4795 * Serialization between remove_inode_hugepages() and
4796 * huge_add_to_page_cache() below happens through the
4797 * hugetlb_fault_mutex_table that here must be hold by
4798 * the caller.
4799 */
4800 ret = huge_add_to_page_cache(page, mapping, idx);
4801 if (ret)
4802 goto out_release_nounlock;
4803 }
4804
4805 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4806 spin_lock(ptl);
4807
4808 /*
4809 * Recheck the i_size after holding PT lock to make sure not
4810 * to leave any page mapped (as page_mapped()) beyond the end
4811 * of the i_size (remove_inode_hugepages() is strict about
4812 * enforcing that). If we bail out here, we'll also leave a
4813 * page in the radix tree in the vm_shared case beyond the end
4814 * of the i_size, but remove_inode_hugepages() will take care
4815 * of it as soon as we drop the hugetlb_fault_mutex_table.
4816 */
4817 size = i_size_read(mapping->host) >> huge_page_shift(h);
4818 ret = -EFAULT;
4819 if (idx >= size)
4820 goto out_release_unlock;
4821
4822 ret = -EEXIST;
4823 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4824 goto out_release_unlock;
4825
4826 if (vm_shared) {
4827 page_dup_rmap(page, true);
4828 } else {
4829 ClearPagePrivate(page);
4830 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4831 }
4832
4833 /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
4834 if (is_continue && !vm_shared)
4835 writable = 0;
4836 else
4837 writable = dst_vma->vm_flags & VM_WRITE;
4838
4839 _dst_pte = make_huge_pte(dst_vma, page, writable);
4840 if (writable)
4841 _dst_pte = huge_pte_mkdirty(_dst_pte);
4842 _dst_pte = pte_mkyoung(_dst_pte);
4843
4844 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4845
4846 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4847 dst_vma->vm_flags & VM_WRITE);
4848 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4849
4850 /* No need to invalidate - it was non-present before */
4851 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4852
4853 spin_unlock(ptl);
4854 if (!is_continue)
4855 set_page_huge_active(page);
4856 if (vm_shared || is_continue)
4857 unlock_page(page);
4858 ret = 0;
4859 out:
4860 return ret;
4861 out_release_unlock:
4862 spin_unlock(ptl);
4863 if (vm_shared || is_continue)
4864 unlock_page(page);
4865 out_release_nounlock:
4866 put_page(page);
4867 goto out;
4868 }
4869 #endif /* CONFIG_USERFAULTFD */
4870
follow_hugetlb_page(struct mm_struct * mm,struct vm_area_struct * vma,struct page ** pages,struct vm_area_struct ** vmas,unsigned long * position,unsigned long * nr_pages,long i,unsigned int flags,int * locked)4871 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4872 struct page **pages, struct vm_area_struct **vmas,
4873 unsigned long *position, unsigned long *nr_pages,
4874 long i, unsigned int flags, int *locked)
4875 {
4876 unsigned long pfn_offset;
4877 unsigned long vaddr = *position;
4878 unsigned long remainder = *nr_pages;
4879 struct hstate *h = hstate_vma(vma);
4880 int err = -EFAULT;
4881
4882 while (vaddr < vma->vm_end && remainder) {
4883 pte_t *pte;
4884 spinlock_t *ptl = NULL;
4885 int absent;
4886 struct page *page;
4887
4888 /*
4889 * If we have a pending SIGKILL, don't keep faulting pages and
4890 * potentially allocating memory.
4891 */
4892 if (fatal_signal_pending(current)) {
4893 remainder = 0;
4894 break;
4895 }
4896
4897 /*
4898 * Some archs (sparc64, sh*) have multiple pte_ts to
4899 * each hugepage. We have to make sure we get the
4900 * first, for the page indexing below to work.
4901 *
4902 * Note that page table lock is not held when pte is null.
4903 */
4904 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4905 huge_page_size(h));
4906 if (pte)
4907 ptl = huge_pte_lock(h, mm, pte);
4908 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4909
4910 /*
4911 * When coredumping, it suits get_dump_page if we just return
4912 * an error where there's an empty slot with no huge pagecache
4913 * to back it. This way, we avoid allocating a hugepage, and
4914 * the sparse dumpfile avoids allocating disk blocks, but its
4915 * huge holes still show up with zeroes where they need to be.
4916 */
4917 if (absent && (flags & FOLL_DUMP) &&
4918 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4919 if (pte)
4920 spin_unlock(ptl);
4921 remainder = 0;
4922 break;
4923 }
4924
4925 /*
4926 * We need call hugetlb_fault for both hugepages under migration
4927 * (in which case hugetlb_fault waits for the migration,) and
4928 * hwpoisoned hugepages (in which case we need to prevent the
4929 * caller from accessing to them.) In order to do this, we use
4930 * here is_swap_pte instead of is_hugetlb_entry_migration and
4931 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4932 * both cases, and because we can't follow correct pages
4933 * directly from any kind of swap entries.
4934 */
4935 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4936 ((flags & FOLL_WRITE) &&
4937 !huge_pte_write(huge_ptep_get(pte)))) {
4938 vm_fault_t ret;
4939 unsigned int fault_flags = 0;
4940
4941 if (pte)
4942 spin_unlock(ptl);
4943 if (flags & FOLL_WRITE)
4944 fault_flags |= FAULT_FLAG_WRITE;
4945 if (locked)
4946 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4947 FAULT_FLAG_KILLABLE;
4948 if (flags & FOLL_NOWAIT)
4949 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4950 FAULT_FLAG_RETRY_NOWAIT;
4951 if (flags & FOLL_TRIED) {
4952 /*
4953 * Note: FAULT_FLAG_ALLOW_RETRY and
4954 * FAULT_FLAG_TRIED can co-exist
4955 */
4956 fault_flags |= FAULT_FLAG_TRIED;
4957 }
4958 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4959 if (ret & VM_FAULT_ERROR) {
4960 err = vm_fault_to_errno(ret, flags);
4961 remainder = 0;
4962 break;
4963 }
4964 if (ret & VM_FAULT_RETRY) {
4965 if (locked &&
4966 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4967 *locked = 0;
4968 *nr_pages = 0;
4969 /*
4970 * VM_FAULT_RETRY must not return an
4971 * error, it will return zero
4972 * instead.
4973 *
4974 * No need to update "position" as the
4975 * caller will not check it after
4976 * *nr_pages is set to 0.
4977 */
4978 return i;
4979 }
4980 continue;
4981 }
4982
4983 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4984 page = pte_page(huge_ptep_get(pte));
4985
4986 /*
4987 * If subpage information not requested, update counters
4988 * and skip the same_page loop below.
4989 */
4990 if (!pages && !vmas && !pfn_offset &&
4991 (vaddr + huge_page_size(h) < vma->vm_end) &&
4992 (remainder >= pages_per_huge_page(h))) {
4993 vaddr += huge_page_size(h);
4994 remainder -= pages_per_huge_page(h);
4995 i += pages_per_huge_page(h);
4996 spin_unlock(ptl);
4997 continue;
4998 }
4999
5000 same_page:
5001 if (pages) {
5002 pages[i] = mem_map_offset(page, pfn_offset);
5003 /*
5004 * try_grab_page() should always succeed here, because:
5005 * a) we hold the ptl lock, and b) we've just checked
5006 * that the huge page is present in the page tables. If
5007 * the huge page is present, then the tail pages must
5008 * also be present. The ptl prevents the head page and
5009 * tail pages from being rearranged in any way. So this
5010 * page must be available at this point, unless the page
5011 * refcount overflowed:
5012 */
5013 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
5014 spin_unlock(ptl);
5015 remainder = 0;
5016 err = -ENOMEM;
5017 break;
5018 }
5019 }
5020
5021 if (vmas)
5022 vmas[i] = vma;
5023
5024 vaddr += PAGE_SIZE;
5025 ++pfn_offset;
5026 --remainder;
5027 ++i;
5028 if (vaddr < vma->vm_end && remainder &&
5029 pfn_offset < pages_per_huge_page(h)) {
5030 /*
5031 * We use pfn_offset to avoid touching the pageframes
5032 * of this compound page.
5033 */
5034 goto same_page;
5035 }
5036 spin_unlock(ptl);
5037 }
5038 *nr_pages = remainder;
5039 /*
5040 * setting position is actually required only if remainder is
5041 * not zero but it's faster not to add a "if (remainder)"
5042 * branch.
5043 */
5044 *position = vaddr;
5045
5046 return i ? i : err;
5047 }
5048
hugetlb_change_protection(struct vm_area_struct * vma,unsigned long address,unsigned long end,pgprot_t newprot)5049 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5050 unsigned long address, unsigned long end, pgprot_t newprot)
5051 {
5052 struct mm_struct *mm = vma->vm_mm;
5053 unsigned long start = address;
5054 pte_t *ptep;
5055 pte_t pte;
5056 struct hstate *h = hstate_vma(vma);
5057 unsigned long pages = 0;
5058 bool shared_pmd = false;
5059 struct mmu_notifier_range range;
5060
5061 /*
5062 * In the case of shared PMDs, the area to flush could be beyond
5063 * start/end. Set range.start/range.end to cover the maximum possible
5064 * range if PMD sharing is possible.
5065 */
5066 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5067 0, vma, mm, start, end);
5068 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5069
5070 BUG_ON(address >= end);
5071 flush_cache_range(vma, range.start, range.end);
5072
5073 mmu_notifier_invalidate_range_start(&range);
5074 i_mmap_lock_write(vma->vm_file->f_mapping);
5075 for (; address < end; address += huge_page_size(h)) {
5076 spinlock_t *ptl;
5077 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5078 if (!ptep)
5079 continue;
5080 ptl = huge_pte_lock(h, mm, ptep);
5081 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5082 pages++;
5083 spin_unlock(ptl);
5084 shared_pmd = true;
5085 continue;
5086 }
5087 pte = huge_ptep_get(ptep);
5088 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5089 spin_unlock(ptl);
5090 continue;
5091 }
5092 if (unlikely(is_hugetlb_entry_migration(pte))) {
5093 swp_entry_t entry = pte_to_swp_entry(pte);
5094
5095 if (is_write_migration_entry(entry)) {
5096 pte_t newpte;
5097
5098 make_migration_entry_read(&entry);
5099 newpte = swp_entry_to_pte(entry);
5100 set_huge_swap_pte_at(mm, address, ptep,
5101 newpte, huge_page_size(h));
5102 pages++;
5103 }
5104 spin_unlock(ptl);
5105 continue;
5106 }
5107 if (!huge_pte_none(pte)) {
5108 pte_t old_pte;
5109
5110 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5111 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5112 pte = arch_make_huge_pte(pte, vma, NULL, 0);
5113 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5114 pages++;
5115 }
5116 spin_unlock(ptl);
5117 }
5118 /*
5119 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5120 * may have cleared our pud entry and done put_page on the page table:
5121 * once we release i_mmap_rwsem, another task can do the final put_page
5122 * and that page table be reused and filled with junk. If we actually
5123 * did unshare a page of pmds, flush the range corresponding to the pud.
5124 */
5125 if (shared_pmd)
5126 flush_hugetlb_tlb_range(vma, range.start, range.end);
5127 else
5128 flush_hugetlb_tlb_range(vma, start, end);
5129 /*
5130 * No need to call mmu_notifier_invalidate_range() we are downgrading
5131 * page table protection not changing it to point to a new page.
5132 *
5133 * See Documentation/vm/mmu_notifier.rst
5134 */
5135 i_mmap_unlock_write(vma->vm_file->f_mapping);
5136 mmu_notifier_invalidate_range_end(&range);
5137
5138 return pages << h->order;
5139 }
5140
hugetlb_reserve_pages(struct inode * inode,long from,long to,struct vm_area_struct * vma,vm_flags_t vm_flags)5141 int hugetlb_reserve_pages(struct inode *inode,
5142 long from, long to,
5143 struct vm_area_struct *vma,
5144 vm_flags_t vm_flags)
5145 {
5146 long ret, chg, add = -1;
5147 struct hstate *h = hstate_inode(inode);
5148 struct hugepage_subpool *spool = subpool_inode(inode);
5149 struct resv_map *resv_map;
5150 struct hugetlb_cgroup *h_cg = NULL;
5151 long gbl_reserve, regions_needed = 0;
5152
5153 /* This should never happen */
5154 if (from > to) {
5155 VM_WARN(1, "%s called with a negative range\n", __func__);
5156 return -EINVAL;
5157 }
5158
5159 /*
5160 * Only apply hugepage reservation if asked. At fault time, an
5161 * attempt will be made for VM_NORESERVE to allocate a page
5162 * without using reserves
5163 */
5164 if (vm_flags & VM_NORESERVE)
5165 return 0;
5166
5167 /*
5168 * Shared mappings base their reservation on the number of pages that
5169 * are already allocated on behalf of the file. Private mappings need
5170 * to reserve the full area even if read-only as mprotect() may be
5171 * called to make the mapping read-write. Assume !vma is a shm mapping
5172 */
5173 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5174 /*
5175 * resv_map can not be NULL as hugetlb_reserve_pages is only
5176 * called for inodes for which resv_maps were created (see
5177 * hugetlbfs_get_inode).
5178 */
5179 resv_map = inode_resv_map(inode);
5180
5181 chg = region_chg(resv_map, from, to, ®ions_needed);
5182
5183 } else {
5184 /* Private mapping. */
5185 resv_map = resv_map_alloc();
5186 if (!resv_map)
5187 return -ENOMEM;
5188
5189 chg = to - from;
5190
5191 set_vma_resv_map(vma, resv_map);
5192 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5193 }
5194
5195 if (chg < 0) {
5196 ret = chg;
5197 goto out_err;
5198 }
5199
5200 ret = hugetlb_cgroup_charge_cgroup_rsvd(
5201 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5202
5203 if (ret < 0) {
5204 ret = -ENOMEM;
5205 goto out_err;
5206 }
5207
5208 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5209 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5210 * of the resv_map.
5211 */
5212 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5213 }
5214
5215 /*
5216 * There must be enough pages in the subpool for the mapping. If
5217 * the subpool has a minimum size, there may be some global
5218 * reservations already in place (gbl_reserve).
5219 */
5220 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5221 if (gbl_reserve < 0) {
5222 ret = -ENOSPC;
5223 goto out_uncharge_cgroup;
5224 }
5225
5226 /*
5227 * Check enough hugepages are available for the reservation.
5228 * Hand the pages back to the subpool if there are not
5229 */
5230 ret = hugetlb_acct_memory(h, gbl_reserve);
5231 if (ret < 0) {
5232 goto out_put_pages;
5233 }
5234
5235 /*
5236 * Account for the reservations made. Shared mappings record regions
5237 * that have reservations as they are shared by multiple VMAs.
5238 * When the last VMA disappears, the region map says how much
5239 * the reservation was and the page cache tells how much of
5240 * the reservation was consumed. Private mappings are per-VMA and
5241 * only the consumed reservations are tracked. When the VMA
5242 * disappears, the original reservation is the VMA size and the
5243 * consumed reservations are stored in the map. Hence, nothing
5244 * else has to be done for private mappings here
5245 */
5246 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5247 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5248
5249 if (unlikely(add < 0)) {
5250 hugetlb_acct_memory(h, -gbl_reserve);
5251 ret = add;
5252 goto out_put_pages;
5253 } else if (unlikely(chg > add)) {
5254 /*
5255 * pages in this range were added to the reserve
5256 * map between region_chg and region_add. This
5257 * indicates a race with alloc_huge_page. Adjust
5258 * the subpool and reserve counts modified above
5259 * based on the difference.
5260 */
5261 long rsv_adjust;
5262
5263 /*
5264 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5265 * reference to h_cg->css. See comment below for detail.
5266 */
5267 hugetlb_cgroup_uncharge_cgroup_rsvd(
5268 hstate_index(h),
5269 (chg - add) * pages_per_huge_page(h), h_cg);
5270
5271 rsv_adjust = hugepage_subpool_put_pages(spool,
5272 chg - add);
5273 hugetlb_acct_memory(h, -rsv_adjust);
5274 } else if (h_cg) {
5275 /*
5276 * The file_regions will hold their own reference to
5277 * h_cg->css. So we should release the reference held
5278 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5279 * done.
5280 */
5281 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5282 }
5283 }
5284 return 0;
5285 out_put_pages:
5286 /* put back original number of pages, chg */
5287 (void)hugepage_subpool_put_pages(spool, chg);
5288 out_uncharge_cgroup:
5289 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5290 chg * pages_per_huge_page(h), h_cg);
5291 out_err:
5292 if (!vma || vma->vm_flags & VM_MAYSHARE)
5293 /* Only call region_abort if the region_chg succeeded but the
5294 * region_add failed or didn't run.
5295 */
5296 if (chg >= 0 && add < 0)
5297 region_abort(resv_map, from, to, regions_needed);
5298 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5299 kref_put(&resv_map->refs, resv_map_release);
5300 return ret;
5301 }
5302
hugetlb_unreserve_pages(struct inode * inode,long start,long end,long freed)5303 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5304 long freed)
5305 {
5306 struct hstate *h = hstate_inode(inode);
5307 struct resv_map *resv_map = inode_resv_map(inode);
5308 long chg = 0;
5309 struct hugepage_subpool *spool = subpool_inode(inode);
5310 long gbl_reserve;
5311
5312 /*
5313 * Since this routine can be called in the evict inode path for all
5314 * hugetlbfs inodes, resv_map could be NULL.
5315 */
5316 if (resv_map) {
5317 chg = region_del(resv_map, start, end);
5318 /*
5319 * region_del() can fail in the rare case where a region
5320 * must be split and another region descriptor can not be
5321 * allocated. If end == LONG_MAX, it will not fail.
5322 */
5323 if (chg < 0)
5324 return chg;
5325 }
5326
5327 spin_lock(&inode->i_lock);
5328 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5329 spin_unlock(&inode->i_lock);
5330
5331 /*
5332 * If the subpool has a minimum size, the number of global
5333 * reservations to be released may be adjusted.
5334 */
5335 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5336 hugetlb_acct_memory(h, -gbl_reserve);
5337
5338 return 0;
5339 }
5340
5341 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
page_table_shareable(struct vm_area_struct * svma,struct vm_area_struct * vma,unsigned long addr,pgoff_t idx)5342 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5343 struct vm_area_struct *vma,
5344 unsigned long addr, pgoff_t idx)
5345 {
5346 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5347 svma->vm_start;
5348 unsigned long sbase = saddr & PUD_MASK;
5349 unsigned long s_end = sbase + PUD_SIZE;
5350
5351 /* Allow segments to share if only one is marked locked */
5352 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5353 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5354
5355 /*
5356 * match the virtual addresses, permission and the alignment of the
5357 * page table page.
5358 */
5359 if (pmd_index(addr) != pmd_index(saddr) ||
5360 vm_flags != svm_flags ||
5361 sbase < svma->vm_start || svma->vm_end < s_end)
5362 return 0;
5363
5364 return saddr;
5365 }
5366
vma_shareable(struct vm_area_struct * vma,unsigned long addr)5367 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5368 {
5369 unsigned long base = addr & PUD_MASK;
5370 unsigned long end = base + PUD_SIZE;
5371
5372 /*
5373 * check on proper vm_flags and page table alignment
5374 */
5375 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5376 return true;
5377 return false;
5378 }
5379
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)5380 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5381 {
5382 #ifdef CONFIG_USERFAULTFD
5383 if (uffd_disable_huge_pmd_share(vma))
5384 return false;
5385 #endif
5386 return vma_shareable(vma, addr);
5387 }
5388
5389 /*
5390 * Determine if start,end range within vma could be mapped by shared pmd.
5391 * If yes, adjust start and end to cover range associated with possible
5392 * shared pmd mappings.
5393 */
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)5394 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5395 unsigned long *start, unsigned long *end)
5396 {
5397 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5398 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5399
5400 /*
5401 * vma need span at least one aligned PUD size and the start,end range
5402 * must at least partialy within it.
5403 */
5404 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5405 (*end <= v_start) || (*start >= v_end))
5406 return;
5407
5408 /* Extend the range to be PUD aligned for a worst case scenario */
5409 if (*start > v_start)
5410 *start = ALIGN_DOWN(*start, PUD_SIZE);
5411
5412 if (*end < v_end)
5413 *end = ALIGN(*end, PUD_SIZE);
5414 }
5415
5416 /*
5417 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5418 * and returns the corresponding pte. While this is not necessary for the
5419 * !shared pmd case because we can allocate the pmd later as well, it makes the
5420 * code much cleaner.
5421 *
5422 * This routine must be called with i_mmap_rwsem held in at least read mode if
5423 * sharing is possible. For hugetlbfs, this prevents removal of any page
5424 * table entries associated with the address space. This is important as we
5425 * are setting up sharing based on existing page table entries (mappings).
5426 *
5427 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
5428 * huge_pte_alloc know that sharing is not possible and do not take
5429 * i_mmap_rwsem as a performance optimization. This is handled by the
5430 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5431 * only required for subsequent processing.
5432 */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)5433 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5434 unsigned long addr, pud_t *pud)
5435 {
5436 struct address_space *mapping = vma->vm_file->f_mapping;
5437 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5438 vma->vm_pgoff;
5439 struct vm_area_struct *svma;
5440 unsigned long saddr;
5441 pte_t *spte = NULL;
5442 pte_t *pte;
5443 spinlock_t *ptl;
5444
5445 i_mmap_assert_locked(mapping);
5446 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5447 if (svma == vma)
5448 continue;
5449
5450 saddr = page_table_shareable(svma, vma, addr, idx);
5451 if (saddr) {
5452 spte = huge_pte_offset(svma->vm_mm, saddr,
5453 vma_mmu_pagesize(svma));
5454 if (spte) {
5455 get_page(virt_to_page(spte));
5456 break;
5457 }
5458 }
5459 }
5460
5461 if (!spte)
5462 goto out;
5463
5464 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5465 if (pud_none(*pud)) {
5466 pud_populate(mm, pud,
5467 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5468 mm_inc_nr_pmds(mm);
5469 } else {
5470 put_page(virt_to_page(spte));
5471 }
5472 spin_unlock(ptl);
5473 out:
5474 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5475 return pte;
5476 }
5477
5478 /*
5479 * unmap huge page backed by shared pte.
5480 *
5481 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5482 * indicated by page_count > 1, unmap is achieved by clearing pud and
5483 * decrementing the ref count. If count == 1, the pte page is not shared.
5484 *
5485 * Called with page table lock held and i_mmap_rwsem held in write mode.
5486 *
5487 * returns: 1 successfully unmapped a shared pte page
5488 * 0 the underlying pte page is not shared, or it is the last user
5489 */
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long * addr,pte_t * ptep)5490 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5491 unsigned long *addr, pte_t *ptep)
5492 {
5493 pgd_t *pgd = pgd_offset(mm, *addr);
5494 p4d_t *p4d = p4d_offset(pgd, *addr);
5495 pud_t *pud = pud_offset(p4d, *addr);
5496
5497 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5498 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5499 if (page_count(virt_to_page(ptep)) == 1)
5500 return 0;
5501
5502 pud_clear(pud);
5503 put_page(virt_to_page(ptep));
5504 mm_dec_nr_pmds(mm);
5505 /*
5506 * This update of passed address optimizes loops sequentially
5507 * processing addresses in increments of huge page size (PMD_SIZE
5508 * in this case). By clearing the pud, a PUD_SIZE area is unmapped.
5509 * Update address to the 'last page' in the cleared area so that
5510 * calling loop can move to first page past this area.
5511 */
5512 *addr |= PUD_SIZE - PMD_SIZE;
5513 return 1;
5514 }
5515
5516 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
huge_pmd_share(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pud_t * pud)5517 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
5518 unsigned long addr, pud_t *pud)
5519 {
5520 return NULL;
5521 }
5522
huge_pmd_unshare(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long * addr,pte_t * ptep)5523 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5524 unsigned long *addr, pte_t *ptep)
5525 {
5526 return 0;
5527 }
5528
adjust_range_if_pmd_sharing_possible(struct vm_area_struct * vma,unsigned long * start,unsigned long * end)5529 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5530 unsigned long *start, unsigned long *end)
5531 {
5532 }
5533
want_pmd_share(struct vm_area_struct * vma,unsigned long addr)5534 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5535 {
5536 return false;
5537 }
5538 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5539
5540 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
huge_pte_alloc(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,unsigned long sz)5541 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
5542 unsigned long addr, unsigned long sz)
5543 {
5544 pgd_t *pgd;
5545 p4d_t *p4d;
5546 pud_t *pud;
5547 pte_t *pte = NULL;
5548
5549 pgd = pgd_offset(mm, addr);
5550 p4d = p4d_alloc(mm, pgd, addr);
5551 if (!p4d)
5552 return NULL;
5553 pud = pud_alloc(mm, p4d, addr);
5554 if (pud) {
5555 if (sz == PUD_SIZE) {
5556 pte = (pte_t *)pud;
5557 } else {
5558 BUG_ON(sz != PMD_SIZE);
5559 if (want_pmd_share(vma, addr) && pud_none(*pud))
5560 pte = huge_pmd_share(mm, vma, addr, pud);
5561 else
5562 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5563 }
5564 }
5565 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5566
5567 return pte;
5568 }
5569
5570 /*
5571 * huge_pte_offset() - Walk the page table to resolve the hugepage
5572 * entry at address @addr
5573 *
5574 * Return: Pointer to page table entry (PUD or PMD) for
5575 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5576 * size @sz doesn't match the hugepage size at this level of the page
5577 * table.
5578 */
huge_pte_offset(struct mm_struct * mm,unsigned long addr,unsigned long sz)5579 pte_t *huge_pte_offset(struct mm_struct *mm,
5580 unsigned long addr, unsigned long sz)
5581 {
5582 pgd_t *pgd;
5583 p4d_t *p4d;
5584 pud_t *pud;
5585 pmd_t *pmd;
5586
5587 pgd = pgd_offset(mm, addr);
5588 if (!pgd_present(*pgd))
5589 return NULL;
5590 p4d = p4d_offset(pgd, addr);
5591 if (!p4d_present(*p4d))
5592 return NULL;
5593
5594 pud = pud_offset(p4d, addr);
5595 if (sz == PUD_SIZE)
5596 /* must be pud huge, non-present or none */
5597 return (pte_t *)pud;
5598 if (!pud_present(*pud))
5599 return NULL;
5600 /* must have a valid entry and size to go further */
5601
5602 pmd = pmd_offset(pud, addr);
5603 /* must be pmd huge, non-present or none */
5604 return (pte_t *)pmd;
5605 }
5606
5607 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5608
5609 /*
5610 * These functions are overwritable if your architecture needs its own
5611 * behavior.
5612 */
5613 struct page * __weak
follow_huge_addr(struct mm_struct * mm,unsigned long address,int write)5614 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5615 int write)
5616 {
5617 return ERR_PTR(-EINVAL);
5618 }
5619
5620 struct page * __weak
follow_huge_pd(struct vm_area_struct * vma,unsigned long address,hugepd_t hpd,int flags,int pdshift)5621 follow_huge_pd(struct vm_area_struct *vma,
5622 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5623 {
5624 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5625 return NULL;
5626 }
5627
5628 struct page * __weak
follow_huge_pmd_pte(struct vm_area_struct * vma,unsigned long address,int flags)5629 follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
5630 {
5631 struct hstate *h = hstate_vma(vma);
5632 struct mm_struct *mm = vma->vm_mm;
5633 struct page *page = NULL;
5634 spinlock_t *ptl;
5635 pte_t *ptep, pte;
5636
5637 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5638 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5639 (FOLL_PIN | FOLL_GET)))
5640 return NULL;
5641
5642 retry:
5643 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5644 if (!ptep)
5645 return NULL;
5646
5647 ptl = huge_pte_lock(h, mm, ptep);
5648 pte = huge_ptep_get(ptep);
5649 if (pte_present(pte)) {
5650 page = pte_page(pte) +
5651 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
5652 /*
5653 * try_grab_page() should always succeed here, because: a) we
5654 * hold the pmd (ptl) lock, and b) we've just checked that the
5655 * huge pmd (head) page is present in the page tables. The ptl
5656 * prevents the head page and tail pages from being rearranged
5657 * in any way. So this page must be available at this point,
5658 * unless the page refcount overflowed:
5659 */
5660 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5661 page = NULL;
5662 goto out;
5663 }
5664 } else {
5665 if (is_hugetlb_entry_migration(pte)) {
5666 spin_unlock(ptl);
5667 __migration_entry_wait(mm, ptep, ptl);
5668 goto retry;
5669 }
5670 /*
5671 * hwpoisoned entry is treated as no_page_table in
5672 * follow_page_mask().
5673 */
5674 }
5675 out:
5676 spin_unlock(ptl);
5677 return page;
5678 }
5679
5680 struct page * __weak
follow_huge_pud(struct mm_struct * mm,unsigned long address,pud_t * pud,int flags)5681 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5682 pud_t *pud, int flags)
5683 {
5684 if (flags & (FOLL_GET | FOLL_PIN))
5685 return NULL;
5686
5687 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5688 }
5689
5690 struct page * __weak
follow_huge_pgd(struct mm_struct * mm,unsigned long address,pgd_t * pgd,int flags)5691 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5692 {
5693 if (flags & (FOLL_GET | FOLL_PIN))
5694 return NULL;
5695
5696 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5697 }
5698
isolate_huge_page(struct page * page,struct list_head * list)5699 bool isolate_huge_page(struct page *page, struct list_head *list)
5700 {
5701 bool ret = true;
5702
5703 spin_lock(&hugetlb_lock);
5704 if (!PageHeadHuge(page) || !page_huge_active(page) ||
5705 !get_page_unless_zero(page)) {
5706 ret = false;
5707 goto unlock;
5708 }
5709 clear_page_huge_active(page);
5710 list_move_tail(&page->lru, list);
5711 unlock:
5712 spin_unlock(&hugetlb_lock);
5713 return ret;
5714 }
5715
putback_active_hugepage(struct page * page)5716 void putback_active_hugepage(struct page *page)
5717 {
5718 VM_BUG_ON_PAGE(!PageHead(page), page);
5719 spin_lock(&hugetlb_lock);
5720 set_page_huge_active(page);
5721 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5722 spin_unlock(&hugetlb_lock);
5723 put_page(page);
5724 }
5725
move_hugetlb_state(struct page * oldpage,struct page * newpage,int reason)5726 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5727 {
5728 struct hstate *h = page_hstate(oldpage);
5729
5730 hugetlb_cgroup_migrate(oldpage, newpage);
5731 set_page_owner_migrate_reason(newpage, reason);
5732
5733 /*
5734 * transfer temporary state of the new huge page. This is
5735 * reverse to other transitions because the newpage is going to
5736 * be final while the old one will be freed so it takes over
5737 * the temporary status.
5738 *
5739 * Also note that we have to transfer the per-node surplus state
5740 * here as well otherwise the global surplus count will not match
5741 * the per-node's.
5742 */
5743 if (PageHugeTemporary(newpage)) {
5744 int old_nid = page_to_nid(oldpage);
5745 int new_nid = page_to_nid(newpage);
5746
5747 SetPageHugeTemporary(oldpage);
5748 ClearPageHugeTemporary(newpage);
5749
5750 spin_lock(&hugetlb_lock);
5751 if (h->surplus_huge_pages_node[old_nid]) {
5752 h->surplus_huge_pages_node[old_nid]--;
5753 h->surplus_huge_pages_node[new_nid]++;
5754 }
5755 spin_unlock(&hugetlb_lock);
5756 }
5757 }
5758
5759 /*
5760 * This function will unconditionally remove all the shared pmd pgtable entries
5761 * within the specific vma for a hugetlbfs memory range.
5762 */
hugetlb_unshare_all_pmds(struct vm_area_struct * vma)5763 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
5764 {
5765 struct hstate *h = hstate_vma(vma);
5766 unsigned long sz = huge_page_size(h);
5767 struct mm_struct *mm = vma->vm_mm;
5768 struct mmu_notifier_range range;
5769 unsigned long address, start, end;
5770 spinlock_t *ptl;
5771 pte_t *ptep;
5772
5773 if (!(vma->vm_flags & VM_MAYSHARE))
5774 return;
5775
5776 start = ALIGN(vma->vm_start, PUD_SIZE);
5777 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5778
5779 if (start >= end)
5780 return;
5781
5782 flush_cache_range(vma, start, end);
5783 /*
5784 * No need to call adjust_range_if_pmd_sharing_possible(), because
5785 * we have already done the PUD_SIZE alignment.
5786 */
5787 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
5788 start, end);
5789 mmu_notifier_invalidate_range_start(&range);
5790 i_mmap_lock_write(vma->vm_file->f_mapping);
5791 for (address = start; address < end; address += PUD_SIZE) {
5792 unsigned long tmp = address;
5793
5794 ptep = huge_pte_offset(mm, address, sz);
5795 if (!ptep)
5796 continue;
5797 ptl = huge_pte_lock(h, mm, ptep);
5798 /* We don't want 'address' to be changed */
5799 huge_pmd_unshare(mm, vma, &tmp, ptep);
5800 spin_unlock(ptl);
5801 }
5802 flush_hugetlb_tlb_range(vma, start, end);
5803 i_mmap_unlock_write(vma->vm_file->f_mapping);
5804 /*
5805 * No need to call mmu_notifier_invalidate_range(), see
5806 * Documentation/vm/mmu_notifier.rst.
5807 */
5808 mmu_notifier_invalidate_range_end(&range);
5809 }
5810
5811 #ifdef CONFIG_CMA
5812 static bool cma_reserve_called __initdata;
5813
cmdline_parse_hugetlb_cma(char * p)5814 static int __init cmdline_parse_hugetlb_cma(char *p)
5815 {
5816 hugetlb_cma_size = memparse(p, &p);
5817 return 0;
5818 }
5819
5820 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5821
hugetlb_cma_reserve(int order)5822 void __init hugetlb_cma_reserve(int order)
5823 {
5824 unsigned long size, reserved, per_node;
5825 int nid;
5826
5827 cma_reserve_called = true;
5828
5829 if (!hugetlb_cma_size)
5830 return;
5831
5832 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5833 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5834 (PAGE_SIZE << order) / SZ_1M);
5835 return;
5836 }
5837
5838 /*
5839 * If 3 GB area is requested on a machine with 4 numa nodes,
5840 * let's allocate 1 GB on first three nodes and ignore the last one.
5841 */
5842 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5843 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5844 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5845
5846 reserved = 0;
5847 for_each_node_state(nid, N_ONLINE) {
5848 int res;
5849 char name[CMA_MAX_NAME];
5850
5851 size = min(per_node, hugetlb_cma_size - reserved);
5852 size = round_up(size, PAGE_SIZE << order);
5853
5854 snprintf(name, sizeof(name), "hugetlb%d", nid);
5855 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5856 0, false, name,
5857 &hugetlb_cma[nid], nid);
5858 if (res) {
5859 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5860 res, nid);
5861 continue;
5862 }
5863
5864 reserved += size;
5865 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5866 size / SZ_1M, nid);
5867
5868 if (reserved >= hugetlb_cma_size)
5869 break;
5870 }
5871 }
5872
hugetlb_cma_check(void)5873 void __init hugetlb_cma_check(void)
5874 {
5875 if (!hugetlb_cma_size || cma_reserve_called)
5876 return;
5877
5878 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5879 }
5880
5881 #endif /* CONFIG_CMA */
5882