1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7 #include <linux/acpi.h>
8 #include <linux/acpi_iort.h>
9 #include <linux/bitfield.h>
10 #include <linux/bitmap.h>
11 #include <linux/cpu.h>
12 #include <linux/crash_dump.h>
13 #include <linux/delay.h>
14 #include <linux/dma-iommu.h>
15 #include <linux/efi.h>
16 #include <linux/interrupt.h>
17 #include <linux/iopoll.h>
18 #include <linux/irqdomain.h>
19 #include <linux/list.h>
20 #include <linux/log2.h>
21 #include <linux/memblock.h>
22 #include <linux/mm.h>
23 #include <linux/msi.h>
24 #include <linux/of.h>
25 #include <linux/of_address.h>
26 #include <linux/of_irq.h>
27 #include <linux/of_pci.h>
28 #include <linux/of_platform.h>
29 #include <linux/percpu.h>
30 #include <linux/slab.h>
31 #include <linux/syscore_ops.h>
32
33 #include <linux/irqchip.h>
34 #include <linux/irqchip/arm-gic-v3.h>
35 #include <linux/irqchip/arm-gic-v4.h>
36
37 #include <asm/cputype.h>
38 #include <asm/exception.h>
39
40 #include "irq-gic-common.h"
41
42 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING (1ULL << 0)
43 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375 (1ULL << 1)
44 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144 (1ULL << 2)
45
46 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING (1 << 0)
47 #define RDIST_FLAGS_RD_TABLES_PREALLOCATED (1 << 1)
48
49 static u32 lpi_id_bits;
50
51 /*
52 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
53 * deal with (one configuration byte per interrupt). PENDBASE has to
54 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
55 */
56 #define LPI_NRBITS lpi_id_bits
57 #define LPI_PROPBASE_SZ ALIGN(BIT(LPI_NRBITS), SZ_64K)
58 #define LPI_PENDBASE_SZ ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
59
60 #define LPI_PROP_DEFAULT_PRIO GICD_INT_DEF_PRI
61
62 /*
63 * Collection structure - just an ID, and a redistributor address to
64 * ping. We use one per CPU as a bag of interrupts assigned to this
65 * CPU.
66 */
67 struct its_collection {
68 u64 target_address;
69 u16 col_id;
70 };
71
72 /*
73 * The ITS_BASER structure - contains memory information, cached
74 * value of BASER register configuration and ITS page size.
75 */
76 struct its_baser {
77 void *base;
78 u64 val;
79 u32 order;
80 u32 psz;
81 };
82
83 struct its_device;
84
85 /*
86 * The ITS structure - contains most of the infrastructure, with the
87 * top-level MSI domain, the command queue, the collections, and the
88 * list of devices writing to it.
89 *
90 * dev_alloc_lock has to be taken for device allocations, while the
91 * spinlock must be taken to parse data structures such as the device
92 * list.
93 */
94 struct its_node {
95 raw_spinlock_t lock;
96 struct mutex dev_alloc_lock;
97 struct list_head entry;
98 void __iomem *base;
99 void __iomem *sgir_base;
100 phys_addr_t phys_base;
101 struct its_cmd_block *cmd_base;
102 struct its_cmd_block *cmd_write;
103 struct its_baser tables[GITS_BASER_NR_REGS];
104 struct its_collection *collections;
105 struct fwnode_handle *fwnode_handle;
106 u64 (*get_msi_base)(struct its_device *its_dev);
107 u64 typer;
108 u64 cbaser_save;
109 u32 ctlr_save;
110 u32 mpidr;
111 struct list_head its_device_list;
112 u64 flags;
113 unsigned long list_nr;
114 int numa_node;
115 unsigned int msi_domain_flags;
116 u32 pre_its_base; /* for Socionext Synquacer */
117 int vlpi_redist_offset;
118 };
119
120 #define is_v4(its) (!!((its)->typer & GITS_TYPER_VLPIS))
121 #define is_v4_1(its) (!!((its)->typer & GITS_TYPER_VMAPP))
122 #define device_ids(its) (FIELD_GET(GITS_TYPER_DEVBITS, (its)->typer) + 1)
123
124 #define ITS_ITT_ALIGN SZ_256
125
126 /* The maximum number of VPEID bits supported by VLPI commands */
127 #define ITS_MAX_VPEID_BITS \
128 ({ \
129 int nvpeid = 16; \
130 if (gic_rdists->has_rvpeid && \
131 gic_rdists->gicd_typer2 & GICD_TYPER2_VIL) \
132 nvpeid = 1 + (gic_rdists->gicd_typer2 & \
133 GICD_TYPER2_VID); \
134 \
135 nvpeid; \
136 })
137 #define ITS_MAX_VPEID (1 << (ITS_MAX_VPEID_BITS))
138
139 /* Convert page order to size in bytes */
140 #define PAGE_ORDER_TO_SIZE(o) (PAGE_SIZE << (o))
141
142 struct event_lpi_map {
143 unsigned long *lpi_map;
144 u16 *col_map;
145 irq_hw_number_t lpi_base;
146 int nr_lpis;
147 raw_spinlock_t vlpi_lock;
148 struct its_vm *vm;
149 struct its_vlpi_map *vlpi_maps;
150 int nr_vlpis;
151 };
152
153 /*
154 * The ITS view of a device - belongs to an ITS, owns an interrupt
155 * translation table, and a list of interrupts. If it some of its
156 * LPIs are injected into a guest (GICv4), the event_map.vm field
157 * indicates which one.
158 */
159 struct its_device {
160 struct list_head entry;
161 struct its_node *its;
162 struct event_lpi_map event_map;
163 void *itt;
164 u32 itt_sz;
165 u32 nr_ites;
166 u32 device_id;
167 bool shared;
168 };
169
170 static struct {
171 raw_spinlock_t lock;
172 struct its_device *dev;
173 struct its_vpe **vpes;
174 int next_victim;
175 } vpe_proxy;
176
177 struct cpu_lpi_count {
178 atomic_t managed;
179 atomic_t unmanaged;
180 };
181
182 static DEFINE_PER_CPU(struct cpu_lpi_count, cpu_lpi_count);
183
184 static LIST_HEAD(its_nodes);
185 static DEFINE_RAW_SPINLOCK(its_lock);
186 static struct rdists *gic_rdists;
187 static struct irq_domain *its_parent;
188
189 static unsigned long its_list_map;
190 static u16 vmovp_seq_num;
191 static DEFINE_RAW_SPINLOCK(vmovp_lock);
192
193 static DEFINE_IDA(its_vpeid_ida);
194
195 #define gic_data_rdist() (raw_cpu_ptr(gic_rdists->rdist))
196 #define gic_data_rdist_cpu(cpu) (per_cpu_ptr(gic_rdists->rdist, cpu))
197 #define gic_data_rdist_rd_base() (gic_data_rdist()->rd_base)
198 #define gic_data_rdist_vlpi_base() (gic_data_rdist_rd_base() + SZ_128K)
199
200 /*
201 * Skip ITSs that have no vLPIs mapped, unless we're on GICv4.1, as we
202 * always have vSGIs mapped.
203 */
require_its_list_vmovp(struct its_vm * vm,struct its_node * its)204 static bool require_its_list_vmovp(struct its_vm *vm, struct its_node *its)
205 {
206 return (gic_rdists->has_rvpeid || vm->vlpi_count[its->list_nr]);
207 }
208
get_its_list(struct its_vm * vm)209 static u16 get_its_list(struct its_vm *vm)
210 {
211 struct its_node *its;
212 unsigned long its_list = 0;
213
214 list_for_each_entry(its, &its_nodes, entry) {
215 if (!is_v4(its))
216 continue;
217
218 if (require_its_list_vmovp(vm, its))
219 __set_bit(its->list_nr, &its_list);
220 }
221
222 return (u16)its_list;
223 }
224
its_get_event_id(struct irq_data * d)225 static inline u32 its_get_event_id(struct irq_data *d)
226 {
227 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
228 return d->hwirq - its_dev->event_map.lpi_base;
229 }
230
dev_event_to_col(struct its_device * its_dev,u32 event)231 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
232 u32 event)
233 {
234 struct its_node *its = its_dev->its;
235
236 return its->collections + its_dev->event_map.col_map[event];
237 }
238
dev_event_to_vlpi_map(struct its_device * its_dev,u32 event)239 static struct its_vlpi_map *dev_event_to_vlpi_map(struct its_device *its_dev,
240 u32 event)
241 {
242 if (WARN_ON_ONCE(event >= its_dev->event_map.nr_lpis))
243 return NULL;
244
245 return &its_dev->event_map.vlpi_maps[event];
246 }
247
get_vlpi_map(struct irq_data * d)248 static struct its_vlpi_map *get_vlpi_map(struct irq_data *d)
249 {
250 if (irqd_is_forwarded_to_vcpu(d)) {
251 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
252 u32 event = its_get_event_id(d);
253
254 return dev_event_to_vlpi_map(its_dev, event);
255 }
256
257 return NULL;
258 }
259
vpe_to_cpuid_lock(struct its_vpe * vpe,unsigned long * flags)260 static int vpe_to_cpuid_lock(struct its_vpe *vpe, unsigned long *flags)
261 {
262 raw_spin_lock_irqsave(&vpe->vpe_lock, *flags);
263 return vpe->col_idx;
264 }
265
vpe_to_cpuid_unlock(struct its_vpe * vpe,unsigned long flags)266 static void vpe_to_cpuid_unlock(struct its_vpe *vpe, unsigned long flags)
267 {
268 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
269 }
270
irq_to_cpuid_lock(struct irq_data * d,unsigned long * flags)271 static int irq_to_cpuid_lock(struct irq_data *d, unsigned long *flags)
272 {
273 struct its_vlpi_map *map = get_vlpi_map(d);
274 int cpu;
275
276 if (map) {
277 cpu = vpe_to_cpuid_lock(map->vpe, flags);
278 } else {
279 /* Physical LPIs are already locked via the irq_desc lock */
280 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
281 cpu = its_dev->event_map.col_map[its_get_event_id(d)];
282 /* Keep GCC quiet... */
283 *flags = 0;
284 }
285
286 return cpu;
287 }
288
irq_to_cpuid_unlock(struct irq_data * d,unsigned long flags)289 static void irq_to_cpuid_unlock(struct irq_data *d, unsigned long flags)
290 {
291 struct its_vlpi_map *map = get_vlpi_map(d);
292
293 if (map)
294 vpe_to_cpuid_unlock(map->vpe, flags);
295 }
296
valid_col(struct its_collection * col)297 static struct its_collection *valid_col(struct its_collection *col)
298 {
299 if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
300 return NULL;
301
302 return col;
303 }
304
valid_vpe(struct its_node * its,struct its_vpe * vpe)305 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
306 {
307 if (valid_col(its->collections + vpe->col_idx))
308 return vpe;
309
310 return NULL;
311 }
312
313 /*
314 * ITS command descriptors - parameters to be encoded in a command
315 * block.
316 */
317 struct its_cmd_desc {
318 union {
319 struct {
320 struct its_device *dev;
321 u32 event_id;
322 } its_inv_cmd;
323
324 struct {
325 struct its_device *dev;
326 u32 event_id;
327 } its_clear_cmd;
328
329 struct {
330 struct its_device *dev;
331 u32 event_id;
332 } its_int_cmd;
333
334 struct {
335 struct its_device *dev;
336 int valid;
337 } its_mapd_cmd;
338
339 struct {
340 struct its_collection *col;
341 int valid;
342 } its_mapc_cmd;
343
344 struct {
345 struct its_device *dev;
346 u32 phys_id;
347 u32 event_id;
348 } its_mapti_cmd;
349
350 struct {
351 struct its_device *dev;
352 struct its_collection *col;
353 u32 event_id;
354 } its_movi_cmd;
355
356 struct {
357 struct its_device *dev;
358 u32 event_id;
359 } its_discard_cmd;
360
361 struct {
362 struct its_collection *col;
363 } its_invall_cmd;
364
365 struct {
366 struct its_vpe *vpe;
367 } its_vinvall_cmd;
368
369 struct {
370 struct its_vpe *vpe;
371 struct its_collection *col;
372 bool valid;
373 } its_vmapp_cmd;
374
375 struct {
376 struct its_vpe *vpe;
377 struct its_device *dev;
378 u32 virt_id;
379 u32 event_id;
380 bool db_enabled;
381 } its_vmapti_cmd;
382
383 struct {
384 struct its_vpe *vpe;
385 struct its_device *dev;
386 u32 event_id;
387 bool db_enabled;
388 } its_vmovi_cmd;
389
390 struct {
391 struct its_vpe *vpe;
392 struct its_collection *col;
393 u16 seq_num;
394 u16 its_list;
395 } its_vmovp_cmd;
396
397 struct {
398 struct its_vpe *vpe;
399 } its_invdb_cmd;
400
401 struct {
402 struct its_vpe *vpe;
403 u8 sgi;
404 u8 priority;
405 bool enable;
406 bool group;
407 bool clear;
408 } its_vsgi_cmd;
409 };
410 };
411
412 /*
413 * The ITS command block, which is what the ITS actually parses.
414 */
415 struct its_cmd_block {
416 union {
417 u64 raw_cmd[4];
418 __le64 raw_cmd_le[4];
419 };
420 };
421
422 #define ITS_CMD_QUEUE_SZ SZ_64K
423 #define ITS_CMD_QUEUE_NR_ENTRIES (ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
424
425 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
426 struct its_cmd_block *,
427 struct its_cmd_desc *);
428
429 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
430 struct its_cmd_block *,
431 struct its_cmd_desc *);
432
its_mask_encode(u64 * raw_cmd,u64 val,int h,int l)433 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
434 {
435 u64 mask = GENMASK_ULL(h, l);
436 *raw_cmd &= ~mask;
437 *raw_cmd |= (val << l) & mask;
438 }
439
its_encode_cmd(struct its_cmd_block * cmd,u8 cmd_nr)440 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
441 {
442 its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
443 }
444
its_encode_devid(struct its_cmd_block * cmd,u32 devid)445 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
446 {
447 its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
448 }
449
its_encode_event_id(struct its_cmd_block * cmd,u32 id)450 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
451 {
452 its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
453 }
454
its_encode_phys_id(struct its_cmd_block * cmd,u32 phys_id)455 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
456 {
457 its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
458 }
459
its_encode_size(struct its_cmd_block * cmd,u8 size)460 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
461 {
462 its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
463 }
464
its_encode_itt(struct its_cmd_block * cmd,u64 itt_addr)465 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
466 {
467 its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
468 }
469
its_encode_valid(struct its_cmd_block * cmd,int valid)470 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
471 {
472 its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
473 }
474
its_encode_target(struct its_cmd_block * cmd,u64 target_addr)475 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
476 {
477 its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
478 }
479
its_encode_collection(struct its_cmd_block * cmd,u16 col)480 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
481 {
482 its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
483 }
484
its_encode_vpeid(struct its_cmd_block * cmd,u16 vpeid)485 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
486 {
487 its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
488 }
489
its_encode_virt_id(struct its_cmd_block * cmd,u32 virt_id)490 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
491 {
492 its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
493 }
494
its_encode_db_phys_id(struct its_cmd_block * cmd,u32 db_phys_id)495 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
496 {
497 its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
498 }
499
its_encode_db_valid(struct its_cmd_block * cmd,bool db_valid)500 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
501 {
502 its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
503 }
504
its_encode_seq_num(struct its_cmd_block * cmd,u16 seq_num)505 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
506 {
507 its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
508 }
509
its_encode_its_list(struct its_cmd_block * cmd,u16 its_list)510 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
511 {
512 its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
513 }
514
its_encode_vpt_addr(struct its_cmd_block * cmd,u64 vpt_pa)515 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
516 {
517 its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
518 }
519
its_encode_vpt_size(struct its_cmd_block * cmd,u8 vpt_size)520 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
521 {
522 its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
523 }
524
its_encode_vconf_addr(struct its_cmd_block * cmd,u64 vconf_pa)525 static void its_encode_vconf_addr(struct its_cmd_block *cmd, u64 vconf_pa)
526 {
527 its_mask_encode(&cmd->raw_cmd[0], vconf_pa >> 16, 51, 16);
528 }
529
its_encode_alloc(struct its_cmd_block * cmd,bool alloc)530 static void its_encode_alloc(struct its_cmd_block *cmd, bool alloc)
531 {
532 its_mask_encode(&cmd->raw_cmd[0], alloc, 8, 8);
533 }
534
its_encode_ptz(struct its_cmd_block * cmd,bool ptz)535 static void its_encode_ptz(struct its_cmd_block *cmd, bool ptz)
536 {
537 its_mask_encode(&cmd->raw_cmd[0], ptz, 9, 9);
538 }
539
its_encode_vmapp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)540 static void its_encode_vmapp_default_db(struct its_cmd_block *cmd,
541 u32 vpe_db_lpi)
542 {
543 its_mask_encode(&cmd->raw_cmd[1], vpe_db_lpi, 31, 0);
544 }
545
its_encode_vmovp_default_db(struct its_cmd_block * cmd,u32 vpe_db_lpi)546 static void its_encode_vmovp_default_db(struct its_cmd_block *cmd,
547 u32 vpe_db_lpi)
548 {
549 its_mask_encode(&cmd->raw_cmd[3], vpe_db_lpi, 31, 0);
550 }
551
its_encode_db(struct its_cmd_block * cmd,bool db)552 static void its_encode_db(struct its_cmd_block *cmd, bool db)
553 {
554 its_mask_encode(&cmd->raw_cmd[2], db, 63, 63);
555 }
556
its_encode_sgi_intid(struct its_cmd_block * cmd,u8 sgi)557 static void its_encode_sgi_intid(struct its_cmd_block *cmd, u8 sgi)
558 {
559 its_mask_encode(&cmd->raw_cmd[0], sgi, 35, 32);
560 }
561
its_encode_sgi_priority(struct its_cmd_block * cmd,u8 prio)562 static void its_encode_sgi_priority(struct its_cmd_block *cmd, u8 prio)
563 {
564 its_mask_encode(&cmd->raw_cmd[0], prio >> 4, 23, 20);
565 }
566
its_encode_sgi_group(struct its_cmd_block * cmd,bool grp)567 static void its_encode_sgi_group(struct its_cmd_block *cmd, bool grp)
568 {
569 its_mask_encode(&cmd->raw_cmd[0], grp, 10, 10);
570 }
571
its_encode_sgi_clear(struct its_cmd_block * cmd,bool clr)572 static void its_encode_sgi_clear(struct its_cmd_block *cmd, bool clr)
573 {
574 its_mask_encode(&cmd->raw_cmd[0], clr, 9, 9);
575 }
576
its_encode_sgi_enable(struct its_cmd_block * cmd,bool en)577 static void its_encode_sgi_enable(struct its_cmd_block *cmd, bool en)
578 {
579 its_mask_encode(&cmd->raw_cmd[0], en, 8, 8);
580 }
581
its_fixup_cmd(struct its_cmd_block * cmd)582 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
583 {
584 /* Let's fixup BE commands */
585 cmd->raw_cmd_le[0] = cpu_to_le64(cmd->raw_cmd[0]);
586 cmd->raw_cmd_le[1] = cpu_to_le64(cmd->raw_cmd[1]);
587 cmd->raw_cmd_le[2] = cpu_to_le64(cmd->raw_cmd[2]);
588 cmd->raw_cmd_le[3] = cpu_to_le64(cmd->raw_cmd[3]);
589 }
590
its_build_mapd_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)591 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
592 struct its_cmd_block *cmd,
593 struct its_cmd_desc *desc)
594 {
595 unsigned long itt_addr;
596 u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
597
598 itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
599 itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
600
601 its_encode_cmd(cmd, GITS_CMD_MAPD);
602 its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
603 its_encode_size(cmd, size - 1);
604 its_encode_itt(cmd, itt_addr);
605 its_encode_valid(cmd, desc->its_mapd_cmd.valid);
606
607 its_fixup_cmd(cmd);
608
609 return NULL;
610 }
611
its_build_mapc_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)612 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
613 struct its_cmd_block *cmd,
614 struct its_cmd_desc *desc)
615 {
616 its_encode_cmd(cmd, GITS_CMD_MAPC);
617 its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
618 its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
619 its_encode_valid(cmd, desc->its_mapc_cmd.valid);
620
621 its_fixup_cmd(cmd);
622
623 return desc->its_mapc_cmd.col;
624 }
625
its_build_mapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)626 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
627 struct its_cmd_block *cmd,
628 struct its_cmd_desc *desc)
629 {
630 struct its_collection *col;
631
632 col = dev_event_to_col(desc->its_mapti_cmd.dev,
633 desc->its_mapti_cmd.event_id);
634
635 its_encode_cmd(cmd, GITS_CMD_MAPTI);
636 its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
637 its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
638 its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
639 its_encode_collection(cmd, col->col_id);
640
641 its_fixup_cmd(cmd);
642
643 return valid_col(col);
644 }
645
its_build_movi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)646 static struct its_collection *its_build_movi_cmd(struct its_node *its,
647 struct its_cmd_block *cmd,
648 struct its_cmd_desc *desc)
649 {
650 struct its_collection *col;
651
652 col = dev_event_to_col(desc->its_movi_cmd.dev,
653 desc->its_movi_cmd.event_id);
654
655 its_encode_cmd(cmd, GITS_CMD_MOVI);
656 its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
657 its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
658 its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
659
660 its_fixup_cmd(cmd);
661
662 return valid_col(col);
663 }
664
its_build_discard_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)665 static struct its_collection *its_build_discard_cmd(struct its_node *its,
666 struct its_cmd_block *cmd,
667 struct its_cmd_desc *desc)
668 {
669 struct its_collection *col;
670
671 col = dev_event_to_col(desc->its_discard_cmd.dev,
672 desc->its_discard_cmd.event_id);
673
674 its_encode_cmd(cmd, GITS_CMD_DISCARD);
675 its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
676 its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
677
678 its_fixup_cmd(cmd);
679
680 return valid_col(col);
681 }
682
its_build_inv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)683 static struct its_collection *its_build_inv_cmd(struct its_node *its,
684 struct its_cmd_block *cmd,
685 struct its_cmd_desc *desc)
686 {
687 struct its_collection *col;
688
689 col = dev_event_to_col(desc->its_inv_cmd.dev,
690 desc->its_inv_cmd.event_id);
691
692 its_encode_cmd(cmd, GITS_CMD_INV);
693 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
694 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
695
696 its_fixup_cmd(cmd);
697
698 return valid_col(col);
699 }
700
its_build_int_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)701 static struct its_collection *its_build_int_cmd(struct its_node *its,
702 struct its_cmd_block *cmd,
703 struct its_cmd_desc *desc)
704 {
705 struct its_collection *col;
706
707 col = dev_event_to_col(desc->its_int_cmd.dev,
708 desc->its_int_cmd.event_id);
709
710 its_encode_cmd(cmd, GITS_CMD_INT);
711 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
712 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
713
714 its_fixup_cmd(cmd);
715
716 return valid_col(col);
717 }
718
its_build_clear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)719 static struct its_collection *its_build_clear_cmd(struct its_node *its,
720 struct its_cmd_block *cmd,
721 struct its_cmd_desc *desc)
722 {
723 struct its_collection *col;
724
725 col = dev_event_to_col(desc->its_clear_cmd.dev,
726 desc->its_clear_cmd.event_id);
727
728 its_encode_cmd(cmd, GITS_CMD_CLEAR);
729 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
730 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
731
732 its_fixup_cmd(cmd);
733
734 return valid_col(col);
735 }
736
its_build_invall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)737 static struct its_collection *its_build_invall_cmd(struct its_node *its,
738 struct its_cmd_block *cmd,
739 struct its_cmd_desc *desc)
740 {
741 its_encode_cmd(cmd, GITS_CMD_INVALL);
742 its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
743
744 its_fixup_cmd(cmd);
745
746 return desc->its_invall_cmd.col;
747 }
748
its_build_vinvall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)749 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
750 struct its_cmd_block *cmd,
751 struct its_cmd_desc *desc)
752 {
753 its_encode_cmd(cmd, GITS_CMD_VINVALL);
754 its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
755
756 its_fixup_cmd(cmd);
757
758 return valid_vpe(its, desc->its_vinvall_cmd.vpe);
759 }
760
its_build_vmapp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)761 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
762 struct its_cmd_block *cmd,
763 struct its_cmd_desc *desc)
764 {
765 unsigned long vpt_addr, vconf_addr;
766 u64 target;
767 bool alloc;
768
769 its_encode_cmd(cmd, GITS_CMD_VMAPP);
770 its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
771 its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
772
773 if (!desc->its_vmapp_cmd.valid) {
774 if (is_v4_1(its)) {
775 alloc = !atomic_dec_return(&desc->its_vmapp_cmd.vpe->vmapp_count);
776 its_encode_alloc(cmd, alloc);
777 }
778
779 goto out;
780 }
781
782 vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
783 target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
784
785 its_encode_target(cmd, target);
786 its_encode_vpt_addr(cmd, vpt_addr);
787 its_encode_vpt_size(cmd, LPI_NRBITS - 1);
788
789 if (!is_v4_1(its))
790 goto out;
791
792 vconf_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->its_vm->vprop_page));
793
794 alloc = !atomic_fetch_inc(&desc->its_vmapp_cmd.vpe->vmapp_count);
795
796 its_encode_alloc(cmd, alloc);
797
798 /* We can only signal PTZ when alloc==1. Why do we have two bits? */
799 its_encode_ptz(cmd, alloc);
800 its_encode_vconf_addr(cmd, vconf_addr);
801 its_encode_vmapp_default_db(cmd, desc->its_vmapp_cmd.vpe->vpe_db_lpi);
802
803 out:
804 its_fixup_cmd(cmd);
805
806 return valid_vpe(its, desc->its_vmapp_cmd.vpe);
807 }
808
its_build_vmapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)809 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
810 struct its_cmd_block *cmd,
811 struct its_cmd_desc *desc)
812 {
813 u32 db;
814
815 if (!is_v4_1(its) && desc->its_vmapti_cmd.db_enabled)
816 db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
817 else
818 db = 1023;
819
820 its_encode_cmd(cmd, GITS_CMD_VMAPTI);
821 its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
822 its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
823 its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
824 its_encode_db_phys_id(cmd, db);
825 its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
826
827 its_fixup_cmd(cmd);
828
829 return valid_vpe(its, desc->its_vmapti_cmd.vpe);
830 }
831
its_build_vmovi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)832 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
833 struct its_cmd_block *cmd,
834 struct its_cmd_desc *desc)
835 {
836 u32 db;
837
838 if (!is_v4_1(its) && desc->its_vmovi_cmd.db_enabled)
839 db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
840 else
841 db = 1023;
842
843 its_encode_cmd(cmd, GITS_CMD_VMOVI);
844 its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
845 its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
846 its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
847 its_encode_db_phys_id(cmd, db);
848 its_encode_db_valid(cmd, true);
849
850 its_fixup_cmd(cmd);
851
852 return valid_vpe(its, desc->its_vmovi_cmd.vpe);
853 }
854
its_build_vmovp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)855 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
856 struct its_cmd_block *cmd,
857 struct its_cmd_desc *desc)
858 {
859 u64 target;
860
861 target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
862 its_encode_cmd(cmd, GITS_CMD_VMOVP);
863 its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
864 its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
865 its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
866 its_encode_target(cmd, target);
867
868 if (is_v4_1(its)) {
869 its_encode_db(cmd, true);
870 its_encode_vmovp_default_db(cmd, desc->its_vmovp_cmd.vpe->vpe_db_lpi);
871 }
872
873 its_fixup_cmd(cmd);
874
875 return valid_vpe(its, desc->its_vmovp_cmd.vpe);
876 }
877
its_build_vinv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)878 static struct its_vpe *its_build_vinv_cmd(struct its_node *its,
879 struct its_cmd_block *cmd,
880 struct its_cmd_desc *desc)
881 {
882 struct its_vlpi_map *map;
883
884 map = dev_event_to_vlpi_map(desc->its_inv_cmd.dev,
885 desc->its_inv_cmd.event_id);
886
887 its_encode_cmd(cmd, GITS_CMD_INV);
888 its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
889 its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
890
891 its_fixup_cmd(cmd);
892
893 return valid_vpe(its, map->vpe);
894 }
895
its_build_vint_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)896 static struct its_vpe *its_build_vint_cmd(struct its_node *its,
897 struct its_cmd_block *cmd,
898 struct its_cmd_desc *desc)
899 {
900 struct its_vlpi_map *map;
901
902 map = dev_event_to_vlpi_map(desc->its_int_cmd.dev,
903 desc->its_int_cmd.event_id);
904
905 its_encode_cmd(cmd, GITS_CMD_INT);
906 its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
907 its_encode_event_id(cmd, desc->its_int_cmd.event_id);
908
909 its_fixup_cmd(cmd);
910
911 return valid_vpe(its, map->vpe);
912 }
913
its_build_vclear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)914 static struct its_vpe *its_build_vclear_cmd(struct its_node *its,
915 struct its_cmd_block *cmd,
916 struct its_cmd_desc *desc)
917 {
918 struct its_vlpi_map *map;
919
920 map = dev_event_to_vlpi_map(desc->its_clear_cmd.dev,
921 desc->its_clear_cmd.event_id);
922
923 its_encode_cmd(cmd, GITS_CMD_CLEAR);
924 its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
925 its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
926
927 its_fixup_cmd(cmd);
928
929 return valid_vpe(its, map->vpe);
930 }
931
its_build_invdb_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)932 static struct its_vpe *its_build_invdb_cmd(struct its_node *its,
933 struct its_cmd_block *cmd,
934 struct its_cmd_desc *desc)
935 {
936 if (WARN_ON(!is_v4_1(its)))
937 return NULL;
938
939 its_encode_cmd(cmd, GITS_CMD_INVDB);
940 its_encode_vpeid(cmd, desc->its_invdb_cmd.vpe->vpe_id);
941
942 its_fixup_cmd(cmd);
943
944 return valid_vpe(its, desc->its_invdb_cmd.vpe);
945 }
946
its_build_vsgi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)947 static struct its_vpe *its_build_vsgi_cmd(struct its_node *its,
948 struct its_cmd_block *cmd,
949 struct its_cmd_desc *desc)
950 {
951 if (WARN_ON(!is_v4_1(its)))
952 return NULL;
953
954 its_encode_cmd(cmd, GITS_CMD_VSGI);
955 its_encode_vpeid(cmd, desc->its_vsgi_cmd.vpe->vpe_id);
956 its_encode_sgi_intid(cmd, desc->its_vsgi_cmd.sgi);
957 its_encode_sgi_priority(cmd, desc->its_vsgi_cmd.priority);
958 its_encode_sgi_group(cmd, desc->its_vsgi_cmd.group);
959 its_encode_sgi_clear(cmd, desc->its_vsgi_cmd.clear);
960 its_encode_sgi_enable(cmd, desc->its_vsgi_cmd.enable);
961
962 its_fixup_cmd(cmd);
963
964 return valid_vpe(its, desc->its_vsgi_cmd.vpe);
965 }
966
its_cmd_ptr_to_offset(struct its_node * its,struct its_cmd_block * ptr)967 static u64 its_cmd_ptr_to_offset(struct its_node *its,
968 struct its_cmd_block *ptr)
969 {
970 return (ptr - its->cmd_base) * sizeof(*ptr);
971 }
972
its_queue_full(struct its_node * its)973 static int its_queue_full(struct its_node *its)
974 {
975 int widx;
976 int ridx;
977
978 widx = its->cmd_write - its->cmd_base;
979 ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
980
981 /* This is incredibly unlikely to happen, unless the ITS locks up. */
982 if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
983 return 1;
984
985 return 0;
986 }
987
its_allocate_entry(struct its_node * its)988 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
989 {
990 struct its_cmd_block *cmd;
991 u32 count = 1000000; /* 1s! */
992
993 while (its_queue_full(its)) {
994 count--;
995 if (!count) {
996 pr_err_ratelimited("ITS queue not draining\n");
997 return NULL;
998 }
999 cpu_relax();
1000 udelay(1);
1001 }
1002
1003 cmd = its->cmd_write++;
1004
1005 /* Handle queue wrapping */
1006 if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
1007 its->cmd_write = its->cmd_base;
1008
1009 /* Clear command */
1010 cmd->raw_cmd[0] = 0;
1011 cmd->raw_cmd[1] = 0;
1012 cmd->raw_cmd[2] = 0;
1013 cmd->raw_cmd[3] = 0;
1014
1015 return cmd;
1016 }
1017
its_post_commands(struct its_node * its)1018 static struct its_cmd_block *its_post_commands(struct its_node *its)
1019 {
1020 u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
1021
1022 writel_relaxed(wr, its->base + GITS_CWRITER);
1023
1024 return its->cmd_write;
1025 }
1026
its_flush_cmd(struct its_node * its,struct its_cmd_block * cmd)1027 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
1028 {
1029 /*
1030 * Make sure the commands written to memory are observable by
1031 * the ITS.
1032 */
1033 if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
1034 gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
1035 else
1036 dsb(ishst);
1037 }
1038
its_wait_for_range_completion(struct its_node * its,u64 prev_idx,struct its_cmd_block * to)1039 static int its_wait_for_range_completion(struct its_node *its,
1040 u64 prev_idx,
1041 struct its_cmd_block *to)
1042 {
1043 u64 rd_idx, to_idx, linear_idx;
1044 u32 count = 1000000; /* 1s! */
1045
1046 /* Linearize to_idx if the command set has wrapped around */
1047 to_idx = its_cmd_ptr_to_offset(its, to);
1048 if (to_idx < prev_idx)
1049 to_idx += ITS_CMD_QUEUE_SZ;
1050
1051 linear_idx = prev_idx;
1052
1053 while (1) {
1054 s64 delta;
1055
1056 rd_idx = readl_relaxed(its->base + GITS_CREADR);
1057
1058 /*
1059 * Compute the read pointer progress, taking the
1060 * potential wrap-around into account.
1061 */
1062 delta = rd_idx - prev_idx;
1063 if (rd_idx < prev_idx)
1064 delta += ITS_CMD_QUEUE_SZ;
1065
1066 linear_idx += delta;
1067 if (linear_idx >= to_idx)
1068 break;
1069
1070 count--;
1071 if (!count) {
1072 pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
1073 to_idx, linear_idx);
1074 return -1;
1075 }
1076 prev_idx = rd_idx;
1077 cpu_relax();
1078 udelay(1);
1079 }
1080
1081 return 0;
1082 }
1083
1084 /* Warning, macro hell follows */
1085 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn) \
1086 void name(struct its_node *its, \
1087 buildtype builder, \
1088 struct its_cmd_desc *desc) \
1089 { \
1090 struct its_cmd_block *cmd, *sync_cmd, *next_cmd; \
1091 synctype *sync_obj; \
1092 unsigned long flags; \
1093 u64 rd_idx; \
1094 \
1095 raw_spin_lock_irqsave(&its->lock, flags); \
1096 \
1097 cmd = its_allocate_entry(its); \
1098 if (!cmd) { /* We're soooooo screewed... */ \
1099 raw_spin_unlock_irqrestore(&its->lock, flags); \
1100 return; \
1101 } \
1102 sync_obj = builder(its, cmd, desc); \
1103 its_flush_cmd(its, cmd); \
1104 \
1105 if (sync_obj) { \
1106 sync_cmd = its_allocate_entry(its); \
1107 if (!sync_cmd) \
1108 goto post; \
1109 \
1110 buildfn(its, sync_cmd, sync_obj); \
1111 its_flush_cmd(its, sync_cmd); \
1112 } \
1113 \
1114 post: \
1115 rd_idx = readl_relaxed(its->base + GITS_CREADR); \
1116 next_cmd = its_post_commands(its); \
1117 raw_spin_unlock_irqrestore(&its->lock, flags); \
1118 \
1119 if (its_wait_for_range_completion(its, rd_idx, next_cmd)) \
1120 pr_err_ratelimited("ITS cmd %ps failed\n", builder); \
1121 }
1122
its_build_sync_cmd(struct its_node * its,struct its_cmd_block * sync_cmd,struct its_collection * sync_col)1123 static void its_build_sync_cmd(struct its_node *its,
1124 struct its_cmd_block *sync_cmd,
1125 struct its_collection *sync_col)
1126 {
1127 its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
1128 its_encode_target(sync_cmd, sync_col->target_address);
1129
1130 its_fixup_cmd(sync_cmd);
1131 }
1132
BUILD_SINGLE_CMD_FUNC(its_send_single_command,its_cmd_builder_t,struct its_collection,its_build_sync_cmd)1133 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
1134 struct its_collection, its_build_sync_cmd)
1135
1136 static void its_build_vsync_cmd(struct its_node *its,
1137 struct its_cmd_block *sync_cmd,
1138 struct its_vpe *sync_vpe)
1139 {
1140 its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
1141 its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
1142
1143 its_fixup_cmd(sync_cmd);
1144 }
1145
BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand,its_cmd_vbuilder_t,struct its_vpe,its_build_vsync_cmd)1146 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
1147 struct its_vpe, its_build_vsync_cmd)
1148
1149 static void its_send_int(struct its_device *dev, u32 event_id)
1150 {
1151 struct its_cmd_desc desc;
1152
1153 desc.its_int_cmd.dev = dev;
1154 desc.its_int_cmd.event_id = event_id;
1155
1156 its_send_single_command(dev->its, its_build_int_cmd, &desc);
1157 }
1158
its_send_clear(struct its_device * dev,u32 event_id)1159 static void its_send_clear(struct its_device *dev, u32 event_id)
1160 {
1161 struct its_cmd_desc desc;
1162
1163 desc.its_clear_cmd.dev = dev;
1164 desc.its_clear_cmd.event_id = event_id;
1165
1166 its_send_single_command(dev->its, its_build_clear_cmd, &desc);
1167 }
1168
its_send_inv(struct its_device * dev,u32 event_id)1169 static void its_send_inv(struct its_device *dev, u32 event_id)
1170 {
1171 struct its_cmd_desc desc;
1172
1173 desc.its_inv_cmd.dev = dev;
1174 desc.its_inv_cmd.event_id = event_id;
1175
1176 its_send_single_command(dev->its, its_build_inv_cmd, &desc);
1177 }
1178
its_send_mapd(struct its_device * dev,int valid)1179 static void its_send_mapd(struct its_device *dev, int valid)
1180 {
1181 struct its_cmd_desc desc;
1182
1183 desc.its_mapd_cmd.dev = dev;
1184 desc.its_mapd_cmd.valid = !!valid;
1185
1186 its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
1187 }
1188
its_send_mapc(struct its_node * its,struct its_collection * col,int valid)1189 static void its_send_mapc(struct its_node *its, struct its_collection *col,
1190 int valid)
1191 {
1192 struct its_cmd_desc desc;
1193
1194 desc.its_mapc_cmd.col = col;
1195 desc.its_mapc_cmd.valid = !!valid;
1196
1197 its_send_single_command(its, its_build_mapc_cmd, &desc);
1198 }
1199
its_send_mapti(struct its_device * dev,u32 irq_id,u32 id)1200 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
1201 {
1202 struct its_cmd_desc desc;
1203
1204 desc.its_mapti_cmd.dev = dev;
1205 desc.its_mapti_cmd.phys_id = irq_id;
1206 desc.its_mapti_cmd.event_id = id;
1207
1208 its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
1209 }
1210
its_send_movi(struct its_device * dev,struct its_collection * col,u32 id)1211 static void its_send_movi(struct its_device *dev,
1212 struct its_collection *col, u32 id)
1213 {
1214 struct its_cmd_desc desc;
1215
1216 desc.its_movi_cmd.dev = dev;
1217 desc.its_movi_cmd.col = col;
1218 desc.its_movi_cmd.event_id = id;
1219
1220 its_send_single_command(dev->its, its_build_movi_cmd, &desc);
1221 }
1222
its_send_discard(struct its_device * dev,u32 id)1223 static void its_send_discard(struct its_device *dev, u32 id)
1224 {
1225 struct its_cmd_desc desc;
1226
1227 desc.its_discard_cmd.dev = dev;
1228 desc.its_discard_cmd.event_id = id;
1229
1230 its_send_single_command(dev->its, its_build_discard_cmd, &desc);
1231 }
1232
its_send_invall(struct its_node * its,struct its_collection * col)1233 static void its_send_invall(struct its_node *its, struct its_collection *col)
1234 {
1235 struct its_cmd_desc desc;
1236
1237 desc.its_invall_cmd.col = col;
1238
1239 its_send_single_command(its, its_build_invall_cmd, &desc);
1240 }
1241
its_send_vmapti(struct its_device * dev,u32 id)1242 static void its_send_vmapti(struct its_device *dev, u32 id)
1243 {
1244 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1245 struct its_cmd_desc desc;
1246
1247 desc.its_vmapti_cmd.vpe = map->vpe;
1248 desc.its_vmapti_cmd.dev = dev;
1249 desc.its_vmapti_cmd.virt_id = map->vintid;
1250 desc.its_vmapti_cmd.event_id = id;
1251 desc.its_vmapti_cmd.db_enabled = map->db_enabled;
1252
1253 its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
1254 }
1255
its_send_vmovi(struct its_device * dev,u32 id)1256 static void its_send_vmovi(struct its_device *dev, u32 id)
1257 {
1258 struct its_vlpi_map *map = dev_event_to_vlpi_map(dev, id);
1259 struct its_cmd_desc desc;
1260
1261 desc.its_vmovi_cmd.vpe = map->vpe;
1262 desc.its_vmovi_cmd.dev = dev;
1263 desc.its_vmovi_cmd.event_id = id;
1264 desc.its_vmovi_cmd.db_enabled = map->db_enabled;
1265
1266 its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
1267 }
1268
its_send_vmapp(struct its_node * its,struct its_vpe * vpe,bool valid)1269 static void its_send_vmapp(struct its_node *its,
1270 struct its_vpe *vpe, bool valid)
1271 {
1272 struct its_cmd_desc desc;
1273
1274 desc.its_vmapp_cmd.vpe = vpe;
1275 desc.its_vmapp_cmd.valid = valid;
1276 desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
1277
1278 its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
1279 }
1280
its_send_vmovp(struct its_vpe * vpe)1281 static void its_send_vmovp(struct its_vpe *vpe)
1282 {
1283 struct its_cmd_desc desc = {};
1284 struct its_node *its;
1285 unsigned long flags;
1286 int col_id = vpe->col_idx;
1287
1288 desc.its_vmovp_cmd.vpe = vpe;
1289
1290 if (!its_list_map) {
1291 its = list_first_entry(&its_nodes, struct its_node, entry);
1292 desc.its_vmovp_cmd.col = &its->collections[col_id];
1293 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1294 return;
1295 }
1296
1297 /*
1298 * Yet another marvel of the architecture. If using the
1299 * its_list "feature", we need to make sure that all ITSs
1300 * receive all VMOVP commands in the same order. The only way
1301 * to guarantee this is to make vmovp a serialization point.
1302 *
1303 * Wall <-- Head.
1304 */
1305 raw_spin_lock_irqsave(&vmovp_lock, flags);
1306
1307 desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1308 desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1309
1310 /* Emit VMOVPs */
1311 list_for_each_entry(its, &its_nodes, entry) {
1312 if (!is_v4(its))
1313 continue;
1314
1315 if (!require_its_list_vmovp(vpe->its_vm, its))
1316 continue;
1317
1318 desc.its_vmovp_cmd.col = &its->collections[col_id];
1319 its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1320 }
1321
1322 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1323 }
1324
its_send_vinvall(struct its_node * its,struct its_vpe * vpe)1325 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1326 {
1327 struct its_cmd_desc desc;
1328
1329 desc.its_vinvall_cmd.vpe = vpe;
1330 its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1331 }
1332
its_send_vinv(struct its_device * dev,u32 event_id)1333 static void its_send_vinv(struct its_device *dev, u32 event_id)
1334 {
1335 struct its_cmd_desc desc;
1336
1337 /*
1338 * There is no real VINV command. This is just a normal INV,
1339 * with a VSYNC instead of a SYNC.
1340 */
1341 desc.its_inv_cmd.dev = dev;
1342 desc.its_inv_cmd.event_id = event_id;
1343
1344 its_send_single_vcommand(dev->its, its_build_vinv_cmd, &desc);
1345 }
1346
its_send_vint(struct its_device * dev,u32 event_id)1347 static void its_send_vint(struct its_device *dev, u32 event_id)
1348 {
1349 struct its_cmd_desc desc;
1350
1351 /*
1352 * There is no real VINT command. This is just a normal INT,
1353 * with a VSYNC instead of a SYNC.
1354 */
1355 desc.its_int_cmd.dev = dev;
1356 desc.its_int_cmd.event_id = event_id;
1357
1358 its_send_single_vcommand(dev->its, its_build_vint_cmd, &desc);
1359 }
1360
its_send_vclear(struct its_device * dev,u32 event_id)1361 static void its_send_vclear(struct its_device *dev, u32 event_id)
1362 {
1363 struct its_cmd_desc desc;
1364
1365 /*
1366 * There is no real VCLEAR command. This is just a normal CLEAR,
1367 * with a VSYNC instead of a SYNC.
1368 */
1369 desc.its_clear_cmd.dev = dev;
1370 desc.its_clear_cmd.event_id = event_id;
1371
1372 its_send_single_vcommand(dev->its, its_build_vclear_cmd, &desc);
1373 }
1374
its_send_invdb(struct its_node * its,struct its_vpe * vpe)1375 static void its_send_invdb(struct its_node *its, struct its_vpe *vpe)
1376 {
1377 struct its_cmd_desc desc;
1378
1379 desc.its_invdb_cmd.vpe = vpe;
1380 its_send_single_vcommand(its, its_build_invdb_cmd, &desc);
1381 }
1382
1383 /*
1384 * irqchip functions - assumes MSI, mostly.
1385 */
lpi_write_config(struct irq_data * d,u8 clr,u8 set)1386 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1387 {
1388 struct its_vlpi_map *map = get_vlpi_map(d);
1389 irq_hw_number_t hwirq;
1390 void *va;
1391 u8 *cfg;
1392
1393 if (map) {
1394 va = page_address(map->vm->vprop_page);
1395 hwirq = map->vintid;
1396
1397 /* Remember the updated property */
1398 map->properties &= ~clr;
1399 map->properties |= set | LPI_PROP_GROUP1;
1400 } else {
1401 va = gic_rdists->prop_table_va;
1402 hwirq = d->hwirq;
1403 }
1404
1405 cfg = va + hwirq - 8192;
1406 *cfg &= ~clr;
1407 *cfg |= set | LPI_PROP_GROUP1;
1408
1409 /*
1410 * Make the above write visible to the redistributors.
1411 * And yes, we're flushing exactly: One. Single. Byte.
1412 * Humpf...
1413 */
1414 if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1415 gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1416 else
1417 dsb(ishst);
1418 }
1419
wait_for_syncr(void __iomem * rdbase)1420 static void wait_for_syncr(void __iomem *rdbase)
1421 {
1422 while (readl_relaxed(rdbase + GICR_SYNCR) & 1)
1423 cpu_relax();
1424 }
1425
direct_lpi_inv(struct irq_data * d)1426 static void direct_lpi_inv(struct irq_data *d)
1427 {
1428 struct its_vlpi_map *map = get_vlpi_map(d);
1429 void __iomem *rdbase;
1430 unsigned long flags;
1431 u64 val;
1432 int cpu;
1433
1434 if (map) {
1435 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1436
1437 WARN_ON(!is_v4_1(its_dev->its));
1438
1439 val = GICR_INVLPIR_V;
1440 val |= FIELD_PREP(GICR_INVLPIR_VPEID, map->vpe->vpe_id);
1441 val |= FIELD_PREP(GICR_INVLPIR_INTID, map->vintid);
1442 } else {
1443 val = d->hwirq;
1444 }
1445
1446 /* Target the redistributor this LPI is currently routed to */
1447 cpu = irq_to_cpuid_lock(d, &flags);
1448 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
1449 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
1450 gic_write_lpir(val, rdbase + GICR_INVLPIR);
1451
1452 wait_for_syncr(rdbase);
1453 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
1454 irq_to_cpuid_unlock(d, flags);
1455 }
1456
lpi_update_config(struct irq_data * d,u8 clr,u8 set)1457 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1458 {
1459 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1460
1461 lpi_write_config(d, clr, set);
1462 if (gic_rdists->has_direct_lpi &&
1463 (is_v4_1(its_dev->its) || !irqd_is_forwarded_to_vcpu(d)))
1464 direct_lpi_inv(d);
1465 else if (!irqd_is_forwarded_to_vcpu(d))
1466 its_send_inv(its_dev, its_get_event_id(d));
1467 else
1468 its_send_vinv(its_dev, its_get_event_id(d));
1469 }
1470
its_vlpi_set_doorbell(struct irq_data * d,bool enable)1471 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1472 {
1473 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1474 u32 event = its_get_event_id(d);
1475 struct its_vlpi_map *map;
1476
1477 /*
1478 * GICv4.1 does away with the per-LPI nonsense, nothing to do
1479 * here.
1480 */
1481 if (is_v4_1(its_dev->its))
1482 return;
1483
1484 map = dev_event_to_vlpi_map(its_dev, event);
1485
1486 if (map->db_enabled == enable)
1487 return;
1488
1489 map->db_enabled = enable;
1490
1491 /*
1492 * More fun with the architecture:
1493 *
1494 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1495 * value or to 1023, depending on the enable bit. But that
1496 * would be issueing a mapping for an /existing/ DevID+EventID
1497 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1498 * to the /same/ vPE, using this opportunity to adjust the
1499 * doorbell. Mouahahahaha. We loves it, Precious.
1500 */
1501 its_send_vmovi(its_dev, event);
1502 }
1503
its_mask_irq(struct irq_data * d)1504 static void its_mask_irq(struct irq_data *d)
1505 {
1506 if (irqd_is_forwarded_to_vcpu(d))
1507 its_vlpi_set_doorbell(d, false);
1508
1509 lpi_update_config(d, LPI_PROP_ENABLED, 0);
1510 }
1511
its_unmask_irq(struct irq_data * d)1512 static void its_unmask_irq(struct irq_data *d)
1513 {
1514 if (irqd_is_forwarded_to_vcpu(d))
1515 its_vlpi_set_doorbell(d, true);
1516
1517 lpi_update_config(d, 0, LPI_PROP_ENABLED);
1518 }
1519
its_read_lpi_count(struct irq_data * d,int cpu)1520 static __maybe_unused u32 its_read_lpi_count(struct irq_data *d, int cpu)
1521 {
1522 if (irqd_affinity_is_managed(d))
1523 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1524
1525 return atomic_read(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1526 }
1527
its_inc_lpi_count(struct irq_data * d,int cpu)1528 static void its_inc_lpi_count(struct irq_data *d, int cpu)
1529 {
1530 if (irqd_affinity_is_managed(d))
1531 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1532 else
1533 atomic_inc(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1534 }
1535
its_dec_lpi_count(struct irq_data * d,int cpu)1536 static void its_dec_lpi_count(struct irq_data *d, int cpu)
1537 {
1538 if (irqd_affinity_is_managed(d))
1539 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->managed);
1540 else
1541 atomic_dec(&per_cpu_ptr(&cpu_lpi_count, cpu)->unmanaged);
1542 }
1543
cpumask_pick_least_loaded(struct irq_data * d,const struct cpumask * cpu_mask)1544 static unsigned int cpumask_pick_least_loaded(struct irq_data *d,
1545 const struct cpumask *cpu_mask)
1546 {
1547 unsigned int cpu = nr_cpu_ids, tmp;
1548 int count = S32_MAX;
1549
1550 for_each_cpu(tmp, cpu_mask) {
1551 int this_count = its_read_lpi_count(d, tmp);
1552 if (this_count < count) {
1553 cpu = tmp;
1554 count = this_count;
1555 }
1556 }
1557
1558 return cpu;
1559 }
1560
1561 /*
1562 * As suggested by Thomas Gleixner in:
1563 * https://lore.kernel.org/r/87h80q2aoc.fsf@nanos.tec.linutronix.de
1564 */
its_select_cpu(struct irq_data * d,const struct cpumask * aff_mask)1565 static int its_select_cpu(struct irq_data *d,
1566 const struct cpumask *aff_mask)
1567 {
1568 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1569 cpumask_var_t tmpmask;
1570 int cpu, node;
1571
1572 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
1573 return -ENOMEM;
1574
1575 node = its_dev->its->numa_node;
1576
1577 if (!irqd_affinity_is_managed(d)) {
1578 /* First try the NUMA node */
1579 if (node != NUMA_NO_NODE) {
1580 /*
1581 * Try the intersection of the affinity mask and the
1582 * node mask (and the online mask, just to be safe).
1583 */
1584 cpumask_and(tmpmask, cpumask_of_node(node), aff_mask);
1585 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
1586
1587 /*
1588 * Ideally, we would check if the mask is empty, and
1589 * try again on the full node here.
1590 *
1591 * But it turns out that the way ACPI describes the
1592 * affinity for ITSs only deals about memory, and
1593 * not target CPUs, so it cannot describe a single
1594 * ITS placed next to two NUMA nodes.
1595 *
1596 * Instead, just fallback on the online mask. This
1597 * diverges from Thomas' suggestion above.
1598 */
1599 cpu = cpumask_pick_least_loaded(d, tmpmask);
1600 if (cpu < nr_cpu_ids)
1601 goto out;
1602
1603 /* If we can't cross sockets, give up */
1604 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144))
1605 goto out;
1606
1607 /* If the above failed, expand the search */
1608 }
1609
1610 /* Try the intersection of the affinity and online masks */
1611 cpumask_and(tmpmask, aff_mask, cpu_online_mask);
1612
1613 /* If that doesn't fly, the online mask is the last resort */
1614 if (cpumask_empty(tmpmask))
1615 cpumask_copy(tmpmask, cpu_online_mask);
1616
1617 cpu = cpumask_pick_least_loaded(d, tmpmask);
1618 } else {
1619 cpumask_copy(tmpmask, aff_mask);
1620
1621 /* If we cannot cross sockets, limit the search to that node */
1622 if ((its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) &&
1623 node != NUMA_NO_NODE)
1624 cpumask_and(tmpmask, tmpmask, cpumask_of_node(node));
1625
1626 cpu = cpumask_pick_least_loaded(d, tmpmask);
1627 }
1628 out:
1629 free_cpumask_var(tmpmask);
1630
1631 pr_debug("IRQ%d -> %*pbl CPU%d\n", d->irq, cpumask_pr_args(aff_mask), cpu);
1632 return cpu;
1633 }
1634
its_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1635 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1636 bool force)
1637 {
1638 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1639 struct its_collection *target_col;
1640 u32 id = its_get_event_id(d);
1641 int cpu, prev_cpu;
1642
1643 /* A forwarded interrupt should use irq_set_vcpu_affinity */
1644 if (irqd_is_forwarded_to_vcpu(d))
1645 return -EINVAL;
1646
1647 prev_cpu = its_dev->event_map.col_map[id];
1648 its_dec_lpi_count(d, prev_cpu);
1649
1650 if (!force)
1651 cpu = its_select_cpu(d, mask_val);
1652 else
1653 cpu = cpumask_pick_least_loaded(d, mask_val);
1654
1655 if (cpu < 0 || cpu >= nr_cpu_ids)
1656 goto err;
1657
1658 /* don't set the affinity when the target cpu is same as current one */
1659 if (cpu != prev_cpu) {
1660 target_col = &its_dev->its->collections[cpu];
1661 its_send_movi(its_dev, target_col, id);
1662 its_dev->event_map.col_map[id] = cpu;
1663 irq_data_update_effective_affinity(d, cpumask_of(cpu));
1664 }
1665
1666 its_inc_lpi_count(d, cpu);
1667
1668 return IRQ_SET_MASK_OK_DONE;
1669
1670 err:
1671 its_inc_lpi_count(d, prev_cpu);
1672 return -EINVAL;
1673 }
1674
its_irq_get_msi_base(struct its_device * its_dev)1675 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1676 {
1677 struct its_node *its = its_dev->its;
1678
1679 return its->phys_base + GITS_TRANSLATER;
1680 }
1681
its_irq_compose_msi_msg(struct irq_data * d,struct msi_msg * msg)1682 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1683 {
1684 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1685 struct its_node *its;
1686 u64 addr;
1687
1688 its = its_dev->its;
1689 addr = its->get_msi_base(its_dev);
1690
1691 msg->address_lo = lower_32_bits(addr);
1692 msg->address_hi = upper_32_bits(addr);
1693 msg->data = its_get_event_id(d);
1694
1695 iommu_dma_compose_msi_msg(irq_data_get_msi_desc(d), msg);
1696 }
1697
its_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)1698 static int its_irq_set_irqchip_state(struct irq_data *d,
1699 enum irqchip_irq_state which,
1700 bool state)
1701 {
1702 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1703 u32 event = its_get_event_id(d);
1704
1705 if (which != IRQCHIP_STATE_PENDING)
1706 return -EINVAL;
1707
1708 if (irqd_is_forwarded_to_vcpu(d)) {
1709 if (state)
1710 its_send_vint(its_dev, event);
1711 else
1712 its_send_vclear(its_dev, event);
1713 } else {
1714 if (state)
1715 its_send_int(its_dev, event);
1716 else
1717 its_send_clear(its_dev, event);
1718 }
1719
1720 return 0;
1721 }
1722
its_irq_retrigger(struct irq_data * d)1723 static int its_irq_retrigger(struct irq_data *d)
1724 {
1725 return !its_irq_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
1726 }
1727
1728 /*
1729 * Two favourable cases:
1730 *
1731 * (a) Either we have a GICv4.1, and all vPEs have to be mapped at all times
1732 * for vSGI delivery
1733 *
1734 * (b) Or the ITSs do not use a list map, meaning that VMOVP is cheap enough
1735 * and we're better off mapping all VPEs always
1736 *
1737 * If neither (a) nor (b) is true, then we map vPEs on demand.
1738 *
1739 */
gic_requires_eager_mapping(void)1740 static bool gic_requires_eager_mapping(void)
1741 {
1742 if (!its_list_map || gic_rdists->has_rvpeid)
1743 return true;
1744
1745 return false;
1746 }
1747
its_map_vm(struct its_node * its,struct its_vm * vm)1748 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1749 {
1750 unsigned long flags;
1751
1752 if (gic_requires_eager_mapping())
1753 return;
1754
1755 raw_spin_lock_irqsave(&vmovp_lock, flags);
1756
1757 /*
1758 * If the VM wasn't mapped yet, iterate over the vpes and get
1759 * them mapped now.
1760 */
1761 vm->vlpi_count[its->list_nr]++;
1762
1763 if (vm->vlpi_count[its->list_nr] == 1) {
1764 int i;
1765
1766 for (i = 0; i < vm->nr_vpes; i++) {
1767 struct its_vpe *vpe = vm->vpes[i];
1768 struct irq_data *d = irq_get_irq_data(vpe->irq);
1769
1770 /* Map the VPE to the first possible CPU */
1771 vpe->col_idx = cpumask_first(cpu_online_mask);
1772 its_send_vmapp(its, vpe, true);
1773 its_send_vinvall(its, vpe);
1774 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1775 }
1776 }
1777
1778 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1779 }
1780
its_unmap_vm(struct its_node * its,struct its_vm * vm)1781 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1782 {
1783 unsigned long flags;
1784
1785 /* Not using the ITS list? Everything is always mapped. */
1786 if (gic_requires_eager_mapping())
1787 return;
1788
1789 raw_spin_lock_irqsave(&vmovp_lock, flags);
1790
1791 if (!--vm->vlpi_count[its->list_nr]) {
1792 int i;
1793
1794 for (i = 0; i < vm->nr_vpes; i++)
1795 its_send_vmapp(its, vm->vpes[i], false);
1796 }
1797
1798 raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1799 }
1800
its_vlpi_map(struct irq_data * d,struct its_cmd_info * info)1801 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1802 {
1803 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1804 u32 event = its_get_event_id(d);
1805 int ret = 0;
1806
1807 if (!info->map)
1808 return -EINVAL;
1809
1810 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1811
1812 if (!its_dev->event_map.vm) {
1813 struct its_vlpi_map *maps;
1814
1815 maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1816 GFP_ATOMIC);
1817 if (!maps) {
1818 ret = -ENOMEM;
1819 goto out;
1820 }
1821
1822 its_dev->event_map.vm = info->map->vm;
1823 its_dev->event_map.vlpi_maps = maps;
1824 } else if (its_dev->event_map.vm != info->map->vm) {
1825 ret = -EINVAL;
1826 goto out;
1827 }
1828
1829 /* Get our private copy of the mapping information */
1830 its_dev->event_map.vlpi_maps[event] = *info->map;
1831
1832 if (irqd_is_forwarded_to_vcpu(d)) {
1833 /* Already mapped, move it around */
1834 its_send_vmovi(its_dev, event);
1835 } else {
1836 /* Ensure all the VPEs are mapped on this ITS */
1837 its_map_vm(its_dev->its, info->map->vm);
1838
1839 /*
1840 * Flag the interrupt as forwarded so that we can
1841 * start poking the virtual property table.
1842 */
1843 irqd_set_forwarded_to_vcpu(d);
1844
1845 /* Write out the property to the prop table */
1846 lpi_write_config(d, 0xff, info->map->properties);
1847
1848 /* Drop the physical mapping */
1849 its_send_discard(its_dev, event);
1850
1851 /* and install the virtual one */
1852 its_send_vmapti(its_dev, event);
1853
1854 /* Increment the number of VLPIs */
1855 its_dev->event_map.nr_vlpis++;
1856 }
1857
1858 out:
1859 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1860 return ret;
1861 }
1862
its_vlpi_get(struct irq_data * d,struct its_cmd_info * info)1863 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1864 {
1865 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1866 struct its_vlpi_map *map;
1867 int ret = 0;
1868
1869 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1870
1871 map = get_vlpi_map(d);
1872
1873 if (!its_dev->event_map.vm || !map) {
1874 ret = -EINVAL;
1875 goto out;
1876 }
1877
1878 /* Copy our mapping information to the incoming request */
1879 *info->map = *map;
1880
1881 out:
1882 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1883 return ret;
1884 }
1885
its_vlpi_unmap(struct irq_data * d)1886 static int its_vlpi_unmap(struct irq_data *d)
1887 {
1888 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1889 u32 event = its_get_event_id(d);
1890 int ret = 0;
1891
1892 raw_spin_lock(&its_dev->event_map.vlpi_lock);
1893
1894 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1895 ret = -EINVAL;
1896 goto out;
1897 }
1898
1899 /* Drop the virtual mapping */
1900 its_send_discard(its_dev, event);
1901
1902 /* and restore the physical one */
1903 irqd_clr_forwarded_to_vcpu(d);
1904 its_send_mapti(its_dev, d->hwirq, event);
1905 lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1906 LPI_PROP_ENABLED |
1907 LPI_PROP_GROUP1));
1908
1909 /* Potentially unmap the VM from this ITS */
1910 its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1911
1912 /*
1913 * Drop the refcount and make the device available again if
1914 * this was the last VLPI.
1915 */
1916 if (!--its_dev->event_map.nr_vlpis) {
1917 its_dev->event_map.vm = NULL;
1918 kfree(its_dev->event_map.vlpi_maps);
1919 }
1920
1921 out:
1922 raw_spin_unlock(&its_dev->event_map.vlpi_lock);
1923 return ret;
1924 }
1925
its_vlpi_prop_update(struct irq_data * d,struct its_cmd_info * info)1926 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1927 {
1928 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1929
1930 if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1931 return -EINVAL;
1932
1933 if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1934 lpi_update_config(d, 0xff, info->config);
1935 else
1936 lpi_write_config(d, 0xff, info->config);
1937 its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1938
1939 return 0;
1940 }
1941
its_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)1942 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1943 {
1944 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1945 struct its_cmd_info *info = vcpu_info;
1946
1947 /* Need a v4 ITS */
1948 if (!is_v4(its_dev->its))
1949 return -EINVAL;
1950
1951 /* Unmap request? */
1952 if (!info)
1953 return its_vlpi_unmap(d);
1954
1955 switch (info->cmd_type) {
1956 case MAP_VLPI:
1957 return its_vlpi_map(d, info);
1958
1959 case GET_VLPI:
1960 return its_vlpi_get(d, info);
1961
1962 case PROP_UPDATE_VLPI:
1963 case PROP_UPDATE_AND_INV_VLPI:
1964 return its_vlpi_prop_update(d, info);
1965
1966 default:
1967 return -EINVAL;
1968 }
1969 }
1970
1971 static struct irq_chip its_irq_chip = {
1972 .name = "ITS",
1973 .irq_mask = its_mask_irq,
1974 .irq_unmask = its_unmask_irq,
1975 .irq_eoi = irq_chip_eoi_parent,
1976 .irq_set_affinity = its_set_affinity,
1977 .irq_compose_msi_msg = its_irq_compose_msi_msg,
1978 .irq_set_irqchip_state = its_irq_set_irqchip_state,
1979 .irq_retrigger = its_irq_retrigger,
1980 .irq_set_vcpu_affinity = its_irq_set_vcpu_affinity,
1981 };
1982
1983
1984 /*
1985 * How we allocate LPIs:
1986 *
1987 * lpi_range_list contains ranges of LPIs that are to available to
1988 * allocate from. To allocate LPIs, just pick the first range that
1989 * fits the required allocation, and reduce it by the required
1990 * amount. Once empty, remove the range from the list.
1991 *
1992 * To free a range of LPIs, add a free range to the list, sort it and
1993 * merge the result if the new range happens to be adjacent to an
1994 * already free block.
1995 *
1996 * The consequence of the above is that allocation is cost is low, but
1997 * freeing is expensive. We assumes that freeing rarely occurs.
1998 */
1999 #define ITS_MAX_LPI_NRBITS 16 /* 64K LPIs */
2000
2001 static DEFINE_MUTEX(lpi_range_lock);
2002 static LIST_HEAD(lpi_range_list);
2003
2004 struct lpi_range {
2005 struct list_head entry;
2006 u32 base_id;
2007 u32 span;
2008 };
2009
mk_lpi_range(u32 base,u32 span)2010 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
2011 {
2012 struct lpi_range *range;
2013
2014 range = kmalloc(sizeof(*range), GFP_KERNEL);
2015 if (range) {
2016 range->base_id = base;
2017 range->span = span;
2018 }
2019
2020 return range;
2021 }
2022
alloc_lpi_range(u32 nr_lpis,u32 * base)2023 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
2024 {
2025 struct lpi_range *range, *tmp;
2026 int err = -ENOSPC;
2027
2028 mutex_lock(&lpi_range_lock);
2029
2030 list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
2031 if (range->span >= nr_lpis) {
2032 *base = range->base_id;
2033 range->base_id += nr_lpis;
2034 range->span -= nr_lpis;
2035
2036 if (range->span == 0) {
2037 list_del(&range->entry);
2038 kfree(range);
2039 }
2040
2041 err = 0;
2042 break;
2043 }
2044 }
2045
2046 mutex_unlock(&lpi_range_lock);
2047
2048 pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
2049 return err;
2050 }
2051
merge_lpi_ranges(struct lpi_range * a,struct lpi_range * b)2052 static void merge_lpi_ranges(struct lpi_range *a, struct lpi_range *b)
2053 {
2054 if (&a->entry == &lpi_range_list || &b->entry == &lpi_range_list)
2055 return;
2056 if (a->base_id + a->span != b->base_id)
2057 return;
2058 b->base_id = a->base_id;
2059 b->span += a->span;
2060 list_del(&a->entry);
2061 kfree(a);
2062 }
2063
free_lpi_range(u32 base,u32 nr_lpis)2064 static int free_lpi_range(u32 base, u32 nr_lpis)
2065 {
2066 struct lpi_range *new, *old;
2067
2068 new = mk_lpi_range(base, nr_lpis);
2069 if (!new)
2070 return -ENOMEM;
2071
2072 mutex_lock(&lpi_range_lock);
2073
2074 list_for_each_entry_reverse(old, &lpi_range_list, entry) {
2075 if (old->base_id < base)
2076 break;
2077 }
2078 /*
2079 * old is the last element with ->base_id smaller than base,
2080 * so new goes right after it. If there are no elements with
2081 * ->base_id smaller than base, &old->entry ends up pointing
2082 * at the head of the list, and inserting new it the start of
2083 * the list is the right thing to do in that case as well.
2084 */
2085 list_add(&new->entry, &old->entry);
2086 /*
2087 * Now check if we can merge with the preceding and/or
2088 * following ranges.
2089 */
2090 merge_lpi_ranges(old, new);
2091 merge_lpi_ranges(new, list_next_entry(new, entry));
2092
2093 mutex_unlock(&lpi_range_lock);
2094 return 0;
2095 }
2096
its_lpi_init(u32 id_bits)2097 static int __init its_lpi_init(u32 id_bits)
2098 {
2099 u32 lpis = (1UL << id_bits) - 8192;
2100 u32 numlpis;
2101 int err;
2102
2103 numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
2104
2105 if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
2106 lpis = numlpis;
2107 pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
2108 lpis);
2109 }
2110
2111 /*
2112 * Initializing the allocator is just the same as freeing the
2113 * full range of LPIs.
2114 */
2115 err = free_lpi_range(8192, lpis);
2116 pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
2117 return err;
2118 }
2119
its_lpi_alloc(int nr_irqs,u32 * base,int * nr_ids)2120 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
2121 {
2122 unsigned long *bitmap = NULL;
2123 int err = 0;
2124
2125 do {
2126 err = alloc_lpi_range(nr_irqs, base);
2127 if (!err)
2128 break;
2129
2130 nr_irqs /= 2;
2131 } while (nr_irqs > 0);
2132
2133 if (!nr_irqs)
2134 err = -ENOSPC;
2135
2136 if (err)
2137 goto out;
2138
2139 bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
2140 if (!bitmap)
2141 goto out;
2142
2143 *nr_ids = nr_irqs;
2144
2145 out:
2146 if (!bitmap)
2147 *base = *nr_ids = 0;
2148
2149 return bitmap;
2150 }
2151
its_lpi_free(unsigned long * bitmap,u32 base,u32 nr_ids)2152 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
2153 {
2154 WARN_ON(free_lpi_range(base, nr_ids));
2155 kfree(bitmap);
2156 }
2157
gic_reset_prop_table(void * va)2158 static void gic_reset_prop_table(void *va)
2159 {
2160 /* Priority 0xa0, Group-1, disabled */
2161 memset(va, LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1, LPI_PROPBASE_SZ);
2162
2163 /* Make sure the GIC will observe the written configuration */
2164 gic_flush_dcache_to_poc(va, LPI_PROPBASE_SZ);
2165 }
2166
its_allocate_prop_table(gfp_t gfp_flags)2167 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
2168 {
2169 struct page *prop_page;
2170
2171 if (of_machine_is_compatible("rockchip,rk3568") || of_machine_is_compatible("rockchip,rk3566"))
2172 gfp_flags |= GFP_DMA32;
2173 prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
2174 if (!prop_page)
2175 return NULL;
2176
2177 gic_reset_prop_table(page_address(prop_page));
2178
2179 return prop_page;
2180 }
2181
its_free_prop_table(struct page * prop_page)2182 static void its_free_prop_table(struct page *prop_page)
2183 {
2184 free_pages((unsigned long)page_address(prop_page),
2185 get_order(LPI_PROPBASE_SZ));
2186 }
2187
gic_check_reserved_range(phys_addr_t addr,unsigned long size)2188 static bool gic_check_reserved_range(phys_addr_t addr, unsigned long size)
2189 {
2190 phys_addr_t start, end, addr_end;
2191 u64 i;
2192
2193 /*
2194 * We don't bother checking for a kdump kernel as by
2195 * construction, the LPI tables are out of this kernel's
2196 * memory map.
2197 */
2198 if (is_kdump_kernel())
2199 return true;
2200
2201 addr_end = addr + size - 1;
2202
2203 for_each_reserved_mem_range(i, &start, &end) {
2204 if (addr >= start && addr_end <= end)
2205 return true;
2206 }
2207
2208 /* Not found, not a good sign... */
2209 pr_warn("GICv3: Expected reserved range [%pa:%pa], not found\n",
2210 &addr, &addr_end);
2211 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
2212 return false;
2213 }
2214
gic_reserve_range(phys_addr_t addr,unsigned long size)2215 static int gic_reserve_range(phys_addr_t addr, unsigned long size)
2216 {
2217 if (efi_enabled(EFI_CONFIG_TABLES))
2218 return efi_mem_reserve_persistent(addr, size);
2219
2220 return 0;
2221 }
2222
its_setup_lpi_prop_table(void)2223 static int __init its_setup_lpi_prop_table(void)
2224 {
2225 if (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) {
2226 u64 val;
2227
2228 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2229 lpi_id_bits = (val & GICR_PROPBASER_IDBITS_MASK) + 1;
2230
2231 gic_rdists->prop_table_pa = val & GENMASK_ULL(51, 12);
2232 gic_rdists->prop_table_va = memremap(gic_rdists->prop_table_pa,
2233 LPI_PROPBASE_SZ,
2234 MEMREMAP_WB);
2235 gic_reset_prop_table(gic_rdists->prop_table_va);
2236 } else {
2237 struct page *page;
2238
2239 lpi_id_bits = min_t(u32,
2240 GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
2241 ITS_MAX_LPI_NRBITS);
2242 page = its_allocate_prop_table(GFP_NOWAIT);
2243 if (!page) {
2244 pr_err("Failed to allocate PROPBASE\n");
2245 return -ENOMEM;
2246 }
2247
2248 gic_rdists->prop_table_pa = page_to_phys(page);
2249 gic_rdists->prop_table_va = page_address(page);
2250 WARN_ON(gic_reserve_range(gic_rdists->prop_table_pa,
2251 LPI_PROPBASE_SZ));
2252 }
2253
2254 pr_info("GICv3: using LPI property table @%pa\n",
2255 &gic_rdists->prop_table_pa);
2256
2257 return its_lpi_init(lpi_id_bits);
2258 }
2259
2260 static const char *its_base_type_string[] = {
2261 [GITS_BASER_TYPE_DEVICE] = "Devices",
2262 [GITS_BASER_TYPE_VCPU] = "Virtual CPUs",
2263 [GITS_BASER_TYPE_RESERVED3] = "Reserved (3)",
2264 [GITS_BASER_TYPE_COLLECTION] = "Interrupt Collections",
2265 [GITS_BASER_TYPE_RESERVED5] = "Reserved (5)",
2266 [GITS_BASER_TYPE_RESERVED6] = "Reserved (6)",
2267 [GITS_BASER_TYPE_RESERVED7] = "Reserved (7)",
2268 };
2269
its_read_baser(struct its_node * its,struct its_baser * baser)2270 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
2271 {
2272 u32 idx = baser - its->tables;
2273
2274 return gits_read_baser(its->base + GITS_BASER + (idx << 3));
2275 }
2276
its_write_baser(struct its_node * its,struct its_baser * baser,u64 val)2277 static void its_write_baser(struct its_node *its, struct its_baser *baser,
2278 u64 val)
2279 {
2280 u32 idx = baser - its->tables;
2281
2282 gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
2283 baser->val = its_read_baser(its, baser);
2284 }
2285
its_setup_baser(struct its_node * its,struct its_baser * baser,u64 cache,u64 shr,u32 order,bool indirect)2286 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
2287 u64 cache, u64 shr, u32 order, bool indirect)
2288 {
2289 u64 val = its_read_baser(its, baser);
2290 u64 esz = GITS_BASER_ENTRY_SIZE(val);
2291 u64 type = GITS_BASER_TYPE(val);
2292 u64 baser_phys, tmp;
2293 u32 alloc_pages, psz;
2294 struct page *page;
2295 void *base;
2296 gfp_t gfp_flags;
2297
2298 psz = baser->psz;
2299 alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
2300 if (alloc_pages > GITS_BASER_PAGES_MAX) {
2301 pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
2302 &its->phys_base, its_base_type_string[type],
2303 alloc_pages, GITS_BASER_PAGES_MAX);
2304 alloc_pages = GITS_BASER_PAGES_MAX;
2305 order = get_order(GITS_BASER_PAGES_MAX * psz);
2306 }
2307
2308 gfp_flags = GFP_KERNEL | __GFP_ZERO;
2309 if (of_machine_is_compatible("rockchip,rk3568") || of_machine_is_compatible("rockchip,rk3566"))
2310 gfp_flags |= GFP_DMA32;
2311 page = alloc_pages_node(its->numa_node, gfp_flags, order);
2312 if (!page)
2313 return -ENOMEM;
2314
2315 base = (void *)page_address(page);
2316 baser_phys = virt_to_phys(base);
2317
2318 /* Check if the physical address of the memory is above 48bits */
2319 if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
2320
2321 /* 52bit PA is supported only when PageSize=64K */
2322 if (psz != SZ_64K) {
2323 pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
2324 free_pages((unsigned long)base, order);
2325 return -ENXIO;
2326 }
2327
2328 /* Convert 52bit PA to 48bit field */
2329 baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
2330 }
2331
2332 retry_baser:
2333 val = (baser_phys |
2334 (type << GITS_BASER_TYPE_SHIFT) |
2335 ((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT) |
2336 ((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT) |
2337 cache |
2338 shr |
2339 GITS_BASER_VALID);
2340
2341 val |= indirect ? GITS_BASER_INDIRECT : 0x0;
2342
2343 switch (psz) {
2344 case SZ_4K:
2345 val |= GITS_BASER_PAGE_SIZE_4K;
2346 break;
2347 case SZ_16K:
2348 val |= GITS_BASER_PAGE_SIZE_16K;
2349 break;
2350 case SZ_64K:
2351 val |= GITS_BASER_PAGE_SIZE_64K;
2352 break;
2353 }
2354
2355 its_write_baser(its, baser, val);
2356 tmp = baser->val;
2357
2358 if (IS_ENABLED(CONFIG_NO_GKI) &&
2359 (of_machine_is_compatible("rockchip,rk3568") ||
2360 of_machine_is_compatible("rockchip,rk3566") ||
2361 of_machine_is_compatible("rockchip,rk3588"))) {
2362 if (tmp & GITS_BASER_SHAREABILITY_MASK)
2363 tmp &= ~GITS_BASER_SHAREABILITY_MASK;
2364 else
2365 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2366 }
2367
2368 if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
2369 /*
2370 * Shareability didn't stick. Just use
2371 * whatever the read reported, which is likely
2372 * to be the only thing this redistributor
2373 * supports. If that's zero, make it
2374 * non-cacheable as well.
2375 */
2376 shr = tmp & GITS_BASER_SHAREABILITY_MASK;
2377 if (!shr) {
2378 cache = GITS_BASER_nC;
2379 gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
2380 }
2381 goto retry_baser;
2382 }
2383
2384 if (val != tmp) {
2385 pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
2386 &its->phys_base, its_base_type_string[type],
2387 val, tmp);
2388 free_pages((unsigned long)base, order);
2389 return -ENXIO;
2390 }
2391
2392 baser->order = order;
2393 baser->base = base;
2394 baser->psz = psz;
2395 tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
2396
2397 pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
2398 &its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
2399 its_base_type_string[type],
2400 (unsigned long)virt_to_phys(base),
2401 indirect ? "indirect" : "flat", (int)esz,
2402 psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
2403
2404 return 0;
2405 }
2406
its_parse_indirect_baser(struct its_node * its,struct its_baser * baser,u32 * order,u32 ids)2407 static bool its_parse_indirect_baser(struct its_node *its,
2408 struct its_baser *baser,
2409 u32 *order, u32 ids)
2410 {
2411 u64 tmp = its_read_baser(its, baser);
2412 u64 type = GITS_BASER_TYPE(tmp);
2413 u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
2414 u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
2415 u32 new_order = *order;
2416 u32 psz = baser->psz;
2417 bool indirect = false;
2418
2419 /* No need to enable Indirection if memory requirement < (psz*2)bytes */
2420 if ((esz << ids) > (psz * 2)) {
2421 /*
2422 * Find out whether hw supports a single or two-level table by
2423 * table by reading bit at offset '62' after writing '1' to it.
2424 */
2425 its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
2426 indirect = !!(baser->val & GITS_BASER_INDIRECT);
2427
2428 if (indirect) {
2429 /*
2430 * The size of the lvl2 table is equal to ITS page size
2431 * which is 'psz'. For computing lvl1 table size,
2432 * subtract ID bits that sparse lvl2 table from 'ids'
2433 * which is reported by ITS hardware times lvl1 table
2434 * entry size.
2435 */
2436 ids -= ilog2(psz / (int)esz);
2437 esz = GITS_LVL1_ENTRY_SIZE;
2438 }
2439 }
2440
2441 /*
2442 * Allocate as many entries as required to fit the
2443 * range of device IDs that the ITS can grok... The ID
2444 * space being incredibly sparse, this results in a
2445 * massive waste of memory if two-level device table
2446 * feature is not supported by hardware.
2447 */
2448 new_order = max_t(u32, get_order(esz << ids), new_order);
2449 if (new_order >= MAX_ORDER) {
2450 new_order = MAX_ORDER - 1;
2451 ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
2452 pr_warn("ITS@%pa: %s Table too large, reduce ids %llu->%u\n",
2453 &its->phys_base, its_base_type_string[type],
2454 device_ids(its), ids);
2455 }
2456
2457 *order = new_order;
2458
2459 return indirect;
2460 }
2461
compute_common_aff(u64 val)2462 static u32 compute_common_aff(u64 val)
2463 {
2464 u32 aff, clpiaff;
2465
2466 aff = FIELD_GET(GICR_TYPER_AFFINITY, val);
2467 clpiaff = FIELD_GET(GICR_TYPER_COMMON_LPI_AFF, val);
2468
2469 return aff & ~(GENMASK(31, 0) >> (clpiaff * 8));
2470 }
2471
compute_its_aff(struct its_node * its)2472 static u32 compute_its_aff(struct its_node *its)
2473 {
2474 u64 val;
2475 u32 svpet;
2476
2477 /*
2478 * Reencode the ITS SVPET and MPIDR as a GICR_TYPER, and compute
2479 * the resulting affinity. We then use that to see if this match
2480 * our own affinity.
2481 */
2482 svpet = FIELD_GET(GITS_TYPER_SVPET, its->typer);
2483 val = FIELD_PREP(GICR_TYPER_COMMON_LPI_AFF, svpet);
2484 val |= FIELD_PREP(GICR_TYPER_AFFINITY, its->mpidr);
2485 return compute_common_aff(val);
2486 }
2487
find_sibling_its(struct its_node * cur_its)2488 static struct its_node *find_sibling_its(struct its_node *cur_its)
2489 {
2490 struct its_node *its;
2491 u32 aff;
2492
2493 if (!FIELD_GET(GITS_TYPER_SVPET, cur_its->typer))
2494 return NULL;
2495
2496 aff = compute_its_aff(cur_its);
2497
2498 list_for_each_entry(its, &its_nodes, entry) {
2499 u64 baser;
2500
2501 if (!is_v4_1(its) || its == cur_its)
2502 continue;
2503
2504 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2505 continue;
2506
2507 if (aff != compute_its_aff(its))
2508 continue;
2509
2510 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2511 baser = its->tables[2].val;
2512 if (!(baser & GITS_BASER_VALID))
2513 continue;
2514
2515 return its;
2516 }
2517
2518 return NULL;
2519 }
2520
its_free_tables(struct its_node * its)2521 static void its_free_tables(struct its_node *its)
2522 {
2523 int i;
2524
2525 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2526 if (its->tables[i].base) {
2527 free_pages((unsigned long)its->tables[i].base,
2528 its->tables[i].order);
2529 its->tables[i].base = NULL;
2530 }
2531 }
2532 }
2533
its_probe_baser_psz(struct its_node * its,struct its_baser * baser)2534 static int its_probe_baser_psz(struct its_node *its, struct its_baser *baser)
2535 {
2536 u64 psz = SZ_64K;
2537
2538 while (psz) {
2539 u64 val, gpsz;
2540
2541 val = its_read_baser(its, baser);
2542 val &= ~GITS_BASER_PAGE_SIZE_MASK;
2543
2544 switch (psz) {
2545 case SZ_64K:
2546 gpsz = GITS_BASER_PAGE_SIZE_64K;
2547 break;
2548 case SZ_16K:
2549 gpsz = GITS_BASER_PAGE_SIZE_16K;
2550 break;
2551 case SZ_4K:
2552 default:
2553 gpsz = GITS_BASER_PAGE_SIZE_4K;
2554 break;
2555 }
2556
2557 gpsz >>= GITS_BASER_PAGE_SIZE_SHIFT;
2558
2559 val |= FIELD_PREP(GITS_BASER_PAGE_SIZE_MASK, gpsz);
2560 its_write_baser(its, baser, val);
2561
2562 if (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser->val) == gpsz)
2563 break;
2564
2565 switch (psz) {
2566 case SZ_64K:
2567 psz = SZ_16K;
2568 break;
2569 case SZ_16K:
2570 psz = SZ_4K;
2571 break;
2572 case SZ_4K:
2573 default:
2574 return -1;
2575 }
2576 }
2577
2578 baser->psz = psz;
2579 return 0;
2580 }
2581
its_alloc_tables(struct its_node * its)2582 static int its_alloc_tables(struct its_node *its)
2583 {
2584 u64 shr = GITS_BASER_InnerShareable;
2585 u64 cache = GITS_BASER_RaWaWb;
2586 int err, i;
2587
2588 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
2589 /* erratum 24313: ignore memory access type */
2590 cache = GITS_BASER_nCnB;
2591
2592 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2593 struct its_baser *baser = its->tables + i;
2594 u64 val = its_read_baser(its, baser);
2595 u64 type = GITS_BASER_TYPE(val);
2596 bool indirect = false;
2597 u32 order;
2598
2599 if (type == GITS_BASER_TYPE_NONE)
2600 continue;
2601
2602 if (its_probe_baser_psz(its, baser)) {
2603 its_free_tables(its);
2604 return -ENXIO;
2605 }
2606
2607 order = get_order(baser->psz);
2608
2609 switch (type) {
2610 case GITS_BASER_TYPE_DEVICE:
2611 indirect = its_parse_indirect_baser(its, baser, &order,
2612 device_ids(its));
2613 break;
2614
2615 case GITS_BASER_TYPE_VCPU:
2616 if (is_v4_1(its)) {
2617 struct its_node *sibling;
2618
2619 WARN_ON(i != 2);
2620 if ((sibling = find_sibling_its(its))) {
2621 *baser = sibling->tables[2];
2622 its_write_baser(its, baser, baser->val);
2623 continue;
2624 }
2625 }
2626
2627 indirect = its_parse_indirect_baser(its, baser, &order,
2628 ITS_MAX_VPEID_BITS);
2629 break;
2630 }
2631
2632 err = its_setup_baser(its, baser, cache, shr, order, indirect);
2633 if (err < 0) {
2634 its_free_tables(its);
2635 return err;
2636 }
2637
2638 /* Update settings which will be used for next BASERn */
2639 cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
2640 shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
2641 }
2642
2643 return 0;
2644 }
2645
inherit_vpe_l1_table_from_its(void)2646 static u64 inherit_vpe_l1_table_from_its(void)
2647 {
2648 struct its_node *its;
2649 u64 val;
2650 u32 aff;
2651
2652 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2653 aff = compute_common_aff(val);
2654
2655 list_for_each_entry(its, &its_nodes, entry) {
2656 u64 baser, addr;
2657
2658 if (!is_v4_1(its))
2659 continue;
2660
2661 if (!FIELD_GET(GITS_TYPER_SVPET, its->typer))
2662 continue;
2663
2664 if (aff != compute_its_aff(its))
2665 continue;
2666
2667 /* GICv4.1 guarantees that the vPE table is GITS_BASER2 */
2668 baser = its->tables[2].val;
2669 if (!(baser & GITS_BASER_VALID))
2670 continue;
2671
2672 /* We have a winner! */
2673 gic_data_rdist()->vpe_l1_base = its->tables[2].base;
2674
2675 val = GICR_VPROPBASER_4_1_VALID;
2676 if (baser & GITS_BASER_INDIRECT)
2677 val |= GICR_VPROPBASER_4_1_INDIRECT;
2678 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE,
2679 FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser));
2680 switch (FIELD_GET(GITS_BASER_PAGE_SIZE_MASK, baser)) {
2681 case GIC_PAGE_SIZE_64K:
2682 addr = GITS_BASER_ADDR_48_to_52(baser);
2683 break;
2684 default:
2685 addr = baser & GENMASK_ULL(47, 12);
2686 break;
2687 }
2688 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, addr >> 12);
2689 val |= FIELD_PREP(GICR_VPROPBASER_SHAREABILITY_MASK,
2690 FIELD_GET(GITS_BASER_SHAREABILITY_MASK, baser));
2691 val |= FIELD_PREP(GICR_VPROPBASER_INNER_CACHEABILITY_MASK,
2692 FIELD_GET(GITS_BASER_INNER_CACHEABILITY_MASK, baser));
2693 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, GITS_BASER_NR_PAGES(baser) - 1);
2694
2695 return val;
2696 }
2697
2698 return 0;
2699 }
2700
inherit_vpe_l1_table_from_rd(cpumask_t ** mask)2701 static u64 inherit_vpe_l1_table_from_rd(cpumask_t **mask)
2702 {
2703 u32 aff;
2704 u64 val;
2705 int cpu;
2706
2707 val = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2708 aff = compute_common_aff(val);
2709
2710 for_each_possible_cpu(cpu) {
2711 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2712
2713 if (!base || cpu == smp_processor_id())
2714 continue;
2715
2716 val = gic_read_typer(base + GICR_TYPER);
2717 if (aff != compute_common_aff(val))
2718 continue;
2719
2720 /*
2721 * At this point, we have a victim. This particular CPU
2722 * has already booted, and has an affinity that matches
2723 * ours wrt CommonLPIAff. Let's use its own VPROPBASER.
2724 * Make sure we don't write the Z bit in that case.
2725 */
2726 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2727 val &= ~GICR_VPROPBASER_4_1_Z;
2728
2729 gic_data_rdist()->vpe_l1_base = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2730 *mask = gic_data_rdist_cpu(cpu)->vpe_table_mask;
2731
2732 return val;
2733 }
2734
2735 return 0;
2736 }
2737
allocate_vpe_l2_table(int cpu,u32 id)2738 static bool allocate_vpe_l2_table(int cpu, u32 id)
2739 {
2740 void __iomem *base = gic_data_rdist_cpu(cpu)->rd_base;
2741 unsigned int psz, esz, idx, npg, gpsz;
2742 u64 val;
2743 struct page *page;
2744 __le64 *table;
2745
2746 if (!gic_rdists->has_rvpeid)
2747 return true;
2748
2749 /* Skip non-present CPUs */
2750 if (!base)
2751 return true;
2752
2753 val = gicr_read_vpropbaser(base + SZ_128K + GICR_VPROPBASER);
2754
2755 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val) + 1;
2756 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2757 npg = FIELD_GET(GICR_VPROPBASER_4_1_SIZE, val) + 1;
2758
2759 switch (gpsz) {
2760 default:
2761 WARN_ON(1);
2762 fallthrough;
2763 case GIC_PAGE_SIZE_4K:
2764 psz = SZ_4K;
2765 break;
2766 case GIC_PAGE_SIZE_16K:
2767 psz = SZ_16K;
2768 break;
2769 case GIC_PAGE_SIZE_64K:
2770 psz = SZ_64K;
2771 break;
2772 }
2773
2774 /* Don't allow vpe_id that exceeds single, flat table limit */
2775 if (!(val & GICR_VPROPBASER_4_1_INDIRECT))
2776 return (id < (npg * psz / (esz * SZ_8)));
2777
2778 /* Compute 1st level table index & check if that exceeds table limit */
2779 idx = id >> ilog2(psz / (esz * SZ_8));
2780 if (idx >= (npg * psz / GITS_LVL1_ENTRY_SIZE))
2781 return false;
2782
2783 table = gic_data_rdist_cpu(cpu)->vpe_l1_base;
2784
2785 /* Allocate memory for 2nd level table */
2786 if (!table[idx]) {
2787 page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(psz));
2788 if (!page)
2789 return false;
2790
2791 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
2792 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2793 gic_flush_dcache_to_poc(page_address(page), psz);
2794
2795 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2796
2797 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2798 if (!(val & GICR_VPROPBASER_SHAREABILITY_MASK))
2799 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2800
2801 /* Ensure updated table contents are visible to RD hardware */
2802 dsb(sy);
2803 }
2804
2805 return true;
2806 }
2807
allocate_vpe_l1_table(void)2808 static int allocate_vpe_l1_table(void)
2809 {
2810 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2811 u64 val, gpsz, npg, pa;
2812 unsigned int psz = SZ_64K;
2813 unsigned int np, epp, esz;
2814 struct page *page;
2815
2816 if (!gic_rdists->has_rvpeid)
2817 return 0;
2818
2819 /*
2820 * if VPENDBASER.Valid is set, disable any previously programmed
2821 * VPE by setting PendingLast while clearing Valid. This has the
2822 * effect of making sure no doorbell will be generated and we can
2823 * then safely clear VPROPBASER.Valid.
2824 */
2825 if (gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER) & GICR_VPENDBASER_Valid)
2826 gicr_write_vpendbaser(GICR_VPENDBASER_PendingLast,
2827 vlpi_base + GICR_VPENDBASER);
2828
2829 /*
2830 * If we can inherit the configuration from another RD, let's do
2831 * so. Otherwise, we have to go through the allocation process. We
2832 * assume that all RDs have the exact same requirements, as
2833 * nothing will work otherwise.
2834 */
2835 val = inherit_vpe_l1_table_from_rd(&gic_data_rdist()->vpe_table_mask);
2836 if (val & GICR_VPROPBASER_4_1_VALID)
2837 goto out;
2838
2839 gic_data_rdist()->vpe_table_mask = kzalloc(sizeof(cpumask_t), GFP_ATOMIC);
2840 if (!gic_data_rdist()->vpe_table_mask)
2841 return -ENOMEM;
2842
2843 val = inherit_vpe_l1_table_from_its();
2844 if (val & GICR_VPROPBASER_4_1_VALID)
2845 goto out;
2846
2847 /* First probe the page size */
2848 val = FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, GIC_PAGE_SIZE_64K);
2849 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2850 val = gicr_read_vpropbaser(vlpi_base + GICR_VPROPBASER);
2851 gpsz = FIELD_GET(GICR_VPROPBASER_4_1_PAGE_SIZE, val);
2852 esz = FIELD_GET(GICR_VPROPBASER_4_1_ENTRY_SIZE, val);
2853
2854 switch (gpsz) {
2855 default:
2856 gpsz = GIC_PAGE_SIZE_4K;
2857 fallthrough;
2858 case GIC_PAGE_SIZE_4K:
2859 psz = SZ_4K;
2860 break;
2861 case GIC_PAGE_SIZE_16K:
2862 psz = SZ_16K;
2863 break;
2864 case GIC_PAGE_SIZE_64K:
2865 psz = SZ_64K;
2866 break;
2867 }
2868
2869 /*
2870 * Start populating the register from scratch, including RO fields
2871 * (which we want to print in debug cases...)
2872 */
2873 val = 0;
2874 val |= FIELD_PREP(GICR_VPROPBASER_4_1_PAGE_SIZE, gpsz);
2875 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ENTRY_SIZE, esz);
2876
2877 /* How many entries per GIC page? */
2878 esz++;
2879 epp = psz / (esz * SZ_8);
2880
2881 /*
2882 * If we need more than just a single L1 page, flag the table
2883 * as indirect and compute the number of required L1 pages.
2884 */
2885 if (epp < ITS_MAX_VPEID) {
2886 int nl2;
2887
2888 val |= GICR_VPROPBASER_4_1_INDIRECT;
2889
2890 /* Number of L2 pages required to cover the VPEID space */
2891 nl2 = DIV_ROUND_UP(ITS_MAX_VPEID, epp);
2892
2893 /* Number of L1 pages to point to the L2 pages */
2894 npg = DIV_ROUND_UP(nl2 * SZ_8, psz);
2895 } else {
2896 npg = 1;
2897 }
2898
2899 val |= FIELD_PREP(GICR_VPROPBASER_4_1_SIZE, npg - 1);
2900
2901 /* Right, that's the number of CPU pages we need for L1 */
2902 np = DIV_ROUND_UP(npg * psz, PAGE_SIZE);
2903
2904 pr_debug("np = %d, npg = %lld, psz = %d, epp = %d, esz = %d\n",
2905 np, npg, psz, epp, esz);
2906 page = alloc_pages(GFP_ATOMIC | __GFP_ZERO, get_order(np * PAGE_SIZE));
2907 if (!page)
2908 return -ENOMEM;
2909
2910 gic_data_rdist()->vpe_l1_base = page_address(page);
2911 pa = virt_to_phys(page_address(page));
2912 WARN_ON(!IS_ALIGNED(pa, psz));
2913
2914 val |= FIELD_PREP(GICR_VPROPBASER_4_1_ADDR, pa >> 12);
2915 val |= GICR_VPROPBASER_RaWb;
2916 val |= GICR_VPROPBASER_InnerShareable;
2917 val |= GICR_VPROPBASER_4_1_Z;
2918 val |= GICR_VPROPBASER_4_1_VALID;
2919
2920 out:
2921 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2922 cpumask_set_cpu(smp_processor_id(), gic_data_rdist()->vpe_table_mask);
2923
2924 pr_debug("CPU%d: VPROPBASER = %llx %*pbl\n",
2925 smp_processor_id(), val,
2926 cpumask_pr_args(gic_data_rdist()->vpe_table_mask));
2927
2928 return 0;
2929 }
2930
its_alloc_collections(struct its_node * its)2931 static int its_alloc_collections(struct its_node *its)
2932 {
2933 int i;
2934
2935 its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
2936 GFP_KERNEL);
2937 if (!its->collections)
2938 return -ENOMEM;
2939
2940 for (i = 0; i < nr_cpu_ids; i++)
2941 its->collections[i].target_address = ~0ULL;
2942
2943 return 0;
2944 }
2945
its_allocate_pending_table(gfp_t gfp_flags)2946 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
2947 {
2948 struct page *pend_page;
2949
2950 if (of_machine_is_compatible("rockchip,rk3568") || of_machine_is_compatible("rockchip,rk3566"))
2951 gfp_flags |= GFP_DMA32;
2952 pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
2953 get_order(LPI_PENDBASE_SZ));
2954 if (!pend_page)
2955 return NULL;
2956
2957 /* Make sure the GIC will observe the zero-ed page */
2958 gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
2959
2960 return pend_page;
2961 }
2962
its_free_pending_table(struct page * pt)2963 static void its_free_pending_table(struct page *pt)
2964 {
2965 free_pages((unsigned long)page_address(pt), get_order(LPI_PENDBASE_SZ));
2966 }
2967
2968 /*
2969 * Booting with kdump and LPIs enabled is generally fine. Any other
2970 * case is wrong in the absence of firmware/EFI support.
2971 */
enabled_lpis_allowed(void)2972 static bool enabled_lpis_allowed(void)
2973 {
2974 phys_addr_t addr;
2975 u64 val;
2976
2977 /* Check whether the property table is in a reserved region */
2978 val = gicr_read_propbaser(gic_data_rdist_rd_base() + GICR_PROPBASER);
2979 addr = val & GENMASK_ULL(51, 12);
2980
2981 return gic_check_reserved_range(addr, LPI_PROPBASE_SZ);
2982 }
2983
allocate_lpi_tables(void)2984 static int __init allocate_lpi_tables(void)
2985 {
2986 u64 val;
2987 int err, cpu;
2988
2989 /*
2990 * If LPIs are enabled while we run this from the boot CPU,
2991 * flag the RD tables as pre-allocated if the stars do align.
2992 */
2993 val = readl_relaxed(gic_data_rdist_rd_base() + GICR_CTLR);
2994 if ((val & GICR_CTLR_ENABLE_LPIS) && enabled_lpis_allowed()) {
2995 gic_rdists->flags |= (RDIST_FLAGS_RD_TABLES_PREALLOCATED |
2996 RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING);
2997 pr_info("GICv3: Using preallocated redistributor tables\n");
2998 }
2999
3000 err = its_setup_lpi_prop_table();
3001 if (err)
3002 return err;
3003
3004 /*
3005 * We allocate all the pending tables anyway, as we may have a
3006 * mix of RDs that have had LPIs enabled, and some that
3007 * don't. We'll free the unused ones as each CPU comes online.
3008 */
3009 for_each_possible_cpu(cpu) {
3010 struct page *pend_page;
3011
3012 pend_page = its_allocate_pending_table(GFP_NOWAIT);
3013 if (!pend_page) {
3014 pr_err("Failed to allocate PENDBASE for CPU%d\n", cpu);
3015 return -ENOMEM;
3016 }
3017
3018 gic_data_rdist_cpu(cpu)->pend_page = pend_page;
3019 }
3020
3021 return 0;
3022 }
3023
read_vpend_dirty_clear(void __iomem * vlpi_base)3024 static u64 read_vpend_dirty_clear(void __iomem *vlpi_base)
3025 {
3026 u32 count = 1000000; /* 1s! */
3027 bool clean;
3028 u64 val;
3029
3030 do {
3031 val = gicr_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
3032 clean = !(val & GICR_VPENDBASER_Dirty);
3033 if (!clean) {
3034 count--;
3035 cpu_relax();
3036 udelay(1);
3037 }
3038 } while (!clean && count);
3039
3040 if (unlikely(!clean))
3041 pr_err_ratelimited("ITS virtual pending table not cleaning\n");
3042
3043 return val;
3044 }
3045
its_clear_vpend_valid(void __iomem * vlpi_base,u64 clr,u64 set)3046 static u64 its_clear_vpend_valid(void __iomem *vlpi_base, u64 clr, u64 set)
3047 {
3048 u64 val;
3049
3050 /* Make sure we wait until the RD is done with the initial scan */
3051 val = read_vpend_dirty_clear(vlpi_base);
3052 val &= ~GICR_VPENDBASER_Valid;
3053 val &= ~clr;
3054 val |= set;
3055 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3056
3057 val = read_vpend_dirty_clear(vlpi_base);
3058 if (unlikely(val & GICR_VPENDBASER_Dirty))
3059 val |= GICR_VPENDBASER_PendingLast;
3060
3061 return val;
3062 }
3063
its_cpu_init_lpis(void)3064 static void its_cpu_init_lpis(void)
3065 {
3066 void __iomem *rbase = gic_data_rdist_rd_base();
3067 struct page *pend_page;
3068 phys_addr_t paddr;
3069 u64 val, tmp;
3070
3071 if (gic_data_rdist()->lpi_enabled)
3072 return;
3073
3074 val = readl_relaxed(rbase + GICR_CTLR);
3075 if ((gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED) &&
3076 (val & GICR_CTLR_ENABLE_LPIS)) {
3077 /*
3078 * Check that we get the same property table on all
3079 * RDs. If we don't, this is hopeless.
3080 */
3081 paddr = gicr_read_propbaser(rbase + GICR_PROPBASER);
3082 paddr &= GENMASK_ULL(51, 12);
3083 if (WARN_ON(gic_rdists->prop_table_pa != paddr))
3084 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3085
3086 paddr = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3087 paddr &= GENMASK_ULL(51, 16);
3088
3089 WARN_ON(!gic_check_reserved_range(paddr, LPI_PENDBASE_SZ));
3090 its_free_pending_table(gic_data_rdist()->pend_page);
3091 gic_data_rdist()->pend_page = NULL;
3092
3093 goto out;
3094 }
3095
3096 pend_page = gic_data_rdist()->pend_page;
3097 paddr = page_to_phys(pend_page);
3098 WARN_ON(gic_reserve_range(paddr, LPI_PENDBASE_SZ));
3099
3100 /* set PROPBASE */
3101 val = (gic_rdists->prop_table_pa |
3102 GICR_PROPBASER_InnerShareable |
3103 GICR_PROPBASER_RaWaWb |
3104 ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
3105
3106 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3107 tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
3108
3109 if (IS_ENABLED(CONFIG_NO_GKI) &&
3110 (of_machine_is_compatible("rockchip,rk3568") ||
3111 of_machine_is_compatible("rockchip,rk3566") ||
3112 of_machine_is_compatible("rockchip,rk3588")))
3113 tmp &= ~GICR_PROPBASER_SHAREABILITY_MASK;
3114
3115 if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
3116 if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
3117 /*
3118 * The HW reports non-shareable, we must
3119 * remove the cacheability attributes as
3120 * well.
3121 */
3122 val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
3123 GICR_PROPBASER_CACHEABILITY_MASK);
3124 val |= GICR_PROPBASER_nC;
3125 gicr_write_propbaser(val, rbase + GICR_PROPBASER);
3126 }
3127 pr_info_once("GIC: using cache flushing for LPI property table\n");
3128 gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
3129 }
3130
3131 /* set PENDBASE */
3132 val = (page_to_phys(pend_page) |
3133 GICR_PENDBASER_InnerShareable |
3134 GICR_PENDBASER_RaWaWb);
3135
3136 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3137 tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
3138
3139 if (IS_ENABLED(CONFIG_NO_GKI) &&
3140 (of_machine_is_compatible("rockchip,rk3568") ||
3141 of_machine_is_compatible("rockchip,rk3566") ||
3142 of_machine_is_compatible("rockchip,rk3588")))
3143 tmp &= ~GICR_PENDBASER_SHAREABILITY_MASK;
3144
3145 if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
3146 /*
3147 * The HW reports non-shareable, we must remove the
3148 * cacheability attributes as well.
3149 */
3150 val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
3151 GICR_PENDBASER_CACHEABILITY_MASK);
3152 val |= GICR_PENDBASER_nC;
3153 gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
3154 }
3155
3156 /* Enable LPIs */
3157 val = readl_relaxed(rbase + GICR_CTLR);
3158 val |= GICR_CTLR_ENABLE_LPIS;
3159 writel_relaxed(val, rbase + GICR_CTLR);
3160
3161 if (gic_rdists->has_vlpis && !gic_rdists->has_rvpeid) {
3162 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3163
3164 /*
3165 * It's possible for CPU to receive VLPIs before it is
3166 * sheduled as a vPE, especially for the first CPU, and the
3167 * VLPI with INTID larger than 2^(IDbits+1) will be considered
3168 * as out of range and dropped by GIC.
3169 * So we initialize IDbits to known value to avoid VLPI drop.
3170 */
3171 val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3172 pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
3173 smp_processor_id(), val);
3174 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3175
3176 /*
3177 * Also clear Valid bit of GICR_VPENDBASER, in case some
3178 * ancient programming gets left in and has possibility of
3179 * corrupting memory.
3180 */
3181 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3182 }
3183
3184 if (allocate_vpe_l1_table()) {
3185 /*
3186 * If the allocation has failed, we're in massive trouble.
3187 * Disable direct injection, and pray that no VM was
3188 * already running...
3189 */
3190 gic_rdists->has_rvpeid = false;
3191 gic_rdists->has_vlpis = false;
3192 }
3193
3194 /* Make sure the GIC has seen the above */
3195 dsb(sy);
3196 out:
3197 gic_data_rdist()->lpi_enabled = true;
3198 pr_info("GICv3: CPU%d: using %s LPI pending table @%pa\n",
3199 smp_processor_id(),
3200 gic_data_rdist()->pend_page ? "allocated" : "reserved",
3201 &paddr);
3202 }
3203
its_cpu_init_collection(struct its_node * its)3204 static void its_cpu_init_collection(struct its_node *its)
3205 {
3206 int cpu = smp_processor_id();
3207 u64 target;
3208
3209 /* avoid cross node collections and its mapping */
3210 if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
3211 struct device_node *cpu_node;
3212
3213 cpu_node = of_get_cpu_node(cpu, NULL);
3214 if (its->numa_node != NUMA_NO_NODE &&
3215 its->numa_node != of_node_to_nid(cpu_node))
3216 return;
3217 }
3218
3219 /*
3220 * We now have to bind each collection to its target
3221 * redistributor.
3222 */
3223 if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
3224 /*
3225 * This ITS wants the physical address of the
3226 * redistributor.
3227 */
3228 target = gic_data_rdist()->phys_base;
3229 } else {
3230 /* This ITS wants a linear CPU number. */
3231 target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
3232 target = GICR_TYPER_CPU_NUMBER(target) << 16;
3233 }
3234
3235 /* Perform collection mapping */
3236 its->collections[cpu].target_address = target;
3237 its->collections[cpu].col_id = cpu;
3238
3239 its_send_mapc(its, &its->collections[cpu], 1);
3240 its_send_invall(its, &its->collections[cpu]);
3241 }
3242
its_cpu_init_collections(void)3243 static void its_cpu_init_collections(void)
3244 {
3245 struct its_node *its;
3246
3247 raw_spin_lock(&its_lock);
3248
3249 list_for_each_entry(its, &its_nodes, entry)
3250 its_cpu_init_collection(its);
3251
3252 raw_spin_unlock(&its_lock);
3253 }
3254
its_find_device(struct its_node * its,u32 dev_id)3255 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
3256 {
3257 struct its_device *its_dev = NULL, *tmp;
3258 unsigned long flags;
3259
3260 raw_spin_lock_irqsave(&its->lock, flags);
3261
3262 list_for_each_entry(tmp, &its->its_device_list, entry) {
3263 if (tmp->device_id == dev_id) {
3264 its_dev = tmp;
3265 break;
3266 }
3267 }
3268
3269 raw_spin_unlock_irqrestore(&its->lock, flags);
3270
3271 return its_dev;
3272 }
3273
its_get_baser(struct its_node * its,u32 type)3274 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
3275 {
3276 int i;
3277
3278 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3279 if (GITS_BASER_TYPE(its->tables[i].val) == type)
3280 return &its->tables[i];
3281 }
3282
3283 return NULL;
3284 }
3285
its_alloc_table_entry(struct its_node * its,struct its_baser * baser,u32 id)3286 static bool its_alloc_table_entry(struct its_node *its,
3287 struct its_baser *baser, u32 id)
3288 {
3289 struct page *page;
3290 u32 esz, idx;
3291 __le64 *table;
3292
3293 /* Don't allow device id that exceeds single, flat table limit */
3294 esz = GITS_BASER_ENTRY_SIZE(baser->val);
3295 if (!(baser->val & GITS_BASER_INDIRECT))
3296 return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
3297
3298 /* Compute 1st level table index & check if that exceeds table limit */
3299 idx = id >> ilog2(baser->psz / esz);
3300 if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
3301 return false;
3302
3303 table = baser->base;
3304
3305 /* Allocate memory for 2nd level table */
3306 if (!table[idx]) {
3307 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO;
3308
3309 if (of_machine_is_compatible("rockchip,rk3568") || of_machine_is_compatible("rockchip,rk3566"))
3310 gfp_flags |= GFP_DMA32;
3311 page = alloc_pages_node(its->numa_node, gfp_flags,
3312 get_order(baser->psz));
3313 if (!page)
3314 return false;
3315
3316 /* Flush Lvl2 table to PoC if hw doesn't support coherency */
3317 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3318 gic_flush_dcache_to_poc(page_address(page), baser->psz);
3319
3320 table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
3321
3322 /* Flush Lvl1 entry to PoC if hw doesn't support coherency */
3323 if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
3324 gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
3325
3326 /* Ensure updated table contents are visible to ITS hardware */
3327 dsb(sy);
3328 }
3329
3330 return true;
3331 }
3332
its_alloc_device_table(struct its_node * its,u32 dev_id)3333 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
3334 {
3335 struct its_baser *baser;
3336
3337 baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
3338
3339 /* Don't allow device id that exceeds ITS hardware limit */
3340 if (!baser)
3341 return (ilog2(dev_id) < device_ids(its));
3342
3343 return its_alloc_table_entry(its, baser, dev_id);
3344 }
3345
its_alloc_vpe_table(u32 vpe_id)3346 static bool its_alloc_vpe_table(u32 vpe_id)
3347 {
3348 struct its_node *its;
3349 int cpu;
3350
3351 /*
3352 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
3353 * could try and only do it on ITSs corresponding to devices
3354 * that have interrupts targeted at this VPE, but the
3355 * complexity becomes crazy (and you have tons of memory
3356 * anyway, right?).
3357 */
3358 list_for_each_entry(its, &its_nodes, entry) {
3359 struct its_baser *baser;
3360
3361 if (!is_v4(its))
3362 continue;
3363
3364 baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
3365 if (!baser)
3366 return false;
3367
3368 if (!its_alloc_table_entry(its, baser, vpe_id))
3369 return false;
3370 }
3371
3372 /* Non v4.1? No need to iterate RDs and go back early. */
3373 if (!gic_rdists->has_rvpeid)
3374 return true;
3375
3376 /*
3377 * Make sure the L2 tables are allocated for all copies of
3378 * the L1 table on *all* v4.1 RDs.
3379 */
3380 for_each_possible_cpu(cpu) {
3381 if (!allocate_vpe_l2_table(cpu, vpe_id))
3382 return false;
3383 }
3384
3385 return true;
3386 }
3387
its_create_device(struct its_node * its,u32 dev_id,int nvecs,bool alloc_lpis)3388 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
3389 int nvecs, bool alloc_lpis)
3390 {
3391 struct its_device *dev;
3392 unsigned long *lpi_map = NULL;
3393 unsigned long flags;
3394 u16 *col_map = NULL;
3395 void *itt;
3396 int lpi_base;
3397 int nr_lpis;
3398 int nr_ites;
3399 int sz;
3400 gfp_t gfp_flags;
3401
3402 if (!its_alloc_device_table(its, dev_id))
3403 return NULL;
3404
3405 if (WARN_ON(!is_power_of_2(nvecs)))
3406 nvecs = roundup_pow_of_two(nvecs);
3407
3408 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3409 /*
3410 * Even if the device wants a single LPI, the ITT must be
3411 * sized as a power of two (and you need at least one bit...).
3412 */
3413 nr_ites = max(2, nvecs);
3414 sz = nr_ites * (FIELD_GET(GITS_TYPER_ITT_ENTRY_SIZE, its->typer) + 1);
3415 sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
3416 gfp_flags = GFP_KERNEL;
3417 if (of_machine_is_compatible("rockchip,rk3568") || of_machine_is_compatible("rockchip,rk3566")) {
3418 gfp_flags |= GFP_DMA32;
3419 itt = (void *)__get_free_pages(gfp_flags, get_order(sz));
3420 } else {
3421 itt = kzalloc_node(sz, gfp_flags, its->numa_node);
3422 }
3423
3424 if (alloc_lpis) {
3425 lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
3426 if (lpi_map)
3427 col_map = kcalloc(nr_lpis, sizeof(*col_map),
3428 GFP_KERNEL);
3429 } else {
3430 col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
3431 nr_lpis = 0;
3432 lpi_base = 0;
3433 }
3434
3435 if (!dev || !itt || !col_map || (!lpi_map && alloc_lpis)) {
3436 kfree(dev);
3437
3438 if (of_machine_is_compatible("rockchip,rk3568") ||
3439 of_machine_is_compatible("rockchip,rk3566"))
3440 free_pages((unsigned long)itt, get_order(sz));
3441 else
3442 kfree(itt);
3443
3444 kfree(lpi_map);
3445 kfree(col_map);
3446 return NULL;
3447 }
3448
3449 gic_flush_dcache_to_poc(itt, sz);
3450
3451 dev->its = its;
3452 dev->itt = itt;
3453 dev->itt_sz = sz;
3454 dev->nr_ites = nr_ites;
3455 dev->event_map.lpi_map = lpi_map;
3456 dev->event_map.col_map = col_map;
3457 dev->event_map.lpi_base = lpi_base;
3458 dev->event_map.nr_lpis = nr_lpis;
3459 raw_spin_lock_init(&dev->event_map.vlpi_lock);
3460 dev->device_id = dev_id;
3461 INIT_LIST_HEAD(&dev->entry);
3462
3463 raw_spin_lock_irqsave(&its->lock, flags);
3464 list_add(&dev->entry, &its->its_device_list);
3465 raw_spin_unlock_irqrestore(&its->lock, flags);
3466
3467 /* Map device to its ITT */
3468 its_send_mapd(dev, 1);
3469
3470 return dev;
3471 }
3472
its_free_device(struct its_device * its_dev)3473 static void its_free_device(struct its_device *its_dev)
3474 {
3475 unsigned long flags;
3476
3477 raw_spin_lock_irqsave(&its_dev->its->lock, flags);
3478 list_del(&its_dev->entry);
3479 raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
3480 kfree(its_dev->event_map.col_map);
3481
3482 if (of_machine_is_compatible("rockchip,rk3568") ||
3483 of_machine_is_compatible("rockchip,rk3566"))
3484 free_pages((unsigned long)its_dev->itt, get_order(its_dev->itt_sz));
3485 else
3486 kfree(its_dev->itt);
3487
3488 kfree(its_dev);
3489 }
3490
its_alloc_device_irq(struct its_device * dev,int nvecs,irq_hw_number_t * hwirq)3491 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
3492 {
3493 int idx;
3494
3495 /* Find a free LPI region in lpi_map and allocate them. */
3496 idx = bitmap_find_free_region(dev->event_map.lpi_map,
3497 dev->event_map.nr_lpis,
3498 get_count_order(nvecs));
3499 if (idx < 0)
3500 return -ENOSPC;
3501
3502 *hwirq = dev->event_map.lpi_base + idx;
3503
3504 return 0;
3505 }
3506
its_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * info)3507 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
3508 int nvec, msi_alloc_info_t *info)
3509 {
3510 struct its_node *its;
3511 struct its_device *its_dev;
3512 struct msi_domain_info *msi_info;
3513 u32 dev_id;
3514 int err = 0;
3515
3516 /*
3517 * We ignore "dev" entirely, and rely on the dev_id that has
3518 * been passed via the scratchpad. This limits this domain's
3519 * usefulness to upper layers that definitely know that they
3520 * are built on top of the ITS.
3521 */
3522 dev_id = info->scratchpad[0].ul;
3523
3524 msi_info = msi_get_domain_info(domain);
3525 its = msi_info->data;
3526
3527 if (!gic_rdists->has_direct_lpi &&
3528 vpe_proxy.dev &&
3529 vpe_proxy.dev->its == its &&
3530 dev_id == vpe_proxy.dev->device_id) {
3531 /* Bad luck. Get yourself a better implementation */
3532 WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
3533 dev_id);
3534 return -EINVAL;
3535 }
3536
3537 mutex_lock(&its->dev_alloc_lock);
3538 its_dev = its_find_device(its, dev_id);
3539 if (its_dev) {
3540 /*
3541 * We already have seen this ID, probably through
3542 * another alias (PCI bridge of some sort). No need to
3543 * create the device.
3544 */
3545 its_dev->shared = true;
3546 pr_debug("Reusing ITT for devID %x\n", dev_id);
3547 goto out;
3548 }
3549
3550 its_dev = its_create_device(its, dev_id, nvec, true);
3551 if (!its_dev) {
3552 err = -ENOMEM;
3553 goto out;
3554 }
3555
3556 pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
3557 out:
3558 mutex_unlock(&its->dev_alloc_lock);
3559 info->scratchpad[0].ptr = its_dev;
3560 return err;
3561 }
3562
3563 static struct msi_domain_ops its_msi_domain_ops = {
3564 .msi_prepare = its_msi_prepare,
3565 };
3566
its_irq_gic_domain_alloc(struct irq_domain * domain,unsigned int virq,irq_hw_number_t hwirq)3567 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
3568 unsigned int virq,
3569 irq_hw_number_t hwirq)
3570 {
3571 struct irq_fwspec fwspec;
3572
3573 if (irq_domain_get_of_node(domain->parent)) {
3574 fwspec.fwnode = domain->parent->fwnode;
3575 fwspec.param_count = 3;
3576 fwspec.param[0] = GIC_IRQ_TYPE_LPI;
3577 fwspec.param[1] = hwirq;
3578 fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
3579 } else if (is_fwnode_irqchip(domain->parent->fwnode)) {
3580 fwspec.fwnode = domain->parent->fwnode;
3581 fwspec.param_count = 2;
3582 fwspec.param[0] = hwirq;
3583 fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
3584 } else {
3585 return -EINVAL;
3586 }
3587
3588 return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
3589 }
3590
its_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)3591 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
3592 unsigned int nr_irqs, void *args)
3593 {
3594 msi_alloc_info_t *info = args;
3595 struct its_device *its_dev = info->scratchpad[0].ptr;
3596 struct its_node *its = its_dev->its;
3597 struct irq_data *irqd;
3598 irq_hw_number_t hwirq;
3599 int err;
3600 int i;
3601
3602 err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
3603 if (err)
3604 return err;
3605
3606 err = iommu_dma_prepare_msi(info->desc, its->get_msi_base(its_dev));
3607 if (err)
3608 return err;
3609
3610 for (i = 0; i < nr_irqs; i++) {
3611 err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
3612 if (err)
3613 return err;
3614
3615 irq_domain_set_hwirq_and_chip(domain, virq + i,
3616 hwirq + i, &its_irq_chip, its_dev);
3617 irqd = irq_get_irq_data(virq + i);
3618 irqd_set_single_target(irqd);
3619 irqd_set_affinity_on_activate(irqd);
3620 pr_debug("ID:%d pID:%d vID:%d\n",
3621 (int)(hwirq + i - its_dev->event_map.lpi_base),
3622 (int)(hwirq + i), virq + i);
3623 }
3624
3625 return 0;
3626 }
3627
its_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)3628 static int its_irq_domain_activate(struct irq_domain *domain,
3629 struct irq_data *d, bool reserve)
3630 {
3631 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3632 u32 event = its_get_event_id(d);
3633 int cpu;
3634
3635 cpu = its_select_cpu(d, cpu_online_mask);
3636 if (cpu < 0 || cpu >= nr_cpu_ids)
3637 return -EINVAL;
3638
3639 its_inc_lpi_count(d, cpu);
3640 its_dev->event_map.col_map[event] = cpu;
3641 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3642
3643 /* Map the GIC IRQ and event to the device */
3644 its_send_mapti(its_dev, d->hwirq, event);
3645 return 0;
3646 }
3647
its_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)3648 static void its_irq_domain_deactivate(struct irq_domain *domain,
3649 struct irq_data *d)
3650 {
3651 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3652 u32 event = its_get_event_id(d);
3653
3654 its_dec_lpi_count(d, its_dev->event_map.col_map[event]);
3655 /* Stop the delivery of interrupts */
3656 its_send_discard(its_dev, event);
3657 }
3658
its_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)3659 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
3660 unsigned int nr_irqs)
3661 {
3662 struct irq_data *d = irq_domain_get_irq_data(domain, virq);
3663 struct its_device *its_dev = irq_data_get_irq_chip_data(d);
3664 struct its_node *its = its_dev->its;
3665 int i;
3666
3667 bitmap_release_region(its_dev->event_map.lpi_map,
3668 its_get_event_id(irq_domain_get_irq_data(domain, virq)),
3669 get_count_order(nr_irqs));
3670
3671 for (i = 0; i < nr_irqs; i++) {
3672 struct irq_data *data = irq_domain_get_irq_data(domain,
3673 virq + i);
3674 /* Nuke the entry in the domain */
3675 irq_domain_reset_irq_data(data);
3676 }
3677
3678 mutex_lock(&its->dev_alloc_lock);
3679
3680 /*
3681 * If all interrupts have been freed, start mopping the
3682 * floor. This is conditionned on the device not being shared.
3683 */
3684 if (!its_dev->shared &&
3685 bitmap_empty(its_dev->event_map.lpi_map,
3686 its_dev->event_map.nr_lpis)) {
3687 its_lpi_free(its_dev->event_map.lpi_map,
3688 its_dev->event_map.lpi_base,
3689 its_dev->event_map.nr_lpis);
3690
3691 /* Unmap device/itt */
3692 its_send_mapd(its_dev, 0);
3693 its_free_device(its_dev);
3694 }
3695
3696 mutex_unlock(&its->dev_alloc_lock);
3697
3698 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
3699 }
3700
3701 static const struct irq_domain_ops its_domain_ops = {
3702 .alloc = its_irq_domain_alloc,
3703 .free = its_irq_domain_free,
3704 .activate = its_irq_domain_activate,
3705 .deactivate = its_irq_domain_deactivate,
3706 };
3707
3708 /*
3709 * This is insane.
3710 *
3711 * If a GICv4.0 doesn't implement Direct LPIs (which is extremely
3712 * likely), the only way to perform an invalidate is to use a fake
3713 * device to issue an INV command, implying that the LPI has first
3714 * been mapped to some event on that device. Since this is not exactly
3715 * cheap, we try to keep that mapping around as long as possible, and
3716 * only issue an UNMAP if we're short on available slots.
3717 *
3718 * Broken by design(tm).
3719 *
3720 * GICv4.1, on the other hand, mandates that we're able to invalidate
3721 * by writing to a MMIO register. It doesn't implement the whole of
3722 * DirectLPI, but that's good enough. And most of the time, we don't
3723 * even have to invalidate anything, as the redistributor can be told
3724 * whether to generate a doorbell or not (we thus leave it enabled,
3725 * always).
3726 */
its_vpe_db_proxy_unmap_locked(struct its_vpe * vpe)3727 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
3728 {
3729 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3730 if (gic_rdists->has_rvpeid)
3731 return;
3732
3733 /* Already unmapped? */
3734 if (vpe->vpe_proxy_event == -1)
3735 return;
3736
3737 its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
3738 vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
3739
3740 /*
3741 * We don't track empty slots at all, so let's move the
3742 * next_victim pointer if we can quickly reuse that slot
3743 * instead of nuking an existing entry. Not clear that this is
3744 * always a win though, and this might just generate a ripple
3745 * effect... Let's just hope VPEs don't migrate too often.
3746 */
3747 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3748 vpe_proxy.next_victim = vpe->vpe_proxy_event;
3749
3750 vpe->vpe_proxy_event = -1;
3751 }
3752
its_vpe_db_proxy_unmap(struct its_vpe * vpe)3753 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
3754 {
3755 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3756 if (gic_rdists->has_rvpeid)
3757 return;
3758
3759 if (!gic_rdists->has_direct_lpi) {
3760 unsigned long flags;
3761
3762 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3763 its_vpe_db_proxy_unmap_locked(vpe);
3764 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3765 }
3766 }
3767
its_vpe_db_proxy_map_locked(struct its_vpe * vpe)3768 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
3769 {
3770 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3771 if (gic_rdists->has_rvpeid)
3772 return;
3773
3774 /* Already mapped? */
3775 if (vpe->vpe_proxy_event != -1)
3776 return;
3777
3778 /* This slot was already allocated. Kick the other VPE out. */
3779 if (vpe_proxy.vpes[vpe_proxy.next_victim])
3780 its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
3781
3782 /* Map the new VPE instead */
3783 vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
3784 vpe->vpe_proxy_event = vpe_proxy.next_victim;
3785 vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
3786
3787 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
3788 its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
3789 }
3790
its_vpe_db_proxy_move(struct its_vpe * vpe,int from,int to)3791 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
3792 {
3793 unsigned long flags;
3794 struct its_collection *target_col;
3795
3796 /* GICv4.1 doesn't use a proxy, so nothing to do here */
3797 if (gic_rdists->has_rvpeid)
3798 return;
3799
3800 if (gic_rdists->has_direct_lpi) {
3801 void __iomem *rdbase;
3802
3803 rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
3804 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
3805 wait_for_syncr(rdbase);
3806
3807 return;
3808 }
3809
3810 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3811
3812 its_vpe_db_proxy_map_locked(vpe);
3813
3814 target_col = &vpe_proxy.dev->its->collections[to];
3815 its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
3816 vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
3817
3818 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3819 }
3820
its_vpe_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)3821 static int its_vpe_set_affinity(struct irq_data *d,
3822 const struct cpumask *mask_val,
3823 bool force)
3824 {
3825 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3826 int from, cpu = cpumask_first(mask_val);
3827 unsigned long flags;
3828
3829 /*
3830 * Changing affinity is mega expensive, so let's be as lazy as
3831 * we can and only do it if we really have to. Also, if mapped
3832 * into the proxy device, we need to move the doorbell
3833 * interrupt to its new location.
3834 *
3835 * Another thing is that changing the affinity of a vPE affects
3836 * *other interrupts* such as all the vLPIs that are routed to
3837 * this vPE. This means that the irq_desc lock is not enough to
3838 * protect us, and that we must ensure nobody samples vpe->col_idx
3839 * during the update, hence the lock below which must also be
3840 * taken on any vLPI handling path that evaluates vpe->col_idx.
3841 */
3842 from = vpe_to_cpuid_lock(vpe, &flags);
3843 if (from == cpu)
3844 goto out;
3845
3846 vpe->col_idx = cpu;
3847
3848 /*
3849 * GICv4.1 allows us to skip VMOVP if moving to a cpu whose RD
3850 * is sharing its VPE table with the current one.
3851 */
3852 if (gic_data_rdist_cpu(cpu)->vpe_table_mask &&
3853 cpumask_test_cpu(from, gic_data_rdist_cpu(cpu)->vpe_table_mask))
3854 goto out;
3855
3856 its_send_vmovp(vpe);
3857 its_vpe_db_proxy_move(vpe, from, cpu);
3858
3859 out:
3860 irq_data_update_effective_affinity(d, cpumask_of(cpu));
3861 vpe_to_cpuid_unlock(vpe, flags);
3862
3863 return IRQ_SET_MASK_OK_DONE;
3864 }
3865
its_wait_vpt_parse_complete(void)3866 static void its_wait_vpt_parse_complete(void)
3867 {
3868 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3869 u64 val;
3870
3871 if (!gic_rdists->has_vpend_valid_dirty)
3872 return;
3873
3874 WARN_ON_ONCE(readq_relaxed_poll_timeout_atomic(vlpi_base + GICR_VPENDBASER,
3875 val,
3876 !(val & GICR_VPENDBASER_Dirty),
3877 10, 500));
3878 }
3879
its_vpe_schedule(struct its_vpe * vpe)3880 static void its_vpe_schedule(struct its_vpe *vpe)
3881 {
3882 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3883 u64 val;
3884
3885 /* Schedule the VPE */
3886 val = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
3887 GENMASK_ULL(51, 12);
3888 val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
3889 val |= GICR_VPROPBASER_RaWb;
3890 val |= GICR_VPROPBASER_InnerShareable;
3891 gicr_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
3892
3893 val = virt_to_phys(page_address(vpe->vpt_page)) &
3894 GENMASK_ULL(51, 16);
3895 val |= GICR_VPENDBASER_RaWaWb;
3896 val |= GICR_VPENDBASER_InnerShareable;
3897 /*
3898 * There is no good way of finding out if the pending table is
3899 * empty as we can race against the doorbell interrupt very
3900 * easily. So in the end, vpe->pending_last is only an
3901 * indication that the vcpu has something pending, not one
3902 * that the pending table is empty. A good implementation
3903 * would be able to read its coarse map pretty quickly anyway,
3904 * making this a tolerable issue.
3905 */
3906 val |= GICR_VPENDBASER_PendingLast;
3907 val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
3908 val |= GICR_VPENDBASER_Valid;
3909 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
3910 }
3911
its_vpe_deschedule(struct its_vpe * vpe)3912 static void its_vpe_deschedule(struct its_vpe *vpe)
3913 {
3914 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
3915 u64 val;
3916
3917 val = its_clear_vpend_valid(vlpi_base, 0, 0);
3918
3919 vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
3920 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
3921 }
3922
its_vpe_invall(struct its_vpe * vpe)3923 static void its_vpe_invall(struct its_vpe *vpe)
3924 {
3925 struct its_node *its;
3926
3927 list_for_each_entry(its, &its_nodes, entry) {
3928 if (!is_v4(its))
3929 continue;
3930
3931 if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
3932 continue;
3933
3934 /*
3935 * Sending a VINVALL to a single ITS is enough, as all
3936 * we need is to reach the redistributors.
3937 */
3938 its_send_vinvall(its, vpe);
3939 return;
3940 }
3941 }
3942
its_vpe_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)3943 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
3944 {
3945 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3946 struct its_cmd_info *info = vcpu_info;
3947
3948 switch (info->cmd_type) {
3949 case SCHEDULE_VPE:
3950 its_vpe_schedule(vpe);
3951 return 0;
3952
3953 case DESCHEDULE_VPE:
3954 its_vpe_deschedule(vpe);
3955 return 0;
3956
3957 case COMMIT_VPE:
3958 its_wait_vpt_parse_complete();
3959 return 0;
3960
3961 case INVALL_VPE:
3962 its_vpe_invall(vpe);
3963 return 0;
3964
3965 default:
3966 return -EINVAL;
3967 }
3968 }
3969
its_vpe_send_cmd(struct its_vpe * vpe,void (* cmd)(struct its_device *,u32))3970 static void its_vpe_send_cmd(struct its_vpe *vpe,
3971 void (*cmd)(struct its_device *, u32))
3972 {
3973 unsigned long flags;
3974
3975 raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
3976
3977 its_vpe_db_proxy_map_locked(vpe);
3978 cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
3979
3980 raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
3981 }
3982
its_vpe_send_inv(struct irq_data * d)3983 static void its_vpe_send_inv(struct irq_data *d)
3984 {
3985 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3986
3987 if (gic_rdists->has_direct_lpi) {
3988 void __iomem *rdbase;
3989
3990 /* Target the redistributor this VPE is currently known on */
3991 raw_spin_lock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3992 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
3993 gic_write_lpir(d->parent_data->hwirq, rdbase + GICR_INVLPIR);
3994 wait_for_syncr(rdbase);
3995 raw_spin_unlock(&gic_data_rdist_cpu(vpe->col_idx)->rd_lock);
3996 } else {
3997 its_vpe_send_cmd(vpe, its_send_inv);
3998 }
3999 }
4000
its_vpe_mask_irq(struct irq_data * d)4001 static void its_vpe_mask_irq(struct irq_data *d)
4002 {
4003 /*
4004 * We need to unmask the LPI, which is described by the parent
4005 * irq_data. Instead of calling into the parent (which won't
4006 * exactly do the right thing, let's simply use the
4007 * parent_data pointer. Yes, I'm naughty.
4008 */
4009 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4010 its_vpe_send_inv(d);
4011 }
4012
its_vpe_unmask_irq(struct irq_data * d)4013 static void its_vpe_unmask_irq(struct irq_data *d)
4014 {
4015 /* Same hack as above... */
4016 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4017 its_vpe_send_inv(d);
4018 }
4019
its_vpe_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)4020 static int its_vpe_set_irqchip_state(struct irq_data *d,
4021 enum irqchip_irq_state which,
4022 bool state)
4023 {
4024 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4025
4026 if (which != IRQCHIP_STATE_PENDING)
4027 return -EINVAL;
4028
4029 if (gic_rdists->has_direct_lpi) {
4030 void __iomem *rdbase;
4031
4032 rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
4033 if (state) {
4034 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
4035 } else {
4036 gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
4037 wait_for_syncr(rdbase);
4038 }
4039 } else {
4040 if (state)
4041 its_vpe_send_cmd(vpe, its_send_int);
4042 else
4043 its_vpe_send_cmd(vpe, its_send_clear);
4044 }
4045
4046 return 0;
4047 }
4048
its_vpe_retrigger(struct irq_data * d)4049 static int its_vpe_retrigger(struct irq_data *d)
4050 {
4051 return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
4052 }
4053
4054 static struct irq_chip its_vpe_irq_chip = {
4055 .name = "GICv4-vpe",
4056 .irq_mask = its_vpe_mask_irq,
4057 .irq_unmask = its_vpe_unmask_irq,
4058 .irq_eoi = irq_chip_eoi_parent,
4059 .irq_set_affinity = its_vpe_set_affinity,
4060 .irq_retrigger = its_vpe_retrigger,
4061 .irq_set_irqchip_state = its_vpe_set_irqchip_state,
4062 .irq_set_vcpu_affinity = its_vpe_set_vcpu_affinity,
4063 };
4064
find_4_1_its(void)4065 static struct its_node *find_4_1_its(void)
4066 {
4067 static struct its_node *its = NULL;
4068
4069 if (!its) {
4070 list_for_each_entry(its, &its_nodes, entry) {
4071 if (is_v4_1(its))
4072 return its;
4073 }
4074
4075 /* Oops? */
4076 its = NULL;
4077 }
4078
4079 return its;
4080 }
4081
its_vpe_4_1_send_inv(struct irq_data * d)4082 static void its_vpe_4_1_send_inv(struct irq_data *d)
4083 {
4084 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4085 struct its_node *its;
4086
4087 /*
4088 * GICv4.1 wants doorbells to be invalidated using the
4089 * INVDB command in order to be broadcast to all RDs. Send
4090 * it to the first valid ITS, and let the HW do its magic.
4091 */
4092 its = find_4_1_its();
4093 if (its)
4094 its_send_invdb(its, vpe);
4095 }
4096
its_vpe_4_1_mask_irq(struct irq_data * d)4097 static void its_vpe_4_1_mask_irq(struct irq_data *d)
4098 {
4099 lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
4100 its_vpe_4_1_send_inv(d);
4101 }
4102
its_vpe_4_1_unmask_irq(struct irq_data * d)4103 static void its_vpe_4_1_unmask_irq(struct irq_data *d)
4104 {
4105 lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
4106 its_vpe_4_1_send_inv(d);
4107 }
4108
its_vpe_4_1_schedule(struct its_vpe * vpe,struct its_cmd_info * info)4109 static void its_vpe_4_1_schedule(struct its_vpe *vpe,
4110 struct its_cmd_info *info)
4111 {
4112 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4113 u64 val = 0;
4114
4115 /* Schedule the VPE */
4116 val |= GICR_VPENDBASER_Valid;
4117 val |= info->g0en ? GICR_VPENDBASER_4_1_VGRP0EN : 0;
4118 val |= info->g1en ? GICR_VPENDBASER_4_1_VGRP1EN : 0;
4119 val |= FIELD_PREP(GICR_VPENDBASER_4_1_VPEID, vpe->vpe_id);
4120
4121 gicr_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
4122 }
4123
its_vpe_4_1_deschedule(struct its_vpe * vpe,struct its_cmd_info * info)4124 static void its_vpe_4_1_deschedule(struct its_vpe *vpe,
4125 struct its_cmd_info *info)
4126 {
4127 void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
4128 u64 val;
4129
4130 if (info->req_db) {
4131 unsigned long flags;
4132
4133 /*
4134 * vPE is going to block: make the vPE non-resident with
4135 * PendingLast clear and DB set. The GIC guarantees that if
4136 * we read-back PendingLast clear, then a doorbell will be
4137 * delivered when an interrupt comes.
4138 *
4139 * Note the locking to deal with the concurrent update of
4140 * pending_last from the doorbell interrupt handler that can
4141 * run concurrently.
4142 */
4143 raw_spin_lock_irqsave(&vpe->vpe_lock, flags);
4144 val = its_clear_vpend_valid(vlpi_base,
4145 GICR_VPENDBASER_PendingLast,
4146 GICR_VPENDBASER_4_1_DB);
4147 vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
4148 raw_spin_unlock_irqrestore(&vpe->vpe_lock, flags);
4149 } else {
4150 /*
4151 * We're not blocking, so just make the vPE non-resident
4152 * with PendingLast set, indicating that we'll be back.
4153 */
4154 val = its_clear_vpend_valid(vlpi_base,
4155 0,
4156 GICR_VPENDBASER_PendingLast);
4157 vpe->pending_last = true;
4158 }
4159 }
4160
its_vpe_4_1_invall(struct its_vpe * vpe)4161 static void its_vpe_4_1_invall(struct its_vpe *vpe)
4162 {
4163 void __iomem *rdbase;
4164 unsigned long flags;
4165 u64 val;
4166 int cpu;
4167
4168 val = GICR_INVALLR_V;
4169 val |= FIELD_PREP(GICR_INVALLR_VPEID, vpe->vpe_id);
4170
4171 /* Target the redistributor this vPE is currently known on */
4172 cpu = vpe_to_cpuid_lock(vpe, &flags);
4173 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4174 rdbase = per_cpu_ptr(gic_rdists->rdist, cpu)->rd_base;
4175 gic_write_lpir(val, rdbase + GICR_INVALLR);
4176
4177 wait_for_syncr(rdbase);
4178 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4179 vpe_to_cpuid_unlock(vpe, flags);
4180 }
4181
its_vpe_4_1_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4182 static int its_vpe_4_1_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4183 {
4184 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4185 struct its_cmd_info *info = vcpu_info;
4186
4187 switch (info->cmd_type) {
4188 case SCHEDULE_VPE:
4189 its_vpe_4_1_schedule(vpe, info);
4190 return 0;
4191
4192 case DESCHEDULE_VPE:
4193 its_vpe_4_1_deschedule(vpe, info);
4194 return 0;
4195
4196 case COMMIT_VPE:
4197 its_wait_vpt_parse_complete();
4198 return 0;
4199
4200 case INVALL_VPE:
4201 its_vpe_4_1_invall(vpe);
4202 return 0;
4203
4204 default:
4205 return -EINVAL;
4206 }
4207 }
4208
4209 static struct irq_chip its_vpe_4_1_irq_chip = {
4210 .name = "GICv4.1-vpe",
4211 .irq_mask = its_vpe_4_1_mask_irq,
4212 .irq_unmask = its_vpe_4_1_unmask_irq,
4213 .irq_eoi = irq_chip_eoi_parent,
4214 .irq_set_affinity = its_vpe_set_affinity,
4215 .irq_set_vcpu_affinity = its_vpe_4_1_set_vcpu_affinity,
4216 };
4217
its_configure_sgi(struct irq_data * d,bool clear)4218 static void its_configure_sgi(struct irq_data *d, bool clear)
4219 {
4220 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4221 struct its_cmd_desc desc;
4222
4223 desc.its_vsgi_cmd.vpe = vpe;
4224 desc.its_vsgi_cmd.sgi = d->hwirq;
4225 desc.its_vsgi_cmd.priority = vpe->sgi_config[d->hwirq].priority;
4226 desc.its_vsgi_cmd.enable = vpe->sgi_config[d->hwirq].enabled;
4227 desc.its_vsgi_cmd.group = vpe->sgi_config[d->hwirq].group;
4228 desc.its_vsgi_cmd.clear = clear;
4229
4230 /*
4231 * GICv4.1 allows us to send VSGI commands to any ITS as long as the
4232 * destination VPE is mapped there. Since we map them eagerly at
4233 * activation time, we're pretty sure the first GICv4.1 ITS will do.
4234 */
4235 its_send_single_vcommand(find_4_1_its(), its_build_vsgi_cmd, &desc);
4236 }
4237
its_sgi_mask_irq(struct irq_data * d)4238 static void its_sgi_mask_irq(struct irq_data *d)
4239 {
4240 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4241
4242 vpe->sgi_config[d->hwirq].enabled = false;
4243 its_configure_sgi(d, false);
4244 }
4245
its_sgi_unmask_irq(struct irq_data * d)4246 static void its_sgi_unmask_irq(struct irq_data *d)
4247 {
4248 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4249
4250 vpe->sgi_config[d->hwirq].enabled = true;
4251 its_configure_sgi(d, false);
4252 }
4253
its_sgi_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)4254 static int its_sgi_set_affinity(struct irq_data *d,
4255 const struct cpumask *mask_val,
4256 bool force)
4257 {
4258 /*
4259 * There is no notion of affinity for virtual SGIs, at least
4260 * not on the host (since they can only be targetting a vPE).
4261 * Tell the kernel we've done whatever it asked for.
4262 */
4263 irq_data_update_effective_affinity(d, mask_val);
4264 return IRQ_SET_MASK_OK;
4265 }
4266
its_sgi_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)4267 static int its_sgi_set_irqchip_state(struct irq_data *d,
4268 enum irqchip_irq_state which,
4269 bool state)
4270 {
4271 if (which != IRQCHIP_STATE_PENDING)
4272 return -EINVAL;
4273
4274 if (state) {
4275 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4276 struct its_node *its = find_4_1_its();
4277 u64 val;
4278
4279 val = FIELD_PREP(GITS_SGIR_VPEID, vpe->vpe_id);
4280 val |= FIELD_PREP(GITS_SGIR_VINTID, d->hwirq);
4281 writeq_relaxed(val, its->sgir_base + GITS_SGIR - SZ_128K);
4282 } else {
4283 its_configure_sgi(d, true);
4284 }
4285
4286 return 0;
4287 }
4288
its_sgi_get_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool * val)4289 static int its_sgi_get_irqchip_state(struct irq_data *d,
4290 enum irqchip_irq_state which, bool *val)
4291 {
4292 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4293 void __iomem *base;
4294 unsigned long flags;
4295 u32 count = 1000000; /* 1s! */
4296 u32 status;
4297 int cpu;
4298
4299 if (which != IRQCHIP_STATE_PENDING)
4300 return -EINVAL;
4301
4302 /*
4303 * Locking galore! We can race against two different events:
4304 *
4305 * - Concurent vPE affinity change: we must make sure it cannot
4306 * happen, or we'll talk to the wrong redistributor. This is
4307 * identical to what happens with vLPIs.
4308 *
4309 * - Concurrent VSGIPENDR access: As it involves accessing two
4310 * MMIO registers, this must be made atomic one way or another.
4311 */
4312 cpu = vpe_to_cpuid_lock(vpe, &flags);
4313 raw_spin_lock(&gic_data_rdist_cpu(cpu)->rd_lock);
4314 base = gic_data_rdist_cpu(cpu)->rd_base + SZ_128K;
4315 writel_relaxed(vpe->vpe_id, base + GICR_VSGIR);
4316 do {
4317 status = readl_relaxed(base + GICR_VSGIPENDR);
4318 if (!(status & GICR_VSGIPENDR_BUSY))
4319 goto out;
4320
4321 count--;
4322 if (!count) {
4323 pr_err_ratelimited("Unable to get SGI status\n");
4324 goto out;
4325 }
4326 cpu_relax();
4327 udelay(1);
4328 } while (count);
4329
4330 out:
4331 raw_spin_unlock(&gic_data_rdist_cpu(cpu)->rd_lock);
4332 vpe_to_cpuid_unlock(vpe, flags);
4333
4334 if (!count)
4335 return -ENXIO;
4336
4337 *val = !!(status & (1 << d->hwirq));
4338
4339 return 0;
4340 }
4341
its_sgi_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)4342 static int its_sgi_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
4343 {
4344 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4345 struct its_cmd_info *info = vcpu_info;
4346
4347 switch (info->cmd_type) {
4348 case PROP_UPDATE_VSGI:
4349 vpe->sgi_config[d->hwirq].priority = info->priority;
4350 vpe->sgi_config[d->hwirq].group = info->group;
4351 its_configure_sgi(d, false);
4352 return 0;
4353
4354 default:
4355 return -EINVAL;
4356 }
4357 }
4358
4359 static struct irq_chip its_sgi_irq_chip = {
4360 .name = "GICv4.1-sgi",
4361 .irq_mask = its_sgi_mask_irq,
4362 .irq_unmask = its_sgi_unmask_irq,
4363 .irq_set_affinity = its_sgi_set_affinity,
4364 .irq_set_irqchip_state = its_sgi_set_irqchip_state,
4365 .irq_get_irqchip_state = its_sgi_get_irqchip_state,
4366 .irq_set_vcpu_affinity = its_sgi_set_vcpu_affinity,
4367 };
4368
its_sgi_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4369 static int its_sgi_irq_domain_alloc(struct irq_domain *domain,
4370 unsigned int virq, unsigned int nr_irqs,
4371 void *args)
4372 {
4373 struct its_vpe *vpe = args;
4374 int i;
4375
4376 /* Yes, we do want 16 SGIs */
4377 WARN_ON(nr_irqs != 16);
4378
4379 for (i = 0; i < 16; i++) {
4380 vpe->sgi_config[i].priority = 0;
4381 vpe->sgi_config[i].enabled = false;
4382 vpe->sgi_config[i].group = false;
4383
4384 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4385 &its_sgi_irq_chip, vpe);
4386 irq_set_status_flags(virq + i, IRQ_DISABLE_UNLAZY);
4387 }
4388
4389 return 0;
4390 }
4391
its_sgi_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4392 static void its_sgi_irq_domain_free(struct irq_domain *domain,
4393 unsigned int virq,
4394 unsigned int nr_irqs)
4395 {
4396 /* Nothing to do */
4397 }
4398
its_sgi_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4399 static int its_sgi_irq_domain_activate(struct irq_domain *domain,
4400 struct irq_data *d, bool reserve)
4401 {
4402 /* Write out the initial SGI configuration */
4403 its_configure_sgi(d, false);
4404 return 0;
4405 }
4406
its_sgi_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4407 static void its_sgi_irq_domain_deactivate(struct irq_domain *domain,
4408 struct irq_data *d)
4409 {
4410 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4411
4412 /*
4413 * The VSGI command is awkward:
4414 *
4415 * - To change the configuration, CLEAR must be set to false,
4416 * leaving the pending bit unchanged.
4417 * - To clear the pending bit, CLEAR must be set to true, leaving
4418 * the configuration unchanged.
4419 *
4420 * You just can't do both at once, hence the two commands below.
4421 */
4422 vpe->sgi_config[d->hwirq].enabled = false;
4423 its_configure_sgi(d, false);
4424 its_configure_sgi(d, true);
4425 }
4426
4427 static const struct irq_domain_ops its_sgi_domain_ops = {
4428 .alloc = its_sgi_irq_domain_alloc,
4429 .free = its_sgi_irq_domain_free,
4430 .activate = its_sgi_irq_domain_activate,
4431 .deactivate = its_sgi_irq_domain_deactivate,
4432 };
4433
its_vpe_id_alloc(void)4434 static int its_vpe_id_alloc(void)
4435 {
4436 return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
4437 }
4438
its_vpe_id_free(u16 id)4439 static void its_vpe_id_free(u16 id)
4440 {
4441 ida_simple_remove(&its_vpeid_ida, id);
4442 }
4443
its_vpe_init(struct its_vpe * vpe)4444 static int its_vpe_init(struct its_vpe *vpe)
4445 {
4446 struct page *vpt_page;
4447 int vpe_id;
4448
4449 /* Allocate vpe_id */
4450 vpe_id = its_vpe_id_alloc();
4451 if (vpe_id < 0)
4452 return vpe_id;
4453
4454 /* Allocate VPT */
4455 vpt_page = its_allocate_pending_table(GFP_KERNEL);
4456 if (!vpt_page) {
4457 its_vpe_id_free(vpe_id);
4458 return -ENOMEM;
4459 }
4460
4461 if (!its_alloc_vpe_table(vpe_id)) {
4462 its_vpe_id_free(vpe_id);
4463 its_free_pending_table(vpt_page);
4464 return -ENOMEM;
4465 }
4466
4467 raw_spin_lock_init(&vpe->vpe_lock);
4468 vpe->vpe_id = vpe_id;
4469 vpe->vpt_page = vpt_page;
4470 if (gic_rdists->has_rvpeid)
4471 atomic_set(&vpe->vmapp_count, 0);
4472 else
4473 vpe->vpe_proxy_event = -1;
4474
4475 return 0;
4476 }
4477
its_vpe_teardown(struct its_vpe * vpe)4478 static void its_vpe_teardown(struct its_vpe *vpe)
4479 {
4480 its_vpe_db_proxy_unmap(vpe);
4481 its_vpe_id_free(vpe->vpe_id);
4482 its_free_pending_table(vpe->vpt_page);
4483 }
4484
its_vpe_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)4485 static void its_vpe_irq_domain_free(struct irq_domain *domain,
4486 unsigned int virq,
4487 unsigned int nr_irqs)
4488 {
4489 struct its_vm *vm = domain->host_data;
4490 int i;
4491
4492 irq_domain_free_irqs_parent(domain, virq, nr_irqs);
4493
4494 for (i = 0; i < nr_irqs; i++) {
4495 struct irq_data *data = irq_domain_get_irq_data(domain,
4496 virq + i);
4497 struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
4498
4499 BUG_ON(vm != vpe->its_vm);
4500
4501 clear_bit(data->hwirq, vm->db_bitmap);
4502 its_vpe_teardown(vpe);
4503 irq_domain_reset_irq_data(data);
4504 }
4505
4506 if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
4507 its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
4508 its_free_prop_table(vm->vprop_page);
4509 }
4510 }
4511
its_vpe_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)4512 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
4513 unsigned int nr_irqs, void *args)
4514 {
4515 struct irq_chip *irqchip = &its_vpe_irq_chip;
4516 struct its_vm *vm = args;
4517 unsigned long *bitmap;
4518 struct page *vprop_page;
4519 int base, nr_ids, i, err = 0;
4520
4521 BUG_ON(!vm);
4522
4523 bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
4524 if (!bitmap)
4525 return -ENOMEM;
4526
4527 if (nr_ids < nr_irqs) {
4528 its_lpi_free(bitmap, base, nr_ids);
4529 return -ENOMEM;
4530 }
4531
4532 vprop_page = its_allocate_prop_table(GFP_KERNEL);
4533 if (!vprop_page) {
4534 its_lpi_free(bitmap, base, nr_ids);
4535 return -ENOMEM;
4536 }
4537
4538 vm->db_bitmap = bitmap;
4539 vm->db_lpi_base = base;
4540 vm->nr_db_lpis = nr_ids;
4541 vm->vprop_page = vprop_page;
4542
4543 if (gic_rdists->has_rvpeid)
4544 irqchip = &its_vpe_4_1_irq_chip;
4545
4546 for (i = 0; i < nr_irqs; i++) {
4547 vm->vpes[i]->vpe_db_lpi = base + i;
4548 err = its_vpe_init(vm->vpes[i]);
4549 if (err)
4550 break;
4551 err = its_irq_gic_domain_alloc(domain, virq + i,
4552 vm->vpes[i]->vpe_db_lpi);
4553 if (err)
4554 break;
4555 irq_domain_set_hwirq_and_chip(domain, virq + i, i,
4556 irqchip, vm->vpes[i]);
4557 set_bit(i, bitmap);
4558 }
4559
4560 if (err) {
4561 if (i > 0)
4562 its_vpe_irq_domain_free(domain, virq, i);
4563
4564 its_lpi_free(bitmap, base, nr_ids);
4565 its_free_prop_table(vprop_page);
4566 }
4567
4568 return err;
4569 }
4570
its_vpe_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)4571 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
4572 struct irq_data *d, bool reserve)
4573 {
4574 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4575 struct its_node *its;
4576
4577 /*
4578 * If we use the list map, we issue VMAPP on demand... Unless
4579 * we're on a GICv4.1 and we eagerly map the VPE on all ITSs
4580 * so that VSGIs can work.
4581 */
4582 if (!gic_requires_eager_mapping())
4583 return 0;
4584
4585 /* Map the VPE to the first possible CPU */
4586 vpe->col_idx = cpumask_first(cpu_online_mask);
4587
4588 list_for_each_entry(its, &its_nodes, entry) {
4589 if (!is_v4(its))
4590 continue;
4591
4592 its_send_vmapp(its, vpe, true);
4593 its_send_vinvall(its, vpe);
4594 }
4595
4596 irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
4597
4598 return 0;
4599 }
4600
its_vpe_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)4601 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
4602 struct irq_data *d)
4603 {
4604 struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
4605 struct its_node *its;
4606
4607 /*
4608 * If we use the list map on GICv4.0, we unmap the VPE once no
4609 * VLPIs are associated with the VM.
4610 */
4611 if (!gic_requires_eager_mapping())
4612 return;
4613
4614 list_for_each_entry(its, &its_nodes, entry) {
4615 if (!is_v4(its))
4616 continue;
4617
4618 its_send_vmapp(its, vpe, false);
4619 }
4620 }
4621
4622 static const struct irq_domain_ops its_vpe_domain_ops = {
4623 .alloc = its_vpe_irq_domain_alloc,
4624 .free = its_vpe_irq_domain_free,
4625 .activate = its_vpe_irq_domain_activate,
4626 .deactivate = its_vpe_irq_domain_deactivate,
4627 };
4628
its_force_quiescent(void __iomem * base)4629 static int its_force_quiescent(void __iomem *base)
4630 {
4631 u32 count = 1000000; /* 1s */
4632 u32 val;
4633
4634 val = readl_relaxed(base + GITS_CTLR);
4635 /*
4636 * GIC architecture specification requires the ITS to be both
4637 * disabled and quiescent for writes to GITS_BASER<n> or
4638 * GITS_CBASER to not have UNPREDICTABLE results.
4639 */
4640 if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
4641 return 0;
4642
4643 /* Disable the generation of all interrupts to this ITS */
4644 val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
4645 writel_relaxed(val, base + GITS_CTLR);
4646
4647 /* Poll GITS_CTLR and wait until ITS becomes quiescent */
4648 while (1) {
4649 val = readl_relaxed(base + GITS_CTLR);
4650 if (val & GITS_CTLR_QUIESCENT)
4651 return 0;
4652
4653 count--;
4654 if (!count)
4655 return -EBUSY;
4656
4657 cpu_relax();
4658 udelay(1);
4659 }
4660 }
4661
its_enable_quirk_cavium_22375(void * data)4662 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
4663 {
4664 struct its_node *its = data;
4665
4666 /* erratum 22375: only alloc 8MB table size (20 bits) */
4667 its->typer &= ~GITS_TYPER_DEVBITS;
4668 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, 20 - 1);
4669 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
4670
4671 return true;
4672 }
4673
its_enable_quirk_cavium_23144(void * data)4674 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
4675 {
4676 struct its_node *its = data;
4677
4678 its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
4679
4680 return true;
4681 }
4682
its_enable_quirk_qdf2400_e0065(void * data)4683 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
4684 {
4685 struct its_node *its = data;
4686
4687 /* On QDF2400, the size of the ITE is 16Bytes */
4688 its->typer &= ~GITS_TYPER_ITT_ENTRY_SIZE;
4689 its->typer |= FIELD_PREP(GITS_TYPER_ITT_ENTRY_SIZE, 16 - 1);
4690
4691 return true;
4692 }
4693
its_irq_get_msi_base_pre_its(struct its_device * its_dev)4694 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
4695 {
4696 struct its_node *its = its_dev->its;
4697
4698 /*
4699 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
4700 * which maps 32-bit writes targeted at a separate window of
4701 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
4702 * with device ID taken from bits [device_id_bits + 1:2] of
4703 * the window offset.
4704 */
4705 return its->pre_its_base + (its_dev->device_id << 2);
4706 }
4707
its_enable_quirk_socionext_synquacer(void * data)4708 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
4709 {
4710 struct its_node *its = data;
4711 u32 pre_its_window[2];
4712 u32 ids;
4713
4714 if (!fwnode_property_read_u32_array(its->fwnode_handle,
4715 "socionext,synquacer-pre-its",
4716 pre_its_window,
4717 ARRAY_SIZE(pre_its_window))) {
4718
4719 its->pre_its_base = pre_its_window[0];
4720 its->get_msi_base = its_irq_get_msi_base_pre_its;
4721
4722 ids = ilog2(pre_its_window[1]) - 2;
4723 if (device_ids(its) > ids) {
4724 its->typer &= ~GITS_TYPER_DEVBITS;
4725 its->typer |= FIELD_PREP(GITS_TYPER_DEVBITS, ids - 1);
4726 }
4727
4728 /* the pre-ITS breaks isolation, so disable MSI remapping */
4729 its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
4730 return true;
4731 }
4732 return false;
4733 }
4734
its_enable_quirk_hip07_161600802(void * data)4735 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
4736 {
4737 struct its_node *its = data;
4738
4739 /*
4740 * Hip07 insists on using the wrong address for the VLPI
4741 * page. Trick it into doing the right thing...
4742 */
4743 its->vlpi_redist_offset = SZ_128K;
4744 return true;
4745 }
4746
4747 static const struct gic_quirk its_quirks[] = {
4748 #ifdef CONFIG_CAVIUM_ERRATUM_22375
4749 {
4750 .desc = "ITS: Cavium errata 22375, 24313",
4751 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4752 .mask = 0xffff0fff,
4753 .init = its_enable_quirk_cavium_22375,
4754 },
4755 #endif
4756 #ifdef CONFIG_CAVIUM_ERRATUM_23144
4757 {
4758 .desc = "ITS: Cavium erratum 23144",
4759 .iidr = 0xa100034c, /* ThunderX pass 1.x */
4760 .mask = 0xffff0fff,
4761 .init = its_enable_quirk_cavium_23144,
4762 },
4763 #endif
4764 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
4765 {
4766 .desc = "ITS: QDF2400 erratum 0065",
4767 .iidr = 0x00001070, /* QDF2400 ITS rev 1.x */
4768 .mask = 0xffffffff,
4769 .init = its_enable_quirk_qdf2400_e0065,
4770 },
4771 #endif
4772 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
4773 {
4774 /*
4775 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
4776 * implementation, but with a 'pre-ITS' added that requires
4777 * special handling in software.
4778 */
4779 .desc = "ITS: Socionext Synquacer pre-ITS",
4780 .iidr = 0x0001143b,
4781 .mask = 0xffffffff,
4782 .init = its_enable_quirk_socionext_synquacer,
4783 },
4784 #endif
4785 #ifdef CONFIG_HISILICON_ERRATUM_161600802
4786 {
4787 .desc = "ITS: Hip07 erratum 161600802",
4788 .iidr = 0x00000004,
4789 .mask = 0xffffffff,
4790 .init = its_enable_quirk_hip07_161600802,
4791 },
4792 #endif
4793 {
4794 }
4795 };
4796
its_enable_quirks(struct its_node * its)4797 static void its_enable_quirks(struct its_node *its)
4798 {
4799 u32 iidr = readl_relaxed(its->base + GITS_IIDR);
4800
4801 gic_enable_quirks(iidr, its_quirks, its);
4802 }
4803
its_save_disable(void)4804 static int its_save_disable(void)
4805 {
4806 struct its_node *its;
4807 int err = 0;
4808
4809 raw_spin_lock(&its_lock);
4810 list_for_each_entry(its, &its_nodes, entry) {
4811 void __iomem *base;
4812
4813 base = its->base;
4814 its->ctlr_save = readl_relaxed(base + GITS_CTLR);
4815 err = its_force_quiescent(base);
4816 if (err) {
4817 pr_err("ITS@%pa: failed to quiesce: %d\n",
4818 &its->phys_base, err);
4819 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4820 goto err;
4821 }
4822
4823 its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
4824 }
4825
4826 err:
4827 if (err) {
4828 list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
4829 void __iomem *base;
4830
4831 base = its->base;
4832 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4833 }
4834 }
4835 raw_spin_unlock(&its_lock);
4836
4837 return err;
4838 }
4839
its_restore_enable(void)4840 static void its_restore_enable(void)
4841 {
4842 struct its_node *its;
4843 int ret;
4844
4845 raw_spin_lock(&its_lock);
4846 list_for_each_entry(its, &its_nodes, entry) {
4847 void __iomem *base;
4848 int i;
4849
4850 base = its->base;
4851
4852 /*
4853 * Make sure that the ITS is disabled. If it fails to quiesce,
4854 * don't restore it since writing to CBASER or BASER<n>
4855 * registers is undefined according to the GIC v3 ITS
4856 * Specification.
4857 *
4858 * Firmware resuming with the ITS enabled is terminally broken.
4859 */
4860 WARN_ON(readl_relaxed(base + GITS_CTLR) & GITS_CTLR_ENABLE);
4861 ret = its_force_quiescent(base);
4862 if (ret) {
4863 pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
4864 &its->phys_base, ret);
4865 continue;
4866 }
4867
4868 gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
4869
4870 /*
4871 * Writing CBASER resets CREADR to 0, so make CWRITER and
4872 * cmd_write line up with it.
4873 */
4874 its->cmd_write = its->cmd_base;
4875 gits_write_cwriter(0, base + GITS_CWRITER);
4876
4877 /* Restore GITS_BASER from the value cache. */
4878 for (i = 0; i < GITS_BASER_NR_REGS; i++) {
4879 struct its_baser *baser = &its->tables[i];
4880
4881 if (!(baser->val & GITS_BASER_VALID))
4882 continue;
4883
4884 its_write_baser(its, baser, baser->val);
4885 }
4886 writel_relaxed(its->ctlr_save, base + GITS_CTLR);
4887
4888 /*
4889 * Reinit the collection if it's stored in the ITS. This is
4890 * indicated by the col_id being less than the HCC field.
4891 * CID < HCC as specified in the GIC v3 Documentation.
4892 */
4893 if (its->collections[smp_processor_id()].col_id <
4894 GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
4895 its_cpu_init_collection(its);
4896 }
4897 raw_spin_unlock(&its_lock);
4898 }
4899
4900 static struct syscore_ops its_syscore_ops = {
4901 .suspend = its_save_disable,
4902 .resume = its_restore_enable,
4903 };
4904
its_init_domain(struct fwnode_handle * handle,struct its_node * its)4905 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
4906 {
4907 struct irq_domain *inner_domain;
4908 struct msi_domain_info *info;
4909
4910 info = kzalloc(sizeof(*info), GFP_KERNEL);
4911 if (!info)
4912 return -ENOMEM;
4913
4914 inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
4915 if (!inner_domain) {
4916 kfree(info);
4917 return -ENOMEM;
4918 }
4919
4920 inner_domain->parent = its_parent;
4921 irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
4922 inner_domain->flags |= its->msi_domain_flags;
4923 info->ops = &its_msi_domain_ops;
4924 info->data = its;
4925 inner_domain->host_data = info;
4926
4927 return 0;
4928 }
4929
its_init_vpe_domain(void)4930 static int its_init_vpe_domain(void)
4931 {
4932 struct its_node *its;
4933 u32 devid;
4934 int entries;
4935
4936 if (gic_rdists->has_direct_lpi) {
4937 pr_info("ITS: Using DirectLPI for VPE invalidation\n");
4938 return 0;
4939 }
4940
4941 /* Any ITS will do, even if not v4 */
4942 its = list_first_entry(&its_nodes, struct its_node, entry);
4943
4944 entries = roundup_pow_of_two(nr_cpu_ids);
4945 vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
4946 GFP_KERNEL);
4947 if (!vpe_proxy.vpes) {
4948 pr_err("ITS: Can't allocate GICv4 proxy device array\n");
4949 return -ENOMEM;
4950 }
4951
4952 /* Use the last possible DevID */
4953 devid = GENMASK(device_ids(its) - 1, 0);
4954 vpe_proxy.dev = its_create_device(its, devid, entries, false);
4955 if (!vpe_proxy.dev) {
4956 kfree(vpe_proxy.vpes);
4957 pr_err("ITS: Can't allocate GICv4 proxy device\n");
4958 return -ENOMEM;
4959 }
4960
4961 BUG_ON(entries > vpe_proxy.dev->nr_ites);
4962
4963 raw_spin_lock_init(&vpe_proxy.lock);
4964 vpe_proxy.next_victim = 0;
4965 pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
4966 devid, vpe_proxy.dev->nr_ites);
4967
4968 return 0;
4969 }
4970
its_compute_its_list_map(struct resource * res,void __iomem * its_base)4971 static int __init its_compute_its_list_map(struct resource *res,
4972 void __iomem *its_base)
4973 {
4974 int its_number;
4975 u32 ctlr;
4976
4977 /*
4978 * This is assumed to be done early enough that we're
4979 * guaranteed to be single-threaded, hence no
4980 * locking. Should this change, we should address
4981 * this.
4982 */
4983 its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
4984 if (its_number >= GICv4_ITS_LIST_MAX) {
4985 pr_err("ITS@%pa: No ITSList entry available!\n",
4986 &res->start);
4987 return -EINVAL;
4988 }
4989
4990 ctlr = readl_relaxed(its_base + GITS_CTLR);
4991 ctlr &= ~GITS_CTLR_ITS_NUMBER;
4992 ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
4993 writel_relaxed(ctlr, its_base + GITS_CTLR);
4994 ctlr = readl_relaxed(its_base + GITS_CTLR);
4995 if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
4996 its_number = ctlr & GITS_CTLR_ITS_NUMBER;
4997 its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
4998 }
4999
5000 if (test_and_set_bit(its_number, &its_list_map)) {
5001 pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
5002 &res->start, its_number);
5003 return -EINVAL;
5004 }
5005
5006 return its_number;
5007 }
5008
its_probe_one(struct resource * res,struct fwnode_handle * handle,int numa_node)5009 static int __init its_probe_one(struct resource *res,
5010 struct fwnode_handle *handle, int numa_node)
5011 {
5012 struct its_node *its;
5013 void __iomem *its_base;
5014 u32 val, ctlr;
5015 u64 baser, tmp, typer;
5016 struct page *page;
5017 int err;
5018 gfp_t gfp_flags;
5019
5020 its_base = ioremap(res->start, SZ_64K);
5021 if (!its_base) {
5022 pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
5023 return -ENOMEM;
5024 }
5025
5026 val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
5027 if (val != 0x30 && val != 0x40) {
5028 pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
5029 err = -ENODEV;
5030 goto out_unmap;
5031 }
5032
5033 err = its_force_quiescent(its_base);
5034 if (err) {
5035 pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
5036 goto out_unmap;
5037 }
5038
5039 pr_info("ITS %pR\n", res);
5040
5041 its = kzalloc(sizeof(*its), GFP_KERNEL);
5042 if (!its) {
5043 err = -ENOMEM;
5044 goto out_unmap;
5045 }
5046
5047 raw_spin_lock_init(&its->lock);
5048 mutex_init(&its->dev_alloc_lock);
5049 INIT_LIST_HEAD(&its->entry);
5050 INIT_LIST_HEAD(&its->its_device_list);
5051 typer = gic_read_typer(its_base + GITS_TYPER);
5052 its->typer = typer;
5053 its->base = its_base;
5054 its->phys_base = res->start;
5055 if (is_v4(its)) {
5056 if (!(typer & GITS_TYPER_VMOVP)) {
5057 err = its_compute_its_list_map(res, its_base);
5058 if (err < 0)
5059 goto out_free_its;
5060
5061 its->list_nr = err;
5062
5063 pr_info("ITS@%pa: Using ITS number %d\n",
5064 &res->start, err);
5065 } else {
5066 pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
5067 }
5068
5069 if (is_v4_1(its)) {
5070 u32 svpet = FIELD_GET(GITS_TYPER_SVPET, typer);
5071
5072 its->sgir_base = ioremap(res->start + SZ_128K, SZ_64K);
5073 if (!its->sgir_base) {
5074 err = -ENOMEM;
5075 goto out_free_its;
5076 }
5077
5078 its->mpidr = readl_relaxed(its_base + GITS_MPIDR);
5079
5080 pr_info("ITS@%pa: Using GICv4.1 mode %08x %08x\n",
5081 &res->start, its->mpidr, svpet);
5082 }
5083 }
5084
5085 its->numa_node = numa_node;
5086
5087 gfp_flags = GFP_KERNEL | __GFP_ZERO;
5088 if (of_machine_is_compatible("rockchip,rk3568") || of_machine_is_compatible("rockchip,rk3566"))
5089 gfp_flags |= GFP_DMA32;
5090 page = alloc_pages_node(its->numa_node, gfp_flags,
5091 get_order(ITS_CMD_QUEUE_SZ));
5092 if (!page) {
5093 err = -ENOMEM;
5094 goto out_unmap_sgir;
5095 }
5096 its->cmd_base = (void *)page_address(page);
5097 its->cmd_write = its->cmd_base;
5098 its->fwnode_handle = handle;
5099 its->get_msi_base = its_irq_get_msi_base;
5100 its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
5101
5102 its_enable_quirks(its);
5103
5104 err = its_alloc_tables(its);
5105 if (err)
5106 goto out_free_cmd;
5107
5108 err = its_alloc_collections(its);
5109 if (err)
5110 goto out_free_tables;
5111
5112 baser = (virt_to_phys(its->cmd_base) |
5113 GITS_CBASER_RaWaWb |
5114 GITS_CBASER_InnerShareable |
5115 (ITS_CMD_QUEUE_SZ / SZ_4K - 1) |
5116 GITS_CBASER_VALID);
5117
5118 gits_write_cbaser(baser, its->base + GITS_CBASER);
5119 tmp = gits_read_cbaser(its->base + GITS_CBASER);
5120
5121 if (IS_ENABLED(CONFIG_NO_GKI) &&
5122 (of_machine_is_compatible("rockchip,rk3568") ||
5123 of_machine_is_compatible("rockchip,rk3566") ||
5124 of_machine_is_compatible("rockchip,rk3588")))
5125 tmp &= ~GITS_CBASER_SHAREABILITY_MASK;
5126
5127 if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
5128 if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
5129 /*
5130 * The HW reports non-shareable, we must
5131 * remove the cacheability attributes as
5132 * well.
5133 */
5134 baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
5135 GITS_CBASER_CACHEABILITY_MASK);
5136 baser |= GITS_CBASER_nC;
5137 gits_write_cbaser(baser, its->base + GITS_CBASER);
5138 }
5139 pr_info("ITS: using cache flushing for cmd queue\n");
5140 its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
5141 }
5142
5143 gits_write_cwriter(0, its->base + GITS_CWRITER);
5144 ctlr = readl_relaxed(its->base + GITS_CTLR);
5145 ctlr |= GITS_CTLR_ENABLE;
5146 if (is_v4(its))
5147 ctlr |= GITS_CTLR_ImDe;
5148 writel_relaxed(ctlr, its->base + GITS_CTLR);
5149
5150 err = its_init_domain(handle, its);
5151 if (err)
5152 goto out_free_tables;
5153
5154 raw_spin_lock(&its_lock);
5155 list_add(&its->entry, &its_nodes);
5156 raw_spin_unlock(&its_lock);
5157
5158 return 0;
5159
5160 out_free_tables:
5161 its_free_tables(its);
5162 out_free_cmd:
5163 free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
5164 out_unmap_sgir:
5165 if (its->sgir_base)
5166 iounmap(its->sgir_base);
5167 out_free_its:
5168 kfree(its);
5169 out_unmap:
5170 iounmap(its_base);
5171 pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
5172 return err;
5173 }
5174
gic_rdists_supports_plpis(void)5175 static bool gic_rdists_supports_plpis(void)
5176 {
5177 return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
5178 }
5179
redist_disable_lpis(void)5180 static int redist_disable_lpis(void)
5181 {
5182 void __iomem *rbase = gic_data_rdist_rd_base();
5183 u64 timeout = USEC_PER_SEC;
5184 u64 val;
5185
5186 if (!gic_rdists_supports_plpis()) {
5187 pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
5188 return -ENXIO;
5189 }
5190
5191 val = readl_relaxed(rbase + GICR_CTLR);
5192 if (!(val & GICR_CTLR_ENABLE_LPIS))
5193 return 0;
5194
5195 /*
5196 * If coming via a CPU hotplug event, we don't need to disable
5197 * LPIs before trying to re-enable them. They are already
5198 * configured and all is well in the world.
5199 *
5200 * If running with preallocated tables, there is nothing to do.
5201 */
5202 if (gic_data_rdist()->lpi_enabled ||
5203 (gic_rdists->flags & RDIST_FLAGS_RD_TABLES_PREALLOCATED))
5204 return 0;
5205
5206 /*
5207 * From that point on, we only try to do some damage control.
5208 */
5209 pr_warn("GICv3: CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
5210 smp_processor_id());
5211 add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
5212
5213 /* Disable LPIs */
5214 val &= ~GICR_CTLR_ENABLE_LPIS;
5215 writel_relaxed(val, rbase + GICR_CTLR);
5216
5217 /* Make sure any change to GICR_CTLR is observable by the GIC */
5218 dsb(sy);
5219
5220 /*
5221 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
5222 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
5223 * Error out if we time out waiting for RWP to clear.
5224 */
5225 while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
5226 if (!timeout) {
5227 pr_err("CPU%d: Timeout while disabling LPIs\n",
5228 smp_processor_id());
5229 return -ETIMEDOUT;
5230 }
5231 udelay(1);
5232 timeout--;
5233 }
5234
5235 /*
5236 * After it has been written to 1, it is IMPLEMENTATION
5237 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
5238 * cleared to 0. Error out if clearing the bit failed.
5239 */
5240 if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
5241 pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
5242 return -EBUSY;
5243 }
5244
5245 return 0;
5246 }
5247
its_cpu_init(void)5248 int its_cpu_init(void)
5249 {
5250 if (!list_empty(&its_nodes)) {
5251 int ret;
5252
5253 ret = redist_disable_lpis();
5254 if (ret)
5255 return ret;
5256
5257 its_cpu_init_lpis();
5258 its_cpu_init_collections();
5259 }
5260
5261 return 0;
5262 }
5263
5264 static const struct of_device_id its_device_id[] = {
5265 { .compatible = "arm,gic-v3-its", },
5266 {},
5267 };
5268
its_of_probe(struct device_node * node)5269 static int __init its_of_probe(struct device_node *node)
5270 {
5271 struct device_node *np;
5272 struct resource res;
5273
5274 for (np = of_find_matching_node(node, its_device_id); np;
5275 np = of_find_matching_node(np, its_device_id)) {
5276 if (!of_device_is_available(np))
5277 continue;
5278 if (!of_property_read_bool(np, "msi-controller")) {
5279 pr_warn("%pOF: no msi-controller property, ITS ignored\n",
5280 np);
5281 continue;
5282 }
5283
5284 if (of_address_to_resource(np, 0, &res)) {
5285 pr_warn("%pOF: no regs?\n", np);
5286 continue;
5287 }
5288
5289 its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
5290 }
5291 return 0;
5292 }
5293
5294 #ifdef CONFIG_ACPI
5295
5296 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
5297
5298 #ifdef CONFIG_ACPI_NUMA
5299 struct its_srat_map {
5300 /* numa node id */
5301 u32 numa_node;
5302 /* GIC ITS ID */
5303 u32 its_id;
5304 };
5305
5306 static struct its_srat_map *its_srat_maps __initdata;
5307 static int its_in_srat __initdata;
5308
acpi_get_its_numa_node(u32 its_id)5309 static int __init acpi_get_its_numa_node(u32 its_id)
5310 {
5311 int i;
5312
5313 for (i = 0; i < its_in_srat; i++) {
5314 if (its_id == its_srat_maps[i].its_id)
5315 return its_srat_maps[i].numa_node;
5316 }
5317 return NUMA_NO_NODE;
5318 }
5319
gic_acpi_match_srat_its(union acpi_subtable_headers * header,const unsigned long end)5320 static int __init gic_acpi_match_srat_its(union acpi_subtable_headers *header,
5321 const unsigned long end)
5322 {
5323 return 0;
5324 }
5325
gic_acpi_parse_srat_its(union acpi_subtable_headers * header,const unsigned long end)5326 static int __init gic_acpi_parse_srat_its(union acpi_subtable_headers *header,
5327 const unsigned long end)
5328 {
5329 int node;
5330 struct acpi_srat_gic_its_affinity *its_affinity;
5331
5332 its_affinity = (struct acpi_srat_gic_its_affinity *)header;
5333 if (!its_affinity)
5334 return -EINVAL;
5335
5336 if (its_affinity->header.length < sizeof(*its_affinity)) {
5337 pr_err("SRAT: Invalid header length %d in ITS affinity\n",
5338 its_affinity->header.length);
5339 return -EINVAL;
5340 }
5341
5342 /*
5343 * Note that in theory a new proximity node could be created by this
5344 * entry as it is an SRAT resource allocation structure.
5345 * We do not currently support doing so.
5346 */
5347 node = pxm_to_node(its_affinity->proximity_domain);
5348
5349 if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
5350 pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
5351 return 0;
5352 }
5353
5354 its_srat_maps[its_in_srat].numa_node = node;
5355 its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
5356 its_in_srat++;
5357 pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
5358 its_affinity->proximity_domain, its_affinity->its_id, node);
5359
5360 return 0;
5361 }
5362
acpi_table_parse_srat_its(void)5363 static void __init acpi_table_parse_srat_its(void)
5364 {
5365 int count;
5366
5367 count = acpi_table_parse_entries(ACPI_SIG_SRAT,
5368 sizeof(struct acpi_table_srat),
5369 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5370 gic_acpi_match_srat_its, 0);
5371 if (count <= 0)
5372 return;
5373
5374 its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
5375 GFP_KERNEL);
5376 if (!its_srat_maps) {
5377 pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
5378 return;
5379 }
5380
5381 acpi_table_parse_entries(ACPI_SIG_SRAT,
5382 sizeof(struct acpi_table_srat),
5383 ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
5384 gic_acpi_parse_srat_its, 0);
5385 }
5386
5387 /* free the its_srat_maps after ITS probing */
acpi_its_srat_maps_free(void)5388 static void __init acpi_its_srat_maps_free(void)
5389 {
5390 kfree(its_srat_maps);
5391 }
5392 #else
acpi_table_parse_srat_its(void)5393 static void __init acpi_table_parse_srat_its(void) { }
acpi_get_its_numa_node(u32 its_id)5394 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
acpi_its_srat_maps_free(void)5395 static void __init acpi_its_srat_maps_free(void) { }
5396 #endif
5397
gic_acpi_parse_madt_its(union acpi_subtable_headers * header,const unsigned long end)5398 static int __init gic_acpi_parse_madt_its(union acpi_subtable_headers *header,
5399 const unsigned long end)
5400 {
5401 struct acpi_madt_generic_translator *its_entry;
5402 struct fwnode_handle *dom_handle;
5403 struct resource res;
5404 int err;
5405
5406 its_entry = (struct acpi_madt_generic_translator *)header;
5407 memset(&res, 0, sizeof(res));
5408 res.start = its_entry->base_address;
5409 res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
5410 res.flags = IORESOURCE_MEM;
5411
5412 dom_handle = irq_domain_alloc_fwnode(&res.start);
5413 if (!dom_handle) {
5414 pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
5415 &res.start);
5416 return -ENOMEM;
5417 }
5418
5419 err = iort_register_domain_token(its_entry->translation_id, res.start,
5420 dom_handle);
5421 if (err) {
5422 pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
5423 &res.start, its_entry->translation_id);
5424 goto dom_err;
5425 }
5426
5427 err = its_probe_one(&res, dom_handle,
5428 acpi_get_its_numa_node(its_entry->translation_id));
5429 if (!err)
5430 return 0;
5431
5432 iort_deregister_domain_token(its_entry->translation_id);
5433 dom_err:
5434 irq_domain_free_fwnode(dom_handle);
5435 return err;
5436 }
5437
its_acpi_probe(void)5438 static void __init its_acpi_probe(void)
5439 {
5440 acpi_table_parse_srat_its();
5441 acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
5442 gic_acpi_parse_madt_its, 0);
5443 acpi_its_srat_maps_free();
5444 }
5445 #else
its_acpi_probe(void)5446 static void __init its_acpi_probe(void) { }
5447 #endif
5448
its_init(struct fwnode_handle * handle,struct rdists * rdists,struct irq_domain * parent_domain)5449 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
5450 struct irq_domain *parent_domain)
5451 {
5452 struct device_node *of_node;
5453 struct its_node *its;
5454 bool has_v4 = false;
5455 bool has_v4_1 = false;
5456 int err;
5457
5458 gic_rdists = rdists;
5459
5460 its_parent = parent_domain;
5461 of_node = to_of_node(handle);
5462 if (of_node)
5463 its_of_probe(of_node);
5464 else
5465 its_acpi_probe();
5466
5467 if (list_empty(&its_nodes)) {
5468 pr_warn("ITS: No ITS available, not enabling LPIs\n");
5469 return -ENXIO;
5470 }
5471
5472 err = allocate_lpi_tables();
5473 if (err)
5474 return err;
5475
5476 list_for_each_entry(its, &its_nodes, entry) {
5477 has_v4 |= is_v4(its);
5478 has_v4_1 |= is_v4_1(its);
5479 }
5480
5481 /* Don't bother with inconsistent systems */
5482 if (WARN_ON(!has_v4_1 && rdists->has_rvpeid))
5483 rdists->has_rvpeid = false;
5484
5485 if (has_v4 & rdists->has_vlpis) {
5486 const struct irq_domain_ops *sgi_ops;
5487
5488 if (has_v4_1)
5489 sgi_ops = &its_sgi_domain_ops;
5490 else
5491 sgi_ops = NULL;
5492
5493 if (its_init_vpe_domain() ||
5494 its_init_v4(parent_domain, &its_vpe_domain_ops, sgi_ops)) {
5495 rdists->has_vlpis = false;
5496 pr_err("ITS: Disabling GICv4 support\n");
5497 }
5498 }
5499
5500 register_syscore_ops(&its_syscore_ops);
5501
5502 return 0;
5503 }
5504