1*53ee8cc1Swenshuai.xi //<MStar Software> 2*53ee8cc1Swenshuai.xi //****************************************************************************** 3*53ee8cc1Swenshuai.xi // MStar Software 4*53ee8cc1Swenshuai.xi // Copyright (c) 2010 - 2012 MStar Semiconductor, Inc. All rights reserved. 5*53ee8cc1Swenshuai.xi // All software, firmware and related documentation herein ("MStar Software") are 6*53ee8cc1Swenshuai.xi // intellectual property of MStar Semiconductor, Inc. ("MStar") and protected by 7*53ee8cc1Swenshuai.xi // law, including, but not limited to, copyright law and international treaties. 8*53ee8cc1Swenshuai.xi // Any use, modification, reproduction, retransmission, or republication of all 9*53ee8cc1Swenshuai.xi // or part of MStar Software is expressly prohibited, unless prior written 10*53ee8cc1Swenshuai.xi // permission has been granted by MStar. 11*53ee8cc1Swenshuai.xi // 12*53ee8cc1Swenshuai.xi // By accessing, browsing and/or using MStar Software, you acknowledge that you 13*53ee8cc1Swenshuai.xi // have read, understood, and agree, to be bound by below terms ("Terms") and to 14*53ee8cc1Swenshuai.xi // comply with all applicable laws and regulations: 15*53ee8cc1Swenshuai.xi // 16*53ee8cc1Swenshuai.xi // 1. MStar shall retain any and all right, ownership and interest to MStar 17*53ee8cc1Swenshuai.xi // Software and any modification/derivatives thereof. 18*53ee8cc1Swenshuai.xi // No right, ownership, or interest to MStar Software and any 19*53ee8cc1Swenshuai.xi // modification/derivatives thereof is transferred to you under Terms. 20*53ee8cc1Swenshuai.xi // 21*53ee8cc1Swenshuai.xi // 2. You understand that MStar Software might include, incorporate or be 22*53ee8cc1Swenshuai.xi // supplied together with third party`s software and the use of MStar 23*53ee8cc1Swenshuai.xi // Software may require additional licenses from third parties. 24*53ee8cc1Swenshuai.xi // Therefore, you hereby agree it is your sole responsibility to separately 25*53ee8cc1Swenshuai.xi // obtain any and all third party right and license necessary for your use of 26*53ee8cc1Swenshuai.xi // such third party`s software. 27*53ee8cc1Swenshuai.xi // 28*53ee8cc1Swenshuai.xi // 3. MStar Software and any modification/derivatives thereof shall be deemed as 29*53ee8cc1Swenshuai.xi // MStar`s confidential information and you agree to keep MStar`s 30*53ee8cc1Swenshuai.xi // confidential information in strictest confidence and not disclose to any 31*53ee8cc1Swenshuai.xi // third party. 32*53ee8cc1Swenshuai.xi // 33*53ee8cc1Swenshuai.xi // 4. MStar Software is provided on an "AS IS" basis without warranties of any 34*53ee8cc1Swenshuai.xi // kind. Any warranties are hereby expressly disclaimed by MStar, including 35*53ee8cc1Swenshuai.xi // without limitation, any warranties of merchantability, non-infringement of 36*53ee8cc1Swenshuai.xi // intellectual property rights, fitness for a particular purpose, error free 37*53ee8cc1Swenshuai.xi // and in conformity with any international standard. You agree to waive any 38*53ee8cc1Swenshuai.xi // claim against MStar for any loss, damage, cost or expense that you may 39*53ee8cc1Swenshuai.xi // incur related to your use of MStar Software. 40*53ee8cc1Swenshuai.xi // In no event shall MStar be liable for any direct, indirect, incidental or 41*53ee8cc1Swenshuai.xi // consequential damages, including without limitation, lost of profit or 42*53ee8cc1Swenshuai.xi // revenues, lost or damage of data, and unauthorized system use. 43*53ee8cc1Swenshuai.xi // You agree that this Section 4 shall still apply without being affected 44*53ee8cc1Swenshuai.xi // even if MStar Software has been modified by MStar in accordance with your 45*53ee8cc1Swenshuai.xi // request or instruction for your use, except otherwise agreed by both 46*53ee8cc1Swenshuai.xi // parties in writing. 47*53ee8cc1Swenshuai.xi // 48*53ee8cc1Swenshuai.xi // 5. If requested, MStar may from time to time provide technical supports or 49*53ee8cc1Swenshuai.xi // services in relation with MStar Software to you for your use of 50*53ee8cc1Swenshuai.xi // MStar Software in conjunction with your or your customer`s product 51*53ee8cc1Swenshuai.xi // ("Services"). 52*53ee8cc1Swenshuai.xi // You understand and agree that, except otherwise agreed by both parties in 53*53ee8cc1Swenshuai.xi // writing, Services are provided on an "AS IS" basis and the warranty 54*53ee8cc1Swenshuai.xi // disclaimer set forth in Section 4 above shall apply. 55*53ee8cc1Swenshuai.xi // 56*53ee8cc1Swenshuai.xi // 6. Nothing contained herein shall be construed as by implication, estoppels 57*53ee8cc1Swenshuai.xi // or otherwise: 58*53ee8cc1Swenshuai.xi // (a) conferring any license or right to use MStar name, trademark, service 59*53ee8cc1Swenshuai.xi // mark, symbol or any other identification; 60*53ee8cc1Swenshuai.xi // (b) obligating MStar or any of its affiliates to furnish any person, 61*53ee8cc1Swenshuai.xi // including without limitation, you and your customers, any assistance 62*53ee8cc1Swenshuai.xi // of any kind whatsoever, or any information; or 63*53ee8cc1Swenshuai.xi // (c) conferring any license or right under any intellectual property right. 64*53ee8cc1Swenshuai.xi // 65*53ee8cc1Swenshuai.xi // 7. These terms shall be governed by and construed in accordance with the laws 66*53ee8cc1Swenshuai.xi // of Taiwan, R.O.C., excluding its conflict of law rules. 67*53ee8cc1Swenshuai.xi // Any and all dispute arising out hereof or related hereto shall be finally 68*53ee8cc1Swenshuai.xi // settled by arbitration referred to the Chinese Arbitration Association, 69*53ee8cc1Swenshuai.xi // Taipei in accordance with the ROC Arbitration Law and the Arbitration 70*53ee8cc1Swenshuai.xi // Rules of the Association by three (3) arbitrators appointed in accordance 71*53ee8cc1Swenshuai.xi // with the said Rules. 72*53ee8cc1Swenshuai.xi // The place of arbitration shall be in Taipei, Taiwan and the language shall 73*53ee8cc1Swenshuai.xi // be English. 74*53ee8cc1Swenshuai.xi // The arbitration award shall be final and binding to both parties. 75*53ee8cc1Swenshuai.xi // 76*53ee8cc1Swenshuai.xi //****************************************************************************** 77*53ee8cc1Swenshuai.xi //<MStar Software> 78*53ee8cc1Swenshuai.xi /* 79*53ee8cc1Swenshuai.xi * jidctint.c 80*53ee8cc1Swenshuai.xi * 81*53ee8cc1Swenshuai.xi * Copyright (C) 1991-1998, Thomas G. Lane. 82*53ee8cc1Swenshuai.xi * This file is part of the Independent JPEG Group's software. 83*53ee8cc1Swenshuai.xi * For conditions of distribution and use, see the accompanying README file. 84*53ee8cc1Swenshuai.xi * 85*53ee8cc1Swenshuai.xi * This file contains a slow-but-accurate integer implementation of the 86*53ee8cc1Swenshuai.xi * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine 87*53ee8cc1Swenshuai.xi * must also perform dequantization of the input coefficients. 88*53ee8cc1Swenshuai.xi * 89*53ee8cc1Swenshuai.xi * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT 90*53ee8cc1Swenshuai.xi * on each row (or vice versa, but it's more convenient to emit a row at 91*53ee8cc1Swenshuai.xi * a time). Direct algorithms are also available, but they are much more 92*53ee8cc1Swenshuai.xi * complex and seem not to be any faster when reduced to code. 93*53ee8cc1Swenshuai.xi * 94*53ee8cc1Swenshuai.xi * This implementation is based on an algorithm described in 95*53ee8cc1Swenshuai.xi * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT 96*53ee8cc1Swenshuai.xi * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, 97*53ee8cc1Swenshuai.xi * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. 98*53ee8cc1Swenshuai.xi * The primary algorithm described there uses 11 multiplies and 29 adds. 99*53ee8cc1Swenshuai.xi * We use their alternate method with 12 multiplies and 32 adds. 100*53ee8cc1Swenshuai.xi * The advantage of this method is that no data path contains more than one 101*53ee8cc1Swenshuai.xi * multiplication; this allows a very simple and accurate implementation in 102*53ee8cc1Swenshuai.xi * scaled fixed-point arithmetic, with a minimal number of shifts. 103*53ee8cc1Swenshuai.xi */ 104*53ee8cc1Swenshuai.xi 105*53ee8cc1Swenshuai.xi #include "jpegmain.h" 106*53ee8cc1Swenshuai.xi #include "apiJPEG.h" 107*53ee8cc1Swenshuai.xi ///#define JPEG_INTERNALS 108*53ee8cc1Swenshuai.xi ///#include "jinclude.h" 109*53ee8cc1Swenshuai.xi ///#include "jpeglib.h" 110*53ee8cc1Swenshuai.xi ///#include "jdct.h" /* Private declarations for DCT subsystem */ 111*53ee8cc1Swenshuai.xi 112*53ee8cc1Swenshuai.xi #if 1///def DCT_ISLOW_SUPPORTED 113*53ee8cc1Swenshuai.xi 114*53ee8cc1Swenshuai.xi 115*53ee8cc1Swenshuai.xi /* 116*53ee8cc1Swenshuai.xi * This module is specialized to the case DCTSIZE = 8. 117*53ee8cc1Swenshuai.xi */ 118*53ee8cc1Swenshuai.xi 119*53ee8cc1Swenshuai.xi #define DCTSIZE 8 120*53ee8cc1Swenshuai.xi #define BITS_IN_JSAMPLE 8 121*53ee8cc1Swenshuai.xi 122*53ee8cc1Swenshuai.xi 123*53ee8cc1Swenshuai.xi #if DCTSIZE != 8 124*53ee8cc1Swenshuai.xi Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ 125*53ee8cc1Swenshuai.xi #endif 126*53ee8cc1Swenshuai.xi 127*53ee8cc1Swenshuai.xi 128*53ee8cc1Swenshuai.xi /* 129*53ee8cc1Swenshuai.xi * The poop on this scaling stuff is as follows: 130*53ee8cc1Swenshuai.xi * 131*53ee8cc1Swenshuai.xi * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) 132*53ee8cc1Swenshuai.xi * larger than the true IDCT outputs. The final outputs are therefore 133*53ee8cc1Swenshuai.xi * a factor of N larger than desired; since N=8 this can be cured by 134*53ee8cc1Swenshuai.xi * a simple right shift at the end of the algorithm. The advantage of 135*53ee8cc1Swenshuai.xi * this arrangement is that we save two multiplications per 1-D IDCT, 136*53ee8cc1Swenshuai.xi * because the y0 and y4 inputs need not be divided by sqrt(N). 137*53ee8cc1Swenshuai.xi * 138*53ee8cc1Swenshuai.xi * We have to do addition and subtraction of the integer inputs, which 139*53ee8cc1Swenshuai.xi * is no problem, and multiplication by fractional constants, which is 140*53ee8cc1Swenshuai.xi * a problem to do in integer arithmetic. We multiply all the constants 141*53ee8cc1Swenshuai.xi * by CONST_SCALE and convert them to integer constants (thus retaining 142*53ee8cc1Swenshuai.xi * CONST_BITS bits of precision in the constants). After doing a 143*53ee8cc1Swenshuai.xi * multiplication we have to divide the product by CONST_SCALE, with proper 144*53ee8cc1Swenshuai.xi * rounding, to produce the correct output. This division can be done 145*53ee8cc1Swenshuai.xi * cheaply as a right shift of CONST_BITS bits. We postpone shifting 146*53ee8cc1Swenshuai.xi * as long as possible so that partial sums can be added together with 147*53ee8cc1Swenshuai.xi * full fractional precision. 148*53ee8cc1Swenshuai.xi * 149*53ee8cc1Swenshuai.xi * The outputs of the first pass are scaled up by PASS1_BITS bits so that 150*53ee8cc1Swenshuai.xi * they are represented to better-than-integral precision. These outputs 151*53ee8cc1Swenshuai.xi * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word 152*53ee8cc1Swenshuai.xi * with the recommended scaling. (To scale up 12-bit sample data further, an 153*53ee8cc1Swenshuai.xi * intermediate INT32 array would be needed.) 154*53ee8cc1Swenshuai.xi * 155*53ee8cc1Swenshuai.xi * To avoid overflow of the 32-bit intermediate results in pass 2, we must 156*53ee8cc1Swenshuai.xi * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis 157*53ee8cc1Swenshuai.xi * shows that the values given below are the most effective. 158*53ee8cc1Swenshuai.xi */ 159*53ee8cc1Swenshuai.xi 160*53ee8cc1Swenshuai.xi #if BITS_IN_JSAMPLE == 8 161*53ee8cc1Swenshuai.xi #define CONST_BITS 13 162*53ee8cc1Swenshuai.xi #define PASS1_BITS 2 163*53ee8cc1Swenshuai.xi #else 164*53ee8cc1Swenshuai.xi #define CONST_BITS 13 165*53ee8cc1Swenshuai.xi #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ 166*53ee8cc1Swenshuai.xi #endif 167*53ee8cc1Swenshuai.xi 168*53ee8cc1Swenshuai.xi /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus 169*53ee8cc1Swenshuai.xi * causing a lot of useless floating-point operations at run time. 170*53ee8cc1Swenshuai.xi * To get around this we use the following pre-calculated constants. 171*53ee8cc1Swenshuai.xi * If you change CONST_BITS you may want to add appropriate values. 172*53ee8cc1Swenshuai.xi * (With a reasonable C compiler, you can just rely on the FIX() macro...) 173*53ee8cc1Swenshuai.xi */ 174*53ee8cc1Swenshuai.xi 175*53ee8cc1Swenshuai.xi #if CONST_BITS == 13 176*53ee8cc1Swenshuai.xi #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */ 177*53ee8cc1Swenshuai.xi #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */ 178*53ee8cc1Swenshuai.xi #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */ 179*53ee8cc1Swenshuai.xi #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */ 180*53ee8cc1Swenshuai.xi #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */ 181*53ee8cc1Swenshuai.xi #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */ 182*53ee8cc1Swenshuai.xi #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */ 183*53ee8cc1Swenshuai.xi #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */ 184*53ee8cc1Swenshuai.xi #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */ 185*53ee8cc1Swenshuai.xi #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */ 186*53ee8cc1Swenshuai.xi #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */ 187*53ee8cc1Swenshuai.xi #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */ 188*53ee8cc1Swenshuai.xi #else 189*53ee8cc1Swenshuai.xi #define FIX_0_298631336 FIX(0.298631336) 190*53ee8cc1Swenshuai.xi #define FIX_0_390180644 FIX(0.390180644) 191*53ee8cc1Swenshuai.xi #define FIX_0_541196100 FIX(0.541196100) 192*53ee8cc1Swenshuai.xi #define FIX_0_765366865 FIX(0.765366865) 193*53ee8cc1Swenshuai.xi #define FIX_0_899976223 FIX(0.899976223) 194*53ee8cc1Swenshuai.xi #define FIX_1_175875602 FIX(1.175875602) 195*53ee8cc1Swenshuai.xi #define FIX_1_501321110 FIX(1.501321110) 196*53ee8cc1Swenshuai.xi #define FIX_1_847759065 FIX(1.847759065) 197*53ee8cc1Swenshuai.xi #define FIX_1_961570560 FIX(1.961570560) 198*53ee8cc1Swenshuai.xi #define FIX_2_053119869 FIX(2.053119869) 199*53ee8cc1Swenshuai.xi #define FIX_2_562915447 FIX(2.562915447) 200*53ee8cc1Swenshuai.xi #define FIX_3_072711026 FIX(3.072711026) 201*53ee8cc1Swenshuai.xi #endif 202*53ee8cc1Swenshuai.xi 203*53ee8cc1Swenshuai.xi 204*53ee8cc1Swenshuai.xi /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. 205*53ee8cc1Swenshuai.xi * For 8-bit samples with the recommended scaling, all the variable 206*53ee8cc1Swenshuai.xi * and constant values involved are no more than 16 bits wide, so a 207*53ee8cc1Swenshuai.xi * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. 208*53ee8cc1Swenshuai.xi * For 12-bit samples, a full 32-bit multiplication will be needed. 209*53ee8cc1Swenshuai.xi */ 210*53ee8cc1Swenshuai.xi 211*53ee8cc1Swenshuai.xi /* 212*53ee8cc1Swenshuai.xi #if 0 ///BITS_IN_JSAMPLE == 8 213*53ee8cc1Swenshuai.xi #define MULTIPLY(var,const) MULTIPLY16C16(var,const) 214*53ee8cc1Swenshuai.xi #else 215*53ee8cc1Swenshuai.xi #define MULTIPLY(var,const) ((var) * (const)) 216*53ee8cc1Swenshuai.xi #endif 217*53ee8cc1Swenshuai.xi */ 218*53ee8cc1Swenshuai.xi #define MULTIPLY(var,cnst) ((var) * (cnst)) 219*53ee8cc1Swenshuai.xi 220*53ee8cc1Swenshuai.xi /* Dequantize a coefficient by multiplying it by the multiplier-table 221*53ee8cc1Swenshuai.xi * entry; produce an int result. In this module, both inputs and result 222*53ee8cc1Swenshuai.xi * are 16 bits or less, so either int or short multiply will work. 223*53ee8cc1Swenshuai.xi */ 224*53ee8cc1Swenshuai.xi 225*53ee8cc1Swenshuai.xi #define ISLOW_MULT_TYPE int 226*53ee8cc1Swenshuai.xi #define DEQUANTIZE(coef,quantval) (coef) //(((ISLOW_MULT_TYPE) (coef)) ) ///(((ISLOW_MULT_TYPE) (coef)) * (quantval)) 227*53ee8cc1Swenshuai.xi 228*53ee8cc1Swenshuai.xi //#define DESCALE(x,n) ( ( (x) + (1 << ((n)-1)) ) >> n) 229*53ee8cc1Swenshuai.xi #define SCALEDONE ((int32) 1) 230*53ee8cc1Swenshuai.xi #define DESCALE(x,n) (((x) + (SCALEDONE << ((n)-1))) >> (n)) 231*53ee8cc1Swenshuai.xi 232*53ee8cc1Swenshuai.xi /* 233*53ee8cc1Swenshuai.xi * Perform dequantization and inverse DCT on one block of coefficients. 234*53ee8cc1Swenshuai.xi */ 235*53ee8cc1Swenshuai.xi 236*53ee8cc1Swenshuai.xi ///GLOBAL(void) 237*53ee8cc1Swenshuai.xi ///jpeg_idct_islow (j_decompress_ptr cinfo, jpeg_component_info * compptr, 238*53ee8cc1Swenshuai.xi /// JCOEFPTR coef_block, 239*53ee8cc1Swenshuai.xi /// JSAMPARRAY output_buf, JDIMENSION output_col) 240*53ee8cc1Swenshuai.xi #define clamp(i) if (i & 0xFF00) i = (((~i) >> 15) & 0xFF); 241*53ee8cc1Swenshuai.xi void jpeg_idct_islow( JPEG_BLOCK_TYPE *data, U8 *Pdst_ptr ) 242*53ee8cc1Swenshuai.xi { 243*53ee8cc1Swenshuai.xi #define INT32 S32 244*53ee8cc1Swenshuai.xi #define DCTSIZE2 64 245*53ee8cc1Swenshuai.xi #define DCTSIZE 8 246*53ee8cc1Swenshuai.xi 247*53ee8cc1Swenshuai.xi INT32 tmp0, tmp1, tmp2, tmp3; 248*53ee8cc1Swenshuai.xi INT32 tmp10, tmp11, tmp12, tmp13; 249*53ee8cc1Swenshuai.xi INT32 z1, z2, z3, z4, z5; 250*53ee8cc1Swenshuai.xi ///JCOEFPTR inptr; 251*53ee8cc1Swenshuai.xi register JPEG_BLOCK_TYPE *inptr; 252*53ee8cc1Swenshuai.xi ///ISLOW_MULT_TYPE *quantptr; 253*53ee8cc1Swenshuai.xi U8 *outptr = Pdst_ptr; 254*53ee8cc1Swenshuai.xi ///JSAMPLE *range_limit = IDCT_range_limit(cinfo); 255*53ee8cc1Swenshuai.xi int ctr; 256*53ee8cc1Swenshuai.xi JPEG_BLOCK_TYPE workspace[DCTSIZE2]; /* buffers data between passes */ 257*53ee8cc1Swenshuai.xi JPEG_BLOCK_TYPE *wsptr; 258*53ee8cc1Swenshuai.xi ///SHIFT_TEMPS 259*53ee8cc1Swenshuai.xi S16 i; 260*53ee8cc1Swenshuai.xi //printf("Jidctint::jpeg_idct_islow\n"); 261*53ee8cc1Swenshuai.xi /* Pass 1: process columns from input, store into work array. */ 262*53ee8cc1Swenshuai.xi /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ 263*53ee8cc1Swenshuai.xi /* furthermore, we scale the results by 2**PASS1_BITS. */ 264*53ee8cc1Swenshuai.xi 265*53ee8cc1Swenshuai.xi inptr = data; 266*53ee8cc1Swenshuai.xi ///quantptr = (ISLOW_MULT_TYPE *) compptr->dct_table; 267*53ee8cc1Swenshuai.xi wsptr = workspace; 268*53ee8cc1Swenshuai.xi for ( ctr = DCTSIZE; ctr > 0; ctr-- ) 269*53ee8cc1Swenshuai.xi { 270*53ee8cc1Swenshuai.xi /* Due to quantization, we will usually find that many of the input 271*53ee8cc1Swenshuai.xi * coefficients are zero, especially the AC terms. We can exploit this 272*53ee8cc1Swenshuai.xi * by short-circuiting the IDCT calculation for any column in which all 273*53ee8cc1Swenshuai.xi * the AC terms are zero. In that case each output is equal to the 274*53ee8cc1Swenshuai.xi * DC coefficient (with scale factor as needed). 275*53ee8cc1Swenshuai.xi * With typical images and quantization tables, half or more of the 276*53ee8cc1Swenshuai.xi * column DCT calculations can be simplified this way. 277*53ee8cc1Swenshuai.xi */ 278*53ee8cc1Swenshuai.xi 279*53ee8cc1Swenshuai.xi if ( ( inptr[DCTSIZE * 1] | inptr[DCTSIZE * 2] | inptr[DCTSIZE * 3] | inptr[DCTSIZE * 4] | inptr[DCTSIZE * 5] | inptr[DCTSIZE * 6] | inptr[DCTSIZE * 7] ) == 0 ) 280*53ee8cc1Swenshuai.xi { 281*53ee8cc1Swenshuai.xi /* AC terms all zero */ 282*53ee8cc1Swenshuai.xi int dcval = DEQUANTIZE( inptr[DCTSIZE*0], quantptr[DCTSIZE*0] ) << PASS1_BITS; 283*53ee8cc1Swenshuai.xi 284*53ee8cc1Swenshuai.xi wsptr[DCTSIZE * 0] = dcval; 285*53ee8cc1Swenshuai.xi wsptr[DCTSIZE * 1] = dcval; 286*53ee8cc1Swenshuai.xi wsptr[DCTSIZE * 2] = dcval; 287*53ee8cc1Swenshuai.xi wsptr[DCTSIZE * 3] = dcval; 288*53ee8cc1Swenshuai.xi wsptr[DCTSIZE * 4] = dcval; 289*53ee8cc1Swenshuai.xi wsptr[DCTSIZE * 5] = dcval; 290*53ee8cc1Swenshuai.xi wsptr[DCTSIZE * 6] = dcval; 291*53ee8cc1Swenshuai.xi wsptr[DCTSIZE * 7] = dcval; 292*53ee8cc1Swenshuai.xi 293*53ee8cc1Swenshuai.xi inptr++; /* advance pointers to next column */ 294*53ee8cc1Swenshuai.xi //quantptr++; 295*53ee8cc1Swenshuai.xi wsptr++; 296*53ee8cc1Swenshuai.xi continue; 297*53ee8cc1Swenshuai.xi } 298*53ee8cc1Swenshuai.xi 299*53ee8cc1Swenshuai.xi /* Even part: reverse the even part of the forward DCT. */ 300*53ee8cc1Swenshuai.xi /* The rotator is sqrt(2)*c(-6). */ 301*53ee8cc1Swenshuai.xi 302*53ee8cc1Swenshuai.xi z2 = DEQUANTIZE( inptr[DCTSIZE * 2], quantptr[DCTSIZE * 2] ); 303*53ee8cc1Swenshuai.xi z3 = DEQUANTIZE( inptr[DCTSIZE * 6], quantptr[DCTSIZE * 6] ); 304*53ee8cc1Swenshuai.xi 305*53ee8cc1Swenshuai.xi z1 = MULTIPLY( z2 + z3, FIX_0_541196100 ); 306*53ee8cc1Swenshuai.xi tmp2 = z1 + MULTIPLY( z3, -FIX_1_847759065 ); 307*53ee8cc1Swenshuai.xi tmp3 = z1 + MULTIPLY( z2, FIX_0_765366865 ); 308*53ee8cc1Swenshuai.xi 309*53ee8cc1Swenshuai.xi z2 = DEQUANTIZE( inptr[DCTSIZE * 0], quantptr[DCTSIZE * 0] ); 310*53ee8cc1Swenshuai.xi z3 = DEQUANTIZE( inptr[DCTSIZE * 4], quantptr[DCTSIZE * 4] ); 311*53ee8cc1Swenshuai.xi 312*53ee8cc1Swenshuai.xi tmp0 = ( z2 + z3 ) << CONST_BITS; 313*53ee8cc1Swenshuai.xi tmp1 = ( z2 - z3 ) << CONST_BITS; 314*53ee8cc1Swenshuai.xi 315*53ee8cc1Swenshuai.xi tmp10 = tmp0 + tmp3; 316*53ee8cc1Swenshuai.xi tmp13 = tmp0 - tmp3; 317*53ee8cc1Swenshuai.xi tmp11 = tmp1 + tmp2; 318*53ee8cc1Swenshuai.xi tmp12 = tmp1 - tmp2; 319*53ee8cc1Swenshuai.xi 320*53ee8cc1Swenshuai.xi /* Odd part per figure 8; the matrix is unitary and hence its 321*53ee8cc1Swenshuai.xi * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. 322*53ee8cc1Swenshuai.xi */ 323*53ee8cc1Swenshuai.xi 324*53ee8cc1Swenshuai.xi tmp0 = DEQUANTIZE( inptr[DCTSIZE * 7], quantptr[DCTSIZE * 7] ); 325*53ee8cc1Swenshuai.xi tmp1 = DEQUANTIZE( inptr[DCTSIZE * 5], quantptr[DCTSIZE * 5] ); 326*53ee8cc1Swenshuai.xi tmp2 = DEQUANTIZE( inptr[DCTSIZE * 3], quantptr[DCTSIZE * 3] ); 327*53ee8cc1Swenshuai.xi tmp3 = DEQUANTIZE( inptr[DCTSIZE * 1], quantptr[DCTSIZE * 1] ); 328*53ee8cc1Swenshuai.xi 329*53ee8cc1Swenshuai.xi z1 = tmp0 + tmp3; 330*53ee8cc1Swenshuai.xi z2 = tmp1 + tmp2; 331*53ee8cc1Swenshuai.xi z3 = tmp0 + tmp2; 332*53ee8cc1Swenshuai.xi z4 = tmp1 + tmp3; 333*53ee8cc1Swenshuai.xi z5 = MULTIPLY( z3 + z4, FIX_1_175875602 ); /* sqrt(2) * c3 */ 334*53ee8cc1Swenshuai.xi 335*53ee8cc1Swenshuai.xi tmp0 = MULTIPLY( tmp0, FIX_0_298631336 ); /* sqrt(2) * (-c1+c3+c5-c7) */ 336*53ee8cc1Swenshuai.xi tmp1 = MULTIPLY( tmp1, FIX_2_053119869 ); /* sqrt(2) * ( c1+c3-c5+c7) */ 337*53ee8cc1Swenshuai.xi tmp2 = MULTIPLY( tmp2, FIX_3_072711026 ); /* sqrt(2) * ( c1+c3+c5-c7) */ 338*53ee8cc1Swenshuai.xi tmp3 = MULTIPLY( tmp3, FIX_1_501321110 ); /* sqrt(2) * ( c1+c3-c5-c7) */ 339*53ee8cc1Swenshuai.xi z1 = MULTIPLY( z1, -FIX_0_899976223 ); /* sqrt(2) * (c7-c3) */ 340*53ee8cc1Swenshuai.xi z2 = MULTIPLY( z2, -FIX_2_562915447 ); /* sqrt(2) * (-c1-c3) */ 341*53ee8cc1Swenshuai.xi z3 = MULTIPLY( z3, -FIX_1_961570560 ); /* sqrt(2) * (-c3-c5) */ 342*53ee8cc1Swenshuai.xi z4 = MULTIPLY( z4, -FIX_0_390180644 ); /* sqrt(2) * (c5-c3) */ 343*53ee8cc1Swenshuai.xi 344*53ee8cc1Swenshuai.xi z3 += z5; 345*53ee8cc1Swenshuai.xi z4 += z5; 346*53ee8cc1Swenshuai.xi 347*53ee8cc1Swenshuai.xi tmp0 += z1 + z3; 348*53ee8cc1Swenshuai.xi tmp1 += z2 + z4; 349*53ee8cc1Swenshuai.xi tmp2 += z2 + z3; 350*53ee8cc1Swenshuai.xi tmp3 += z1 + z4; 351*53ee8cc1Swenshuai.xi 352*53ee8cc1Swenshuai.xi /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ 353*53ee8cc1Swenshuai.xi 354*53ee8cc1Swenshuai.xi wsptr[DCTSIZE * 0] = ( int )DESCALE( tmp10 + tmp3, CONST_BITS - PASS1_BITS ); 355*53ee8cc1Swenshuai.xi wsptr[DCTSIZE * 7] = ( int )DESCALE( tmp10 - tmp3, CONST_BITS - PASS1_BITS ); 356*53ee8cc1Swenshuai.xi wsptr[DCTSIZE * 1] = ( int )DESCALE( tmp11 + tmp2, CONST_BITS - PASS1_BITS ); 357*53ee8cc1Swenshuai.xi wsptr[DCTSIZE * 6] = ( int )DESCALE( tmp11 - tmp2, CONST_BITS - PASS1_BITS ); 358*53ee8cc1Swenshuai.xi wsptr[DCTSIZE * 2] = ( int )DESCALE( tmp12 + tmp1, CONST_BITS - PASS1_BITS ); 359*53ee8cc1Swenshuai.xi wsptr[DCTSIZE * 5] = ( int )DESCALE( tmp12 - tmp1, CONST_BITS - PASS1_BITS ); 360*53ee8cc1Swenshuai.xi wsptr[DCTSIZE * 3] = ( int )DESCALE( tmp13 + tmp0, CONST_BITS - PASS1_BITS ); 361*53ee8cc1Swenshuai.xi wsptr[DCTSIZE * 4] = ( int )DESCALE( tmp13 - tmp0, CONST_BITS - PASS1_BITS ); 362*53ee8cc1Swenshuai.xi 363*53ee8cc1Swenshuai.xi inptr++; /* advance pointers to next column */ 364*53ee8cc1Swenshuai.xi //quantptr++; 365*53ee8cc1Swenshuai.xi wsptr++; 366*53ee8cc1Swenshuai.xi } 367*53ee8cc1Swenshuai.xi 368*53ee8cc1Swenshuai.xi /* Pass 2: process rows from work array, store into output array. */ 369*53ee8cc1Swenshuai.xi /* Note that we must descale the results by a factor of 8 == 2**3, */ 370*53ee8cc1Swenshuai.xi /* and also undo the PASS1_BITS scaling. */ 371*53ee8cc1Swenshuai.xi 372*53ee8cc1Swenshuai.xi wsptr = workspace; 373*53ee8cc1Swenshuai.xi for ( ctr = 0; ctr < DCTSIZE; ctr++ ) 374*53ee8cc1Swenshuai.xi { 375*53ee8cc1Swenshuai.xi ///outptr = output_buf[ctr] + output_col; 376*53ee8cc1Swenshuai.xi /* Rows of zeroes can be exploited in the same way as we did with columns. 377*53ee8cc1Swenshuai.xi * However, the column calculation has created many nonzero AC terms, so 378*53ee8cc1Swenshuai.xi * the simplification applies less often (typically 5% to 10% of the time). 379*53ee8cc1Swenshuai.xi * On machines with very fast multiplication, it's possible that the 380*53ee8cc1Swenshuai.xi * test takes more time than it's worth. In that case this section 381*53ee8cc1Swenshuai.xi * may be commented out. 382*53ee8cc1Swenshuai.xi */ 383*53ee8cc1Swenshuai.xi 384*53ee8cc1Swenshuai.xi #if 1///ndef NO_ZERO_ROW_TEST 385*53ee8cc1Swenshuai.xi if ( ( wsptr[1] | wsptr[2] | wsptr[3] | wsptr[4] | wsptr[5] | wsptr[6] | wsptr[7] ) == 0 ) 386*53ee8cc1Swenshuai.xi { 387*53ee8cc1Swenshuai.xi /* AC terms all zero */ 388*53ee8cc1Swenshuai.xi int dcval = ( int )DESCALE( ( INT32 )wsptr[DCTSIZE*0], PASS1_BITS + 3 ) + 128; ///range_limit[(int) DESCALE((INT32) wsptr[0], PASS1_BITS+3) & RANGE_MASK]; 389*53ee8cc1Swenshuai.xi clamp( dcval ) 390*53ee8cc1Swenshuai.xi outptr[0] = dcval; 391*53ee8cc1Swenshuai.xi outptr[1] = dcval; 392*53ee8cc1Swenshuai.xi outptr[2] = dcval; 393*53ee8cc1Swenshuai.xi outptr[3] = dcval; 394*53ee8cc1Swenshuai.xi outptr[4] = dcval; 395*53ee8cc1Swenshuai.xi outptr[5] = dcval; 396*53ee8cc1Swenshuai.xi outptr[6] = dcval; 397*53ee8cc1Swenshuai.xi outptr[7] = dcval; 398*53ee8cc1Swenshuai.xi 399*53ee8cc1Swenshuai.xi wsptr += DCTSIZE; /* advance pointer to next row */ 400*53ee8cc1Swenshuai.xi outptr += DCTSIZE; 401*53ee8cc1Swenshuai.xi continue; 402*53ee8cc1Swenshuai.xi } 403*53ee8cc1Swenshuai.xi #endif 404*53ee8cc1Swenshuai.xi 405*53ee8cc1Swenshuai.xi /* Even part: reverse the even part of the forward DCT. */ 406*53ee8cc1Swenshuai.xi /* The rotator is sqrt(2)*c(-6). */ 407*53ee8cc1Swenshuai.xi 408*53ee8cc1Swenshuai.xi z2 = ( INT32 )wsptr[2]; 409*53ee8cc1Swenshuai.xi z3 = ( INT32 )wsptr[6]; 410*53ee8cc1Swenshuai.xi 411*53ee8cc1Swenshuai.xi z1 = MULTIPLY( z2 + z3, FIX_0_541196100 ); 412*53ee8cc1Swenshuai.xi tmp2 = z1 + MULTIPLY( z3, -FIX_1_847759065 ); 413*53ee8cc1Swenshuai.xi tmp3 = z1 + MULTIPLY( z2, FIX_0_765366865 ); 414*53ee8cc1Swenshuai.xi 415*53ee8cc1Swenshuai.xi tmp0 = ( ( INT32 )wsptr[0] + ( INT32 )wsptr[4] ) << CONST_BITS; 416*53ee8cc1Swenshuai.xi tmp1 = ( ( INT32 )wsptr[0] - ( INT32 )wsptr[4] ) << CONST_BITS; 417*53ee8cc1Swenshuai.xi 418*53ee8cc1Swenshuai.xi tmp10 = tmp0 + tmp3; 419*53ee8cc1Swenshuai.xi tmp13 = tmp0 - tmp3; 420*53ee8cc1Swenshuai.xi tmp11 = tmp1 + tmp2; 421*53ee8cc1Swenshuai.xi tmp12 = tmp1 - tmp2; 422*53ee8cc1Swenshuai.xi 423*53ee8cc1Swenshuai.xi /* Odd part per figure 8; the matrix is unitary and hence its 424*53ee8cc1Swenshuai.xi * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. 425*53ee8cc1Swenshuai.xi */ 426*53ee8cc1Swenshuai.xi 427*53ee8cc1Swenshuai.xi tmp0 = ( INT32 )wsptr[7]; 428*53ee8cc1Swenshuai.xi tmp1 = ( INT32 )wsptr[5]; 429*53ee8cc1Swenshuai.xi tmp2 = ( INT32 )wsptr[3]; 430*53ee8cc1Swenshuai.xi tmp3 = ( INT32 )wsptr[1]; 431*53ee8cc1Swenshuai.xi 432*53ee8cc1Swenshuai.xi z1 = tmp0 + tmp3; 433*53ee8cc1Swenshuai.xi z2 = tmp1 + tmp2; 434*53ee8cc1Swenshuai.xi z3 = tmp0 + tmp2; 435*53ee8cc1Swenshuai.xi z4 = tmp1 + tmp3; 436*53ee8cc1Swenshuai.xi z5 = MULTIPLY( z3 + z4, FIX_1_175875602 ); /* sqrt(2) * c3 */ 437*53ee8cc1Swenshuai.xi 438*53ee8cc1Swenshuai.xi tmp0 = MULTIPLY( tmp0, FIX_0_298631336 ); /* sqrt(2) * (-c1+c3+c5-c7) */ 439*53ee8cc1Swenshuai.xi tmp1 = MULTIPLY( tmp1, FIX_2_053119869 ); /* sqrt(2) * ( c1+c3-c5+c7) */ 440*53ee8cc1Swenshuai.xi tmp2 = MULTIPLY( tmp2, FIX_3_072711026 ); /* sqrt(2) * ( c1+c3+c5-c7) */ 441*53ee8cc1Swenshuai.xi tmp3 = MULTIPLY( tmp3, FIX_1_501321110 ); /* sqrt(2) * ( c1+c3-c5-c7) */ 442*53ee8cc1Swenshuai.xi z1 = MULTIPLY( z1, -FIX_0_899976223 ); /* sqrt(2) * (c7-c3) */ 443*53ee8cc1Swenshuai.xi z2 = MULTIPLY( z2, -FIX_2_562915447 ); /* sqrt(2) * (-c1-c3) */ 444*53ee8cc1Swenshuai.xi z3 = MULTIPLY( z3, -FIX_1_961570560 ); /* sqrt(2) * (-c3-c5) */ 445*53ee8cc1Swenshuai.xi z4 = MULTIPLY( z4, -FIX_0_390180644 ); /* sqrt(2) * (c5-c3) */ 446*53ee8cc1Swenshuai.xi 447*53ee8cc1Swenshuai.xi z3 += z5; 448*53ee8cc1Swenshuai.xi z4 += z5; 449*53ee8cc1Swenshuai.xi 450*53ee8cc1Swenshuai.xi tmp0 += z1 + z3; 451*53ee8cc1Swenshuai.xi tmp1 += z2 + z4; 452*53ee8cc1Swenshuai.xi tmp2 += z2 + z3; 453*53ee8cc1Swenshuai.xi tmp3 += z1 + z4; 454*53ee8cc1Swenshuai.xi 455*53ee8cc1Swenshuai.xi /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */ 456*53ee8cc1Swenshuai.xi i = ( int )DESCALE( tmp10 + tmp3, CONST_BITS + PASS1_BITS + 3 ) + 128; ///range_limit[(int) DESCALE(tmp10 + tmp3, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; 457*53ee8cc1Swenshuai.xi clamp( i ) 458*53ee8cc1Swenshuai.xi outptr[0] = ( U8 )i; 459*53ee8cc1Swenshuai.xi 460*53ee8cc1Swenshuai.xi i = ( int )DESCALE( tmp10 - tmp3, CONST_BITS + PASS1_BITS + 3 ) + 128; ///range_limit[(int) DESCALE(tmp10 - tmp3, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; 461*53ee8cc1Swenshuai.xi clamp( i ) 462*53ee8cc1Swenshuai.xi outptr[7] = ( U8 )i; 463*53ee8cc1Swenshuai.xi i = ( int )DESCALE( tmp11 + tmp2, CONST_BITS + PASS1_BITS + 3 ) + 128; ///range_limit[(int) DESCALE(tmp11 + tmp2, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; 464*53ee8cc1Swenshuai.xi clamp( i ) 465*53ee8cc1Swenshuai.xi outptr[1] = ( U8 )i; 466*53ee8cc1Swenshuai.xi i = ( int )DESCALE( tmp11 - tmp2, CONST_BITS + PASS1_BITS + 3 ) + 128; ///range_limit[(int) DESCALE(tmp11 - tmp2, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; 467*53ee8cc1Swenshuai.xi clamp( i ) 468*53ee8cc1Swenshuai.xi outptr[6] = ( U8 )i; 469*53ee8cc1Swenshuai.xi i = ( int )DESCALE( tmp12 + tmp1, CONST_BITS + PASS1_BITS + 3 ) + 128; ///range_limit[(int) DESCALE(tmp12 + tmp1, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; 470*53ee8cc1Swenshuai.xi clamp( i ) 471*53ee8cc1Swenshuai.xi outptr[2] = ( U8 )i; 472*53ee8cc1Swenshuai.xi i = ( int )DESCALE( tmp12 - tmp1, CONST_BITS + PASS1_BITS + 3 ) + 128; ///range_limit[(int) DESCALE(tmp12 - tmp1, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; 473*53ee8cc1Swenshuai.xi clamp( i ) 474*53ee8cc1Swenshuai.xi outptr[5] = ( U8 )i; 475*53ee8cc1Swenshuai.xi i = ( int )DESCALE( tmp13 + tmp0, CONST_BITS + PASS1_BITS + 3 ) + 128; ///range_limit[(int) DESCALE(tmp13 + tmp0, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; 476*53ee8cc1Swenshuai.xi clamp( i ) 477*53ee8cc1Swenshuai.xi outptr[3] = ( U8 )i; 478*53ee8cc1Swenshuai.xi i = ( int )DESCALE( tmp13 - tmp0, CONST_BITS + PASS1_BITS + 3 ) + 128; ///range_limit[(int) DESCALE(tmp13 - tmp0, CONST_BITS+PASS1_BITS+3) & RANGE_MASK]; 479*53ee8cc1Swenshuai.xi clamp( i ) 480*53ee8cc1Swenshuai.xi outptr[4] = ( U8 )i; 481*53ee8cc1Swenshuai.xi 482*53ee8cc1Swenshuai.xi wsptr += DCTSIZE; /* advance pointer to next row */ 483*53ee8cc1Swenshuai.xi outptr += DCTSIZE; 484*53ee8cc1Swenshuai.xi } 485*53ee8cc1Swenshuai.xi } 486*53ee8cc1Swenshuai.xi 487*53ee8cc1Swenshuai.xi 488*53ee8cc1Swenshuai.xi #endif /* DCT_ISLOW_SUPPORTED */ 489*53ee8cc1Swenshuai.xi 490