1 /* 2 * Copyright (c) 2013, Google Inc. 3 * 4 * SPDX-License-Identifier: GPL-2.0+ 5 */ 6 7 #ifndef USE_HOSTCC 8 #include <common.h> 9 #include <crypto.h> 10 #include <fdtdec.h> 11 #include <misc.h> 12 #include <asm/types.h> 13 #include <asm/byteorder.h> 14 #include <linux/errno.h> 15 #include <asm/types.h> 16 #include <asm/unaligned.h> 17 #include <dm.h> 18 #include <asm/arch/rk_atags.h> 19 #else 20 #include "fdt_host.h" 21 #include "mkimage.h" 22 #include <fdt_support.h> 23 #endif 24 #include <u-boot/rsa-mod-exp.h> 25 #include <u-boot/rsa.h> 26 27 /* Default public exponent for backward compatibility */ 28 #define RSA_DEFAULT_PUBEXP 65537 29 30 /** 31 * rsa_verify_padding() - Verify RSA message padding is valid 32 * 33 * Verify a RSA message's padding is consistent with PKCS1.5 34 * padding as described in the RSA PKCS#1 v2.1 standard. 35 * 36 * @msg: Padded message 37 * @pad_len: Number of expected padding bytes 38 * @algo: Checksum algo structure having information on DER encoding etc. 39 * @return 0 on success, != 0 on failure 40 */ 41 static int rsa_verify_padding(const uint8_t *msg, const int pad_len, 42 struct checksum_algo *algo) 43 { 44 int ff_len; 45 int ret; 46 47 /* first byte must be 0x00 */ 48 ret = *msg++; 49 /* second byte must be 0x01 */ 50 ret |= *msg++ ^ 0x01; 51 /* next ff_len bytes must be 0xff */ 52 ff_len = pad_len - algo->der_len - 3; 53 ret |= *msg ^ 0xff; 54 ret |= memcmp(msg, msg+1, ff_len-1); 55 msg += ff_len; 56 /* next byte must be 0x00 */ 57 ret |= *msg++; 58 /* next der_len bytes must match der_prefix */ 59 ret |= memcmp(msg, algo->der_prefix, algo->der_len); 60 61 return ret; 62 } 63 64 #if !defined(USE_HOSTCC) 65 #if CONFIG_IS_ENABLED(FIT_HW_CRYPTO) 66 static void rsa_convert_big_endian(uint32_t *dst, const uint32_t *src, 67 int total_len, int convert_len) 68 { 69 int total_wd, convert_wd, i; 70 71 if (total_len < convert_len) 72 convert_len = total_len; 73 74 total_wd = total_len / sizeof(uint32_t); 75 convert_wd = convert_len / sizeof(uint32_t); 76 for (i = 0; i < convert_wd; i++) 77 dst[i] = fdt32_to_cpu(src[total_wd - 1 - i]); 78 } 79 80 static int rsa_mod_exp_hw(struct key_prop *prop, const uint8_t *sig, 81 const uint32_t sig_len, const uint32_t key_len, 82 uint8_t *output) 83 { 84 struct udevice *dev; 85 uint8_t sig_reverse[sig_len]; 86 uint8_t buf[sig_len]; 87 rsa_key rsa_key; 88 int i, ret; 89 #ifdef CONFIG_FIT_ENABLE_RSA4096_SUPPORT 90 if (key_len != RSA4096_BYTES) 91 return -EINVAL; 92 93 rsa_key.algo = CRYPTO_RSA4096; 94 #else 95 if (key_len != RSA2048_BYTES) 96 return -EINVAL; 97 98 rsa_key.algo = CRYPTO_RSA2048; 99 #endif 100 rsa_key.n = malloc(key_len); 101 rsa_key.e = malloc(key_len); 102 rsa_key.c = malloc(key_len); 103 if (!rsa_key.n || !rsa_key.e || !rsa_key.c) 104 return -ENOMEM; 105 106 rsa_convert_big_endian(rsa_key.n, (uint32_t *)prop->modulus, 107 key_len, key_len); 108 rsa_convert_big_endian(rsa_key.e, (uint32_t *)prop->public_exponent_BN, 109 key_len, key_len); 110 #ifdef CONFIG_ROCKCHIP_CRYPTO_V1 111 rsa_convert_big_endian(rsa_key.c, (uint32_t *)prop->factor_c, 112 key_len, key_len); 113 #else 114 rsa_convert_big_endian(rsa_key.c, (uint32_t *)prop->factor_np, 115 key_len, key_len); 116 #endif 117 #if defined(CONFIG_ROCKCHIP_PRELOADER_ATAGS) && defined(CONFIG_SPL_BUILD) 118 char *rsa_key_data = malloc(3 * key_len); 119 int flag = 0; 120 121 if (rsa_key_data) { 122 memcpy(rsa_key_data, rsa_key.n, key_len); 123 memcpy(rsa_key_data + key_len, rsa_key.e, key_len); 124 memcpy(rsa_key_data + 2 * key_len, rsa_key.c, key_len); 125 if (fit_board_verify_required_sigs()) 126 flag = PUBKEY_FUSE_PROGRAMMED; 127 128 if (atags_set_pub_key(rsa_key_data, 3 * key_len, flag)) 129 printf("Send public key through atags fail."); 130 } 131 #endif 132 for (i = 0; i < sig_len; i++) 133 sig_reverse[sig_len-1-i] = sig[i]; 134 135 dev = crypto_get_device(rsa_key.algo); 136 if (!dev) { 137 printf("No crypto device for expected RSA\n"); 138 return -ENODEV; 139 } 140 141 ret = crypto_rsa_verify(dev, &rsa_key, (u8 *)sig_reverse, buf); 142 if (ret) 143 goto out; 144 145 for (i = 0; i < sig_len; i++) 146 sig_reverse[sig_len-1-i] = buf[i]; 147 148 memcpy(output, sig_reverse, sig_len); 149 out: 150 free(rsa_key.n); 151 free(rsa_key.e); 152 free(rsa_key.c); 153 154 return ret; 155 } 156 #endif 157 #endif 158 159 int padding_pkcs_15_verify(struct image_sign_info *info, 160 uint8_t *msg, int msg_len, 161 const uint8_t *hash, int hash_len) 162 { 163 struct checksum_algo *checksum = info->checksum; 164 int ret, pad_len = msg_len - checksum->checksum_len; 165 166 /* Check pkcs1.5 padding bytes. */ 167 ret = rsa_verify_padding(msg, pad_len, checksum); 168 if (ret) { 169 debug("In RSAVerify(): Padding check failed!\n"); 170 return -EINVAL; 171 } 172 173 /* Check hash. */ 174 if (memcmp((uint8_t *)msg + pad_len, hash, msg_len - pad_len)) { 175 debug("In RSAVerify(): Hash check failed!\n"); 176 return -EACCES; 177 } 178 179 return 0; 180 } 181 182 #ifdef CONFIG_FIT_ENABLE_RSASSA_PSS_SUPPORT 183 static void u32_i2osp(uint32_t val, uint8_t *buf) 184 { 185 buf[0] = (uint8_t)((val >> 24) & 0xff); 186 buf[1] = (uint8_t)((val >> 16) & 0xff); 187 buf[2] = (uint8_t)((val >> 8) & 0xff); 188 buf[3] = (uint8_t)((val >> 0) & 0xff); 189 } 190 191 /** 192 * mask_generation_function1() - generate an octet string 193 * 194 * Generate an octet string used to check rsa signature. 195 * It use an input octet string and a hash function. 196 * 197 * @checksum: A Hash function 198 * @seed: Specifies an input variable octet string 199 * @seed_len: Size of the input octet string 200 * @output: Specifies the output octet string 201 * @output_len: Size of the output octet string 202 * @return 0 if the octet string was correctly generated, others on error 203 */ 204 static int mask_generation_function1(struct checksum_algo *checksum, 205 uint8_t *seed, int seed_len, 206 uint8_t *output, int output_len) 207 { 208 struct image_region region[2]; 209 int ret = 0, i, i_output = 0, region_count = 2; 210 uint32_t counter = 0; 211 uint8_t buf_counter[4], *tmp; 212 int hash_len = checksum->checksum_len; 213 214 memset(output, 0, output_len); 215 216 region[0].data = seed; 217 region[0].size = seed_len; 218 region[1].data = &buf_counter[0]; 219 region[1].size = 4; 220 221 tmp = malloc(hash_len); 222 if (!tmp) { 223 debug("%s: can't allocate array tmp\n", __func__); 224 ret = -ENOMEM; 225 goto out; 226 } 227 228 while (i_output < output_len) { 229 u32_i2osp(counter, &buf_counter[0]); 230 231 ret = checksum->calculate(checksum->name, 232 region, region_count, 233 tmp); 234 if (ret < 0) { 235 debug("%s: Error in checksum calculation\n", __func__); 236 goto out; 237 } 238 239 i = 0; 240 while ((i_output < output_len) && (i < hash_len)) { 241 output[i_output] = tmp[i]; 242 i_output++; 243 i++; 244 } 245 246 counter++; 247 } 248 249 out: 250 free(tmp); 251 252 return ret; 253 } 254 255 static int compute_hash_prime(struct checksum_algo *checksum, 256 uint8_t *pad, int pad_len, 257 uint8_t *hash, int hash_len, 258 uint8_t *salt, int salt_len, 259 uint8_t *hprime) 260 { 261 struct image_region region[3]; 262 int ret, region_count = 3; 263 264 region[0].data = pad; 265 region[0].size = pad_len; 266 region[1].data = hash; 267 region[1].size = hash_len; 268 region[2].data = salt; 269 region[2].size = salt_len; 270 271 ret = checksum->calculate(checksum->name, region, region_count, hprime); 272 if (ret < 0) { 273 debug("%s: Error in checksum calculation\n", __func__); 274 goto out; 275 } 276 277 out: 278 return ret; 279 } 280 281 int padding_pss_verify(struct image_sign_info *info, 282 uint8_t *msg, int msg_len, 283 const uint8_t *hash, int hash_len) 284 { 285 uint8_t *masked_db = NULL; 286 int masked_db_len = msg_len - hash_len - 1; 287 uint8_t *h = NULL, *hprime = NULL; 288 int h_len = hash_len; 289 uint8_t *db_mask = NULL; 290 int db_mask_len = masked_db_len; 291 uint8_t *db = NULL, *salt = NULL; 292 int db_len = masked_db_len, salt_len = msg_len - hash_len - 2; 293 uint8_t pad_zero[8] = { 0 }; 294 int ret, i, leftmost_bits = 1; 295 uint8_t leftmost_mask; 296 struct checksum_algo *checksum = info->checksum; 297 298 /* first, allocate everything */ 299 masked_db = malloc(masked_db_len); 300 h = malloc(h_len); 301 db_mask = malloc(db_mask_len); 302 db = malloc(db_len); 303 salt = malloc(salt_len); 304 hprime = malloc(hash_len); 305 if (!masked_db || !h || !db_mask || !db || !salt || !hprime) { 306 printf("%s: can't allocate some buffer\n", __func__); 307 ret = -ENOMEM; 308 goto out; 309 } 310 311 /* step 4: check if the last byte is 0xbc */ 312 if (msg[msg_len - 1] != 0xbc) { 313 printf("%s: invalid pss padding (0xbc is missing)\n", __func__); 314 ret = -EINVAL; 315 goto out; 316 } 317 318 /* step 5 */ 319 memcpy(masked_db, msg, masked_db_len); 320 memcpy(h, msg + masked_db_len, h_len); 321 322 /* step 6 */ 323 leftmost_mask = (0xff >> (8 - leftmost_bits)) << (8 - leftmost_bits); 324 if (masked_db[0] & leftmost_mask) { 325 printf("%s: invalid pss padding ", __func__); 326 printf("(leftmost bit of maskedDB not zero)\n"); 327 ret = -EINVAL; 328 goto out; 329 } 330 331 /* step 7 */ 332 mask_generation_function1(checksum, h, h_len, db_mask, db_mask_len); 333 334 /* step 8 */ 335 for (i = 0; i < db_len; i++) 336 db[i] = masked_db[i] ^ db_mask[i]; 337 338 /* step 9 */ 339 db[0] &= 0xff >> leftmost_bits; 340 341 /* step 10 */ 342 if (db[0] != 0x01) { 343 printf("%s: invalid pss padding ", __func__); 344 printf("(leftmost byte of db isn't 0x01)\n"); 345 ret = EINVAL; 346 goto out; 347 } 348 349 /* step 11 */ 350 memcpy(salt, &db[1], salt_len); 351 352 /* step 12 & 13 */ 353 compute_hash_prime(checksum, pad_zero, 8, 354 (uint8_t *)hash, hash_len, 355 salt, salt_len, hprime); 356 357 /* step 14 */ 358 ret = memcmp(h, hprime, hash_len); 359 360 out: 361 free(hprime); 362 free(salt); 363 free(db); 364 free(db_mask); 365 free(h); 366 free(masked_db); 367 368 return ret; 369 } 370 #endif 371 372 /** 373 * rsa_verify_key() - Verify a signature against some data using RSA Key 374 * 375 * Verify a RSA PKCS1.5 signature against an expected hash using 376 * the RSA Key properties in prop structure. 377 * 378 * @info: Specifies key and FIT information 379 * @prop: Specifies key 380 * @sig: Signature 381 * @sig_len: Number of bytes in signature 382 * @hash: Pointer to the expected hash 383 * @key_len: Number of bytes in rsa key 384 * @return 0 if verified, -ve on error 385 */ 386 static int rsa_verify_key(struct image_sign_info *info, 387 struct key_prop *prop, const uint8_t *sig, 388 const uint32_t sig_len, const uint8_t *hash, 389 const uint32_t key_len) 390 { 391 int ret; 392 struct checksum_algo *checksum = info->checksum; 393 struct padding_algo *padding = info->padding; 394 int hash_len = checksum->checksum_len; 395 396 if (!prop || !sig || !hash || !checksum) 397 return -EIO; 398 399 if (sig_len != (prop->num_bits / 8)) { 400 debug("Signature is of incorrect length %d\n", sig_len); 401 return -EINVAL; 402 } 403 404 debug("Checksum algorithm: %s", checksum->name); 405 406 /* Sanity check for stack size */ 407 if (sig_len > RSA_MAX_SIG_BITS / 8) { 408 debug("Signature length %u exceeds maximum %d\n", sig_len, 409 RSA_MAX_SIG_BITS / 8); 410 return -EINVAL; 411 } 412 413 uint8_t buf[sig_len]; 414 415 #if !defined(USE_HOSTCC) 416 #if CONFIG_IS_ENABLED(FIT_HW_CRYPTO) 417 ret = rsa_mod_exp_hw(prop, sig, sig_len, key_len, buf); 418 #else 419 struct udevice *mod_exp_dev; 420 421 ret = uclass_get_device(UCLASS_MOD_EXP, 0, &mod_exp_dev); 422 if (ret) { 423 printf("RSA: Can't find Modular Exp implementation\n"); 424 return -EINVAL; 425 } 426 427 ret = rsa_mod_exp(mod_exp_dev, sig, sig_len, prop, buf); 428 #endif 429 #else 430 ret = rsa_mod_exp_sw(sig, sig_len, prop, buf); 431 #endif 432 if (ret) { 433 debug("Error in Modular exponentation\n"); 434 return ret; 435 } 436 437 ret = padding->verify(info, buf, key_len, hash, hash_len); 438 if (ret) { 439 debug("In RSAVerify(): padding check failed!\n"); 440 return ret; 441 } 442 443 return 0; 444 } 445 446 static int rsa_get_key_prop(struct key_prop *prop, struct image_sign_info *info, int node) 447 { 448 const void *blob = info->fdt_blob; 449 int length; 450 int hash_node; 451 452 if (node < 0) { 453 debug("%s: Skipping invalid node", __func__); 454 return -EBADF; 455 } 456 457 if (!prop) { 458 debug("%s: The prop is NULL", __func__); 459 return -EBADF; 460 } 461 462 prop->burn_key = fdtdec_get_int(blob, node, "burn-key-hash", 0); 463 464 prop->num_bits = fdtdec_get_int(blob, node, "rsa,num-bits", 0); 465 466 prop->n0inv = fdtdec_get_int(blob, node, "rsa,n0-inverse", 0); 467 468 prop->public_exponent = fdt_getprop(blob, node, "rsa,exponent", &length); 469 if (!prop->public_exponent || length < sizeof(uint64_t)) 470 prop->public_exponent = NULL; 471 472 prop->exp_len = sizeof(uint64_t); 473 prop->modulus = fdt_getprop(blob, node, "rsa,modulus", NULL); 474 prop->public_exponent_BN = fdt_getprop(blob, node, "rsa,exponent-BN", NULL); 475 prop->rr = fdt_getprop(blob, node, "rsa,r-squared", NULL); 476 #ifdef CONFIG_ROCKCHIP_CRYPTO_V1 477 hash_node = fdt_subnode_offset(blob, node, "hash@c"); 478 #else 479 hash_node = fdt_subnode_offset(blob, node, "hash@np"); 480 #endif 481 if (hash_node >= 0) 482 prop->hash = fdt_getprop(blob, hash_node, "value", NULL); 483 484 if (!prop->num_bits || !prop->modulus) { 485 debug("%s: Missing RSA key info", __func__); 486 return -EFAULT; 487 } 488 489 #ifdef CONFIG_ROCKCHIP_CRYPTO_V1 490 prop->factor_c = fdt_getprop(blob, node, "rsa,c", NULL); 491 if (!prop.factor_c) 492 return -EFAULT; 493 #else 494 prop->factor_np = fdt_getprop(blob, node, "rsa,np", NULL); 495 if (!prop->factor_np) 496 return -EFAULT; 497 #endif 498 499 return 0; 500 } 501 502 /** 503 * rsa_verify_with_keynode() - Verify a signature against some data using 504 * information in node with prperties of RSA Key like modulus, exponent etc. 505 * 506 * Parse sign-node and fill a key_prop structure with properties of the 507 * key. Verify a RSA PKCS1.5 signature against an expected hash using 508 * the properties parsed 509 * 510 * @info: Specifies key and FIT information 511 * @hash: Pointer to the expected hash 512 * @sig: Signature 513 * @sig_len: Number of bytes in signature 514 * @node: Node having the RSA Key properties 515 * @return 0 if verified, -ve on error 516 */ 517 static int rsa_verify_with_keynode(struct image_sign_info *info, 518 const void *hash, uint8_t *sig, 519 uint sig_len, int node) 520 { 521 struct key_prop prop; 522 523 if (rsa_get_key_prop(&prop, info, node)) 524 return -EFAULT; 525 526 return rsa_verify_key(info, &prop, sig, sig_len, hash, 527 info->crypto->key_len); 528 } 529 530 int rsa_verify(struct image_sign_info *info, 531 const struct image_region region[], int region_count, 532 uint8_t *sig, uint sig_len) 533 { 534 const void *blob = info->fdt_blob; 535 /* Reserve memory for maximum checksum-length */ 536 uint8_t hash[info->crypto->key_len]; 537 int ndepth, noffset; 538 int sig_node, node; 539 char name[100]; 540 int ret; 541 542 /* 543 * Verify that the checksum-length does not exceed the 544 * rsa-signature-length 545 */ 546 if (info->checksum->checksum_len > 547 info->crypto->key_len) { 548 debug("%s: invlaid checksum-algorithm %s for %s\n", 549 __func__, info->checksum->name, info->crypto->name); 550 return -EINVAL; 551 } 552 553 sig_node = fdt_subnode_offset(blob, 0, FIT_SIG_NODENAME); 554 if (sig_node < 0) { 555 debug("%s: No signature node found\n", __func__); 556 return -ENOENT; 557 } 558 559 /* Calculate checksum with checksum-algorithm */ 560 ret = info->checksum->calculate(info->checksum->name, 561 region, region_count, hash); 562 if (ret < 0) { 563 debug("%s: Error in checksum calculation\n", __func__); 564 return -EINVAL; 565 } 566 567 /* See if we must use a particular key */ 568 if (info->required_keynode != -1) { 569 ret = rsa_verify_with_keynode(info, hash, sig, sig_len, 570 info->required_keynode); 571 if (!ret) 572 return ret; 573 } 574 575 /* Look for a key that matches our hint */ 576 snprintf(name, sizeof(name), "key-%s", info->keyname); 577 node = fdt_subnode_offset(blob, sig_node, name); 578 ret = rsa_verify_with_keynode(info, hash, sig, sig_len, node); 579 if (!ret) 580 return ret; 581 582 /* No luck, so try each of the keys in turn */ 583 for (ndepth = 0, noffset = fdt_next_node(info->fit, sig_node, &ndepth); 584 (noffset >= 0) && (ndepth > 0); 585 noffset = fdt_next_node(info->fit, noffset, &ndepth)) { 586 if (ndepth == 1 && noffset != node) { 587 ret = rsa_verify_with_keynode(info, hash, sig, sig_len, 588 noffset); 589 if (!ret) 590 break; 591 } 592 } 593 594 return ret; 595 } 596 597 #if !defined(USE_HOSTCC) 598 #if defined(CONFIG_SPL_BUILD) && defined(CONFIG_SPL_FIT_HW_CRYPTO) && \ 599 defined(CONFIG_SPL_ROCKCHIP_SECURE_OTP) 600 int rsa_burn_key_hash(struct image_sign_info *info) 601 { 602 char *rsa_key; 603 void *n, *e, *c; 604 uint32_t key_len; 605 struct udevice *dev; 606 struct key_prop prop; 607 char name[100] = {0}; 608 u16 secure_flags = 0; 609 const void *blob = info->fdt_blob; 610 uint8_t digest[FIT_MAX_HASH_LEN]; 611 uint8_t digest_read[FIT_MAX_HASH_LEN]; 612 int sig_node, node, digest_len, i, ret = 0; 613 614 dev = misc_otp_get_device(OTP_S); 615 if (!dev) 616 return -ENODEV; 617 618 ret = misc_otp_read(dev, OTP_SECURE_BOOT_ENABLE_ADDR, 619 &secure_flags, OTP_SECURE_BOOT_ENABLE_SIZE); 620 if (ret) 621 return ret; 622 623 if (secure_flags == 0xff) 624 return 0; 625 626 sig_node = fdt_subnode_offset(blob, 0, FIT_SIG_NODENAME); 627 if (sig_node < 0) { 628 debug("%s: No signature node found\n", __func__); 629 return -ENOENT; 630 } 631 632 snprintf(name, sizeof(name), "key-%s", info->keyname); 633 node = fdt_subnode_offset(blob, sig_node, name); 634 635 if (rsa_get_key_prop(&prop, info, node)) 636 return -1; 637 638 if (!(prop.burn_key)) 639 return -EPERM; 640 641 if (!prop.hash || !prop.modulus || !prop.public_exponent_BN) 642 return -ENOENT; 643 #ifdef CONFIG_ROCKCHIP_CRYPTO_V1 644 if (!prop.factor_c) 645 return -ENOENT; 646 #else 647 if (!prop.factor_np) 648 return -ENOENT; 649 #endif 650 key_len = info->crypto->key_len; 651 if (info->crypto->key_len != RSA2048_BYTES) 652 return -EINVAL; 653 654 rsa_key = calloc(key_len * 3, sizeof(char)); 655 if (!rsa_key) 656 return -ENOMEM; 657 658 n = rsa_key; 659 e = rsa_key + CONFIG_RSA_N_SIZE; 660 c = rsa_key + CONFIG_RSA_N_SIZE + CONFIG_RSA_E_SIZE; 661 rsa_convert_big_endian(n, (uint32_t *)prop.modulus, 662 key_len, CONFIG_RSA_N_SIZE); 663 rsa_convert_big_endian(e, (uint32_t *)prop.public_exponent_BN, 664 key_len, CONFIG_RSA_E_SIZE); 665 #ifdef CONFIG_ROCKCHIP_CRYPTO_V1 666 rsa_convert_big_endian(c, (uint32_t *)prop.factor_c, 667 key_len, CONFIG_RSA_C_SIZE); 668 #else 669 rsa_convert_big_endian(c, (uint32_t *)prop.factor_np, 670 key_len, CONFIG_RSA_C_SIZE); 671 #endif 672 673 ret = calculate_hash(rsa_key, CONFIG_RSA_N_SIZE + CONFIG_RSA_E_SIZE + CONFIG_RSA_C_SIZE, 674 info->checksum->name, digest, &digest_len); 675 if (ret) 676 goto error; 677 678 if (memcmp(digest, prop.hash, digest_len) != 0) { 679 printf("RSA: Compare public key hash fail.\n"); 680 goto error; 681 } 682 683 /* burn key hash here */ 684 ret = misc_otp_read(dev, OTP_RSA_HASH_ADDR, digest_read, OTP_RSA_HASH_SIZE); 685 if (ret) 686 goto error; 687 688 for (i = 0; i < OTP_RSA_HASH_SIZE; i++) { 689 if (digest_read[i]) { 690 printf("RSA: The secure region has been written.\n"); 691 ret = -EIO; 692 goto error; 693 } 694 } 695 696 ret = misc_otp_write(dev, OTP_RSA_HASH_ADDR, digest, OTP_RSA_HASH_SIZE); 697 if (ret) 698 goto error; 699 700 memset(digest_read, 0, FIT_MAX_HASH_LEN); 701 ret = misc_otp_read(dev, OTP_RSA_HASH_ADDR, digest_read, OTP_RSA_HASH_SIZE); 702 if (ret) 703 goto error; 704 705 if (memcmp(digest, digest_read, digest_len) != 0) { 706 printf("RSA: Write public key hash fail.\n"); 707 goto error; 708 } 709 710 secure_flags = 0xff; 711 ret = misc_otp_write(dev, OTP_SECURE_BOOT_ENABLE_ADDR, 712 &secure_flags, OTP_SECURE_BOOT_ENABLE_SIZE); 713 if (ret) 714 goto error; 715 716 printf("RSA: Write key hash successfully\n"); 717 718 error: 719 free(rsa_key); 720 721 return ret; 722 } 723 #endif 724 #endif 725