xref: /OK3568_Linux_fs/u-boot/common/edid.c (revision 4882a59341e53eb6f0b4789bf948001014eff981)
1 /*
2  * Copyright (c) 2012 The Chromium OS Authors.
3  *
4  * (C) Copyright 2010
5  * Petr Stetiar <ynezz@true.cz>
6  *
7  * SPDX-License-Identifier:	GPL-2.0+
8  *
9  * Contains stolen code from ddcprobe project which is:
10  * Copyright (C) Nalin Dahyabhai <bigfun@pobox.com>
11  * (C) Copyright 2008-2017 Fuzhou Rockchip Electronics Co., Ltd
12  */
13 
14 #include <common.h>
15 #include <compiler.h>
16 #include <div64.h>
17 #include <drm_modes.h>
18 #include <edid.h>
19 #include <errno.h>
20 #include <fdtdec.h>
21 #include <hexdump.h>
22 #include <malloc.h>
23 #include <linux/compat.h>
24 #include <linux/ctype.h>
25 #include <linux/fb.h>
26 #include <linux/hdmi.h>
27 #include <linux/string.h>
28 
29 #define EDID_EST_TIMINGS 16
30 #define EDID_STD_TIMINGS 8
31 #define EDID_DETAILED_TIMINGS 4
32 #define BIT_WORD(nr)             ((nr) / BITS_PER_LONG)
33 #define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) & (BITS_PER_LONG - 1)))
34 #define BITMAP_LAST_WORD_MASK(nbits) (~0UL >> (-(nbits) & (BITS_PER_LONG - 1)))
35 #define EDID_PRODUCT_ID(e) ((e)->prod_code[0] | ((e)->prod_code[1] << 8))
36 #define version_greater(edid, maj, min) \
37 	(((edid)->version > (maj)) || \
38 	 ((edid)->version == (maj) && (edid)->revision > (min)))
39 
40 /*
41  * EDID blocks out in the wild have a variety of bugs, try to collect
42  * them here (note that userspace may work around broken monitors first,
43  * but fixes should make their way here so that the kernel "just works"
44  * on as many displays as possible).
45  */
46 
47 /* First detailed mode wrong, use largest 60Hz mode */
48 #define EDID_QUIRK_PREFER_LARGE_60		BIT(0)
49 /* Reported 135MHz pixel clock is too high, needs adjustment */
50 #define EDID_QUIRK_135_CLOCK_TOO_HIGH		BIT(1)
51 /* Prefer the largest mode at 75 Hz */
52 #define EDID_QUIRK_PREFER_LARGE_75		BIT(2)
53 /* Detail timing is in cm not mm */
54 #define EDID_QUIRK_DETAILED_IN_CM		BIT(3)
55 /* Detailed timing descriptors have bogus size values, so just take the
56  * maximum size and use that.
57  */
58 #define EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE	BIT(4)
59 /* Monitor forgot to set the first detailed is preferred bit. */
60 #define EDID_QUIRK_FIRST_DETAILED_PREFERRED	BIT(5)
61 /* use +hsync +vsync for detailed mode */
62 #define EDID_QUIRK_DETAILED_SYNC_PP		BIT(6)
63 /* Force reduced-blanking timings for detailed modes */
64 #define EDID_QUIRK_FORCE_REDUCED_BLANKING	BIT(7)
65 /* Force 8bpc */
66 #define EDID_QUIRK_FORCE_8BPC			BIT(8)
67 /* Force 12bpc */
68 #define EDID_QUIRK_FORCE_12BPC			BIT(9)
69 /* Force 6bpc */
70 #define EDID_QUIRK_FORCE_6BPC			BIT(10)
71 /* Force 10bpc */
72 #define EDID_QUIRK_FORCE_10BPC			BIT(11)
73 
74 struct detailed_mode_closure {
75 	struct edid *edid;
76 	struct hdmi_edid_data *data;
77 	bool preferred;
78 	u32 quirks;
79 	int modes;
80 };
81 
82 #define LEVEL_DMT	0
83 #define LEVEL_GTF	1
84 #define LEVEL_GTF2	2
85 #define LEVEL_CVT	3
86 
87 static struct edid_quirk {
88 	char vendor[4];
89 	int product_id;
90 	u32 quirks;
91 } edid_quirk_list[] = {
92 	/* Acer AL1706 */
93 	{ "ACR", 44358, EDID_QUIRK_PREFER_LARGE_60 },
94 	/* Acer F51 */
95 	{ "API", 0x7602, EDID_QUIRK_PREFER_LARGE_60 },
96 	/* Unknown Acer */
97 	{ "ACR", 2423, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
98 
99 	/* AEO model 0 reports 8 bpc, but is a 6 bpc panel */
100 	{ "AEO", 0, EDID_QUIRK_FORCE_6BPC },
101 
102 	/* Belinea 10 15 55 */
103 	{ "MAX", 1516, EDID_QUIRK_PREFER_LARGE_60 },
104 	{ "MAX", 0x77e, EDID_QUIRK_PREFER_LARGE_60 },
105 
106 	/* Envision Peripherals, Inc. EN-7100e */
107 	{ "EPI", 59264, EDID_QUIRK_135_CLOCK_TOO_HIGH },
108 	/* Envision EN2028 */
109 	{ "EPI", 8232, EDID_QUIRK_PREFER_LARGE_60 },
110 
111 	/* Funai Electronics PM36B */
112 	{ "FCM", 13600, EDID_QUIRK_PREFER_LARGE_75 |
113 	  EDID_QUIRK_DETAILED_IN_CM },
114 
115 	/* LGD panel of HP zBook 17 G2, eDP 10 bpc, but reports unknown bpc */
116 	{ "LGD", 764, EDID_QUIRK_FORCE_10BPC },
117 
118 	/* LG Philips LCD LP154W01-A5 */
119 	{ "LPL", 0, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
120 	{ "LPL", 0x2a00, EDID_QUIRK_DETAILED_USE_MAXIMUM_SIZE },
121 
122 	/* Philips 107p5 CRT */
123 	{ "PHL", 57364, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
124 
125 	/* Proview AY765C */
126 	{ "PTS", 765, EDID_QUIRK_FIRST_DETAILED_PREFERRED },
127 
128 	/* Samsung SyncMaster 205BW.  Note: irony */
129 	{ "SAM", 541, EDID_QUIRK_DETAILED_SYNC_PP },
130 	/* Samsung SyncMaster 22[5-6]BW */
131 	{ "SAM", 596, EDID_QUIRK_PREFER_LARGE_60 },
132 	{ "SAM", 638, EDID_QUIRK_PREFER_LARGE_60 },
133 
134 	/* Sony PVM-2541A does up to 12 bpc, but only reports max 8 bpc */
135 	{ "SNY", 0x2541, EDID_QUIRK_FORCE_12BPC },
136 
137 	/* ViewSonic VA2026w */
138 	{ "VSC", 5020, EDID_QUIRK_FORCE_REDUCED_BLANKING },
139 
140 	/* Medion MD 30217 PG */
141 	{ "MED", 0x7b8, EDID_QUIRK_PREFER_LARGE_75 },
142 
143 	/* Panel in Samsung NP700G7A-S01PL notebook reports 6bpc */
144 	{ "SEC", 0xd033, EDID_QUIRK_FORCE_8BPC },
145 
146 	/* Rotel RSX-1058 forwards sink's EDID but only does HDMI 1.1*/
147 	{ "ETR", 13896, EDID_QUIRK_FORCE_8BPC },
148 };
149 
150 /*
151  * Probably taken from CEA-861 spec.
152  * This table is converted from xorg's hw/xfree86/modes/xf86EdidModes.c.
153  *
154  * Index using the VIC.
155  */
156 /*
157  * From CEA/CTA-861 spec.
158  * Do not access directly, instead always use cea_mode_for_vic().
159  */
160 static const struct drm_display_mode edid_cea_modes_1[] = {
161 	/* 1 - 640x480@60Hz */
162 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
163 		   752, 800, 480, 490, 492, 525, 0,
164 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
165 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
166 	/* 2 - 720x480@60Hz */
167 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
168 		   798, 858, 480, 489, 495, 525, 0,
169 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
170 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
171 	/* 3 - 720x480@60Hz */
172 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
173 		   798, 858, 480, 489, 495, 525, 0,
174 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
175 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
176 	/* 4 - 1280x720@60Hz */
177 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
178 		   1430, 1650, 720, 725, 730, 750, 0,
179 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
180 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
181 	/* 5 - 1920x1080i@60Hz */
182 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
183 		   2052, 2200, 1080, 1084, 1094, 1125, 0,
184 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
185 			DRM_MODE_FLAG_INTERLACE),
186 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
187 	/* 6 - 720(1440)x480i@60Hz */
188 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
189 		   801, 858, 480, 488, 494, 525, 0,
190 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
191 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
192 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
193 	/* 7 - 720(1440)x480i@60Hz */
194 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
195 		   801, 858, 480, 488, 494, 525, 0,
196 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
197 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
198 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
199 	/* 8 - 720(1440)x240@60Hz */
200 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
201 		   801, 858, 240, 244, 247, 262, 0,
202 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
203 			DRM_MODE_FLAG_DBLCLK),
204 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
205 	/* 9 - 720(1440)x240@60Hz */
206 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
207 		   801, 858, 240, 244, 247, 262, 0,
208 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
209 			DRM_MODE_FLAG_DBLCLK),
210 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
211 	/* 10 - 2880x480i@60Hz */
212 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
213 		   3204, 3432, 480, 488, 494, 525, 0,
214 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
215 			DRM_MODE_FLAG_INTERLACE),
216 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
217 	/* 11 - 2880x480i@60Hz */
218 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
219 		   3204, 3432, 480, 488, 494, 525, 0,
220 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
221 			DRM_MODE_FLAG_INTERLACE),
222 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
223 	/* 12 - 2880x240@60Hz */
224 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
225 		   3204, 3432, 240, 244, 247, 262, 0,
226 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
227 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
228 	/* 13 - 2880x240@60Hz */
229 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2956,
230 		   3204, 3432, 240, 244, 247, 262, 0,
231 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
232 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
233 	/* 14 - 1440x480@60Hz */
234 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
235 		   1596, 1716, 480, 489, 495, 525, 0,
236 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
237 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
238 	/* 15 - 1440x480@60Hz */
239 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 1440, 1472,
240 		   1596, 1716, 480, 489, 495, 525, 0,
241 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
242 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
243 	/* 16 - 1920x1080@60Hz */
244 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
245 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
246 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
247 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
248 	/* 17 - 720x576@50Hz */
249 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
250 		   796, 864, 576, 581, 586, 625, 0,
251 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
252 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
253 	/* 18 - 720x576@50Hz */
254 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
255 		   796, 864, 576, 581, 586, 625, 0,
256 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
257 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
258 	/* 19 - 1280x720@50Hz */
259 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
260 		   1760, 1980, 720, 725, 730, 750, 0,
261 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
262 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
263 	/* 20 - 1920x1080i@50Hz */
264 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
265 		   2492, 2640, 1080, 1084, 1094, 1125, 0,
266 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
267 			DRM_MODE_FLAG_INTERLACE),
268 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
269 	/* 21 - 720(1440)x576i@50Hz */
270 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
271 		   795, 864, 576, 580, 586, 625, 0,
272 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
273 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
274 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
275 	/* 22 - 720(1440)x576i@50Hz */
276 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
277 		   795, 864, 576, 580, 586, 625, 0,
278 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
279 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
280 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
281 	/* 23 - 720(1440)x288@50Hz */
282 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
283 		   795, 864, 288, 290, 293, 312, 0,
284 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
285 			DRM_MODE_FLAG_DBLCLK),
286 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
287 	/* 24 - 720(1440)x288@50Hz */
288 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
289 		   795, 864, 288, 290, 293, 312, 0,
290 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
291 			DRM_MODE_FLAG_DBLCLK),
292 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
293 	/* 25 - 2880x576i@50Hz */
294 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
295 		   3180, 3456, 576, 580, 586, 625, 0,
296 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
297 			DRM_MODE_FLAG_INTERLACE),
298 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
299 	/* 26 - 2880x576i@50Hz */
300 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
301 		   3180, 3456, 576, 580, 586, 625, 0,
302 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
303 			DRM_MODE_FLAG_INTERLACE),
304 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
305 	/* 27 - 2880x288@50Hz */
306 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
307 		   3180, 3456, 288, 290, 293, 312, 0,
308 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
309 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
310 	/* 28 - 2880x288@50Hz */
311 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 2880, 2928,
312 		   3180, 3456, 288, 290, 293, 312, 0,
313 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
314 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
315 	/* 29 - 1440x576@50Hz */
316 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
317 		   1592, 1728, 576, 581, 586, 625, 0,
318 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
319 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
320 	/* 30 - 1440x576@50Hz */
321 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 1440, 1464,
322 		   1592, 1728, 576, 581, 586, 625, 0,
323 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
324 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
325 	/* 31 - 1920x1080@50Hz */
326 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
327 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
328 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
329 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
330 	/* 32 - 1920x1080@24Hz */
331 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
332 		   2602, 2750, 1080, 1084, 1089, 1125, 0,
333 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
334 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
335 	/* 33 - 1920x1080@25Hz */
336 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
337 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
338 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
339 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
340 	/* 34 - 1920x1080@30Hz */
341 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
342 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
343 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
344 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
345 	/* 35 - 2880x480@60Hz */
346 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
347 		   3192, 3432, 480, 489, 495, 525, 0,
348 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
349 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
350 	/* 36 - 2880x480@60Hz */
351 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 2880, 2944,
352 		   3192, 3432, 480, 489, 495, 525, 0,
353 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
354 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
355 	/* 37 - 2880x576@50Hz */
356 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
357 		   3184, 3456, 576, 581, 586, 625, 0,
358 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
359 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
360 	/* 38 - 2880x576@50Hz */
361 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 2880, 2928,
362 		   3184, 3456, 576, 581, 586, 625, 0,
363 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
364 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
365 	/* 39 - 1920x1080i@50Hz */
366 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
367 		   2120, 2304, 1080, 1126, 1136, 1250, 0,
368 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
369 			DRM_MODE_FLAG_INTERLACE),
370 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
371 	/* 40 - 1920x1080i@100Hz */
372 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
373 		   2492, 2640, 1080, 1084, 1094, 1125, 0,
374 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
375 			DRM_MODE_FLAG_INTERLACE),
376 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
377 	/* 41 - 1280x720@100Hz */
378 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
379 		   1760, 1980, 720, 725, 730, 750, 0,
380 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
381 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
382 	/* 42 - 720x576@100Hz */
383 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
384 		   796, 864, 576, 581, 586, 625, 0,
385 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
386 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
387 	/* 43 - 720x576@100Hz */
388 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
389 		   796, 864, 576, 581, 586, 625, 0,
390 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
391 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
392 	/* 44 - 720(1440)x576i@100Hz */
393 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
394 		   795, 864, 576, 580, 586, 625, 0,
395 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
396 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
397 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
398 	/* 45 - 720(1440)x576i@100Hz */
399 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
400 		   795, 864, 576, 580, 586, 625, 0,
401 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
402 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
403 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
404 	/* 46 - 1920x1080i@120Hz */
405 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
406 		   2052, 2200, 1080, 1084, 1094, 1125, 0,
407 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
408 			DRM_MODE_FLAG_INTERLACE),
409 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
410 	/* 47 - 1280x720@120Hz */
411 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
412 		   1430, 1650, 720, 725, 730, 750, 0,
413 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
414 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
415 	/* 48 - 720x480@120Hz */
416 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
417 		   798, 858, 480, 489, 495, 525, 0,
418 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
419 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
420 	/* 49 - 720x480@120Hz */
421 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 736,
422 		   798, 858, 480, 489, 495, 525, 0,
423 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
424 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
425 	/* 50 - 720(1440)x480i@120Hz */
426 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
427 		   801, 858, 480, 488, 494, 525, 0,
428 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
429 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
430 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
431 	/* 51 - 720(1440)x480i@120Hz */
432 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 739,
433 		   801, 858, 480, 488, 494, 525, 0,
434 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
435 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
436 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
437 	/* 52 - 720x576@200Hz */
438 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
439 		   796, 864, 576, 581, 586, 625, 0,
440 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
441 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
442 	/* 53 - 720x576@200Hz */
443 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 720, 732,
444 		   796, 864, 576, 581, 586, 625, 0,
445 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
446 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
447 	/* 54 - 720(1440)x576i@200Hz */
448 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
449 		   795, 864, 576, 580, 586, 625, 0,
450 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
451 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
452 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
453 	/* 55 - 720(1440)x576i@200Hz */
454 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 732,
455 		   795, 864, 576, 580, 586, 625, 0,
456 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
457 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
458 	  .vrefresh = 200, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
459 	/* 56 - 720x480@240Hz */
460 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
461 		   798, 858, 480, 489, 495, 525, 0,
462 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
463 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
464 	/* 57 - 720x480@240Hz */
465 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 720, 736,
466 		   798, 858, 480, 489, 495, 525, 0,
467 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
468 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
469 	/* 58 - 720(1440)x480i@240 */
470 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
471 		   801, 858, 480, 488, 494, 525, 0,
472 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
473 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
474 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
475 	/* 59 - 720(1440)x480i@240 */
476 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 54000, 720, 739,
477 		   801, 858, 480, 488, 494, 525, 0,
478 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
479 			DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
480 	  .vrefresh = 240, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
481 	/* 60 - 1280x720@24Hz */
482 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
483 		   3080, 3300, 720, 725, 730, 750, 0,
484 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
485 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
486 	/* 61 - 1280x720@25Hz */
487 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
488 		   3740, 3960, 720, 725, 730, 750, 0,
489 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
490 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
491 	/* 62 - 1280x720@30Hz */
492 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
493 		   3080, 3300, 720, 725, 730, 750, 0,
494 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
495 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
496 	/* 63 - 1920x1080@120Hz */
497 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
498 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
499 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
500 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
501 	/* 64 - 1920x1080@100Hz */
502 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
503 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
504 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
505 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
506 	/* 65 - 1280x720@24Hz */
507 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
508 		   3080, 3300, 720, 725, 730, 750, 0,
509 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
510 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
511 	/* 66 - 1280x720@25Hz */
512 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
513 		   3740, 3960, 720, 725, 730, 750, 0,
514 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
515 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
516 	/* 67 - 1280x720@30Hz */
517 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
518 		   3080, 3300, 720, 725, 730, 750, 0,
519 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
520 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
521 	/* 68 - 1280x720@50Hz */
522 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
523 		   1760, 1980, 720, 725, 730, 750, 0,
524 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
525 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
526 	/* 69 - 1280x720@60Hz */
527 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
528 		   1430, 1650, 720, 725, 730, 750, 0,
529 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
530 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
531 	/* 70 - 1280x720@100Hz */
532 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1720,
533 		   1760, 1980, 720, 725, 730, 750, 0,
534 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
535 	  .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
536 	/* 71 - 1280x720@120Hz */
537 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1390,
538 		   1430, 1650, 720, 725, 730, 750, 0,
539 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
540 	  .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
541 	/* 72 - 1920x1080@24Hz */
542 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
543 		   2602, 2750, 1080, 1084, 1089, 1125, 0,
544 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
545 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
546 	/* 73 - 1920x1080@25Hz */
547 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
548 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
549 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
550 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
551 	/* 74 - 1920x1080@30Hz */
552 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
553 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
554 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
555 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
556 	/* 75 - 1920x1080@50Hz */
557 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
558 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
559 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
560 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
561 	/* 76 - 1920x1080@60Hz */
562 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
563 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
564 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
565 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
566 	/* 77 - 1920x1080@100Hz */
567 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2448,
568 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
569 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
570 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
571 	/* 78 - 1920x1080@120Hz */
572 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2008,
573 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
574 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
575 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
576 	/* 79 - 1680x720@24Hz */
577 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1680, 3040,
578 		   3080, 3300, 720, 725, 730, 750, 0,
579 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
580 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
581 	/* 80 - 1680x720@25Hz */
582 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1680, 2908,
583 		   2948, 3168, 720, 725, 730, 750, 0,
584 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
585 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
586 	/* 81 - 1680x720@30Hz */
587 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1680, 2380,
588 		   2420, 2640, 720, 725, 730, 750, 0,
589 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
590 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
591 	/* 82 - 1680x720@50Hz */
592 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 82500, 1680, 1940,
593 		   1980, 2200, 720, 725, 730, 750, 0,
594 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
595 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
596 	/* 83 - 1680x720@60Hz */
597 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 99000, 1680, 1940,
598 		   1980, 2200, 720, 725, 730, 750, 0,
599 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
600 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
601 	/* 84 - 1680x720@100Hz */
602 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 165000, 1680, 1740,
603 		   1780, 2000, 720, 725, 730, 825, 0,
604 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
605 	.vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
606 	/* 85 - 1680x720@120Hz */
607 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 198000, 1680, 1740,
608 		   1780, 2000, 720, 725, 730, 825, 0,
609 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
610 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
611 	/* 86 - 2560x1080@24Hz */
612 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 99000, 2560, 3558,
613 		   3602, 3750, 1080, 1084, 1089, 1100, 0,
614 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
615 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
616 	/* 87 - 2560x1080@25Hz */
617 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 90000, 2560, 3008,
618 		   3052, 3200, 1080, 1084, 1089, 1125, 0,
619 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
620 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
621 	/* 88 - 2560x1080@30Hz */
622 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 118800, 2560, 3328,
623 		   3372, 3520, 1080, 1084, 1089, 1125, 0,
624 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
625 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
626 	/* 89 - 2560x1080@50Hz */
627 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 185625, 2560, 3108,
628 		   3152, 3300, 1080, 1084, 1089, 1125, 0,
629 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
630 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
631 	/* 90 - 2560x1080@60Hz */
632 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 198000, 2560, 2808,
633 		   2852, 3000, 1080, 1084, 1089, 1100, 0,
634 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
635 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
636 	/* 91 - 2560x1080@100Hz */
637 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 371250, 2560, 2778,
638 		   2822, 2970, 1080, 1084, 1089, 1250, 0,
639 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
640 	.vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
641 	/* 92 - 2560x1080@120Hz */
642 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 495000, 2560, 3108,
643 		   3152, 3300, 1080, 1084, 1089, 1250, 0,
644 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
645 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
646 	/* 93 - 3840x2160p@24Hz 16:9 */
647 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
648 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
649 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
650 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
651 	/* 94 - 3840x2160p@25Hz 16:9 */
652 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
653 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
654 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
655 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
656 	/* 95 - 3840x2160p@30Hz 16:9 */
657 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
658 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
659 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
660 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
661 	/* 96 - 3840x2160p@50Hz 16:9 */
662 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
663 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
664 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
665 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
666 	/* 97 - 3840x2160p@60Hz 16:9 */
667 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
668 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
669 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
670 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
671 	/* 98 - 4096x2160p@24Hz 256:135 */
672 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
673 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
674 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
675 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
676 	/* 99 - 4096x2160p@25Hz 256:135 */
677 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
678 		   5152, 5280, 2160, 2168, 2178, 2250, 0,
679 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
680 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
681 	/* 100 - 4096x2160p@30Hz 256:135 */
682 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
683 		   4272, 4400, 2160, 2168, 2178, 2250, 0,
684 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
685 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
686 	/* 101 - 4096x2160p@50Hz 256:135 */
687 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
688 		   5152, 5280, 2160, 2168, 2178, 2250, 0,
689 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
690 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
691 	/* 102 - 4096x2160p@60Hz 256:135 */
692 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
693 		   4272, 4400, 2160, 2168, 2178, 2250, 0,
694 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
695 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
696 	/* 103 - 3840x2160p@24Hz 64:27 */
697 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
698 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
699 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
700 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
701 	/* 104 - 3840x2160p@25Hz 64:27 */
702 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
703 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
704 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
705 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
706 	/* 105 - 3840x2160p@30Hz 64:27 */
707 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
708 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
709 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
710 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
711 	/* 106 - 3840x2160p@50Hz 64:27 */
712 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
713 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
714 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
715 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
716 	/* 107 - 3840x2160p@60Hz 64:27 */
717 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
718 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
719 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
720 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
721 	/* 108 - 1280x720@48Hz 16:9 */
722 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
723 		   2280, 2500, 720, 725, 730, 750, 0,
724 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
725 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
726 	/* 109 - 1280x720@48Hz 64:27 */
727 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 90000, 1280, 2240,
728 		   2280, 2500, 720, 725, 730, 750, 0,
729 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
730 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
731 	/* 110 - 1680x720@48Hz 64:27 */
732 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 99000, 1680, 2490,
733 		   2530, 2750, 720, 725, 730, 750, 0,
734 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
735 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
736 	/* 111 - 1920x1080@48Hz 16:9 */
737 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
738 		   2602, 2750, 1080, 1084, 1089, 1125, 0,
739 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
740 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
741 	/* 112 - 1920x1080@48Hz 64:27 */
742 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2558,
743 		   2602, 2750, 1080, 1084, 1089, 1125, 0,
744 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
745 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
746 	/* 113 - 2560x1080@48Hz 64:27 */
747 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 198000, 2560, 3558,
748 		   3602, 3750, 1080, 1084, 1089, 1100, 0,
749 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
750 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
751 	/* 114 - 3840x2160@48Hz 16:9 */
752 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
753 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
754 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
755 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
756 	/* 115 - 4096x2160@48Hz 256:135 */
757 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 4096, 5116,
758 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
759 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
760 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
761 	/* 116 - 3840x2160@48Hz 64:27 */
762 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 5116,
763 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
764 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
765 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
766 	/* 117 - 3840x2160@100Hz 16:9 */
767 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
768 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
769 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
770 	.vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
771 	/* 118 - 3840x2160@120Hz 16:9 */
772 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
773 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
774 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
775 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
776 	/* 119 - 3840x2160@100Hz 64:27 */
777 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4896,
778 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
779 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
780 	.vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
781 	/* 120 - 3840x2160@120Hz 64:27 */
782 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
783 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
784 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
785 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
786 	/* 121 - 5120x2160@24Hz 64:27 */
787 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 396000, 5120, 7116,
788 		   7204, 7500, 2160, 2168, 2178, 2200, 0,
789 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
790 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
791 	/* 122 - 5120x2160@25Hz 64:27 */
792 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 396000, 5120, 6816,
793 		   6904, 7200, 2160, 2168, 2178, 2200, 0,
794 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
795 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
796 	/* 123 - 5120x2160@30Hz 64:27 */
797 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 396000, 5120, 5784,
798 		   5872, 6000, 2160, 2168, 2178, 2200, 0,
799 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
800 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
801 	/* 124 - 5120x2160@48Hz 64:27 */
802 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 742500, 5120, 5866,
803 		   5954, 6250, 2160, 2168, 2178, 2475, 0,
804 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
805 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
806 	/* 125 - 5120x2160@50Hz 64:27 */
807 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 742500, 5120, 6216,
808 		   6304, 6600, 2160, 2168, 2178, 2250, 0,
809 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
810 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
811 	/* 126 - 5120x2160@60Hz 64:27 */
812 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 742500, 5120, 5284,
813 		   5372, 5500, 2160, 2168, 2178, 2250, 0,
814 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
815 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
816 	/* 127 - 5120x2160@100Hz 64:27 */
817 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1485000, 5120, 6216,
818 		   6304, 6600, 2160, 2168, 2178, 2250, 0,
819 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
820 	.vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
821 };
822 
823 static const struct drm_display_mode edid_cea_modes_193[] = {
824 	/* 193 - 5120x2160@120Hz 64:27 */
825 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1485000, 5120, 5284,
826 		   5372, 5500, 2160, 2168, 2178, 2250, 0,
827 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
828 	  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
829 	/* 194 - 7680x4320@24Hz 16:9 */
830 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
831 		   10408, 11000, 4320, 4336, 4356, 4500, 0,
832 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
833 	 .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
834 	/* 195 - 7680x4320@25Hz 16:9 */
835 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
836 		   10208, 10800, 4320, 4336, 4356, 4400, 0,
837 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
838 	 .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
839 	/* 196 - 7680x4320@30Hz 16:9 */
840 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
841 		   8408, 9000, 4320, 4336, 4356, 4400, 0,
842 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
843 	 .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
844 	/* 197 - 7680x4320@48Hz 16:9 */
845 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
846 		   10408, 11000, 4320, 4336, 4356, 4500, 0,
847 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
848 	 .vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
849 	/* 198 - 7680x4320@50Hz 16:9 */
850 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
851 		   10208, 10800, 4320, 4336, 4356, 4400, 0,
852 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
853 	 .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
854 	/* 199 - 7680x4320@60Hz 16:9 */
855 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
856 		   8408, 9000, 4320, 4336, 4356, 4400, 0,
857 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
858 	 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
859 	/* 200 - 7680x4320@100Hz 16:9 */
860 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
861 		   9968, 10560, 4320, 4336, 4356, 4500, 0,
862 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
863 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
864 	/* 201 - 7680x4320@120Hz 16:9 */
865 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
866 		   8208, 8800, 4320, 4336, 4356, 4500, 0,
867 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
868 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
869 	/* 202 - 7680x4320@24Hz 64:27 */
870 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10232,
871 		   10408, 11000, 4320, 4336, 4356, 4500, 0,
872 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
873 	.vrefresh = 24,  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
874 	/* 203 - 7680x4320@25Hz 64:27 */
875 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 10032,
876 		   10208, 10800, 4320, 4336, 4356, 4400, 0,
877 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
878 	.vrefresh = 25,  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
879 	/* 204 - 7680x4320@30Hz 64:27 */
880 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
881 		   8408, 9000, 4320, 4336, 4356, 4400, 0,
882 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
883 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
884 	/* 205 - 7680x4320@48Hz 64:27 */
885 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10232,
886 		   10408, 11000, 4320, 4336, 4356, 4500, 0,
887 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
888 	.vrefresh = 48,  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
889 	/* 206 - 7680x4320@50Hz 64:27 */
890 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
891 		   10208, 10800, 4320, 4336, 4356, 4400, 0,
892 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
893 	.vrefresh = 50,  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
894 	/* 207 - 7680x4320@60Hz 64:27 */
895 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
896 		   8408, 9000, 4320, 4336, 4356, 4400, 0,
897 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
898 	.vrefresh = 60,  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
899 	/* 208 - 7680x4320@100Hz 64:27 */
900 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 4752000, 7680, 9792,
901 		   9968, 10560, 4320, 4336, 4356, 4500, 0,
902 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
903 	.vrefresh = 100,  .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
904 	/* 209 - 7680x4320@120Hz 64:27 */
905 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 4752000, 7680, 8032,
906 		   8208, 8800, 4320, 4336, 4356, 4500, 0,
907 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
908 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
909 	/* 210 - 10240x4320@24Hz 64:27 */
910 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1485000, 10240, 11732,
911 		   11908, 12500, 4320, 4336, 4356, 4950, 0,
912 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
913 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
914 	/* 211 - 10240x4320@25Hz 64:27 */
915 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1485000, 10240, 12732,
916 		   12908, 13500, 4320, 4336, 4356, 4400, 0,
917 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
918 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
919 	/* 212 - 10240x4320@30Hz 64:27 */
920 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1485000, 10240, 10528,
921 		   10704, 11000, 4320, 4336, 4356, 4500, 0,
922 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
923 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
924 	/* 213 - 10240x4320@48Hz 64:27 */
925 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2970000, 10240, 11732,
926 		   11908, 12500, 4320, 4336, 4356, 4950, 0,
927 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
928 	.vrefresh = 48, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
929 	/* 214 - 10240x4320@50Hz 64:27 */
930 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2970000, 10240, 12732,
931 		   12908, 13500, 4320, 4336, 4356, 4400, 0,
932 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
933 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
934 	/* 215 - 10240x4320@60Hz 64:27 */
935 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2970000, 10240, 10528,
936 		   10704, 11000, 4320, 4336, 4356, 4500, 0,
937 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
938 	 .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
939 	/* 216 - 10240x4320@100Hz 64:27 */
940 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 5940000, 10240, 12432,
941 		   12608, 13200, 4320, 4336, 4356, 4500, 0,
942 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
943 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
944 	/* 217 - 10240x4320@120Hz 64:27 */
945 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 5940000, 10240, 10528,
946 		   10704, 11000, 4320, 4336, 4356, 4500, 0,
947 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
948 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_64_27, },
949 	/* 218 - 4096x2160@100Hz 256:135 */
950 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4896,
951 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
952 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
953 	 .vrefresh = 100, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
954 	/* 219 - 4096x2160@120Hz 256:135 */
955 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 4096, 4184,
956 		   4272, 4400, 2160, 2168, 2178, 2250, 0,
957 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
958 	 .vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
959 };
960 
961 /*
962  * HDMI 1.4 4k modes. Index using the VIC.
963  */
964 static const struct drm_display_mode edid_4k_modes[] = {
965 	/* 0 - dummy, VICs start at 1 */
966 	{ },
967 	/* 1 - 3840x2160@30Hz */
968 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000,
969 		   3840, 4016, 4104, 4400,
970 		   2160, 2168, 2178, 2250, 0,
971 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
972 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
973 	/* 2 - 3840x2160@25Hz */
974 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000,
975 		   3840, 4896, 4984, 5280,
976 		   2160, 2168, 2178, 2250, 0,
977 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
978 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
979 	/* 3 - 3840x2160@24Hz */
980 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000,
981 		   3840, 5116, 5204, 5500,
982 		   2160, 2168, 2178, 2250, 0,
983 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
984 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
985 	/* 4 - 4096x2160@24Hz (SMPTE) */
986 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000,
987 		   4096, 5116, 5204, 5500,
988 		   2160, 2168, 2178, 2250, 0,
989 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
990 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
991 };
992 
993 /*
994  * Autogenerated from the DMT spec.
995  * This table is copied from xfree86/modes/xf86EdidModes.c.
996  */
997 static const struct drm_display_mode drm_dmt_modes[] = {
998 	/* 0x01 - 640x350@85Hz */
999 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
1000 		   736, 832, 350, 382, 385, 445, 0,
1001 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1002 	/* 0x02 - 640x400@85Hz */
1003 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 672,
1004 		   736, 832, 400, 401, 404, 445, 0,
1005 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1006 	/* 0x03 - 720x400@85Hz */
1007 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 35500, 720, 756,
1008 		   828, 936, 400, 401, 404, 446, 0,
1009 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1010 	/* 0x04 - 640x480@60Hz */
1011 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
1012 		   752, 800, 480, 490, 492, 525, 0,
1013 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1014 	/* 0x05 - 640x480@72Hz */
1015 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
1016 		   704, 832, 480, 489, 492, 520, 0,
1017 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1018 	/* 0x06 - 640x480@75Hz */
1019 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
1020 		   720, 840, 480, 481, 484, 500, 0,
1021 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1022 	/* 0x07 - 640x480@85Hz */
1023 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 36000, 640, 696,
1024 		   752, 832, 480, 481, 484, 509, 0,
1025 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1026 	/* 0x08 - 800x600@56Hz */
1027 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
1028 		   896, 1024, 600, 601, 603, 625, 0,
1029 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1030 	/* 0x09 - 800x600@60Hz */
1031 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
1032 		   968, 1056, 600, 601, 605, 628, 0,
1033 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1034 	/* 0x0a - 800x600@72Hz */
1035 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
1036 		   976, 1040, 600, 637, 643, 666, 0,
1037 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1038 	/* 0x0b - 800x600@75Hz */
1039 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
1040 		   896, 1056, 600, 601, 604, 625, 0,
1041 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1042 	/* 0x0c - 800x600@85Hz */
1043 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 56250, 800, 832,
1044 		   896, 1048, 600, 601, 604, 631, 0,
1045 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1046 	/* 0x0d - 800x600@120Hz RB */
1047 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 73250, 800, 848,
1048 		   880, 960, 600, 603, 607, 636, 0,
1049 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1050 	/* 0x0e - 848x480@60Hz */
1051 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 33750, 848, 864,
1052 		   976, 1088, 480, 486, 494, 517, 0,
1053 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1054 	/* 0x0f - 1024x768@43Hz, interlace */
1055 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
1056 		   1208, 1264, 768, 768, 772, 817, 0,
1057 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
1058 		   DRM_MODE_FLAG_INTERLACE) },
1059 	/* 0x10 - 1024x768@60Hz */
1060 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1061 		   1184, 1344, 768, 771, 777, 806, 0,
1062 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1063 	/* 0x11 - 1024x768@70Hz */
1064 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
1065 		   1184, 1328, 768, 771, 777, 806, 0,
1066 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1067 	/* 0x12 - 1024x768@75Hz */
1068 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
1069 		   1136, 1312, 768, 769, 772, 800, 0,
1070 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1071 	/* 0x13 - 1024x768@85Hz */
1072 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 94500, 1024, 1072,
1073 		   1168, 1376, 768, 769, 772, 808, 0,
1074 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1075 	/* 0x14 - 1024x768@120Hz RB */
1076 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 115500, 1024, 1072,
1077 		   1104, 1184, 768, 771, 775, 813, 0,
1078 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1079 	/* 0x15 - 1152x864@75Hz */
1080 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
1081 		   1344, 1600, 864, 865, 868, 900, 0,
1082 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1083 	/* 0x55 - 1280x720@60Hz */
1084 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1085 		   1430, 1650, 720, 725, 730, 750, 0,
1086 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1087 	/* 0x16 - 1280x768@60Hz RB */
1088 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 68250, 1280, 1328,
1089 		   1360, 1440, 768, 771, 778, 790, 0,
1090 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1091 	/* 0x17 - 1280x768@60Hz */
1092 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 79500, 1280, 1344,
1093 		   1472, 1664, 768, 771, 778, 798, 0,
1094 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1095 	/* 0x18 - 1280x768@75Hz */
1096 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 102250, 1280, 1360,
1097 		   1488, 1696, 768, 771, 778, 805, 0,
1098 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1099 	/* 0x19 - 1280x768@85Hz */
1100 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 117500, 1280, 1360,
1101 		   1496, 1712, 768, 771, 778, 809, 0,
1102 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1103 	/* 0x1a - 1280x768@120Hz RB */
1104 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 140250, 1280, 1328,
1105 		   1360, 1440, 768, 771, 778, 813, 0,
1106 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1107 	/* 0x1b - 1280x800@60Hz RB */
1108 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 71000, 1280, 1328,
1109 		   1360, 1440, 800, 803, 809, 823, 0,
1110 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1111 	/* 0x1c - 1280x800@60Hz */
1112 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 83500, 1280, 1352,
1113 		   1480, 1680, 800, 803, 809, 831, 0,
1114 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1115 	/* 0x1d - 1280x800@75Hz */
1116 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 106500, 1280, 1360,
1117 		   1488, 1696, 800, 803, 809, 838, 0,
1118 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1119 	/* 0x1e - 1280x800@85Hz */
1120 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 122500, 1280, 1360,
1121 		   1496, 1712, 800, 803, 809, 843, 0,
1122 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1123 	/* 0x1f - 1280x800@120Hz RB */
1124 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 146250, 1280, 1328,
1125 		   1360, 1440, 800, 803, 809, 847, 0,
1126 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1127 	/* 0x20 - 1280x960@60Hz */
1128 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1280, 1376,
1129 		   1488, 1800, 960, 961, 964, 1000, 0,
1130 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1131 	/* 0x21 - 1280x960@85Hz */
1132 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1280, 1344,
1133 		   1504, 1728, 960, 961, 964, 1011, 0,
1134 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1135 	/* 0x22 - 1280x960@120Hz RB */
1136 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 175500, 1280, 1328,
1137 		   1360, 1440, 960, 963, 967, 1017, 0,
1138 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1139 	/* 0x23 - 1280x1024@60Hz */
1140 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1280, 1328,
1141 		   1440, 1688, 1024, 1025, 1028, 1066, 0,
1142 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1143 	/* 0x24 - 1280x1024@75Hz */
1144 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
1145 		   1440, 1688, 1024, 1025, 1028, 1066, 0,
1146 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1147 	/* 0x25 - 1280x1024@85Hz */
1148 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 157500, 1280, 1344,
1149 		   1504, 1728, 1024, 1025, 1028, 1072, 0,
1150 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1151 	/* 0x26 - 1280x1024@120Hz RB */
1152 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 187250, 1280, 1328,
1153 		   1360, 1440, 1024, 1027, 1034, 1084, 0,
1154 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1155 	/* 0x27 - 1360x768@60Hz */
1156 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 85500, 1360, 1424,
1157 		   1536, 1792, 768, 771, 777, 795, 0,
1158 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1159 	/* 0x28 - 1360x768@120Hz RB */
1160 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148250, 1360, 1408,
1161 		   1440, 1520, 768, 771, 776, 813, 0,
1162 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1163 	/* 0x51 - 1366x768@60Hz */
1164 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 85500, 1366, 1436,
1165 		   1579, 1792, 768, 771, 774, 798, 0,
1166 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1167 	/* 0x56 - 1366x768@60Hz */
1168 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 72000, 1366, 1380,
1169 		   1436, 1500, 768, 769, 772, 800, 0,
1170 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1171 	/* 0x29 - 1400x1050@60Hz RB */
1172 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 101000, 1400, 1448,
1173 		   1480, 1560, 1050, 1053, 1057, 1080, 0,
1174 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1175 	/* 0x2a - 1400x1050@60Hz */
1176 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 121750, 1400, 1488,
1177 		   1632, 1864, 1050, 1053, 1057, 1089, 0,
1178 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1179 	/* 0x2b - 1400x1050@75Hz */
1180 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 156000, 1400, 1504,
1181 		   1648, 1896, 1050, 1053, 1057, 1099, 0,
1182 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1183 	/* 0x2c - 1400x1050@85Hz */
1184 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 179500, 1400, 1504,
1185 		   1656, 1912, 1050, 1053, 1057, 1105, 0,
1186 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1187 	/* 0x2d - 1400x1050@120Hz RB */
1188 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 208000, 1400, 1448,
1189 		   1480, 1560, 1050, 1053, 1057, 1112, 0,
1190 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1191 	/* 0x2e - 1440x900@60Hz RB */
1192 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 88750, 1440, 1488,
1193 		   1520, 1600, 900, 903, 909, 926, 0,
1194 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1195 	/* 0x2f - 1440x900@60Hz */
1196 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 106500, 1440, 1520,
1197 		   1672, 1904, 900, 903, 909, 934, 0,
1198 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1199 	/* 0x30 - 1440x900@75Hz */
1200 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 136750, 1440, 1536,
1201 		   1688, 1936, 900, 903, 909, 942, 0,
1202 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1203 	/* 0x31 - 1440x900@85Hz */
1204 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 157000, 1440, 1544,
1205 		   1696, 1952, 900, 903, 909, 948, 0,
1206 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1207 	/* 0x32 - 1440x900@120Hz RB */
1208 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 182750, 1440, 1488,
1209 		   1520, 1600, 900, 903, 909, 953, 0,
1210 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1211 	/* 0x53 - 1600x900@60Hz */
1212 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1600, 1624,
1213 		   1704, 1800, 900, 901, 904, 1000, 0,
1214 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1215 	/* 0x33 - 1600x1200@60Hz */
1216 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 162000, 1600, 1664,
1217 		   1856, 2160, 1200, 1201, 1204, 1250, 0,
1218 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1219 	/* 0x34 - 1600x1200@65Hz */
1220 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 175500, 1600, 1664,
1221 		   1856, 2160, 1200, 1201, 1204, 1250, 0,
1222 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1223 	/* 0x35 - 1600x1200@70Hz */
1224 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 189000, 1600, 1664,
1225 		   1856, 2160, 1200, 1201, 1204, 1250, 0,
1226 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1227 	/* 0x36 - 1600x1200@75Hz */
1228 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 202500, 1600, 1664,
1229 		   1856, 2160, 1200, 1201, 1204, 1250, 0,
1230 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1231 	/* 0x37 - 1600x1200@85Hz */
1232 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 229500, 1600, 1664,
1233 		   1856, 2160, 1200, 1201, 1204, 1250, 0,
1234 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1235 	/* 0x38 - 1600x1200@120Hz RB */
1236 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 268250, 1600, 1648,
1237 		   1680, 1760, 1200, 1203, 1207, 1271, 0,
1238 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1239 	/* 0x39 - 1680x1050@60Hz RB */
1240 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 119000, 1680, 1728,
1241 		   1760, 1840, 1050, 1053, 1059, 1080, 0,
1242 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1243 	/* 0x3a - 1680x1050@60Hz */
1244 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 146250, 1680, 1784,
1245 		   1960, 2240, 1050, 1053, 1059, 1089, 0,
1246 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1247 	/* 0x3b - 1680x1050@75Hz */
1248 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 187000, 1680, 1800,
1249 		   1976, 2272, 1050, 1053, 1059, 1099, 0,
1250 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1251 	/* 0x3c - 1680x1050@85Hz */
1252 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 214750, 1680, 1808,
1253 		   1984, 2288, 1050, 1053, 1059, 1105, 0,
1254 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1255 	/* 0x3d - 1680x1050@120Hz RB */
1256 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 245500, 1680, 1728,
1257 		   1760, 1840, 1050, 1053, 1059, 1112, 0,
1258 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1259 	/* 0x3e - 1792x1344@60Hz */
1260 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 204750, 1792, 1920,
1261 		   2120, 2448, 1344, 1345, 1348, 1394, 0,
1262 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1263 	/* 0x3f - 1792x1344@75Hz */
1264 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 261000, 1792, 1888,
1265 		   2104, 2456, 1344, 1345, 1348, 1417, 0,
1266 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1267 	/* 0x40 - 1792x1344@120Hz RB */
1268 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 333250, 1792, 1840,
1269 		   1872, 1952, 1344, 1347, 1351, 1423, 0,
1270 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1271 	/* 0x41 - 1856x1392@60Hz */
1272 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 218250, 1856, 1952,
1273 		   2176, 2528, 1392, 1393, 1396, 1439, 0,
1274 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1275 	/* 0x42 - 1856x1392@75Hz */
1276 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 288000, 1856, 1984,
1277 		   2208, 2560, 1392, 1393, 1396, 1500, 0,
1278 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1279 	/* 0x43 - 1856x1392@120Hz RB */
1280 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 356500, 1856, 1904,
1281 		   1936, 2016, 1392, 1395, 1399, 1474, 0,
1282 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1283 	/* 0x52 - 1920x1080@60Hz */
1284 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1285 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
1286 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1287 	/* 0x44 - 1920x1200@60Hz RB */
1288 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 154000, 1920, 1968,
1289 		   2000, 2080, 1200, 1203, 1209, 1235, 0,
1290 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1291 	/* 0x45 - 1920x1200@60Hz */
1292 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 193250, 1920, 2056,
1293 		   2256, 2592, 1200, 1203, 1209, 1245, 0,
1294 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1295 	/* 0x46 - 1920x1200@75Hz */
1296 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 245250, 1920, 2056,
1297 		   2264, 2608, 1200, 1203, 1209, 1255, 0,
1298 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1299 	/* 0x47 - 1920x1200@85Hz */
1300 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 281250, 1920, 2064,
1301 		   2272, 2624, 1200, 1203, 1209, 1262, 0,
1302 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1303 	/* 0x48 - 1920x1200@120Hz RB */
1304 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 317000, 1920, 1968,
1305 		   2000, 2080, 1200, 1203, 1209, 1271, 0,
1306 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1307 	/* 0x49 - 1920x1440@60Hz */
1308 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 234000, 1920, 2048,
1309 		   2256, 2600, 1440, 1441, 1444, 1500, 0,
1310 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1311 	/* 0x4a - 1920x1440@75Hz */
1312 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 1920, 2064,
1313 		   2288, 2640, 1440, 1441, 1444, 1500, 0,
1314 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1315 	/* 0x4b - 1920x1440@120Hz RB */
1316 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 380500, 1920, 1968,
1317 		   2000, 2080, 1440, 1443, 1447, 1525, 0,
1318 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1319 	/* 0x54 - 2048x1152@60Hz */
1320 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 162000, 2048, 2074,
1321 		   2154, 2250, 1152, 1153, 1156, 1200, 0,
1322 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1323 	/* 0x4c - 2560x1600@60Hz RB */
1324 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 268500, 2560, 2608,
1325 		   2640, 2720, 1600, 1603, 1609, 1646, 0,
1326 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1327 	/* 0x4d - 2560x1600@60Hz */
1328 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 348500, 2560, 2752,
1329 		   3032, 3504, 1600, 1603, 1609, 1658, 0,
1330 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1331 	/* 0x4e - 2560x1600@75Hz */
1332 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 443250, 2560, 2768,
1333 		   3048, 3536, 1600, 1603, 1609, 1672, 0,
1334 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1335 	/* 0x4f - 2560x1600@85Hz */
1336 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 505250, 2560, 2768,
1337 		   3048, 3536, 1600, 1603, 1609, 1682, 0,
1338 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1339 	/* 0x50 - 2560x1600@120Hz RB */
1340 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 552750, 2560, 2608,
1341 		   2640, 2720, 1600, 1603, 1609, 1694, 0,
1342 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1343 	/* 0x57 - 4096x2160@60Hz RB */
1344 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 556744, 4096, 4104,
1345 		   4136, 4176, 2160, 2208, 2216, 2222, 0,
1346 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1347 	/* 0x58 - 4096x2160@59.94Hz RB */
1348 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 556188, 4096, 4104,
1349 		   4136, 4176, 2160, 2208, 2216, 2222, 0,
1350 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC) },
1351 };
1352 
1353 /*
1354  * These more or less come from the DMT spec.  The 720x400 modes are
1355  * inferred from historical 80x25 practice.  The 640x480@67 and 832x624@75
1356  * modes are old-school Mac modes.  The EDID spec says the 1152x864@75 mode
1357  * should be 1152x870, again for the Mac, but instead we use the x864 DMT
1358  * mode.
1359  *
1360  * The DMT modes have been fact-checked; the rest are mild guesses.
1361  */
1362 static const struct drm_display_mode edid_est_modes[] = {
1363 	/* 800x600@60Hz */
1364 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 40000, 800, 840,
1365 		   968, 1056, 600, 601, 605, 628, 0,
1366 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1367 	/* 800x600@56Hz */
1368 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 36000, 800, 824,
1369 		   896, 1024, 600, 601, 603,  625, 0,
1370 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1371 	/* 640x480@75Hz */
1372 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 656,
1373 		   720, 840, 480, 481, 484, 500, 0,
1374 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1375 	/* 640x480@72Hz */
1376 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 31500, 640, 664,
1377 		   704,  832, 480, 489, 492, 520, 0,
1378 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1379 	/* 640x480@67Hz */
1380 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 30240, 640, 704,
1381 		   768,  864, 480, 483, 486, 525, 0,
1382 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1383 	/* 640x480@60Hz */
1384 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 25175, 640, 656,
1385 		   752, 800, 480, 490, 492, 525, 0,
1386 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1387 	/* 720x400@88Hz */
1388 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 35500, 720, 738,
1389 		   846, 900, 400, 421, 423,  449, 0,
1390 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1391 	/* 720x400@70Hz */
1392 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 28320, 720, 738,
1393 		   846,  900, 400, 412, 414, 449, 0,
1394 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC) },
1395 	/* 1280x1024@75Hz */
1396 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 135000, 1280, 1296,
1397 		   1440, 1688, 1024, 1025, 1028, 1066, 0,
1398 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1399 	/* 1024x768@75Hz */
1400 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 78750, 1024, 1040,
1401 		   1136, 1312,  768, 769, 772, 800, 0,
1402 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1403 	/* 1024x768@70Hz */
1404 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 75000, 1024, 1048,
1405 		   1184, 1328, 768, 771, 777, 806, 0,
1406 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1407 	/* 1024x768@60Hz */
1408 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1409 		   1184, 1344, 768, 771, 777, 806, 0,
1410 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1411 	/* 1024x768@43Hz */
1412 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 44900, 1024, 1032,
1413 		   1208, 1264, 768, 768, 776, 817, 0,
1414 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
1415 		   DRM_MODE_FLAG_INTERLACE) },
1416 	/* 832x624@75Hz */
1417 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 57284, 832, 864,
1418 		   928, 1152, 624, 625, 628, 667, 0,
1419 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1420 	/* 800x600@75Hz */
1421 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 49500, 800, 816,
1422 		   896, 1056, 600, 601, 604,  625, 0,
1423 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1424 	/* 800x600@72Hz */
1425 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 50000, 800, 856,
1426 		   976, 1040, 600, 637, 643, 666, 0,
1427 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1428 	/* 1152x864@75Hz */
1429 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 108000, 1152, 1216,
1430 		   1344, 1600, 864, 865, 868, 900, 0,
1431 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC) },
1432 };
1433 
1434 static const struct drm_display_mode resolution_white[] = {
1435 	/* 0. vic:2 - 720x480@60Hz */
1436 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
1437 		   798, 858, 480, 489, 495, 525, 0,
1438 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1439 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1440 	/* 1. vic:3 - 720x480@60Hz */
1441 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 736,
1442 		   798, 858, 480, 489, 495, 525, 0,
1443 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1444 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1445 	/* 1024x768@60Hz */
1446 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 65000, 1024, 1048,
1447 		   1184, 1344, 768, 771, 777, 806, 0,
1448 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC) },
1449 	/* 2. vic:4 - 1280x720@60Hz */
1450 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1390,
1451 		   1430, 1650, 720, 725, 730, 750, 0,
1452 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1453 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1454 	/* 3. vic:5 - 1920x1080i@60Hz */
1455 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1456 		   2052, 2200, 1080, 1084, 1094, 1125, 0,
1457 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
1458 		   DRM_MODE_FLAG_INTERLACE),
1459 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1460 	/* 4. vic:6 - 720(1440)x480i@60Hz */
1461 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 739,
1462 		   801, 858, 480, 488, 494, 525, 0,
1463 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1464 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1465 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1466 	/* 5. vic:16 - 1920x1080@60Hz */
1467 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2008,
1468 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
1469 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1470 	  .vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1471 	/* 6. vic:17 - 720x576@50Hz */
1472 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
1473 		   796, 864, 576, 581, 586, 625, 0,
1474 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1475 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1476 	/* 7. vic:18 - 720x576@50Hz */
1477 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 27000, 720, 732,
1478 		   796, 864, 576, 581, 586, 625, 0,
1479 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
1480 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1481 	/* 8. vic:19 - 1280x720@50Hz */
1482 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 1720,
1483 		   1760, 1980, 720, 725, 730, 750, 0,
1484 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1485 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1486 	/* 9. vic:20 - 1920x1080i@50Hz */
1487 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1488 		   2492, 2640, 1080, 1084, 1094, 1125, 0,
1489 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC |
1490 		   DRM_MODE_FLAG_INTERLACE),
1491 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1492 	/* 10. vic:21 - 720(1440)x576i@50Hz */
1493 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 13500, 720, 732,
1494 		   795, 864, 576, 580, 586, 625, 0,
1495 		   DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC |
1496 		   DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_DBLCLK),
1497 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_4_3, },
1498 	/* 11. vic:31 - 1920x1080@50Hz */
1499 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 148500, 1920, 2448,
1500 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
1501 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1502 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1503 	/* 12. vic:32 - 1920x1080@24Hz */
1504 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2558,
1505 		   2602, 2750, 1080, 1084, 1089, 1125, 0,
1506 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1507 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1508 	/* 13. vic:33 - 1920x1080@25Hz */
1509 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2448,
1510 		   2492, 2640, 1080, 1084, 1089, 1125, 0,
1511 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1512 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1513 	/* 14. vic:34 - 1920x1080@30Hz */
1514 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1920, 2008,
1515 		   2052, 2200, 1080, 1084, 1089, 1125, 0,
1516 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1517 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1518 	/* 15. vic:39 - 1920x1080i@50Hz */
1519 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 72000, 1920, 1952,
1520 		   2120, 2304, 1080, 1126, 1136, 1250, 0,
1521 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC |
1522 		   DRM_MODE_FLAG_INTERLACE),
1523 	  .vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1524 	/* 16. vic:60 - 1280x720@24Hz */
1525 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 59400, 1280, 3040,
1526 		   3080, 3300, 720, 725, 730, 750, 0,
1527 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1528 	  .vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1529 	/* 17. vic:61 - 1280x720@25Hz */
1530 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3700,
1531 		   3740, 3960, 720, 725, 730, 750, 0,
1532 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1533 	  .vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1534 	/* 18. vic:62 - 1280x720@30Hz */
1535 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 74250, 1280, 3040,
1536 		   3080, 3300, 720, 725, 730, 750, 0,
1537 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1538 	  .vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1539 	/* 19. vic:93 - 3840x2160p@24Hz 16:9 */
1540 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 5116,
1541 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
1542 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1543 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1544 	/* 20. vic:94 - 3840x2160p@25Hz 16:9 */
1545 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4896,
1546 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
1547 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1548 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1549 	/* 21. vic:95 - 3840x2160p@30Hz 16:9 */
1550 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 3840, 4016,
1551 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
1552 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1553 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1554 	/* 22. vic:96 - 3840x2160p@50Hz 16:9 */
1555 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4896,
1556 		   4984, 5280, 2160, 2168, 2178, 2250, 0,
1557 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1558 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1559 	/* 23. vic:97 - 3840x2160p@60Hz 16:9 */
1560 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 3840, 4016,
1561 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
1562 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1563 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1564 	/* 24. vic:98 - 4096x2160p@24Hz 256:135 */
1565 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 5116,
1566 		   5204, 5500, 2160, 2168, 2178, 2250, 0,
1567 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1568 	.vrefresh = 24, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1569 	/* 25. vic:99 - 4096x2160p@25Hz 256:135 */
1570 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 5064,
1571 		   5152, 5280, 2160, 2168, 2178, 2250, 0,
1572 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1573 	.vrefresh = 25, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1574 	/* 26. vic:100 - 4096x2160p@30Hz 256:135 */
1575 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 297000, 4096, 4184,
1576 		   4272, 4400, 2160, 2168, 2178, 2250, 0,
1577 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1578 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1579 	/* 27. vic:101 - 4096x2160p@50Hz 256:135 */
1580 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 4096, 5064,
1581 		   5152, 5280, 2160, 2168, 2178, 2250, 0,
1582 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1583 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1584 	/* 28. vic:102 - 4096x2160p@60Hz 256:135 */
1585 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 594000, 4096, 4184,
1586 		   4272, 4400, 2160, 2168, 2178, 2250, 0,
1587 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1588 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_256_135, },
1589 	/* 29. vic:118 - 3840x2160@120Hz 16:9 */
1590 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 3840, 4016,
1591 		   4104, 4400, 2160, 2168, 2178, 2250, 0,
1592 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1593 	.vrefresh = 120, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1594 	/* 30. vic:196 - 7680x4320@30Hz 16:9 */
1595 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 1188000, 7680, 8232,
1596 		   8408, 9000, 4320, 4336, 4356, 4400, 0,
1597 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1598 	.vrefresh = 30, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1599 	/* 31. vic:198 - 7680x4320@50Hz 16:9 */
1600 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 10032,
1601 		   10208, 10800, 4320, 4336, 4356, 4400, 0,
1602 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1603 	.vrefresh = 50, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1604 	/* 32. vic:199 - 7680x4320@60Hz 16:9 */
1605 	{ DRM_MODE(DRM_MODE_TYPE_DRIVER, 2376000, 7680, 8232,
1606 		   8408, 9000, 4320, 4336, 4356, 4400, 0,
1607 		   DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC),
1608 	.vrefresh = 60, .picture_aspect_ratio = HDMI_PICTURE_ASPECT_16_9, },
1609 };
1610 
1611 struct minimode {
1612 	short w;
1613 	short h;
1614 	short r;
1615 	short rb;
1616 };
1617 
1618 static const struct minimode est3_modes[] = {
1619 	/* byte 6 */
1620 	{ 640, 350, 85, 0 },
1621 	{ 640, 400, 85, 0 },
1622 	{ 720, 400, 85, 0 },
1623 	{ 640, 480, 85, 0 },
1624 	{ 848, 480, 60, 0 },
1625 	{ 800, 600, 85, 0 },
1626 	{ 1024, 768, 85, 0 },
1627 	{ 1152, 864, 75, 0 },
1628 	/* byte 7 */
1629 	{ 1280, 768, 60, 1 },
1630 	{ 1280, 768, 60, 0 },
1631 	{ 1280, 768, 75, 0 },
1632 	{ 1280, 768, 85, 0 },
1633 	{ 1280, 960, 60, 0 },
1634 	{ 1280, 960, 85, 0 },
1635 	{ 1280, 1024, 60, 0 },
1636 	{ 1280, 1024, 85, 0 },
1637 	/* byte 8 */
1638 	{ 1360, 768, 60, 0 },
1639 	{ 1440, 900, 60, 1 },
1640 	{ 1440, 900, 60, 0 },
1641 	{ 1440, 900, 75, 0 },
1642 	{ 1440, 900, 85, 0 },
1643 	{ 1400, 1050, 60, 1 },
1644 	{ 1400, 1050, 60, 0 },
1645 	{ 1400, 1050, 75, 0 },
1646 	/* byte 9 */
1647 	{ 1400, 1050, 85, 0 },
1648 	{ 1680, 1050, 60, 1 },
1649 	{ 1680, 1050, 60, 0 },
1650 	{ 1680, 1050, 75, 0 },
1651 	{ 1680, 1050, 85, 0 },
1652 	{ 1600, 1200, 60, 0 },
1653 	{ 1600, 1200, 65, 0 },
1654 	{ 1600, 1200, 70, 0 },
1655 	/* byte 10 */
1656 	{ 1600, 1200, 75, 0 },
1657 	{ 1600, 1200, 85, 0 },
1658 	{ 1792, 1344, 60, 0 },
1659 	{ 1792, 1344, 75, 0 },
1660 	{ 1856, 1392, 60, 0 },
1661 	{ 1856, 1392, 75, 0 },
1662 	{ 1920, 1200, 60, 1 },
1663 	{ 1920, 1200, 60, 0 },
1664 	/* byte 11 */
1665 	{ 1920, 1200, 75, 0 },
1666 	{ 1920, 1200, 85, 0 },
1667 	{ 1920, 1440, 60, 0 },
1668 	{ 1920, 1440, 75, 0 },
1669 };
1670 
1671 static const struct minimode extra_modes[] = {
1672 	{ 1024, 576,  60, 0 },
1673 	{ 1366, 768,  60, 0 },
1674 	{ 1600, 900,  60, 0 },
1675 	{ 1680, 945,  60, 0 },
1676 	{ 1920, 1080, 60, 0 },
1677 	{ 2048, 1152, 60, 0 },
1678 	{ 2048, 1536, 60, 0 },
1679 };
1680 
cea_mode_for_vic(u8 vic)1681 static const struct drm_display_mode *cea_mode_for_vic(u8 vic)
1682 {
1683 	if (!vic)
1684 		return NULL;
1685 	else if (vic >= 1 && vic < 1 + ARRAY_SIZE(edid_cea_modes_1))
1686 		return &edid_cea_modes_1[vic - 1];
1687 	else if (vic >= 193 && vic < 193 + ARRAY_SIZE(edid_cea_modes_193))
1688 		return &edid_cea_modes_193[vic - 193];
1689 
1690 	return NULL;
1691 }
1692 
cea_num_vics(void)1693 static u8 cea_num_vics(void)
1694 {
1695 	return 193 + ARRAY_SIZE(edid_cea_modes_193);
1696 }
1697 
cea_next_vic(u8 vic)1698 static u8 cea_next_vic(u8 vic)
1699 {
1700 	if (++vic == 1 + ARRAY_SIZE(edid_cea_modes_1))
1701 		vic = 193;
1702 
1703 	return vic;
1704 }
1705 
edid_check_info(struct edid1_info * edid_info)1706 int edid_check_info(struct edid1_info *edid_info)
1707 {
1708 	if ((edid_info == NULL) || (edid_info->version == 0))
1709 		return -1;
1710 
1711 	if (memcmp(edid_info->header, "\x0\xff\xff\xff\xff\xff\xff\x0", 8))
1712 		return -1;
1713 
1714 	if (edid_info->version == 0xff && edid_info->revision == 0xff)
1715 		return -1;
1716 
1717 	return 0;
1718 }
1719 
edid_check_checksum(u8 * edid_block)1720 int edid_check_checksum(u8 *edid_block)
1721 {
1722 	u8 checksum = 0;
1723 	int i;
1724 
1725 	for (i = 0; i < 128; i++)
1726 		checksum += edid_block[i];
1727 
1728 	return (checksum == 0) ? 0 : -EINVAL;
1729 }
1730 
edid_get_ranges(struct edid1_info * edid,unsigned int * hmin,unsigned int * hmax,unsigned int * vmin,unsigned int * vmax)1731 int edid_get_ranges(struct edid1_info *edid, unsigned int *hmin,
1732 		    unsigned int *hmax, unsigned int *vmin,
1733 		    unsigned int *vmax)
1734 {
1735 	int i;
1736 	struct edid_monitor_descriptor *monitor;
1737 
1738 	*hmin = *hmax = *vmin = *vmax = 0;
1739 	if (edid_check_info(edid))
1740 		return -1;
1741 
1742 	for (i = 0; i < ARRAY_SIZE(edid->monitor_details.descriptor); i++) {
1743 		monitor = &edid->monitor_details.descriptor[i];
1744 		if (monitor->type == EDID_MONITOR_DESCRIPTOR_RANGE) {
1745 			*hmin = monitor->data.range_data.horizontal_min;
1746 			*hmax = monitor->data.range_data.horizontal_max;
1747 			*vmin = monitor->data.range_data.vertical_min;
1748 			*vmax = monitor->data.range_data.vertical_max;
1749 			return 0;
1750 		}
1751 	}
1752 	return -1;
1753 }
1754 
1755 /* Set all parts of a timing entry to the same value */
set_entry(struct timing_entry * entry,u32 value)1756 static void set_entry(struct timing_entry *entry, u32 value)
1757 {
1758 	entry->min = value;
1759 	entry->typ = value;
1760 	entry->max = value;
1761 }
1762 
1763 /**
1764  * decode_timing() - Decoding an 18-byte detailed timing record
1765  *
1766  * @buf:	Pointer to EDID detailed timing record
1767  * @timing:	Place to put timing
1768  */
decode_timing(u8 * buf,struct display_timing * timing)1769 static void decode_timing(u8 *buf, struct display_timing *timing)
1770 {
1771 	uint x_mm, y_mm;
1772 	unsigned int ha, hbl, hso, hspw, hborder;
1773 	unsigned int va, vbl, vso, vspw, vborder;
1774 	struct edid_detailed_timing *t = (struct edid_detailed_timing *)buf;
1775 
1776 	/* Edid contains pixel clock in terms of 10KHz */
1777 	set_entry(&timing->pixelclock, (buf[0] + (buf[1] << 8)) * 10000);
1778 	x_mm = (buf[12] + ((buf[14] & 0xf0) << 4));
1779 	y_mm = (buf[13] + ((buf[14] & 0x0f) << 8));
1780 	ha = (buf[2] + ((buf[4] & 0xf0) << 4));
1781 	hbl = (buf[3] + ((buf[4] & 0x0f) << 8));
1782 	hso = (buf[8] + ((buf[11] & 0xc0) << 2));
1783 	hspw = (buf[9] + ((buf[11] & 0x30) << 4));
1784 	hborder = buf[15];
1785 	va = (buf[5] + ((buf[7] & 0xf0) << 4));
1786 	vbl = (buf[6] + ((buf[7] & 0x0f) << 8));
1787 	vso = ((buf[10] >> 4) + ((buf[11] & 0x0c) << 2));
1788 	vspw = ((buf[10] & 0x0f) + ((buf[11] & 0x03) << 4));
1789 	vborder = buf[16];
1790 
1791 	set_entry(&timing->hactive, ha);
1792 	set_entry(&timing->hfront_porch, hso);
1793 	set_entry(&timing->hback_porch, hbl - hso - hspw);
1794 	set_entry(&timing->hsync_len, hspw);
1795 
1796 	set_entry(&timing->vactive, va);
1797 	set_entry(&timing->vfront_porch, vso);
1798 	set_entry(&timing->vback_porch, vbl - vso - vspw);
1799 	set_entry(&timing->vsync_len, vspw);
1800 
1801 	timing->flags = 0;
1802 	if (EDID_DETAILED_TIMING_FLAG_HSYNC_POLARITY(*t))
1803 		timing->flags |= DISPLAY_FLAGS_HSYNC_HIGH;
1804 	else
1805 		timing->flags |= DISPLAY_FLAGS_HSYNC_LOW;
1806 	if (EDID_DETAILED_TIMING_FLAG_VSYNC_POLARITY(*t))
1807 		timing->flags |= DISPLAY_FLAGS_VSYNC_HIGH;
1808 	else
1809 		timing->flags |= DISPLAY_FLAGS_VSYNC_LOW;
1810 
1811 	if (EDID_DETAILED_TIMING_FLAG_INTERLACED(*t))
1812 		timing->flags = DISPLAY_FLAGS_INTERLACED;
1813 
1814 	debug("Detailed mode clock %u Hz, %d mm x %d mm\n"
1815 	      "               %04x %04x %04x %04x hborder %x\n"
1816 	      "               %04x %04x %04x %04x vborder %x\n",
1817 	      timing->pixelclock.typ,
1818 	      x_mm, y_mm,
1819 	      ha, ha + hso, ha + hso + hspw,
1820 	      ha + hbl, hborder,
1821 	      va, va + vso, va + vso + vspw,
1822 	      va + vbl, vborder);
1823 }
1824 
1825 /**
1826  * decode_mode() - Decoding an 18-byte detailed timing record
1827  *
1828  * @buf:	Pointer to EDID detailed timing record
1829  * @timing:	Place to put timing
1830  */
decode_mode(u8 * buf,struct drm_display_mode * mode)1831 static void decode_mode(u8 *buf, struct drm_display_mode *mode)
1832 {
1833 	uint x_mm, y_mm;
1834 	unsigned int ha, hbl, hso, hspw, hborder;
1835 	unsigned int va, vbl, vso, vspw, vborder;
1836 	struct edid_detailed_timing *t = (struct edid_detailed_timing *)buf;
1837 
1838 	x_mm = (buf[12] + ((buf[14] & 0xf0) << 4));
1839 	y_mm = (buf[13] + ((buf[14] & 0x0f) << 8));
1840 	ha = (buf[2] + ((buf[4] & 0xf0) << 4));
1841 	hbl = (buf[3] + ((buf[4] & 0x0f) << 8));
1842 	hso = (buf[8] + ((buf[11] & 0xc0) << 2));
1843 	hspw = (buf[9] + ((buf[11] & 0x30) << 4));
1844 	hborder = buf[15];
1845 	va = (buf[5] + ((buf[7] & 0xf0) << 4));
1846 	vbl = (buf[6] + ((buf[7] & 0x0f) << 8));
1847 	vso = ((buf[10] >> 4) + ((buf[11] & 0x0c) << 2));
1848 	vspw = ((buf[10] & 0x0f) + ((buf[11] & 0x03) << 4));
1849 	vborder = buf[16];
1850 
1851 	/* Edid contains pixel clock in terms of 10KHz */
1852 	mode->clock = (buf[0] + (buf[1] << 8)) * 10;
1853 	mode->hdisplay = ha;
1854 	mode->hsync_start = ha + hso;
1855 	mode->hsync_end = ha + hso + hspw;
1856 	mode->htotal = ha + hbl;
1857 	mode->vdisplay = va;
1858 	mode->vsync_start = va + vso;
1859 	mode->vsync_end = va + vso + vspw;
1860 	mode->vtotal = va + vbl;
1861 
1862 	mode->flags = EDID_DETAILED_TIMING_FLAG_HSYNC_POLARITY(*t) ?
1863 		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
1864 	mode->flags |= EDID_DETAILED_TIMING_FLAG_VSYNC_POLARITY(*t) ?
1865 		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
1866 
1867 	if (EDID_DETAILED_TIMING_FLAG_INTERLACED(*t))
1868 		mode->flags |= DRM_MODE_FLAG_INTERLACE;
1869 
1870 	debug("Detailed mode clock %u kHz, %d mm x %d mm, flags[%x]\n"
1871 	      "     %04d %04d %04d %04d hborder %d\n"
1872 	      "     %04d %04d %04d %04d vborder %d\n",
1873 	      mode->clock,
1874 	      x_mm, y_mm, mode->flags,
1875 	      mode->hdisplay, mode->hsync_start, mode->hsync_end,
1876 	      mode->htotal, hborder,
1877 	      mode->vdisplay, mode->vsync_start, mode->vsync_end,
1878 	      mode->vtotal, vborder);
1879 }
1880 
1881 /**
1882  * edid_vendor - match a string against EDID's obfuscated vendor field
1883  * @edid: EDID to match
1884  * @vendor: vendor string
1885  *
1886  * Returns true if @vendor is in @edid, false otherwise
1887  */
edid_vendor(struct edid * edid,char * vendor)1888 static bool edid_vendor(struct edid *edid, char *vendor)
1889 {
1890 	char edid_vendor[3];
1891 
1892 	edid_vendor[0] = ((edid->mfg_id[0] & 0x7c) >> 2) + '@';
1893 	edid_vendor[1] = (((edid->mfg_id[0] & 0x3) << 3) |
1894 			  ((edid->mfg_id[1] & 0xe0) >> 5)) + '@';
1895 	edid_vendor[2] = (edid->mfg_id[1] & 0x1f) + '@';
1896 
1897 	return !strncmp(edid_vendor, vendor, 3);
1898 }
1899 
1900 /**
1901  * Check if HDMI vendor specific data block is present in CEA block
1902  * @param info	CEA extension block
1903  * @return true if block is found
1904  */
cea_is_hdmi_vsdb_present(struct edid_cea861_info * info)1905 static bool cea_is_hdmi_vsdb_present(struct edid_cea861_info *info)
1906 {
1907 	u8 end, i = 0;
1908 
1909 	/* check for end of data block */
1910 	end = info->dtd_offset;
1911 	if (end == 0)
1912 		end = sizeof(info->data);
1913 	if (end < 4 || end > sizeof(info->data))
1914 		return false;
1915 	end -= 4;
1916 
1917 	while (i < end) {
1918 		/* Look for vendor specific data block of appropriate size */
1919 		if ((EDID_CEA861_DB_TYPE(*info, i) == EDID_CEA861_DB_VENDOR) &&
1920 		    (EDID_CEA861_DB_LEN(*info, i) >= 5)) {
1921 			u8 *db = &info->data[i + 1];
1922 			u32 oui = db[0] | (db[1] << 8) | (db[2] << 16);
1923 
1924 			if (oui == HDMI_IEEE_OUI)
1925 				return true;
1926 		}
1927 		i += EDID_CEA861_DB_LEN(*info, i) + 1;
1928 	}
1929 
1930 	return false;
1931 }
1932 
drm_get_vrefresh(const struct drm_display_mode * mode)1933 static int drm_get_vrefresh(const struct drm_display_mode *mode)
1934 {
1935 	int refresh = 0;
1936 	unsigned int calc_val;
1937 
1938 	if (mode->vrefresh > 0) {
1939 		refresh = mode->vrefresh;
1940 	} else if (mode->htotal > 0 && mode->vtotal > 0) {
1941 		int vtotal;
1942 
1943 		vtotal = mode->vtotal;
1944 		/* work out vrefresh the value will be x1000 */
1945 		calc_val = (mode->clock * 1000);
1946 		calc_val /= mode->htotal;
1947 		refresh = (calc_val + vtotal / 2) / vtotal;
1948 
1949 		if (mode->flags & DRM_MODE_FLAG_INTERLACE)
1950 			refresh *= 2;
1951 		if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1952 			refresh /= 2;
1953 		if (mode->vscan > 1)
1954 			refresh /= mode->vscan;
1955 	}
1956 	return refresh;
1957 }
1958 
edid_get_drm_mode(u8 * buf,int buf_size,struct drm_display_mode * mode,int * panel_bits_per_colourp)1959 int edid_get_drm_mode(u8 *buf, int buf_size, struct drm_display_mode *mode,
1960 		      int *panel_bits_per_colourp)
1961 {
1962 	struct edid1_info *edid = (struct edid1_info *)buf;
1963 	bool timing_done;
1964 	int i;
1965 
1966 	if (buf_size < sizeof(*edid) || edid_check_info(edid)) {
1967 		debug("%s: Invalid buffer\n", __func__);
1968 		return -EINVAL;
1969 	}
1970 
1971 	if (!EDID1_INFO_FEATURE_PREFERRED_TIMING_MODE(*edid)) {
1972 		debug("%s: No preferred timing\n", __func__);
1973 		return -ENOENT;
1974 	}
1975 
1976 	/* Look for detailed timing */
1977 	timing_done = false;
1978 	for (i = 0; i < 4; i++) {
1979 		struct edid_monitor_descriptor *desc;
1980 
1981 		desc = &edid->monitor_details.descriptor[i];
1982 		if (desc->zero_flag_1 != 0) {
1983 			decode_mode((u8 *)desc, mode);
1984 			timing_done = true;
1985 			break;
1986 		}
1987 	}
1988 	if (!timing_done)
1989 		return -EINVAL;
1990 
1991 	if (!EDID1_INFO_VIDEO_INPUT_DIGITAL(*edid)) {
1992 		debug("%s: Not a digital display\n", __func__);
1993 		return -ENOSYS;
1994 	}
1995 	if (edid->version != 1 || edid->revision < 4) {
1996 		debug("%s: EDID version %d.%d does not have required info\n",
1997 		      __func__, edid->version, edid->revision);
1998 		*panel_bits_per_colourp = -1;
1999 	} else  {
2000 		*panel_bits_per_colourp =
2001 			((edid->video_input_definition & 0x70) >> 3) + 4;
2002 	}
2003 
2004 	return 0;
2005 }
2006 
edid_get_timing(u8 * buf,int buf_size,struct display_timing * timing,int * panel_bits_per_colourp)2007 int edid_get_timing(u8 *buf, int buf_size, struct display_timing *timing,
2008 		    int *panel_bits_per_colourp)
2009 {
2010 	struct edid1_info *edid = (struct edid1_info *)buf;
2011 	bool timing_done;
2012 	int i;
2013 
2014 	if (buf_size < sizeof(*edid) || edid_check_info(edid)) {
2015 		debug("%s: Invalid buffer\n", __func__);
2016 		return -EINVAL;
2017 	}
2018 
2019 	if (!EDID1_INFO_FEATURE_PREFERRED_TIMING_MODE(*edid)) {
2020 		debug("%s: No preferred timing\n", __func__);
2021 		return -ENOENT;
2022 	}
2023 
2024 	/* Look for detailed timing */
2025 	timing_done = false;
2026 	for (i = 0; i < 4; i++) {
2027 		struct edid_monitor_descriptor *desc;
2028 
2029 		desc = &edid->monitor_details.descriptor[i];
2030 		if (desc->zero_flag_1 != 0) {
2031 			decode_timing((u8 *)desc, timing);
2032 			timing_done = true;
2033 			break;
2034 		}
2035 	}
2036 	if (!timing_done)
2037 		return -EINVAL;
2038 
2039 	if (!EDID1_INFO_VIDEO_INPUT_DIGITAL(*edid)) {
2040 		debug("%s: Not a digital display\n", __func__);
2041 		return -ENOSYS;
2042 	}
2043 	if (edid->version != 1 || edid->revision < 4) {
2044 		debug("%s: EDID version %d.%d does not have required info\n",
2045 		      __func__, edid->version, edid->revision);
2046 		*panel_bits_per_colourp = -1;
2047 	} else  {
2048 		*panel_bits_per_colourp =
2049 			((edid->video_input_definition & 0x70) >> 3) + 4;
2050 	}
2051 
2052 	timing->hdmi_monitor = false;
2053 	if (edid->extension_flag && (buf_size >= EDID_EXT_SIZE)) {
2054 		struct edid_cea861_info *info =
2055 			(struct edid_cea861_info *)(buf + sizeof(*edid));
2056 
2057 		if (info->extension_tag == EDID_CEA861_EXTENSION_TAG)
2058 			timing->hdmi_monitor = cea_is_hdmi_vsdb_present(info);
2059 	}
2060 
2061 	return 0;
2062 }
2063 
2064 /**
2065  * Snip the tailing whitespace/return of a string.
2066  *
2067  * @param string	The string to be snipped
2068  * @return the snipped string
2069  */
snip(char * string)2070 static char *snip(char *string)
2071 {
2072 	char *s;
2073 
2074 	/*
2075 	 * This is always a 13 character buffer
2076 	 * and it's not always terminated.
2077 	 */
2078 	string[12] = '\0';
2079 	s = &string[strlen(string) - 1];
2080 
2081 	while (s >= string && (isspace(*s) || *s == '\n' || *s == '\r' ||
2082 	       *s == '\0'))
2083 		*(s--) = '\0';
2084 
2085 	return string;
2086 }
2087 
2088 /**
2089  * Print an EDID monitor descriptor block
2090  *
2091  * @param monitor	The EDID monitor descriptor block
2092  * @have_timing		Modifies to 1 if the desciptor contains timing info
2093  */
edid_print_dtd(struct edid_monitor_descriptor * monitor,unsigned int * have_timing)2094 static void edid_print_dtd(struct edid_monitor_descriptor *monitor,
2095 			   unsigned int *have_timing)
2096 {
2097 	unsigned char *bytes = (unsigned char *)monitor;
2098 	struct edid_detailed_timing *timing =
2099 			(struct edid_detailed_timing *)monitor;
2100 
2101 	if (bytes[0] == 0 && bytes[1] == 0) {
2102 		if (monitor->type == EDID_MONITOR_DESCRIPTOR_SERIAL)
2103 			printf("Monitor serial number: %s\n",
2104 			       snip(monitor->data.string));
2105 		else if (monitor->type == EDID_MONITOR_DESCRIPTOR_ASCII)
2106 			printf("Monitor ID: %s\n",
2107 			       snip(monitor->data.string));
2108 		else if (monitor->type == EDID_MONITOR_DESCRIPTOR_NAME)
2109 			printf("Monitor name: %s\n",
2110 			       snip(monitor->data.string));
2111 		else if (monitor->type == EDID_MONITOR_DESCRIPTOR_RANGE)
2112 			printf("Monitor range limits, horizontal sync: "
2113 			       "%d-%d kHz, vertical refresh: "
2114 			       "%d-%d Hz, max pixel clock: "
2115 			       "%d MHz\n",
2116 			       monitor->data.range_data.horizontal_min,
2117 			       monitor->data.range_data.horizontal_max,
2118 			       monitor->data.range_data.vertical_min,
2119 			       monitor->data.range_data.vertical_max,
2120 			       monitor->data.range_data.pixel_clock_max * 10);
2121 	} else {
2122 		u32 pixclock, h_active, h_blanking, v_active, v_blanking;
2123 		u32 h_total, v_total, vfreq;
2124 
2125 		pixclock = EDID_DETAILED_TIMING_PIXEL_CLOCK(*timing);
2126 		h_active = EDID_DETAILED_TIMING_HORIZONTAL_ACTIVE(*timing);
2127 		h_blanking = EDID_DETAILED_TIMING_HORIZONTAL_BLANKING(*timing);
2128 		v_active = EDID_DETAILED_TIMING_VERTICAL_ACTIVE(*timing);
2129 		v_blanking = EDID_DETAILED_TIMING_VERTICAL_BLANKING(*timing);
2130 
2131 		h_total = h_active + h_blanking;
2132 		v_total = v_active + v_blanking;
2133 		if (v_total > 0 && h_total > 0)
2134 			vfreq = pixclock / (v_total * h_total);
2135 		else
2136 			vfreq = 1; /* Error case */
2137 		printf("\t%dx%d\%c\t%d Hz (detailed)\n", h_active,
2138 		       v_active, h_active > 1000 ? ' ' : '\t', vfreq);
2139 		*have_timing = 1;
2140 	}
2141 }
2142 
2143 /**
2144  * Get the manufacturer name from an EDID info.
2145  *
2146  * @param edid_info     The EDID info to be printed
2147  * @param name		Returns the string of the manufacturer name
2148  */
edid_get_manufacturer_name(struct edid1_info * edid,char * name)2149 static void edid_get_manufacturer_name(struct edid1_info *edid, char *name)
2150 {
2151 	name[0] = EDID1_INFO_MANUFACTURER_NAME_CHAR1(*edid) + 'A' - 1;
2152 	name[1] = EDID1_INFO_MANUFACTURER_NAME_CHAR2(*edid) + 'A' - 1;
2153 	name[2] = EDID1_INFO_MANUFACTURER_NAME_CHAR3(*edid) + 'A' - 1;
2154 	name[3] = '\0';
2155 }
2156 
edid_print_info(struct edid1_info * edid_info)2157 void edid_print_info(struct edid1_info *edid_info)
2158 {
2159 	int i;
2160 	char manufacturer[4];
2161 	unsigned int have_timing = 0;
2162 	u32 serial_number;
2163 
2164 	if (edid_check_info(edid_info)) {
2165 		printf("Not a valid EDID\n");
2166 		return;
2167 	}
2168 
2169 	printf("EDID version: %d.%d\n",
2170 	       edid_info->version, edid_info->revision);
2171 
2172 	printf("Product ID code: %04x\n", EDID1_INFO_PRODUCT_CODE(*edid_info));
2173 
2174 	edid_get_manufacturer_name(edid_info, manufacturer);
2175 	printf("Manufacturer: %s\n", manufacturer);
2176 
2177 	serial_number = EDID1_INFO_SERIAL_NUMBER(*edid_info);
2178 	if (serial_number != 0xffffffff) {
2179 		if (strcmp(manufacturer, "MAG") == 0)
2180 			serial_number -= 0x7000000;
2181 		if (strcmp(manufacturer, "OQI") == 0)
2182 			serial_number -= 456150000;
2183 		if (strcmp(manufacturer, "VSC") == 0)
2184 			serial_number -= 640000000;
2185 	}
2186 	printf("Serial number: %08x\n", serial_number);
2187 	printf("Manufactured in week: %d year: %d\n",
2188 	       edid_info->week, edid_info->year + 1990);
2189 
2190 	printf("Video input definition: %svoltage level %d%s%s%s%s%s\n",
2191 	       EDID1_INFO_VIDEO_INPUT_DIGITAL(*edid_info) ?
2192 	       "digital signal, " : "analog signal, ",
2193 	       EDID1_INFO_VIDEO_INPUT_VOLTAGE_LEVEL(*edid_info),
2194 	       EDID1_INFO_VIDEO_INPUT_BLANK_TO_BLACK(*edid_info) ?
2195 	       ", blank to black" : "",
2196 	       EDID1_INFO_VIDEO_INPUT_SEPARATE_SYNC(*edid_info) ?
2197 	       ", separate sync" : "",
2198 	       EDID1_INFO_VIDEO_INPUT_COMPOSITE_SYNC(*edid_info) ?
2199 	       ", composite sync" : "",
2200 	       EDID1_INFO_VIDEO_INPUT_SYNC_ON_GREEN(*edid_info) ?
2201 	       ", sync on green" : "",
2202 	       EDID1_INFO_VIDEO_INPUT_SERRATION_V(*edid_info) ?
2203 	       ", serration v" : "");
2204 
2205 	printf("Monitor is %s\n",
2206 	       EDID1_INFO_FEATURE_RGB(*edid_info) ? "RGB" : "non-RGB");
2207 
2208 	printf("Maximum visible display size: %d cm x %d cm\n",
2209 	       edid_info->max_size_horizontal,
2210 	       edid_info->max_size_vertical);
2211 
2212 	printf("Power management features: %s%s, %s%s, %s%s\n",
2213 	       EDID1_INFO_FEATURE_ACTIVE_OFF(*edid_info) ?
2214 	       "" : "no ", "active off",
2215 	       EDID1_INFO_FEATURE_SUSPEND(*edid_info) ? "" : "no ", "suspend",
2216 	       EDID1_INFO_FEATURE_STANDBY(*edid_info) ? "" : "no ", "standby");
2217 
2218 	printf("Estabilished timings:\n");
2219 	if (EDID1_INFO_ESTABLISHED_TIMING_720X400_70(*edid_info))
2220 		printf("\t720x400\t\t70 Hz (VGA 640x400, IBM)\n");
2221 	if (EDID1_INFO_ESTABLISHED_TIMING_720X400_88(*edid_info))
2222 		printf("\t720x400\t\t88 Hz (XGA2)\n");
2223 	if (EDID1_INFO_ESTABLISHED_TIMING_640X480_60(*edid_info))
2224 		printf("\t640x480\t\t60 Hz (VGA)\n");
2225 	if (EDID1_INFO_ESTABLISHED_TIMING_640X480_67(*edid_info))
2226 		printf("\t640x480\t\t67 Hz (Mac II, Apple)\n");
2227 	if (EDID1_INFO_ESTABLISHED_TIMING_640X480_72(*edid_info))
2228 		printf("\t640x480\t\t72 Hz (VESA)\n");
2229 	if (EDID1_INFO_ESTABLISHED_TIMING_640X480_75(*edid_info))
2230 		printf("\t640x480\t\t75 Hz (VESA)\n");
2231 	if (EDID1_INFO_ESTABLISHED_TIMING_800X600_56(*edid_info))
2232 		printf("\t800x600\t\t56 Hz (VESA)\n");
2233 	if (EDID1_INFO_ESTABLISHED_TIMING_800X600_60(*edid_info))
2234 		printf("\t800x600\t\t60 Hz (VESA)\n");
2235 	if (EDID1_INFO_ESTABLISHED_TIMING_800X600_72(*edid_info))
2236 		printf("\t800x600\t\t72 Hz (VESA)\n");
2237 	if (EDID1_INFO_ESTABLISHED_TIMING_800X600_75(*edid_info))
2238 		printf("\t800x600\t\t75 Hz (VESA)\n");
2239 	if (EDID1_INFO_ESTABLISHED_TIMING_832X624_75(*edid_info))
2240 		printf("\t832x624\t\t75 Hz (Mac II)\n");
2241 	if (EDID1_INFO_ESTABLISHED_TIMING_1024X768_87I(*edid_info))
2242 		printf("\t1024x768\t87 Hz Interlaced (8514A)\n");
2243 	if (EDID1_INFO_ESTABLISHED_TIMING_1024X768_60(*edid_info))
2244 		printf("\t1024x768\t60 Hz (VESA)\n");
2245 	if (EDID1_INFO_ESTABLISHED_TIMING_1024X768_70(*edid_info))
2246 		printf("\t1024x768\t70 Hz (VESA)\n");
2247 	if (EDID1_INFO_ESTABLISHED_TIMING_1024X768_75(*edid_info))
2248 		printf("\t1024x768\t75 Hz (VESA)\n");
2249 	if (EDID1_INFO_ESTABLISHED_TIMING_1280X1024_75(*edid_info))
2250 		printf("\t1280x1024\t75 (VESA)\n");
2251 	if (EDID1_INFO_ESTABLISHED_TIMING_1152X870_75(*edid_info))
2252 		printf("\t1152x870\t75 (Mac II)\n");
2253 
2254 	/* Standard timings. */
2255 	printf("Standard timings:\n");
2256 	for (i = 0; i < ARRAY_SIZE(edid_info->standard_timings); i++) {
2257 		unsigned int aspect = 10000;
2258 		unsigned int x, y;
2259 		unsigned char xres, vfreq;
2260 
2261 		xres = EDID1_INFO_STANDARD_TIMING_XRESOLUTION(*edid_info, i);
2262 		vfreq = EDID1_INFO_STANDARD_TIMING_VFREQ(*edid_info, i);
2263 		if ((xres != vfreq) ||
2264 		    ((xres != 0) && (xres != 1)) ||
2265 		    ((vfreq != 0) && (vfreq != 1))) {
2266 			switch (EDID1_INFO_STANDARD_TIMING_ASPECT(*edid_info,
2267 				i)) {
2268 			case ASPECT_625:
2269 				aspect = 6250;
2270 				break;
2271 			case ASPECT_75:
2272 				aspect = 7500;
2273 				break;
2274 			case ASPECT_8:
2275 				aspect = 8000;
2276 				break;
2277 			case ASPECT_5625:
2278 				aspect = 5625;
2279 				break;
2280 			}
2281 			x = (xres + 31) * 8;
2282 			y = x * aspect / 10000;
2283 			printf("\t%dx%d%c\t%d Hz\n", x, y,
2284 			       x > 1000 ? ' ' : '\t', (vfreq & 0x3f) + 60);
2285 			have_timing = 1;
2286 		}
2287 	}
2288 
2289 	/* Detailed timing information. */
2290 	for (i = 0; i < ARRAY_SIZE(edid_info->monitor_details.descriptor);
2291 			i++) {
2292 		edid_print_dtd(&edid_info->monitor_details.descriptor[i],
2293 			       &have_timing);
2294 	}
2295 
2296 	if (!have_timing)
2297 		printf("\tNone\n");
2298 }
2299 
2300 /**
2301  * drm_cvt_mode -create a modeline based on the CVT algorithm
2302  * @hdisplay: hdisplay size
2303  * @vdisplay: vdisplay size
2304  * @vrefresh: vrefresh rate
2305  * @reduced: whether to use reduced blanking
2306  * @interlaced: whether to compute an interlaced mode
2307  * @margins: whether to add margins (borders)
2308  *
2309  * This function is called to generate the modeline based on CVT algorithm
2310  * according to the hdisplay, vdisplay, vrefresh.
2311  * It is based from the VESA(TM) Coordinated Video Timing Generator by
2312  * Graham Loveridge April 9, 2003 available at
2313  * http://www.elo.utfsm.cl/~elo212/docs/CVTd6r1.xls
2314  *
2315  * And it is copied from xf86CVTmode in xserver/hw/xfree86/modes/xf86cvt.c.
2316  * What I have done is to translate it by using integer calculation.
2317  *
2318  * Returns:
2319  * The modeline based on the CVT algorithm stored in a drm_display_mode object.
2320  * The display mode object is allocated with drm_mode_create(). Returns NULL
2321  * when no mode could be allocated.
2322  */
2323 static
drm_cvt_mode(int hdisplay,int vdisplay,int vrefresh,bool reduced,bool interlaced,bool margins)2324 struct drm_display_mode *drm_cvt_mode(int hdisplay, int vdisplay, int vrefresh,
2325 				      bool reduced, bool interlaced,
2326 				      bool margins)
2327 {
2328 #define HV_FACTOR			1000
2329 	/* 1) top/bottom margin size (% of height) - default: 1.8, */
2330 #define	CVT_MARGIN_PERCENTAGE		18
2331 	/* 2) character cell horizontal granularity (pixels) - default 8 */
2332 #define	CVT_H_GRANULARITY		8
2333 	/* 3) Minimum vertical porch (lines) - default 3 */
2334 #define	CVT_MIN_V_PORCH			3
2335 	/* 4) Minimum number of vertical back porch lines - default 6 */
2336 #define	CVT_MIN_V_BPORCH		6
2337 	/* Pixel Clock step (kHz) */
2338 #define CVT_CLOCK_STEP			250
2339 	struct drm_display_mode *drm_mode;
2340 	unsigned int vfieldrate, hperiod;
2341 	int hdisplay_rnd, hmargin, vdisplay_rnd, vmargin, vsync;
2342 	int interlace;
2343 
2344 	/* allocate the drm_display_mode structure. If failure, we will
2345 	 * return directly
2346 	 */
2347 	drm_mode = drm_mode_create();
2348 	if (!drm_mode)
2349 		return NULL;
2350 
2351 	/* the CVT default refresh rate is 60Hz */
2352 	if (!vrefresh)
2353 		vrefresh = 60;
2354 
2355 	/* the required field fresh rate */
2356 	if (interlaced)
2357 		vfieldrate = vrefresh * 2;
2358 	else
2359 		vfieldrate = vrefresh;
2360 
2361 	/* horizontal pixels */
2362 	hdisplay_rnd = hdisplay - (hdisplay % CVT_H_GRANULARITY);
2363 
2364 	/* determine the left&right borders */
2365 	hmargin = 0;
2366 	if (margins) {
2367 		hmargin = hdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
2368 		hmargin -= hmargin % CVT_H_GRANULARITY;
2369 	}
2370 	/* find the total active pixels */
2371 	drm_mode->hdisplay = hdisplay_rnd + 2 * hmargin;
2372 
2373 	/* find the number of lines per field */
2374 	if (interlaced)
2375 		vdisplay_rnd = vdisplay / 2;
2376 	else
2377 		vdisplay_rnd = vdisplay;
2378 
2379 	/* find the top & bottom borders */
2380 	vmargin = 0;
2381 	if (margins)
2382 		vmargin = vdisplay_rnd * CVT_MARGIN_PERCENTAGE / 1000;
2383 
2384 	drm_mode->vdisplay = vdisplay + 2 * vmargin;
2385 
2386 	/* Interlaced */
2387 	if (interlaced)
2388 		interlace = 1;
2389 	else
2390 		interlace = 0;
2391 
2392 	/* Determine VSync Width from aspect ratio */
2393 	if (!(vdisplay % 3) && ((vdisplay * 4 / 3) == hdisplay))
2394 		vsync = 4;
2395 	else if (!(vdisplay % 9) && ((vdisplay * 16 / 9) == hdisplay))
2396 		vsync = 5;
2397 	else if (!(vdisplay % 10) && ((vdisplay * 16 / 10) == hdisplay))
2398 		vsync = 6;
2399 	else if (!(vdisplay % 4) && ((vdisplay * 5 / 4) == hdisplay))
2400 		vsync = 7;
2401 	else if (!(vdisplay % 9) && ((vdisplay * 15 / 9) == hdisplay))
2402 		vsync = 7;
2403 	else /* custom */
2404 		vsync = 10;
2405 
2406 	if (!reduced) {
2407 		/* simplify the GTF calculation */
2408 		/* 4) Minimum time of vertical sync + back porch interval
2409 		 * default 550.0
2410 		 */
2411 		int tmp1, tmp2;
2412 #define CVT_MIN_VSYNC_BP	550
2413 		/* 3) Nominal HSync width (% of line period) - default 8 */
2414 #define CVT_HSYNC_PERCENTAGE	8
2415 		unsigned int hblank_percentage;
2416 		int vsyncandback_porch, hblank;
2417 
2418 		/* estimated the horizontal period */
2419 		tmp1 = HV_FACTOR * 1000000  -
2420 				CVT_MIN_VSYNC_BP * HV_FACTOR * vfieldrate;
2421 		tmp2 = (vdisplay_rnd + 2 * vmargin + CVT_MIN_V_PORCH) * 2 +
2422 				interlace;
2423 		hperiod = tmp1 * 2 / (tmp2 * vfieldrate);
2424 
2425 		tmp1 = CVT_MIN_VSYNC_BP * HV_FACTOR / hperiod + 1;
2426 		/* 9. Find number of lines in sync + backporch */
2427 		if (tmp1 < (vsync + CVT_MIN_V_PORCH))
2428 			vsyncandback_porch = vsync + CVT_MIN_V_PORCH;
2429 		else
2430 			vsyncandback_porch = tmp1;
2431 		/* 10. Find number of lines in back porch
2432 		 *		vback_porch = vsyncandback_porch - vsync;
2433 		 */
2434 		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin +
2435 				vsyncandback_porch + CVT_MIN_V_PORCH;
2436 		/* 5) Definition of Horizontal blanking time limitation */
2437 		/* Gradient (%/kHz) - default 600 */
2438 #define CVT_M_FACTOR	600
2439 		/* Offset (%) - default 40 */
2440 #define CVT_C_FACTOR	40
2441 		/* Blanking time scaling factor - default 128 */
2442 #define CVT_K_FACTOR	128
2443 		/* Scaling factor weighting - default 20 */
2444 #define CVT_J_FACTOR	20
2445 #define CVT_M_PRIME	(CVT_M_FACTOR * CVT_K_FACTOR / 256)
2446 #define CVT_C_PRIME	((CVT_C_FACTOR - CVT_J_FACTOR) * CVT_K_FACTOR / 256 + \
2447 			 CVT_J_FACTOR)
2448 		/* 12. Find ideal blanking duty cycle from formula */
2449 		hblank_percentage = CVT_C_PRIME * HV_FACTOR - CVT_M_PRIME *
2450 					hperiod / 1000;
2451 		/* 13. Blanking time */
2452 		if (hblank_percentage < 20 * HV_FACTOR)
2453 			hblank_percentage = 20 * HV_FACTOR;
2454 		hblank = drm_mode->hdisplay * hblank_percentage /
2455 			 (100 * HV_FACTOR - hblank_percentage);
2456 		hblank -= hblank % (2 * CVT_H_GRANULARITY);
2457 		/* 14. find the total pixels per line */
2458 		drm_mode->htotal = drm_mode->hdisplay + hblank;
2459 		drm_mode->hsync_end = drm_mode->hdisplay + hblank / 2;
2460 		drm_mode->hsync_start = drm_mode->hsync_end -
2461 			(drm_mode->htotal * CVT_HSYNC_PERCENTAGE) / 100;
2462 		drm_mode->hsync_start += CVT_H_GRANULARITY -
2463 			drm_mode->hsync_start % CVT_H_GRANULARITY;
2464 		/* fill the Vsync values */
2465 		drm_mode->vsync_start = drm_mode->vdisplay + CVT_MIN_V_PORCH;
2466 		drm_mode->vsync_end = drm_mode->vsync_start + vsync;
2467 	} else {
2468 		/* Reduced blanking */
2469 		/* Minimum vertical blanking interval time - default 460 */
2470 #define CVT_RB_MIN_VBLANK	460
2471 		/* Fixed number of clocks for horizontal sync */
2472 #define CVT_RB_H_SYNC		32
2473 		/* Fixed number of clocks for horizontal blanking */
2474 #define CVT_RB_H_BLANK		160
2475 		/* Fixed number of lines for vertical front porch - default 3*/
2476 #define CVT_RB_VFPORCH		3
2477 		int vbilines;
2478 		int tmp1, tmp2;
2479 		/* 8. Estimate Horizontal period. */
2480 		tmp1 = HV_FACTOR * 1000000 -
2481 			CVT_RB_MIN_VBLANK * HV_FACTOR * vfieldrate;
2482 		tmp2 = vdisplay_rnd + 2 * vmargin;
2483 		hperiod = tmp1 / (tmp2 * vfieldrate);
2484 		/* 9. Find number of lines in vertical blanking */
2485 		vbilines = CVT_RB_MIN_VBLANK * HV_FACTOR / hperiod + 1;
2486 		/* 10. Check if vertical blanking is sufficient */
2487 		if (vbilines < (CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH))
2488 			vbilines = CVT_RB_VFPORCH + vsync + CVT_MIN_V_BPORCH;
2489 		/* 11. Find total number of lines in vertical field */
2490 		drm_mode->vtotal = vdisplay_rnd + 2 * vmargin + vbilines;
2491 		/* 12. Find total number of pixels in a line */
2492 		drm_mode->htotal = drm_mode->hdisplay + CVT_RB_H_BLANK;
2493 		/* Fill in HSync values */
2494 		drm_mode->hsync_end = drm_mode->hdisplay + CVT_RB_H_BLANK / 2;
2495 		drm_mode->hsync_start = drm_mode->hsync_end - CVT_RB_H_SYNC;
2496 		/* Fill in VSync values */
2497 		drm_mode->vsync_start = drm_mode->vdisplay + CVT_RB_VFPORCH;
2498 		drm_mode->vsync_end = drm_mode->vsync_start + vsync;
2499 	}
2500 	/* 15/13. Find pixel clock frequency (kHz for xf86) */
2501 	drm_mode->clock = drm_mode->htotal * HV_FACTOR * 1000 / hperiod;
2502 	drm_mode->clock -= drm_mode->clock % CVT_CLOCK_STEP;
2503 	/* 18/16. Find actual vertical frame frequency */
2504 	/* ignore - just set the mode flag for interlaced */
2505 	if (interlaced) {
2506 		drm_mode->vtotal *= 2;
2507 		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
2508 	}
2509 
2510 	if (reduced)
2511 		drm_mode->flags |= (DRM_MODE_FLAG_PHSYNC |
2512 					DRM_MODE_FLAG_NVSYNC);
2513 	else
2514 		drm_mode->flags |= (DRM_MODE_FLAG_PVSYNC |
2515 					DRM_MODE_FLAG_NHSYNC);
2516 
2517 	return drm_mode;
2518 }
2519 
2520 static int
cea_db_payload_len(const u8 * db)2521 cea_db_payload_len(const u8 *db)
2522 {
2523 	return db[0] & 0x1f;
2524 }
2525 
2526 static int
cea_db_extended_tag(const u8 * db)2527 cea_db_extended_tag(const u8 *db)
2528 {
2529 	return db[1];
2530 }
2531 
2532 static int
cea_db_tag(const u8 * db)2533 cea_db_tag(const u8 *db)
2534 {
2535 	return db[0] >> 5;
2536 }
2537 
2538 #define for_each_cea_db(cea, i, start, end) \
2539 	for ((i) = (start); (i) < (end) && (i) + \
2540 	cea_db_payload_len(&(cea)[(i)]) < \
2541 	(end); (i) += cea_db_payload_len(&(cea)[(i)]) + 1)
2542 
2543 static int
cea_revision(const u8 * cea)2544 cea_revision(const u8 *cea)
2545 {
2546 	return cea[1];
2547 }
2548 
2549 static int
cea_db_offsets(const u8 * cea,int * start,int * end)2550 cea_db_offsets(const u8 *cea, int *start, int *end)
2551 {
2552 	/* Data block offset in CEA extension block */
2553 	*start = 4;
2554 	*end = cea[2];
2555 	if (*end == 0)
2556 		*end = 127;
2557 	if (*end < 4 || *end > 127)
2558 		return -ERANGE;
2559 
2560 	/*
2561 	 * XXX: cea[2] is equal to the real value minus one in some sink edid.
2562 	 */
2563 	if (*end != 4) {
2564 		int i;
2565 
2566 		i = *start;
2567 		while (i < (*end) &&
2568 		       i + cea_db_payload_len(&(cea)[i]) < (*end))
2569 			i += cea_db_payload_len(&(cea)[i]) + 1;
2570 
2571 		if (cea_db_payload_len(&(cea)[i]) &&
2572 		    i + cea_db_payload_len(&(cea)[i]) == (*end))
2573 			(*end)++;
2574 	}
2575 
2576 	return 0;
2577 }
2578 
cea_db_is_hdmi_vsdb(const u8 * db)2579 static bool cea_db_is_hdmi_vsdb(const u8 *db)
2580 {
2581 	int hdmi_id;
2582 
2583 	if (cea_db_tag(db) != EDID_CEA861_DB_VENDOR)
2584 		return false;
2585 
2586 	if (cea_db_payload_len(db) < 5)
2587 		return false;
2588 
2589 	hdmi_id = db[1] | (db[2] << 8) | (db[3] << 16);
2590 
2591 	return hdmi_id == HDMI_IEEE_OUI;
2592 }
2593 
cea_db_is_hdmi_forum_vsdb(const u8 * db)2594 static bool cea_db_is_hdmi_forum_vsdb(const u8 *db)
2595 {
2596 	unsigned int oui;
2597 
2598 	if (cea_db_tag(db) != EDID_CEA861_DB_VENDOR)
2599 		return false;
2600 
2601 	if (cea_db_payload_len(db) < 7)
2602 		return false;
2603 
2604 	oui = db[3] << 16 | db[2] << 8 | db[1];
2605 
2606 	return oui == HDMI_FORUM_IEEE_OUI;
2607 }
2608 
cea_db_is_y420cmdb(const u8 * db)2609 static bool cea_db_is_y420cmdb(const u8 *db)
2610 {
2611 	if (cea_db_tag(db) != EDID_CEA861_DB_USE_EXTENDED)
2612 		return false;
2613 
2614 	if (!cea_db_payload_len(db))
2615 		return false;
2616 
2617 	if (cea_db_extended_tag(db) != EXT_VIDEO_CAP_BLOCK_Y420CMDB)
2618 		return false;
2619 
2620 	return true;
2621 }
2622 
cea_db_is_y420vdb(const u8 * db)2623 static bool cea_db_is_y420vdb(const u8 *db)
2624 {
2625 	if (cea_db_tag(db) != EDID_CEA861_DB_USE_EXTENDED)
2626 		return false;
2627 
2628 	if (!cea_db_payload_len(db))
2629 		return false;
2630 
2631 	if (cea_db_extended_tag(db) != EXT_VIDEO_DATA_BLOCK_420)
2632 		return false;
2633 
2634 	return true;
2635 }
2636 
drm_valid_hdmi_vic(u8 vic)2637 static bool drm_valid_hdmi_vic(u8 vic)
2638 {
2639 	return vic > 0 && vic < ARRAY_SIZE(edid_4k_modes);
2640 }
2641 
drm_add_hdmi_modes(struct hdmi_edid_data * data,const struct drm_display_mode * mode)2642 static void drm_add_hdmi_modes(struct hdmi_edid_data *data,
2643 			       const struct drm_display_mode *mode)
2644 {
2645 	struct drm_display_mode *mode_buf = data->mode_buf;
2646 
2647 	if (data->modes >= MODE_LEN)
2648 		return;
2649 	mode_buf[(data->modes)++] = *mode;
2650 }
2651 
drm_valid_cea_vic(u8 vic)2652 static bool drm_valid_cea_vic(u8 vic)
2653 {
2654 	return cea_mode_for_vic(vic) ? true : false;
2655 }
2656 
svd_to_vic(u8 svd)2657 static u8 svd_to_vic(u8 svd)
2658 {
2659 	/* 0-6 bit vic, 7th bit native mode indicator */
2660 	if ((svd >= 1 &&  svd <= 64) || (svd >= 129 && svd <= 192))
2661 		return svd & 127;
2662 
2663 	return svd;
2664 }
2665 
2666 static struct drm_display_mode *
drm_display_mode_from_vic_index(const u8 * video_db,u8 video_len,u8 video_index)2667 drm_display_mode_from_vic_index(const u8 *video_db, u8 video_len,
2668 				u8 video_index)
2669 {
2670 	struct drm_display_mode *newmode;
2671 	u8 vic;
2672 
2673 	if (!video_db || video_index >= video_len)
2674 		return NULL;
2675 
2676 	/* CEA modes are numbered 1..127 */
2677 	vic = svd_to_vic(video_db[video_index]);
2678 	if (!drm_valid_cea_vic(vic))
2679 		return NULL;
2680 
2681 	newmode = drm_mode_create();
2682 	if (!newmode)
2683 		return NULL;
2684 
2685 	*newmode = *cea_mode_for_vic(vic);
2686 	newmode->vrefresh = 0;
2687 
2688 	return newmode;
2689 }
2690 
bitmap_set(unsigned long * map,unsigned int start,int len)2691 static void bitmap_set(unsigned long *map, unsigned int start, int len)
2692 {
2693 	unsigned long *p = map + BIT_WORD(start);
2694 	const unsigned int size = start + len;
2695 	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
2696 	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
2697 
2698 	while (len - bits_to_set >= 0) {
2699 		*p |= mask_to_set;
2700 		len -= bits_to_set;
2701 		bits_to_set = BITS_PER_LONG;
2702 		mask_to_set = ~0UL;
2703 		p++;
2704 	}
2705 	if (len) {
2706 		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
2707 		*p |= mask_to_set;
2708 	}
2709 }
2710 
2711 static void
drm_add_cmdb_modes(u8 svd,struct drm_hdmi_info * hdmi)2712 drm_add_cmdb_modes(u8 svd, struct drm_hdmi_info *hdmi)
2713 {
2714 	u8 vic = svd_to_vic(svd);
2715 
2716 	if (!drm_valid_cea_vic(vic))
2717 		return;
2718 
2719 	bitmap_set(hdmi->y420_cmdb_modes, vic, 1);
2720 }
2721 
do_cea_modes(struct hdmi_edid_data * data,const u8 * db,u8 len)2722 int do_cea_modes(struct hdmi_edid_data *data, const u8 *db, u8 len)
2723 {
2724 	int i, modes = 0;
2725 	struct drm_hdmi_info *hdmi = &data->display_info.hdmi;
2726 
2727 	for (i = 0; i < len; i++) {
2728 		struct drm_display_mode *mode;
2729 
2730 		mode = drm_display_mode_from_vic_index(db, len, i);
2731 		if (mode) {
2732 			/*
2733 			 * YCBCR420 capability block contains a bitmap which
2734 			 * gives the index of CEA modes from CEA VDB, which
2735 			 * can support YCBCR 420 sampling output also (apart
2736 			 * from RGB/YCBCR444 etc).
2737 			 * For example, if the bit 0 in bitmap is set,
2738 			 * first mode in VDB can support YCBCR420 output too.
2739 			 * Add YCBCR420 modes only if sink is HDMI 2.0 capable.
2740 			 */
2741 			if (i < 64 && hdmi->y420_cmdb_map & (1ULL << i))
2742 				drm_add_cmdb_modes(db[i], hdmi);
2743 			drm_add_hdmi_modes(data, mode);
2744 			drm_mode_destroy(mode);
2745 			modes++;
2746 		}
2747 	}
2748 
2749 	return modes;
2750 }
2751 
2752 /*
2753  * do_y420vdb_modes - Parse YCBCR 420 only modes
2754  * @data: the structure that save parsed hdmi edid data
2755  * @svds: start of the data block of CEA YCBCR 420 VDB
2756  * @svds_len: length of the CEA YCBCR 420 VDB
2757  * @hdmi: runtime information about the connected HDMI sink
2758  *
2759  * Parse the CEA-861-F YCBCR 420 Video Data Block (Y420VDB)
2760  * which contains modes which can be supported in YCBCR 420
2761  * output format only.
2762  */
2763 static int
do_y420vdb_modes(struct hdmi_edid_data * data,const u8 * svds,u8 svds_len)2764 do_y420vdb_modes(struct hdmi_edid_data *data, const u8 *svds, u8 svds_len)
2765 {
2766 	int modes = 0, i;
2767 	struct drm_hdmi_info *hdmi = &data->display_info.hdmi;
2768 
2769 	for (i = 0; i < svds_len; i++) {
2770 		u8 vic = svd_to_vic(svds[i]);
2771 
2772 		if (!drm_valid_cea_vic(vic))
2773 			continue;
2774 
2775 		bitmap_set(hdmi->y420_vdb_modes, vic, 1);
2776 		drm_add_hdmi_modes(data, cea_mode_for_vic(vic));
2777 		modes++;
2778 	}
2779 
2780 	return modes;
2781 }
2782 
2783 struct stereo_mandatory_mode {
2784 	int width, height, vrefresh;
2785 	unsigned int flags;
2786 };
2787 
2788 static const struct stereo_mandatory_mode stereo_mandatory_modes[] = {
2789 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2790 	{ 1920, 1080, 24, DRM_MODE_FLAG_3D_FRAME_PACKING },
2791 	{ 1920, 1080, 50,
2792 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2793 	{ 1920, 1080, 60,
2794 	  DRM_MODE_FLAG_INTERLACE | DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF },
2795 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2796 	{ 1280, 720,  50, DRM_MODE_FLAG_3D_FRAME_PACKING },
2797 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_TOP_AND_BOTTOM },
2798 	{ 1280, 720,  60, DRM_MODE_FLAG_3D_FRAME_PACKING }
2799 };
2800 
2801 static bool
stereo_match_mandatory(const struct drm_display_mode * mode,const struct stereo_mandatory_mode * stereo_mode)2802 stereo_match_mandatory(const struct drm_display_mode *mode,
2803 		       const struct stereo_mandatory_mode *stereo_mode)
2804 {
2805 	unsigned int interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
2806 
2807 	return mode->hdisplay == stereo_mode->width &&
2808 	       mode->vdisplay == stereo_mode->height &&
2809 	       interlaced == (stereo_mode->flags & DRM_MODE_FLAG_INTERLACE) &&
2810 	       drm_get_vrefresh(mode) == stereo_mode->vrefresh;
2811 }
2812 
add_hdmi_mandatory_stereo_modes(struct hdmi_edid_data * data)2813 static int add_hdmi_mandatory_stereo_modes(struct hdmi_edid_data *data)
2814 {
2815 	const struct drm_display_mode *mode;
2816 	int num = data->modes, modes = 0, i, k;
2817 
2818 	for (k = 0; k < num; k++) {
2819 		mode = &data->mode_buf[k];
2820 		for (i = 0; i < ARRAY_SIZE(stereo_mandatory_modes); i++) {
2821 			const struct stereo_mandatory_mode *mandatory;
2822 			struct drm_display_mode *new_mode;
2823 
2824 			if (!stereo_match_mandatory(mode,
2825 						    &stereo_mandatory_modes[i]))
2826 				continue;
2827 
2828 			mandatory = &stereo_mandatory_modes[i];
2829 			new_mode = drm_mode_create();
2830 			if (!new_mode)
2831 				continue;
2832 
2833 			*new_mode = *mode;
2834 			new_mode->flags |= mandatory->flags;
2835 			drm_add_hdmi_modes(data, new_mode);
2836 			drm_mode_destroy(new_mode);
2837 			modes++;
2838 		}
2839 	}
2840 
2841 	return modes;
2842 }
2843 
add_3d_struct_modes(struct hdmi_edid_data * data,u16 structure,const u8 * video_db,u8 video_len,u8 video_index)2844 static int add_3d_struct_modes(struct hdmi_edid_data *data, u16 structure,
2845 			       const u8 *video_db, u8 video_len, u8 video_index)
2846 {
2847 	struct drm_display_mode *newmode;
2848 	int modes = 0;
2849 
2850 	if (structure & (1 << 0)) {
2851 		newmode = drm_display_mode_from_vic_index(video_db,
2852 							  video_len,
2853 							  video_index);
2854 		if (newmode) {
2855 			newmode->flags |= DRM_MODE_FLAG_3D_FRAME_PACKING;
2856 			drm_add_hdmi_modes(data, newmode);
2857 			modes++;
2858 			drm_mode_destroy(newmode);
2859 		}
2860 	}
2861 	if (structure & (1 << 6)) {
2862 		newmode = drm_display_mode_from_vic_index(video_db,
2863 							  video_len,
2864 							  video_index);
2865 		if (newmode) {
2866 			newmode->flags |= DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
2867 			drm_add_hdmi_modes(data, newmode);
2868 			modes++;
2869 			drm_mode_destroy(newmode);
2870 		}
2871 	}
2872 	if (structure & (1 << 8)) {
2873 		newmode = drm_display_mode_from_vic_index(video_db,
2874 							  video_len,
2875 							  video_index);
2876 		if (newmode) {
2877 			newmode->flags |= DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
2878 			drm_add_hdmi_modes(data, newmode);
2879 			modes++;
2880 			drm_mode_destroy(newmode);
2881 		}
2882 	}
2883 
2884 	return modes;
2885 }
2886 
add_hdmi_mode(struct hdmi_edid_data * data,u8 vic)2887 static int add_hdmi_mode(struct hdmi_edid_data *data, u8 vic)
2888 {
2889 	if (!drm_valid_hdmi_vic(vic)) {
2890 		debug("Unknown HDMI VIC: %d\n", vic);
2891 		return 0;
2892 	}
2893 
2894 	drm_add_hdmi_modes(data, &edid_4k_modes[vic]);
2895 
2896 	return 1;
2897 }
2898 
2899 /*
2900  * do_hdmi_vsdb_modes - Parse the HDMI Vendor Specific data block
2901  * @db: start of the CEA vendor specific block
2902  * @len: length of the CEA block payload, ie. one can access up to db[len]
2903  *
2904  * Parses the HDMI VSDB looking for modes to add to @data. This function
2905  * also adds the stereo 3d modes when applicable.
2906  */
2907 static int
do_hdmi_vsdb_modes(const u8 * db,u8 len,const u8 * video_db,u8 video_len,struct hdmi_edid_data * data)2908 do_hdmi_vsdb_modes(const u8 *db, u8 len, const u8 *video_db, u8 video_len,
2909 		   struct hdmi_edid_data *data)
2910 {
2911 	int modes = 0, offset = 0, i, multi_present = 0, multi_len;
2912 	u8 vic_len, hdmi_3d_len = 0;
2913 	u16 mask;
2914 	u16 structure_all;
2915 
2916 	if (len < 8)
2917 		goto out;
2918 
2919 	/* no HDMI_Video_Present */
2920 	if (!(db[8] & (1 << 5)))
2921 		goto out;
2922 
2923 	/* Latency_Fields_Present */
2924 	if (db[8] & (1 << 7))
2925 		offset += 2;
2926 
2927 	/* I_Latency_Fields_Present */
2928 	if (db[8] & (1 << 6))
2929 		offset += 2;
2930 
2931 	/* the declared length is not long enough for the 2 first bytes
2932 	 * of additional video format capabilities
2933 	 */
2934 	if (len < (8 + offset + 2))
2935 		goto out;
2936 
2937 	/* 3D_Present */
2938 	offset++;
2939 	if (db[8 + offset] & (1 << 7)) {
2940 		modes += add_hdmi_mandatory_stereo_modes(data);
2941 
2942 		/* 3D_Multi_present */
2943 		multi_present = (db[8 + offset] & 0x60) >> 5;
2944 	}
2945 
2946 	offset++;
2947 	vic_len = db[8 + offset] >> 5;
2948 	hdmi_3d_len = db[8 + offset] & 0x1f;
2949 
2950 	for (i = 0; i < vic_len && len >= (9 + offset + i); i++) {
2951 		u8 vic;
2952 
2953 		vic = db[9 + offset + i];
2954 		modes += add_hdmi_mode(data, vic);
2955 	}
2956 
2957 	offset += 1 + vic_len;
2958 
2959 	if (multi_present == 1)
2960 		multi_len = 2;
2961 	else if (multi_present == 2)
2962 		multi_len = 4;
2963 	else
2964 		multi_len = 0;
2965 
2966 	if (len < (8 + offset + hdmi_3d_len - 1))
2967 		goto out;
2968 
2969 	if (hdmi_3d_len < multi_len)
2970 		goto out;
2971 
2972 	if (multi_present == 1 || multi_present == 2) {
2973 		/* 3D_Structure_ALL */
2974 		structure_all = (db[8 + offset] << 8) | db[9 + offset];
2975 
2976 		/* check if 3D_MASK is present */
2977 		if (multi_present == 2)
2978 			mask = (db[10 + offset] << 8) | db[11 + offset];
2979 		else
2980 			mask = 0xffff;
2981 
2982 		for (i = 0; i < 16; i++) {
2983 			if (mask & (1 << i))
2984 				modes += add_3d_struct_modes(data,
2985 						structure_all,
2986 						video_db,
2987 						video_len, i);
2988 		}
2989 	}
2990 
2991 	offset += multi_len;
2992 
2993 	for (i = 0; i < (hdmi_3d_len - multi_len); i++) {
2994 		int vic_index;
2995 		struct drm_display_mode *newmode = NULL;
2996 		unsigned int newflag = 0;
2997 		bool detail_present;
2998 
2999 		detail_present = ((db[8 + offset + i] & 0x0f) > 7);
3000 
3001 		if (detail_present && (i + 1 == hdmi_3d_len - multi_len))
3002 			break;
3003 
3004 		/* 2D_VIC_order_X */
3005 		vic_index = db[8 + offset + i] >> 4;
3006 
3007 		/* 3D_Structure_X */
3008 		switch (db[8 + offset + i] & 0x0f) {
3009 		case 0:
3010 			newflag = DRM_MODE_FLAG_3D_FRAME_PACKING;
3011 			break;
3012 		case 6:
3013 			newflag = DRM_MODE_FLAG_3D_TOP_AND_BOTTOM;
3014 			break;
3015 		case 8:
3016 			/* 3D_Detail_X */
3017 			if ((db[9 + offset + i] >> 4) == 1)
3018 				newflag = DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF;
3019 			break;
3020 		}
3021 
3022 		if (newflag != 0) {
3023 			newmode = drm_display_mode_from_vic_index(
3024 								  video_db,
3025 								  video_len,
3026 								  vic_index);
3027 
3028 			if (newmode) {
3029 				newmode->flags |= newflag;
3030 				drm_add_hdmi_modes(data, newmode);
3031 				modes++;
3032 				drm_mode_destroy(newmode);
3033 			}
3034 		}
3035 
3036 		if (detail_present)
3037 			i++;
3038 	}
3039 
3040 out:
3041 	return modes;
3042 }
3043 
3044 /**
3045  * edid_get_quirks - return quirk flags for a given EDID
3046  * @edid: EDID to process
3047  *
3048  * This tells subsequent routines what fixes they need to apply.
3049  */
edid_get_quirks(struct edid * edid)3050 static u32 edid_get_quirks(struct edid *edid)
3051 {
3052 	struct edid_quirk *quirk;
3053 	int i;
3054 
3055 	for (i = 0; i < ARRAY_SIZE(edid_quirk_list); i++) {
3056 		quirk = &edid_quirk_list[i];
3057 
3058 		if (edid_vendor(edid, quirk->vendor) &&
3059 		    (EDID_PRODUCT_ID(edid) == quirk->product_id))
3060 			return quirk->quirks;
3061 	}
3062 
3063 	return 0;
3064 }
3065 
drm_parse_y420cmdb_bitmap(struct hdmi_edid_data * data,const u8 * db)3066 static void drm_parse_y420cmdb_bitmap(struct hdmi_edid_data *data,
3067 				      const u8 *db)
3068 {
3069 	struct drm_display_info *info = &data->display_info;
3070 	struct drm_hdmi_info *hdmi = &info->hdmi;
3071 	u8 map_len = cea_db_payload_len(db) - 1;
3072 	u8 count;
3073 	u64 map = 0;
3074 
3075 	if (map_len == 0) {
3076 		/* All CEA modes support ycbcr420 sampling also.*/
3077 		hdmi->y420_cmdb_map = U64_MAX;
3078 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3079 		return;
3080 	}
3081 
3082 	/*
3083 	 * This map indicates which of the existing CEA block modes
3084 	 * from VDB can support YCBCR420 output too. So if bit=0 is
3085 	 * set, first mode from VDB can support YCBCR420 output too.
3086 	 * We will parse and keep this map, before parsing VDB itself
3087 	 * to avoid going through the same block again and again.
3088 	 *
3089 	 * Spec is not clear about max possible size of this block.
3090 	 * Clamping max bitmap block size at 8 bytes. Every byte can
3091 	 * address 8 CEA modes, in this way this map can address
3092 	 * 8*8 = first 64 SVDs.
3093 	 */
3094 	if (map_len > 8)
3095 		map_len = 8;
3096 
3097 	for (count = 0; count < map_len; count++)
3098 		map |= (u64)db[2 + count] << (8 * count);
3099 
3100 	if (map)
3101 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB420;
3102 
3103 	hdmi->y420_cmdb_map = map;
3104 }
3105 
3106 static
drm_get_max_frl_rate(int max_frl_rate,u8 * max_lanes,u8 * max_rate_per_lane)3107 void drm_get_max_frl_rate(int max_frl_rate, u8 *max_lanes, u8 *max_rate_per_lane)
3108 {
3109 	switch (max_frl_rate) {
3110 	case 1:
3111 		*max_lanes = 3;
3112 		*max_rate_per_lane = 3;
3113 		break;
3114 	case 2:
3115 		*max_lanes = 3;
3116 		*max_rate_per_lane = 6;
3117 		break;
3118 	case 3:
3119 		*max_lanes = 4;
3120 		*max_rate_per_lane = 6;
3121 		break;
3122 	case 4:
3123 		*max_lanes = 4;
3124 		*max_rate_per_lane = 8;
3125 		break;
3126 	case 5:
3127 		*max_lanes = 4;
3128 		*max_rate_per_lane = 10;
3129 		break;
3130 	case 6:
3131 		*max_lanes = 4;
3132 		*max_rate_per_lane = 12;
3133 		break;
3134 	case 0:
3135 	default:
3136 		*max_lanes = 0;
3137 		*max_rate_per_lane = 0;
3138 	}
3139 }
3140 
drm_parse_ycbcr420_deep_color_info(struct hdmi_edid_data * data,const u8 * db)3141 static void drm_parse_ycbcr420_deep_color_info(struct hdmi_edid_data *data,
3142 					       const u8 *db)
3143 {
3144 	u8 dc_mask;
3145 	struct drm_hdmi_info *hdmi = &data->display_info.hdmi;
3146 
3147 	dc_mask = db[7] & DRM_EDID_YCBCR420_DC_MASK;
3148 	hdmi->y420_dc_modes |= dc_mask;
3149 }
3150 
drm_parse_hdmi_forum_vsdb(struct hdmi_edid_data * data,const u8 * hf_vsdb)3151 static void drm_parse_hdmi_forum_vsdb(struct hdmi_edid_data *data,
3152 				      const u8 *hf_vsdb)
3153 {
3154 	struct drm_display_info *display = &data->display_info;
3155 	struct drm_hdmi_info *hdmi = &display->hdmi;
3156 
3157 	if (hf_vsdb[6] & 0x80) {
3158 		hdmi->scdc.supported = true;
3159 		if (hf_vsdb[6] & 0x40)
3160 			hdmi->scdc.read_request = true;
3161 	}
3162 
3163 	/*
3164 	 * All HDMI 2.0 monitors must support scrambling at rates > 340 MHz.
3165 	 * And as per the spec, three factors confirm this:
3166 	 * * Availability of a HF-VSDB block in EDID (check)
3167 	 * * Non zero Max_TMDS_Char_Rate filed in HF-VSDB (let's check)
3168 	 * * SCDC support available (let's check)
3169 	 * Lets check it out.
3170 	 */
3171 
3172 	if (hf_vsdb[5]) {
3173 		/* max clock is 5000 KHz times block value */
3174 		u32 max_tmds_clock = hf_vsdb[5] * 5000;
3175 		struct drm_scdc *scdc = &hdmi->scdc;
3176 
3177 		if (max_tmds_clock > 340000) {
3178 			display->max_tmds_clock = max_tmds_clock;
3179 			debug("HF-VSDB: max TMDS clock %d kHz\n",
3180 			      display->max_tmds_clock);
3181 		}
3182 
3183 		if (scdc->supported) {
3184 			scdc->scrambling.supported = true;
3185 
3186 			/* Few sinks support scrambling for cloks < 340M */
3187 			if ((hf_vsdb[6] & 0x8))
3188 				scdc->scrambling.low_rates = true;
3189 		}
3190 	}
3191 
3192 	if (hf_vsdb[7]) {
3193 		u8 max_frl_rate;
3194 		u8 dsc_max_frl_rate;
3195 		u8 dsc_max_slices;
3196 		struct drm_hdmi_dsc_cap *hdmi_dsc = &hdmi->dsc_cap;
3197 
3198 		debug("hdmi_21 sink detected. parsing edid\n");
3199 		max_frl_rate = (hf_vsdb[7] & DRM_EDID_MAX_FRL_RATE_MASK) >> 4;
3200 		drm_get_max_frl_rate(max_frl_rate, &hdmi->max_lanes,
3201 				     &hdmi->max_frl_rate_per_lane);
3202 		hdmi->add_func = hf_vsdb[8];
3203 		hdmi_dsc->v_1p2 = hf_vsdb[11] & DRM_EDID_DSC_1P2;
3204 
3205 		if (hdmi_dsc->v_1p2) {
3206 			hdmi_dsc->native_420 = hf_vsdb[11] & DRM_EDID_DSC_NATIVE_420;
3207 			hdmi_dsc->all_bpp = hf_vsdb[11] & DRM_EDID_DSC_ALL_BPP;
3208 
3209 			if (hf_vsdb[11] & DRM_EDID_DSC_16BPC)
3210 				hdmi_dsc->bpc_supported = 16;
3211 			else if (hf_vsdb[11] & DRM_EDID_DSC_12BPC)
3212 				hdmi_dsc->bpc_supported = 12;
3213 			else if (hf_vsdb[11] & DRM_EDID_DSC_10BPC)
3214 				hdmi_dsc->bpc_supported = 10;
3215 			else
3216 				hdmi_dsc->bpc_supported = 0;
3217 
3218 			dsc_max_frl_rate = (hf_vsdb[12] & DRM_EDID_DSC_MAX_FRL_RATE_MASK) >> 4;
3219 			drm_get_max_frl_rate(dsc_max_frl_rate, &hdmi_dsc->max_lanes,
3220 					     &hdmi_dsc->max_frl_rate_per_lane);
3221 			hdmi_dsc->total_chunk_kbytes =
3222 				hf_vsdb[13] & DRM_EDID_DSC_TOTAL_CHUNK_KBYTES;
3223 
3224 			dsc_max_slices = hf_vsdb[12] & DRM_EDID_DSC_MAX_SLICES;
3225 			switch (dsc_max_slices) {
3226 			case 1:
3227 				hdmi_dsc->max_slices = 1;
3228 				hdmi_dsc->clk_per_slice = 340;
3229 				break;
3230 			case 2:
3231 				hdmi_dsc->max_slices = 2;
3232 				hdmi_dsc->clk_per_slice = 340;
3233 				break;
3234 			case 3:
3235 				hdmi_dsc->max_slices = 4;
3236 				hdmi_dsc->clk_per_slice = 340;
3237 				break;
3238 			case 4:
3239 				hdmi_dsc->max_slices = 8;
3240 				hdmi_dsc->clk_per_slice = 340;
3241 				break;
3242 			case 5:
3243 				hdmi_dsc->max_slices = 8;
3244 				hdmi_dsc->clk_per_slice = 400;
3245 				break;
3246 			case 6:
3247 				hdmi_dsc->max_slices = 12;
3248 				hdmi_dsc->clk_per_slice = 400;
3249 				break;
3250 			case 7:
3251 				hdmi_dsc->max_slices = 16;
3252 				hdmi_dsc->clk_per_slice = 400;
3253 				break;
3254 			case 0:
3255 			default:
3256 				hdmi_dsc->max_slices = 0;
3257 				hdmi_dsc->clk_per_slice = 0;
3258 			}
3259 		}
3260 	}
3261 
3262 	drm_parse_ycbcr420_deep_color_info(data, hf_vsdb);
3263 }
3264 
3265 /**
3266  * drm_default_rgb_quant_range - default RGB quantization range
3267  * @mode: display mode
3268  *
3269  * Determine the default RGB quantization range for the mode,
3270  * as specified in CEA-861.
3271  *
3272  * Return: The default RGB quantization range for the mode
3273  */
3274 enum hdmi_quantization_range
drm_default_rgb_quant_range(struct drm_display_mode * mode)3275 drm_default_rgb_quant_range(struct drm_display_mode *mode)
3276 {
3277 	/* All CEA modes other than VIC 1 use limited quantization range. */
3278 	return drm_match_cea_mode(mode) > 1 ?
3279 		HDMI_QUANTIZATION_RANGE_LIMITED :
3280 		HDMI_QUANTIZATION_RANGE_FULL;
3281 }
3282 
drm_parse_hdmi_deep_color_info(struct hdmi_edid_data * data,const u8 * hdmi)3283 static void drm_parse_hdmi_deep_color_info(struct hdmi_edid_data *data,
3284 					   const u8 *hdmi)
3285 {
3286 	struct drm_display_info *info = &data->display_info;
3287 	unsigned int dc_bpc = 0;
3288 
3289 	/* HDMI supports at least 8 bpc */
3290 	info->bpc = 8;
3291 
3292 	if (cea_db_payload_len(hdmi) < 6)
3293 		return;
3294 
3295 	if (hdmi[6] & DRM_EDID_HDMI_DC_30) {
3296 		dc_bpc = 10;
3297 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_30;
3298 		debug("HDMI sink does deep color 30.\n");
3299 	}
3300 
3301 	if (hdmi[6] & DRM_EDID_HDMI_DC_36) {
3302 		dc_bpc = 12;
3303 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_36;
3304 		debug("HDMI sink does deep color 36.\n");
3305 	}
3306 
3307 	if (hdmi[6] & DRM_EDID_HDMI_DC_48) {
3308 		dc_bpc = 16;
3309 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_48;
3310 		debug("HDMI sink does deep color 48.\n");
3311 	}
3312 
3313 	if (dc_bpc == 0) {
3314 		debug("No deep color support on this HDMI sink.\n");
3315 		return;
3316 	}
3317 
3318 	debug("Assigning HDMI sink color depth as %d bpc.\n", dc_bpc);
3319 	info->bpc = dc_bpc;
3320 
3321 	/* YCRCB444 is optional according to spec. */
3322 	if (hdmi[6] & DRM_EDID_HDMI_DC_Y444) {
3323 		info->edid_hdmi_dc_modes |= DRM_EDID_HDMI_DC_Y444;
3324 		debug("HDMI sink does YCRCB444 in deep color.\n");
3325 	}
3326 
3327 	/*
3328 	 * Spec says that if any deep color mode is supported at all,
3329 	 * then deep color 36 bit must be supported.
3330 	 */
3331 	if (!(hdmi[6] & DRM_EDID_HDMI_DC_36))
3332 		debug("HDMI sink should do DC_36, but does not!\n");
3333 }
3334 
3335 /*
3336  * Search EDID for CEA extension block.
3337  */
drm_find_edid_extension(struct edid * edid,int ext_id)3338 static u8 *drm_find_edid_extension(struct edid *edid, int ext_id)
3339 {
3340 	u8 *edid_ext = NULL;
3341 	int i;
3342 
3343 	/* No EDID or EDID extensions */
3344 	if (!edid || !edid->extensions)
3345 		return NULL;
3346 
3347 	/* Find CEA extension */
3348 	for (i = 0; i < edid->extensions; i++) {
3349 		edid_ext = (u8 *)edid + EDID_SIZE * (i + 1);
3350 		if (edid_ext[0] == ext_id)
3351 			break;
3352 	}
3353 
3354 	if (i == edid->extensions)
3355 		return NULL;
3356 
3357 	return edid_ext;
3358 }
3359 
drm_find_cea_extension(struct edid * edid)3360 static u8 *drm_find_cea_extension(struct edid *edid)
3361 {
3362 	return drm_find_edid_extension(edid, 0x02);
3363 }
3364 
3365 #define AUDIO_BLOCK	0x01
3366 #define VIDEO_BLOCK     0x02
3367 #define VENDOR_BLOCK    0x03
3368 #define SPEAKER_BLOCK	0x04
3369 #define EDID_BASIC_AUDIO BIT(6)
3370 
3371 /**
3372  * drm_detect_hdmi_monitor - detect whether monitor is HDMI
3373  * @edid: monitor EDID information
3374  *
3375  * Parse the CEA extension according to CEA-861-B.
3376  *
3377  * Return: True if the monitor is HDMI, false if not or unknown.
3378  */
drm_detect_hdmi_monitor(struct edid * edid)3379 bool drm_detect_hdmi_monitor(struct edid *edid)
3380 {
3381 	u8 *edid_ext;
3382 	int i;
3383 	int start_offset, end_offset;
3384 
3385 	edid_ext = drm_find_cea_extension(edid);
3386 	if (!edid_ext)
3387 		return false;
3388 
3389 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3390 		return false;
3391 
3392 	/*
3393 	 * Because HDMI identifier is in Vendor Specific Block,
3394 	 * search it from all data blocks of CEA extension.
3395 	 */
3396 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3397 		if (cea_db_is_hdmi_vsdb(&edid_ext[i]))
3398 			return true;
3399 	}
3400 
3401 	return false;
3402 }
3403 
3404 /**
3405  * drm_detect_monitor_audio - check monitor audio capability
3406  * @edid: EDID block to scan
3407  *
3408  * Monitor should have CEA extension block.
3409  * If monitor has 'basic audio', but no CEA audio blocks, it's 'basic
3410  * audio' only. If there is any audio extension block and supported
3411  * audio format, assume at least 'basic audio' support, even if 'basic
3412  * audio' is not defined in EDID.
3413  *
3414  * Return: True if the monitor supports audio, false otherwise.
3415  */
drm_detect_monitor_audio(struct edid * edid)3416 bool drm_detect_monitor_audio(struct edid *edid)
3417 {
3418 	u8 *edid_ext;
3419 	int i, j;
3420 	bool has_audio = false;
3421 	int start_offset, end_offset;
3422 
3423 	edid_ext = drm_find_cea_extension(edid);
3424 	if (!edid_ext)
3425 		goto end;
3426 
3427 	has_audio = ((edid_ext[3] & EDID_BASIC_AUDIO) != 0);
3428 
3429 	if (has_audio) {
3430 		printf("Monitor has basic audio support\n");
3431 		goto end;
3432 	}
3433 
3434 	if (cea_db_offsets(edid_ext, &start_offset, &end_offset))
3435 		goto end;
3436 
3437 	for_each_cea_db(edid_ext, i, start_offset, end_offset) {
3438 		if (cea_db_tag(&edid_ext[i]) == AUDIO_BLOCK) {
3439 			has_audio = true;
3440 			for (j = 1; j < cea_db_payload_len(&edid_ext[i]) + 1;
3441 			     j += 3)
3442 				debug("CEA audio format %d\n",
3443 				      (edid_ext[i + j] >> 3) & 0xf);
3444 			goto end;
3445 		}
3446 	}
3447 end:
3448 	return has_audio;
3449 }
3450 
3451 static void
drm_parse_hdmi_vsdb_video(struct hdmi_edid_data * data,const u8 * db)3452 drm_parse_hdmi_vsdb_video(struct hdmi_edid_data *data, const u8 *db)
3453 {
3454 	struct drm_display_info *info = &data->display_info;
3455 	u8 len = cea_db_payload_len(db);
3456 
3457 	if (len >= 6)
3458 		info->dvi_dual = db[6] & 1;
3459 	if (len >= 7)
3460 		info->max_tmds_clock = db[7] * 5000;
3461 
3462 	drm_parse_hdmi_deep_color_info(data, db);
3463 }
3464 
drm_parse_cea_ext(struct hdmi_edid_data * data,struct edid * edid)3465 static void drm_parse_cea_ext(struct hdmi_edid_data *data,
3466 			      struct edid *edid)
3467 {
3468 	struct drm_display_info *info = &data->display_info;
3469 	const u8 *edid_ext;
3470 	int i, start, end;
3471 
3472 	edid_ext = drm_find_cea_extension(edid);
3473 	if (!edid_ext)
3474 		return;
3475 
3476 	info->cea_rev = edid_ext[1];
3477 
3478 	/* The existence of a CEA block should imply RGB support */
3479 	info->color_formats = DRM_COLOR_FORMAT_RGB444;
3480 	if (edid_ext[3] & EDID_CEA_YCRCB444)
3481 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3482 	if (edid_ext[3] & EDID_CEA_YCRCB422)
3483 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3484 
3485 	if (cea_db_offsets(edid_ext, &start, &end))
3486 		return;
3487 
3488 	for_each_cea_db(edid_ext, i, start, end) {
3489 		const u8 *db = &edid_ext[i];
3490 
3491 		if (cea_db_is_hdmi_vsdb(db))
3492 			drm_parse_hdmi_vsdb_video(data, db);
3493 		if (cea_db_is_hdmi_forum_vsdb(db))
3494 			drm_parse_hdmi_forum_vsdb(data, db);
3495 		if (cea_db_is_y420cmdb(db))
3496 			drm_parse_y420cmdb_bitmap(data, db);
3497 	}
3498 }
3499 
drm_add_display_info(struct hdmi_edid_data * data,struct edid * edid)3500 static void drm_add_display_info(struct hdmi_edid_data *data, struct edid *edid)
3501 {
3502 	struct drm_display_info *info = &data->display_info;
3503 
3504 	info->width_mm = edid->width_cm * 10;
3505 	info->height_mm = edid->height_cm * 10;
3506 
3507 	/* driver figures it out in this case */
3508 	info->bpc = 0;
3509 	info->color_formats = 0;
3510 	info->cea_rev = 0;
3511 	info->max_tmds_clock = 0;
3512 	info->dvi_dual = false;
3513 	info->edid_hdmi_dc_modes = 0;
3514 
3515 	memset(&info->hdmi, 0, sizeof(info->hdmi));
3516 
3517 	if (edid->revision < 3)
3518 		return;
3519 
3520 	if (!(edid->input & DRM_EDID_INPUT_DIGITAL))
3521 		return;
3522 
3523 	drm_parse_cea_ext(data, edid);
3524 
3525 	/*
3526 	 * Digital sink with "DFP 1.x compliant TMDS" according to EDID 1.3?
3527 	 *
3528 	 * For such displays, the DFP spec 1.0, section 3.10 "EDID support"
3529 	 * tells us to assume 8 bpc color depth if the EDID doesn't have
3530 	 * extensions which tell otherwise.
3531 	 */
3532 	if ((info->bpc == 0) && (edid->revision < 4) &&
3533 	    (edid->input & DRM_EDID_DIGITAL_TYPE_DVI)) {
3534 		info->bpc = 8;
3535 		debug("Assigning DFP sink color depth as %d bpc.\n", info->bpc);
3536 	}
3537 
3538 	/* Only defined for 1.4 with digital displays */
3539 	if (edid->revision < 4)
3540 		return;
3541 
3542 	switch (edid->input & DRM_EDID_DIGITAL_DEPTH_MASK) {
3543 	case DRM_EDID_DIGITAL_DEPTH_6:
3544 		info->bpc = 6;
3545 		break;
3546 	case DRM_EDID_DIGITAL_DEPTH_8:
3547 		info->bpc = 8;
3548 		break;
3549 	case DRM_EDID_DIGITAL_DEPTH_10:
3550 		info->bpc = 10;
3551 		break;
3552 	case DRM_EDID_DIGITAL_DEPTH_12:
3553 		info->bpc = 12;
3554 		break;
3555 	case DRM_EDID_DIGITAL_DEPTH_14:
3556 		info->bpc = 14;
3557 		break;
3558 	case DRM_EDID_DIGITAL_DEPTH_16:
3559 		info->bpc = 16;
3560 		break;
3561 	case DRM_EDID_DIGITAL_DEPTH_UNDEF:
3562 	default:
3563 		info->bpc = 0;
3564 		break;
3565 	}
3566 
3567 	debug("Assigning EDID-1.4 digital sink color depth as %d bpc.\n",
3568 	      info->bpc);
3569 
3570 	info->color_formats |= DRM_COLOR_FORMAT_RGB444;
3571 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB444)
3572 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB444;
3573 	if (edid->features & DRM_EDID_FEATURE_RGB_YCRCB422)
3574 		info->color_formats |= DRM_COLOR_FORMAT_YCRCB422;
3575 }
3576 
3577 static
add_cea_modes(struct hdmi_edid_data * data,struct edid * edid)3578 int add_cea_modes(struct hdmi_edid_data *data, struct edid *edid)
3579 {
3580 	const u8 *cea = drm_find_cea_extension(edid);
3581 	const u8 *db, *hdmi = NULL, *video = NULL;
3582 	u8 dbl, hdmi_len, video_len = 0;
3583 	int modes = 0;
3584 
3585 	if (cea && cea_revision(cea) >= 3) {
3586 		int i, start, end;
3587 
3588 		if (cea_db_offsets(cea, &start, &end))
3589 			return 0;
3590 
3591 		for_each_cea_db(cea, i, start, end) {
3592 			db = &cea[i];
3593 			dbl = cea_db_payload_len(db);
3594 
3595 			if (cea_db_tag(db) == EDID_CEA861_DB_VIDEO) {
3596 				video = db + 1;
3597 				video_len = dbl;
3598 				modes += do_cea_modes(data, video, dbl);
3599 			} else if (cea_db_is_hdmi_vsdb(db)) {
3600 				hdmi = db;
3601 				hdmi_len = dbl;
3602 			} else if (cea_db_is_y420vdb(db)) {
3603 				const u8 *vdb420 = &db[2];
3604 
3605 				/* Add 4:2:0(only) modes present in EDID */
3606 				modes += do_y420vdb_modes(data, vdb420,
3607 							  dbl - 1);
3608 			}
3609 		}
3610 	}
3611 
3612 	/*
3613 	 * We parse the HDMI VSDB after having added the cea modes as we will
3614 	 * be patching their flags when the sink supports stereo 3D.
3615 	 */
3616 	if (hdmi)
3617 		modes += do_hdmi_vsdb_modes(hdmi, hdmi_len, video,
3618 					    video_len, data);
3619 
3620 	return modes;
3621 }
3622 
3623 typedef void detailed_cb(struct detailed_timing *timing, void *closure);
3624 
3625 static void
cea_for_each_detailed_block(u8 * ext,detailed_cb * cb,void * closure)3626 cea_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
3627 {
3628 	int i, n = 0;
3629 	u8 d = ext[0x02];
3630 	u8 *det_base = ext + d;
3631 
3632 	if (d < 4 || d > 127)
3633 		return;
3634 
3635 	n = (127 - d) / 18;
3636 	for (i = 0; i < n; i++)
3637 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
3638 }
3639 
3640 static void
vtb_for_each_detailed_block(u8 * ext,detailed_cb * cb,void * closure)3641 vtb_for_each_detailed_block(u8 *ext, detailed_cb *cb, void *closure)
3642 {
3643 	unsigned int i, n = min((int)ext[0x02], 6);
3644 	u8 *det_base = ext + 5;
3645 
3646 	if (ext[0x01] != 1)
3647 		return; /* unknown version */
3648 
3649 	for (i = 0; i < n; i++)
3650 		cb((struct detailed_timing *)(det_base + 18 * i), closure);
3651 }
3652 
3653 static void
drm_for_each_detailed_block(u8 * raw_edid,detailed_cb * cb,void * closure)3654 drm_for_each_detailed_block(u8 *raw_edid, detailed_cb *cb, void *closure)
3655 {
3656 	int i;
3657 	struct edid *edid = (struct edid *)raw_edid;
3658 
3659 	if (!edid)
3660 		return;
3661 
3662 	for (i = 0; i < EDID_DETAILED_TIMINGS; i++)
3663 		cb(&edid->detailed_timings[i], closure);
3664 
3665 	for (i = 1; i <= raw_edid[0x7e]; i++) {
3666 		u8 *ext = raw_edid + (i * EDID_SIZE);
3667 
3668 		switch (*ext) {
3669 		case CEA_EXT:
3670 			cea_for_each_detailed_block(ext, cb, closure);
3671 			break;
3672 		case VTB_EXT:
3673 			vtb_for_each_detailed_block(ext, cb, closure);
3674 			break;
3675 		default:
3676 			break;
3677 		}
3678 	}
3679 }
3680 
3681 /*
3682  * EDID is delightfully ambiguous about how interlaced modes are to be
3683  * encoded.  Our internal representation is of frame height, but some
3684  * HDTV detailed timings are encoded as field height.
3685  *
3686  * The format list here is from CEA, in frame size.  Technically we
3687  * should be checking refresh rate too.  Whatever.
3688  */
3689 static void
drm_mode_do_interlace_quirk(struct drm_display_mode * mode,struct detailed_pixel_timing * pt)3690 drm_mode_do_interlace_quirk(struct drm_display_mode *mode,
3691 			    struct detailed_pixel_timing *pt)
3692 {
3693 	int i;
3694 
3695 	static const struct {
3696 		int w, h;
3697 	} cea_interlaced[] = {
3698 		{ 1920, 1080 },
3699 		{  720,  480 },
3700 		{ 1440,  480 },
3701 		{ 2880,  480 },
3702 		{  720,  576 },
3703 		{ 1440,  576 },
3704 		{ 2880,  576 },
3705 	};
3706 
3707 	if (!(pt->misc & DRM_EDID_PT_INTERLACED))
3708 		return;
3709 
3710 	for (i = 0; i < ARRAY_SIZE(cea_interlaced); i++) {
3711 		if ((mode->hdisplay == cea_interlaced[i].w) &&
3712 		    (mode->vdisplay == cea_interlaced[i].h / 2)) {
3713 			mode->vdisplay *= 2;
3714 			mode->vsync_start *= 2;
3715 			mode->vsync_end *= 2;
3716 			mode->vtotal *= 2;
3717 			mode->vtotal |= 1;
3718 		}
3719 	}
3720 
3721 	mode->flags |= DRM_MODE_FLAG_INTERLACE;
3722 }
3723 
3724 /**
3725  * drm_mode_detailed - create a new mode from an EDID detailed timing section
3726  * @edid: EDID block
3727  * @timing: EDID detailed timing info
3728  * @quirks: quirks to apply
3729  *
3730  * An EDID detailed timing block contains enough info for us to create and
3731  * return a new struct drm_display_mode.
3732  */
3733 static
drm_mode_detailed(struct edid * edid,struct detailed_timing * timing,u32 quirks)3734 struct drm_display_mode *drm_mode_detailed(struct edid *edid,
3735 					   struct detailed_timing *timing,
3736 					   u32 quirks)
3737 {
3738 	struct drm_display_mode *mode;
3739 	struct detailed_pixel_timing *pt = &timing->data.pixel_data;
3740 	unsigned hactive = (pt->hactive_hblank_hi & 0xf0) << 4 | pt->hactive_lo;
3741 	unsigned vactive = (pt->vactive_vblank_hi & 0xf0) << 4 | pt->vactive_lo;
3742 	unsigned hblank = (pt->hactive_hblank_hi & 0xf) << 8 | pt->hblank_lo;
3743 	unsigned vblank = (pt->vactive_vblank_hi & 0xf) << 8 | pt->vblank_lo;
3744 	unsigned hsync_offset =
3745 		(pt->hsync_vsync_offset_pulse_width_hi & 0xc0) << 2 |
3746 		pt->hsync_offset_lo;
3747 	unsigned hsync_pulse_width =
3748 		(pt->hsync_vsync_offset_pulse_width_hi & 0x30) << 4 |
3749 		pt->hsync_pulse_width_lo;
3750 	unsigned vsync_offset = (pt->hsync_vsync_offset_pulse_width_hi & 0xc) <<
3751 		2 | pt->vsync_offset_pulse_width_lo >> 4;
3752 	unsigned vsync_pulse_width =
3753 		(pt->hsync_vsync_offset_pulse_width_hi & 0x3) << 4 |
3754 		(pt->vsync_offset_pulse_width_lo & 0xf);
3755 
3756 	/* ignore tiny modes */
3757 	if (hactive < 64 || vactive < 64)
3758 		return NULL;
3759 
3760 	if (pt->misc & DRM_EDID_PT_STEREO) {
3761 		debug("stereo mode not supported\n");
3762 		return NULL;
3763 	}
3764 	if (!(pt->misc & DRM_EDID_PT_SEPARATE_SYNC))
3765 		debug("composite sync not supported\n");
3766 
3767 	/* it is incorrect if hsync/vsync width is zero */
3768 	if (!hsync_pulse_width || !vsync_pulse_width) {
3769 		debug("Incorrect Detailed timing. ");
3770 		debug("Wrong Hsync/Vsync pulse width\n");
3771 		return NULL;
3772 	}
3773 
3774 	if (quirks & EDID_QUIRK_FORCE_REDUCED_BLANKING) {
3775 		mode = drm_cvt_mode(hactive, vactive, 60, true, false, false);
3776 		if (!mode)
3777 			return NULL;
3778 
3779 		goto set_refresh;
3780 	}
3781 
3782 	mode = drm_mode_create();
3783 	if (!mode)
3784 		return NULL;
3785 
3786 	if (quirks & EDID_QUIRK_135_CLOCK_TOO_HIGH)
3787 		timing->pixel_clock = cpu_to_le16(1088);
3788 
3789 	mode->clock = le16_to_cpu(timing->pixel_clock) * 10;
3790 
3791 	mode->hdisplay = hactive;
3792 	mode->hsync_start = mode->hdisplay + hsync_offset;
3793 	mode->hsync_end = mode->hsync_start + hsync_pulse_width;
3794 	mode->htotal = mode->hdisplay + hblank;
3795 
3796 	mode->vdisplay = vactive;
3797 	mode->vsync_start = mode->vdisplay + vsync_offset;
3798 	mode->vsync_end = mode->vsync_start + vsync_pulse_width;
3799 	mode->vtotal = mode->vdisplay + vblank;
3800 
3801 	/* Some EDIDs have bogus h/vtotal values */
3802 	if (mode->hsync_end > mode->htotal)
3803 		mode->htotal = mode->hsync_end + 1;
3804 	if (mode->vsync_end > mode->vtotal)
3805 		mode->vtotal = mode->vsync_end + 1;
3806 
3807 	drm_mode_do_interlace_quirk(mode, pt);
3808 
3809 	if (quirks & EDID_QUIRK_DETAILED_SYNC_PP)
3810 		pt->misc |= DRM_EDID_PT_HSYNC_POSITIVE |
3811 			DRM_EDID_PT_VSYNC_POSITIVE;
3812 
3813 	mode->flags |= (pt->misc & DRM_EDID_PT_HSYNC_POSITIVE) ?
3814 		DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
3815 	mode->flags |= (pt->misc & DRM_EDID_PT_VSYNC_POSITIVE) ?
3816 		DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
3817 
3818 set_refresh:
3819 
3820 	mode->type = DRM_MODE_TYPE_DRIVER;
3821 	mode->vrefresh = drm_get_vrefresh(mode);
3822 
3823 	return mode;
3824 }
3825 
3826 /*
3827  * Calculate the alternate clock for the CEA mode
3828  * (60Hz vs. 59.94Hz etc.)
3829  */
3830 static unsigned int
cea_mode_alternate_clock(const struct drm_display_mode * cea_mode)3831 cea_mode_alternate_clock(const struct drm_display_mode *cea_mode)
3832 {
3833 	unsigned int clock = cea_mode->clock;
3834 
3835 	if (cea_mode->vrefresh % 6 != 0)
3836 		return clock;
3837 
3838 	/*
3839 	 * edid_cea_modes contains the 59.94Hz
3840 	 * variant for 240 and 480 line modes,
3841 	 * and the 60Hz variant otherwise.
3842 	 */
3843 	if (cea_mode->vdisplay == 240 || cea_mode->vdisplay == 480)
3844 		clock = DIV_ROUND_CLOSEST(clock * 1001, 1000);
3845 	else
3846 		clock = DIV_ROUND_CLOSEST(clock * 1000, 1001);
3847 
3848 	return clock;
3849 }
3850 
3851 /**
3852  * drm_mode_equal_no_clocks_no_stereo - test modes for equality
3853  * @mode1: first mode
3854  * @mode2: second mode
3855  *
3856  * Check to see if @mode1 and @mode2 are equivalent, but
3857  * don't check the pixel clocks nor the stereo layout.
3858  *
3859  * Returns:
3860  * True if the modes are equal, false otherwise.
3861  */
3862 
3863 static
drm_mode_equal_no_clocks_no_stereo(const struct drm_display_mode * mode1,const struct drm_display_mode * mode2)3864 bool drm_mode_equal_no_clocks_no_stereo(const struct drm_display_mode *mode1,
3865 					const struct drm_display_mode *mode2)
3866 {
3867 	unsigned int flags_mask =
3868 		~(DRM_MODE_FLAG_3D_MASK | DRM_MODE_FLAG_420_MASK);
3869 
3870 	if (mode1->hdisplay == mode2->hdisplay &&
3871 	    mode1->hsync_start == mode2->hsync_start &&
3872 	    mode1->hsync_end == mode2->hsync_end &&
3873 	    mode1->htotal == mode2->htotal &&
3874 	    mode1->vdisplay == mode2->vdisplay &&
3875 	    mode1->vsync_start == mode2->vsync_start &&
3876 	    mode1->vsync_end == mode2->vsync_end &&
3877 	    mode1->vtotal == mode2->vtotal &&
3878 	    mode1->vscan == mode2->vscan &&
3879 	    (mode1->flags & flags_mask) == (mode2->flags & flags_mask))
3880 		return true;
3881 
3882 	return false;
3883 }
3884 
3885 /**
3886  * drm_mode_equal_no_clocks - test modes for equality
3887  * @mode1: first mode
3888  * @mode2: second mode
3889  *
3890  * Check to see if @mode1 and @mode2 are equivalent, but
3891  * don't check the pixel clocks.
3892  *
3893  * Returns:
3894  * True if the modes are equal, false otherwise.
3895  */
drm_mode_equal_no_clocks(const struct drm_display_mode * mode1,const struct drm_display_mode * mode2)3896 static bool drm_mode_equal_no_clocks(const struct drm_display_mode *mode1,
3897 				     const struct drm_display_mode *mode2)
3898 {
3899 	if ((mode1->flags & DRM_MODE_FLAG_3D_MASK) !=
3900 	    (mode2->flags & DRM_MODE_FLAG_3D_MASK))
3901 		return false;
3902 
3903 	return drm_mode_equal_no_clocks_no_stereo(mode1, mode2);
3904 }
3905 
3906 static
drm_match_cea_mode_clock_tolerance(const struct drm_display_mode * to_match,unsigned int clock_tolerance)3907 u8 drm_match_cea_mode_clock_tolerance(const struct drm_display_mode *to_match,
3908 				      unsigned int clock_tolerance)
3909 {
3910 	u8 vic;
3911 
3912 	if (!to_match->clock)
3913 		return 0;
3914 
3915 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
3916 		const struct drm_display_mode *cea_mode = cea_mode_for_vic(vic);
3917 		unsigned int clock1, clock2;
3918 
3919 		/* Check both 60Hz and 59.94Hz */
3920 		clock1 = cea_mode->clock;
3921 		clock2 = cea_mode_alternate_clock(cea_mode);
3922 
3923 		if (abs(to_match->clock - clock1) > clock_tolerance &&
3924 		    abs(to_match->clock - clock2) > clock_tolerance)
3925 			continue;
3926 
3927 		if (drm_mode_equal_no_clocks(to_match, cea_mode))
3928 			return vic;
3929 	}
3930 
3931 	return 0;
3932 }
3933 
3934 static unsigned int
hdmi_mode_alternate_clock(const struct drm_display_mode * hdmi_mode)3935 hdmi_mode_alternate_clock(const struct drm_display_mode *hdmi_mode)
3936 {
3937 	if (hdmi_mode->vdisplay == 4096 && hdmi_mode->hdisplay == 2160)
3938 		return hdmi_mode->clock;
3939 
3940 	return cea_mode_alternate_clock(hdmi_mode);
3941 }
3942 
3943 static
drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode * to_match,unsigned int clock_tolerance)3944 u8 drm_match_hdmi_mode_clock_tolerance(const struct drm_display_mode *to_match,
3945 				       unsigned int clock_tolerance)
3946 {
3947 	u8 vic;
3948 
3949 	if (!to_match->clock)
3950 		return 0;
3951 
3952 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
3953 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
3954 		unsigned int clock1, clock2;
3955 
3956 		/* Make sure to also match alternate clocks */
3957 		clock1 = hdmi_mode->clock;
3958 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
3959 
3960 		if (abs(to_match->clock - clock1) > clock_tolerance &&
3961 		    abs(to_match->clock - clock2) > clock_tolerance)
3962 			continue;
3963 
3964 		if (drm_mode_equal_no_clocks(to_match, hdmi_mode))
3965 			return vic;
3966 	}
3967 
3968 	return 0;
3969 }
3970 
fixup_detailed_cea_mode_clock(struct drm_display_mode * mode)3971 static void fixup_detailed_cea_mode_clock(struct drm_display_mode *mode)
3972 {
3973 	const struct drm_display_mode *cea_mode;
3974 	int clock1, clock2, clock;
3975 	u8 vic;
3976 	const char *type;
3977 
3978 	/*
3979 	 * allow 5kHz clock difference either way to account for
3980 	 * the 10kHz clock resolution limit of detailed timings.
3981 	 */
3982 	vic = drm_match_cea_mode_clock_tolerance(mode, 5);
3983 	if (drm_valid_cea_vic(vic)) {
3984 		type = "CEA";
3985 		cea_mode = cea_mode_for_vic(vic);
3986 		clock1 = cea_mode->clock;
3987 		clock2 = cea_mode_alternate_clock(cea_mode);
3988 	} else {
3989 		vic = drm_match_hdmi_mode_clock_tolerance(mode, 5);
3990 		if (drm_valid_hdmi_vic(vic)) {
3991 			type = "HDMI";
3992 			cea_mode = &edid_4k_modes[vic];
3993 			clock1 = cea_mode->clock;
3994 			clock2 = hdmi_mode_alternate_clock(cea_mode);
3995 		} else {
3996 			return;
3997 		}
3998 	}
3999 
4000 	/* pick whichever is closest */
4001 	if (abs(mode->clock - clock1) < abs(mode->clock - clock2))
4002 		clock = clock1;
4003 	else
4004 		clock = clock2;
4005 
4006 	if (mode->clock == clock)
4007 		return;
4008 
4009 	debug("detailed mode matches %s VIC %d, adjusting clock %d -> %d\n",
4010 	      type, vic, mode->clock, clock);
4011 	mode->clock = clock;
4012 }
4013 
4014 static void
do_detailed_mode(struct detailed_timing * timing,void * c)4015 do_detailed_mode(struct detailed_timing *timing, void *c)
4016 {
4017 	struct detailed_mode_closure *closure = c;
4018 	struct drm_display_mode *newmode;
4019 
4020 	if (timing->pixel_clock) {
4021 		newmode = drm_mode_detailed(
4022 					    closure->edid, timing,
4023 					    closure->quirks);
4024 		if (!newmode)
4025 			return;
4026 
4027 		if (closure->preferred)
4028 			newmode->type |= DRM_MODE_TYPE_PREFERRED;
4029 
4030 		/*
4031 		 * Detailed modes are limited to 10kHz pixel clock resolution,
4032 		 * so fix up anything that looks like CEA/HDMI mode,
4033 		 * but the clock is just slightly off.
4034 		 */
4035 		fixup_detailed_cea_mode_clock(newmode);
4036 		drm_add_hdmi_modes(closure->data, newmode);
4037 		drm_mode_destroy(newmode);
4038 		closure->modes++;
4039 		closure->preferred = 0;
4040 	}
4041 }
4042 
4043 /*
4044  * add_detailed_modes - Add modes from detailed timings
4045  * @data: attached data
4046  * @edid: EDID block to scan
4047  * @quirks: quirks to apply
4048  */
4049 static int
add_detailed_modes(struct hdmi_edid_data * data,struct edid * edid,u32 quirks)4050 add_detailed_modes(struct hdmi_edid_data *data, struct edid *edid,
4051 		   u32 quirks)
4052 {
4053 	struct detailed_mode_closure closure = {
4054 		.data = data,
4055 		.edid = edid,
4056 		.preferred = 1,
4057 		.quirks = quirks,
4058 	};
4059 
4060 	if (closure.preferred && !version_greater(edid, 1, 3))
4061 		closure.preferred =
4062 			(edid->features & DRM_EDID_FEATURE_PREFERRED_TIMING);
4063 
4064 	drm_for_each_detailed_block((u8 *)edid, do_detailed_mode, &closure);
4065 
4066 	return closure.modes;
4067 }
4068 
drm_cvt_modes(struct hdmi_edid_data * data,struct detailed_timing * timing)4069 static int drm_cvt_modes(struct hdmi_edid_data *data,
4070 			 struct detailed_timing *timing)
4071 {
4072 	int i, j, modes = 0;
4073 	struct drm_display_mode *newmode;
4074 	struct cvt_timing *cvt;
4075 	const int rates[] = { 60, 85, 75, 60, 50 };
4076 	const u8 empty[3] = { 0, 0, 0 };
4077 
4078 	for (i = 0; i < 4; i++) {
4079 		int uninitialized_var(width), height;
4080 
4081 		cvt = &timing->data.other_data.data.cvt[i];
4082 
4083 		if (!memcmp(cvt->code, empty, 3))
4084 			continue;
4085 
4086 		height = (cvt->code[0] + ((cvt->code[1] & 0xf0) << 4) + 1) * 2;
4087 		switch (cvt->code[1] & 0x0c) {
4088 		case 0x00:
4089 			width = height * 4 / 3;
4090 			break;
4091 		case 0x04:
4092 			width = height * 16 / 9;
4093 			break;
4094 		case 0x08:
4095 			width = height * 16 / 10;
4096 			break;
4097 		case 0x0c:
4098 			width = height * 15 / 9;
4099 			break;
4100 		}
4101 
4102 		for (j = 1; j < 5; j++) {
4103 			if (cvt->code[2] & (1 << j)) {
4104 				newmode = drm_cvt_mode(width, height,
4105 						       rates[j], j == 0,
4106 						       false, false);
4107 				if (newmode) {
4108 					drm_add_hdmi_modes(data, newmode);
4109 					modes++;
4110 					drm_mode_destroy(newmode);
4111 				}
4112 			}
4113 		}
4114 	}
4115 
4116 	return modes;
4117 }
4118 
4119 static void
do_cvt_mode(struct detailed_timing * timing,void * c)4120 do_cvt_mode(struct detailed_timing *timing, void *c)
4121 {
4122 	struct detailed_mode_closure *closure = c;
4123 	struct detailed_non_pixel *data = &timing->data.other_data;
4124 
4125 	if (data->type == EDID_DETAIL_CVT_3BYTE)
4126 		closure->modes += drm_cvt_modes(closure->data, timing);
4127 }
4128 
4129 static int
add_cvt_modes(struct hdmi_edid_data * data,struct edid * edid)4130 add_cvt_modes(struct hdmi_edid_data *data, struct edid *edid)
4131 {
4132 	struct detailed_mode_closure closure = {
4133 		.data = data,
4134 		.edid = edid,
4135 	};
4136 
4137 	if (version_greater(edid, 1, 2))
4138 		drm_for_each_detailed_block((u8 *)edid, do_cvt_mode, &closure);
4139 
4140 	/* XXX should also look for CVT codes in VTB blocks */
4141 
4142 	return closure.modes;
4143 }
4144 
4145 static void
find_gtf2(struct detailed_timing * t,void * data)4146 find_gtf2(struct detailed_timing *t, void *data)
4147 {
4148 	u8 *r = (u8 *)t;
4149 
4150 	if (r[3] == EDID_DETAIL_MONITOR_RANGE && r[10] == 0x02)
4151 		*(u8 **)data = r;
4152 }
4153 
4154 /* Secondary GTF curve kicks in above some break frequency */
4155 static int
drm_gtf2_hbreak(struct edid * edid)4156 drm_gtf2_hbreak(struct edid *edid)
4157 {
4158 	u8 *r = NULL;
4159 
4160 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
4161 	return r ? (r[12] * 2) : 0;
4162 }
4163 
4164 static int
drm_gtf2_2c(struct edid * edid)4165 drm_gtf2_2c(struct edid *edid)
4166 {
4167 	u8 *r = NULL;
4168 
4169 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
4170 	return r ? r[13] : 0;
4171 }
4172 
4173 static int
drm_gtf2_m(struct edid * edid)4174 drm_gtf2_m(struct edid *edid)
4175 {
4176 	u8 *r = NULL;
4177 
4178 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
4179 	return r ? (r[15] << 8) + r[14] : 0;
4180 }
4181 
4182 static int
drm_gtf2_k(struct edid * edid)4183 drm_gtf2_k(struct edid *edid)
4184 {
4185 	u8 *r = NULL;
4186 
4187 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
4188 	return r ? r[16] : 0;
4189 }
4190 
4191 static int
drm_gtf2_2j(struct edid * edid)4192 drm_gtf2_2j(struct edid *edid)
4193 {
4194 	u8 *r = NULL;
4195 
4196 	drm_for_each_detailed_block((u8 *)edid, find_gtf2, &r);
4197 	return r ? r[17] : 0;
4198 }
4199 
4200 /**
4201  * standard_timing_level - get std. timing level(CVT/GTF/DMT)
4202  * @edid: EDID block to scan
4203  */
standard_timing_level(struct edid * edid)4204 static int standard_timing_level(struct edid *edid)
4205 {
4206 	if (edid->revision >= 2) {
4207 		if (edid->revision >= 4 &&
4208 		    (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF))
4209 			return LEVEL_CVT;
4210 		if (drm_gtf2_hbreak(edid))
4211 			return LEVEL_GTF2;
4212 		return LEVEL_GTF;
4213 	}
4214 	return LEVEL_DMT;
4215 }
4216 
4217 /*
4218  * 0 is reserved.  The spec says 0x01 fill for unused timings.  Some old
4219  * monitors fill with ascii space (0x20) instead.
4220  */
4221 static int
bad_std_timing(u8 a,u8 b)4222 bad_std_timing(u8 a, u8 b)
4223 {
4224 	return (a == 0x00 && b == 0x00) ||
4225 	       (a == 0x01 && b == 0x01) ||
4226 	       (a == 0x20 && b == 0x20);
4227 }
4228 
4229 static void
is_rb(struct detailed_timing * t,void * data)4230 is_rb(struct detailed_timing *t, void *data)
4231 {
4232 	u8 *r = (u8 *)t;
4233 
4234 	if (r[3] == EDID_DETAIL_MONITOR_RANGE)
4235 		if (r[15] & 0x10)
4236 			*(bool *)data = true;
4237 }
4238 
4239 /* EDID 1.4 defines this explicitly.  For EDID 1.3, we guess, badly. */
4240 static bool
drm_monitor_supports_rb(struct edid * edid)4241 drm_monitor_supports_rb(struct edid *edid)
4242 {
4243 	if (edid->revision >= 4) {
4244 		bool ret = false;
4245 
4246 		drm_for_each_detailed_block((u8 *)edid, is_rb, &ret);
4247 		return ret;
4248 	}
4249 
4250 	return ((edid->input & DRM_EDID_INPUT_DIGITAL) != 0);
4251 }
4252 
4253 static bool
mode_is_rb(const struct drm_display_mode * mode)4254 mode_is_rb(const struct drm_display_mode *mode)
4255 {
4256 	return (mode->htotal - mode->hdisplay == 160) &&
4257 	       (mode->hsync_end - mode->hdisplay == 80) &&
4258 	       (mode->hsync_end - mode->hsync_start == 32) &&
4259 	       (mode->vsync_start - mode->vdisplay == 3);
4260 }
4261 
4262 /*
4263  * drm_mode_find_dmt - Create a copy of a mode if present in DMT
4264  * @hsize: Mode width
4265  * @vsize: Mode height
4266  * @fresh: Mode refresh rate
4267  * @rb: Mode reduced-blanking-ness
4268  *
4269  * Walk the DMT mode list looking for a match for the given parameters.
4270  *
4271  * Return: A newly allocated copy of the mode, or NULL if not found.
4272  */
drm_mode_find_dmt(int hsize,int vsize,int fresh,bool rb)4273 static struct drm_display_mode *drm_mode_find_dmt(
4274 					   int hsize, int vsize, int fresh,
4275 					   bool rb)
4276 {
4277 	int i;
4278 	struct drm_display_mode *newmode;
4279 
4280 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
4281 		const struct drm_display_mode *ptr = &drm_dmt_modes[i];
4282 
4283 		if (hsize != ptr->hdisplay)
4284 			continue;
4285 		if (vsize != ptr->vdisplay)
4286 			continue;
4287 		if (fresh != drm_get_vrefresh(ptr))
4288 			continue;
4289 		if (rb != mode_is_rb(ptr))
4290 			continue;
4291 
4292 		newmode = drm_mode_create();
4293 		*newmode = *ptr;
4294 		return newmode;
4295 	}
4296 
4297 	return NULL;
4298 }
4299 
4300 static struct drm_display_mode *
drm_gtf_mode_complex(int hdisplay,int vdisplay,int vrefresh,bool interlaced,int margins,int GTF_M,int GTF_2C,int GTF_K,int GTF_2J)4301 drm_gtf_mode_complex(int hdisplay, int vdisplay,
4302 		     int vrefresh, bool interlaced, int margins,
4303 		     int GTF_M, int GTF_2C, int GTF_K, int GTF_2J)
4304 {	/* 1) top/bottom margin size (% of height) - default: 1.8, */
4305 #define	GTF_MARGIN_PERCENTAGE		18
4306 	/* 2) character cell horizontal granularity (pixels) - default 8 */
4307 #define	GTF_CELL_GRAN			8
4308 	/* 3) Minimum vertical porch (lines) - default 3 */
4309 #define	GTF_MIN_V_PORCH			1
4310 	/* width of vsync in lines */
4311 #define V_SYNC_RQD			3
4312 	/* width of hsync as % of total line */
4313 #define H_SYNC_PERCENT			8
4314 	/* min time of vsync + back porch (microsec) */
4315 #define MIN_VSYNC_PLUS_BP		550
4316 	/* C' and M' are part of the Blanking Duty Cycle computation */
4317 #define GTF_C_PRIME	((((GTF_2C - GTF_2J) * GTF_K / 256) + GTF_2J) / 2)
4318 #define GTF_M_PRIME	(GTF_K * GTF_M / 256)
4319 	struct drm_display_mode *drm_mode;
4320 	unsigned int hdisplay_rnd, vdisplay_rnd, vfieldrate_rqd;
4321 	int top_margin, bottom_margin;
4322 	int interlace;
4323 	unsigned int hfreq_est;
4324 	int vsync_plus_bp;
4325 	unsigned int vtotal_lines;
4326 	int left_margin, right_margin;
4327 	unsigned int total_active_pixels, ideal_duty_cycle;
4328 	unsigned int hblank, total_pixels, pixel_freq;
4329 	int hsync, hfront_porch, vodd_front_porch_lines;
4330 	unsigned int tmp1, tmp2;
4331 
4332 	drm_mode = drm_mode_create();
4333 	if (!drm_mode)
4334 		return NULL;
4335 
4336 	/* 1. In order to give correct results, the number of horizontal
4337 	 * pixels requested is first processed to ensure that it is divisible
4338 	 * by the character size, by rounding it to the nearest character
4339 	 * cell boundary:
4340 	 */
4341 	hdisplay_rnd = (hdisplay + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
4342 	hdisplay_rnd = hdisplay_rnd * GTF_CELL_GRAN;
4343 
4344 	/* 2. If interlace is requested, the number of vertical lines assumed
4345 	 * by the calculation must be halved, as the computation calculates
4346 	 * the number of vertical lines per field.
4347 	 */
4348 	if (interlaced)
4349 		vdisplay_rnd = vdisplay / 2;
4350 	else
4351 		vdisplay_rnd = vdisplay;
4352 
4353 	/* 3. Find the frame rate required: */
4354 	if (interlaced)
4355 		vfieldrate_rqd = vrefresh * 2;
4356 	else
4357 		vfieldrate_rqd = vrefresh;
4358 
4359 	/* 4. Find number of lines in Top margin: */
4360 	top_margin = 0;
4361 	if (margins)
4362 		top_margin = (vdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
4363 				1000;
4364 	/* 5. Find number of lines in bottom margin: */
4365 	bottom_margin = top_margin;
4366 
4367 	/* 6. If interlace is required, then set variable interlace: */
4368 	if (interlaced)
4369 		interlace = 1;
4370 	else
4371 		interlace = 0;
4372 
4373 	/* 7. Estimate the Horizontal frequency */
4374 	{
4375 		tmp1 = (1000000  - MIN_VSYNC_PLUS_BP * vfieldrate_rqd) / 500;
4376 		tmp2 = (vdisplay_rnd + 2 * top_margin + GTF_MIN_V_PORCH) *
4377 				2 + interlace;
4378 		hfreq_est = (tmp2 * 1000 * vfieldrate_rqd) / tmp1;
4379 	}
4380 
4381 	/* 8. Find the number of lines in V sync + back porch */
4382 	/* [V SYNC+BP] = RINT(([MIN VSYNC+BP] * hfreq_est / 1000000)) */
4383 	vsync_plus_bp = MIN_VSYNC_PLUS_BP * hfreq_est / 1000;
4384 	vsync_plus_bp = (vsync_plus_bp + 500) / 1000;
4385 	/*  9. Find the number of lines in V back porch alone:
4386 	 *	vback_porch = vsync_plus_bp - V_SYNC_RQD;
4387 	 */
4388 	/*  10. Find the total number of lines in Vertical field period: */
4389 	vtotal_lines = vdisplay_rnd + top_margin + bottom_margin +
4390 			vsync_plus_bp + GTF_MIN_V_PORCH;
4391 	/*  11. Estimate the Vertical field frequency:
4392 	 *  vfieldrate_est = hfreq_est / vtotal_lines;
4393 	 */
4394 
4395 	/*  12. Find the actual horizontal period:
4396 	 *	hperiod = 1000000 / (vfieldrate_rqd * vtotal_lines);
4397 	 */
4398 	/*  13. Find the actual Vertical field frequency:
4399 	 *	vfield_rate = hfreq_est / vtotal_lines;
4400 	 */
4401 	/*  14. Find the Vertical frame frequency:
4402 	 *	if (interlaced)
4403 	 *		vframe_rate = vfield_rate / 2;
4404 	 *	else
4405 	 *		vframe_rate = vfield_rate;
4406 	 */
4407 	/*  15. Find number of pixels in left margin: */
4408 	if (margins)
4409 		left_margin = (hdisplay_rnd * GTF_MARGIN_PERCENTAGE + 500) /
4410 				1000;
4411 	else
4412 		left_margin = 0;
4413 
4414 	/* 16.Find number of pixels in right margin: */
4415 	right_margin = left_margin;
4416 	/* 17.Find total number of active pixels in image and left and right */
4417 	total_active_pixels = hdisplay_rnd + left_margin + right_margin;
4418 	/* 18.Find the ideal blanking duty cycle from blanking duty cycle */
4419 	ideal_duty_cycle = GTF_C_PRIME * 1000 -
4420 				(GTF_M_PRIME * 1000000 / hfreq_est);
4421 	/* 19.Find the number of pixels in the blanking time to the nearest
4422 	 * double character cell:
4423 	 */
4424 	hblank = total_active_pixels * ideal_duty_cycle /
4425 			(100000 - ideal_duty_cycle);
4426 	hblank = (hblank + GTF_CELL_GRAN) / (2 * GTF_CELL_GRAN);
4427 	hblank = hblank * 2 * GTF_CELL_GRAN;
4428 	/* 20.Find total number of pixels: */
4429 	total_pixels = total_active_pixels + hblank;
4430 	/* 21.Find pixel clock frequency: */
4431 	pixel_freq = total_pixels * hfreq_est / 1000;
4432 	/* Stage 1 computations are now complete; I should really pass
4433 	 * the results to another function and do the Stage 2 computations,
4434 	 * but I only need a few more values so I'll just append the
4435 	 * computations here for now
4436 	 */
4437 
4438 	/* 17. Find the number of pixels in the horizontal sync period: */
4439 	hsync = H_SYNC_PERCENT * total_pixels / 100;
4440 	hsync = (hsync + GTF_CELL_GRAN / 2) / GTF_CELL_GRAN;
4441 	hsync = hsync * GTF_CELL_GRAN;
4442 	/* 18. Find the number of pixels in horizontal front porch period */
4443 	hfront_porch = hblank / 2 - hsync;
4444 	/*  36. Find the number of lines in the odd front porch period: */
4445 	vodd_front_porch_lines = GTF_MIN_V_PORCH;
4446 
4447 	/* finally, pack the results in the mode struct */
4448 	drm_mode->hdisplay = hdisplay_rnd;
4449 	drm_mode->hsync_start = hdisplay_rnd + hfront_porch;
4450 	drm_mode->hsync_end = drm_mode->hsync_start + hsync;
4451 	drm_mode->htotal = total_pixels;
4452 	drm_mode->vdisplay = vdisplay_rnd;
4453 	drm_mode->vsync_start = vdisplay_rnd + vodd_front_porch_lines;
4454 	drm_mode->vsync_end = drm_mode->vsync_start + V_SYNC_RQD;
4455 	drm_mode->vtotal = vtotal_lines;
4456 
4457 	drm_mode->clock = pixel_freq;
4458 
4459 	if (interlaced) {
4460 		drm_mode->vtotal *= 2;
4461 		drm_mode->flags |= DRM_MODE_FLAG_INTERLACE;
4462 	}
4463 
4464 	if (GTF_M == 600 && GTF_2C == 80 && GTF_K == 128 && GTF_2J == 40)
4465 		drm_mode->flags = DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_PVSYNC;
4466 	else
4467 		drm_mode->flags = DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NVSYNC;
4468 
4469 	return drm_mode;
4470 }
4471 
4472 /**
4473  * drm_gtf_mode - create the mode based on the GTF algorithm
4474  * @hdisplay: hdisplay size
4475  * @vdisplay: vdisplay size
4476  * @vrefresh: vrefresh rate.
4477  * @interlaced: whether to compute an interlaced mode
4478  * @margins: desired margin (borders) size
4479  *
4480  * return the mode based on GTF algorithm
4481  *
4482  * This function is to create the mode based on the GTF algorithm.
4483  * Generalized Timing Formula is derived from:
4484  *	GTF Spreadsheet by Andy Morrish (1/5/97)
4485  *	available at http://www.vesa.org
4486  *
4487  * And it is copied from the file of xserver/hw/xfree86/modes/xf86gtf.c.
4488  * What I have done is to translate it by using integer calculation.
4489  * I also refer to the function of fb_get_mode in the file of
4490  * drivers/video/fbmon.c
4491  *
4492  * Standard GTF parameters:
4493  * M = 600
4494  * C = 40
4495  * K = 128
4496  * J = 20
4497  *
4498  * Returns:
4499  * The modeline based on the GTF algorithm stored in a drm_display_mode object.
4500  * The display mode object is allocated with drm_mode_create(). Returns NULL
4501  * when no mode could be allocated.
4502  */
4503 static struct drm_display_mode *
drm_gtf_mode(int hdisplay,int vdisplay,int vrefresh,bool interlaced,int margins)4504 drm_gtf_mode(int hdisplay, int vdisplay, int vrefresh,
4505 	     bool interlaced, int margins)
4506 {
4507 	return drm_gtf_mode_complex(hdisplay, vdisplay, vrefresh,
4508 				    interlaced, margins,
4509 				    600, 40 * 2, 128, 20 * 2);
4510 }
4511 
4512 /** drm_mode_hsync - get the hsync of a mode
4513  * @mode: mode
4514  *
4515  * Returns:
4516  * @modes's hsync rate in kHz, rounded to the nearest integer. Calculates the
4517  * value first if it is not yet set.
4518  */
drm_mode_hsync(const struct drm_display_mode * mode)4519 static int drm_mode_hsync(const struct drm_display_mode *mode)
4520 {
4521 	unsigned int calc_val;
4522 
4523 	if (mode->htotal < 0)
4524 		return 0;
4525 
4526 	calc_val = (mode->clock * 1000) / mode->htotal; /* hsync in Hz */
4527 	calc_val += 500;				/* round to 1000Hz */
4528 	calc_val /= 1000;				/* truncate to kHz */
4529 
4530 	return calc_val;
4531 }
4532 
4533 /**
4534  * drm_mode_std - convert standard mode info (width, height, refresh) into mode
4535  * @data: the structure that save parsed hdmi edid data
4536  * @edid: EDID block to scan
4537  * @t: standard timing params
4538  *
4539  * Take the standard timing params (in this case width, aspect, and refresh)
4540  * and convert them into a real mode using CVT/GTF/DMT.
4541  */
4542 static struct drm_display_mode *
drm_mode_std(struct hdmi_edid_data * data,struct edid * edid,struct std_timing * t)4543 drm_mode_std(struct hdmi_edid_data *data, struct edid *edid,
4544 	     struct std_timing *t)
4545 {
4546 	struct drm_display_mode *mode = NULL;
4547 	int i, hsize, vsize;
4548 	int vrefresh_rate;
4549 	int num = data->modes;
4550 	unsigned aspect_ratio = (t->vfreq_aspect & EDID_TIMING_ASPECT_MASK)
4551 		>> EDID_TIMING_ASPECT_SHIFT;
4552 	unsigned vfreq = (t->vfreq_aspect & EDID_TIMING_VFREQ_MASK)
4553 		>> EDID_TIMING_VFREQ_SHIFT;
4554 	int timing_level = standard_timing_level(edid);
4555 
4556 	if (bad_std_timing(t->hsize, t->vfreq_aspect))
4557 		return NULL;
4558 
4559 	/* According to the EDID spec, the hdisplay = hsize * 8 + 248 */
4560 	hsize = t->hsize * 8 + 248;
4561 	/* vrefresh_rate = vfreq + 60 */
4562 	vrefresh_rate = vfreq + 60;
4563 	/* the vdisplay is calculated based on the aspect ratio */
4564 	if (aspect_ratio == 0) {
4565 		if (edid->revision < 3)
4566 			vsize = hsize;
4567 		else
4568 			vsize = (hsize * 10) / 16;
4569 	} else if (aspect_ratio == 1) {
4570 		vsize = (hsize * 3) / 4;
4571 	} else if (aspect_ratio == 2) {
4572 		vsize = (hsize * 4) / 5;
4573 	} else {
4574 		vsize = (hsize * 9) / 16;
4575 	}
4576 
4577 	/* HDTV hack, part 1 */
4578 	if (vrefresh_rate == 60 &&
4579 	    ((hsize == 1360 && vsize == 765) ||
4580 	     (hsize == 1368 && vsize == 769))) {
4581 		hsize = 1366;
4582 		vsize = 768;
4583 	}
4584 
4585 	/*
4586 	 * If we already has a mode for this size and refresh
4587 	 * rate (because it came from detailed or CVT info), use that
4588 	 * instead.  This way we don't have to guess at interlace or
4589 	 * reduced blanking.
4590 	 */
4591 	for (i = 0; i < num; i++)
4592 		if (data->mode_buf[i].hdisplay == hsize &&
4593 		    data->mode_buf[i].vdisplay == vsize &&
4594 		    drm_get_vrefresh(&data->mode_buf[i]) == vrefresh_rate)
4595 			return NULL;
4596 
4597 	/* HDTV hack, part 2 */
4598 	if (hsize == 1366 && vsize == 768 && vrefresh_rate == 60) {
4599 		mode = drm_cvt_mode(1366, 768, vrefresh_rate, 0, 0,
4600 				    false);
4601 		mode->hdisplay = 1366;
4602 		mode->hsync_start = mode->hsync_start - 1;
4603 		mode->hsync_end = mode->hsync_end - 1;
4604 		return mode;
4605 	}
4606 
4607 	/* check whether it can be found in default mode table */
4608 	if (drm_monitor_supports_rb(edid)) {
4609 		mode = drm_mode_find_dmt(hsize, vsize, vrefresh_rate,
4610 					 true);
4611 		if (mode)
4612 			return mode;
4613 	}
4614 
4615 	mode = drm_mode_find_dmt(hsize, vsize, vrefresh_rate, false);
4616 	if (mode)
4617 		return mode;
4618 
4619 	/* okay, generate it */
4620 	switch (timing_level) {
4621 	case LEVEL_DMT:
4622 		break;
4623 	case LEVEL_GTF:
4624 		mode = drm_gtf_mode(hsize, vsize, vrefresh_rate, 0, 0);
4625 		break;
4626 	case LEVEL_GTF2:
4627 		/*
4628 		 * This is potentially wrong if there's ever a monitor with
4629 		 * more than one ranges section, each claiming a different
4630 		 * secondary GTF curve.  Please don't do that.
4631 		 */
4632 		mode = drm_gtf_mode(hsize, vsize, vrefresh_rate, 0, 0);
4633 		if (!mode)
4634 			return NULL;
4635 		if (drm_mode_hsync(mode) > drm_gtf2_hbreak(edid)) {
4636 			drm_mode_destroy(mode);
4637 			mode = drm_gtf_mode_complex(hsize, vsize,
4638 						    vrefresh_rate, 0, 0,
4639 						    drm_gtf2_m(edid),
4640 						    drm_gtf2_2c(edid),
4641 						    drm_gtf2_k(edid),
4642 						    drm_gtf2_2j(edid));
4643 		}
4644 		break;
4645 	case LEVEL_CVT:
4646 		mode = drm_cvt_mode(hsize, vsize, vrefresh_rate, 0, 0,
4647 				    false);
4648 		break;
4649 	}
4650 
4651 	return mode;
4652 }
4653 
4654 static void
do_standard_modes(struct detailed_timing * timing,void * c)4655 do_standard_modes(struct detailed_timing *timing, void *c)
4656 {
4657 	struct detailed_mode_closure *closure = c;
4658 	struct detailed_non_pixel *data = &timing->data.other_data;
4659 	struct edid *edid = closure->edid;
4660 
4661 	if (data->type == EDID_DETAIL_STD_MODES) {
4662 		int i;
4663 
4664 		for (i = 0; i < 6; i++) {
4665 			struct std_timing *std;
4666 			struct drm_display_mode *newmode;
4667 
4668 			std = &data->data.timings[i];
4669 			newmode = drm_mode_std(closure->data, edid, std);
4670 			if (newmode) {
4671 				drm_add_hdmi_modes(closure->data, newmode);
4672 				closure->modes++;
4673 				drm_mode_destroy(newmode);
4674 			}
4675 		}
4676 	}
4677 }
4678 
4679 /**
4680  * add_standard_modes - get std. modes from EDID and add them
4681  * @data: data to add mode(s) to
4682  * @edid: EDID block to scan
4683  *
4684  * Standard modes can be calculated using the appropriate standard (DMT,
4685  * GTF or CVT. Grab them from @edid and add them to the list.
4686  */
4687 static int
add_standard_modes(struct hdmi_edid_data * data,struct edid * edid)4688 add_standard_modes(struct hdmi_edid_data *data, struct edid *edid)
4689 {
4690 	int i, modes = 0;
4691 	struct detailed_mode_closure closure = {
4692 		.data = data,
4693 		.edid = edid,
4694 	};
4695 
4696 	for (i = 0; i < EDID_STD_TIMINGS; i++) {
4697 		struct drm_display_mode *newmode;
4698 
4699 		newmode = drm_mode_std(data, edid,
4700 				       &edid->standard_timings[i]);
4701 		if (newmode) {
4702 			drm_add_hdmi_modes(data, newmode);
4703 			modes++;
4704 			drm_mode_destroy(newmode);
4705 		}
4706 	}
4707 
4708 	if (version_greater(edid, 1, 0))
4709 		drm_for_each_detailed_block((u8 *)edid, do_standard_modes,
4710 					    &closure);
4711 
4712 	/* XXX should also look for standard codes in VTB blocks */
4713 
4714 	return modes + closure.modes;
4715 }
4716 
4717 static int
drm_est3_modes(struct hdmi_edid_data * data,struct detailed_timing * timing)4718 drm_est3_modes(struct hdmi_edid_data *data, struct detailed_timing *timing)
4719 {
4720 	int i, j, m, modes = 0;
4721 	struct drm_display_mode *mode;
4722 	u8 *est = ((u8 *)timing) + 6;
4723 
4724 	for (i = 0; i < 6; i++) {
4725 		for (j = 7; j >= 0; j--) {
4726 			m = (i * 8) + (7 - j);
4727 			if (m >= ARRAY_SIZE(est3_modes))
4728 				break;
4729 			if (est[i] & (1 << j)) {
4730 				mode = drm_mode_find_dmt(
4731 							 est3_modes[m].w,
4732 							 est3_modes[m].h,
4733 							 est3_modes[m].r,
4734 							 est3_modes[m].rb);
4735 				if (mode) {
4736 					drm_add_hdmi_modes(data, mode);
4737 					modes++;
4738 					drm_mode_destroy(mode);
4739 				}
4740 			}
4741 		}
4742 	}
4743 
4744 	return modes;
4745 }
4746 
4747 static void
do_established_modes(struct detailed_timing * timing,void * c)4748 do_established_modes(struct detailed_timing *timing, void *c)
4749 {
4750 	struct detailed_mode_closure *closure = c;
4751 	struct detailed_non_pixel *data = &timing->data.other_data;
4752 
4753 	if (data->type == EDID_DETAIL_EST_TIMINGS)
4754 		closure->modes += drm_est3_modes(closure->data, timing);
4755 }
4756 
4757 /**
4758  * add_established_modes - get est. modes from EDID and add them
4759  * @data: data to add mode(s) to
4760  * @edid: EDID block to scan
4761  *
4762  * Each EDID block contains a bitmap of the supported "established modes" list
4763  * (defined above).  Tease them out and add them to the modes list.
4764  */
4765 static int
add_established_modes(struct hdmi_edid_data * data,struct edid * edid)4766 add_established_modes(struct hdmi_edid_data *data, struct edid *edid)
4767 {
4768 	unsigned long est_bits = edid->established_timings.t1 |
4769 		(edid->established_timings.t2 << 8) |
4770 		((edid->established_timings.mfg_rsvd & 0x80) << 9);
4771 	int i, modes = 0;
4772 	struct detailed_mode_closure closure = {
4773 		.data = data,
4774 		.edid = edid,
4775 	};
4776 
4777 	for (i = 0; i <= EDID_EST_TIMINGS; i++) {
4778 		if (est_bits & (1 << i)) {
4779 			struct drm_display_mode *newmode = drm_mode_create();
4780 			*newmode = edid_est_modes[i];
4781 			if (newmode) {
4782 				drm_add_hdmi_modes(data, newmode);
4783 				modes++;
4784 				drm_mode_destroy(newmode);
4785 			}
4786 		}
4787 	}
4788 
4789 	if (version_greater(edid, 1, 0))
4790 		drm_for_each_detailed_block((u8 *)edid,
4791 					    do_established_modes, &closure);
4792 
4793 	return modes + closure.modes;
4794 }
4795 
drm_match_hdmi_mode(const struct drm_display_mode * to_match)4796 static u8 drm_match_hdmi_mode(const struct drm_display_mode *to_match)
4797 {
4798 	u8 vic;
4799 
4800 	if (!to_match->clock)
4801 		return 0;
4802 
4803 	for (vic = 1; vic < ARRAY_SIZE(edid_4k_modes); vic++) {
4804 		const struct drm_display_mode *hdmi_mode = &edid_4k_modes[vic];
4805 		unsigned int clock1, clock2;
4806 
4807 		/* Make sure to also match alternate clocks */
4808 		clock1 = hdmi_mode->clock;
4809 		clock2 = hdmi_mode_alternate_clock(hdmi_mode);
4810 
4811 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
4812 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
4813 		    drm_mode_equal_no_clocks_no_stereo(to_match, hdmi_mode))
4814 			return vic;
4815 	}
4816 	return 0;
4817 }
4818 
4819 static int
add_alternate_cea_modes(struct hdmi_edid_data * data,struct edid * edid)4820 add_alternate_cea_modes(struct hdmi_edid_data *data, struct edid *edid)
4821 {
4822 	struct drm_display_mode *mode;
4823 	int i, num, modes = 0;
4824 
4825 	/* Don't add CEA modes if the CEA extension block is missing */
4826 	if (!drm_find_cea_extension(edid))
4827 		return 0;
4828 
4829 	/*
4830 	 * Go through all probed modes and create a new mode
4831 	 * with the alternate clock for certain CEA modes.
4832 	 */
4833 	num = data->modes;
4834 
4835 	for (i = 0; i < num; i++) {
4836 		const struct drm_display_mode *cea_mode = NULL;
4837 		struct drm_display_mode *newmode;
4838 		u8 vic;
4839 		unsigned int clock1, clock2;
4840 
4841 		mode = &data->mode_buf[i];
4842 		vic = drm_match_cea_mode(mode);
4843 
4844 		if (drm_valid_cea_vic(vic)) {
4845 			cea_mode = cea_mode_for_vic(vic);
4846 			clock2 = cea_mode_alternate_clock(cea_mode);
4847 		} else {
4848 			vic = drm_match_hdmi_mode(mode);
4849 			if (drm_valid_hdmi_vic(vic)) {
4850 				cea_mode = &edid_4k_modes[vic];
4851 				clock2 = hdmi_mode_alternate_clock(cea_mode);
4852 			}
4853 		}
4854 
4855 		if (!cea_mode)
4856 			continue;
4857 
4858 		clock1 = cea_mode->clock;
4859 
4860 		if (clock1 == clock2)
4861 			continue;
4862 
4863 		if (mode->clock != clock1 && mode->clock != clock2)
4864 			continue;
4865 
4866 		newmode = drm_mode_create();
4867 		*newmode = *cea_mode;
4868 		if (!newmode)
4869 			continue;
4870 
4871 		/* Carry over the stereo flags */
4872 		newmode->flags |= mode->flags & DRM_MODE_FLAG_3D_MASK;
4873 
4874 		/*
4875 		 * The current mode could be either variant. Make
4876 		 * sure to pick the "other" clock for the new mode.
4877 		 */
4878 		if (mode->clock != clock1)
4879 			newmode->clock = clock1;
4880 		else
4881 			newmode->clock = clock2;
4882 
4883 		drm_add_hdmi_modes(data, newmode);
4884 		modes++;
4885 		drm_mode_destroy(newmode);
4886 	}
4887 
4888 	return modes;
4889 }
4890 
drm_find_displayid_extension(struct edid * edid)4891 static u8 *drm_find_displayid_extension(struct edid *edid)
4892 {
4893 	return drm_find_edid_extension(edid, DISPLAYID_EXT);
4894 }
4895 
validate_displayid(u8 * displayid,int length,int idx)4896 static int validate_displayid(u8 *displayid, int length, int idx)
4897 {
4898 	int i;
4899 	u8 csum = 0;
4900 	struct displayid_hdr *base;
4901 
4902 	base = (struct displayid_hdr *)&displayid[idx];
4903 
4904 	debug("base revision 0x%x, length %d, %d %d\n",
4905 	      base->rev, base->bytes, base->prod_id, base->ext_count);
4906 
4907 	if (base->bytes + 5 > length - idx)
4908 		return -EINVAL;
4909 	for (i = idx; i <= base->bytes + 5; i++)
4910 		csum += displayid[i];
4911 	if (csum) {
4912 		debug("DisplayID checksum invalid, remainder is %d\n", csum);
4913 		return -EINVAL;
4914 	}
4915 	return 0;
4916 }
4917 
4918 static struct
drm_displayid_detailed(struct displayid_detailed_timings_1 * timings)4919 drm_display_mode *drm_displayid_detailed(struct displayid_detailed_timings_1
4920 					      *timings)
4921 {
4922 	struct drm_display_mode *mode;
4923 	unsigned pixel_clock = (timings->pixel_clock[0] |
4924 				(timings->pixel_clock[1] << 8) |
4925 				(timings->pixel_clock[2] << 16));
4926 	unsigned hactive = (timings->hactive[0] | timings->hactive[1] << 8) + 1;
4927 	unsigned hblank = (timings->hblank[0] | timings->hblank[1] << 8) + 1;
4928 	unsigned hsync = (timings->hsync[0] |
4929 		(timings->hsync[1] & 0x7f) << 8) + 1;
4930 	unsigned hsync_width = (timings->hsw[0] | timings->hsw[1] << 8) + 1;
4931 	unsigned vactive = (timings->vactive[0] |
4932 		timings->vactive[1] << 8) + 1;
4933 	unsigned vblank = (timings->vblank[0] | timings->vblank[1] << 8) + 1;
4934 	unsigned vsync = (timings->vsync[0] |
4935 		(timings->vsync[1] & 0x7f) << 8) + 1;
4936 	unsigned vsync_width = (timings->vsw[0] | timings->vsw[1] << 8) + 1;
4937 	bool hsync_positive = (timings->hsync[1] >> 7) & 0x1;
4938 	bool vsync_positive = (timings->vsync[1] >> 7) & 0x1;
4939 
4940 	mode = drm_mode_create();
4941 	if (!mode)
4942 		return NULL;
4943 
4944 	mode->clock = pixel_clock * 10;
4945 	mode->hdisplay = hactive;
4946 	mode->hsync_start = mode->hdisplay + hsync;
4947 	mode->hsync_end = mode->hsync_start + hsync_width;
4948 	mode->htotal = mode->hdisplay + hblank;
4949 
4950 	mode->vdisplay = vactive;
4951 	mode->vsync_start = mode->vdisplay + vsync;
4952 	mode->vsync_end = mode->vsync_start + vsync_width;
4953 	mode->vtotal = mode->vdisplay + vblank;
4954 
4955 	mode->flags = 0;
4956 	mode->flags |=
4957 		hsync_positive ? DRM_MODE_FLAG_PHSYNC : DRM_MODE_FLAG_NHSYNC;
4958 	mode->flags |=
4959 		vsync_positive ? DRM_MODE_FLAG_PVSYNC : DRM_MODE_FLAG_NVSYNC;
4960 	mode->type = DRM_MODE_TYPE_DRIVER;
4961 
4962 	if (timings->flags & 0x80)
4963 		mode->type |= DRM_MODE_TYPE_PREFERRED;
4964 	mode->vrefresh = drm_get_vrefresh(mode);
4965 
4966 	return mode;
4967 }
4968 
add_displayid_detailed_1_modes(struct hdmi_edid_data * data,struct displayid_block * block)4969 static int add_displayid_detailed_1_modes(struct hdmi_edid_data *data,
4970 					  struct displayid_block *block)
4971 {
4972 	struct displayid_detailed_timing_block *det;
4973 	int i;
4974 	int num_timings;
4975 	struct drm_display_mode *newmode;
4976 	int num_modes = 0;
4977 
4978 	det = (struct displayid_detailed_timing_block *)block;
4979 	/* blocks must be multiple of 20 bytes length */
4980 	if (block->num_bytes % 20)
4981 		return 0;
4982 
4983 	num_timings = block->num_bytes / 20;
4984 	for (i = 0; i < num_timings; i++) {
4985 		struct displayid_detailed_timings_1 *timings =
4986 			&det->timings[i];
4987 
4988 		newmode = drm_displayid_detailed(timings);
4989 		if (!newmode)
4990 			continue;
4991 
4992 		drm_add_hdmi_modes(data, newmode);
4993 		num_modes++;
4994 		drm_mode_destroy(newmode);
4995 	}
4996 	return num_modes;
4997 }
4998 
add_displayid_detailed_modes(struct hdmi_edid_data * data,struct edid * edid)4999 static int add_displayid_detailed_modes(struct hdmi_edid_data *data,
5000 					struct edid *edid)
5001 {
5002 	u8 *displayid;
5003 	int ret;
5004 	int idx = 1;
5005 	int length = EDID_SIZE;
5006 	struct displayid_block *block;
5007 	int num_modes = 0;
5008 
5009 	displayid = drm_find_displayid_extension(edid);
5010 	if (!displayid)
5011 		return 0;
5012 
5013 	ret = validate_displayid(displayid, length, idx);
5014 	if (ret)
5015 		return 0;
5016 
5017 	idx += sizeof(struct displayid_hdr);
5018 	while (block = (struct displayid_block *)&displayid[idx],
5019 	       idx + sizeof(struct displayid_block) <= length &&
5020 	       idx + sizeof(struct displayid_block) + block->num_bytes <=
5021 	       length && block->num_bytes > 0) {
5022 		idx += block->num_bytes + sizeof(struct displayid_block);
5023 		switch (block->tag) {
5024 		case DATA_BLOCK_TYPE_1_DETAILED_TIMING:
5025 			num_modes +=
5026 				add_displayid_detailed_1_modes(data, block);
5027 			break;
5028 		}
5029 	}
5030 	return num_modes;
5031 }
5032 
5033 static bool
mode_in_hsync_range(const struct drm_display_mode * mode,struct edid * edid,u8 * t)5034 mode_in_hsync_range(const struct drm_display_mode *mode,
5035 		    struct edid *edid, u8 *t)
5036 {
5037 	int hsync, hmin, hmax;
5038 
5039 	hmin = t[7];
5040 	if (edid->revision >= 4)
5041 		hmin += ((t[4] & 0x04) ? 255 : 0);
5042 	hmax = t[8];
5043 	if (edid->revision >= 4)
5044 		hmax += ((t[4] & 0x08) ? 255 : 0);
5045 	hsync = drm_mode_hsync(mode);
5046 
5047 	return (hsync <= hmax && hsync >= hmin);
5048 }
5049 
5050 static bool
mode_in_vsync_range(const struct drm_display_mode * mode,struct edid * edid,u8 * t)5051 mode_in_vsync_range(const struct drm_display_mode *mode,
5052 		    struct edid *edid, u8 *t)
5053 {
5054 	int vsync, vmin, vmax;
5055 
5056 	vmin = t[5];
5057 	if (edid->revision >= 4)
5058 		vmin += ((t[4] & 0x01) ? 255 : 0);
5059 	vmax = t[6];
5060 	if (edid->revision >= 4)
5061 		vmax += ((t[4] & 0x02) ? 255 : 0);
5062 	vsync = drm_get_vrefresh(mode);
5063 
5064 	return (vsync <= vmax && vsync >= vmin);
5065 }
5066 
5067 static u32
range_pixel_clock(struct edid * edid,u8 * t)5068 range_pixel_clock(struct edid *edid, u8 *t)
5069 {
5070 	/* unspecified */
5071 	if (t[9] == 0 || t[9] == 255)
5072 		return 0;
5073 
5074 	/* 1.4 with CVT support gives us real precision, yay */
5075 	if (edid->revision >= 4 && t[10] == 0x04)
5076 		return (t[9] * 10000) - ((t[12] >> 2) * 250);
5077 
5078 	/* 1.3 is pathetic, so fuzz up a bit */
5079 	return t[9] * 10000 + 5001;
5080 }
5081 
5082 static bool
mode_in_range(const struct drm_display_mode * mode,struct edid * edid,struct detailed_timing * timing)5083 mode_in_range(const struct drm_display_mode *mode, struct edid *edid,
5084 	      struct detailed_timing *timing)
5085 {
5086 	u32 max_clock;
5087 	u8 *t = (u8 *)timing;
5088 
5089 	if (!mode_in_hsync_range(mode, edid, t))
5090 		return false;
5091 
5092 	if (!mode_in_vsync_range(mode, edid, t))
5093 		return false;
5094 
5095 	max_clock = range_pixel_clock(edid, t);
5096 	if (max_clock)
5097 		if (mode->clock > max_clock)
5098 			return false;
5099 
5100 	/* 1.4 max horizontal check */
5101 	if (edid->revision >= 4 && t[10] == 0x04)
5102 		if (t[13] && mode->hdisplay > 8 *
5103 		    (t[13] + (256 * (t[12] & 0x3))))
5104 			return false;
5105 
5106 	if (mode_is_rb(mode) && !drm_monitor_supports_rb(edid))
5107 		return false;
5108 
5109 	return true;
5110 }
5111 
valid_inferred_mode(struct hdmi_edid_data * data,const struct drm_display_mode * mode)5112 static bool valid_inferred_mode(struct hdmi_edid_data *data,
5113 				const struct drm_display_mode *mode)
5114 {
5115 	const struct drm_display_mode *m;
5116 	bool ok = false;
5117 	int i;
5118 
5119 	for (i = 0; i < data->modes; i++) {
5120 		m = &data->mode_buf[i];
5121 		if (mode->hdisplay == m->hdisplay &&
5122 		    mode->vdisplay == m->vdisplay &&
5123 		    drm_get_vrefresh(mode) == drm_get_vrefresh(m))
5124 			return false; /* duplicated */
5125 		if (mode->hdisplay <= m->hdisplay &&
5126 		    mode->vdisplay <= m->vdisplay)
5127 			ok = true;
5128 	}
5129 	return ok;
5130 }
5131 
5132 static int
drm_dmt_modes_for_range(struct hdmi_edid_data * data,struct edid * edid,struct detailed_timing * timing)5133 drm_dmt_modes_for_range(struct hdmi_edid_data *data, struct edid *edid,
5134 			struct detailed_timing *timing)
5135 {
5136 	int i, modes = 0;
5137 
5138 	for (i = 0; i < ARRAY_SIZE(drm_dmt_modes); i++) {
5139 		if (mode_in_range(drm_dmt_modes + i, edid, timing) &&
5140 		    valid_inferred_mode(data, drm_dmt_modes + i)) {
5141 			drm_add_hdmi_modes(data, &drm_dmt_modes[i]);
5142 			modes++;
5143 		}
5144 	}
5145 
5146 	return modes;
5147 }
5148 
5149 /* fix up 1366x768 mode from 1368x768;
5150  * GFT/CVT can't express 1366 width which isn't dividable by 8
5151  */
fixup_mode_1366x768(struct drm_display_mode * mode)5152 static void fixup_mode_1366x768(struct drm_display_mode *mode)
5153 {
5154 	if (mode->hdisplay == 1368 && mode->vdisplay == 768) {
5155 		mode->hdisplay = 1366;
5156 		mode->hsync_start--;
5157 		mode->hsync_end--;
5158 	}
5159 }
5160 
5161 static int
drm_gtf_modes_for_range(struct hdmi_edid_data * data,struct edid * edid,struct detailed_timing * timing)5162 drm_gtf_modes_for_range(struct hdmi_edid_data *data, struct edid *edid,
5163 			struct detailed_timing *timing)
5164 {
5165 	int i, modes = 0;
5166 	struct drm_display_mode *newmode;
5167 
5168 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
5169 		const struct minimode *m = &extra_modes[i];
5170 
5171 		newmode = drm_gtf_mode(m->w, m->h, m->r, 0, 0);
5172 		if (!newmode)
5173 			return modes;
5174 
5175 		fixup_mode_1366x768(newmode);
5176 		if (!mode_in_range(newmode, edid, timing) ||
5177 		    !valid_inferred_mode(data, newmode)) {
5178 			drm_mode_destroy(newmode);
5179 			continue;
5180 		}
5181 
5182 		drm_add_hdmi_modes(data, newmode);
5183 		modes++;
5184 		drm_mode_destroy(newmode);
5185 	}
5186 
5187 	return modes;
5188 }
5189 
5190 static int
drm_cvt_modes_for_range(struct hdmi_edid_data * data,struct edid * edid,struct detailed_timing * timing)5191 drm_cvt_modes_for_range(struct hdmi_edid_data *data, struct edid *edid,
5192 			struct detailed_timing *timing)
5193 {
5194 	int i, modes = 0;
5195 	struct drm_display_mode *newmode;
5196 	bool rb = drm_monitor_supports_rb(edid);
5197 
5198 	for (i = 0; i < ARRAY_SIZE(extra_modes); i++) {
5199 		const struct minimode *m = &extra_modes[i];
5200 
5201 		newmode = drm_cvt_mode(m->w, m->h, m->r, rb, 0, 0);
5202 		if (!newmode)
5203 			return modes;
5204 
5205 		fixup_mode_1366x768(newmode);
5206 		if (!mode_in_range(newmode, edid, timing) ||
5207 		    !valid_inferred_mode(data, newmode)) {
5208 			drm_mode_destroy(newmode);
5209 			continue;
5210 		}
5211 
5212 		drm_add_hdmi_modes(data, newmode);
5213 		modes++;
5214 		drm_mode_destroy(newmode);
5215 	}
5216 
5217 	return modes;
5218 }
5219 
5220 static void
do_inferred_modes(struct detailed_timing * timing,void * c)5221 do_inferred_modes(struct detailed_timing *timing, void *c)
5222 {
5223 	struct detailed_mode_closure *closure = c;
5224 	struct detailed_non_pixel *data = &timing->data.other_data;
5225 	struct detailed_data_monitor_range *range = &data->data.range;
5226 
5227 	if (data->type != EDID_DETAIL_MONITOR_RANGE)
5228 		return;
5229 
5230 	closure->modes += drm_dmt_modes_for_range(closure->data,
5231 						  closure->edid,
5232 						  timing);
5233 
5234 	if (!version_greater(closure->edid, 1, 1))
5235 		return; /* GTF not defined yet */
5236 
5237 	switch (range->flags) {
5238 	case 0x02: /* secondary gtf, XXX could do more */
5239 	case 0x00: /* default gtf */
5240 		closure->modes += drm_gtf_modes_for_range(closure->data,
5241 							  closure->edid,
5242 							  timing);
5243 		break;
5244 	case 0x04: /* cvt, only in 1.4+ */
5245 		if (!version_greater(closure->edid, 1, 3))
5246 			break;
5247 
5248 		closure->modes += drm_cvt_modes_for_range(closure->data,
5249 							  closure->edid,
5250 							  timing);
5251 		break;
5252 	case 0x01: /* just the ranges, no formula */
5253 	default:
5254 		break;
5255 	}
5256 }
5257 
5258 static int
add_inferred_modes(struct hdmi_edid_data * data,struct edid * edid)5259 add_inferred_modes(struct hdmi_edid_data *data, struct edid *edid)
5260 {
5261 	struct detailed_mode_closure closure = {
5262 		.data = data,
5263 		.edid = edid,
5264 	};
5265 
5266 	if (version_greater(edid, 1, 0))
5267 		drm_for_each_detailed_block((u8 *)edid, do_inferred_modes,
5268 					    &closure);
5269 
5270 	return closure.modes;
5271 }
5272 
5273 #define MODE_SIZE(m) ((m)->hdisplay * (m)->vdisplay)
5274 #define MODE_REFRESH_DIFF(c, t) (abs((c) - (t)))
5275 
5276 /**
5277  * edid_fixup_preferred - set preferred modes based on quirk list
5278  * @data: the structure that save parsed hdmi edid data
5279  * @quirks: quirks list
5280  *
5281  * Walk the mode list, clearing the preferred status
5282  * on existing modes and setting it anew for the right mode ala @quirks.
5283  */
edid_fixup_preferred(struct hdmi_edid_data * data,u32 quirks)5284 static void edid_fixup_preferred(struct hdmi_edid_data *data,
5285 				 u32 quirks)
5286 {
5287 	struct drm_display_mode *cur_mode, *preferred_mode;
5288 	int i, target_refresh = 0;
5289 	int num = data->modes;
5290 	int cur_vrefresh, preferred_vrefresh;
5291 
5292 	if (!num)
5293 		return;
5294 
5295 	preferred_mode = data->preferred_mode;
5296 
5297 	if (quirks & EDID_QUIRK_PREFER_LARGE_60)
5298 		target_refresh = 60;
5299 	if (quirks & EDID_QUIRK_PREFER_LARGE_75)
5300 		target_refresh = 75;
5301 
5302 	for (i = 0; i < num; i++) {
5303 		cur_mode = &data->mode_buf[i];
5304 		cur_mode->type &= ~DRM_MODE_TYPE_PREFERRED;
5305 
5306 		if (cur_mode == preferred_mode)
5307 			continue;
5308 
5309 		/* Largest mode is preferred */
5310 		if (MODE_SIZE(cur_mode) > MODE_SIZE(preferred_mode))
5311 			preferred_mode = cur_mode;
5312 
5313 		cur_vrefresh = cur_mode->vrefresh ?
5314 		cur_mode->vrefresh : drm_get_vrefresh(cur_mode);
5315 		preferred_vrefresh = preferred_mode->vrefresh ?
5316 		preferred_mode->vrefresh : drm_get_vrefresh(preferred_mode);
5317 		/* At a given size, try to get closest to target refresh */
5318 		if ((MODE_SIZE(cur_mode) == MODE_SIZE(preferred_mode)) &&
5319 		    MODE_REFRESH_DIFF(cur_vrefresh, target_refresh) <
5320 		    MODE_REFRESH_DIFF(preferred_vrefresh, target_refresh)) {
5321 			preferred_mode = cur_mode;
5322 		}
5323 	}
5324 	preferred_mode->type |= DRM_MODE_TYPE_PREFERRED;
5325 	data->preferred_mode = preferred_mode;
5326 }
5327 
5328 static const u8 edid_header[] = {
5329 	0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00
5330 };
5331 
5332 /**
5333  * drm_edid_header_is_valid - sanity check the header of the base EDID block
5334  * @raw_edid: pointer to raw base EDID block
5335  *
5336  * Sanity check the header of the base EDID block.
5337  *
5338  * Return: 8 if the header is perfect, down to 0 if it's totally wrong.
5339  */
drm_edid_header_is_valid(const u8 * raw_edid)5340 static int drm_edid_header_is_valid(const u8 *raw_edid)
5341 {
5342 	int i, score = 0;
5343 
5344 	for (i = 0; i < sizeof(edid_header); i++)
5345 		if (raw_edid[i] == edid_header[i])
5346 			score++;
5347 
5348 	return score;
5349 }
5350 
drm_edid_block_checksum(const u8 * raw_edid)5351 static int drm_edid_block_checksum(const u8 *raw_edid)
5352 {
5353 	int i;
5354 	u8 csum = 0;
5355 
5356 	for (i = 0; i < EDID_SIZE; i++)
5357 		csum += raw_edid[i];
5358 
5359 	return csum;
5360 }
5361 
drm_edid_is_zero(const u8 * in_edid,int length)5362 static bool drm_edid_is_zero(const u8 *in_edid, int length)
5363 {
5364 	if (memchr_inv(in_edid, 0, length))
5365 		return false;
5366 
5367 	return true;
5368 }
5369 
5370 /**
5371  * drm_edid_block_valid - Sanity check the EDID block (base or extension)
5372  * @raw_edid: pointer to raw EDID block
5373  * @block: type of block to validate (0 for base, extension otherwise)
5374  * @print_bad_edid: if true, dump bad EDID blocks to the console
5375  * @edid_corrupt: if true, the header or checksum is invalid
5376  *
5377  * Validate a base or extension EDID block and optionally dump bad blocks to
5378  * the console.
5379  *
5380  * Return: True if the block is valid, false otherwise.
5381  */
5382 static
drm_edid_block_valid(u8 * raw_edid,int block,bool print_bad_edid,bool * edid_corrupt)5383 bool drm_edid_block_valid(u8 *raw_edid, int block, bool print_bad_edid,
5384 			  bool *edid_corrupt)
5385 {
5386 	u8 csum;
5387 	int edid_fixup = 6;
5388 	struct edid *edid = (struct edid *)raw_edid;
5389 
5390 	if ((!raw_edid))
5391 		return false;
5392 
5393 	if (block == 0) {
5394 		int score = drm_edid_header_is_valid(raw_edid);
5395 
5396 		if (score == 8) {
5397 			if (edid_corrupt)
5398 				*edid_corrupt = false;
5399 		} else if (score >= edid_fixup) {
5400 			/* Displayport Link CTS Core 1.2 rev1.1 test 4.2.2.6
5401 			 * The corrupt flag needs to be set here otherwise, the
5402 			 * fix-up code here will correct the problem, the
5403 			 * checksum is correct and the test fails
5404 			 */
5405 			if (edid_corrupt)
5406 				*edid_corrupt = true;
5407 			debug("Fixing header, your hardware may be failing\n");
5408 			memcpy(raw_edid, edid_header, sizeof(edid_header));
5409 		} else {
5410 			if (edid_corrupt)
5411 				*edid_corrupt = true;
5412 			goto bad;
5413 		}
5414 	}
5415 
5416 	csum = drm_edid_block_checksum(raw_edid);
5417 	if (csum) {
5418 		if (print_bad_edid) {
5419 			debug("EDID checksum is invalid, remainder is %d\n",
5420 			      csum);
5421 		}
5422 
5423 		if (edid_corrupt)
5424 			*edid_corrupt = true;
5425 
5426 		/* allow CEA to slide through, switches mangle this */
5427 		if (raw_edid[0] != 0x02)
5428 			goto bad;
5429 	}
5430 
5431 	/* per-block-type checks */
5432 	switch (raw_edid[0]) {
5433 	case 0: /* base */
5434 		if (edid->version != 1) {
5435 			debug("EDID has major version %d, instead of 1\n",
5436 			      edid->version);
5437 			goto bad;
5438 		}
5439 
5440 		if (edid->revision > 4)
5441 			debug("minor > 4, assuming backward compatibility\n");
5442 		break;
5443 
5444 	default:
5445 		break;
5446 	}
5447 
5448 	return true;
5449 
5450 bad:
5451 	if (print_bad_edid) {
5452 		if (drm_edid_is_zero(raw_edid, EDID_SIZE)) {
5453 			debug("EDID block is all zeroes\n");
5454 		} else {
5455 			debug("Raw EDID:\n");
5456 			print_hex_dump("", DUMP_PREFIX_NONE, 16, 1,
5457 				       raw_edid, EDID_SIZE, false);
5458 		}
5459 	}
5460 	return false;
5461 }
5462 
5463 /**
5464  * drm_edid_is_valid - sanity check EDID data
5465  * @edid: EDID data
5466  *
5467  * Sanity-check an entire EDID record (including extensions)
5468  *
5469  * Return: True if the EDID data is valid, false otherwise.
5470  */
drm_edid_is_valid(struct edid * edid)5471 static bool drm_edid_is_valid(struct edid *edid)
5472 {
5473 	int i;
5474 	u8 *raw = (u8 *)edid;
5475 
5476 	if (!edid)
5477 		return false;
5478 
5479 	for (i = 0; i <= edid->extensions; i++)
5480 		if (!drm_edid_block_valid(raw + i * EDID_SIZE, i, true, NULL))
5481 			return false;
5482 
5483 	return true;
5484 }
5485 
5486 /**
5487  * drm_add_edid_modes - add modes from EDID data, if available
5488  * @data: data we're probing
5489  * @edid: EDID data
5490  *
5491  * Add the specified modes to the data's mode list.
5492  *
5493  * Return: The number of modes added or 0 if we couldn't find any.
5494  */
drm_add_edid_modes(struct hdmi_edid_data * data,u8 * raw_edid)5495 int drm_add_edid_modes(struct hdmi_edid_data *data, u8 *raw_edid)
5496 {
5497 	int num_modes = 0;
5498 	u32 quirks;
5499 	struct edid *edid = (struct edid *)raw_edid;
5500 
5501 	if (!edid) {
5502 		debug("no edid\n");
5503 		return 0;
5504 	}
5505 
5506 	if (!drm_edid_is_valid(edid)) {
5507 		debug("EDID invalid\n");
5508 		return 0;
5509 	}
5510 
5511 	if (!data->mode_buf) {
5512 		debug("mode buff is null\n");
5513 		return 0;
5514 	}
5515 
5516 	quirks = edid_get_quirks(edid);
5517 	/*
5518 	 * CEA-861-F adds ycbcr capability map block, for HDMI 2.0 sinks.
5519 	 * To avoid multiple parsing of same block, lets parse that map
5520 	 * from sink info, before parsing CEA modes.
5521 	 */
5522 	drm_add_display_info(data, edid);
5523 
5524 	/*
5525 	 * EDID spec says modes should be preferred in this order:
5526 	 * - preferred detailed mode
5527 	 * - other detailed modes from base block
5528 	 * - detailed modes from extension blocks
5529 	 * - CVT 3-byte code modes
5530 	 * - standard timing codes
5531 	 * - established timing codes
5532 	 * - modes inferred from GTF or CVT range information
5533 	 *
5534 	 * We get this pretty much right.
5535 	 *
5536 	 * XXX order for additional mode types in extension blocks?
5537 	 */
5538 	num_modes += add_detailed_modes(data, edid, quirks);
5539 	num_modes += add_cvt_modes(data, edid);
5540 	num_modes += add_standard_modes(data, edid);
5541 	num_modes += add_established_modes(data, edid);
5542 	num_modes += add_cea_modes(data, edid);
5543 	num_modes += add_alternate_cea_modes(data, edid);
5544 	num_modes += add_displayid_detailed_modes(data, edid);
5545 
5546 	if (edid->features & DRM_EDID_FEATURE_DEFAULT_GTF)
5547 		num_modes += add_inferred_modes(data, edid);
5548 
5549 	if (num_modes > 0)
5550 		data->preferred_mode = &data->mode_buf[0];
5551 
5552 	if (quirks & (EDID_QUIRK_PREFER_LARGE_60 | EDID_QUIRK_PREFER_LARGE_75))
5553 		edid_fixup_preferred(data, quirks);
5554 
5555 	if (quirks & EDID_QUIRK_FORCE_6BPC)
5556 		data->display_info.bpc = 6;
5557 
5558 	if (quirks & EDID_QUIRK_FORCE_8BPC)
5559 		data->display_info.bpc = 8;
5560 
5561 	if (quirks & EDID_QUIRK_FORCE_10BPC)
5562 		data->display_info.bpc = 10;
5563 
5564 	if (quirks & EDID_QUIRK_FORCE_12BPC)
5565 		data->display_info.bpc = 12;
5566 
5567 	return num_modes;
5568 }
5569 
drm_match_cea_mode(struct drm_display_mode * to_match)5570 u8 drm_match_cea_mode(struct drm_display_mode *to_match)
5571 {
5572 	u8 vic;
5573 
5574 	if (!to_match->clock) {
5575 		printf("can't find to match\n");
5576 		return 0;
5577 	}
5578 
5579 	for (vic = 1; vic < cea_num_vics(); vic = cea_next_vic(vic)) {
5580 		const struct drm_display_mode *cea_mode = cea_mode_for_vic(vic);
5581 		unsigned int clock1, clock2;
5582 
5583 		/* Check both 60Hz and 59.94Hz */
5584 		clock1 = cea_mode->clock;
5585 		clock2 = cea_mode_alternate_clock(cea_mode);
5586 		if ((KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock1) ||
5587 		     KHZ2PICOS(to_match->clock) == KHZ2PICOS(clock2)) &&
5588 		    drm_mode_equal_no_clocks_no_stereo(to_match, cea_mode))
5589 			return vic;
5590 	}
5591 
5592 	return 0;
5593 }
5594 
drm_get_cea_aspect_ratio(const u8 video_code)5595 static enum hdmi_picture_aspect drm_get_cea_aspect_ratio(const u8 video_code)
5596 {
5597 	const struct drm_display_mode *mode = cea_mode_for_vic(video_code);
5598 
5599 	if (mode)
5600 		return mode->picture_aspect_ratio;
5601 
5602 	return HDMI_PICTURE_ASPECT_NONE;
5603 }
5604 
5605 int
drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe * frame,struct drm_display_mode * mode,bool is_hdmi2_sink)5606 drm_hdmi_avi_infoframe_from_display_mode(struct hdmi_avi_infoframe *frame,
5607 					 struct drm_display_mode *mode,
5608 					 bool is_hdmi2_sink)
5609 {
5610 	int err;
5611 
5612 	if (!frame || !mode)
5613 		return -EINVAL;
5614 
5615 	err = hdmi_avi_infoframe_init(frame);
5616 	if (err < 0)
5617 		return err;
5618 
5619 	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
5620 		frame->pixel_repeat = 1;
5621 
5622 	frame->video_code = drm_match_cea_mode(mode);
5623 
5624 	/*
5625 	 * HDMI 1.4 VIC range: 1 <= VIC <= 64 (CEA-861-D) but
5626 	 * HDMI 2.0 VIC range: 1 <= VIC <= 107 (CEA-861-F). So we
5627 	 * have to make sure we dont break HDMI 1.4 sinks.
5628 	 */
5629 	if (!is_hdmi2_sink && frame->video_code > 64)
5630 		frame->video_code = 0;
5631 
5632 	/*
5633 	 * HDMI spec says if a mode is found in HDMI 1.4b 4K modes
5634 	 * we should send its VIC in vendor infoframes, else send the
5635 	 * VIC in AVI infoframes. Lets check if this mode is present in
5636 	 * HDMI 1.4b 4K modes
5637 	 */
5638 	if (frame->video_code) {
5639 		u8 vendor_if_vic = drm_match_hdmi_mode(mode);
5640 		bool is_s3d = mode->flags & DRM_MODE_FLAG_3D_MASK;
5641 
5642 		if (drm_valid_hdmi_vic(vendor_if_vic) && !is_s3d)
5643 			frame->video_code = 0;
5644 	}
5645 
5646 	frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
5647 
5648 	/*
5649 	 * Populate picture aspect ratio from either
5650 	 * user input (if specified) or from the CEA mode list.
5651 	 */
5652 	if (mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_4_3 ||
5653 	    mode->picture_aspect_ratio == HDMI_PICTURE_ASPECT_16_9)
5654 		frame->picture_aspect = mode->picture_aspect_ratio;
5655 	else if (frame->video_code > 0)
5656 		frame->picture_aspect = drm_get_cea_aspect_ratio(
5657 						frame->video_code);
5658 
5659 	if (frame->picture_aspect > HDMI_PICTURE_ASPECT_16_9)
5660 		frame->picture_aspect = HDMI_PICTURE_ASPECT_NONE;
5661 	frame->active_aspect = HDMI_ACTIVE_ASPECT_PICTURE;
5662 	frame->scan_mode = HDMI_SCAN_MODE_UNDERSCAN;
5663 
5664 	return 0;
5665 }
5666 
5667 /**
5668  * hdmi_vendor_infoframe_init() - initialize an HDMI vendor infoframe
5669  * @frame: HDMI vendor infoframe
5670  *
5671  * Returns 0 on success or a negative error code on failure.
5672  */
hdmi_vendor_infoframe_init(struct hdmi_vendor_infoframe * frame)5673 int hdmi_vendor_infoframe_init(struct hdmi_vendor_infoframe *frame)
5674 {
5675 	memset(frame, 0, sizeof(*frame));
5676 
5677 	frame->type = HDMI_INFOFRAME_TYPE_VENDOR;
5678 	frame->version = 1;
5679 
5680 	frame->oui = HDMI_IEEE_OUI;
5681 
5682 	/*
5683 	 * 0 is a valid value for s3d_struct, so we use a special "not set"
5684 	 * value
5685 	 */
5686 	frame->s3d_struct = HDMI_3D_STRUCTURE_INVALID;
5687 
5688 	return 0;
5689 }
5690 
5691 /**
5692  * drm_hdmi_avi_infoframe_quant_range() - fill the HDMI AVI infoframe
5693  *                                        quantization range information
5694  * @frame: HDMI AVI infoframe
5695  * @rgb_quant_range: RGB quantization range (Q)
5696  * @rgb_quant_range_selectable: Sink support selectable RGB quantization range (QS)
5697  */
5698 void
drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe * frame,struct drm_display_mode * mode,enum hdmi_quantization_range rgb_quant_range,bool rgb_quant_range_selectable)5699 drm_hdmi_avi_infoframe_quant_range(struct hdmi_avi_infoframe *frame,
5700 				   struct drm_display_mode *mode,
5701 				   enum hdmi_quantization_range rgb_quant_range,
5702 				   bool rgb_quant_range_selectable)
5703 {
5704 	/*
5705 	 * CEA-861:
5706 	 * "A Source shall not send a non-zero Q value that does not correspond
5707 	 *  to the default RGB Quantization Range for the transmitted Picture
5708 	 *  unless the Sink indicates support for the Q bit in a Video
5709 	 *  Capabilities Data Block."
5710 	 *
5711 	 * HDMI 2.0 recommends sending non-zero Q when it does match the
5712 	 * default RGB quantization range for the mode, even when QS=0.
5713 	 */
5714 	if (rgb_quant_range_selectable ||
5715 	    rgb_quant_range == drm_default_rgb_quant_range(mode))
5716 		frame->quantization_range = rgb_quant_range;
5717 	else
5718 		frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
5719 
5720 	/*
5721 	 * CEA-861-F:
5722 	 * "When transmitting any RGB colorimetry, the Source should set the
5723 	 *  YQ-field to match the RGB Quantization Range being transmitted
5724 	 *  (e.g., when Limited Range RGB, set YQ=0 or when Full Range RGB,
5725 	 *  set YQ=1) and the Sink shall ignore the YQ-field."
5726 	 */
5727 	if (rgb_quant_range == HDMI_QUANTIZATION_RANGE_LIMITED)
5728 		frame->ycc_quantization_range =
5729 			HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
5730 	else
5731 		frame->ycc_quantization_range =
5732 			HDMI_YCC_QUANTIZATION_RANGE_FULL;
5733 }
5734 
5735 static enum hdmi_3d_structure
s3d_structure_from_display_mode(const struct drm_display_mode * mode)5736 s3d_structure_from_display_mode(const struct drm_display_mode *mode)
5737 {
5738 	u32 layout = mode->flags & DRM_MODE_FLAG_3D_MASK;
5739 
5740 	switch (layout) {
5741 	case DRM_MODE_FLAG_3D_FRAME_PACKING:
5742 		return HDMI_3D_STRUCTURE_FRAME_PACKING;
5743 	case DRM_MODE_FLAG_3D_FIELD_ALTERNATIVE:
5744 		return HDMI_3D_STRUCTURE_FIELD_ALTERNATIVE;
5745 	case DRM_MODE_FLAG_3D_LINE_ALTERNATIVE:
5746 		return HDMI_3D_STRUCTURE_LINE_ALTERNATIVE;
5747 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_FULL:
5748 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_FULL;
5749 	case DRM_MODE_FLAG_3D_L_DEPTH:
5750 		return HDMI_3D_STRUCTURE_L_DEPTH;
5751 	case DRM_MODE_FLAG_3D_L_DEPTH_GFX_GFX_DEPTH:
5752 		return HDMI_3D_STRUCTURE_L_DEPTH_GFX_GFX_DEPTH;
5753 	case DRM_MODE_FLAG_3D_TOP_AND_BOTTOM:
5754 		return HDMI_3D_STRUCTURE_TOP_AND_BOTTOM;
5755 	case DRM_MODE_FLAG_3D_SIDE_BY_SIDE_HALF:
5756 		return HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF;
5757 	default:
5758 		return HDMI_3D_STRUCTURE_INVALID;
5759 	}
5760 }
5761 
5762 int
drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe * frame,struct drm_display_mode * mode)5763 drm_hdmi_vendor_infoframe_from_display_mode(struct hdmi_vendor_infoframe *frame,
5764 					    struct drm_display_mode *mode)
5765 {
5766 	int err;
5767 	u32 s3d_flags;
5768 	u8 vic;
5769 
5770 	if (!frame || !mode)
5771 		return -EINVAL;
5772 
5773 	vic = drm_match_hdmi_mode(mode);
5774 
5775 	s3d_flags = mode->flags & DRM_MODE_FLAG_3D_MASK;
5776 
5777 	if (!vic && !s3d_flags)
5778 		return -EINVAL;
5779 
5780 	if (vic && s3d_flags)
5781 		return -EINVAL;
5782 
5783 	err = hdmi_vendor_infoframe_init(frame);
5784 	if (err < 0)
5785 		return err;
5786 
5787 	if (vic)
5788 		frame->vic = vic;
5789 	else
5790 		frame->s3d_struct = s3d_structure_from_display_mode(mode);
5791 
5792 	return 0;
5793 }
5794 
hdmi_infoframe_checksum(u8 * ptr,size_t size)5795 static u8 hdmi_infoframe_checksum(u8 *ptr, size_t size)
5796 {
5797 	u8 csum = 0;
5798 	size_t i;
5799 
5800 	/* compute checksum */
5801 	for (i = 0; i < size; i++)
5802 		csum += ptr[i];
5803 
5804 	return 256 - csum;
5805 }
5806 
hdmi_infoframe_set_checksum(void * buffer,size_t size)5807 static void hdmi_infoframe_set_checksum(void *buffer, size_t size)
5808 {
5809 	u8 *ptr = buffer;
5810 
5811 	ptr[3] = hdmi_infoframe_checksum(buffer, size);
5812 }
5813 
5814 /**
5815  * hdmi_avi_infoframe_init() - initialize an HDMI AVI infoframe
5816  * @frame: HDMI AVI infoframe
5817  *
5818  * Returns 0 on success or a negative error code on failure.
5819  */
hdmi_avi_infoframe_init(struct hdmi_avi_infoframe * frame)5820 int hdmi_avi_infoframe_init(struct hdmi_avi_infoframe *frame)
5821 {
5822 	memset(frame, 0, sizeof(*frame));
5823 
5824 	frame->type = HDMI_INFOFRAME_TYPE_AVI;
5825 	frame->version = 2;
5826 	frame->length = HDMI_AVI_INFOFRAME_SIZE;
5827 
5828 	return 0;
5829 }
5830 EXPORT_SYMBOL(hdmi_avi_infoframe_init);
5831 
5832 /**
5833  * hdmi_avi_infoframe_pack() - write HDMI AVI infoframe to binary buffer
5834  * @frame: HDMI AVI infoframe
5835  * @buffer: destination buffer
5836  * @size: size of buffer
5837  *
5838  * Packs the information contained in the @frame structure into a binary
5839  * representation that can be written into the corresponding controller
5840  * registers. Also computes the checksum as required by section 5.3.5 of
5841  * the HDMI 1.4 specification.
5842  *
5843  * Returns the number of bytes packed into the binary buffer or a negative
5844  * error code on failure.
5845  */
hdmi_avi_infoframe_pack(struct hdmi_avi_infoframe * frame,void * buffer,size_t size)5846 ssize_t hdmi_avi_infoframe_pack(struct hdmi_avi_infoframe *frame, void *buffer,
5847 				size_t size)
5848 {
5849 	u8 *ptr = buffer;
5850 	size_t length;
5851 
5852 	length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
5853 
5854 	if (size < length)
5855 		return -ENOSPC;
5856 
5857 	memset(buffer, 0, size);
5858 
5859 	ptr[0] = frame->type;
5860 	ptr[1] = frame->version;
5861 	ptr[2] = frame->length;
5862 	ptr[3] = 0; /* checksum */
5863 
5864 	/* start infoframe payload */
5865 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
5866 
5867 	ptr[0] = ((frame->colorspace & 0x3) << 5) | (frame->scan_mode & 0x3);
5868 
5869 	/*
5870 	 * Data byte 1, bit 4 has to be set if we provide the active format
5871 	 * aspect ratio
5872 	 */
5873 	if (frame->active_aspect & 0xf)
5874 		ptr[0] |= BIT(4);
5875 
5876 	/* Bit 3 and 2 indicate if we transmit horizontal/vertical bar data */
5877 	if (frame->top_bar || frame->bottom_bar)
5878 		ptr[0] |= BIT(3);
5879 
5880 	if (frame->left_bar || frame->right_bar)
5881 		ptr[0] |= BIT(2);
5882 
5883 	ptr[1] = ((frame->colorimetry & 0x3) << 6) |
5884 		 ((frame->picture_aspect & 0x3) << 4) |
5885 		 (frame->active_aspect & 0xf);
5886 
5887 	ptr[2] = ((frame->extended_colorimetry & 0x7) << 4) |
5888 		 ((frame->quantization_range & 0x3) << 2) |
5889 		 (frame->nups & 0x3);
5890 
5891 	if (frame->itc)
5892 		ptr[2] |= BIT(7);
5893 
5894 	ptr[3] = frame->video_code & 0x7f;
5895 
5896 	ptr[4] = ((frame->ycc_quantization_range & 0x3) << 6) |
5897 		 ((frame->content_type & 0x3) << 4) |
5898 		 (frame->pixel_repeat & 0xf);
5899 
5900 	ptr[5] = frame->top_bar & 0xff;
5901 	ptr[6] = (frame->top_bar >> 8) & 0xff;
5902 	ptr[7] = frame->bottom_bar & 0xff;
5903 	ptr[8] = (frame->bottom_bar >> 8) & 0xff;
5904 	ptr[9] = frame->left_bar & 0xff;
5905 	ptr[10] = (frame->left_bar >> 8) & 0xff;
5906 	ptr[11] = frame->right_bar & 0xff;
5907 	ptr[12] = (frame->right_bar >> 8) & 0xff;
5908 
5909 	hdmi_infoframe_set_checksum(buffer, length);
5910 
5911 	return length;
5912 }
5913 EXPORT_SYMBOL(hdmi_avi_infoframe_pack);
5914 
hdmi_avi_infoframe_check_only(const struct hdmi_avi_infoframe * frame)5915 static int hdmi_avi_infoframe_check_only(const struct hdmi_avi_infoframe *frame)
5916 {
5917 	if (frame->type != HDMI_INFOFRAME_TYPE_AVI ||
5918 	    frame->version != 2 ||
5919 	    frame->length != HDMI_AVI_INFOFRAME_SIZE)
5920 		return -EINVAL;
5921 
5922 	if (frame->picture_aspect > HDMI_PICTURE_ASPECT_16_9)
5923 		return -EINVAL;
5924 
5925 	return 0;
5926 }
5927 
5928 /**
5929  * hdmi_avi_infoframe_check() - check a HDMI AVI infoframe
5930  * @frame: HDMI AVI infoframe
5931  *
5932  * Validates that the infoframe is consistent and updates derived fields
5933  * (eg. length) based on other fields.
5934  *
5935  * Returns 0 on success or a negative error code on failure.
5936  */
hdmi_avi_infoframe_check(struct hdmi_avi_infoframe * frame)5937 int hdmi_avi_infoframe_check(struct hdmi_avi_infoframe *frame)
5938 {
5939 	return hdmi_avi_infoframe_check_only(frame);
5940 }
5941 EXPORT_SYMBOL(hdmi_avi_infoframe_check);
5942 
5943 /**
5944  * hdmi_avi_infoframe_pack_only() - write HDMI AVI infoframe to binary buffer
5945  * @frame: HDMI AVI infoframe
5946  * @buffer: destination buffer
5947  * @size: size of buffer
5948  *
5949  * Packs the information contained in the @frame structure into a binary
5950  * representation that can be written into the corresponding controller
5951  * registers. Also computes the checksum as required by section 5.3.5 of
5952  * the HDMI 1.4 specification.
5953  *
5954  * Returns the number of bytes packed into the binary buffer or a negative
5955  * error code on failure.
5956  */
hdmi_avi_infoframe_pack_only(const struct hdmi_avi_infoframe * frame,void * buffer,size_t size)5957 ssize_t hdmi_avi_infoframe_pack_only(const struct hdmi_avi_infoframe *frame,
5958 				     void *buffer, size_t size)
5959 {
5960 	u8 *ptr = buffer;
5961 	size_t length;
5962 	int ret;
5963 
5964 	ret = hdmi_avi_infoframe_check_only(frame);
5965 	if (ret)
5966 		return ret;
5967 
5968 	length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
5969 
5970 	if (size < length)
5971 		return -ENOSPC;
5972 
5973 	memset(buffer, 0, size);
5974 
5975 	ptr[0] = frame->type;
5976 	ptr[1] = frame->version;
5977 	ptr[2] = frame->length;
5978 	ptr[3] = 0; /* checksum */
5979 
5980 	/* start infoframe payload */
5981 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
5982 
5983 	ptr[0] = ((frame->colorspace & 0x3) << 5) | (frame->scan_mode & 0x3);
5984 
5985 	/*
5986 	 * Data byte 1, bit 4 has to be set if we provide the active format
5987 	 * aspect ratio
5988 	 */
5989 	if (frame->active_aspect & 0xf)
5990 		ptr[0] |= BIT(4);
5991 
5992 	/* Bit 3 and 2 indicate if we transmit horizontal/vertical bar data */
5993 	if (frame->top_bar || frame->bottom_bar)
5994 		ptr[0] |= BIT(3);
5995 
5996 	if (frame->left_bar || frame->right_bar)
5997 		ptr[0] |= BIT(2);
5998 
5999 	ptr[1] = ((frame->colorimetry & 0x3) << 6) |
6000 		 ((frame->picture_aspect & 0x3) << 4) |
6001 		 (frame->active_aspect & 0xf);
6002 
6003 	ptr[2] = ((frame->extended_colorimetry & 0x7) << 4) |
6004 		 ((frame->quantization_range & 0x3) << 2) |
6005 		 (frame->nups & 0x3);
6006 
6007 	if (frame->itc)
6008 		ptr[2] |= BIT(7);
6009 
6010 	ptr[3] = frame->video_code & 0xff;
6011 
6012 	ptr[4] = ((frame->ycc_quantization_range & 0x3) << 6) |
6013 		 ((frame->content_type & 0x3) << 4) |
6014 		 (frame->pixel_repeat & 0xf);
6015 
6016 	ptr[5] = frame->top_bar & 0xff;
6017 	ptr[6] = (frame->top_bar >> 8) & 0xff;
6018 	ptr[7] = frame->bottom_bar & 0xff;
6019 	ptr[8] = (frame->bottom_bar >> 8) & 0xff;
6020 	ptr[9] = frame->left_bar & 0xff;
6021 	ptr[10] = (frame->left_bar >> 8) & 0xff;
6022 	ptr[11] = frame->right_bar & 0xff;
6023 	ptr[12] = (frame->right_bar >> 8) & 0xff;
6024 
6025 	hdmi_infoframe_set_checksum(buffer, length);
6026 
6027 	return length;
6028 }
6029 EXPORT_SYMBOL(hdmi_avi_infoframe_pack_only);
6030 
6031 /**
6032  * hdmi_spd_infoframe_init() - initialize an HDMI SPD infoframe
6033  * @frame: HDMI SPD infoframe
6034  * @vendor: vendor string
6035  * @product: product string
6036  *
6037  * Returns 0 on success or a negative error code on failure.
6038  */
hdmi_spd_infoframe_init(struct hdmi_spd_infoframe * frame,const char * vendor,const char * product)6039 int hdmi_spd_infoframe_init(struct hdmi_spd_infoframe *frame,
6040 			    const char *vendor, const char *product)
6041 {
6042 	memset(frame, 0, sizeof(*frame));
6043 
6044 	frame->type = HDMI_INFOFRAME_TYPE_SPD;
6045 	frame->version = 1;
6046 	frame->length = HDMI_SPD_INFOFRAME_SIZE;
6047 
6048 	strncpy(frame->vendor, vendor, sizeof(frame->vendor));
6049 	strncpy(frame->product, product, sizeof(frame->product));
6050 
6051 	return 0;
6052 }
6053 EXPORT_SYMBOL(hdmi_spd_infoframe_init);
6054 
6055 /**
6056  * hdmi_spd_infoframe_pack() - write HDMI SPD infoframe to binary buffer
6057  * @frame: HDMI SPD infoframe
6058  * @buffer: destination buffer
6059  * @size: size of buffer
6060  *
6061  * Packs the information contained in the @frame structure into a binary
6062  * representation that can be written into the corresponding controller
6063  * registers. Also computes the checksum as required by section 5.3.5 of
6064  * the HDMI 1.4 specification.
6065  *
6066  * Returns the number of bytes packed into the binary buffer or a negative
6067  * error code on failure.
6068  */
hdmi_spd_infoframe_pack(struct hdmi_spd_infoframe * frame,void * buffer,size_t size)6069 ssize_t hdmi_spd_infoframe_pack(struct hdmi_spd_infoframe *frame, void *buffer,
6070 				size_t size)
6071 {
6072 	u8 *ptr = buffer;
6073 	size_t length;
6074 
6075 	length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
6076 
6077 	if (size < length)
6078 		return -ENOSPC;
6079 
6080 	memset(buffer, 0, size);
6081 
6082 	ptr[0] = frame->type;
6083 	ptr[1] = frame->version;
6084 	ptr[2] = frame->length;
6085 	ptr[3] = 0; /* checksum */
6086 
6087 	/* start infoframe payload */
6088 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6089 
6090 	memcpy(ptr, frame->vendor, sizeof(frame->vendor));
6091 	memcpy(ptr + 8, frame->product, sizeof(frame->product));
6092 
6093 	ptr[24] = frame->sdi;
6094 
6095 	hdmi_infoframe_set_checksum(buffer, length);
6096 
6097 	return length;
6098 }
6099 EXPORT_SYMBOL(hdmi_spd_infoframe_pack);
6100 
6101 /**
6102  * hdmi_audio_infoframe_init() - initialize an HDMI audio infoframe
6103  * @frame: HDMI audio infoframe
6104  *
6105  * Returns 0 on success or a negative error code on failure.
6106  */
hdmi_audio_infoframe_init(struct hdmi_audio_infoframe * frame)6107 int hdmi_audio_infoframe_init(struct hdmi_audio_infoframe *frame)
6108 {
6109 	memset(frame, 0, sizeof(*frame));
6110 
6111 	frame->type = HDMI_INFOFRAME_TYPE_AUDIO;
6112 	frame->version = 1;
6113 	frame->length = HDMI_AUDIO_INFOFRAME_SIZE;
6114 
6115 	return 0;
6116 }
6117 
6118 /**
6119  * hdmi_audio_infoframe_pack() - write HDMI audio infoframe to binary buffer
6120  * @frame: HDMI audio infoframe
6121  * @buffer: destination buffer
6122  * @size: size of buffer
6123  *
6124  * Packs the information contained in the @frame structure into a binary
6125  * representation that can be written into the corresponding controller
6126  * registers. Also computes the checksum as required by section 5.3.5 of
6127  * the HDMI 1.4 specification.
6128  *
6129  * Returns the number of bytes packed into the binary buffer or a negative
6130  * error code on failure.
6131  */
hdmi_audio_infoframe_pack(struct hdmi_audio_infoframe * frame,void * buffer,size_t size)6132 ssize_t hdmi_audio_infoframe_pack(struct hdmi_audio_infoframe *frame,
6133 				  void *buffer, size_t size)
6134 {
6135 	unsigned char channels;
6136 	char *ptr = buffer;
6137 	size_t length;
6138 
6139 	length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
6140 
6141 	if (size < length)
6142 		return -ENOSPC;
6143 
6144 	memset(buffer, 0, size);
6145 
6146 	if (frame->channels >= 2)
6147 		channels = frame->channels - 1;
6148 	else
6149 		channels = 0;
6150 
6151 	ptr[0] = frame->type;
6152 	ptr[1] = frame->version;
6153 	ptr[2] = frame->length;
6154 	ptr[3] = 0; /* checksum */
6155 
6156 	/* start infoframe payload */
6157 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6158 
6159 	ptr[0] = ((frame->coding_type & 0xf) << 4) | (channels & 0x7);
6160 	ptr[1] = ((frame->sample_frequency & 0x7) << 2) |
6161 		 (frame->sample_size & 0x3);
6162 	ptr[2] = frame->coding_type_ext & 0x1f;
6163 	ptr[3] = frame->channel_allocation;
6164 	ptr[4] = (frame->level_shift_value & 0xf) << 3;
6165 
6166 	if (frame->downmix_inhibit)
6167 		ptr[4] |= BIT(7);
6168 
6169 	hdmi_infoframe_set_checksum(buffer, length);
6170 
6171 	return length;
6172 }
6173 
6174 /**
6175  * hdmi_vendor_infoframe_pack() - write a HDMI vendor infoframe to binary buffer
6176  * @frame: HDMI infoframe
6177  * @buffer: destination buffer
6178  * @size: size of buffer
6179  *
6180  * Packs the information contained in the @frame structure into a binary
6181  * representation that can be written into the corresponding controller
6182  * registers. Also computes the checksum as required by section 5.3.5 of
6183  * the HDMI 1.4 specification.
6184  *
6185  * Returns the number of bytes packed into the binary buffer or a negative
6186  * error code on failure.
6187  */
hdmi_vendor_infoframe_pack(struct hdmi_vendor_infoframe * frame,void * buffer,size_t size)6188 ssize_t hdmi_vendor_infoframe_pack(struct hdmi_vendor_infoframe *frame,
6189 				   void *buffer, size_t size)
6190 {
6191 	char *ptr = buffer;
6192 	size_t length;
6193 
6194 	/* empty info frame */
6195 	if (frame->vic == 0 && frame->s3d_struct == HDMI_3D_STRUCTURE_INVALID)
6196 		return -EINVAL;
6197 
6198 	/* only one of those can be supplied */
6199 	if (frame->vic != 0 && frame->s3d_struct != HDMI_3D_STRUCTURE_INVALID)
6200 		return -EINVAL;
6201 
6202 	/* for side by side (half) we also need to provide 3D_Ext_Data */
6203 	if (frame->s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF)
6204 		frame->length = 6;
6205 	else
6206 		frame->length = 5;
6207 
6208 	length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
6209 
6210 	if (size < length)
6211 		return -ENOSPC;
6212 
6213 	memset(buffer, 0, size);
6214 
6215 	ptr[0] = frame->type;
6216 	ptr[1] = frame->version;
6217 	ptr[2] = frame->length;
6218 	ptr[3] = 0; /* checksum */
6219 
6220 	/* HDMI OUI */
6221 	ptr[4] = 0x03;
6222 	ptr[5] = 0x0c;
6223 	ptr[6] = 0x00;
6224 
6225 	if (frame->vic) {
6226 		ptr[7] = 0x1 << 5;	/* video format */
6227 		ptr[8] = frame->vic;
6228 	} else {
6229 		ptr[7] = 0x2 << 5;	/* video format */
6230 		ptr[8] = (frame->s3d_struct & 0xf) << 4;
6231 		if (frame->s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF)
6232 			ptr[9] = (frame->s3d_ext_data & 0xf) << 4;
6233 	}
6234 
6235 	hdmi_infoframe_set_checksum(buffer, length);
6236 
6237 	return length;
6238 }
6239 
6240 /**
6241  * hdmi_drm_infoframe_init() - initialize an HDMI Dynaminc Range and
6242  * mastering infoframe
6243  * @frame: HDMI DRM infoframe
6244  *
6245  * Returns 0 on success or a negative error code on failure.
6246  */
hdmi_drm_infoframe_init(struct hdmi_drm_infoframe * frame)6247 int hdmi_drm_infoframe_init(struct hdmi_drm_infoframe *frame)
6248 {
6249 	memset(frame, 0, sizeof(*frame));
6250 
6251 	frame->type = HDMI_INFOFRAME_TYPE_DRM;
6252 	frame->version = 1;
6253 
6254 	return 0;
6255 }
6256 
6257 /**
6258  * hdmi_drm_infoframe_pack() - write HDMI DRM infoframe to binary buffer
6259  * @frame: HDMI DRM infoframe
6260  * @buffer: destination buffer
6261  * @size: size of buffer
6262  *
6263  * Packs the information contained in the @frame structure into a binary
6264  * representation that can be written into the corresponding controller
6265  * registers. Also computes the checksum as required by section 5.3.5 of
6266  * the HDMI 1.4 specification.
6267  *
6268  * Returns the number of bytes packed into the binary buffer or a negative
6269  * error code on failure.
6270  */
hdmi_drm_infoframe_pack(struct hdmi_drm_infoframe * frame,void * buffer,size_t size)6271 ssize_t hdmi_drm_infoframe_pack(struct hdmi_drm_infoframe *frame, void *buffer,
6272 				size_t size)
6273 {
6274 	u8 *ptr = buffer;
6275 	size_t length;
6276 
6277 	length = HDMI_INFOFRAME_HEADER_SIZE + frame->length;
6278 
6279 	if (size < length)
6280 		return -ENOSPC;
6281 
6282 	memset(buffer, 0, size);
6283 
6284 	ptr[0] = frame->type;
6285 	ptr[1] = frame->version;
6286 	ptr[2] = frame->length;
6287 	ptr[3] = 0; /* checksum */
6288 
6289 	/* start infoframe payload */
6290 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6291 
6292 	ptr[0] = frame->eotf;
6293 	ptr[1] = frame->metadata_type;
6294 
6295 	ptr[2] = frame->display_primaries_x[0] & 0xff;
6296 	ptr[3] = frame->display_primaries_x[0] >> 8;
6297 
6298 	ptr[4] = frame->display_primaries_x[1] & 0xff;
6299 	ptr[5] = frame->display_primaries_x[1] >> 8;
6300 
6301 	ptr[6] = frame->display_primaries_x[2] & 0xff;
6302 	ptr[7] = frame->display_primaries_x[2] >> 8;
6303 
6304 	ptr[9] = frame->display_primaries_y[0] & 0xff;
6305 	ptr[10] = frame->display_primaries_y[0] >> 8;
6306 
6307 	ptr[11] = frame->display_primaries_y[1] & 0xff;
6308 	ptr[12] = frame->display_primaries_y[1] >> 8;
6309 
6310 	ptr[13] = frame->display_primaries_y[2] & 0xff;
6311 	ptr[14] = frame->display_primaries_y[2] >> 8;
6312 
6313 	ptr[15] = frame->white_point_x & 0xff;
6314 	ptr[16] = frame->white_point_x >> 8;
6315 
6316 	ptr[17] = frame->white_point_y & 0xff;
6317 	ptr[18] = frame->white_point_y >> 8;
6318 
6319 	ptr[19] = frame->max_mastering_display_luminance & 0xff;
6320 	ptr[20] = frame->max_mastering_display_luminance >> 8;
6321 
6322 	ptr[21] = frame->min_mastering_display_luminance & 0xff;
6323 	ptr[22] = frame->min_mastering_display_luminance >> 8;
6324 
6325 	ptr[23] = frame->max_cll & 0xff;
6326 	ptr[24] = frame->max_cll >> 8;
6327 
6328 	ptr[25] = frame->max_fall & 0xff;
6329 	ptr[26] = frame->max_fall >> 8;
6330 
6331 	hdmi_infoframe_set_checksum(buffer, length);
6332 
6333 	return length;
6334 }
6335 
6336 /*
6337  * hdmi_vendor_any_infoframe_pack() - write a vendor infoframe to binary buffer
6338  */
6339 static ssize_t
hdmi_vendor_any_infoframe_pack(union hdmi_vendor_any_infoframe * frame,void * buffer,size_t size)6340 hdmi_vendor_any_infoframe_pack(union hdmi_vendor_any_infoframe *frame,
6341 			       void *buffer, size_t size)
6342 {
6343 	/* we only know about HDMI vendor infoframes */
6344 	if (frame->any.oui != HDMI_IEEE_OUI)
6345 		return -EINVAL;
6346 
6347 	return hdmi_vendor_infoframe_pack(&frame->hdmi, buffer, size);
6348 }
6349 
6350 /**
6351  * hdmi_infoframe_pack() - write a HDMI infoframe to binary buffer
6352  * @frame: HDMI infoframe
6353  * @buffer: destination buffer
6354  * @size: size of buffer
6355  *
6356  * Packs the information contained in the @frame structure into a binary
6357  * representation that can be written into the corresponding controller
6358  * registers. Also computes the checksum as required by section 5.3.5 of
6359  * the HDMI 1.4 specification.
6360  *
6361  * Returns the number of bytes packed into the binary buffer or a negative
6362  * error code on failure.
6363  */
6364 ssize_t
hdmi_infoframe_pack(union hdmi_infoframe * frame,void * buffer,size_t size)6365 hdmi_infoframe_pack(union hdmi_infoframe *frame, void *buffer, size_t size)
6366 {
6367 	ssize_t length;
6368 
6369 	switch (frame->any.type) {
6370 	case HDMI_INFOFRAME_TYPE_AVI:
6371 		length = hdmi_avi_infoframe_pack(&frame->avi, buffer, size);
6372 		break;
6373 	case HDMI_INFOFRAME_TYPE_DRM:
6374 		length = hdmi_drm_infoframe_pack(&frame->drm, buffer, size);
6375 		break;
6376 	case HDMI_INFOFRAME_TYPE_SPD:
6377 		length = hdmi_spd_infoframe_pack(&frame->spd, buffer, size);
6378 		break;
6379 	case HDMI_INFOFRAME_TYPE_AUDIO:
6380 		length = hdmi_audio_infoframe_pack(&frame->audio, buffer, size);
6381 		break;
6382 	case HDMI_INFOFRAME_TYPE_VENDOR:
6383 		length = hdmi_vendor_any_infoframe_pack(&frame->vendor,
6384 							buffer, size);
6385 		break;
6386 	default:
6387 		printf("Bad infoframe type %d\n", frame->any.type);
6388 		length = -EINVAL;
6389 	}
6390 
6391 	return length;
6392 }
6393 
6394 /**
6395  * hdmi_avi_infoframe_unpack() - unpack binary buffer to a HDMI AVI infoframe
6396  * @buffer: source buffer
6397  * @frame: HDMI AVI infoframe
6398  *
6399  * Unpacks the information contained in binary @buffer into a structured
6400  * @frame of the HDMI Auxiliary Video (AVI) information frame.
6401  * Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4
6402  * specification.
6403  *
6404  * Returns 0 on success or a negative error code on failure.
6405  */
hdmi_avi_infoframe_unpack(struct hdmi_avi_infoframe * frame,void * buffer)6406 static int hdmi_avi_infoframe_unpack(struct hdmi_avi_infoframe *frame,
6407 				     void *buffer)
6408 {
6409 	u8 *ptr = buffer;
6410 	int ret;
6411 
6412 	if (ptr[0] != HDMI_INFOFRAME_TYPE_AVI ||
6413 	    ptr[1] != 2 ||
6414 	    ptr[2] != HDMI_AVI_INFOFRAME_SIZE)
6415 		return -EINVAL;
6416 
6417 	if (hdmi_infoframe_checksum(buffer, HDMI_INFOFRAME_SIZE(AVI)) != 0)
6418 		return -EINVAL;
6419 
6420 	ret = hdmi_avi_infoframe_init(frame);
6421 	if (ret)
6422 		return ret;
6423 
6424 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6425 
6426 	frame->colorspace = (ptr[0] >> 5) & 0x3;
6427 	if (ptr[0] & 0x10)
6428 		frame->active_aspect = ptr[1] & 0xf;
6429 	if (ptr[0] & 0x8) {
6430 		frame->top_bar = (ptr[5] << 8) + ptr[6];
6431 		frame->bottom_bar = (ptr[7] << 8) + ptr[8];
6432 	}
6433 	if (ptr[0] & 0x4) {
6434 		frame->left_bar = (ptr[9] << 8) + ptr[10];
6435 		frame->right_bar = (ptr[11] << 8) + ptr[12];
6436 	}
6437 	frame->scan_mode = ptr[0] & 0x3;
6438 
6439 	frame->colorimetry = (ptr[1] >> 6) & 0x3;
6440 	frame->picture_aspect = (ptr[1] >> 4) & 0x3;
6441 	frame->active_aspect = ptr[1] & 0xf;
6442 
6443 	frame->itc = ptr[2] & 0x80 ? true : false;
6444 	frame->extended_colorimetry = (ptr[2] >> 4) & 0x7;
6445 	frame->quantization_range = (ptr[2] >> 2) & 0x3;
6446 	frame->nups = ptr[2] & 0x3;
6447 
6448 	frame->video_code = ptr[3] & 0x7f;
6449 	frame->ycc_quantization_range = (ptr[4] >> 6) & 0x3;
6450 	frame->content_type = (ptr[4] >> 4) & 0x3;
6451 
6452 	frame->pixel_repeat = ptr[4] & 0xf;
6453 
6454 	return 0;
6455 }
6456 
6457 /**
6458  * hdmi_spd_infoframe_unpack() - unpack binary buffer to a HDMI SPD infoframe
6459  * @buffer: source buffer
6460  * @frame: HDMI SPD infoframe
6461  *
6462  * Unpacks the information contained in binary @buffer into a structured
6463  * @frame of the HDMI Source Product Description (SPD) information frame.
6464  * Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4
6465  * specification.
6466  *
6467  * Returns 0 on success or a negative error code on failure.
6468  */
hdmi_spd_infoframe_unpack(struct hdmi_spd_infoframe * frame,void * buffer)6469 static int hdmi_spd_infoframe_unpack(struct hdmi_spd_infoframe *frame,
6470 				     void *buffer)
6471 {
6472 	char *ptr = buffer;
6473 	int ret;
6474 
6475 	if (ptr[0] != HDMI_INFOFRAME_TYPE_SPD ||
6476 	    ptr[1] != 1 ||
6477 	    ptr[2] != HDMI_SPD_INFOFRAME_SIZE) {
6478 		return -EINVAL;
6479 	}
6480 
6481 	if (hdmi_infoframe_checksum(buffer, HDMI_INFOFRAME_SIZE(SPD)) != 0)
6482 		return -EINVAL;
6483 
6484 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6485 
6486 	ret = hdmi_spd_infoframe_init(frame, ptr, ptr + 8);
6487 	if (ret)
6488 		return ret;
6489 
6490 	frame->sdi = ptr[24];
6491 
6492 	return 0;
6493 }
6494 
6495 /**
6496  * hdmi_audio_infoframe_unpack() - unpack binary buffer to a HDMI AUDIO infoframe
6497  * @buffer: source buffer
6498  * @frame: HDMI Audio infoframe
6499  *
6500  * Unpacks the information contained in binary @buffer into a structured
6501  * @frame of the HDMI Audio information frame.
6502  * Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4
6503  * specification.
6504  *
6505  * Returns 0 on success or a negative error code on failure.
6506  */
hdmi_audio_infoframe_unpack(struct hdmi_audio_infoframe * frame,void * buffer)6507 static int hdmi_audio_infoframe_unpack(struct hdmi_audio_infoframe *frame,
6508 				       void *buffer)
6509 {
6510 	u8 *ptr = buffer;
6511 	int ret;
6512 
6513 	if (ptr[0] != HDMI_INFOFRAME_TYPE_AUDIO ||
6514 	    ptr[1] != 1 ||
6515 	    ptr[2] != HDMI_AUDIO_INFOFRAME_SIZE) {
6516 		return -EINVAL;
6517 	}
6518 
6519 	if (hdmi_infoframe_checksum(buffer, HDMI_INFOFRAME_SIZE(AUDIO)) != 0)
6520 		return -EINVAL;
6521 
6522 	ret = hdmi_audio_infoframe_init(frame);
6523 	if (ret)
6524 		return ret;
6525 
6526 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6527 
6528 	frame->channels = ptr[0] & 0x7;
6529 	frame->coding_type = (ptr[0] >> 4) & 0xf;
6530 	frame->sample_size = ptr[1] & 0x3;
6531 	frame->sample_frequency = (ptr[1] >> 2) & 0x7;
6532 	frame->coding_type_ext = ptr[2] & 0x1f;
6533 	frame->channel_allocation = ptr[3];
6534 	frame->level_shift_value = (ptr[4] >> 3) & 0xf;
6535 	frame->downmix_inhibit = ptr[4] & 0x80 ? true : false;
6536 
6537 	return 0;
6538 }
6539 
6540 /**
6541  * hdmi_vendor_infoframe_unpack() - unpack binary buffer to a HDMI vendor infoframe
6542  * @buffer: source buffer
6543  * @frame: HDMI Vendor infoframe
6544  *
6545  * Unpacks the information contained in binary @buffer into a structured
6546  * @frame of the HDMI Vendor information frame.
6547  * Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4
6548  * specification.
6549  *
6550  * Returns 0 on success or a negative error code on failure.
6551  */
6552 static int
hdmi_vendor_any_infoframe_unpack(union hdmi_vendor_any_infoframe * frame,void * buffer)6553 hdmi_vendor_any_infoframe_unpack(union hdmi_vendor_any_infoframe *frame,
6554 				 void *buffer)
6555 {
6556 	u8 *ptr = buffer;
6557 	size_t length;
6558 	int ret;
6559 	u8 hdmi_video_format;
6560 	struct hdmi_vendor_infoframe *hvf = &frame->hdmi;
6561 
6562 	if (ptr[0] != HDMI_INFOFRAME_TYPE_VENDOR ||
6563 	    ptr[1] != 1 ||
6564 	    (ptr[2] != 4 && ptr[2] != 5 && ptr[2] != 6))
6565 		return -EINVAL;
6566 
6567 	length = ptr[2];
6568 
6569 	if (hdmi_infoframe_checksum(buffer,
6570 				    HDMI_INFOFRAME_HEADER_SIZE + length) != 0)
6571 		return -EINVAL;
6572 
6573 	ptr += HDMI_INFOFRAME_HEADER_SIZE;
6574 
6575 	/* HDMI OUI */
6576 	if (ptr[0] != 0x03 ||
6577 	    ptr[1] != 0x0c ||
6578 	    ptr[2] != 0x00)
6579 		return -EINVAL;
6580 
6581 	hdmi_video_format = ptr[3] >> 5;
6582 
6583 	if (hdmi_video_format > 0x2)
6584 		return -EINVAL;
6585 
6586 	ret = hdmi_vendor_infoframe_init(hvf);
6587 	if (ret)
6588 		return ret;
6589 
6590 	hvf->length = length;
6591 
6592 	if (hdmi_video_format == 0x2) {
6593 		if (length != 5 && length != 6)
6594 			return -EINVAL;
6595 		hvf->s3d_struct = ptr[4] >> 4;
6596 		if (hvf->s3d_struct >= HDMI_3D_STRUCTURE_SIDE_BY_SIDE_HALF) {
6597 			if (length != 6)
6598 				return -EINVAL;
6599 			hvf->s3d_ext_data = ptr[5] >> 4;
6600 		}
6601 	} else if (hdmi_video_format == 0x1) {
6602 		if (length != 5)
6603 			return -EINVAL;
6604 		hvf->vic = ptr[4];
6605 	} else {
6606 		if (length != 4)
6607 			return -EINVAL;
6608 	}
6609 
6610 	return 0;
6611 }
6612 
6613 /**
6614  * hdmi_infoframe_unpack() - unpack binary buffer to a HDMI infoframe
6615  * @buffer: source buffer
6616  * @frame: HDMI infoframe
6617  *
6618  * Unpacks the information contained in binary buffer @buffer into a structured
6619  * @frame of a HDMI infoframe.
6620  * Also verifies the checksum as required by section 5.3.5 of the HDMI 1.4
6621  * specification.
6622  *
6623  * Returns 0 on success or a negative error code on failure.
6624  */
hdmi_infoframe_unpack(union hdmi_infoframe * frame,void * buffer)6625 int hdmi_infoframe_unpack(union hdmi_infoframe *frame, void *buffer)
6626 {
6627 	int ret;
6628 	u8 *ptr = buffer;
6629 
6630 	switch (ptr[0]) {
6631 	case HDMI_INFOFRAME_TYPE_AVI:
6632 		ret = hdmi_avi_infoframe_unpack(&frame->avi, buffer);
6633 		break;
6634 	case HDMI_INFOFRAME_TYPE_SPD:
6635 		ret = hdmi_spd_infoframe_unpack(&frame->spd, buffer);
6636 		break;
6637 	case HDMI_INFOFRAME_TYPE_AUDIO:
6638 		ret = hdmi_audio_infoframe_unpack(&frame->audio, buffer);
6639 		break;
6640 	case HDMI_INFOFRAME_TYPE_VENDOR:
6641 		ret = hdmi_vendor_any_infoframe_unpack(&frame->vendor, buffer);
6642 		break;
6643 	default:
6644 		ret = -EINVAL;
6645 		break;
6646 	}
6647 
6648 	return ret;
6649 }
6650 
6651 /**
6652  * drm_mode_sort - sort mode list
6653  * @edid_data: modes structures to sort
6654  *
6655  * Sort @edid_data by favorability, moving good modes to the head of the list.
6656  */
drm_mode_sort(struct hdmi_edid_data * edid_data)6657 void drm_mode_sort(struct hdmi_edid_data *edid_data)
6658 {
6659 	struct drm_display_mode *a, *b;
6660 	struct drm_display_mode c;
6661 	int diff, i, j;
6662 
6663 	for (i = 0; i < (edid_data->modes - 1); i++) {
6664 		a = &edid_data->mode_buf[i];
6665 		for (j = i + 1; j < edid_data->modes; j++) {
6666 			b = &edid_data->mode_buf[j];
6667 			diff = ((b->type & DRM_MODE_TYPE_PREFERRED) != 0) -
6668 				((a->type & DRM_MODE_TYPE_PREFERRED) != 0);
6669 			if (diff) {
6670 				if (diff > 0) {
6671 					c = *a;
6672 					*a = *b;
6673 					*b = c;
6674 				}
6675 				continue;
6676 			}
6677 
6678 			diff = b->hdisplay * b->vdisplay
6679 				- a->hdisplay * a->vdisplay;
6680 			if (diff) {
6681 				if (diff > 0) {
6682 					c = *a;
6683 					*a = *b;
6684 					*b = c;
6685 				}
6686 				continue;
6687 			}
6688 
6689 			diff = b->vrefresh - a->vrefresh;
6690 			if (diff) {
6691 				if (diff > 0) {
6692 					c = *a;
6693 					*a = *b;
6694 					*b = c;
6695 				}
6696 				continue;
6697 			}
6698 
6699 			diff = b->clock - a->clock;
6700 			if (diff > 0) {
6701 				c = *a;
6702 				*a = *b;
6703 				*b = c;
6704 			}
6705 		}
6706 	}
6707 	edid_data->preferred_mode = &edid_data->mode_buf[0];
6708 }
6709 
6710 /**
6711  * drm_mode_prune_invalid - remove invalid modes from mode list
6712  * @edid_data: structure store mode list
6713  * Returns:
6714  * Number of valid modes.
6715  */
drm_mode_prune_invalid(struct hdmi_edid_data * edid_data)6716 int drm_mode_prune_invalid(struct hdmi_edid_data *edid_data)
6717 {
6718 	int i, j;
6719 	int num = edid_data->modes;
6720 	int len = sizeof(struct drm_display_mode);
6721 	struct drm_display_mode *mode_buf = edid_data->mode_buf;
6722 
6723 	for (i = 0; i < num; i++) {
6724 		if (mode_buf[i].invalid) {
6725 			/* If mode is invalid, delete it. */
6726 			for (j = i; j < num - 1; j++)
6727 				memcpy(&mode_buf[j], &mode_buf[j + 1], len);
6728 
6729 			num--;
6730 			i--;
6731 		}
6732 	}
6733 	/* Clear redundant modes of mode_buf. */
6734 	memset(&mode_buf[num], 0, len * (edid_data->modes - num));
6735 
6736 	edid_data->modes = num;
6737 	return num;
6738 }
6739 
6740 /**
6741  * drm_rk_filter_whitelist - mark modes out of white list from mode list
6742  * @edid_data: structure store mode list
6743  */
drm_rk_filter_whitelist(struct hdmi_edid_data * edid_data)6744 void drm_rk_filter_whitelist(struct hdmi_edid_data *edid_data)
6745 {
6746 	int i, j, white_len;
6747 
6748 	if (sizeof(resolution_white)) {
6749 		white_len = sizeof(resolution_white) /
6750 			sizeof(resolution_white[0]);
6751 		for (i = 0; i < edid_data->modes; i++) {
6752 			for (j = 0; j < white_len; j++) {
6753 				if (drm_mode_match(&resolution_white[j],
6754 						   &edid_data->mode_buf[i],
6755 						   DRM_MODE_MATCH_TIMINGS |
6756 						   DRM_MODE_MATCH_CLOCK |
6757 						   DRM_MODE_MATCH_FLAGS))
6758 					break;
6759 			}
6760 
6761 			if (j == white_len)
6762 				edid_data->mode_buf[i].invalid = true;
6763 		}
6764 	}
6765 }
6766 
drm_display_mode_convert(struct drm_display_mode * mode,struct base_drm_display_mode * base_mode)6767 static void drm_display_mode_convert(struct drm_display_mode *mode,
6768 				     struct base_drm_display_mode *base_mode)
6769 {
6770 	mode->clock = base_mode->clock;
6771 	mode->hdisplay = base_mode->hdisplay;
6772 	mode->hsync_start = base_mode->hsync_start;
6773 	mode->hsync_end = base_mode->hsync_end;
6774 	mode->htotal = base_mode->htotal;
6775 	mode->vdisplay = base_mode->vdisplay;
6776 	mode->vsync_start = base_mode->vsync_start;
6777 	mode->vsync_end = base_mode->vsync_end;
6778 	mode->vtotal = base_mode->vtotal;
6779 	mode->vrefresh = base_mode->vrefresh;
6780 	mode->vscan = base_mode->vscan;
6781 	mode->flags = base_mode->flags;
6782 	mode->picture_aspect_ratio = base_mode->picture_aspect_ratio;
6783 }
6784 
drm_rk_select_mode(struct hdmi_edid_data * edid_data,struct base_screen_info * screen_info)6785 void drm_rk_select_mode(struct hdmi_edid_data *edid_data,
6786 			struct base_screen_info *screen_info)
6787 {
6788 	int i;
6789 	struct drm_display_mode mode;
6790 
6791 	if (!screen_info) {
6792 		/* define init resolution here */
6793 	} else {
6794 		memset(&mode, 0, sizeof(struct drm_display_mode));
6795 
6796 		drm_display_mode_convert(&mode, &screen_info->mode);
6797 		for (i = 0; i < edid_data->modes; i++) {
6798 			if (drm_mode_match(&mode,
6799 					   &edid_data->mode_buf[i],
6800 					   DRM_MODE_MATCH_TIMINGS |
6801 					   DRM_MODE_MATCH_CLOCK |
6802 					   DRM_MODE_MATCH_FLAGS)) {
6803 				edid_data->preferred_mode =
6804 					&edid_data->mode_buf[i];
6805 
6806 				if (edid_data->mode_buf[i].picture_aspect_ratio)
6807 					break;
6808 			}
6809 		}
6810 	}
6811 }
6812 
6813 /**
6814  * drm_do_probe_ddc_edid() - get EDID information via I2C
6815  * @adap: ddc adapter
6816  * @buf: EDID data buffer to be filled
6817  * @block: 128 byte EDID block to start fetching from
6818  * @len: EDID data buffer length to fetch
6819  *
6820  * Try to fetch EDID information by calling I2C driver functions.
6821  *
6822  * Return: 0 on success or -1 on failure.
6823  */
6824 static int
drm_do_probe_ddc_edid(struct ddc_adapter * adap,u8 * buf,unsigned int block,size_t len)6825 drm_do_probe_ddc_edid(struct ddc_adapter *adap, u8 *buf, unsigned int block,
6826 		      size_t len)
6827 {
6828 	unsigned char start = block * HDMI_EDID_BLOCK_SIZE;
6829 	unsigned char segment = block >> 1;
6830 	unsigned char xfers = segment ? 3 : 2;
6831 	int ret, retries = 5;
6832 
6833 	do {
6834 		struct i2c_msg msgs[] = {
6835 			{
6836 				.addr	= DDC_SEGMENT_ADDR,
6837 				.flags	= 0,
6838 				.len	= 1,
6839 				.buf	= &segment,
6840 			}, {
6841 				.addr	= DDC_ADDR,
6842 				.flags	= 0,
6843 				.len	= 1,
6844 				.buf	= &start,
6845 			}, {
6846 				.addr	= DDC_ADDR,
6847 				.flags	= I2C_M_RD,
6848 				.len	= len,
6849 				.buf	= buf,
6850 			}
6851 		};
6852 
6853 		if (adap->ops) {
6854 			ret = adap->ops->xfer(adap->i2c_bus, &msgs[3 - xfers],
6855 					      xfers);
6856 			if (!ret)
6857 				ret = xfers;
6858 		} else {
6859 			ret = adap->ddc_xfer(adap, &msgs[3 - xfers], xfers);
6860 		}
6861 	} while (ret != xfers && --retries);
6862 
6863 	/* All msg transfer successfully. */
6864 	return ret == xfers ? 0 : -1;
6865 }
6866 
drm_do_get_edid(struct ddc_adapter * adap,u8 * edid)6867 int drm_do_get_edid(struct ddc_adapter *adap, u8 *edid)
6868 {
6869 	int i, j, block_num, block = 0;
6870 	bool edid_corrupt;
6871 #ifdef DEBUG
6872 	u8 *buff;
6873 #endif
6874 
6875 	/* base block fetch */
6876 	for (i = 0; i < 4; i++) {
6877 		if (drm_do_probe_ddc_edid(adap, edid, 0, HDMI_EDID_BLOCK_SIZE))
6878 			goto err;
6879 		if (drm_edid_block_valid(edid, 0, true,
6880 					 &edid_corrupt))
6881 			break;
6882 		if (i == 0 && drm_edid_is_zero(edid, HDMI_EDID_BLOCK_SIZE)) {
6883 			printf("edid base block is 0, get edid failed\n");
6884 			goto err;
6885 		}
6886 	}
6887 
6888 	if (i == 4)
6889 		goto err;
6890 
6891 	block++;
6892 	/* get the number of extensions */
6893 	block_num = edid[0x7e];
6894 
6895 	for (j = 1; j <= block_num; j++) {
6896 		for (i = 0; i < 4; i++) {
6897 			if (drm_do_probe_ddc_edid(adap, &edid[0x80 * j], j,
6898 						  HDMI_EDID_BLOCK_SIZE))
6899 				goto err;
6900 			if (drm_edid_block_valid(&edid[0x80 * j], j,
6901 						 true, NULL))
6902 				break;
6903 		}
6904 
6905 		if (i == 4)
6906 			goto err;
6907 		block++;
6908 	}
6909 
6910 #ifdef DEBUG
6911 	printf("RAW EDID:\n");
6912 	for (i = 0; i < block_num + 1; i++) {
6913 		buff = &edid[0x80 * i];
6914 		for (j = 0; j < HDMI_EDID_BLOCK_SIZE; j++) {
6915 			if (j % 16 == 0)
6916 				printf("\n");
6917 			printf("0x%02x, ", buff[j]);
6918 		}
6919 		printf("\n");
6920 	}
6921 #endif
6922 
6923 	return 0;
6924 
6925 err:
6926 	printf("can't get edid block:%d\n", block);
6927 	/* clear all read edid block, include invalid block */
6928 	memset(edid, 0, HDMI_EDID_BLOCK_SIZE * (block + 1));
6929 	return -EFAULT;
6930 }
6931 
hdmi_ddc_read(struct ddc_adapter * adap,u16 addr,u8 offset,void * buffer,size_t size)6932 static ssize_t hdmi_ddc_read(struct ddc_adapter *adap, u16 addr, u8 offset,
6933 			     void *buffer, size_t size)
6934 {
6935 	struct i2c_msg msgs[2] = {
6936 		{
6937 			.addr = addr,
6938 			.flags = 0,
6939 			.len = 1,
6940 			.buf = &offset,
6941 		}, {
6942 			.addr = addr,
6943 			.flags = I2C_M_RD,
6944 			.len = size,
6945 			.buf = buffer,
6946 		}
6947 	};
6948 
6949 	return adap->ddc_xfer(adap, msgs, ARRAY_SIZE(msgs));
6950 }
6951 
hdmi_ddc_write(struct ddc_adapter * adap,u16 addr,u8 offset,const void * buffer,size_t size)6952 static ssize_t hdmi_ddc_write(struct ddc_adapter *adap, u16 addr, u8 offset,
6953 			      const void *buffer, size_t size)
6954 {
6955 	struct i2c_msg msg = {
6956 		.addr = addr,
6957 		.flags = 0,
6958 		.len = 1 + size,
6959 		.buf = NULL,
6960 	};
6961 	void *data;
6962 	int err;
6963 
6964 	data = malloc(1 + size);
6965 	if (!data)
6966 		return -ENOMEM;
6967 
6968 	msg.buf = data;
6969 
6970 	memcpy(data, &offset, sizeof(offset));
6971 	memcpy(data + 1, buffer, size);
6972 
6973 	err = adap->ddc_xfer(adap, &msg, 1);
6974 
6975 	free(data);
6976 
6977 	return err;
6978 }
6979 
6980 /**
6981  * drm_scdc_readb - read a single byte from SCDC
6982  * @adap: ddc adapter
6983  * @offset: offset of register to read
6984  * @value: return location for the register value
6985  *
6986  * Reads a single byte from SCDC. This is a convenience wrapper around the
6987  * drm_scdc_read() function.
6988  *
6989  * Returns:
6990  * 0 on success or a negative error code on failure.
6991  */
drm_scdc_readb(struct ddc_adapter * adap,u8 offset,u8 * value)6992 u8 drm_scdc_readb(struct ddc_adapter *adap, u8 offset,
6993 		  u8 *value)
6994 {
6995 	return hdmi_ddc_read(adap, SCDC_I2C_SLAVE_ADDRESS, offset, value,
6996 			     sizeof(*value));
6997 }
6998 
6999 /**
7000  * drm_scdc_writeb - write a single byte to SCDC
7001  * @adap: ddc adapter
7002  * @offset: offset of register to read
7003  * @value: return location for the register value
7004  *
7005  * Writes a single byte to SCDC. This is a convenience wrapper around the
7006  * drm_scdc_write() function.
7007  *
7008  * Returns:
7009  * 0 on success or a negative error code on failure.
7010  */
drm_scdc_writeb(struct ddc_adapter * adap,u8 offset,u8 value)7011 u8 drm_scdc_writeb(struct ddc_adapter *adap, u8 offset,
7012 		   u8 value)
7013 {
7014 	return hdmi_ddc_write(adap, SCDC_I2C_SLAVE_ADDRESS, offset, &value,
7015 			      sizeof(value));
7016 }
7017 
7018