1*53ee8cc1Swenshuai.xi /* Copyright (C) 1997, 1998, 1999, 2000, 2001, 2003, 2004, 2005, 2007 2*53ee8cc1Swenshuai.xi Free Software Foundation, Inc. 3*53ee8cc1Swenshuai.xi This file is part of the GNU C Library. 4*53ee8cc1Swenshuai.xi 5*53ee8cc1Swenshuai.xi The GNU C Library is free software; you can redistribute it and/or 6*53ee8cc1Swenshuai.xi modify it under the terms of the GNU Lesser General Public 7*53ee8cc1Swenshuai.xi License as published by the Free Software Foundation; either 8*53ee8cc1Swenshuai.xi version 2.1 of the License, or (at your option) any later version. 9*53ee8cc1Swenshuai.xi 10*53ee8cc1Swenshuai.xi The GNU C Library is distributed in the hope that it will be useful, 11*53ee8cc1Swenshuai.xi but WITHOUT ANY WARRANTY; without even the implied warranty of 12*53ee8cc1Swenshuai.xi MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 13*53ee8cc1Swenshuai.xi Lesser General Public License for more details. 14*53ee8cc1Swenshuai.xi 15*53ee8cc1Swenshuai.xi You should have received a copy of the GNU Lesser General Public 16*53ee8cc1Swenshuai.xi License along with the GNU C Library; if not, write to the Free 17*53ee8cc1Swenshuai.xi Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 18*53ee8cc1Swenshuai.xi 02111-1307 USA. */ 19*53ee8cc1Swenshuai.xi 20*53ee8cc1Swenshuai.xi /* 21*53ee8cc1Swenshuai.xi * ISO C99 Standard: 7.22 Type-generic math <tgmath.h> 22*53ee8cc1Swenshuai.xi */ 23*53ee8cc1Swenshuai.xi 24*53ee8cc1Swenshuai.xi #ifndef _TGMATH_H 25*53ee8cc1Swenshuai.xi #define _TGMATH_H 1 26*53ee8cc1Swenshuai.xi 27*53ee8cc1Swenshuai.xi /* Include the needed headers. */ 28*53ee8cc1Swenshuai.xi #include <math.h> 29*53ee8cc1Swenshuai.xi #include <complex.h> 30*53ee8cc1Swenshuai.xi 31*53ee8cc1Swenshuai.xi 32*53ee8cc1Swenshuai.xi /* Since `complex' is currently not really implemented in most C compilers 33*53ee8cc1Swenshuai.xi and if it is implemented, the implementations differ. This makes it 34*53ee8cc1Swenshuai.xi quite difficult to write a generic implementation of this header. We 35*53ee8cc1Swenshuai.xi do not try this for now and instead concentrate only on GNU CC. Once 36*53ee8cc1Swenshuai.xi we have more information support for other compilers might follow. */ 37*53ee8cc1Swenshuai.xi 38*53ee8cc1Swenshuai.xi #if __GNUC_PREREQ (2, 7) 39*53ee8cc1Swenshuai.xi 40*53ee8cc1Swenshuai.xi # ifdef __NO_LONG_DOUBLE_MATH 41*53ee8cc1Swenshuai.xi # define __tgml(fct) fct 42*53ee8cc1Swenshuai.xi # else 43*53ee8cc1Swenshuai.xi # define __tgml(fct) fct ## l 44*53ee8cc1Swenshuai.xi # endif 45*53ee8cc1Swenshuai.xi 46*53ee8cc1Swenshuai.xi /* This is ugly but unless gcc gets appropriate builtins we have to do 47*53ee8cc1Swenshuai.xi something like this. Don't ask how it works. */ 48*53ee8cc1Swenshuai.xi 49*53ee8cc1Swenshuai.xi /* 1 if 'type' is a floating type, 0 if 'type' is an integer type. 50*53ee8cc1Swenshuai.xi Allows for _Bool. Expands to an integer constant expression. */ 51*53ee8cc1Swenshuai.xi # define __floating_type(type) (((type) 0.25) && ((type) 0.25 - 1)) 52*53ee8cc1Swenshuai.xi 53*53ee8cc1Swenshuai.xi /* The tgmath real type for T, where E is 0 if T is an integer type and 54*53ee8cc1Swenshuai.xi 1 for a floating type. */ 55*53ee8cc1Swenshuai.xi # define __tgmath_real_type_sub(T, E) \ 56*53ee8cc1Swenshuai.xi __typeof__ (*(0 ? (__typeof__ (0 ? (double *) 0 : (void *) (E))) 0 \ 57*53ee8cc1Swenshuai.xi : (__typeof__ (0 ? (T *) 0 : (void *) (!(E)))) 0)) 58*53ee8cc1Swenshuai.xi 59*53ee8cc1Swenshuai.xi /* The tgmath real type of EXPR. */ 60*53ee8cc1Swenshuai.xi # define __tgmath_real_type(expr) \ 61*53ee8cc1Swenshuai.xi __tgmath_real_type_sub (__typeof__ ((__typeof__ (expr)) 0), \ 62*53ee8cc1Swenshuai.xi __floating_type (__typeof__ (expr))) 63*53ee8cc1Swenshuai.xi 64*53ee8cc1Swenshuai.xi 65*53ee8cc1Swenshuai.xi /* We have two kinds of generic macros: to support functions which are 66*53ee8cc1Swenshuai.xi only defined on real valued parameters and those which are defined 67*53ee8cc1Swenshuai.xi for complex functions as well. */ 68*53ee8cc1Swenshuai.xi # define __TGMATH_UNARY_REAL_ONLY(Val, Fct) \ 69*53ee8cc1Swenshuai.xi (__extension__ ((sizeof (Val) == sizeof (double) \ 70*53ee8cc1Swenshuai.xi || __builtin_classify_type (Val) != 8) \ 71*53ee8cc1Swenshuai.xi ? (__tgmath_real_type (Val)) Fct (Val) \ 72*53ee8cc1Swenshuai.xi : (sizeof (Val) == sizeof (float)) \ 73*53ee8cc1Swenshuai.xi ? (__tgmath_real_type (Val)) Fct##f (Val) \ 74*53ee8cc1Swenshuai.xi : (__tgmath_real_type (Val)) __tgml(Fct) (Val))) 75*53ee8cc1Swenshuai.xi 76*53ee8cc1Swenshuai.xi # define __TGMATH_UNARY_REAL_RET_ONLY(Val, RetType, Fct) \ 77*53ee8cc1Swenshuai.xi (__extension__ ((sizeof (Val) == sizeof (double) \ 78*53ee8cc1Swenshuai.xi || __builtin_classify_type (Val) != 8) \ 79*53ee8cc1Swenshuai.xi ? (RetType) Fct (Val) \ 80*53ee8cc1Swenshuai.xi : (sizeof (Val) == sizeof (float)) \ 81*53ee8cc1Swenshuai.xi ? (RetType) Fct##f (Val) \ 82*53ee8cc1Swenshuai.xi : (RetType) __tgml(Fct) (Val))) 83*53ee8cc1Swenshuai.xi 84*53ee8cc1Swenshuai.xi # define __TGMATH_BINARY_FIRST_REAL_ONLY(Val1, Val2, Fct) \ 85*53ee8cc1Swenshuai.xi (__extension__ ((sizeof (Val1) == sizeof (double) \ 86*53ee8cc1Swenshuai.xi || __builtin_classify_type (Val1) != 8) \ 87*53ee8cc1Swenshuai.xi ? (__tgmath_real_type (Val1)) Fct (Val1, Val2) \ 88*53ee8cc1Swenshuai.xi : (sizeof (Val1) == sizeof (float)) \ 89*53ee8cc1Swenshuai.xi ? (__tgmath_real_type (Val1)) Fct##f (Val1, Val2) \ 90*53ee8cc1Swenshuai.xi : (__tgmath_real_type (Val1)) __tgml(Fct) (Val1, Val2))) 91*53ee8cc1Swenshuai.xi 92*53ee8cc1Swenshuai.xi # define __TGMATH_BINARY_REAL_ONLY(Val1, Val2, Fct) \ 93*53ee8cc1Swenshuai.xi (__extension__ (((sizeof (Val1) > sizeof (double) \ 94*53ee8cc1Swenshuai.xi || sizeof (Val2) > sizeof (double)) \ 95*53ee8cc1Swenshuai.xi && __builtin_classify_type ((Val1) + (Val2)) == 8) \ 96*53ee8cc1Swenshuai.xi ? (__typeof ((__tgmath_real_type (Val1)) 0 \ 97*53ee8cc1Swenshuai.xi + (__tgmath_real_type (Val2)) 0)) \ 98*53ee8cc1Swenshuai.xi __tgml(Fct) (Val1, Val2) \ 99*53ee8cc1Swenshuai.xi : (sizeof (Val1) == sizeof (double) \ 100*53ee8cc1Swenshuai.xi || sizeof (Val2) == sizeof (double) \ 101*53ee8cc1Swenshuai.xi || __builtin_classify_type (Val1) != 8 \ 102*53ee8cc1Swenshuai.xi || __builtin_classify_type (Val2) != 8) \ 103*53ee8cc1Swenshuai.xi ? (__typeof ((__tgmath_real_type (Val1)) 0 \ 104*53ee8cc1Swenshuai.xi + (__tgmath_real_type (Val2)) 0)) \ 105*53ee8cc1Swenshuai.xi Fct (Val1, Val2) \ 106*53ee8cc1Swenshuai.xi : (__typeof ((__tgmath_real_type (Val1)) 0 \ 107*53ee8cc1Swenshuai.xi + (__tgmath_real_type (Val2)) 0)) \ 108*53ee8cc1Swenshuai.xi Fct##f (Val1, Val2))) 109*53ee8cc1Swenshuai.xi 110*53ee8cc1Swenshuai.xi # define __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY(Val1, Val2, Val3, Fct) \ 111*53ee8cc1Swenshuai.xi (__extension__ (((sizeof (Val1) > sizeof (double) \ 112*53ee8cc1Swenshuai.xi || sizeof (Val2) > sizeof (double)) \ 113*53ee8cc1Swenshuai.xi && __builtin_classify_type ((Val1) + (Val2)) == 8) \ 114*53ee8cc1Swenshuai.xi ? (__typeof ((__tgmath_real_type (Val1)) 0 \ 115*53ee8cc1Swenshuai.xi + (__tgmath_real_type (Val2)) 0)) \ 116*53ee8cc1Swenshuai.xi __tgml(Fct) (Val1, Val2, Val3) \ 117*53ee8cc1Swenshuai.xi : (sizeof (Val1) == sizeof (double) \ 118*53ee8cc1Swenshuai.xi || sizeof (Val2) == sizeof (double) \ 119*53ee8cc1Swenshuai.xi || __builtin_classify_type (Val1) != 8 \ 120*53ee8cc1Swenshuai.xi || __builtin_classify_type (Val2) != 8) \ 121*53ee8cc1Swenshuai.xi ? (__typeof ((__tgmath_real_type (Val1)) 0 \ 122*53ee8cc1Swenshuai.xi + (__tgmath_real_type (Val2)) 0)) \ 123*53ee8cc1Swenshuai.xi Fct (Val1, Val2, Val3) \ 124*53ee8cc1Swenshuai.xi : (__typeof ((__tgmath_real_type (Val1)) 0 \ 125*53ee8cc1Swenshuai.xi + (__tgmath_real_type (Val2)) 0)) \ 126*53ee8cc1Swenshuai.xi Fct##f (Val1, Val2, Val3))) 127*53ee8cc1Swenshuai.xi 128*53ee8cc1Swenshuai.xi # define __TGMATH_TERNARY_REAL_ONLY(Val1, Val2, Val3, Fct) \ 129*53ee8cc1Swenshuai.xi (__extension__ (((sizeof (Val1) > sizeof (double) \ 130*53ee8cc1Swenshuai.xi || sizeof (Val2) > sizeof (double) \ 131*53ee8cc1Swenshuai.xi || sizeof (Val3) > sizeof (double)) \ 132*53ee8cc1Swenshuai.xi && __builtin_classify_type ((Val1) + (Val2) + (Val3)) \ 133*53ee8cc1Swenshuai.xi == 8) \ 134*53ee8cc1Swenshuai.xi ? (__typeof ((__tgmath_real_type (Val1)) 0 \ 135*53ee8cc1Swenshuai.xi + (__tgmath_real_type (Val2)) 0 \ 136*53ee8cc1Swenshuai.xi + (__tgmath_real_type (Val3)) 0)) \ 137*53ee8cc1Swenshuai.xi __tgml(Fct) (Val1, Val2, Val3) \ 138*53ee8cc1Swenshuai.xi : (sizeof (Val1) == sizeof (double) \ 139*53ee8cc1Swenshuai.xi || sizeof (Val2) == sizeof (double) \ 140*53ee8cc1Swenshuai.xi || sizeof (Val3) == sizeof (double) \ 141*53ee8cc1Swenshuai.xi || __builtin_classify_type (Val1) != 8 \ 142*53ee8cc1Swenshuai.xi || __builtin_classify_type (Val2) != 8 \ 143*53ee8cc1Swenshuai.xi || __builtin_classify_type (Val3) != 8) \ 144*53ee8cc1Swenshuai.xi ? (__typeof ((__tgmath_real_type (Val1)) 0 \ 145*53ee8cc1Swenshuai.xi + (__tgmath_real_type (Val2)) 0 \ 146*53ee8cc1Swenshuai.xi + (__tgmath_real_type (Val3)) 0)) \ 147*53ee8cc1Swenshuai.xi Fct (Val1, Val2, Val3) \ 148*53ee8cc1Swenshuai.xi : (__typeof ((__tgmath_real_type (Val1)) 0 \ 149*53ee8cc1Swenshuai.xi + (__tgmath_real_type (Val2)) 0 \ 150*53ee8cc1Swenshuai.xi + (__tgmath_real_type (Val3)) 0)) \ 151*53ee8cc1Swenshuai.xi Fct##f (Val1, Val2, Val3))) 152*53ee8cc1Swenshuai.xi 153*53ee8cc1Swenshuai.xi /* XXX This definition has to be changed as soon as the compiler understands 154*53ee8cc1Swenshuai.xi the imaginary keyword. */ 155*53ee8cc1Swenshuai.xi # define __TGMATH_UNARY_REAL_IMAG(Val, Fct, Cfct) \ 156*53ee8cc1Swenshuai.xi (__extension__ ((sizeof (__real__ (Val)) == sizeof (double) \ 157*53ee8cc1Swenshuai.xi || __builtin_classify_type (__real__ (Val)) != 8) \ 158*53ee8cc1Swenshuai.xi ? ((sizeof (__real__ (Val)) == sizeof (Val)) \ 159*53ee8cc1Swenshuai.xi ? (__tgmath_real_type (Val)) Fct (Val) \ 160*53ee8cc1Swenshuai.xi : (__tgmath_real_type (Val)) Cfct (Val)) \ 161*53ee8cc1Swenshuai.xi : (sizeof (__real__ (Val)) == sizeof (float)) \ 162*53ee8cc1Swenshuai.xi ? ((sizeof (__real__ (Val)) == sizeof (Val)) \ 163*53ee8cc1Swenshuai.xi ? (__tgmath_real_type (Val)) Fct##f (Val) \ 164*53ee8cc1Swenshuai.xi : (__tgmath_real_type (Val)) Cfct##f (Val)) \ 165*53ee8cc1Swenshuai.xi : ((sizeof (__real__ (Val)) == sizeof (Val)) \ 166*53ee8cc1Swenshuai.xi ? (__tgmath_real_type (Val)) __tgml(Fct) (Val) \ 167*53ee8cc1Swenshuai.xi : (__tgmath_real_type (Val)) __tgml(Cfct) (Val)))) 168*53ee8cc1Swenshuai.xi 169*53ee8cc1Swenshuai.xi # define __TGMATH_UNARY_IMAG(Val, Cfct) \ 170*53ee8cc1Swenshuai.xi (__extension__ ((sizeof (__real__ (Val)) == sizeof (double) \ 171*53ee8cc1Swenshuai.xi || __builtin_classify_type (__real__ (Val)) != 8) \ 172*53ee8cc1Swenshuai.xi ? (__typeof__ ((__tgmath_real_type (Val)) 0 \ 173*53ee8cc1Swenshuai.xi + _Complex_I)) Cfct (Val) \ 174*53ee8cc1Swenshuai.xi : (sizeof (__real__ (Val)) == sizeof (float)) \ 175*53ee8cc1Swenshuai.xi ? (__typeof__ ((__tgmath_real_type (Val)) 0 \ 176*53ee8cc1Swenshuai.xi + _Complex_I)) Cfct##f (Val) \ 177*53ee8cc1Swenshuai.xi : (__typeof__ ((__tgmath_real_type (Val)) 0 \ 178*53ee8cc1Swenshuai.xi + _Complex_I)) __tgml(Cfct) (Val))) 179*53ee8cc1Swenshuai.xi 180*53ee8cc1Swenshuai.xi /* XXX This definition has to be changed as soon as the compiler understands 181*53ee8cc1Swenshuai.xi the imaginary keyword. */ 182*53ee8cc1Swenshuai.xi # define __TGMATH_UNARY_REAL_IMAG_RET_REAL(Val, Fct, Cfct) \ 183*53ee8cc1Swenshuai.xi (__extension__ ((sizeof (__real__ (Val)) == sizeof (double) \ 184*53ee8cc1Swenshuai.xi || __builtin_classify_type (__real__ (Val)) != 8) \ 185*53ee8cc1Swenshuai.xi ? ((sizeof (__real__ (Val)) == sizeof (Val)) \ 186*53ee8cc1Swenshuai.xi ? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\ 187*53ee8cc1Swenshuai.xi Fct (Val) \ 188*53ee8cc1Swenshuai.xi : (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\ 189*53ee8cc1Swenshuai.xi Cfct (Val)) \ 190*53ee8cc1Swenshuai.xi : (sizeof (__real__ (Val)) == sizeof (float)) \ 191*53ee8cc1Swenshuai.xi ? ((sizeof (__real__ (Val)) == sizeof (Val)) \ 192*53ee8cc1Swenshuai.xi ? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\ 193*53ee8cc1Swenshuai.xi Fct##f (Val) \ 194*53ee8cc1Swenshuai.xi : (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\ 195*53ee8cc1Swenshuai.xi Cfct##f (Val)) \ 196*53ee8cc1Swenshuai.xi : ((sizeof (__real__ (Val)) == sizeof (Val)) \ 197*53ee8cc1Swenshuai.xi ? (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\ 198*53ee8cc1Swenshuai.xi __tgml(Fct) (Val) \ 199*53ee8cc1Swenshuai.xi : (__typeof__ (__real__ (__tgmath_real_type (Val)) 0))\ 200*53ee8cc1Swenshuai.xi __tgml(Cfct) (Val)))) 201*53ee8cc1Swenshuai.xi 202*53ee8cc1Swenshuai.xi /* XXX This definition has to be changed as soon as the compiler understands 203*53ee8cc1Swenshuai.xi the imaginary keyword. */ 204*53ee8cc1Swenshuai.xi # define __TGMATH_BINARY_REAL_IMAG(Val1, Val2, Fct, Cfct) \ 205*53ee8cc1Swenshuai.xi (__extension__ (((sizeof (__real__ (Val1)) > sizeof (double) \ 206*53ee8cc1Swenshuai.xi || sizeof (__real__ (Val2)) > sizeof (double)) \ 207*53ee8cc1Swenshuai.xi && __builtin_classify_type (__real__ (Val1) \ 208*53ee8cc1Swenshuai.xi + __real__ (Val2)) == 8) \ 209*53ee8cc1Swenshuai.xi ? ((sizeof (__real__ (Val1)) == sizeof (Val1) \ 210*53ee8cc1Swenshuai.xi && sizeof (__real__ (Val2)) == sizeof (Val2)) \ 211*53ee8cc1Swenshuai.xi ? (__typeof ((__tgmath_real_type (Val1)) 0 \ 212*53ee8cc1Swenshuai.xi + (__tgmath_real_type (Val2)) 0)) \ 213*53ee8cc1Swenshuai.xi __tgml(Fct) (Val1, Val2) \ 214*53ee8cc1Swenshuai.xi : (__typeof ((__tgmath_real_type (Val1)) 0 \ 215*53ee8cc1Swenshuai.xi + (__tgmath_real_type (Val2)) 0)) \ 216*53ee8cc1Swenshuai.xi __tgml(Cfct) (Val1, Val2)) \ 217*53ee8cc1Swenshuai.xi : (sizeof (__real__ (Val1)) == sizeof (double) \ 218*53ee8cc1Swenshuai.xi || sizeof (__real__ (Val2)) == sizeof (double) \ 219*53ee8cc1Swenshuai.xi || __builtin_classify_type (__real__ (Val1)) != 8 \ 220*53ee8cc1Swenshuai.xi || __builtin_classify_type (__real__ (Val2)) != 8) \ 221*53ee8cc1Swenshuai.xi ? ((sizeof (__real__ (Val1)) == sizeof (Val1) \ 222*53ee8cc1Swenshuai.xi && sizeof (__real__ (Val2)) == sizeof (Val2)) \ 223*53ee8cc1Swenshuai.xi ? (__typeof ((__tgmath_real_type (Val1)) 0 \ 224*53ee8cc1Swenshuai.xi + (__tgmath_real_type (Val2)) 0)) \ 225*53ee8cc1Swenshuai.xi Fct (Val1, Val2) \ 226*53ee8cc1Swenshuai.xi : (__typeof ((__tgmath_real_type (Val1)) 0 \ 227*53ee8cc1Swenshuai.xi + (__tgmath_real_type (Val2)) 0)) \ 228*53ee8cc1Swenshuai.xi Cfct (Val1, Val2)) \ 229*53ee8cc1Swenshuai.xi : ((sizeof (__real__ (Val1)) == sizeof (Val1) \ 230*53ee8cc1Swenshuai.xi && sizeof (__real__ (Val2)) == sizeof (Val2)) \ 231*53ee8cc1Swenshuai.xi ? (__typeof ((__tgmath_real_type (Val1)) 0 \ 232*53ee8cc1Swenshuai.xi + (__tgmath_real_type (Val2)) 0)) \ 233*53ee8cc1Swenshuai.xi Fct##f (Val1, Val2) \ 234*53ee8cc1Swenshuai.xi : (__typeof ((__tgmath_real_type (Val1)) 0 \ 235*53ee8cc1Swenshuai.xi + (__tgmath_real_type (Val2)) 0)) \ 236*53ee8cc1Swenshuai.xi Cfct##f (Val1, Val2)))) 237*53ee8cc1Swenshuai.xi #else 238*53ee8cc1Swenshuai.xi # error "Unsupported compiler; you cannot use <tgmath.h>" 239*53ee8cc1Swenshuai.xi #endif 240*53ee8cc1Swenshuai.xi 241*53ee8cc1Swenshuai.xi 242*53ee8cc1Swenshuai.xi /* Unary functions defined for real and complex values. */ 243*53ee8cc1Swenshuai.xi 244*53ee8cc1Swenshuai.xi 245*53ee8cc1Swenshuai.xi /* Trigonometric functions. */ 246*53ee8cc1Swenshuai.xi 247*53ee8cc1Swenshuai.xi /* Arc cosine of X. */ 248*53ee8cc1Swenshuai.xi #define acos(Val) __TGMATH_UNARY_REAL_IMAG (Val, acos, cacos) 249*53ee8cc1Swenshuai.xi /* Arc sine of X. */ 250*53ee8cc1Swenshuai.xi #define asin(Val) __TGMATH_UNARY_REAL_IMAG (Val, asin, casin) 251*53ee8cc1Swenshuai.xi /* Arc tangent of X. */ 252*53ee8cc1Swenshuai.xi #define atan(Val) __TGMATH_UNARY_REAL_IMAG (Val, atan, catan) 253*53ee8cc1Swenshuai.xi /* Arc tangent of Y/X. */ 254*53ee8cc1Swenshuai.xi #define atan2(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, atan2) 255*53ee8cc1Swenshuai.xi 256*53ee8cc1Swenshuai.xi /* Cosine of X. */ 257*53ee8cc1Swenshuai.xi #define cos(Val) __TGMATH_UNARY_REAL_IMAG (Val, cos, ccos) 258*53ee8cc1Swenshuai.xi /* Sine of X. */ 259*53ee8cc1Swenshuai.xi #define sin(Val) __TGMATH_UNARY_REAL_IMAG (Val, sin, csin) 260*53ee8cc1Swenshuai.xi /* Tangent of X. */ 261*53ee8cc1Swenshuai.xi #define tan(Val) __TGMATH_UNARY_REAL_IMAG (Val, tan, ctan) 262*53ee8cc1Swenshuai.xi 263*53ee8cc1Swenshuai.xi 264*53ee8cc1Swenshuai.xi /* Hyperbolic functions. */ 265*53ee8cc1Swenshuai.xi 266*53ee8cc1Swenshuai.xi /* Hyperbolic arc cosine of X. */ 267*53ee8cc1Swenshuai.xi #define acosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, acosh, cacosh) 268*53ee8cc1Swenshuai.xi /* Hyperbolic arc sine of X. */ 269*53ee8cc1Swenshuai.xi #define asinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, asinh, casinh) 270*53ee8cc1Swenshuai.xi /* Hyperbolic arc tangent of X. */ 271*53ee8cc1Swenshuai.xi #define atanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, atanh, catanh) 272*53ee8cc1Swenshuai.xi 273*53ee8cc1Swenshuai.xi /* Hyperbolic cosine of X. */ 274*53ee8cc1Swenshuai.xi #define cosh(Val) __TGMATH_UNARY_REAL_IMAG (Val, cosh, ccosh) 275*53ee8cc1Swenshuai.xi /* Hyperbolic sine of X. */ 276*53ee8cc1Swenshuai.xi #define sinh(Val) __TGMATH_UNARY_REAL_IMAG (Val, sinh, csinh) 277*53ee8cc1Swenshuai.xi /* Hyperbolic tangent of X. */ 278*53ee8cc1Swenshuai.xi #define tanh(Val) __TGMATH_UNARY_REAL_IMAG (Val, tanh, ctanh) 279*53ee8cc1Swenshuai.xi 280*53ee8cc1Swenshuai.xi 281*53ee8cc1Swenshuai.xi /* Exponential and logarithmic functions. */ 282*53ee8cc1Swenshuai.xi 283*53ee8cc1Swenshuai.xi /* Exponential function of X. */ 284*53ee8cc1Swenshuai.xi #define exp(Val) __TGMATH_UNARY_REAL_IMAG (Val, exp, cexp) 285*53ee8cc1Swenshuai.xi 286*53ee8cc1Swenshuai.xi /* Break VALUE into a normalized fraction and an integral power of 2. */ 287*53ee8cc1Swenshuai.xi #define frexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, frexp) 288*53ee8cc1Swenshuai.xi 289*53ee8cc1Swenshuai.xi /* X times (two to the EXP power). */ 290*53ee8cc1Swenshuai.xi #define ldexp(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, ldexp) 291*53ee8cc1Swenshuai.xi 292*53ee8cc1Swenshuai.xi /* Natural logarithm of X. */ 293*53ee8cc1Swenshuai.xi #define log(Val) __TGMATH_UNARY_REAL_IMAG (Val, log, clog) 294*53ee8cc1Swenshuai.xi 295*53ee8cc1Swenshuai.xi /* Base-ten logarithm of X. */ 296*53ee8cc1Swenshuai.xi #ifdef __USE_GNU 297*53ee8cc1Swenshuai.xi # define log10(Val) __TGMATH_UNARY_REAL_IMAG (Val, log10, __clog10) 298*53ee8cc1Swenshuai.xi #else 299*53ee8cc1Swenshuai.xi # define log10(Val) __TGMATH_UNARY_REAL_ONLY (Val, log10) 300*53ee8cc1Swenshuai.xi #endif 301*53ee8cc1Swenshuai.xi 302*53ee8cc1Swenshuai.xi /* Return exp(X) - 1. */ 303*53ee8cc1Swenshuai.xi #define expm1(Val) __TGMATH_UNARY_REAL_ONLY (Val, expm1) 304*53ee8cc1Swenshuai.xi 305*53ee8cc1Swenshuai.xi /* Return log(1 + X). */ 306*53ee8cc1Swenshuai.xi #define log1p(Val) __TGMATH_UNARY_REAL_ONLY (Val, log1p) 307*53ee8cc1Swenshuai.xi 308*53ee8cc1Swenshuai.xi /* Return the base 2 signed integral exponent of X. */ 309*53ee8cc1Swenshuai.xi #define logb(Val) __TGMATH_UNARY_REAL_ONLY (Val, logb) 310*53ee8cc1Swenshuai.xi 311*53ee8cc1Swenshuai.xi /* Compute base-2 exponential of X. */ 312*53ee8cc1Swenshuai.xi #define exp2(Val) __TGMATH_UNARY_REAL_ONLY (Val, exp2) 313*53ee8cc1Swenshuai.xi 314*53ee8cc1Swenshuai.xi /* Compute base-2 logarithm of X. */ 315*53ee8cc1Swenshuai.xi #define log2(Val) __TGMATH_UNARY_REAL_ONLY (Val, log2) 316*53ee8cc1Swenshuai.xi 317*53ee8cc1Swenshuai.xi 318*53ee8cc1Swenshuai.xi /* Power functions. */ 319*53ee8cc1Swenshuai.xi 320*53ee8cc1Swenshuai.xi /* Return X to the Y power. */ 321*53ee8cc1Swenshuai.xi #define pow(Val1, Val2) __TGMATH_BINARY_REAL_IMAG (Val1, Val2, pow, cpow) 322*53ee8cc1Swenshuai.xi 323*53ee8cc1Swenshuai.xi /* Return the square root of X. */ 324*53ee8cc1Swenshuai.xi #define sqrt(Val) __TGMATH_UNARY_REAL_IMAG (Val, sqrt, csqrt) 325*53ee8cc1Swenshuai.xi 326*53ee8cc1Swenshuai.xi /* Return `sqrt(X*X + Y*Y)'. */ 327*53ee8cc1Swenshuai.xi #define hypot(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, hypot) 328*53ee8cc1Swenshuai.xi 329*53ee8cc1Swenshuai.xi /* Return the cube root of X. */ 330*53ee8cc1Swenshuai.xi #define cbrt(Val) __TGMATH_UNARY_REAL_ONLY (Val, cbrt) 331*53ee8cc1Swenshuai.xi 332*53ee8cc1Swenshuai.xi 333*53ee8cc1Swenshuai.xi /* Nearest integer, absolute value, and remainder functions. */ 334*53ee8cc1Swenshuai.xi 335*53ee8cc1Swenshuai.xi /* Smallest integral value not less than X. */ 336*53ee8cc1Swenshuai.xi #define ceil(Val) __TGMATH_UNARY_REAL_ONLY (Val, ceil) 337*53ee8cc1Swenshuai.xi 338*53ee8cc1Swenshuai.xi /* Absolute value of X. */ 339*53ee8cc1Swenshuai.xi #define fabs(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, fabs, cabs) 340*53ee8cc1Swenshuai.xi 341*53ee8cc1Swenshuai.xi /* Largest integer not greater than X. */ 342*53ee8cc1Swenshuai.xi #define floor(Val) __TGMATH_UNARY_REAL_ONLY (Val, floor) 343*53ee8cc1Swenshuai.xi 344*53ee8cc1Swenshuai.xi /* Floating-point modulo remainder of X/Y. */ 345*53ee8cc1Swenshuai.xi #define fmod(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmod) 346*53ee8cc1Swenshuai.xi 347*53ee8cc1Swenshuai.xi /* Round X to integral valuein floating-point format using current 348*53ee8cc1Swenshuai.xi rounding direction, but do not raise inexact exception. */ 349*53ee8cc1Swenshuai.xi #define nearbyint(Val) __TGMATH_UNARY_REAL_ONLY (Val, nearbyint) 350*53ee8cc1Swenshuai.xi 351*53ee8cc1Swenshuai.xi /* Round X to nearest integral value, rounding halfway cases away from 352*53ee8cc1Swenshuai.xi zero. */ 353*53ee8cc1Swenshuai.xi #define round(Val) __TGMATH_UNARY_REAL_ONLY (Val, round) 354*53ee8cc1Swenshuai.xi 355*53ee8cc1Swenshuai.xi /* Round X to the integral value in floating-point format nearest but 356*53ee8cc1Swenshuai.xi not larger in magnitude. */ 357*53ee8cc1Swenshuai.xi #define trunc(Val) __TGMATH_UNARY_REAL_ONLY (Val, trunc) 358*53ee8cc1Swenshuai.xi 359*53ee8cc1Swenshuai.xi /* Compute remainder of X and Y and put in *QUO a value with sign of x/y 360*53ee8cc1Swenshuai.xi and magnitude congruent `mod 2^n' to the magnitude of the integral 361*53ee8cc1Swenshuai.xi quotient x/y, with n >= 3. */ 362*53ee8cc1Swenshuai.xi #define remquo(Val1, Val2, Val3) \ 363*53ee8cc1Swenshuai.xi __TGMATH_TERNARY_FIRST_SECOND_REAL_ONLY (Val1, Val2, Val3, remquo) 364*53ee8cc1Swenshuai.xi 365*53ee8cc1Swenshuai.xi /* Round X to nearest integral value according to current rounding 366*53ee8cc1Swenshuai.xi direction. */ 367*53ee8cc1Swenshuai.xi #define lrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long int, lrint) 368*53ee8cc1Swenshuai.xi #define llrint(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long long int, llrint) 369*53ee8cc1Swenshuai.xi 370*53ee8cc1Swenshuai.xi /* Round X to nearest integral value, rounding halfway cases away from 371*53ee8cc1Swenshuai.xi zero. */ 372*53ee8cc1Swenshuai.xi #define lround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long int, lround) 373*53ee8cc1Swenshuai.xi #define llround(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, long long int, llround) 374*53ee8cc1Swenshuai.xi 375*53ee8cc1Swenshuai.xi 376*53ee8cc1Swenshuai.xi /* Return X with its signed changed to Y's. */ 377*53ee8cc1Swenshuai.xi #define copysign(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, copysign) 378*53ee8cc1Swenshuai.xi 379*53ee8cc1Swenshuai.xi /* Error and gamma functions. */ 380*53ee8cc1Swenshuai.xi #define erf(Val) __TGMATH_UNARY_REAL_ONLY (Val, erf) 381*53ee8cc1Swenshuai.xi #define erfc(Val) __TGMATH_UNARY_REAL_ONLY (Val, erfc) 382*53ee8cc1Swenshuai.xi #define tgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, tgamma) 383*53ee8cc1Swenshuai.xi #define lgamma(Val) __TGMATH_UNARY_REAL_ONLY (Val, lgamma) 384*53ee8cc1Swenshuai.xi 385*53ee8cc1Swenshuai.xi 386*53ee8cc1Swenshuai.xi /* Return the integer nearest X in the direction of the 387*53ee8cc1Swenshuai.xi prevailing rounding mode. */ 388*53ee8cc1Swenshuai.xi #define rint(Val) __TGMATH_UNARY_REAL_ONLY (Val, rint) 389*53ee8cc1Swenshuai.xi 390*53ee8cc1Swenshuai.xi /* Return X + epsilon if X < Y, X - epsilon if X > Y. */ 391*53ee8cc1Swenshuai.xi #define nextafter(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, nextafter) 392*53ee8cc1Swenshuai.xi #define nexttoward(Val1, Val2) \ 393*53ee8cc1Swenshuai.xi __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, nexttoward) 394*53ee8cc1Swenshuai.xi 395*53ee8cc1Swenshuai.xi /* Return the remainder of integer divison X / Y with infinite precision. */ 396*53ee8cc1Swenshuai.xi #define remainder(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, remainder) 397*53ee8cc1Swenshuai.xi 398*53ee8cc1Swenshuai.xi /* Return X times (2 to the Nth power). */ 399*53ee8cc1Swenshuai.xi #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED 400*53ee8cc1Swenshuai.xi # define scalb(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, scalb) 401*53ee8cc1Swenshuai.xi #endif 402*53ee8cc1Swenshuai.xi 403*53ee8cc1Swenshuai.xi /* Return X times (2 to the Nth power). */ 404*53ee8cc1Swenshuai.xi #define scalbn(Val1, Val2) __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbn) 405*53ee8cc1Swenshuai.xi 406*53ee8cc1Swenshuai.xi /* Return X times (2 to the Nth power). */ 407*53ee8cc1Swenshuai.xi #define scalbln(Val1, Val2) \ 408*53ee8cc1Swenshuai.xi __TGMATH_BINARY_FIRST_REAL_ONLY (Val1, Val2, scalbln) 409*53ee8cc1Swenshuai.xi 410*53ee8cc1Swenshuai.xi /* Return the binary exponent of X, which must be nonzero. */ 411*53ee8cc1Swenshuai.xi #define ilogb(Val) __TGMATH_UNARY_REAL_RET_ONLY (Val, int, ilogb) 412*53ee8cc1Swenshuai.xi 413*53ee8cc1Swenshuai.xi 414*53ee8cc1Swenshuai.xi /* Return positive difference between X and Y. */ 415*53ee8cc1Swenshuai.xi #define fdim(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fdim) 416*53ee8cc1Swenshuai.xi 417*53ee8cc1Swenshuai.xi /* Return maximum numeric value from X and Y. */ 418*53ee8cc1Swenshuai.xi #define fmax(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmax) 419*53ee8cc1Swenshuai.xi 420*53ee8cc1Swenshuai.xi /* Return minimum numeric value from X and Y. */ 421*53ee8cc1Swenshuai.xi #define fmin(Val1, Val2) __TGMATH_BINARY_REAL_ONLY (Val1, Val2, fmin) 422*53ee8cc1Swenshuai.xi 423*53ee8cc1Swenshuai.xi 424*53ee8cc1Swenshuai.xi /* Multiply-add function computed as a ternary operation. */ 425*53ee8cc1Swenshuai.xi #define fma(Val1, Val2, Val3) \ 426*53ee8cc1Swenshuai.xi __TGMATH_TERNARY_REAL_ONLY (Val1, Val2, Val3, fma) 427*53ee8cc1Swenshuai.xi 428*53ee8cc1Swenshuai.xi 429*53ee8cc1Swenshuai.xi /* Absolute value, conjugates, and projection. */ 430*53ee8cc1Swenshuai.xi 431*53ee8cc1Swenshuai.xi /* Argument value of Z. */ 432*53ee8cc1Swenshuai.xi #define carg(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, carg, carg) 433*53ee8cc1Swenshuai.xi 434*53ee8cc1Swenshuai.xi /* Complex conjugate of Z. */ 435*53ee8cc1Swenshuai.xi #define conj(Val) __TGMATH_UNARY_IMAG (Val, conj) 436*53ee8cc1Swenshuai.xi 437*53ee8cc1Swenshuai.xi /* Projection of Z onto the Riemann sphere. */ 438*53ee8cc1Swenshuai.xi #define cproj(Val) __TGMATH_UNARY_IMAG (Val, cproj) 439*53ee8cc1Swenshuai.xi 440*53ee8cc1Swenshuai.xi 441*53ee8cc1Swenshuai.xi /* Decomposing complex values. */ 442*53ee8cc1Swenshuai.xi 443*53ee8cc1Swenshuai.xi /* Imaginary part of Z. */ 444*53ee8cc1Swenshuai.xi #define cimag(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, cimag, cimag) 445*53ee8cc1Swenshuai.xi 446*53ee8cc1Swenshuai.xi /* Real part of Z. */ 447*53ee8cc1Swenshuai.xi #define creal(Val) __TGMATH_UNARY_REAL_IMAG_RET_REAL (Val, creal, creal) 448*53ee8cc1Swenshuai.xi 449*53ee8cc1Swenshuai.xi #endif /* tgmath.h */ 450