xref: /rk3399_rockchip-uboot/lib/rational.c (revision 4700eff16121332601631d377187c7ae4a505051)
1*4700eff1STero Kristo // SPDX-License-Identifier: GPL-2.0
2*4700eff1STero Kristo /*
3*4700eff1STero Kristo  * rational fractions
4*4700eff1STero Kristo  *
5*4700eff1STero Kristo  * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com>
6*4700eff1STero Kristo  * Copyright (C) 2019 Trent Piepho <tpiepho@gmail.com>
7*4700eff1STero Kristo  *
8*4700eff1STero Kristo  * helper functions when coping with rational numbers
9*4700eff1STero Kristo  */
10*4700eff1STero Kristo 
11*4700eff1STero Kristo #include <linux/rational.h>
12*4700eff1STero Kristo #include <linux/compiler.h>
13*4700eff1STero Kristo #include <linux/kernel.h>
14*4700eff1STero Kristo 
15*4700eff1STero Kristo /*
16*4700eff1STero Kristo  * calculate best rational approximation for a given fraction
17*4700eff1STero Kristo  * taking into account restricted register size, e.g. to find
18*4700eff1STero Kristo  * appropriate values for a pll with 5 bit denominator and
19*4700eff1STero Kristo  * 8 bit numerator register fields, trying to set up with a
20*4700eff1STero Kristo  * frequency ratio of 3.1415, one would say:
21*4700eff1STero Kristo  *
22*4700eff1STero Kristo  * rational_best_approximation(31415, 10000,
23*4700eff1STero Kristo  *		(1 << 8) - 1, (1 << 5) - 1, &n, &d);
24*4700eff1STero Kristo  *
25*4700eff1STero Kristo  * you may look at given_numerator as a fixed point number,
26*4700eff1STero Kristo  * with the fractional part size described in given_denominator.
27*4700eff1STero Kristo  *
28*4700eff1STero Kristo  * for theoretical background, see:
29*4700eff1STero Kristo  * http://en.wikipedia.org/wiki/Continued_fraction
30*4700eff1STero Kristo  */
31*4700eff1STero Kristo 
rational_best_approximation(unsigned long given_numerator,unsigned long given_denominator,unsigned long max_numerator,unsigned long max_denominator,unsigned long * best_numerator,unsigned long * best_denominator)32*4700eff1STero Kristo void rational_best_approximation(
33*4700eff1STero Kristo 	unsigned long given_numerator, unsigned long given_denominator,
34*4700eff1STero Kristo 	unsigned long max_numerator, unsigned long max_denominator,
35*4700eff1STero Kristo 	unsigned long *best_numerator, unsigned long *best_denominator)
36*4700eff1STero Kristo {
37*4700eff1STero Kristo 	/* n/d is the starting rational, which is continually
38*4700eff1STero Kristo 	 * decreased each iteration using the Euclidean algorithm.
39*4700eff1STero Kristo 	 *
40*4700eff1STero Kristo 	 * dp is the value of d from the prior iteration.
41*4700eff1STero Kristo 	 *
42*4700eff1STero Kristo 	 * n2/d2, n1/d1, and n0/d0 are our successively more accurate
43*4700eff1STero Kristo 	 * approximations of the rational.  They are, respectively,
44*4700eff1STero Kristo 	 * the current, previous, and two prior iterations of it.
45*4700eff1STero Kristo 	 *
46*4700eff1STero Kristo 	 * a is current term of the continued fraction.
47*4700eff1STero Kristo 	 */
48*4700eff1STero Kristo 	unsigned long n, d, n0, d0, n1, d1, n2, d2;
49*4700eff1STero Kristo 	n = given_numerator;
50*4700eff1STero Kristo 	d = given_denominator;
51*4700eff1STero Kristo 	n0 = d1 = 0;
52*4700eff1STero Kristo 	n1 = d0 = 1;
53*4700eff1STero Kristo 
54*4700eff1STero Kristo 	for (;;) {
55*4700eff1STero Kristo 		unsigned long dp, a;
56*4700eff1STero Kristo 
57*4700eff1STero Kristo 		if (d == 0)
58*4700eff1STero Kristo 			break;
59*4700eff1STero Kristo 		/* Find next term in continued fraction, 'a', via
60*4700eff1STero Kristo 		 * Euclidean algorithm.
61*4700eff1STero Kristo 		 */
62*4700eff1STero Kristo 		dp = d;
63*4700eff1STero Kristo 		a = n / d;
64*4700eff1STero Kristo 		d = n % d;
65*4700eff1STero Kristo 		n = dp;
66*4700eff1STero Kristo 
67*4700eff1STero Kristo 		/* Calculate the current rational approximation (aka
68*4700eff1STero Kristo 		 * convergent), n2/d2, using the term just found and
69*4700eff1STero Kristo 		 * the two prior approximations.
70*4700eff1STero Kristo 		 */
71*4700eff1STero Kristo 		n2 = n0 + a * n1;
72*4700eff1STero Kristo 		d2 = d0 + a * d1;
73*4700eff1STero Kristo 
74*4700eff1STero Kristo 		/* If the current convergent exceeds the maxes, then
75*4700eff1STero Kristo 		 * return either the previous convergent or the
76*4700eff1STero Kristo 		 * largest semi-convergent, the final term of which is
77*4700eff1STero Kristo 		 * found below as 't'.
78*4700eff1STero Kristo 		 */
79*4700eff1STero Kristo 		if ((n2 > max_numerator) || (d2 > max_denominator)) {
80*4700eff1STero Kristo 			unsigned long t = min((max_numerator - n0) / n1,
81*4700eff1STero Kristo 					      (max_denominator - d0) / d1);
82*4700eff1STero Kristo 
83*4700eff1STero Kristo 			/* This tests if the semi-convergent is closer
84*4700eff1STero Kristo 			 * than the previous convergent.
85*4700eff1STero Kristo 			 */
86*4700eff1STero Kristo 			if (2u * t > a || (2u * t == a && d0 * dp > d1 * d)) {
87*4700eff1STero Kristo 				n1 = n0 + t * n1;
88*4700eff1STero Kristo 				d1 = d0 + t * d1;
89*4700eff1STero Kristo 			}
90*4700eff1STero Kristo 			break;
91*4700eff1STero Kristo 		}
92*4700eff1STero Kristo 		n0 = n1;
93*4700eff1STero Kristo 		n1 = n2;
94*4700eff1STero Kristo 		d0 = d1;
95*4700eff1STero Kristo 		d1 = d2;
96*4700eff1STero Kristo 	}
97*4700eff1STero Kristo 	*best_numerator = n1;
98*4700eff1STero Kristo 	*best_denominator = d1;
99*4700eff1STero Kristo }
100