1 /*
2 * Copyright (c) 1991, 1993
3 * The Regents of the University of California. All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. All advertising materials mentioning features or use of this software
14 * must display the following acknowledgement:
15 * This product includes software developed by the University of
16 * California, Berkeley and its contributors.
17 * 4. Neither the name of the University nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 *
33 * @(#)queue.h 8.5 (Berkeley) 8/20/94
34 * $FreeBSD: src/sys/sys/queue.h,v 1.48 2002/04/17 14:00:37 tmm Exp $
35 */
36
37 #ifndef _SYS_QUEUE_H_
38 #define _SYS_QUEUE_H_
39
40 #include <machine/ansi.h> /* for __offsetof */
41
42 /*
43 * This file defines four types of data structures: singly-linked lists,
44 * singly-linked tail queues, lists and tail queues.
45 *
46 * A singly-linked list is headed by a single forward pointer. The elements
47 * are singly linked for minimum space and pointer manipulation overhead at
48 * the expense of O(n) removal for arbitrary elements. New elements can be
49 * added to the list after an existing element or at the head of the list.
50 * Elements being removed from the head of the list should use the explicit
51 * macro for this purpose for optimum efficiency. A singly-linked list may
52 * only be traversed in the forward direction. Singly-linked lists are ideal
53 * for applications with large datasets and few or no removals or for
54 * implementing a LIFO queue.
55 *
56 * A singly-linked tail queue is headed by a pair of pointers, one to the
57 * head of the list and the other to the tail of the list. The elements are
58 * singly linked for minimum space and pointer manipulation overhead at the
59 * expense of O(n) removal for arbitrary elements. New elements can be added
60 * to the list after an existing element, at the head of the list, or at the
61 * end of the list. Elements being removed from the head of the tail queue
62 * should use the explicit macro for this purpose for optimum efficiency.
63 * A singly-linked tail queue may only be traversed in the forward direction.
64 * Singly-linked tail queues are ideal for applications with large datasets
65 * and few or no removals or for implementing a FIFO queue.
66 *
67 * A list is headed by a single forward pointer (or an array of forward
68 * pointers for a hash table header). The elements are doubly linked
69 * so that an arbitrary element can be removed without a need to
70 * traverse the list. New elements can be added to the list before
71 * or after an existing element or at the head of the list. A list
72 * may only be traversed in the forward direction.
73 *
74 * A tail queue is headed by a pair of pointers, one to the head of the
75 * list and the other to the tail of the list. The elements are doubly
76 * linked so that an arbitrary element can be removed without a need to
77 * traverse the list. New elements can be added to the list before or
78 * after an existing element, at the head of the list, or at the end of
79 * the list. A tail queue may be traversed in either direction.
80 *
81 * For details on the use of these macros, see the queue(3) manual page.
82 *
83 *
84 * SLIST LIST STAILQ TAILQ
85 * _HEAD + + + +
86 * _HEAD_INITIALIZER + + + +
87 * _ENTRY + + + +
88 * _INIT + + + +
89 * _EMPTY + + + +
90 * _FIRST + + + +
91 * _NEXT + + + +
92 * _PREV - - - +
93 * _LAST - - + +
94 * _FOREACH + + + +
95 * _FOREACH_REVERSE - - - +
96 * _INSERT_HEAD + + + +
97 * _INSERT_BEFORE - + - +
98 * _INSERT_AFTER + + + +
99 * _INSERT_TAIL - - + +
100 * _CONCAT - - + +
101 * _REMOVE_HEAD + - + -
102 * _REMOVE + + + +
103 *
104 */
105
106 /*
107 * Singly-linked List declarations.
108 */
109 #define SLIST_HEAD(name, type) \
110 struct name { \
111 struct type *slh_first; /* first element */ \
112 }
113
114 #define SLIST_HEAD_INITIALIZER(head) \
115 { NULL }
116
117 #define SLIST_ENTRY(type) \
118 struct { \
119 struct type *sle_next; /* next element */ \
120 }
121
122 /*
123 * Singly-linked List functions.
124 */
125 #define SLIST_EMPTY(head) ((head)->slh_first == NULL)
126
127 #define SLIST_FIRST(head) ((head)->slh_first)
128
129 #define SLIST_FOREACH(var, head, field) \
130 for ((var) = SLIST_FIRST((head)); \
131 (var); \
132 (var) = SLIST_NEXT((var), field))
133
134 #define SLIST_INIT(head) do { \
135 SLIST_FIRST((head)) = NULL; \
136 } while (0)
137
138 #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \
139 SLIST_NEXT((elm), field) = SLIST_NEXT((slistelm), field); \
140 SLIST_NEXT((slistelm), field) = (elm); \
141 } while (0)
142
143 #define SLIST_INSERT_HEAD(head, elm, field) do { \
144 SLIST_NEXT((elm), field) = SLIST_FIRST((head)); \
145 SLIST_FIRST((head)) = (elm); \
146 } while (0)
147
148 #define SLIST_NEXT(elm, field) ((elm)->field.sle_next)
149
150 #define SLIST_REMOVE(head, elm, type, field) do { \
151 if (SLIST_FIRST((head)) == (elm)) { \
152 SLIST_REMOVE_HEAD((head), field); \
153 } \
154 else { \
155 struct type *curelm = SLIST_FIRST((head)); \
156 while (SLIST_NEXT(curelm, field) != (elm)) \
157 curelm = SLIST_NEXT(curelm, field); \
158 SLIST_NEXT(curelm, field) = \
159 SLIST_NEXT(SLIST_NEXT(curelm, field), field); \
160 } \
161 } while (0)
162
163 #define SLIST_REMOVE_HEAD(head, field) do { \
164 SLIST_FIRST((head)) = SLIST_NEXT(SLIST_FIRST((head)), field); \
165 } while (0)
166
167 /*
168 * Singly-linked Tail queue declarations.
169 */
170 #define STAILQ_HEAD(name, type) \
171 struct name { \
172 struct type *stqh_first;/* first element */ \
173 struct type **stqh_last;/* addr of last next element */ \
174 }
175
176 #define STAILQ_HEAD_INITIALIZER(head) \
177 { NULL, &(head).stqh_first }
178
179 #define STAILQ_ENTRY(type) \
180 struct { \
181 struct type *stqe_next; /* next element */ \
182 }
183
184 /*
185 * Singly-linked Tail queue functions.
186 */
187 #define STAILQ_CONCAT(head1, head2) do { \
188 if (!STAILQ_EMPTY((head2))) { \
189 *(head1)->stqh_last = (head2)->stqh_first; \
190 (head1)->stqh_last = (head2)->stqh_last; \
191 STAILQ_INIT((head2)); \
192 } \
193 } while (0)
194
195 #define STAILQ_EMPTY(head) ((head)->stqh_first == NULL)
196
197 #define STAILQ_FIRST(head) ((head)->stqh_first)
198
199 #define STAILQ_FOREACH(var, head, field) \
200 for((var) = STAILQ_FIRST((head)); \
201 (var); \
202 (var) = STAILQ_NEXT((var), field))
203
204 #define STAILQ_INIT(head) do { \
205 STAILQ_FIRST((head)) = NULL; \
206 (head)->stqh_last = &STAILQ_FIRST((head)); \
207 } while (0)
208
209 #define STAILQ_INSERT_AFTER(head, tqelm, elm, field) do { \
210 if ((STAILQ_NEXT((elm), field) = STAILQ_NEXT((tqelm), field)) == NULL)\
211 (head)->stqh_last = &STAILQ_NEXT((elm), field); \
212 STAILQ_NEXT((tqelm), field) = (elm); \
213 } while (0)
214
215 #define STAILQ_INSERT_HEAD(head, elm, field) do { \
216 if ((STAILQ_NEXT((elm), field) = STAILQ_FIRST((head))) == NULL) \
217 (head)->stqh_last = &STAILQ_NEXT((elm), field); \
218 STAILQ_FIRST((head)) = (elm); \
219 } while (0)
220
221 #define STAILQ_INSERT_TAIL(head, elm, field) do { \
222 STAILQ_NEXT((elm), field) = NULL; \
223 *(head)->stqh_last = (elm); \
224 (head)->stqh_last = &STAILQ_NEXT((elm), field); \
225 } while (0)
226
227 #define STAILQ_LAST(head, type, field) \
228 (STAILQ_EMPTY((head)) ? \
229 NULL : \
230 ((struct type *) \
231 ((char *)((head)->stqh_last) - __offsetof(struct type, field))))
232
233 #define STAILQ_NEXT(elm, field) ((elm)->field.stqe_next)
234
235 #define STAILQ_REMOVE(head, elm, type, field) do { \
236 if (STAILQ_FIRST((head)) == (elm)) { \
237 STAILQ_REMOVE_HEAD((head), field); \
238 } \
239 else { \
240 struct type *curelm = STAILQ_FIRST((head)); \
241 while (STAILQ_NEXT(curelm, field) != (elm)) \
242 curelm = STAILQ_NEXT(curelm, field); \
243 if ((STAILQ_NEXT(curelm, field) = \
244 STAILQ_NEXT(STAILQ_NEXT(curelm, field), field)) == NULL)\
245 (head)->stqh_last = &STAILQ_NEXT((curelm), field);\
246 } \
247 } while (0)
248
249 #define STAILQ_REMOVE_HEAD(head, field) do { \
250 if ((STAILQ_FIRST((head)) = \
251 STAILQ_NEXT(STAILQ_FIRST((head)), field)) == NULL) \
252 (head)->stqh_last = &STAILQ_FIRST((head)); \
253 } while (0)
254
255 #define STAILQ_REMOVE_HEAD_UNTIL(head, elm, field) do { \
256 if ((STAILQ_FIRST((head)) = STAILQ_NEXT((elm), field)) == NULL) \
257 (head)->stqh_last = &STAILQ_FIRST((head)); \
258 } while (0)
259
260 /*
261 * List declarations.
262 */
263 #define LIST_HEAD(name, type) \
264 struct name { \
265 struct type *lh_first; /* first element */ \
266 }
267
268 #define LIST_HEAD_INITIALIZER(head) \
269 { NULL }
270
271 #define LIST_ENTRY(type) \
272 struct { \
273 struct type *le_next; /* next element */ \
274 struct type **le_prev; /* address of previous next element */ \
275 }
276
277 /*
278 * List functions.
279 */
280
281 #define LIST_EMPTY(head) ((head)->lh_first == NULL)
282
283 #define LIST_FIRST(head) ((head)->lh_first)
284
285 #define LIST_FOREACH(var, head, field) \
286 for ((var) = LIST_FIRST((head)); \
287 (var); \
288 (var) = LIST_NEXT((var), field))
289
290 #define LIST_INIT(head) do { \
291 LIST_FIRST((head)) = NULL; \
292 } while (0)
293
294 #define LIST_INSERT_AFTER(listelm, elm, field) do { \
295 if ((LIST_NEXT((elm), field) = LIST_NEXT((listelm), field)) != NULL)\
296 LIST_NEXT((listelm), field)->field.le_prev = \
297 &LIST_NEXT((elm), field); \
298 LIST_NEXT((listelm), field) = (elm); \
299 (elm)->field.le_prev = &LIST_NEXT((listelm), field); \
300 } while (0)
301
302 #define LIST_INSERT_BEFORE(listelm, elm, field) do { \
303 (elm)->field.le_prev = (listelm)->field.le_prev; \
304 LIST_NEXT((elm), field) = (listelm); \
305 *(listelm)->field.le_prev = (elm); \
306 (listelm)->field.le_prev = &LIST_NEXT((elm), field); \
307 } while (0)
308
309 #define LIST_INSERT_HEAD(head, elm, field) do { \
310 if ((LIST_NEXT((elm), field) = LIST_FIRST((head))) != NULL) \
311 LIST_FIRST((head))->field.le_prev = &LIST_NEXT((elm), field);\
312 LIST_FIRST((head)) = (elm); \
313 (elm)->field.le_prev = &LIST_FIRST((head)); \
314 } while (0)
315
316 #define LIST_NEXT(elm, field) ((elm)->field.le_next)
317
318 #define LIST_REMOVE(elm, field) do { \
319 if (LIST_NEXT((elm), field) != NULL) \
320 LIST_NEXT((elm), field)->field.le_prev = \
321 (elm)->field.le_prev; \
322 *(elm)->field.le_prev = LIST_NEXT((elm), field); \
323 } while (0)
324
325 /*
326 * Tail queue declarations.
327 */
328 #define TAILQ_HEAD(name, type) \
329 struct name { \
330 struct type *tqh_first; /* first element */ \
331 struct type **tqh_last; /* addr of last next element */ \
332 }
333
334 #define TAILQ_HEAD_INITIALIZER(head) \
335 { NULL, &(head).tqh_first }
336
337 #define TAILQ_ENTRY(type) \
338 struct { \
339 struct type *tqe_next; /* next element */ \
340 struct type **tqe_prev; /* address of previous next element */ \
341 }
342
343 /*
344 * Tail queue functions.
345 */
346 #define TAILQ_CONCAT(head1, head2, field) do { \
347 if (!TAILQ_EMPTY(head2)) { \
348 *(head1)->tqh_last = (head2)->tqh_first; \
349 (head2)->tqh_first->field.tqe_prev = (head1)->tqh_last; \
350 (head1)->tqh_last = (head2)->tqh_last; \
351 TAILQ_INIT((head2)); \
352 } \
353 } while (0)
354
355 #define TAILQ_EMPTY(head) ((head)->tqh_first == NULL)
356
357 #define TAILQ_FIRST(head) ((head)->tqh_first)
358
359 #define TAILQ_FOREACH(var, head, field) \
360 for ((var) = TAILQ_FIRST((head)); \
361 (var); \
362 (var) = TAILQ_NEXT((var), field))
363
364 #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \
365 for ((var) = TAILQ_LAST((head), headname); \
366 (var); \
367 (var) = TAILQ_PREV((var), headname, field))
368
369 #define TAILQ_INIT(head) do { \
370 TAILQ_FIRST((head)) = NULL; \
371 (head)->tqh_last = &TAILQ_FIRST((head)); \
372 } while (0)
373
374 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \
375 if ((TAILQ_NEXT((elm), field) = TAILQ_NEXT((listelm), field)) != NULL)\
376 TAILQ_NEXT((elm), field)->field.tqe_prev = \
377 &TAILQ_NEXT((elm), field); \
378 else \
379 (head)->tqh_last = &TAILQ_NEXT((elm), field); \
380 TAILQ_NEXT((listelm), field) = (elm); \
381 (elm)->field.tqe_prev = &TAILQ_NEXT((listelm), field); \
382 } while (0)
383
384 #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \
385 (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \
386 TAILQ_NEXT((elm), field) = (listelm); \
387 *(listelm)->field.tqe_prev = (elm); \
388 (listelm)->field.tqe_prev = &TAILQ_NEXT((elm), field); \
389 } while (0)
390
391 #define TAILQ_INSERT_HEAD(head, elm, field) do { \
392 if ((TAILQ_NEXT((elm), field) = TAILQ_FIRST((head))) != NULL) \
393 TAILQ_FIRST((head))->field.tqe_prev = \
394 &TAILQ_NEXT((elm), field); \
395 else \
396 (head)->tqh_last = &TAILQ_NEXT((elm), field); \
397 TAILQ_FIRST((head)) = (elm); \
398 (elm)->field.tqe_prev = &TAILQ_FIRST((head)); \
399 } while (0)
400
401 #define TAILQ_INSERT_TAIL(head, elm, field) do { \
402 TAILQ_NEXT((elm), field) = NULL; \
403 (elm)->field.tqe_prev = (head)->tqh_last; \
404 *(head)->tqh_last = (elm); \
405 (head)->tqh_last = &TAILQ_NEXT((elm), field); \
406 } while (0)
407
408 #define TAILQ_LAST(head, headname) \
409 (*(((struct headname *)((head)->tqh_last))->tqh_last))
410
411 #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
412
413 #define TAILQ_PREV(elm, headname, field) \
414 (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
415
416 #define TAILQ_REMOVE(head, elm, field) do { \
417 if ((TAILQ_NEXT((elm), field)) != NULL) \
418 TAILQ_NEXT((elm), field)->field.tqe_prev = \
419 (elm)->field.tqe_prev; \
420 else \
421 (head)->tqh_last = (elm)->field.tqe_prev; \
422 *(elm)->field.tqe_prev = TAILQ_NEXT((elm), field); \
423 } while (0)
424
425
426 #ifdef _KERNEL
427
428 /*
429 * XXX insque() and remque() are an old way of handling certain queues.
430 * They bogusly assumes that all queue heads look alike.
431 */
432
433 struct quehead {
434 struct quehead *qh_link;
435 struct quehead *qh_rlink;
436 };
437
438 #ifdef __GNUC__
439
440 static __inline void
insque(void * a,void * b)441 insque(void *a, void *b)
442 {
443 struct quehead *element = (struct quehead *)a,
444 *head = (struct quehead *)b;
445
446 element->qh_link = head->qh_link;
447 element->qh_rlink = head;
448 head->qh_link = element;
449 element->qh_link->qh_rlink = element;
450 }
451
452 static __inline void
remque(void * a)453 remque(void *a)
454 {
455 struct quehead *element = (struct quehead *)a;
456
457 element->qh_link->qh_rlink = element->qh_rlink;
458 element->qh_rlink->qh_link = element->qh_link;
459 element->qh_rlink = 0;
460 }
461
462 #else /* !__GNUC__ */
463
464 void insque(void *a, void *b);
465 void remque(void *a);
466
467 #endif /* __GNUC__ */
468
469 #endif /* _KERNEL */
470
471 #endif /* !_SYS_QUEUE_H_ */
472