1 /* 2 * Copyright (c) 2013, Google Inc. 3 * 4 * SPDX-License-Identifier: GPL-2.0+ 5 */ 6 7 #ifndef USE_HOSTCC 8 #include <common.h> 9 #include <crypto.h> 10 #include <fdtdec.h> 11 #include <misc.h> 12 #include <asm/types.h> 13 #include <asm/byteorder.h> 14 #include <linux/errno.h> 15 #include <asm/types.h> 16 #include <asm/unaligned.h> 17 #include <dm.h> 18 #include <asm/arch/rk_atags.h> 19 #else 20 #include "fdt_host.h" 21 #include "mkimage.h" 22 #include <fdt_support.h> 23 #endif 24 #include <u-boot/rsa-mod-exp.h> 25 #include <u-boot/rsa.h> 26 27 /* Default public exponent for backward compatibility */ 28 #define RSA_DEFAULT_PUBEXP 65537 29 30 /* Default otp value for enable rsa4096 */ 31 #ifndef OTP_RSA4096_ENABLE_VALUE 32 #define OTP_RSA4096_ENABLE_VALUE 0x30 33 #endif 34 35 /* Default otp value for enable secureboot */ 36 #ifndef OTP_SECURE_BOOT_ENABLE_VALUE 37 #define OTP_SECURE_BOOT_ENABLE_VALUE 0xff 38 #endif 39 40 /** 41 * rsa_verify_padding() - Verify RSA message padding is valid 42 * 43 * Verify a RSA message's padding is consistent with PKCS1.5 44 * padding as described in the RSA PKCS#1 v2.1 standard. 45 * 46 * @msg: Padded message 47 * @pad_len: Number of expected padding bytes 48 * @algo: Checksum algo structure having information on DER encoding etc. 49 * @return 0 on success, != 0 on failure 50 */ 51 static int rsa_verify_padding(const uint8_t *msg, const int pad_len, 52 struct checksum_algo *algo) 53 { 54 int ff_len; 55 int ret; 56 57 /* first byte must be 0x00 */ 58 ret = *msg++; 59 /* second byte must be 0x01 */ 60 ret |= *msg++ ^ 0x01; 61 /* next ff_len bytes must be 0xff */ 62 ff_len = pad_len - algo->der_len - 3; 63 ret |= *msg ^ 0xff; 64 ret |= memcmp(msg, msg+1, ff_len-1); 65 msg += ff_len; 66 /* next byte must be 0x00 */ 67 ret |= *msg++; 68 /* next der_len bytes must match der_prefix */ 69 ret |= memcmp(msg, algo->der_prefix, algo->der_len); 70 71 return ret; 72 } 73 74 #if !defined(USE_HOSTCC) 75 #if CONFIG_IS_ENABLED(FIT_HW_CRYPTO) 76 static void rsa_convert_big_endian(uint32_t *dst, const uint32_t *src, 77 int total_len, int convert_len) 78 { 79 int total_wd, convert_wd, i; 80 81 if (total_len < convert_len) 82 convert_len = total_len; 83 84 total_wd = total_len / sizeof(uint32_t); 85 convert_wd = convert_len / sizeof(uint32_t); 86 for (i = 0; i < convert_wd; i++) 87 dst[i] = fdt32_to_cpu(src[total_wd - 1 - i]); 88 } 89 90 static int rsa_mod_exp_hw(struct key_prop *prop, const uint8_t *sig, 91 const uint32_t sig_len, const uint32_t key_len, 92 uint8_t *output) 93 { 94 struct udevice *dev; 95 uint8_t sig_reverse[sig_len]; 96 uint8_t buf[sig_len]; 97 rsa_key rsa_key; 98 int i, ret; 99 #ifdef CONFIG_FIT_ENABLE_RSA4096_SUPPORT 100 if (key_len != RSA4096_BYTES) 101 return -EINVAL; 102 103 rsa_key.algo = CRYPTO_RSA4096; 104 #else 105 if (key_len != RSA2048_BYTES) 106 return -EINVAL; 107 108 rsa_key.algo = CRYPTO_RSA2048; 109 #endif 110 rsa_key.n = malloc(key_len); 111 rsa_key.e = malloc(key_len); 112 rsa_key.c = malloc(key_len); 113 if (!rsa_key.n || !rsa_key.e || !rsa_key.c) 114 return -ENOMEM; 115 116 rsa_convert_big_endian(rsa_key.n, (uint32_t *)prop->modulus, 117 key_len, key_len); 118 rsa_convert_big_endian(rsa_key.e, (uint32_t *)prop->public_exponent_BN, 119 key_len, key_len); 120 #ifdef CONFIG_ROCKCHIP_CRYPTO_V1 121 rsa_convert_big_endian(rsa_key.c, (uint32_t *)prop->factor_c, 122 key_len, key_len); 123 #else 124 rsa_convert_big_endian(rsa_key.c, (uint32_t *)prop->factor_np, 125 key_len, key_len); 126 #endif 127 #if defined(CONFIG_ROCKCHIP_PRELOADER_ATAGS) && defined(CONFIG_SPL_BUILD) 128 char *rsa_key_data = malloc(3 * key_len); 129 int flag = 0; 130 131 if (rsa_key_data) { 132 memcpy(rsa_key_data, rsa_key.n, key_len); 133 memcpy(rsa_key_data + key_len, rsa_key.e, key_len); 134 memcpy(rsa_key_data + 2 * key_len, rsa_key.c, key_len); 135 if (fit_board_verify_required_sigs()) 136 flag = PUBKEY_FUSE_PROGRAMMED; 137 138 if (atags_set_pub_key(rsa_key_data, 3 * key_len, flag)) 139 printf("Send public key through atags fail."); 140 } 141 #endif 142 for (i = 0; i < sig_len; i++) 143 sig_reverse[sig_len-1-i] = sig[i]; 144 145 dev = crypto_get_device(rsa_key.algo); 146 if (!dev) { 147 printf("No crypto device for expected RSA\n"); 148 return -ENODEV; 149 } 150 151 ret = crypto_rsa_verify(dev, &rsa_key, (u8 *)sig_reverse, buf); 152 if (ret) 153 goto out; 154 155 for (i = 0; i < sig_len; i++) 156 sig_reverse[sig_len-1-i] = buf[i]; 157 158 memcpy(output, sig_reverse, sig_len); 159 out: 160 free(rsa_key.n); 161 free(rsa_key.e); 162 free(rsa_key.c); 163 164 return ret; 165 } 166 #endif 167 #endif 168 169 int padding_pkcs_15_verify(struct image_sign_info *info, 170 uint8_t *msg, int msg_len, 171 const uint8_t *hash, int hash_len) 172 { 173 struct checksum_algo *checksum = info->checksum; 174 int ret, pad_len = msg_len - checksum->checksum_len; 175 176 /* Check pkcs1.5 padding bytes. */ 177 ret = rsa_verify_padding(msg, pad_len, checksum); 178 if (ret) { 179 debug("In RSAVerify(): Padding check failed!\n"); 180 return -EINVAL; 181 } 182 183 /* Check hash. */ 184 if (memcmp((uint8_t *)msg + pad_len, hash, msg_len - pad_len)) { 185 debug("In RSAVerify(): Hash check failed!\n"); 186 return -EACCES; 187 } 188 189 return 0; 190 } 191 192 #ifdef CONFIG_FIT_ENABLE_RSASSA_PSS_SUPPORT 193 static void u32_i2osp(uint32_t val, uint8_t *buf) 194 { 195 buf[0] = (uint8_t)((val >> 24) & 0xff); 196 buf[1] = (uint8_t)((val >> 16) & 0xff); 197 buf[2] = (uint8_t)((val >> 8) & 0xff); 198 buf[3] = (uint8_t)((val >> 0) & 0xff); 199 } 200 201 /** 202 * mask_generation_function1() - generate an octet string 203 * 204 * Generate an octet string used to check rsa signature. 205 * It use an input octet string and a hash function. 206 * 207 * @checksum: A Hash function 208 * @seed: Specifies an input variable octet string 209 * @seed_len: Size of the input octet string 210 * @output: Specifies the output octet string 211 * @output_len: Size of the output octet string 212 * @return 0 if the octet string was correctly generated, others on error 213 */ 214 static int mask_generation_function1(struct checksum_algo *checksum, 215 uint8_t *seed, int seed_len, 216 uint8_t *output, int output_len) 217 { 218 struct image_region region[2]; 219 int ret = 0, i, i_output = 0, region_count = 2; 220 uint32_t counter = 0; 221 uint8_t buf_counter[4], *tmp; 222 int hash_len = checksum->checksum_len; 223 224 memset(output, 0, output_len); 225 226 region[0].data = seed; 227 region[0].size = seed_len; 228 region[1].data = &buf_counter[0]; 229 region[1].size = 4; 230 231 tmp = malloc(hash_len); 232 if (!tmp) { 233 debug("%s: can't allocate array tmp\n", __func__); 234 ret = -ENOMEM; 235 goto out; 236 } 237 238 while (i_output < output_len) { 239 u32_i2osp(counter, &buf_counter[0]); 240 241 ret = checksum->calculate(checksum->name, 242 region, region_count, 243 tmp); 244 if (ret < 0) { 245 debug("%s: Error in checksum calculation\n", __func__); 246 goto out; 247 } 248 249 i = 0; 250 while ((i_output < output_len) && (i < hash_len)) { 251 output[i_output] = tmp[i]; 252 i_output++; 253 i++; 254 } 255 256 counter++; 257 } 258 259 out: 260 free(tmp); 261 262 return ret; 263 } 264 265 static int compute_hash_prime(struct checksum_algo *checksum, 266 uint8_t *pad, int pad_len, 267 uint8_t *hash, int hash_len, 268 uint8_t *salt, int salt_len, 269 uint8_t *hprime) 270 { 271 struct image_region region[3]; 272 int ret, region_count = 3; 273 274 region[0].data = pad; 275 region[0].size = pad_len; 276 region[1].data = hash; 277 region[1].size = hash_len; 278 region[2].data = salt; 279 region[2].size = salt_len; 280 281 ret = checksum->calculate(checksum->name, region, region_count, hprime); 282 if (ret < 0) { 283 debug("%s: Error in checksum calculation\n", __func__); 284 goto out; 285 } 286 287 out: 288 return ret; 289 } 290 291 int padding_pss_verify(struct image_sign_info *info, 292 uint8_t *msg, int msg_len, 293 const uint8_t *hash, int hash_len) 294 { 295 uint8_t *masked_db = NULL; 296 int masked_db_len = msg_len - hash_len - 1; 297 uint8_t *h = NULL, *hprime = NULL; 298 int h_len = hash_len; 299 uint8_t *db_mask = NULL; 300 int db_mask_len = masked_db_len; 301 uint8_t *db = NULL, *salt = NULL; 302 int db_len = masked_db_len, salt_len = msg_len - hash_len - 2; 303 uint8_t pad_zero[8] = { 0 }; 304 int ret, i, leftmost_bits = 1; 305 uint8_t leftmost_mask; 306 struct checksum_algo *checksum = info->checksum; 307 308 /* first, allocate everything */ 309 masked_db = malloc(masked_db_len); 310 h = malloc(h_len); 311 db_mask = malloc(db_mask_len); 312 db = malloc(db_len); 313 salt = malloc(salt_len); 314 hprime = malloc(hash_len); 315 if (!masked_db || !h || !db_mask || !db || !salt || !hprime) { 316 printf("%s: can't allocate some buffer\n", __func__); 317 ret = -ENOMEM; 318 goto out; 319 } 320 321 /* step 4: check if the last byte is 0xbc */ 322 if (msg[msg_len - 1] != 0xbc) { 323 printf("%s: invalid pss padding (0xbc is missing)\n", __func__); 324 ret = -EINVAL; 325 goto out; 326 } 327 328 /* step 5 */ 329 memcpy(masked_db, msg, masked_db_len); 330 memcpy(h, msg + masked_db_len, h_len); 331 332 /* step 6 */ 333 leftmost_mask = (0xff >> (8 - leftmost_bits)) << (8 - leftmost_bits); 334 if (masked_db[0] & leftmost_mask) { 335 printf("%s: invalid pss padding ", __func__); 336 printf("(leftmost bit of maskedDB not zero)\n"); 337 ret = -EINVAL; 338 goto out; 339 } 340 341 /* step 7 */ 342 mask_generation_function1(checksum, h, h_len, db_mask, db_mask_len); 343 344 /* step 8 */ 345 for (i = 0; i < db_len; i++) 346 db[i] = masked_db[i] ^ db_mask[i]; 347 348 /* step 9 */ 349 db[0] &= 0xff >> leftmost_bits; 350 351 /* step 10 */ 352 if (db[0] != 0x01) { 353 printf("%s: invalid pss padding ", __func__); 354 printf("(leftmost byte of db isn't 0x01)\n"); 355 ret = EINVAL; 356 goto out; 357 } 358 359 /* step 11 */ 360 memcpy(salt, &db[1], salt_len); 361 362 /* step 12 & 13 */ 363 compute_hash_prime(checksum, pad_zero, 8, 364 (uint8_t *)hash, hash_len, 365 salt, salt_len, hprime); 366 367 /* step 14 */ 368 ret = memcmp(h, hprime, hash_len); 369 370 out: 371 free(hprime); 372 free(salt); 373 free(db); 374 free(db_mask); 375 free(h); 376 free(masked_db); 377 378 return ret; 379 } 380 #endif 381 382 /** 383 * rsa_verify_key() - Verify a signature against some data using RSA Key 384 * 385 * Verify a RSA PKCS1.5 signature against an expected hash using 386 * the RSA Key properties in prop structure. 387 * 388 * @info: Specifies key and FIT information 389 * @prop: Specifies key 390 * @sig: Signature 391 * @sig_len: Number of bytes in signature 392 * @hash: Pointer to the expected hash 393 * @key_len: Number of bytes in rsa key 394 * @return 0 if verified, -ve on error 395 */ 396 static int rsa_verify_key(struct image_sign_info *info, 397 struct key_prop *prop, const uint8_t *sig, 398 const uint32_t sig_len, const uint8_t *hash, 399 const uint32_t key_len) 400 { 401 int ret; 402 struct checksum_algo *checksum = info->checksum; 403 struct padding_algo *padding = info->padding; 404 int hash_len = checksum->checksum_len; 405 406 if (!prop || !sig || !hash || !checksum) 407 return -EIO; 408 409 if (sig_len != (prop->num_bits / 8)) { 410 debug("Signature is of incorrect length %d\n", sig_len); 411 return -EINVAL; 412 } 413 414 debug("Checksum algorithm: %s", checksum->name); 415 416 /* Sanity check for stack size */ 417 if (sig_len > RSA_MAX_SIG_BITS / 8) { 418 debug("Signature length %u exceeds maximum %d\n", sig_len, 419 RSA_MAX_SIG_BITS / 8); 420 return -EINVAL; 421 } 422 423 uint8_t buf[sig_len]; 424 425 #if !defined(USE_HOSTCC) 426 #if CONFIG_IS_ENABLED(FIT_HW_CRYPTO) 427 ret = rsa_mod_exp_hw(prop, sig, sig_len, key_len, buf); 428 #else 429 struct udevice *mod_exp_dev; 430 431 ret = uclass_get_device(UCLASS_MOD_EXP, 0, &mod_exp_dev); 432 if (ret) { 433 printf("RSA: Can't find Modular Exp implementation\n"); 434 return -EINVAL; 435 } 436 437 ret = rsa_mod_exp(mod_exp_dev, sig, sig_len, prop, buf); 438 #endif 439 #else 440 ret = rsa_mod_exp_sw(sig, sig_len, prop, buf); 441 #endif 442 if (ret) { 443 debug("Error in Modular exponentation\n"); 444 return ret; 445 } 446 447 ret = padding->verify(info, buf, key_len, hash, hash_len); 448 if (ret) { 449 debug("In RSAVerify(): padding check failed!\n"); 450 return ret; 451 } 452 453 return 0; 454 } 455 456 static int rsa_get_key_prop(struct key_prop *prop, struct image_sign_info *info, int node) 457 { 458 const void *blob = info->fdt_blob; 459 int length; 460 int hash_node; 461 462 if (node < 0) { 463 debug("%s: Skipping invalid node", __func__); 464 return -EBADF; 465 } 466 467 if (!prop) { 468 debug("%s: The prop is NULL", __func__); 469 return -EBADF; 470 } 471 472 prop->burn_key = fdtdec_get_int(blob, node, "burn-key-hash", 0); 473 474 prop->num_bits = fdtdec_get_int(blob, node, "rsa,num-bits", 0); 475 476 prop->n0inv = fdtdec_get_int(blob, node, "rsa,n0-inverse", 0); 477 478 prop->public_exponent = fdt_getprop(blob, node, "rsa,exponent", &length); 479 if (!prop->public_exponent || length < sizeof(uint64_t)) 480 prop->public_exponent = NULL; 481 482 prop->exp_len = sizeof(uint64_t); 483 prop->modulus = fdt_getprop(blob, node, "rsa,modulus", NULL); 484 prop->public_exponent_BN = fdt_getprop(blob, node, "rsa,exponent-BN", NULL); 485 prop->rr = fdt_getprop(blob, node, "rsa,r-squared", NULL); 486 #ifdef CONFIG_ROCKCHIP_CRYPTO_V1 487 hash_node = fdt_subnode_offset(blob, node, "hash@c"); 488 #else 489 hash_node = fdt_subnode_offset(blob, node, "hash@np"); 490 #endif 491 if (hash_node >= 0) 492 prop->hash = fdt_getprop(blob, hash_node, "value", NULL); 493 494 if (!prop->num_bits || !prop->modulus) { 495 debug("%s: Missing RSA key info", __func__); 496 return -EFAULT; 497 } 498 499 #ifdef CONFIG_ROCKCHIP_CRYPTO_V1 500 prop->factor_c = fdt_getprop(blob, node, "rsa,c", NULL); 501 if (!prop.factor_c) 502 return -EFAULT; 503 #else 504 prop->factor_np = fdt_getprop(blob, node, "rsa,np", NULL); 505 if (!prop->factor_np) 506 return -EFAULT; 507 #endif 508 509 return 0; 510 } 511 512 /** 513 * rsa_verify_with_keynode() - Verify a signature against some data using 514 * information in node with prperties of RSA Key like modulus, exponent etc. 515 * 516 * Parse sign-node and fill a key_prop structure with properties of the 517 * key. Verify a RSA PKCS1.5 signature against an expected hash using 518 * the properties parsed 519 * 520 * @info: Specifies key and FIT information 521 * @hash: Pointer to the expected hash 522 * @sig: Signature 523 * @sig_len: Number of bytes in signature 524 * @node: Node having the RSA Key properties 525 * @return 0 if verified, -ve on error 526 */ 527 static int rsa_verify_with_keynode(struct image_sign_info *info, 528 const void *hash, uint8_t *sig, 529 uint sig_len, int node) 530 { 531 struct key_prop prop; 532 533 if (rsa_get_key_prop(&prop, info, node)) 534 return -EFAULT; 535 536 return rsa_verify_key(info, &prop, sig, sig_len, hash, 537 info->crypto->key_len); 538 } 539 540 int rsa_verify(struct image_sign_info *info, 541 const struct image_region region[], int region_count, 542 uint8_t *sig, uint sig_len) 543 { 544 const void *blob = info->fdt_blob; 545 /* Reserve memory for maximum checksum-length */ 546 uint8_t hash[info->crypto->key_len]; 547 int ndepth, noffset; 548 int sig_node, node; 549 char name[100]; 550 int ret; 551 552 /* 553 * Verify that the checksum-length does not exceed the 554 * rsa-signature-length 555 */ 556 if (info->checksum->checksum_len > 557 info->crypto->key_len) { 558 debug("%s: invlaid checksum-algorithm %s for %s\n", 559 __func__, info->checksum->name, info->crypto->name); 560 return -EINVAL; 561 } 562 563 sig_node = fdt_subnode_offset(blob, 0, FIT_SIG_NODENAME); 564 if (sig_node < 0) { 565 debug("%s: No signature node found\n", __func__); 566 return -ENOENT; 567 } 568 569 /* Calculate checksum with checksum-algorithm */ 570 ret = info->checksum->calculate(info->checksum->name, 571 region, region_count, hash); 572 if (ret < 0) { 573 debug("%s: Error in checksum calculation\n", __func__); 574 return -EINVAL; 575 } 576 577 /* See if we must use a particular key */ 578 if (info->required_keynode != -1) { 579 ret = rsa_verify_with_keynode(info, hash, sig, sig_len, 580 info->required_keynode); 581 if (!ret) 582 return ret; 583 } 584 585 /* Look for a key that matches our hint */ 586 snprintf(name, sizeof(name), "key-%s", info->keyname); 587 node = fdt_subnode_offset(blob, sig_node, name); 588 ret = rsa_verify_with_keynode(info, hash, sig, sig_len, node); 589 if (!ret) 590 return ret; 591 592 /* No luck, so try each of the keys in turn */ 593 for (ndepth = 0, noffset = fdt_next_node(info->fit, sig_node, &ndepth); 594 (noffset >= 0) && (ndepth > 0); 595 noffset = fdt_next_node(info->fit, noffset, &ndepth)) { 596 if (ndepth == 1 && noffset != node) { 597 ret = rsa_verify_with_keynode(info, hash, sig, sig_len, 598 noffset); 599 if (!ret) 600 break; 601 } 602 } 603 604 return ret; 605 } 606 607 #if !defined(USE_HOSTCC) 608 #if defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_FIT_HW_CRYPTO) && \ 609 defined(CONFIG_SPL_ROCKCHIP_SECURE_OTP) 610 int rsa_burn_key_hash(struct image_sign_info *info) 611 { 612 char *rsa_key; 613 void *n, *e, *c; 614 uint32_t key_len; 615 struct udevice *dev; 616 struct key_prop prop; 617 char name[100] = {0}; 618 uint8_t otp_write; 619 const void *blob = info->fdt_blob; 620 uint8_t digest_write[FIT_MAX_HASH_LEN]; 621 int sig_node, node, digest_len; 622 int ret = 0; 623 624 /* Check burn-key-hash flag in itb first */ 625 sig_node = fdt_subnode_offset(blob, 0, FIT_SIG_NODENAME); 626 if (sig_node < 0) { 627 debug("%s: No signature node found\n", __func__); 628 return -ENOENT; 629 } 630 631 snprintf(name, sizeof(name), "key-%s", info->keyname); 632 node = fdt_subnode_offset(blob, sig_node, name); 633 634 if (rsa_get_key_prop(&prop, info, node)) 635 return -1; 636 637 if (!(prop.burn_key)) 638 return 0; 639 640 /* Handle burn_key_hash process from now on */ 641 dev = misc_otp_get_device(OTP_S); 642 if (!dev) 643 return -ENODEV; 644 645 #if !defined(CONFIG_SPL_REVOKE_PUB_KEY) 646 u16 secure_flags_read; 647 648 ret = misc_otp_read(dev, OTP_SECURE_BOOT_ENABLE_ADDR, 649 &secure_flags_read, OTP_SECURE_BOOT_ENABLE_SIZE); 650 if (ret) 651 return ret; 652 653 if ((secure_flags_read & 0xff) == 0xff) 654 return 0; 655 #endif 656 657 if (!prop.hash || !prop.modulus || !prop.public_exponent_BN) 658 return -ENOENT; 659 #ifdef CONFIG_ROCKCHIP_CRYPTO_V1 660 if (!prop.factor_c) 661 return -ENOENT; 662 #else 663 if (!prop.factor_np) 664 return -ENOENT; 665 #endif 666 key_len = info->crypto->key_len; 667 668 if ((key_len != RSA4096_BYTES) && (key_len != RSA2048_BYTES)) 669 return -EINVAL; 670 671 rsa_key = calloc(key_len * 3, sizeof(char)); 672 if (!rsa_key) 673 return -ENOMEM; 674 675 n = rsa_key; 676 e = rsa_key + CONFIG_RSA_N_SIZE; 677 c = rsa_key + CONFIG_RSA_N_SIZE + CONFIG_RSA_E_SIZE; 678 rsa_convert_big_endian(n, (uint32_t *)prop.modulus, 679 key_len, CONFIG_RSA_N_SIZE); 680 rsa_convert_big_endian(e, (uint32_t *)prop.public_exponent_BN, 681 key_len, CONFIG_RSA_E_SIZE); 682 #ifdef CONFIG_ROCKCHIP_CRYPTO_V1 683 rsa_convert_big_endian(c, (uint32_t *)prop.factor_c, 684 key_len, CONFIG_RSA_C_SIZE); 685 #else 686 rsa_convert_big_endian(c, (uint32_t *)prop.factor_np, 687 key_len, CONFIG_RSA_C_SIZE); 688 #endif 689 690 /* Calculate and compare key hash */ 691 ret = calculate_hash(rsa_key, CONFIG_RSA_N_SIZE + CONFIG_RSA_E_SIZE + CONFIG_RSA_C_SIZE, 692 info->checksum->name, digest_write, &digest_len); 693 if (ret) 694 goto error; 695 696 if (memcmp(digest_write, prop.hash, digest_len) != 0) { 697 printf("RSA: Compare public key hash fail.\n"); 698 ret = -EINVAL; 699 goto error; 700 } 701 702 /* Delay 3 seconds to make sure power supply is steady. */ 703 printf("Waiting for power supply steady for OTP write. Please don't turn off the device\n"); 704 mdelay(3000); 705 706 #if defined(CONFIG_SPL_REVOKE_PUB_KEY) 707 /* Burn next key hash here */ 708 if (misc_otp_write_verify(dev, OTP_NEXT_RSA_HASH_ADDR, digest_write, 709 OTP_NEXT_RSA_HASH_SIZE)) { 710 printf("RSA: Write next public key hash fail.\n"); 711 ret = -EIO; 712 goto error; 713 } else { 714 printf("RSA: Write next RSA key hash successfully.\n"); 715 } 716 #else 717 /* Burn key hash here */ 718 if (misc_otp_write_verify(dev, OTP_RSA_HASH_ADDR, digest_write, OTP_RSA_HASH_SIZE)) { 719 printf("RSA: Write public key hash fail.\n"); 720 ret = -EIO; 721 goto error; 722 } else { 723 printf("RSA: Write RSA key hash successfully.\n"); 724 } 725 #endif 726 /* 727 * For some chips, rsa4096 flag and secureboot flag should be burned together 728 * because of ecc enable. OTP_RSA4096_ENABLE_ADDR won't defined for burning 729 * these two flags only once. 730 */ 731 #if defined(CONFIG_FIT_ENABLE_RSA4096_SUPPORT) && defined(OTP_RSA4096_ENABLE_ADDR) 732 /* Burn rsa4096 flag here */ 733 otp_write = OTP_RSA4096_ENABLE_VALUE; 734 if (misc_otp_write_verify(dev, OTP_RSA4096_ENABLE_ADDR, &otp_write, 735 OTP_RSA4096_ENABLE_SIZE)) { 736 printf("RSA: Write rsa4096 flag fail.\n"); 737 ret = -EIO; 738 goto error; 739 } else { 740 printf("RSA: Write rsa4096 flag successfully.\n"); 741 } 742 #endif 743 744 #if defined(CONFIG_SPL_REVOKE_PUB_KEY) 745 /* Burn revoke key config here */ 746 otp_write = OTP_RSA_HASH_REVOKE_VAL; 747 if (misc_otp_write_verify(dev, OTP_RSA_HASH_REVOKE_ADDR, &otp_write, 748 OTP_RSA_HASH_REVOKE_SIZE)) { 749 printf("RSA: Write revoke key config fail.\n"); 750 ret = -EIO; 751 goto error; 752 } else { 753 printf("RSA: Write revoke key config successfully.\n"); 754 } 755 #else 756 /* Burn secure flag here */ 757 otp_write = OTP_SECURE_BOOT_ENABLE_VALUE; 758 if (misc_otp_write_verify(dev, OTP_SECURE_BOOT_ENABLE_ADDR, &otp_write, 759 OTP_SECURE_BOOT_ENABLE_SIZE)) { 760 printf("RSA: Write secure flag fail.\n"); 761 ret = -EIO; 762 goto error; 763 } else { 764 printf("RSA: Write secure flag successfully.\n"); 765 } 766 #endif 767 768 error: 769 free(rsa_key); 770 771 return ret; 772 } 773 774 #if defined(CONFIG_SPL_OTP_DISABLE_SD) || defined(CONFIG_SPL_OTP_DISABLE_USB) || \ 775 defined(CONFIG_SPL_OTP_DISABLE_UART) || defined(CONFIG_SPL_OTP_DISABLE_SPI2APB) 776 typedef struct { 777 unsigned long addr; 778 uint8_t value; 779 char *name; 780 } OtpUpgrade; 781 782 int rsa_burn_disable_upgrade(void) 783 { 784 OtpUpgrade upgrade[] = { 785 #if defined(CONFIG_SPL_OTP_DISABLE_USB) 786 {OTP_DISABLE_UPGRADE_ADDR, OTP_DISABLE_USB_VAL, "usb"}, 787 #endif 788 #if defined(CONFIG_SPL_OTP_DISABLE_SD) 789 {OTP_DISABLE_UPGRADE_ADDR, OTP_DISABLE_SD_VAL, "sd"}, 790 #endif 791 #if defined(CONFIG_SPL_OTP_DISABLE_UART) 792 {OTP_DISABLE_UPGRADE_ADDR, OTP_DISABLE_UART_VAL, "uart"}, 793 #endif 794 #if defined(CONFIG_SPL_OTP_DISABLE_SPI2APB) 795 {OTP_DISABLE_UPGRADE_ADDR, OTP_DISABLE_SPI2APB_VAL, "spi2apb"}, 796 #endif 797 }; 798 struct udevice *dev; 799 uint8_t otp_write; 800 int ret = 0, i; 801 802 dev = misc_otp_get_device(OTP_S); 803 if (!dev) { 804 printf("OTP: No available device\n"); 805 ret = -ENODEV; 806 goto fail; 807 } 808 809 for (i = 0; i < sizeof(upgrade)/sizeof(upgrade[0]); i++) { 810 otp_write = upgrade[i].value; 811 if (misc_otp_write_verify(dev, upgrade[i].addr, &otp_write, 1)) { 812 printf("Write OTP to disable %s upgrade failed.\n", upgrade[i].name); 813 goto fail; 814 } 815 printf("Write OTP to disable %s upgrade successfully.\n", upgrade[i].name); 816 } 817 818 fail: 819 return ret; 820 } 821 #endif 822 #endif 823 #endif 824