xref: /rk3399_rockchip-uboot/lib/efi_loader/efi_memory.c (revision b61d857b2ff3b0b099ef187d7ceebe26ea788578)
1 /*
2  *  EFI application memory management
3  *
4  *  Copyright (c) 2016 Alexander Graf
5  *
6  *  SPDX-License-Identifier:     GPL-2.0+
7  */
8 
9 #include <common.h>
10 #include <efi_loader.h>
11 #include <malloc.h>
12 #include <asm/global_data.h>
13 #include <libfdt_env.h>
14 #include <linux/list_sort.h>
15 #include <inttypes.h>
16 #include <watchdog.h>
17 
18 DECLARE_GLOBAL_DATA_PTR;
19 
20 struct efi_mem_list {
21 	struct list_head link;
22 	struct efi_mem_desc desc;
23 };
24 
25 #define EFI_CARVE_NO_OVERLAP		-1
26 #define EFI_CARVE_LOOP_AGAIN		-2
27 #define EFI_CARVE_OVERLAPS_NONRAM	-3
28 
29 /* This list contains all memory map items */
30 LIST_HEAD(efi_mem);
31 
32 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
33 void *efi_bounce_buffer;
34 #endif
35 
36 /*
37  * U-Boot services each EFI AllocatePool request as a separate
38  * (multiple) page allocation.  We have to track the number of pages
39  * to be able to free the correct amount later.
40  * EFI requires 8 byte alignment for pool allocations, so we can
41  * prepend each allocation with an 64 bit header tracking the
42  * allocation size, and hand out the remainder to the caller.
43  */
44 struct efi_pool_allocation {
45 	u64 num_pages;
46 	char data[];
47 };
48 
49 /*
50  * Sorts the memory list from highest address to lowest address
51  *
52  * When allocating memory we should always start from the highest
53  * address chunk, so sort the memory list such that the first list
54  * iterator gets the highest address and goes lower from there.
55  */
56 static int efi_mem_cmp(void *priv, struct list_head *a, struct list_head *b)
57 {
58 	struct efi_mem_list *mema = list_entry(a, struct efi_mem_list, link);
59 	struct efi_mem_list *memb = list_entry(b, struct efi_mem_list, link);
60 
61 	if (mema->desc.physical_start == memb->desc.physical_start)
62 		return 0;
63 	else if (mema->desc.physical_start < memb->desc.physical_start)
64 		return 1;
65 	else
66 		return -1;
67 }
68 
69 static void efi_mem_sort(void)
70 {
71 	list_sort(NULL, &efi_mem, efi_mem_cmp);
72 }
73 
74 /*
75  * Unmaps all memory occupied by the carve_desc region from the
76  * list entry pointed to by map.
77  *
78  * Returns EFI_CARVE_NO_OVERLAP if the regions don't overlap.
79  * Returns EFI_CARVE_OVERLAPS_NONRAM if the carve and map overlap,
80  *    and the map contains anything but free ram.
81  *    (only when overlap_only_ram is true)
82  * Returns EFI_CARVE_LOOP_AGAIN if the mapping list should be traversed
83  *    again, as it has been altered
84  * Returns the number of overlapping pages. The pages are removed from
85  *     the mapping list.
86  *
87  * In case of EFI_CARVE_OVERLAPS_NONRAM it is the callers responsibility
88  * to readd the already carved out pages to the mapping.
89  */
90 static int efi_mem_carve_out(struct efi_mem_list *map,
91 			     struct efi_mem_desc *carve_desc,
92 			     bool overlap_only_ram)
93 {
94 	struct efi_mem_list *newmap;
95 	struct efi_mem_desc *map_desc = &map->desc;
96 	uint64_t map_start = map_desc->physical_start;
97 	uint64_t map_end = map_start + (map_desc->num_pages << EFI_PAGE_SHIFT);
98 	uint64_t carve_start = carve_desc->physical_start;
99 	uint64_t carve_end = carve_start +
100 			     (carve_desc->num_pages << EFI_PAGE_SHIFT);
101 
102 	/* check whether we're overlapping */
103 	if ((carve_end <= map_start) || (carve_start >= map_end))
104 		return EFI_CARVE_NO_OVERLAP;
105 
106 	/* We're overlapping with non-RAM, warn the caller if desired */
107 	if (overlap_only_ram && (map_desc->type != EFI_CONVENTIONAL_MEMORY))
108 		return EFI_CARVE_OVERLAPS_NONRAM;
109 
110 	/* Sanitize carve_start and carve_end to lie within our bounds */
111 	carve_start = max(carve_start, map_start);
112 	carve_end = min(carve_end, map_end);
113 
114 	/* Carving at the beginning of our map? Just move it! */
115 	if (carve_start == map_start) {
116 		if (map_end == carve_end) {
117 			/* Full overlap, just remove map */
118 			list_del(&map->link);
119 		}
120 
121 		map_desc->physical_start = carve_end;
122 		map_desc->num_pages = (map_end - carve_end) >> EFI_PAGE_SHIFT;
123 		return (carve_end - carve_start) >> EFI_PAGE_SHIFT;
124 	}
125 
126 	/*
127 	 * Overlapping maps, just split the list map at carve_start,
128 	 * it will get moved or removed in the next iteration.
129 	 *
130 	 * [ map_desc |__carve_start__| newmap ]
131 	 */
132 
133 	/* Create a new map from [ carve_start ... map_end ] */
134 	newmap = calloc(1, sizeof(*newmap));
135 	newmap->desc = map->desc;
136 	newmap->desc.physical_start = carve_start;
137 	newmap->desc.num_pages = (map_end - carve_start) >> EFI_PAGE_SHIFT;
138         list_add_tail(&newmap->link, &efi_mem);
139 
140 	/* Shrink the map to [ map_start ... carve_start ] */
141 	map_desc->num_pages = (carve_start - map_start) >> EFI_PAGE_SHIFT;
142 
143 	return EFI_CARVE_LOOP_AGAIN;
144 }
145 
146 uint64_t efi_add_memory_map(uint64_t start, uint64_t pages, int memory_type,
147 			    bool overlap_only_ram)
148 {
149 	struct list_head *lhandle;
150 	struct efi_mem_list *newlist;
151 	bool carve_again;
152 	uint64_t carved_pages = 0;
153 
154 	debug("%s: 0x%" PRIx64 " 0x%" PRIx64 " %d %s\n", __func__,
155 	      start, pages, memory_type, overlap_only_ram ? "yes" : "no");
156 
157 	if (!pages)
158 		return start;
159 
160 	newlist = calloc(1, sizeof(*newlist));
161 	newlist->desc.type = memory_type;
162 	newlist->desc.physical_start = start;
163 	newlist->desc.virtual_start = start;
164 	newlist->desc.num_pages = pages;
165 
166 	switch (memory_type) {
167 	case EFI_RUNTIME_SERVICES_CODE:
168 	case EFI_RUNTIME_SERVICES_DATA:
169 		newlist->desc.attribute = (1 << EFI_MEMORY_WB_SHIFT) |
170 					  (1ULL << EFI_MEMORY_RUNTIME_SHIFT);
171 		break;
172 	case EFI_MMAP_IO:
173 		newlist->desc.attribute = 1ULL << EFI_MEMORY_RUNTIME_SHIFT;
174 		break;
175 	default:
176 		newlist->desc.attribute = 1 << EFI_MEMORY_WB_SHIFT;
177 		break;
178 	}
179 
180 	/* Add our new map */
181 	do {
182 		carve_again = false;
183 		list_for_each(lhandle, &efi_mem) {
184 			struct efi_mem_list *lmem;
185 			int r;
186 
187 			lmem = list_entry(lhandle, struct efi_mem_list, link);
188 			r = efi_mem_carve_out(lmem, &newlist->desc,
189 					      overlap_only_ram);
190 			switch (r) {
191 			case EFI_CARVE_OVERLAPS_NONRAM:
192 				/*
193 				 * The user requested to only have RAM overlaps,
194 				 * but we hit a non-RAM region. Error out.
195 				 */
196 				return 0;
197 			case EFI_CARVE_NO_OVERLAP:
198 				/* Just ignore this list entry */
199 				break;
200 			case EFI_CARVE_LOOP_AGAIN:
201 				/*
202 				 * We split an entry, but need to loop through
203 				 * the list again to actually carve it.
204 				 */
205 				carve_again = true;
206 				break;
207 			default:
208 				/* We carved a number of pages */
209 				carved_pages += r;
210 				carve_again = true;
211 				break;
212 			}
213 
214 			if (carve_again) {
215 				/* The list changed, we need to start over */
216 				break;
217 			}
218 		}
219 	} while (carve_again);
220 
221 	if (overlap_only_ram && (carved_pages != pages)) {
222 		/*
223 		 * The payload wanted to have RAM overlaps, but we overlapped
224 		 * with an unallocated region. Error out.
225 		 */
226 		return 0;
227 	}
228 
229 	/* Add our new map */
230         list_add_tail(&newlist->link, &efi_mem);
231 
232 	/* And make sure memory is listed in descending order */
233 	efi_mem_sort();
234 
235 	return start;
236 }
237 
238 static uint64_t efi_find_free_memory(uint64_t len, uint64_t max_addr)
239 {
240 	struct list_head *lhandle;
241 
242 	list_for_each(lhandle, &efi_mem) {
243 		struct efi_mem_list *lmem = list_entry(lhandle,
244 			struct efi_mem_list, link);
245 		struct efi_mem_desc *desc = &lmem->desc;
246 		uint64_t desc_len = desc->num_pages << EFI_PAGE_SHIFT;
247 		uint64_t desc_end = desc->physical_start + desc_len;
248 		uint64_t curmax = min(max_addr, desc_end);
249 		uint64_t ret = curmax - len;
250 
251 		/* We only take memory from free RAM */
252 		if (desc->type != EFI_CONVENTIONAL_MEMORY)
253 			continue;
254 
255 		/* Out of bounds for max_addr */
256 		if ((ret + len) > max_addr)
257 			continue;
258 
259 		/* Out of bounds for upper map limit */
260 		if ((ret + len) > desc_end)
261 			continue;
262 
263 		/* Out of bounds for lower map limit */
264 		if (ret < desc->physical_start)
265 			continue;
266 
267 		/* Return the highest address in this map within bounds */
268 		return ret;
269 	}
270 
271 	return 0;
272 }
273 
274 efi_status_t efi_allocate_pages(int type, int memory_type,
275 				unsigned long pages, uint64_t *memory)
276 {
277 	u64 len = pages << EFI_PAGE_SHIFT;
278 	efi_status_t r = EFI_SUCCESS;
279 	uint64_t addr;
280 
281 	switch (type) {
282 	case 0:
283 		/* Any page */
284 		addr = efi_find_free_memory(len, gd->start_addr_sp);
285 		if (!addr) {
286 			r = EFI_NOT_FOUND;
287 			break;
288 		}
289 		break;
290 	case 1:
291 		/* Max address */
292 		addr = efi_find_free_memory(len, *memory);
293 		if (!addr) {
294 			r = EFI_NOT_FOUND;
295 			break;
296 		}
297 		break;
298 	case 2:
299 		/* Exact address, reserve it. The addr is already in *memory. */
300 		addr = *memory;
301 		break;
302 	default:
303 		/* UEFI doesn't specify other allocation types */
304 		r = EFI_INVALID_PARAMETER;
305 		break;
306 	}
307 
308 	if (r == EFI_SUCCESS) {
309 		uint64_t ret;
310 
311 		/* Reserve that map in our memory maps */
312 		ret = efi_add_memory_map(addr, pages, memory_type, true);
313 		if (ret == addr) {
314 			*memory = addr;
315 		} else {
316 			/* Map would overlap, bail out */
317 			r = EFI_OUT_OF_RESOURCES;
318 		}
319 	}
320 
321 	return r;
322 }
323 
324 void *efi_alloc(uint64_t len, int memory_type)
325 {
326 	uint64_t ret = 0;
327 	uint64_t pages = (len + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
328 	efi_status_t r;
329 
330 	r = efi_allocate_pages(0, memory_type, pages, &ret);
331 	if (r == EFI_SUCCESS)
332 		return (void*)(uintptr_t)ret;
333 
334 	return NULL;
335 }
336 
337 efi_status_t efi_free_pages(uint64_t memory, unsigned long pages)
338 {
339 	uint64_t r = 0;
340 
341 	r = efi_add_memory_map(memory, pages, EFI_CONVENTIONAL_MEMORY, false);
342 	/* Merging of adjacent free regions is missing */
343 
344 	if (r == memory)
345 		return EFI_SUCCESS;
346 
347 	return EFI_NOT_FOUND;
348 }
349 
350 efi_status_t efi_allocate_pool(int pool_type, unsigned long size,
351 			       void **buffer)
352 {
353 	efi_status_t r;
354 	efi_physical_addr_t t;
355 	u64 num_pages = (size + sizeof(u64) + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
356 
357 	if (size == 0) {
358 		*buffer = NULL;
359 		return EFI_SUCCESS;
360 	}
361 
362 	r = efi_allocate_pages(0, pool_type, num_pages, &t);
363 
364 	if (r == EFI_SUCCESS) {
365 		struct efi_pool_allocation *alloc = (void *)(uintptr_t)t;
366 		alloc->num_pages = num_pages;
367 		*buffer = alloc->data;
368 	}
369 
370 	return r;
371 }
372 
373 efi_status_t efi_free_pool(void *buffer)
374 {
375 	efi_status_t r;
376 	struct efi_pool_allocation *alloc;
377 
378 	alloc = container_of(buffer, struct efi_pool_allocation, data);
379 	/* Sanity check, was the supplied address returned by allocate_pool */
380 	assert(((uintptr_t)alloc & EFI_PAGE_MASK) == 0);
381 
382 	r = efi_free_pages((uintptr_t)alloc, alloc->num_pages);
383 
384 	return r;
385 }
386 
387 efi_status_t efi_get_memory_map(unsigned long *memory_map_size,
388 			       struct efi_mem_desc *memory_map,
389 			       unsigned long *map_key,
390 			       unsigned long *descriptor_size,
391 			       uint32_t *descriptor_version)
392 {
393 	ulong map_size = 0;
394 	int map_entries = 0;
395 	struct list_head *lhandle;
396 	unsigned long provided_map_size = *memory_map_size;
397 
398 	list_for_each(lhandle, &efi_mem)
399 		map_entries++;
400 
401 	map_size = map_entries * sizeof(struct efi_mem_desc);
402 
403 	*memory_map_size = map_size;
404 
405 	if (descriptor_size)
406 		*descriptor_size = sizeof(struct efi_mem_desc);
407 
408 	if (descriptor_version)
409 		*descriptor_version = EFI_MEMORY_DESCRIPTOR_VERSION;
410 
411 	if (provided_map_size < map_size)
412 		return EFI_BUFFER_TOO_SMALL;
413 
414 	/* Copy list into array */
415 	if (memory_map) {
416 		/* Return the list in ascending order */
417 		memory_map = &memory_map[map_entries - 1];
418 		list_for_each(lhandle, &efi_mem) {
419 			struct efi_mem_list *lmem;
420 
421 			lmem = list_entry(lhandle, struct efi_mem_list, link);
422 			*memory_map = lmem->desc;
423 			memory_map--;
424 		}
425 	}
426 
427 	return EFI_SUCCESS;
428 }
429 
430 int efi_memory_init(void)
431 {
432 	unsigned long runtime_start, runtime_end, runtime_pages;
433 	unsigned long uboot_start, uboot_pages;
434 	unsigned long uboot_stack_size = 16 * 1024 * 1024;
435 	int i;
436 
437 	/* Add RAM */
438 	for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
439 		u64 ram_start = gd->bd->bi_dram[i].start;
440 		u64 ram_size = gd->bd->bi_dram[i].size;
441 		u64 start = (ram_start + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
442 		u64 pages = (ram_size + EFI_PAGE_MASK) >> EFI_PAGE_SHIFT;
443 
444 		efi_add_memory_map(start, pages, EFI_CONVENTIONAL_MEMORY,
445 				   false);
446 	}
447 
448 	/* Add U-Boot */
449 	uboot_start = (gd->start_addr_sp - uboot_stack_size) & ~EFI_PAGE_MASK;
450 	uboot_pages = (gd->ram_top - uboot_start) >> EFI_PAGE_SHIFT;
451 	efi_add_memory_map(uboot_start, uboot_pages, EFI_LOADER_DATA, false);
452 
453 	/* Add Runtime Services */
454 	runtime_start = (ulong)&__efi_runtime_start & ~EFI_PAGE_MASK;
455 	runtime_end = (ulong)&__efi_runtime_stop;
456 	runtime_end = (runtime_end + EFI_PAGE_MASK) & ~EFI_PAGE_MASK;
457 	runtime_pages = (runtime_end - runtime_start) >> EFI_PAGE_SHIFT;
458 	efi_add_memory_map(runtime_start, runtime_pages,
459 			   EFI_RUNTIME_SERVICES_CODE, false);
460 
461 #ifdef CONFIG_EFI_LOADER_BOUNCE_BUFFER
462 	/* Request a 32bit 64MB bounce buffer region */
463 	uint64_t efi_bounce_buffer_addr = 0xffffffff;
464 
465 	if (efi_allocate_pages(1, EFI_LOADER_DATA,
466 			       (64 * 1024 * 1024) >> EFI_PAGE_SHIFT,
467 			       &efi_bounce_buffer_addr) != EFI_SUCCESS)
468 		return -1;
469 
470 	efi_bounce_buffer = (void*)(uintptr_t)efi_bounce_buffer_addr;
471 #endif
472 
473 	return 0;
474 }
475