History log of /rk3399_ARM-atf/lib/cpus/aarch64/generic.S (Results 1 – 9 of 9)
Revision Date Author Comments
# 35b2bbf4 28-Jul-2025 Manish Pandey <manish.pandey2@arm.com>

Merge changes from topic "bk/pabandon_cleanup" into integration

* changes:
feat(cpus): add pabandon support to the Alto cpu
feat(psci): optimise clock init on a pabandon
feat(psci): check that

Merge changes from topic "bk/pabandon_cleanup" into integration

* changes:
feat(cpus): add pabandon support to the Alto cpu
feat(psci): optimise clock init on a pabandon
feat(psci): check that CPUs handled a pabandon
feat(psci): make pabandon support generic
refactor(psci): unify coherency exit between AArch64 and AArch32
refactor(psci): absorb psci_power_down_wfi() into common code
refactor(platforms): remove usage of psci_power_down_wfi
fix(cm): disable SPE/TRBE correctly

show more ...


# aadb4b56 12-Mar-2025 Boyan Karatotev <boyan.karatotev@arm.com>

refactor(psci): unify coherency exit between AArch64 and AArch32

The procedure is fairly simple: if we have hardware assisted coherency,
call into the cpu driver and let it do its thing. If we don't

refactor(psci): unify coherency exit between AArch64 and AArch32

The procedure is fairly simple: if we have hardware assisted coherency,
call into the cpu driver and let it do its thing. If we don't, then we
must turn data caches off, handle the confusion that causes with the
stack, and call into the cpu driver which will flush the caches that
need flushing.

On AArch32 the above happens in common code. On AArch64, however, the
turning off of the caches happens in the cpu driver. Since we're dealing
with the stack, we must exercise control over it and implement this in
assembly. But as the two implementations are nominally different (in the
ordering of operations), the part that is in assembly is quite large as
jumping back to C to handle the difference might involve the stack.

Presumably, the AArch difference was introduced in order to cater for a
possible implementation where turning off the caches requires an IMP DEF
sequence. Well, Arm no longer makes cores without hardware assisted
coherency, so this eventually is not possible.

So take this part out of the cpu driver and put it into common code,
just like in AArch32. With this, there is no longer a need call
prepare_cpu_pwr_dwn() in a different order either - we can delay it a
bit to happen after the stack management. So the two AArch-s flows
become identical. We can convert prepare_cpu_pwr_dwn() to C and leave
psci_do_pwrdown_cache_maintenance() only to exercise control over stack.

Change-Id: Ie4759ebe20bb74b60533c6a47dbc2b101875900f
Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>

show more ...


# a8a5d39d 24-Feb-2025 Manish V Badarkhe <manish.badarkhe@arm.com>

Merge changes from topic "bk/errata_speed" into integration

* changes:
refactor(cpus): declare runtime errata correctly
perf(cpus): make reset errata do fewer branches
perf(cpus): inline the i

Merge changes from topic "bk/errata_speed" into integration

* changes:
refactor(cpus): declare runtime errata correctly
perf(cpus): make reset errata do fewer branches
perf(cpus): inline the init_cpu_data_ptr function
perf(cpus): inline the reset function
perf(cpus): inline the cpu_get_rev_var call
perf(cpus): inline cpu_rev_var checks
refactor(cpus): register DSU errata with the errata framework's wrappers
refactor(cpus): convert checker functions to standard helpers
refactor(cpus): convert the Cortex-A65 to use the errata framework
fix(cpus): declare reset errata correctly

show more ...


# 89dba82d 22-Jan-2025 Boyan Karatotev <boyan.karatotev@arm.com>

perf(cpus): make reset errata do fewer branches

Errata application is painful for performance. For a start, it's done
when the core has just come out of reset, which means branch predictors
and cach

perf(cpus): make reset errata do fewer branches

Errata application is painful for performance. For a start, it's done
when the core has just come out of reset, which means branch predictors
and caches will be empty so a branch to a workaround function must be
fetched from memory and that round trip is very slow. Then it also runs
with the I-cache off, which means that the loop to iterate over the
workarounds must also be fetched from memory on each iteration.

We can remove both branches. First, we can simply apply every erratum
directly instead of defining a workaround function and jumping to it.
Currently, no errata that need to be applied at both reset and runtime,
with the same workaround function, exist. If the need arose in future,
this should be achievable with a reset + runtime wrapper combo.

Then, we can construct a function that applies each erratum linearly
instead of looping over the list. If this function is part of the reset
function, then the only "far" branches at reset will be for the checker
functions. Importantly, this mitigates the slowdown even when an erratum
is disabled.

The result is ~50% speedup on N1SDP and ~20% on AArch64 Juno on wakeup
from PSCI calls that end in powerdown. This is roughly back to the
baseline of v2.9, before the errata framework regressed on performance
(or a little better). It is important to note that there are other
slowdowns since then that remain unknown.

Change-Id: Ie4d5288a331b11fd648e5c4a0b652b74160b07b9
Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>

show more ...


# 0d020822 19-Nov-2024 Boyan Karatotev <boyan.karatotev@arm.com>

perf(cpus): inline the reset function

Similar to the cpu_rev_var and cpu_ger_rev_var functions, inline the
call_reset_handler handler. This way we skip the costly branch at no
extra cost as this is

perf(cpus): inline the reset function

Similar to the cpu_rev_var and cpu_ger_rev_var functions, inline the
call_reset_handler handler. This way we skip the costly branch at no
extra cost as this is the only place where this is called.

While we're at it, drop the options for CPU_NO_RESET_FUNC. The only cpus
that need that are virtual cpus which can spare the tiny bit of
performance lost. The rest are real cores which can save on the check
for zero.

Now is a good time to put the assert for a missing cpu in the
get_cpu_ops_ptr function so that it's a bit better encapsulated.

Change-Id: Ia7c3dcd13b75e5d7c8bafad4698994ea65f42406
Signed-off-by: Boyan Karatotev <boyan.karatotev@arm.com>

show more ...


# cc4f3838 27-Aug-2024 Manish V Badarkhe <manish.badarkhe@arm.com>

Merge changes from topic "clean-up-errata-compatibility" into integration

* changes:
refactor(cpus): remove cpu specific errata funcs
refactor(cpus): directly invoke errata reporter


# 3fb52e41 14-May-2024 Ryan Everett <ryan.everett@arm.com>

refactor(cpus): remove cpu specific errata funcs

Errata printing is done directly via generic_errata_report.
This commit removes the unused \_cpu\()_errata_report
functions for all cores, and remove

refactor(cpus): remove cpu specific errata funcs

Errata printing is done directly via generic_errata_report.
This commit removes the unused \_cpu\()_errata_report
functions for all cores, and removes errata_func from cpu_ops.

Change-Id: I04fefbde5f0ff63b1f1cd17c864557a14070d68c
Signed-off-by: Ryan Everett <ryan.everett@arm.com>

show more ...


# 478fc4f2 28-Sep-2020 André Przywara <andre.przywara@arm.com>

Merge "arm_fpga: Add support for unknown MPIDs" into integration


# 1994e562 20-Aug-2020 Javier Almansa Sobrino <javier.almansasobrino@arm.com>

arm_fpga: Add support for unknown MPIDs

This patch allows the system to fallback to a default CPU library
in case the MPID does not match with any of the supported ones.

This feature can be enabled

arm_fpga: Add support for unknown MPIDs

This patch allows the system to fallback to a default CPU library
in case the MPID does not match with any of the supported ones.

This feature can be enabled by setting SUPPORT_UNKNOWN_MPID build
option to 1 (enabled by default only on arm_fpga platform).

This feature can be very dangerous on a production image and
therefore it MUST be disabled for Release images.

Signed-off-by: Javier Almansa Sobrino <javier.almansasobrino@arm.com>
Change-Id: I0df7ef2b012d7d60a4fd5de44dea1fbbb46881ba

show more ...