xref: /utopia/UTPA2-700.0.x/projects/tools/lint/aeon_include/sys/queue.h (revision 53ee8cc121a030b8d368113ac3e966b4705770ef)
1 /*
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  *	@(#)queue.h	8.5 (Berkeley) 8/20/94
34  * $FreeBSD: src/sys/sys/queue.h,v 1.48 2002/04/17 14:00:37 tmm Exp $
35  */
36 
37 #ifndef _SYS_QUEUE_H_
38 #define	_SYS_QUEUE_H_
39 
40 #include <machine/ansi.h>	/* for __offsetof */
41 
42 /*
43  * This file defines four types of data structures: singly-linked lists,
44  * singly-linked tail queues, lists and tail queues.
45  *
46  * A singly-linked list is headed by a single forward pointer. The elements
47  * are singly linked for minimum space and pointer manipulation overhead at
48  * the expense of O(n) removal for arbitrary elements. New elements can be
49  * added to the list after an existing element or at the head of the list.
50  * Elements being removed from the head of the list should use the explicit
51  * macro for this purpose for optimum efficiency. A singly-linked list may
52  * only be traversed in the forward direction.  Singly-linked lists are ideal
53  * for applications with large datasets and few or no removals or for
54  * implementing a LIFO queue.
55  *
56  * A singly-linked tail queue is headed by a pair of pointers, one to the
57  * head of the list and the other to the tail of the list. The elements are
58  * singly linked for minimum space and pointer manipulation overhead at the
59  * expense of O(n) removal for arbitrary elements. New elements can be added
60  * to the list after an existing element, at the head of the list, or at the
61  * end of the list. Elements being removed from the head of the tail queue
62  * should use the explicit macro for this purpose for optimum efficiency.
63  * A singly-linked tail queue may only be traversed in the forward direction.
64  * Singly-linked tail queues are ideal for applications with large datasets
65  * and few or no removals or for implementing a FIFO queue.
66  *
67  * A list is headed by a single forward pointer (or an array of forward
68  * pointers for a hash table header). The elements are doubly linked
69  * so that an arbitrary element can be removed without a need to
70  * traverse the list. New elements can be added to the list before
71  * or after an existing element or at the head of the list. A list
72  * may only be traversed in the forward direction.
73  *
74  * A tail queue is headed by a pair of pointers, one to the head of the
75  * list and the other to the tail of the list. The elements are doubly
76  * linked so that an arbitrary element can be removed without a need to
77  * traverse the list. New elements can be added to the list before or
78  * after an existing element, at the head of the list, or at the end of
79  * the list. A tail queue may be traversed in either direction.
80  *
81  * For details on the use of these macros, see the queue(3) manual page.
82  *
83  *
84  *			SLIST	LIST	STAILQ	TAILQ
85  * _HEAD		+	+	+	+
86  * _HEAD_INITIALIZER	+	+	+	+
87  * _ENTRY		+	+	+	+
88  * _INIT		+	+	+	+
89  * _EMPTY		+	+	+	+
90  * _FIRST		+	+	+	+
91  * _NEXT		+	+	+	+
92  * _PREV		-	-	-	+
93  * _LAST		-	-	+	+
94  * _FOREACH		+	+	+	+
95  * _FOREACH_REVERSE	-	-	-	+
96  * _INSERT_HEAD		+	+	+	+
97  * _INSERT_BEFORE	-	+	-	+
98  * _INSERT_AFTER	+	+	+	+
99  * _INSERT_TAIL		-	-	+	+
100  * _CONCAT		-	-	+	+
101  * _REMOVE_HEAD		+	-	+	-
102  * _REMOVE		+	+	+	+
103  *
104  */
105 
106 /*
107  * Singly-linked List declarations.
108  */
109 #define	SLIST_HEAD(name, type)						\
110 struct name {								\
111 	struct type *slh_first;	/* first element */			\
112 }
113 
114 #define	SLIST_HEAD_INITIALIZER(head)					\
115 	{ NULL }
116 
117 #define	SLIST_ENTRY(type)						\
118 struct {								\
119 	struct type *sle_next;	/* next element */			\
120 }
121 
122 /*
123  * Singly-linked List functions.
124  */
125 #define	SLIST_EMPTY(head)	((head)->slh_first == NULL)
126 
127 #define	SLIST_FIRST(head)	((head)->slh_first)
128 
129 #define	SLIST_FOREACH(var, head, field)					\
130 	for ((var) = SLIST_FIRST((head));				\
131 	    (var);							\
132 	    (var) = SLIST_NEXT((var), field))
133 
134 #define	SLIST_INIT(head) do {						\
135 	SLIST_FIRST((head)) = NULL;					\
136 } while (0)
137 
138 #define	SLIST_INSERT_AFTER(slistelm, elm, field) do {			\
139 	SLIST_NEXT((elm), field) = SLIST_NEXT((slistelm), field);	\
140 	SLIST_NEXT((slistelm), field) = (elm);				\
141 } while (0)
142 
143 #define	SLIST_INSERT_HEAD(head, elm, field) do {			\
144 	SLIST_NEXT((elm), field) = SLIST_FIRST((head));			\
145 	SLIST_FIRST((head)) = (elm);					\
146 } while (0)
147 
148 #define	SLIST_NEXT(elm, field)	((elm)->field.sle_next)
149 
150 #define	SLIST_REMOVE(head, elm, type, field) do {			\
151 	if (SLIST_FIRST((head)) == (elm)) {				\
152 		SLIST_REMOVE_HEAD((head), field);			\
153 	}								\
154 	else {								\
155 		struct type *curelm = SLIST_FIRST((head));		\
156 		while (SLIST_NEXT(curelm, field) != (elm))		\
157 			curelm = SLIST_NEXT(curelm, field);		\
158 		SLIST_NEXT(curelm, field) =				\
159 		    SLIST_NEXT(SLIST_NEXT(curelm, field), field);	\
160 	}								\
161 } while (0)
162 
163 #define	SLIST_REMOVE_HEAD(head, field) do {				\
164 	SLIST_FIRST((head)) = SLIST_NEXT(SLIST_FIRST((head)), field);	\
165 } while (0)
166 
167 /*
168  * Singly-linked Tail queue declarations.
169  */
170 #define	STAILQ_HEAD(name, type)						\
171 struct name {								\
172 	struct type *stqh_first;/* first element */			\
173 	struct type **stqh_last;/* addr of last next element */		\
174 }
175 
176 #define	STAILQ_HEAD_INITIALIZER(head)					\
177 	{ NULL, &(head).stqh_first }
178 
179 #define	STAILQ_ENTRY(type)						\
180 struct {								\
181 	struct type *stqe_next;	/* next element */			\
182 }
183 
184 /*
185  * Singly-linked Tail queue functions.
186  */
187 #define	STAILQ_CONCAT(head1, head2) do {				\
188 	if (!STAILQ_EMPTY((head2))) {					\
189 		*(head1)->stqh_last = (head2)->stqh_first;		\
190 		(head1)->stqh_last = (head2)->stqh_last;		\
191 		STAILQ_INIT((head2));					\
192 	}								\
193 } while (0)
194 
195 #define	STAILQ_EMPTY(head)	((head)->stqh_first == NULL)
196 
197 #define	STAILQ_FIRST(head)	((head)->stqh_first)
198 
199 #define	STAILQ_FOREACH(var, head, field)				\
200 	for((var) = STAILQ_FIRST((head));				\
201 	   (var);							\
202 	   (var) = STAILQ_NEXT((var), field))
203 
204 #define	STAILQ_INIT(head) do {						\
205 	STAILQ_FIRST((head)) = NULL;					\
206 	(head)->stqh_last = &STAILQ_FIRST((head));			\
207 } while (0)
208 
209 #define	STAILQ_INSERT_AFTER(head, tqelm, elm, field) do {		\
210 	if ((STAILQ_NEXT((elm), field) = STAILQ_NEXT((tqelm), field)) == NULL)\
211 		(head)->stqh_last = &STAILQ_NEXT((elm), field);		\
212 	STAILQ_NEXT((tqelm), field) = (elm);				\
213 } while (0)
214 
215 #define	STAILQ_INSERT_HEAD(head, elm, field) do {			\
216 	if ((STAILQ_NEXT((elm), field) = STAILQ_FIRST((head))) == NULL)	\
217 		(head)->stqh_last = &STAILQ_NEXT((elm), field);		\
218 	STAILQ_FIRST((head)) = (elm);					\
219 } while (0)
220 
221 #define	STAILQ_INSERT_TAIL(head, elm, field) do {			\
222 	STAILQ_NEXT((elm), field) = NULL;				\
223 	*(head)->stqh_last = (elm);					\
224 	(head)->stqh_last = &STAILQ_NEXT((elm), field);			\
225 } while (0)
226 
227 #define	STAILQ_LAST(head, type, field)					\
228 	(STAILQ_EMPTY((head)) ?						\
229 		NULL :							\
230 	        ((struct type *)					\
231 		((char *)((head)->stqh_last) - __offsetof(struct type, field))))
232 
233 #define	STAILQ_NEXT(elm, field)	((elm)->field.stqe_next)
234 
235 #define	STAILQ_REMOVE(head, elm, type, field) do {			\
236 	if (STAILQ_FIRST((head)) == (elm)) {				\
237 		STAILQ_REMOVE_HEAD((head), field);			\
238 	}								\
239 	else {								\
240 		struct type *curelm = STAILQ_FIRST((head));		\
241 		while (STAILQ_NEXT(curelm, field) != (elm))		\
242 			curelm = STAILQ_NEXT(curelm, field);		\
243 		if ((STAILQ_NEXT(curelm, field) =			\
244 		     STAILQ_NEXT(STAILQ_NEXT(curelm, field), field)) == NULL)\
245 			(head)->stqh_last = &STAILQ_NEXT((curelm), field);\
246 	}								\
247 } while (0)
248 
249 #define	STAILQ_REMOVE_HEAD(head, field) do {				\
250 	if ((STAILQ_FIRST((head)) =					\
251 	     STAILQ_NEXT(STAILQ_FIRST((head)), field)) == NULL)		\
252 		(head)->stqh_last = &STAILQ_FIRST((head));		\
253 } while (0)
254 
255 #define	STAILQ_REMOVE_HEAD_UNTIL(head, elm, field) do {			\
256 	if ((STAILQ_FIRST((head)) = STAILQ_NEXT((elm), field)) == NULL)	\
257 		(head)->stqh_last = &STAILQ_FIRST((head));		\
258 } while (0)
259 
260 /*
261  * List declarations.
262  */
263 #define	LIST_HEAD(name, type)						\
264 struct name {								\
265 	struct type *lh_first;	/* first element */			\
266 }
267 
268 #define	LIST_HEAD_INITIALIZER(head)					\
269 	{ NULL }
270 
271 #define	LIST_ENTRY(type)						\
272 struct {								\
273 	struct type *le_next;	/* next element */			\
274 	struct type **le_prev;	/* address of previous next element */	\
275 }
276 
277 /*
278  * List functions.
279  */
280 
281 #define	LIST_EMPTY(head)	((head)->lh_first == NULL)
282 
283 #define	LIST_FIRST(head)	((head)->lh_first)
284 
285 #define	LIST_FOREACH(var, head, field)					\
286 	for ((var) = LIST_FIRST((head));				\
287 	    (var);							\
288 	    (var) = LIST_NEXT((var), field))
289 
290 #define	LIST_INIT(head) do {						\
291 	LIST_FIRST((head)) = NULL;					\
292 } while (0)
293 
294 #define	LIST_INSERT_AFTER(listelm, elm, field) do {			\
295 	if ((LIST_NEXT((elm), field) = LIST_NEXT((listelm), field)) != NULL)\
296 		LIST_NEXT((listelm), field)->field.le_prev =		\
297 		    &LIST_NEXT((elm), field);				\
298 	LIST_NEXT((listelm), field) = (elm);				\
299 	(elm)->field.le_prev = &LIST_NEXT((listelm), field);		\
300 } while (0)
301 
302 #define	LIST_INSERT_BEFORE(listelm, elm, field) do {			\
303 	(elm)->field.le_prev = (listelm)->field.le_prev;		\
304 	LIST_NEXT((elm), field) = (listelm);				\
305 	*(listelm)->field.le_prev = (elm);				\
306 	(listelm)->field.le_prev = &LIST_NEXT((elm), field);		\
307 } while (0)
308 
309 #define	LIST_INSERT_HEAD(head, elm, field) do {				\
310 	if ((LIST_NEXT((elm), field) = LIST_FIRST((head))) != NULL)	\
311 		LIST_FIRST((head))->field.le_prev = &LIST_NEXT((elm), field);\
312 	LIST_FIRST((head)) = (elm);					\
313 	(elm)->field.le_prev = &LIST_FIRST((head));			\
314 } while (0)
315 
316 #define	LIST_NEXT(elm, field)	((elm)->field.le_next)
317 
318 #define	LIST_REMOVE(elm, field) do {					\
319 	if (LIST_NEXT((elm), field) != NULL)				\
320 		LIST_NEXT((elm), field)->field.le_prev = 		\
321 		    (elm)->field.le_prev;				\
322 	*(elm)->field.le_prev = LIST_NEXT((elm), field);		\
323 } while (0)
324 
325 /*
326  * Tail queue declarations.
327  */
328 #define	TAILQ_HEAD(name, type)						\
329 struct name {								\
330 	struct type *tqh_first;	/* first element */			\
331 	struct type **tqh_last;	/* addr of last next element */		\
332 }
333 
334 #define	TAILQ_HEAD_INITIALIZER(head)					\
335 	{ NULL, &(head).tqh_first }
336 
337 #define	TAILQ_ENTRY(type)						\
338 struct {								\
339 	struct type *tqe_next;	/* next element */			\
340 	struct type **tqe_prev;	/* address of previous next element */	\
341 }
342 
343 /*
344  * Tail queue functions.
345  */
346 #define	TAILQ_CONCAT(head1, head2, field) do {				\
347 	if (!TAILQ_EMPTY(head2)) {					\
348 		*(head1)->tqh_last = (head2)->tqh_first;		\
349 		(head2)->tqh_first->field.tqe_prev = (head1)->tqh_last;	\
350 		(head1)->tqh_last = (head2)->tqh_last;			\
351 		TAILQ_INIT((head2));					\
352 	}								\
353 } while (0)
354 
355 #define	TAILQ_EMPTY(head)	((head)->tqh_first == NULL)
356 
357 #define	TAILQ_FIRST(head)	((head)->tqh_first)
358 
359 #define	TAILQ_FOREACH(var, head, field)					\
360 	for ((var) = TAILQ_FIRST((head));				\
361 	    (var);							\
362 	    (var) = TAILQ_NEXT((var), field))
363 
364 #define	TAILQ_FOREACH_REVERSE(var, head, headname, field)		\
365 	for ((var) = TAILQ_LAST((head), headname);			\
366 	    (var);							\
367 	    (var) = TAILQ_PREV((var), headname, field))
368 
369 #define	TAILQ_INIT(head) do {						\
370 	TAILQ_FIRST((head)) = NULL;					\
371 	(head)->tqh_last = &TAILQ_FIRST((head));			\
372 } while (0)
373 
374 #define	TAILQ_INSERT_AFTER(head, listelm, elm, field) do {		\
375 	if ((TAILQ_NEXT((elm), field) = TAILQ_NEXT((listelm), field)) != NULL)\
376 		TAILQ_NEXT((elm), field)->field.tqe_prev = 		\
377 		    &TAILQ_NEXT((elm), field);				\
378 	else								\
379 		(head)->tqh_last = &TAILQ_NEXT((elm), field);		\
380 	TAILQ_NEXT((listelm), field) = (elm);				\
381 	(elm)->field.tqe_prev = &TAILQ_NEXT((listelm), field);		\
382 } while (0)
383 
384 #define	TAILQ_INSERT_BEFORE(listelm, elm, field) do {			\
385 	(elm)->field.tqe_prev = (listelm)->field.tqe_prev;		\
386 	TAILQ_NEXT((elm), field) = (listelm);				\
387 	*(listelm)->field.tqe_prev = (elm);				\
388 	(listelm)->field.tqe_prev = &TAILQ_NEXT((elm), field);		\
389 } while (0)
390 
391 #define	TAILQ_INSERT_HEAD(head, elm, field) do {			\
392 	if ((TAILQ_NEXT((elm), field) = TAILQ_FIRST((head))) != NULL)	\
393 		TAILQ_FIRST((head))->field.tqe_prev =			\
394 		    &TAILQ_NEXT((elm), field);				\
395 	else								\
396 		(head)->tqh_last = &TAILQ_NEXT((elm), field);		\
397 	TAILQ_FIRST((head)) = (elm);					\
398 	(elm)->field.tqe_prev = &TAILQ_FIRST((head));			\
399 } while (0)
400 
401 #define	TAILQ_INSERT_TAIL(head, elm, field) do {			\
402 	TAILQ_NEXT((elm), field) = NULL;				\
403 	(elm)->field.tqe_prev = (head)->tqh_last;			\
404 	*(head)->tqh_last = (elm);					\
405 	(head)->tqh_last = &TAILQ_NEXT((elm), field);			\
406 } while (0)
407 
408 #define	TAILQ_LAST(head, headname)					\
409 	(*(((struct headname *)((head)->tqh_last))->tqh_last))
410 
411 #define	TAILQ_NEXT(elm, field) ((elm)->field.tqe_next)
412 
413 #define	TAILQ_PREV(elm, headname, field)				\
414 	(*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
415 
416 #define	TAILQ_REMOVE(head, elm, field) do {				\
417 	if ((TAILQ_NEXT((elm), field)) != NULL)				\
418 		TAILQ_NEXT((elm), field)->field.tqe_prev = 		\
419 		    (elm)->field.tqe_prev;				\
420 	else								\
421 		(head)->tqh_last = (elm)->field.tqe_prev;		\
422 	*(elm)->field.tqe_prev = TAILQ_NEXT((elm), field);		\
423 } while (0)
424 
425 
426 #ifdef _KERNEL
427 
428 /*
429  * XXX insque() and remque() are an old way of handling certain queues.
430  * They bogusly assumes that all queue heads look alike.
431  */
432 
433 struct quehead {
434 	struct quehead *qh_link;
435 	struct quehead *qh_rlink;
436 };
437 
438 #ifdef	__GNUC__
439 
440 static __inline void
insque(void * a,void * b)441 insque(void *a, void *b)
442 {
443 	struct quehead *element = (struct quehead *)a,
444 		 *head = (struct quehead *)b;
445 
446 	element->qh_link = head->qh_link;
447 	element->qh_rlink = head;
448 	head->qh_link = element;
449 	element->qh_link->qh_rlink = element;
450 }
451 
452 static __inline void
remque(void * a)453 remque(void *a)
454 {
455 	struct quehead *element = (struct quehead *)a;
456 
457 	element->qh_link->qh_rlink = element->qh_rlink;
458 	element->qh_rlink->qh_link = element->qh_link;
459 	element->qh_rlink = 0;
460 }
461 
462 #else /* !__GNUC__ */
463 
464 void	insque(void *a, void *b);
465 void	remque(void *a);
466 
467 #endif /* __GNUC__ */
468 
469 #endif /* _KERNEL */
470 
471 #endif /* !_SYS_QUEUE_H_ */
472