1*53ee8cc1Swenshuai.xi /* Prototype declarations for math functions; helper file for <math.h>. 2*53ee8cc1Swenshuai.xi Copyright (C) 1996-2002, 2003, 2006 Free Software Foundation, Inc. 3*53ee8cc1Swenshuai.xi This file is part of the GNU C Library. 4*53ee8cc1Swenshuai.xi 5*53ee8cc1Swenshuai.xi The GNU C Library is free software; you can redistribute it and/or 6*53ee8cc1Swenshuai.xi modify it under the terms of the GNU Lesser General Public 7*53ee8cc1Swenshuai.xi License as published by the Free Software Foundation; either 8*53ee8cc1Swenshuai.xi version 2.1 of the License, or (at your option) any later version. 9*53ee8cc1Swenshuai.xi 10*53ee8cc1Swenshuai.xi The GNU C Library is distributed in the hope that it will be useful, 11*53ee8cc1Swenshuai.xi but WITHOUT ANY WARRANTY; without even the implied warranty of 12*53ee8cc1Swenshuai.xi MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 13*53ee8cc1Swenshuai.xi Lesser General Public License for more details. 14*53ee8cc1Swenshuai.xi 15*53ee8cc1Swenshuai.xi You should have received a copy of the GNU Lesser General Public 16*53ee8cc1Swenshuai.xi License along with the GNU C Library; if not, write to the Free 17*53ee8cc1Swenshuai.xi Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 18*53ee8cc1Swenshuai.xi 02111-1307 USA. */ 19*53ee8cc1Swenshuai.xi 20*53ee8cc1Swenshuai.xi /* NOTE: Because of the special way this file is used by <math.h>, this 21*53ee8cc1Swenshuai.xi file must NOT be protected from multiple inclusion as header files 22*53ee8cc1Swenshuai.xi usually are. 23*53ee8cc1Swenshuai.xi 24*53ee8cc1Swenshuai.xi This file provides prototype declarations for the math functions. 25*53ee8cc1Swenshuai.xi Most functions are declared using the macro: 26*53ee8cc1Swenshuai.xi 27*53ee8cc1Swenshuai.xi __MATHCALL (NAME,[_r], (ARGS...)); 28*53ee8cc1Swenshuai.xi 29*53ee8cc1Swenshuai.xi This means there is a function `NAME' returning `double' and a function 30*53ee8cc1Swenshuai.xi `NAMEf' returning `float'. Each place `_Mdouble_' appears in the 31*53ee8cc1Swenshuai.xi prototype, that is actually `double' in the prototype for `NAME' and 32*53ee8cc1Swenshuai.xi `float' in the prototype for `NAMEf'. Reentrant variant functions are 33*53ee8cc1Swenshuai.xi called `NAME_r' and `NAMEf_r'. 34*53ee8cc1Swenshuai.xi 35*53ee8cc1Swenshuai.xi Functions returning other types like `int' are declared using the macro: 36*53ee8cc1Swenshuai.xi 37*53ee8cc1Swenshuai.xi __MATHDECL (TYPE, NAME,[_r], (ARGS...)); 38*53ee8cc1Swenshuai.xi 39*53ee8cc1Swenshuai.xi This is just like __MATHCALL but for a function returning `TYPE' 40*53ee8cc1Swenshuai.xi instead of `_Mdouble_'. In all of these cases, there is still 41*53ee8cc1Swenshuai.xi both a `NAME' and a `NAMEf' that takes `float' arguments. 42*53ee8cc1Swenshuai.xi 43*53ee8cc1Swenshuai.xi Note that there must be no whitespace before the argument passed for 44*53ee8cc1Swenshuai.xi NAME, to make token pasting work with -traditional. */ 45*53ee8cc1Swenshuai.xi 46*53ee8cc1Swenshuai.xi #ifndef _MATH_H 47*53ee8cc1Swenshuai.xi # error "Never include <bits/mathcalls.h> directly; include <math.h> instead." 48*53ee8cc1Swenshuai.xi #endif 49*53ee8cc1Swenshuai.xi 50*53ee8cc1Swenshuai.xi 51*53ee8cc1Swenshuai.xi /* Trigonometric functions. */ 52*53ee8cc1Swenshuai.xi 53*53ee8cc1Swenshuai.xi _Mdouble_BEGIN_NAMESPACE 54*53ee8cc1Swenshuai.xi /* Arc cosine of X. */ 55*53ee8cc1Swenshuai.xi __MATHCALL (acos,, (_Mdouble_ __x)); 56*53ee8cc1Swenshuai.xi /* Arc sine of X. */ 57*53ee8cc1Swenshuai.xi __MATHCALL (asin,, (_Mdouble_ __x)); 58*53ee8cc1Swenshuai.xi /* Arc tangent of X. */ 59*53ee8cc1Swenshuai.xi __MATHCALL (atan,, (_Mdouble_ __x)); 60*53ee8cc1Swenshuai.xi /* Arc tangent of Y/X. */ 61*53ee8cc1Swenshuai.xi __MATHCALL (atan2,, (_Mdouble_ __y, _Mdouble_ __x)); 62*53ee8cc1Swenshuai.xi 63*53ee8cc1Swenshuai.xi /* Cosine of X. */ 64*53ee8cc1Swenshuai.xi __MATHCALL (cos,, (_Mdouble_ __x)); 65*53ee8cc1Swenshuai.xi /* Sine of X. */ 66*53ee8cc1Swenshuai.xi __MATHCALL (sin,, (_Mdouble_ __x)); 67*53ee8cc1Swenshuai.xi /* Tangent of X. */ 68*53ee8cc1Swenshuai.xi __MATHCALL (tan,, (_Mdouble_ __x)); 69*53ee8cc1Swenshuai.xi 70*53ee8cc1Swenshuai.xi /* Hyperbolic functions. */ 71*53ee8cc1Swenshuai.xi 72*53ee8cc1Swenshuai.xi /* Hyperbolic cosine of X. */ 73*53ee8cc1Swenshuai.xi __MATHCALL (cosh,, (_Mdouble_ __x)); 74*53ee8cc1Swenshuai.xi /* Hyperbolic sine of X. */ 75*53ee8cc1Swenshuai.xi __MATHCALL (sinh,, (_Mdouble_ __x)); 76*53ee8cc1Swenshuai.xi /* Hyperbolic tangent of X. */ 77*53ee8cc1Swenshuai.xi __MATHCALL (tanh,, (_Mdouble_ __x)); 78*53ee8cc1Swenshuai.xi _Mdouble_END_NAMESPACE 79*53ee8cc1Swenshuai.xi 80*53ee8cc1Swenshuai.xi #ifdef __USE_GNU 81*53ee8cc1Swenshuai.xi /* Cosine and sine of X. */ 82*53ee8cc1Swenshuai.xi __MATHDECL (void,sincos,, 83*53ee8cc1Swenshuai.xi (_Mdouble_ __x, _Mdouble_ *__sinx, _Mdouble_ *__cosx)); 84*53ee8cc1Swenshuai.xi #endif 85*53ee8cc1Swenshuai.xi 86*53ee8cc1Swenshuai.xi #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99 87*53ee8cc1Swenshuai.xi __BEGIN_NAMESPACE_C99 88*53ee8cc1Swenshuai.xi /* Hyperbolic arc cosine of X. */ 89*53ee8cc1Swenshuai.xi __MATHCALL (acosh,, (_Mdouble_ __x)); 90*53ee8cc1Swenshuai.xi /* Hyperbolic arc sine of X. */ 91*53ee8cc1Swenshuai.xi __MATHCALL (asinh,, (_Mdouble_ __x)); 92*53ee8cc1Swenshuai.xi /* Hyperbolic arc tangent of X. */ 93*53ee8cc1Swenshuai.xi __MATHCALL (atanh,, (_Mdouble_ __x)); 94*53ee8cc1Swenshuai.xi __END_NAMESPACE_C99 95*53ee8cc1Swenshuai.xi #endif 96*53ee8cc1Swenshuai.xi 97*53ee8cc1Swenshuai.xi /* Exponential and logarithmic functions. */ 98*53ee8cc1Swenshuai.xi 99*53ee8cc1Swenshuai.xi _Mdouble_BEGIN_NAMESPACE 100*53ee8cc1Swenshuai.xi /* Exponential function of X. */ 101*53ee8cc1Swenshuai.xi __MATHCALL (exp,, (_Mdouble_ __x)); 102*53ee8cc1Swenshuai.xi 103*53ee8cc1Swenshuai.xi /* Break VALUE into a normalized fraction and an integral power of 2. */ 104*53ee8cc1Swenshuai.xi __MATHCALL (frexp,, (_Mdouble_ __x, int *__exponent)); 105*53ee8cc1Swenshuai.xi 106*53ee8cc1Swenshuai.xi /* X times (two to the EXP power). */ 107*53ee8cc1Swenshuai.xi __MATHCALL (ldexp,, (_Mdouble_ __x, int __exponent)); 108*53ee8cc1Swenshuai.xi 109*53ee8cc1Swenshuai.xi /* Natural logarithm of X. */ 110*53ee8cc1Swenshuai.xi __MATHCALL (log,, (_Mdouble_ __x)); 111*53ee8cc1Swenshuai.xi 112*53ee8cc1Swenshuai.xi /* Base-ten logarithm of X. */ 113*53ee8cc1Swenshuai.xi __MATHCALL (log10,, (_Mdouble_ __x)); 114*53ee8cc1Swenshuai.xi 115*53ee8cc1Swenshuai.xi /* Break VALUE into integral and fractional parts. */ 116*53ee8cc1Swenshuai.xi __MATHCALL (modf,, (_Mdouble_ __x, _Mdouble_ *__iptr)); 117*53ee8cc1Swenshuai.xi _Mdouble_END_NAMESPACE 118*53ee8cc1Swenshuai.xi 119*53ee8cc1Swenshuai.xi #ifdef __USE_GNU 120*53ee8cc1Swenshuai.xi /* A function missing in all standards: compute exponent to base ten. */ 121*53ee8cc1Swenshuai.xi __MATHCALL (exp10,, (_Mdouble_ __x)); 122*53ee8cc1Swenshuai.xi /* Another name occasionally used. */ 123*53ee8cc1Swenshuai.xi __MATHCALL (pow10,, (_Mdouble_ __x)); 124*53ee8cc1Swenshuai.xi #endif 125*53ee8cc1Swenshuai.xi 126*53ee8cc1Swenshuai.xi #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99 127*53ee8cc1Swenshuai.xi __BEGIN_NAMESPACE_C99 128*53ee8cc1Swenshuai.xi /* Return exp(X) - 1. */ 129*53ee8cc1Swenshuai.xi __MATHCALL (expm1,, (_Mdouble_ __x)); 130*53ee8cc1Swenshuai.xi 131*53ee8cc1Swenshuai.xi /* Return log(1 + X). */ 132*53ee8cc1Swenshuai.xi __MATHCALL (log1p,, (_Mdouble_ __x)); 133*53ee8cc1Swenshuai.xi 134*53ee8cc1Swenshuai.xi /* Return the base 2 signed integral exponent of X. */ 135*53ee8cc1Swenshuai.xi __MATHCALL (logb,, (_Mdouble_ __x)); 136*53ee8cc1Swenshuai.xi __END_NAMESPACE_C99 137*53ee8cc1Swenshuai.xi #endif 138*53ee8cc1Swenshuai.xi 139*53ee8cc1Swenshuai.xi #ifdef __USE_ISOC99 140*53ee8cc1Swenshuai.xi __BEGIN_NAMESPACE_C99 141*53ee8cc1Swenshuai.xi /* Compute base-2 exponential of X. */ 142*53ee8cc1Swenshuai.xi __MATHCALL (exp2,, (_Mdouble_ __x)); 143*53ee8cc1Swenshuai.xi 144*53ee8cc1Swenshuai.xi /* Compute base-2 logarithm of X. */ 145*53ee8cc1Swenshuai.xi __MATHCALL (log2,, (_Mdouble_ __x)); 146*53ee8cc1Swenshuai.xi __END_NAMESPACE_C99 147*53ee8cc1Swenshuai.xi #endif 148*53ee8cc1Swenshuai.xi 149*53ee8cc1Swenshuai.xi 150*53ee8cc1Swenshuai.xi /* Power functions. */ 151*53ee8cc1Swenshuai.xi 152*53ee8cc1Swenshuai.xi _Mdouble_BEGIN_NAMESPACE 153*53ee8cc1Swenshuai.xi /* Return X to the Y power. */ 154*53ee8cc1Swenshuai.xi __MATHCALL (pow,, (_Mdouble_ __x, _Mdouble_ __y)); 155*53ee8cc1Swenshuai.xi 156*53ee8cc1Swenshuai.xi /* Return the square root of X. */ 157*53ee8cc1Swenshuai.xi __MATHCALL (sqrt,, (_Mdouble_ __x)); 158*53ee8cc1Swenshuai.xi _Mdouble_END_NAMESPACE 159*53ee8cc1Swenshuai.xi 160*53ee8cc1Swenshuai.xi #if defined __USE_MISC || defined __USE_XOPEN || defined __USE_ISOC99 161*53ee8cc1Swenshuai.xi __BEGIN_NAMESPACE_C99 162*53ee8cc1Swenshuai.xi /* Return `sqrt(X*X + Y*Y)'. */ 163*53ee8cc1Swenshuai.xi __MATHCALL (hypot,, (_Mdouble_ __x, _Mdouble_ __y)); 164*53ee8cc1Swenshuai.xi __END_NAMESPACE_C99 165*53ee8cc1Swenshuai.xi #endif 166*53ee8cc1Swenshuai.xi 167*53ee8cc1Swenshuai.xi #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99 168*53ee8cc1Swenshuai.xi __BEGIN_NAMESPACE_C99 169*53ee8cc1Swenshuai.xi /* Return the cube root of X. */ 170*53ee8cc1Swenshuai.xi __MATHCALL (cbrt,, (_Mdouble_ __x)); 171*53ee8cc1Swenshuai.xi __END_NAMESPACE_C99 172*53ee8cc1Swenshuai.xi #endif 173*53ee8cc1Swenshuai.xi 174*53ee8cc1Swenshuai.xi 175*53ee8cc1Swenshuai.xi /* Nearest integer, absolute value, and remainder functions. */ 176*53ee8cc1Swenshuai.xi 177*53ee8cc1Swenshuai.xi _Mdouble_BEGIN_NAMESPACE 178*53ee8cc1Swenshuai.xi /* Smallest integral value not less than X. */ 179*53ee8cc1Swenshuai.xi __MATHCALLX (ceil,, (_Mdouble_ __x), (__const__)); 180*53ee8cc1Swenshuai.xi 181*53ee8cc1Swenshuai.xi /* Absolute value of X. */ 182*53ee8cc1Swenshuai.xi __MATHCALLX (fabs,, (_Mdouble_ __x), (__const__)); 183*53ee8cc1Swenshuai.xi 184*53ee8cc1Swenshuai.xi /* Largest integer not greater than X. */ 185*53ee8cc1Swenshuai.xi __MATHCALLX (floor,, (_Mdouble_ __x), (__const__)); 186*53ee8cc1Swenshuai.xi 187*53ee8cc1Swenshuai.xi /* Floating-point modulo remainder of X/Y. */ 188*53ee8cc1Swenshuai.xi __MATHCALL (fmod,, (_Mdouble_ __x, _Mdouble_ __y)); 189*53ee8cc1Swenshuai.xi 190*53ee8cc1Swenshuai.xi 191*53ee8cc1Swenshuai.xi /* Return 0 if VALUE is finite or NaN, +1 if it 192*53ee8cc1Swenshuai.xi is +Infinity, -1 if it is -Infinity. */ 193*53ee8cc1Swenshuai.xi __MATHDECL_1 (int,__isinf,, (_Mdouble_ __value)) __attribute__ ((__const__)); 194*53ee8cc1Swenshuai.xi 195*53ee8cc1Swenshuai.xi /* Return nonzero if VALUE is finite and not NaN. */ 196*53ee8cc1Swenshuai.xi __MATHDECL_1 (int,__finite,, (_Mdouble_ __value)) __attribute__ ((__const__)); 197*53ee8cc1Swenshuai.xi _Mdouble_END_NAMESPACE 198*53ee8cc1Swenshuai.xi 199*53ee8cc1Swenshuai.xi #ifdef __USE_MISC 200*53ee8cc1Swenshuai.xi /* Return 0 if VALUE is finite or NaN, +1 if it 201*53ee8cc1Swenshuai.xi is +Infinity, -1 if it is -Infinity. */ 202*53ee8cc1Swenshuai.xi __MATHDECL_1 (int,isinf,, (_Mdouble_ __value)) __attribute__ ((__const__)); 203*53ee8cc1Swenshuai.xi 204*53ee8cc1Swenshuai.xi /* Return nonzero if VALUE is finite and not NaN. */ 205*53ee8cc1Swenshuai.xi __MATHDECL_1 (int,finite,, (_Mdouble_ __value)) __attribute__ ((__const__)); 206*53ee8cc1Swenshuai.xi 207*53ee8cc1Swenshuai.xi /* Return the remainder of X/Y. */ 208*53ee8cc1Swenshuai.xi __MATHCALL (drem,, (_Mdouble_ __x, _Mdouble_ __y)); 209*53ee8cc1Swenshuai.xi 210*53ee8cc1Swenshuai.xi 211*53ee8cc1Swenshuai.xi /* Return the fractional part of X after dividing out `ilogb (X)'. */ 212*53ee8cc1Swenshuai.xi __MATHCALL (significand,, (_Mdouble_ __x)); 213*53ee8cc1Swenshuai.xi #endif /* Use misc. */ 214*53ee8cc1Swenshuai.xi 215*53ee8cc1Swenshuai.xi #if defined __USE_MISC || defined __USE_ISOC99 216*53ee8cc1Swenshuai.xi __BEGIN_NAMESPACE_C99 217*53ee8cc1Swenshuai.xi /* Return X with its signed changed to Y's. */ 218*53ee8cc1Swenshuai.xi __MATHCALLX (copysign,, (_Mdouble_ __x, _Mdouble_ __y), (__const__)); 219*53ee8cc1Swenshuai.xi __END_NAMESPACE_C99 220*53ee8cc1Swenshuai.xi #endif 221*53ee8cc1Swenshuai.xi 222*53ee8cc1Swenshuai.xi #ifdef __USE_ISOC99 223*53ee8cc1Swenshuai.xi __BEGIN_NAMESPACE_C99 224*53ee8cc1Swenshuai.xi /* Return representation of NaN for double type. */ 225*53ee8cc1Swenshuai.xi __MATHCALLX (nan,, (__const char *__tagb), (__const__)); 226*53ee8cc1Swenshuai.xi __END_NAMESPACE_C99 227*53ee8cc1Swenshuai.xi #endif 228*53ee8cc1Swenshuai.xi 229*53ee8cc1Swenshuai.xi 230*53ee8cc1Swenshuai.xi /* Return nonzero if VALUE is not a number. */ 231*53ee8cc1Swenshuai.xi __MATHDECL_1 (int,__isnan,, (_Mdouble_ __value)) __attribute__ ((__const__)); 232*53ee8cc1Swenshuai.xi 233*53ee8cc1Swenshuai.xi #if defined __USE_MISC || defined __USE_XOPEN 234*53ee8cc1Swenshuai.xi /* Return nonzero if VALUE is not a number. */ 235*53ee8cc1Swenshuai.xi __MATHDECL_1 (int,isnan,, (_Mdouble_ __value)) __attribute__ ((__const__)); 236*53ee8cc1Swenshuai.xi 237*53ee8cc1Swenshuai.xi /* Bessel functions. */ 238*53ee8cc1Swenshuai.xi __MATHCALL (j0,, (_Mdouble_)); 239*53ee8cc1Swenshuai.xi __MATHCALL (j1,, (_Mdouble_)); 240*53ee8cc1Swenshuai.xi __MATHCALL (jn,, (int, _Mdouble_)); 241*53ee8cc1Swenshuai.xi __MATHCALL (y0,, (_Mdouble_)); 242*53ee8cc1Swenshuai.xi __MATHCALL (y1,, (_Mdouble_)); 243*53ee8cc1Swenshuai.xi __MATHCALL (yn,, (int, _Mdouble_)); 244*53ee8cc1Swenshuai.xi #endif 245*53ee8cc1Swenshuai.xi 246*53ee8cc1Swenshuai.xi 247*53ee8cc1Swenshuai.xi #if defined __USE_MISC || defined __USE_XOPEN || defined __USE_ISOC99 248*53ee8cc1Swenshuai.xi __BEGIN_NAMESPACE_C99 249*53ee8cc1Swenshuai.xi /* Error and gamma functions. */ 250*53ee8cc1Swenshuai.xi __MATHCALL (erf,, (_Mdouble_)); 251*53ee8cc1Swenshuai.xi __MATHCALL (erfc,, (_Mdouble_)); 252*53ee8cc1Swenshuai.xi __MATHCALL (lgamma,, (_Mdouble_)); 253*53ee8cc1Swenshuai.xi __END_NAMESPACE_C99 254*53ee8cc1Swenshuai.xi #endif 255*53ee8cc1Swenshuai.xi 256*53ee8cc1Swenshuai.xi #ifdef __USE_ISOC99 257*53ee8cc1Swenshuai.xi __BEGIN_NAMESPACE_C99 258*53ee8cc1Swenshuai.xi /* True gamma function. */ 259*53ee8cc1Swenshuai.xi __MATHCALL (tgamma,, (_Mdouble_)); 260*53ee8cc1Swenshuai.xi __END_NAMESPACE_C99 261*53ee8cc1Swenshuai.xi #endif 262*53ee8cc1Swenshuai.xi 263*53ee8cc1Swenshuai.xi #if defined __USE_MISC || defined __USE_XOPEN 264*53ee8cc1Swenshuai.xi /* Obsolete alias for `lgamma'. */ 265*53ee8cc1Swenshuai.xi __MATHCALL (gamma,, (_Mdouble_)); 266*53ee8cc1Swenshuai.xi #endif 267*53ee8cc1Swenshuai.xi 268*53ee8cc1Swenshuai.xi #ifdef __USE_MISC 269*53ee8cc1Swenshuai.xi /* Reentrant version of lgamma. This function uses the global variable 270*53ee8cc1Swenshuai.xi `signgam'. The reentrant version instead takes a pointer and stores 271*53ee8cc1Swenshuai.xi the value through it. */ 272*53ee8cc1Swenshuai.xi __MATHCALL (lgamma,_r, (_Mdouble_, int *__signgamp)); 273*53ee8cc1Swenshuai.xi #endif 274*53ee8cc1Swenshuai.xi 275*53ee8cc1Swenshuai.xi 276*53ee8cc1Swenshuai.xi #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99 277*53ee8cc1Swenshuai.xi __BEGIN_NAMESPACE_C99 278*53ee8cc1Swenshuai.xi /* Return the integer nearest X in the direction of the 279*53ee8cc1Swenshuai.xi prevailing rounding mode. */ 280*53ee8cc1Swenshuai.xi __MATHCALL (rint,, (_Mdouble_ __x)); 281*53ee8cc1Swenshuai.xi 282*53ee8cc1Swenshuai.xi /* Return X + epsilon if X < Y, X - epsilon if X > Y. */ 283*53ee8cc1Swenshuai.xi __MATHCALLX (nextafter,, (_Mdouble_ __x, _Mdouble_ __y), (__const__)); 284*53ee8cc1Swenshuai.xi # if defined __USE_ISOC99 && !defined __LDBL_COMPAT 285*53ee8cc1Swenshuai.xi __MATHCALLX (nexttoward,, (_Mdouble_ __x, long double __y), (__const__)); 286*53ee8cc1Swenshuai.xi # endif 287*53ee8cc1Swenshuai.xi 288*53ee8cc1Swenshuai.xi /* Return the remainder of integer divison X / Y with infinite precision. */ 289*53ee8cc1Swenshuai.xi __MATHCALL (remainder,, (_Mdouble_ __x, _Mdouble_ __y)); 290*53ee8cc1Swenshuai.xi 291*53ee8cc1Swenshuai.xi # if defined __USE_MISC || defined __USE_ISOC99 292*53ee8cc1Swenshuai.xi /* Return X times (2 to the Nth power). */ 293*53ee8cc1Swenshuai.xi __MATHCALL (scalbn,, (_Mdouble_ __x, int __n)); 294*53ee8cc1Swenshuai.xi # endif 295*53ee8cc1Swenshuai.xi 296*53ee8cc1Swenshuai.xi /* Return the binary exponent of X, which must be nonzero. */ 297*53ee8cc1Swenshuai.xi __MATHDECL (int,ilogb,, (_Mdouble_ __x)); 298*53ee8cc1Swenshuai.xi #endif 299*53ee8cc1Swenshuai.xi 300*53ee8cc1Swenshuai.xi #ifdef __USE_ISOC99 301*53ee8cc1Swenshuai.xi /* Return X times (2 to the Nth power). */ 302*53ee8cc1Swenshuai.xi __MATHCALL (scalbln,, (_Mdouble_ __x, long int __n)); 303*53ee8cc1Swenshuai.xi 304*53ee8cc1Swenshuai.xi /* Round X to integral value in floating-point format using current 305*53ee8cc1Swenshuai.xi rounding direction, but do not raise inexact exception. */ 306*53ee8cc1Swenshuai.xi __MATHCALL (nearbyint,, (_Mdouble_ __x)); 307*53ee8cc1Swenshuai.xi 308*53ee8cc1Swenshuai.xi /* Round X to nearest integral value, rounding halfway cases away from 309*53ee8cc1Swenshuai.xi zero. */ 310*53ee8cc1Swenshuai.xi __MATHCALLX (round,, (_Mdouble_ __x), (__const__)); 311*53ee8cc1Swenshuai.xi 312*53ee8cc1Swenshuai.xi /* Round X to the integral value in floating-point format nearest but 313*53ee8cc1Swenshuai.xi not larger in magnitude. */ 314*53ee8cc1Swenshuai.xi __MATHCALLX (trunc,, (_Mdouble_ __x), (__const__)); 315*53ee8cc1Swenshuai.xi 316*53ee8cc1Swenshuai.xi /* Compute remainder of X and Y and put in *QUO a value with sign of x/y 317*53ee8cc1Swenshuai.xi and magnitude congruent `mod 2^n' to the magnitude of the integral 318*53ee8cc1Swenshuai.xi quotient x/y, with n >= 3. */ 319*53ee8cc1Swenshuai.xi __MATHCALL (remquo,, (_Mdouble_ __x, _Mdouble_ __y, int *__quo)); 320*53ee8cc1Swenshuai.xi 321*53ee8cc1Swenshuai.xi 322*53ee8cc1Swenshuai.xi /* Conversion functions. */ 323*53ee8cc1Swenshuai.xi 324*53ee8cc1Swenshuai.xi /* Round X to nearest integral value according to current rounding 325*53ee8cc1Swenshuai.xi direction. */ 326*53ee8cc1Swenshuai.xi __MATHDECL (long int,lrint,, (_Mdouble_ __x)); 327*53ee8cc1Swenshuai.xi __MATHDECL (long long int,llrint,, (_Mdouble_ __x)); 328*53ee8cc1Swenshuai.xi 329*53ee8cc1Swenshuai.xi /* Round X to nearest integral value, rounding halfway cases away from 330*53ee8cc1Swenshuai.xi zero. */ 331*53ee8cc1Swenshuai.xi __MATHDECL (long int,lround,, (_Mdouble_ __x)); 332*53ee8cc1Swenshuai.xi __MATHDECL (long long int,llround,, (_Mdouble_ __x)); 333*53ee8cc1Swenshuai.xi 334*53ee8cc1Swenshuai.xi 335*53ee8cc1Swenshuai.xi /* Return positive difference between X and Y. */ 336*53ee8cc1Swenshuai.xi __MATHCALL (fdim,, (_Mdouble_ __x, _Mdouble_ __y)); 337*53ee8cc1Swenshuai.xi 338*53ee8cc1Swenshuai.xi /* Return maximum numeric value from X and Y. */ 339*53ee8cc1Swenshuai.xi __MATHCALL (fmax,, (_Mdouble_ __x, _Mdouble_ __y)); 340*53ee8cc1Swenshuai.xi 341*53ee8cc1Swenshuai.xi /* Return minimum numeric value from X and Y. */ 342*53ee8cc1Swenshuai.xi __MATHCALL (fmin,, (_Mdouble_ __x, _Mdouble_ __y)); 343*53ee8cc1Swenshuai.xi 344*53ee8cc1Swenshuai.xi 345*53ee8cc1Swenshuai.xi /* Classify given number. */ 346*53ee8cc1Swenshuai.xi __MATHDECL_1 (int, __fpclassify,, (_Mdouble_ __value)) 347*53ee8cc1Swenshuai.xi __attribute__ ((__const__)); 348*53ee8cc1Swenshuai.xi 349*53ee8cc1Swenshuai.xi /* Test for negative number. */ 350*53ee8cc1Swenshuai.xi __MATHDECL_1 (int, __signbit,, (_Mdouble_ __value)) 351*53ee8cc1Swenshuai.xi __attribute__ ((__const__)); 352*53ee8cc1Swenshuai.xi 353*53ee8cc1Swenshuai.xi 354*53ee8cc1Swenshuai.xi /* Multiply-add function computed as a ternary operation. */ 355*53ee8cc1Swenshuai.xi __MATHCALL (fma,, (_Mdouble_ __x, _Mdouble_ __y, _Mdouble_ __z)); 356*53ee8cc1Swenshuai.xi #endif /* Use ISO C99. */ 357*53ee8cc1Swenshuai.xi 358*53ee8cc1Swenshuai.xi #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED || defined __USE_ISOC99 359*53ee8cc1Swenshuai.xi __END_NAMESPACE_C99 360*53ee8cc1Swenshuai.xi #endif 361*53ee8cc1Swenshuai.xi 362*53ee8cc1Swenshuai.xi #if defined __USE_MISC || defined __USE_XOPEN_EXTENDED 363*53ee8cc1Swenshuai.xi /* Return X times (2 to the Nth power). */ 364*53ee8cc1Swenshuai.xi __MATHCALL (scalb,, (_Mdouble_ __x, _Mdouble_ __n)); 365*53ee8cc1Swenshuai.xi #endif 366