14c6de856SChristian Hitz /*
24c6de856SChristian Hitz * Generic binary BCH encoding/decoding library
34c6de856SChristian Hitz *
45b8031ccSTom Rini * SPDX-License-Identifier: GPL-2.0
54c6de856SChristian Hitz *
64c6de856SChristian Hitz * Copyright © 2011 Parrot S.A.
74c6de856SChristian Hitz *
84c6de856SChristian Hitz * Author: Ivan Djelic <ivan.djelic@parrot.com>
94c6de856SChristian Hitz *
104c6de856SChristian Hitz * Description:
114c6de856SChristian Hitz *
124c6de856SChristian Hitz * This library provides runtime configurable encoding/decoding of binary
134c6de856SChristian Hitz * Bose-Chaudhuri-Hocquenghem (BCH) codes.
144c6de856SChristian Hitz *
154c6de856SChristian Hitz * Call init_bch to get a pointer to a newly allocated bch_control structure for
164c6de856SChristian Hitz * the given m (Galois field order), t (error correction capability) and
174c6de856SChristian Hitz * (optional) primitive polynomial parameters.
184c6de856SChristian Hitz *
194c6de856SChristian Hitz * Call encode_bch to compute and store ecc parity bytes to a given buffer.
204c6de856SChristian Hitz * Call decode_bch to detect and locate errors in received data.
214c6de856SChristian Hitz *
224c6de856SChristian Hitz * On systems supporting hw BCH features, intermediate results may be provided
234c6de856SChristian Hitz * to decode_bch in order to skip certain steps. See decode_bch() documentation
244c6de856SChristian Hitz * for details.
254c6de856SChristian Hitz *
264c6de856SChristian Hitz * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
274c6de856SChristian Hitz * parameters m and t; thus allowing extra compiler optimizations and providing
284c6de856SChristian Hitz * better (up to 2x) encoding performance. Using this option makes sense when
294c6de856SChristian Hitz * (m,t) are fixed and known in advance, e.g. when using BCH error correction
304c6de856SChristian Hitz * on a particular NAND flash device.
314c6de856SChristian Hitz *
324c6de856SChristian Hitz * Algorithmic details:
334c6de856SChristian Hitz *
344c6de856SChristian Hitz * Encoding is performed by processing 32 input bits in parallel, using 4
354c6de856SChristian Hitz * remainder lookup tables.
364c6de856SChristian Hitz *
374c6de856SChristian Hitz * The final stage of decoding involves the following internal steps:
384c6de856SChristian Hitz * a. Syndrome computation
394c6de856SChristian Hitz * b. Error locator polynomial computation using Berlekamp-Massey algorithm
404c6de856SChristian Hitz * c. Error locator root finding (by far the most expensive step)
414c6de856SChristian Hitz *
424c6de856SChristian Hitz * In this implementation, step c is not performed using the usual Chien search.
434c6de856SChristian Hitz * Instead, an alternative approach described in [1] is used. It consists in
444c6de856SChristian Hitz * factoring the error locator polynomial using the Berlekamp Trace algorithm
454c6de856SChristian Hitz * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
464c6de856SChristian Hitz * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
474c6de856SChristian Hitz * much better performance than Chien search for usual (m,t) values (typically
484c6de856SChristian Hitz * m >= 13, t < 32, see [1]).
494c6de856SChristian Hitz *
504c6de856SChristian Hitz * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
514c6de856SChristian Hitz * of characteristic 2, in: Western European Workshop on Research in Cryptology
524c6de856SChristian Hitz * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
534c6de856SChristian Hitz * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
544c6de856SChristian Hitz * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
554c6de856SChristian Hitz */
564c6de856SChristian Hitz
5771d2c070SMaxime Ripard #ifndef USE_HOSTCC
584c6de856SChristian Hitz #include <common.h>
594c6de856SChristian Hitz #include <ubi_uboot.h>
604c6de856SChristian Hitz
614c6de856SChristian Hitz #include <linux/bitops.h>
6271d2c070SMaxime Ripard #else
6371d2c070SMaxime Ripard #include <errno.h>
644ecc9883SEmmanuel Vadot #if defined(__FreeBSD__)
654ecc9883SEmmanuel Vadot #include <sys/endian.h>
664ecc9883SEmmanuel Vadot #else
6771d2c070SMaxime Ripard #include <endian.h>
684ecc9883SEmmanuel Vadot #endif
6971d2c070SMaxime Ripard #include <stdint.h>
7071d2c070SMaxime Ripard #include <stdlib.h>
7171d2c070SMaxime Ripard #include <string.h>
7271d2c070SMaxime Ripard
7371d2c070SMaxime Ripard #undef cpu_to_be32
7471d2c070SMaxime Ripard #define cpu_to_be32 htobe32
7571d2c070SMaxime Ripard #define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
7671d2c070SMaxime Ripard #define kmalloc(size, flags) malloc(size)
7771d2c070SMaxime Ripard #define kzalloc(size, flags) calloc(1, size)
7871d2c070SMaxime Ripard #define kfree free
7971d2c070SMaxime Ripard #define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
8071d2c070SMaxime Ripard #endif
8171d2c070SMaxime Ripard
824c6de856SChristian Hitz #include <asm/byteorder.h>
834c6de856SChristian Hitz #include <linux/bch.h>
844c6de856SChristian Hitz
854c6de856SChristian Hitz #if defined(CONFIG_BCH_CONST_PARAMS)
864c6de856SChristian Hitz #define GF_M(_p) (CONFIG_BCH_CONST_M)
874c6de856SChristian Hitz #define GF_T(_p) (CONFIG_BCH_CONST_T)
884c6de856SChristian Hitz #define GF_N(_p) ((1 << (CONFIG_BCH_CONST_M))-1)
894c6de856SChristian Hitz #else
904c6de856SChristian Hitz #define GF_M(_p) ((_p)->m)
914c6de856SChristian Hitz #define GF_T(_p) ((_p)->t)
924c6de856SChristian Hitz #define GF_N(_p) ((_p)->n)
934c6de856SChristian Hitz #endif
944c6de856SChristian Hitz
954c6de856SChristian Hitz #define BCH_ECC_WORDS(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
964c6de856SChristian Hitz #define BCH_ECC_BYTES(_p) DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
974c6de856SChristian Hitz
984c6de856SChristian Hitz #ifndef dbg
994c6de856SChristian Hitz #define dbg(_fmt, args...) do {} while (0)
1004c6de856SChristian Hitz #endif
1014c6de856SChristian Hitz
1024c6de856SChristian Hitz /*
1034c6de856SChristian Hitz * represent a polynomial over GF(2^m)
1044c6de856SChristian Hitz */
1054c6de856SChristian Hitz struct gf_poly {
1064c6de856SChristian Hitz unsigned int deg; /* polynomial degree */
1074c6de856SChristian Hitz unsigned int c[0]; /* polynomial terms */
1084c6de856SChristian Hitz };
1094c6de856SChristian Hitz
1104c6de856SChristian Hitz /* given its degree, compute a polynomial size in bytes */
1114c6de856SChristian Hitz #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
1124c6de856SChristian Hitz
1134c6de856SChristian Hitz /* polynomial of degree 1 */
1144c6de856SChristian Hitz struct gf_poly_deg1 {
1154c6de856SChristian Hitz struct gf_poly poly;
1164c6de856SChristian Hitz unsigned int c[2];
1174c6de856SChristian Hitz };
1184c6de856SChristian Hitz
11971d2c070SMaxime Ripard #ifdef USE_HOSTCC
120*8f1603bdSJonathan Gray #if !defined(__DragonFly__) && !defined(__FreeBSD__)
fls(int x)12171d2c070SMaxime Ripard static int fls(int x)
12271d2c070SMaxime Ripard {
12371d2c070SMaxime Ripard int r = 32;
12471d2c070SMaxime Ripard
12571d2c070SMaxime Ripard if (!x)
12671d2c070SMaxime Ripard return 0;
12771d2c070SMaxime Ripard if (!(x & 0xffff0000u)) {
12871d2c070SMaxime Ripard x <<= 16;
12971d2c070SMaxime Ripard r -= 16;
13071d2c070SMaxime Ripard }
13171d2c070SMaxime Ripard if (!(x & 0xff000000u)) {
13271d2c070SMaxime Ripard x <<= 8;
13371d2c070SMaxime Ripard r -= 8;
13471d2c070SMaxime Ripard }
13571d2c070SMaxime Ripard if (!(x & 0xf0000000u)) {
13671d2c070SMaxime Ripard x <<= 4;
13771d2c070SMaxime Ripard r -= 4;
13871d2c070SMaxime Ripard }
13971d2c070SMaxime Ripard if (!(x & 0xc0000000u)) {
14071d2c070SMaxime Ripard x <<= 2;
14171d2c070SMaxime Ripard r -= 2;
14271d2c070SMaxime Ripard }
14371d2c070SMaxime Ripard if (!(x & 0x80000000u)) {
14471d2c070SMaxime Ripard x <<= 1;
14571d2c070SMaxime Ripard r -= 1;
14671d2c070SMaxime Ripard }
14771d2c070SMaxime Ripard return r;
14871d2c070SMaxime Ripard }
14971d2c070SMaxime Ripard #endif
1504ecc9883SEmmanuel Vadot #endif
15171d2c070SMaxime Ripard
1524c6de856SChristian Hitz /*
1534c6de856SChristian Hitz * same as encode_bch(), but process input data one byte at a time
1544c6de856SChristian Hitz */
encode_bch_unaligned(struct bch_control * bch,const unsigned char * data,unsigned int len,uint32_t * ecc)1554c6de856SChristian Hitz static void encode_bch_unaligned(struct bch_control *bch,
1564c6de856SChristian Hitz const unsigned char *data, unsigned int len,
1574c6de856SChristian Hitz uint32_t *ecc)
1584c6de856SChristian Hitz {
1594c6de856SChristian Hitz int i;
1604c6de856SChristian Hitz const uint32_t *p;
1614c6de856SChristian Hitz const int l = BCH_ECC_WORDS(bch)-1;
1624c6de856SChristian Hitz
1634c6de856SChristian Hitz while (len--) {
1644c6de856SChristian Hitz p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff);
1654c6de856SChristian Hitz
1664c6de856SChristian Hitz for (i = 0; i < l; i++)
1674c6de856SChristian Hitz ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
1684c6de856SChristian Hitz
1694c6de856SChristian Hitz ecc[l] = (ecc[l] << 8)^(*p);
1704c6de856SChristian Hitz }
1714c6de856SChristian Hitz }
1724c6de856SChristian Hitz
1734c6de856SChristian Hitz /*
1744c6de856SChristian Hitz * convert ecc bytes to aligned, zero-padded 32-bit ecc words
1754c6de856SChristian Hitz */
load_ecc8(struct bch_control * bch,uint32_t * dst,const uint8_t * src)1764c6de856SChristian Hitz static void load_ecc8(struct bch_control *bch, uint32_t *dst,
1774c6de856SChristian Hitz const uint8_t *src)
1784c6de856SChristian Hitz {
1794c6de856SChristian Hitz uint8_t pad[4] = {0, 0, 0, 0};
1804c6de856SChristian Hitz unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
1814c6de856SChristian Hitz
1824c6de856SChristian Hitz for (i = 0; i < nwords; i++, src += 4)
1834c6de856SChristian Hitz dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3];
1844c6de856SChristian Hitz
1854c6de856SChristian Hitz memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
1864c6de856SChristian Hitz dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3];
1874c6de856SChristian Hitz }
1884c6de856SChristian Hitz
1894c6de856SChristian Hitz /*
1904c6de856SChristian Hitz * convert 32-bit ecc words to ecc bytes
1914c6de856SChristian Hitz */
store_ecc8(struct bch_control * bch,uint8_t * dst,const uint32_t * src)1924c6de856SChristian Hitz static void store_ecc8(struct bch_control *bch, uint8_t *dst,
1934c6de856SChristian Hitz const uint32_t *src)
1944c6de856SChristian Hitz {
1954c6de856SChristian Hitz uint8_t pad[4];
1964c6de856SChristian Hitz unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
1974c6de856SChristian Hitz
1984c6de856SChristian Hitz for (i = 0; i < nwords; i++) {
1994c6de856SChristian Hitz *dst++ = (src[i] >> 24);
2004c6de856SChristian Hitz *dst++ = (src[i] >> 16) & 0xff;
2014c6de856SChristian Hitz *dst++ = (src[i] >> 8) & 0xff;
2024c6de856SChristian Hitz *dst++ = (src[i] >> 0) & 0xff;
2034c6de856SChristian Hitz }
2044c6de856SChristian Hitz pad[0] = (src[nwords] >> 24);
2054c6de856SChristian Hitz pad[1] = (src[nwords] >> 16) & 0xff;
2064c6de856SChristian Hitz pad[2] = (src[nwords] >> 8) & 0xff;
2074c6de856SChristian Hitz pad[3] = (src[nwords] >> 0) & 0xff;
2084c6de856SChristian Hitz memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
2094c6de856SChristian Hitz }
2104c6de856SChristian Hitz
2114c6de856SChristian Hitz /**
2124c6de856SChristian Hitz * encode_bch - calculate BCH ecc parity of data
2134c6de856SChristian Hitz * @bch: BCH control structure
2144c6de856SChristian Hitz * @data: data to encode
2154c6de856SChristian Hitz * @len: data length in bytes
2164c6de856SChristian Hitz * @ecc: ecc parity data, must be initialized by caller
2174c6de856SChristian Hitz *
2184c6de856SChristian Hitz * The @ecc parity array is used both as input and output parameter, in order to
2194c6de856SChristian Hitz * allow incremental computations. It should be of the size indicated by member
2204c6de856SChristian Hitz * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
2214c6de856SChristian Hitz *
2224c6de856SChristian Hitz * The exact number of computed ecc parity bits is given by member @ecc_bits of
2234c6de856SChristian Hitz * @bch; it may be less than m*t for large values of t.
2244c6de856SChristian Hitz */
encode_bch(struct bch_control * bch,const uint8_t * data,unsigned int len,uint8_t * ecc)2254c6de856SChristian Hitz void encode_bch(struct bch_control *bch, const uint8_t *data,
2264c6de856SChristian Hitz unsigned int len, uint8_t *ecc)
2274c6de856SChristian Hitz {
2284c6de856SChristian Hitz const unsigned int l = BCH_ECC_WORDS(bch)-1;
2294c6de856SChristian Hitz unsigned int i, mlen;
2304c6de856SChristian Hitz unsigned long m;
2314c6de856SChristian Hitz uint32_t w, r[l+1];
2324c6de856SChristian Hitz const uint32_t * const tab0 = bch->mod8_tab;
2334c6de856SChristian Hitz const uint32_t * const tab1 = tab0 + 256*(l+1);
2344c6de856SChristian Hitz const uint32_t * const tab2 = tab1 + 256*(l+1);
2354c6de856SChristian Hitz const uint32_t * const tab3 = tab2 + 256*(l+1);
2364c6de856SChristian Hitz const uint32_t *pdata, *p0, *p1, *p2, *p3;
2374c6de856SChristian Hitz
2384c6de856SChristian Hitz if (ecc) {
2394c6de856SChristian Hitz /* load ecc parity bytes into internal 32-bit buffer */
2404c6de856SChristian Hitz load_ecc8(bch, bch->ecc_buf, ecc);
2414c6de856SChristian Hitz } else {
2424c6de856SChristian Hitz memset(bch->ecc_buf, 0, sizeof(r));
2434c6de856SChristian Hitz }
2444c6de856SChristian Hitz
2454c6de856SChristian Hitz /* process first unaligned data bytes */
2464c6de856SChristian Hitz m = ((unsigned long)data) & 3;
2474c6de856SChristian Hitz if (m) {
2484c6de856SChristian Hitz mlen = (len < (4-m)) ? len : 4-m;
2494c6de856SChristian Hitz encode_bch_unaligned(bch, data, mlen, bch->ecc_buf);
2504c6de856SChristian Hitz data += mlen;
2514c6de856SChristian Hitz len -= mlen;
2524c6de856SChristian Hitz }
2534c6de856SChristian Hitz
2544c6de856SChristian Hitz /* process 32-bit aligned data words */
2554c6de856SChristian Hitz pdata = (uint32_t *)data;
2564c6de856SChristian Hitz mlen = len/4;
2574c6de856SChristian Hitz data += 4*mlen;
2584c6de856SChristian Hitz len -= 4*mlen;
2594c6de856SChristian Hitz memcpy(r, bch->ecc_buf, sizeof(r));
2604c6de856SChristian Hitz
2614c6de856SChristian Hitz /*
2624c6de856SChristian Hitz * split each 32-bit word into 4 polynomials of weight 8 as follows:
2634c6de856SChristian Hitz *
2644c6de856SChristian Hitz * 31 ...24 23 ...16 15 ... 8 7 ... 0
2654c6de856SChristian Hitz * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt
2664c6de856SChristian Hitz * tttttttt mod g = r0 (precomputed)
2674c6de856SChristian Hitz * zzzzzzzz 00000000 mod g = r1 (precomputed)
2684c6de856SChristian Hitz * yyyyyyyy 00000000 00000000 mod g = r2 (precomputed)
2694c6de856SChristian Hitz * xxxxxxxx 00000000 00000000 00000000 mod g = r3 (precomputed)
2704c6de856SChristian Hitz * xxxxxxxx yyyyyyyy zzzzzzzz tttttttt mod g = r0^r1^r2^r3
2714c6de856SChristian Hitz */
2724c6de856SChristian Hitz while (mlen--) {
2734c6de856SChristian Hitz /* input data is read in big-endian format */
2744c6de856SChristian Hitz w = r[0]^cpu_to_be32(*pdata++);
2754c6de856SChristian Hitz p0 = tab0 + (l+1)*((w >> 0) & 0xff);
2764c6de856SChristian Hitz p1 = tab1 + (l+1)*((w >> 8) & 0xff);
2774c6de856SChristian Hitz p2 = tab2 + (l+1)*((w >> 16) & 0xff);
2784c6de856SChristian Hitz p3 = tab3 + (l+1)*((w >> 24) & 0xff);
2794c6de856SChristian Hitz
2804c6de856SChristian Hitz for (i = 0; i < l; i++)
2814c6de856SChristian Hitz r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
2824c6de856SChristian Hitz
2834c6de856SChristian Hitz r[l] = p0[l]^p1[l]^p2[l]^p3[l];
2844c6de856SChristian Hitz }
2854c6de856SChristian Hitz memcpy(bch->ecc_buf, r, sizeof(r));
2864c6de856SChristian Hitz
2874c6de856SChristian Hitz /* process last unaligned bytes */
2884c6de856SChristian Hitz if (len)
2894c6de856SChristian Hitz encode_bch_unaligned(bch, data, len, bch->ecc_buf);
2904c6de856SChristian Hitz
2914c6de856SChristian Hitz /* store ecc parity bytes into original parity buffer */
2924c6de856SChristian Hitz if (ecc)
2934c6de856SChristian Hitz store_ecc8(bch, ecc, bch->ecc_buf);
2944c6de856SChristian Hitz }
2954c6de856SChristian Hitz
modulo(struct bch_control * bch,unsigned int v)2964c6de856SChristian Hitz static inline int modulo(struct bch_control *bch, unsigned int v)
2974c6de856SChristian Hitz {
2984c6de856SChristian Hitz const unsigned int n = GF_N(bch);
2994c6de856SChristian Hitz while (v >= n) {
3004c6de856SChristian Hitz v -= n;
3014c6de856SChristian Hitz v = (v & n) + (v >> GF_M(bch));
3024c6de856SChristian Hitz }
3034c6de856SChristian Hitz return v;
3044c6de856SChristian Hitz }
3054c6de856SChristian Hitz
3064c6de856SChristian Hitz /*
3074c6de856SChristian Hitz * shorter and faster modulo function, only works when v < 2N.
3084c6de856SChristian Hitz */
mod_s(struct bch_control * bch,unsigned int v)3094c6de856SChristian Hitz static inline int mod_s(struct bch_control *bch, unsigned int v)
3104c6de856SChristian Hitz {
3114c6de856SChristian Hitz const unsigned int n = GF_N(bch);
3124c6de856SChristian Hitz return (v < n) ? v : v-n;
3134c6de856SChristian Hitz }
3144c6de856SChristian Hitz
deg(unsigned int poly)3154c6de856SChristian Hitz static inline int deg(unsigned int poly)
3164c6de856SChristian Hitz {
3174c6de856SChristian Hitz /* polynomial degree is the most-significant bit index */
3184c6de856SChristian Hitz return fls(poly)-1;
3194c6de856SChristian Hitz }
3204c6de856SChristian Hitz
parity(unsigned int x)3214c6de856SChristian Hitz static inline int parity(unsigned int x)
3224c6de856SChristian Hitz {
3234c6de856SChristian Hitz /*
3244c6de856SChristian Hitz * public domain code snippet, lifted from
3254c6de856SChristian Hitz * http://www-graphics.stanford.edu/~seander/bithacks.html
3264c6de856SChristian Hitz */
3274c6de856SChristian Hitz x ^= x >> 1;
3284c6de856SChristian Hitz x ^= x >> 2;
3294c6de856SChristian Hitz x = (x & 0x11111111U) * 0x11111111U;
3304c6de856SChristian Hitz return (x >> 28) & 1;
3314c6de856SChristian Hitz }
3324c6de856SChristian Hitz
3334c6de856SChristian Hitz /* Galois field basic operations: multiply, divide, inverse, etc. */
3344c6de856SChristian Hitz
gf_mul(struct bch_control * bch,unsigned int a,unsigned int b)3354c6de856SChristian Hitz static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
3364c6de856SChristian Hitz unsigned int b)
3374c6de856SChristian Hitz {
3384c6de856SChristian Hitz return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
3394c6de856SChristian Hitz bch->a_log_tab[b])] : 0;
3404c6de856SChristian Hitz }
3414c6de856SChristian Hitz
gf_sqr(struct bch_control * bch,unsigned int a)3424c6de856SChristian Hitz static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
3434c6de856SChristian Hitz {
3444c6de856SChristian Hitz return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
3454c6de856SChristian Hitz }
3464c6de856SChristian Hitz
gf_div(struct bch_control * bch,unsigned int a,unsigned int b)3474c6de856SChristian Hitz static inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
3484c6de856SChristian Hitz unsigned int b)
3494c6de856SChristian Hitz {
3504c6de856SChristian Hitz return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
3514c6de856SChristian Hitz GF_N(bch)-bch->a_log_tab[b])] : 0;
3524c6de856SChristian Hitz }
3534c6de856SChristian Hitz
gf_inv(struct bch_control * bch,unsigned int a)3544c6de856SChristian Hitz static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
3554c6de856SChristian Hitz {
3564c6de856SChristian Hitz return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
3574c6de856SChristian Hitz }
3584c6de856SChristian Hitz
a_pow(struct bch_control * bch,int i)3594c6de856SChristian Hitz static inline unsigned int a_pow(struct bch_control *bch, int i)
3604c6de856SChristian Hitz {
3614c6de856SChristian Hitz return bch->a_pow_tab[modulo(bch, i)];
3624c6de856SChristian Hitz }
3634c6de856SChristian Hitz
a_log(struct bch_control * bch,unsigned int x)3644c6de856SChristian Hitz static inline int a_log(struct bch_control *bch, unsigned int x)
3654c6de856SChristian Hitz {
3664c6de856SChristian Hitz return bch->a_log_tab[x];
3674c6de856SChristian Hitz }
3684c6de856SChristian Hitz
a_ilog(struct bch_control * bch,unsigned int x)3694c6de856SChristian Hitz static inline int a_ilog(struct bch_control *bch, unsigned int x)
3704c6de856SChristian Hitz {
3714c6de856SChristian Hitz return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
3724c6de856SChristian Hitz }
3734c6de856SChristian Hitz
3744c6de856SChristian Hitz /*
3754c6de856SChristian Hitz * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
3764c6de856SChristian Hitz */
compute_syndromes(struct bch_control * bch,uint32_t * ecc,unsigned int * syn)3774c6de856SChristian Hitz static void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
3784c6de856SChristian Hitz unsigned int *syn)
3794c6de856SChristian Hitz {
3804c6de856SChristian Hitz int i, j, s;
3814c6de856SChristian Hitz unsigned int m;
3824c6de856SChristian Hitz uint32_t poly;
3834c6de856SChristian Hitz const int t = GF_T(bch);
3844c6de856SChristian Hitz
3854c6de856SChristian Hitz s = bch->ecc_bits;
3864c6de856SChristian Hitz
3874c6de856SChristian Hitz /* make sure extra bits in last ecc word are cleared */
3884c6de856SChristian Hitz m = ((unsigned int)s) & 31;
3894c6de856SChristian Hitz if (m)
3904c6de856SChristian Hitz ecc[s/32] &= ~((1u << (32-m))-1);
3914c6de856SChristian Hitz memset(syn, 0, 2*t*sizeof(*syn));
3924c6de856SChristian Hitz
3934c6de856SChristian Hitz /* compute v(a^j) for j=1 .. 2t-1 */
3944c6de856SChristian Hitz do {
3954c6de856SChristian Hitz poly = *ecc++;
3964c6de856SChristian Hitz s -= 32;
3974c6de856SChristian Hitz while (poly) {
3984c6de856SChristian Hitz i = deg(poly);
3994c6de856SChristian Hitz for (j = 0; j < 2*t; j += 2)
4004c6de856SChristian Hitz syn[j] ^= a_pow(bch, (j+1)*(i+s));
4014c6de856SChristian Hitz
4024c6de856SChristian Hitz poly ^= (1 << i);
4034c6de856SChristian Hitz }
4044c6de856SChristian Hitz } while (s > 0);
4054c6de856SChristian Hitz
4064c6de856SChristian Hitz /* v(a^(2j)) = v(a^j)^2 */
4074c6de856SChristian Hitz for (j = 0; j < t; j++)
4084c6de856SChristian Hitz syn[2*j+1] = gf_sqr(bch, syn[j]);
4094c6de856SChristian Hitz }
4104c6de856SChristian Hitz
gf_poly_copy(struct gf_poly * dst,struct gf_poly * src)4114c6de856SChristian Hitz static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
4124c6de856SChristian Hitz {
4134c6de856SChristian Hitz memcpy(dst, src, GF_POLY_SZ(src->deg));
4144c6de856SChristian Hitz }
4154c6de856SChristian Hitz
compute_error_locator_polynomial(struct bch_control * bch,const unsigned int * syn)4164c6de856SChristian Hitz static int compute_error_locator_polynomial(struct bch_control *bch,
4174c6de856SChristian Hitz const unsigned int *syn)
4184c6de856SChristian Hitz {
4194c6de856SChristian Hitz const unsigned int t = GF_T(bch);
4204c6de856SChristian Hitz const unsigned int n = GF_N(bch);
4214c6de856SChristian Hitz unsigned int i, j, tmp, l, pd = 1, d = syn[0];
4224c6de856SChristian Hitz struct gf_poly *elp = bch->elp;
4234c6de856SChristian Hitz struct gf_poly *pelp = bch->poly_2t[0];
4244c6de856SChristian Hitz struct gf_poly *elp_copy = bch->poly_2t[1];
4254c6de856SChristian Hitz int k, pp = -1;
4264c6de856SChristian Hitz
4274c6de856SChristian Hitz memset(pelp, 0, GF_POLY_SZ(2*t));
4284c6de856SChristian Hitz memset(elp, 0, GF_POLY_SZ(2*t));
4294c6de856SChristian Hitz
4304c6de856SChristian Hitz pelp->deg = 0;
4314c6de856SChristian Hitz pelp->c[0] = 1;
4324c6de856SChristian Hitz elp->deg = 0;
4334c6de856SChristian Hitz elp->c[0] = 1;
4344c6de856SChristian Hitz
4354c6de856SChristian Hitz /* use simplified binary Berlekamp-Massey algorithm */
4364c6de856SChristian Hitz for (i = 0; (i < t) && (elp->deg <= t); i++) {
4374c6de856SChristian Hitz if (d) {
4384c6de856SChristian Hitz k = 2*i-pp;
4394c6de856SChristian Hitz gf_poly_copy(elp_copy, elp);
4404c6de856SChristian Hitz /* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
4414c6de856SChristian Hitz tmp = a_log(bch, d)+n-a_log(bch, pd);
4424c6de856SChristian Hitz for (j = 0; j <= pelp->deg; j++) {
4434c6de856SChristian Hitz if (pelp->c[j]) {
4444c6de856SChristian Hitz l = a_log(bch, pelp->c[j]);
4454c6de856SChristian Hitz elp->c[j+k] ^= a_pow(bch, tmp+l);
4464c6de856SChristian Hitz }
4474c6de856SChristian Hitz }
4484c6de856SChristian Hitz /* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
4494c6de856SChristian Hitz tmp = pelp->deg+k;
4504c6de856SChristian Hitz if (tmp > elp->deg) {
4514c6de856SChristian Hitz elp->deg = tmp;
4524c6de856SChristian Hitz gf_poly_copy(pelp, elp_copy);
4534c6de856SChristian Hitz pd = d;
4544c6de856SChristian Hitz pp = 2*i;
4554c6de856SChristian Hitz }
4564c6de856SChristian Hitz }
4574c6de856SChristian Hitz /* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
4584c6de856SChristian Hitz if (i < t-1) {
4594c6de856SChristian Hitz d = syn[2*i+2];
4604c6de856SChristian Hitz for (j = 1; j <= elp->deg; j++)
4614c6de856SChristian Hitz d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
4624c6de856SChristian Hitz }
4634c6de856SChristian Hitz }
4644c6de856SChristian Hitz dbg("elp=%s\n", gf_poly_str(elp));
4654c6de856SChristian Hitz return (elp->deg > t) ? -1 : (int)elp->deg;
4664c6de856SChristian Hitz }
4674c6de856SChristian Hitz
4684c6de856SChristian Hitz /*
4694c6de856SChristian Hitz * solve a m x m linear system in GF(2) with an expected number of solutions,
4704c6de856SChristian Hitz * and return the number of found solutions
4714c6de856SChristian Hitz */
solve_linear_system(struct bch_control * bch,unsigned int * rows,unsigned int * sol,int nsol)4724c6de856SChristian Hitz static int solve_linear_system(struct bch_control *bch, unsigned int *rows,
4734c6de856SChristian Hitz unsigned int *sol, int nsol)
4744c6de856SChristian Hitz {
4754c6de856SChristian Hitz const int m = GF_M(bch);
4764c6de856SChristian Hitz unsigned int tmp, mask;
4774c6de856SChristian Hitz int rem, c, r, p, k, param[m];
4784c6de856SChristian Hitz
4794c6de856SChristian Hitz k = 0;
4804c6de856SChristian Hitz mask = 1 << m;
4814c6de856SChristian Hitz
4824c6de856SChristian Hitz /* Gaussian elimination */
4834c6de856SChristian Hitz for (c = 0; c < m; c++) {
4844c6de856SChristian Hitz rem = 0;
4854c6de856SChristian Hitz p = c-k;
4864c6de856SChristian Hitz /* find suitable row for elimination */
4874c6de856SChristian Hitz for (r = p; r < m; r++) {
4884c6de856SChristian Hitz if (rows[r] & mask) {
4894c6de856SChristian Hitz if (r != p) {
4904c6de856SChristian Hitz tmp = rows[r];
4914c6de856SChristian Hitz rows[r] = rows[p];
4924c6de856SChristian Hitz rows[p] = tmp;
4934c6de856SChristian Hitz }
4944c6de856SChristian Hitz rem = r+1;
4954c6de856SChristian Hitz break;
4964c6de856SChristian Hitz }
4974c6de856SChristian Hitz }
4984c6de856SChristian Hitz if (rem) {
4994c6de856SChristian Hitz /* perform elimination on remaining rows */
5004c6de856SChristian Hitz tmp = rows[p];
5014c6de856SChristian Hitz for (r = rem; r < m; r++) {
5024c6de856SChristian Hitz if (rows[r] & mask)
5034c6de856SChristian Hitz rows[r] ^= tmp;
5044c6de856SChristian Hitz }
5054c6de856SChristian Hitz } else {
5064c6de856SChristian Hitz /* elimination not needed, store defective row index */
5074c6de856SChristian Hitz param[k++] = c;
5084c6de856SChristian Hitz }
5094c6de856SChristian Hitz mask >>= 1;
5104c6de856SChristian Hitz }
5114c6de856SChristian Hitz /* rewrite system, inserting fake parameter rows */
5124c6de856SChristian Hitz if (k > 0) {
5134c6de856SChristian Hitz p = k;
5144c6de856SChristian Hitz for (r = m-1; r >= 0; r--) {
5154c6de856SChristian Hitz if ((r > m-1-k) && rows[r])
5164c6de856SChristian Hitz /* system has no solution */
5174c6de856SChristian Hitz return 0;
5184c6de856SChristian Hitz
5194c6de856SChristian Hitz rows[r] = (p && (r == param[p-1])) ?
5204c6de856SChristian Hitz p--, 1u << (m-r) : rows[r-p];
5214c6de856SChristian Hitz }
5224c6de856SChristian Hitz }
5234c6de856SChristian Hitz
5244c6de856SChristian Hitz if (nsol != (1 << k))
5254c6de856SChristian Hitz /* unexpected number of solutions */
5264c6de856SChristian Hitz return 0;
5274c6de856SChristian Hitz
5284c6de856SChristian Hitz for (p = 0; p < nsol; p++) {
5294c6de856SChristian Hitz /* set parameters for p-th solution */
5304c6de856SChristian Hitz for (c = 0; c < k; c++)
5314c6de856SChristian Hitz rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
5324c6de856SChristian Hitz
5334c6de856SChristian Hitz /* compute unique solution */
5344c6de856SChristian Hitz tmp = 0;
5354c6de856SChristian Hitz for (r = m-1; r >= 0; r--) {
5364c6de856SChristian Hitz mask = rows[r] & (tmp|1);
5374c6de856SChristian Hitz tmp |= parity(mask) << (m-r);
5384c6de856SChristian Hitz }
5394c6de856SChristian Hitz sol[p] = tmp >> 1;
5404c6de856SChristian Hitz }
5414c6de856SChristian Hitz return nsol;
5424c6de856SChristian Hitz }
5434c6de856SChristian Hitz
5444c6de856SChristian Hitz /*
5454c6de856SChristian Hitz * this function builds and solves a linear system for finding roots of a degree
5464c6de856SChristian Hitz * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
5474c6de856SChristian Hitz */
find_affine4_roots(struct bch_control * bch,unsigned int a,unsigned int b,unsigned int c,unsigned int * roots)5484c6de856SChristian Hitz static int find_affine4_roots(struct bch_control *bch, unsigned int a,
5494c6de856SChristian Hitz unsigned int b, unsigned int c,
5504c6de856SChristian Hitz unsigned int *roots)
5514c6de856SChristian Hitz {
5524c6de856SChristian Hitz int i, j, k;
5534c6de856SChristian Hitz const int m = GF_M(bch);
5544c6de856SChristian Hitz unsigned int mask = 0xff, t, rows[16] = {0,};
5554c6de856SChristian Hitz
5564c6de856SChristian Hitz j = a_log(bch, b);
5574c6de856SChristian Hitz k = a_log(bch, a);
5584c6de856SChristian Hitz rows[0] = c;
5594c6de856SChristian Hitz
5604c6de856SChristian Hitz /* buid linear system to solve X^4+aX^2+bX+c = 0 */
5614c6de856SChristian Hitz for (i = 0; i < m; i++) {
5624c6de856SChristian Hitz rows[i+1] = bch->a_pow_tab[4*i]^
5634c6de856SChristian Hitz (a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
5644c6de856SChristian Hitz (b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
5654c6de856SChristian Hitz j++;
5664c6de856SChristian Hitz k += 2;
5674c6de856SChristian Hitz }
5684c6de856SChristian Hitz /*
5694c6de856SChristian Hitz * transpose 16x16 matrix before passing it to linear solver
5704c6de856SChristian Hitz * warning: this code assumes m < 16
5714c6de856SChristian Hitz */
5724c6de856SChristian Hitz for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
5734c6de856SChristian Hitz for (k = 0; k < 16; k = (k+j+1) & ~j) {
5744c6de856SChristian Hitz t = ((rows[k] >> j)^rows[k+j]) & mask;
5754c6de856SChristian Hitz rows[k] ^= (t << j);
5764c6de856SChristian Hitz rows[k+j] ^= t;
5774c6de856SChristian Hitz }
5784c6de856SChristian Hitz }
5794c6de856SChristian Hitz return solve_linear_system(bch, rows, roots, 4);
5804c6de856SChristian Hitz }
5814c6de856SChristian Hitz
5824c6de856SChristian Hitz /*
5834c6de856SChristian Hitz * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
5844c6de856SChristian Hitz */
find_poly_deg1_roots(struct bch_control * bch,struct gf_poly * poly,unsigned int * roots)5854c6de856SChristian Hitz static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
5864c6de856SChristian Hitz unsigned int *roots)
5874c6de856SChristian Hitz {
5884c6de856SChristian Hitz int n = 0;
5894c6de856SChristian Hitz
5904c6de856SChristian Hitz if (poly->c[0])
5914c6de856SChristian Hitz /* poly[X] = bX+c with c!=0, root=c/b */
5924c6de856SChristian Hitz roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
5934c6de856SChristian Hitz bch->a_log_tab[poly->c[1]]);
5944c6de856SChristian Hitz return n;
5954c6de856SChristian Hitz }
5964c6de856SChristian Hitz
5974c6de856SChristian Hitz /*
5984c6de856SChristian Hitz * compute roots of a degree 2 polynomial over GF(2^m)
5994c6de856SChristian Hitz */
find_poly_deg2_roots(struct bch_control * bch,struct gf_poly * poly,unsigned int * roots)6004c6de856SChristian Hitz static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
6014c6de856SChristian Hitz unsigned int *roots)
6024c6de856SChristian Hitz {
6034c6de856SChristian Hitz int n = 0, i, l0, l1, l2;
6044c6de856SChristian Hitz unsigned int u, v, r;
6054c6de856SChristian Hitz
6064c6de856SChristian Hitz if (poly->c[0] && poly->c[1]) {
6074c6de856SChristian Hitz
6084c6de856SChristian Hitz l0 = bch->a_log_tab[poly->c[0]];
6094c6de856SChristian Hitz l1 = bch->a_log_tab[poly->c[1]];
6104c6de856SChristian Hitz l2 = bch->a_log_tab[poly->c[2]];
6114c6de856SChristian Hitz
6124c6de856SChristian Hitz /* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
6134c6de856SChristian Hitz u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
6144c6de856SChristian Hitz /*
6154c6de856SChristian Hitz * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
6164c6de856SChristian Hitz * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
6174c6de856SChristian Hitz * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
6184c6de856SChristian Hitz * i.e. r and r+1 are roots iff Tr(u)=0
6194c6de856SChristian Hitz */
6204c6de856SChristian Hitz r = 0;
6214c6de856SChristian Hitz v = u;
6224c6de856SChristian Hitz while (v) {
6234c6de856SChristian Hitz i = deg(v);
6244c6de856SChristian Hitz r ^= bch->xi_tab[i];
6254c6de856SChristian Hitz v ^= (1 << i);
6264c6de856SChristian Hitz }
6274c6de856SChristian Hitz /* verify root */
6284c6de856SChristian Hitz if ((gf_sqr(bch, r)^r) == u) {
6294c6de856SChristian Hitz /* reverse z=a/bX transformation and compute log(1/r) */
6304c6de856SChristian Hitz roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
6314c6de856SChristian Hitz bch->a_log_tab[r]+l2);
6324c6de856SChristian Hitz roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
6334c6de856SChristian Hitz bch->a_log_tab[r^1]+l2);
6344c6de856SChristian Hitz }
6354c6de856SChristian Hitz }
6364c6de856SChristian Hitz return n;
6374c6de856SChristian Hitz }
6384c6de856SChristian Hitz
6394c6de856SChristian Hitz /*
6404c6de856SChristian Hitz * compute roots of a degree 3 polynomial over GF(2^m)
6414c6de856SChristian Hitz */
find_poly_deg3_roots(struct bch_control * bch,struct gf_poly * poly,unsigned int * roots)6424c6de856SChristian Hitz static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
6434c6de856SChristian Hitz unsigned int *roots)
6444c6de856SChristian Hitz {
6454c6de856SChristian Hitz int i, n = 0;
6464c6de856SChristian Hitz unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
6474c6de856SChristian Hitz
6484c6de856SChristian Hitz if (poly->c[0]) {
6494c6de856SChristian Hitz /* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
6504c6de856SChristian Hitz e3 = poly->c[3];
6514c6de856SChristian Hitz c2 = gf_div(bch, poly->c[0], e3);
6524c6de856SChristian Hitz b2 = gf_div(bch, poly->c[1], e3);
6534c6de856SChristian Hitz a2 = gf_div(bch, poly->c[2], e3);
6544c6de856SChristian Hitz
6554c6de856SChristian Hitz /* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
6564c6de856SChristian Hitz c = gf_mul(bch, a2, c2); /* c = a2c2 */
6574c6de856SChristian Hitz b = gf_mul(bch, a2, b2)^c2; /* b = a2b2 + c2 */
6584c6de856SChristian Hitz a = gf_sqr(bch, a2)^b2; /* a = a2^2 + b2 */
6594c6de856SChristian Hitz
6604c6de856SChristian Hitz /* find the 4 roots of this affine polynomial */
6614c6de856SChristian Hitz if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
6624c6de856SChristian Hitz /* remove a2 from final list of roots */
6634c6de856SChristian Hitz for (i = 0; i < 4; i++) {
6644c6de856SChristian Hitz if (tmp[i] != a2)
6654c6de856SChristian Hitz roots[n++] = a_ilog(bch, tmp[i]);
6664c6de856SChristian Hitz }
6674c6de856SChristian Hitz }
6684c6de856SChristian Hitz }
6694c6de856SChristian Hitz return n;
6704c6de856SChristian Hitz }
6714c6de856SChristian Hitz
6724c6de856SChristian Hitz /*
6734c6de856SChristian Hitz * compute roots of a degree 4 polynomial over GF(2^m)
6744c6de856SChristian Hitz */
find_poly_deg4_roots(struct bch_control * bch,struct gf_poly * poly,unsigned int * roots)6754c6de856SChristian Hitz static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
6764c6de856SChristian Hitz unsigned int *roots)
6774c6de856SChristian Hitz {
6784c6de856SChristian Hitz int i, l, n = 0;
6794c6de856SChristian Hitz unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
6804c6de856SChristian Hitz
6814c6de856SChristian Hitz if (poly->c[0] == 0)
6824c6de856SChristian Hitz return 0;
6834c6de856SChristian Hitz
6844c6de856SChristian Hitz /* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
6854c6de856SChristian Hitz e4 = poly->c[4];
6864c6de856SChristian Hitz d = gf_div(bch, poly->c[0], e4);
6874c6de856SChristian Hitz c = gf_div(bch, poly->c[1], e4);
6884c6de856SChristian Hitz b = gf_div(bch, poly->c[2], e4);
6894c6de856SChristian Hitz a = gf_div(bch, poly->c[3], e4);
6904c6de856SChristian Hitz
6914c6de856SChristian Hitz /* use Y=1/X transformation to get an affine polynomial */
6924c6de856SChristian Hitz if (a) {
6934c6de856SChristian Hitz /* first, eliminate cX by using z=X+e with ae^2+c=0 */
6944c6de856SChristian Hitz if (c) {
6954c6de856SChristian Hitz /* compute e such that e^2 = c/a */
6964c6de856SChristian Hitz f = gf_div(bch, c, a);
6974c6de856SChristian Hitz l = a_log(bch, f);
6984c6de856SChristian Hitz l += (l & 1) ? GF_N(bch) : 0;
6994c6de856SChristian Hitz e = a_pow(bch, l/2);
7004c6de856SChristian Hitz /*
7014c6de856SChristian Hitz * use transformation z=X+e:
7024c6de856SChristian Hitz * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
7034c6de856SChristian Hitz * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
7044c6de856SChristian Hitz * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
7054c6de856SChristian Hitz * z^4 + az^3 + b'z^2 + d'
7064c6de856SChristian Hitz */
7074c6de856SChristian Hitz d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
7084c6de856SChristian Hitz b = gf_mul(bch, a, e)^b;
7094c6de856SChristian Hitz }
7104c6de856SChristian Hitz /* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
7114c6de856SChristian Hitz if (d == 0)
7124c6de856SChristian Hitz /* assume all roots have multiplicity 1 */
7134c6de856SChristian Hitz return 0;
7144c6de856SChristian Hitz
7154c6de856SChristian Hitz c2 = gf_inv(bch, d);
7164c6de856SChristian Hitz b2 = gf_div(bch, a, d);
7174c6de856SChristian Hitz a2 = gf_div(bch, b, d);
7184c6de856SChristian Hitz } else {
7194c6de856SChristian Hitz /* polynomial is already affine */
7204c6de856SChristian Hitz c2 = d;
7214c6de856SChristian Hitz b2 = c;
7224c6de856SChristian Hitz a2 = b;
7234c6de856SChristian Hitz }
7244c6de856SChristian Hitz /* find the 4 roots of this affine polynomial */
7254c6de856SChristian Hitz if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
7264c6de856SChristian Hitz for (i = 0; i < 4; i++) {
7274c6de856SChristian Hitz /* post-process roots (reverse transformations) */
7284c6de856SChristian Hitz f = a ? gf_inv(bch, roots[i]) : roots[i];
7294c6de856SChristian Hitz roots[i] = a_ilog(bch, f^e);
7304c6de856SChristian Hitz }
7314c6de856SChristian Hitz n = 4;
7324c6de856SChristian Hitz }
7334c6de856SChristian Hitz return n;
7344c6de856SChristian Hitz }
7354c6de856SChristian Hitz
7364c6de856SChristian Hitz /*
7374c6de856SChristian Hitz * build monic, log-based representation of a polynomial
7384c6de856SChristian Hitz */
gf_poly_logrep(struct bch_control * bch,const struct gf_poly * a,int * rep)7394c6de856SChristian Hitz static void gf_poly_logrep(struct bch_control *bch,
7404c6de856SChristian Hitz const struct gf_poly *a, int *rep)
7414c6de856SChristian Hitz {
7424c6de856SChristian Hitz int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
7434c6de856SChristian Hitz
7444c6de856SChristian Hitz /* represent 0 values with -1; warning, rep[d] is not set to 1 */
7454c6de856SChristian Hitz for (i = 0; i < d; i++)
7464c6de856SChristian Hitz rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
7474c6de856SChristian Hitz }
7484c6de856SChristian Hitz
7494c6de856SChristian Hitz /*
7504c6de856SChristian Hitz * compute polynomial Euclidean division remainder in GF(2^m)[X]
7514c6de856SChristian Hitz */
gf_poly_mod(struct bch_control * bch,struct gf_poly * a,const struct gf_poly * b,int * rep)7524c6de856SChristian Hitz static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
7534c6de856SChristian Hitz const struct gf_poly *b, int *rep)
7544c6de856SChristian Hitz {
7554c6de856SChristian Hitz int la, p, m;
7564c6de856SChristian Hitz unsigned int i, j, *c = a->c;
7574c6de856SChristian Hitz const unsigned int d = b->deg;
7584c6de856SChristian Hitz
7594c6de856SChristian Hitz if (a->deg < d)
7604c6de856SChristian Hitz return;
7614c6de856SChristian Hitz
7624c6de856SChristian Hitz /* reuse or compute log representation of denominator */
7634c6de856SChristian Hitz if (!rep) {
7644c6de856SChristian Hitz rep = bch->cache;
7654c6de856SChristian Hitz gf_poly_logrep(bch, b, rep);
7664c6de856SChristian Hitz }
7674c6de856SChristian Hitz
7684c6de856SChristian Hitz for (j = a->deg; j >= d; j--) {
7694c6de856SChristian Hitz if (c[j]) {
7704c6de856SChristian Hitz la = a_log(bch, c[j]);
7714c6de856SChristian Hitz p = j-d;
7724c6de856SChristian Hitz for (i = 0; i < d; i++, p++) {
7734c6de856SChristian Hitz m = rep[i];
7744c6de856SChristian Hitz if (m >= 0)
7754c6de856SChristian Hitz c[p] ^= bch->a_pow_tab[mod_s(bch,
7764c6de856SChristian Hitz m+la)];
7774c6de856SChristian Hitz }
7784c6de856SChristian Hitz }
7794c6de856SChristian Hitz }
7804c6de856SChristian Hitz a->deg = d-1;
7814c6de856SChristian Hitz while (!c[a->deg] && a->deg)
7824c6de856SChristian Hitz a->deg--;
7834c6de856SChristian Hitz }
7844c6de856SChristian Hitz
7854c6de856SChristian Hitz /*
7864c6de856SChristian Hitz * compute polynomial Euclidean division quotient in GF(2^m)[X]
7874c6de856SChristian Hitz */
gf_poly_div(struct bch_control * bch,struct gf_poly * a,const struct gf_poly * b,struct gf_poly * q)7884c6de856SChristian Hitz static void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
7894c6de856SChristian Hitz const struct gf_poly *b, struct gf_poly *q)
7904c6de856SChristian Hitz {
7914c6de856SChristian Hitz if (a->deg >= b->deg) {
7924c6de856SChristian Hitz q->deg = a->deg-b->deg;
7934c6de856SChristian Hitz /* compute a mod b (modifies a) */
7944c6de856SChristian Hitz gf_poly_mod(bch, a, b, NULL);
7954c6de856SChristian Hitz /* quotient is stored in upper part of polynomial a */
7964c6de856SChristian Hitz memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
7974c6de856SChristian Hitz } else {
7984c6de856SChristian Hitz q->deg = 0;
7994c6de856SChristian Hitz q->c[0] = 0;
8004c6de856SChristian Hitz }
8014c6de856SChristian Hitz }
8024c6de856SChristian Hitz
8034c6de856SChristian Hitz /*
8044c6de856SChristian Hitz * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
8054c6de856SChristian Hitz */
gf_poly_gcd(struct bch_control * bch,struct gf_poly * a,struct gf_poly * b)8064c6de856SChristian Hitz static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
8074c6de856SChristian Hitz struct gf_poly *b)
8084c6de856SChristian Hitz {
8094c6de856SChristian Hitz struct gf_poly *tmp;
8104c6de856SChristian Hitz
8114c6de856SChristian Hitz dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
8124c6de856SChristian Hitz
8134c6de856SChristian Hitz if (a->deg < b->deg) {
8144c6de856SChristian Hitz tmp = b;
8154c6de856SChristian Hitz b = a;
8164c6de856SChristian Hitz a = tmp;
8174c6de856SChristian Hitz }
8184c6de856SChristian Hitz
8194c6de856SChristian Hitz while (b->deg > 0) {
8204c6de856SChristian Hitz gf_poly_mod(bch, a, b, NULL);
8214c6de856SChristian Hitz tmp = b;
8224c6de856SChristian Hitz b = a;
8234c6de856SChristian Hitz a = tmp;
8244c6de856SChristian Hitz }
8254c6de856SChristian Hitz
8264c6de856SChristian Hitz dbg("%s\n", gf_poly_str(a));
8274c6de856SChristian Hitz
8284c6de856SChristian Hitz return a;
8294c6de856SChristian Hitz }
8304c6de856SChristian Hitz
8314c6de856SChristian Hitz /*
8324c6de856SChristian Hitz * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
8334c6de856SChristian Hitz * This is used in Berlekamp Trace algorithm for splitting polynomials
8344c6de856SChristian Hitz */
compute_trace_bk_mod(struct bch_control * bch,int k,const struct gf_poly * f,struct gf_poly * z,struct gf_poly * out)8354c6de856SChristian Hitz static void compute_trace_bk_mod(struct bch_control *bch, int k,
8364c6de856SChristian Hitz const struct gf_poly *f, struct gf_poly *z,
8374c6de856SChristian Hitz struct gf_poly *out)
8384c6de856SChristian Hitz {
8394c6de856SChristian Hitz const int m = GF_M(bch);
8404c6de856SChristian Hitz int i, j;
8414c6de856SChristian Hitz
8424c6de856SChristian Hitz /* z contains z^2j mod f */
8434c6de856SChristian Hitz z->deg = 1;
8444c6de856SChristian Hitz z->c[0] = 0;
8454c6de856SChristian Hitz z->c[1] = bch->a_pow_tab[k];
8464c6de856SChristian Hitz
8474c6de856SChristian Hitz out->deg = 0;
8484c6de856SChristian Hitz memset(out, 0, GF_POLY_SZ(f->deg));
8494c6de856SChristian Hitz
8504c6de856SChristian Hitz /* compute f log representation only once */
8514c6de856SChristian Hitz gf_poly_logrep(bch, f, bch->cache);
8524c6de856SChristian Hitz
8534c6de856SChristian Hitz for (i = 0; i < m; i++) {
8544c6de856SChristian Hitz /* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
8554c6de856SChristian Hitz for (j = z->deg; j >= 0; j--) {
8564c6de856SChristian Hitz out->c[j] ^= z->c[j];
8574c6de856SChristian Hitz z->c[2*j] = gf_sqr(bch, z->c[j]);
8584c6de856SChristian Hitz z->c[2*j+1] = 0;
8594c6de856SChristian Hitz }
8604c6de856SChristian Hitz if (z->deg > out->deg)
8614c6de856SChristian Hitz out->deg = z->deg;
8624c6de856SChristian Hitz
8634c6de856SChristian Hitz if (i < m-1) {
8644c6de856SChristian Hitz z->deg *= 2;
8654c6de856SChristian Hitz /* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
8664c6de856SChristian Hitz gf_poly_mod(bch, z, f, bch->cache);
8674c6de856SChristian Hitz }
8684c6de856SChristian Hitz }
8694c6de856SChristian Hitz while (!out->c[out->deg] && out->deg)
8704c6de856SChristian Hitz out->deg--;
8714c6de856SChristian Hitz
8724c6de856SChristian Hitz dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
8734c6de856SChristian Hitz }
8744c6de856SChristian Hitz
8754c6de856SChristian Hitz /*
8764c6de856SChristian Hitz * factor a polynomial using Berlekamp Trace algorithm (BTA)
8774c6de856SChristian Hitz */
factor_polynomial(struct bch_control * bch,int k,struct gf_poly * f,struct gf_poly ** g,struct gf_poly ** h)8784c6de856SChristian Hitz static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
8794c6de856SChristian Hitz struct gf_poly **g, struct gf_poly **h)
8804c6de856SChristian Hitz {
8814c6de856SChristian Hitz struct gf_poly *f2 = bch->poly_2t[0];
8824c6de856SChristian Hitz struct gf_poly *q = bch->poly_2t[1];
8834c6de856SChristian Hitz struct gf_poly *tk = bch->poly_2t[2];
8844c6de856SChristian Hitz struct gf_poly *z = bch->poly_2t[3];
8854c6de856SChristian Hitz struct gf_poly *gcd;
8864c6de856SChristian Hitz
8874c6de856SChristian Hitz dbg("factoring %s...\n", gf_poly_str(f));
8884c6de856SChristian Hitz
8894c6de856SChristian Hitz *g = f;
8904c6de856SChristian Hitz *h = NULL;
8914c6de856SChristian Hitz
8924c6de856SChristian Hitz /* tk = Tr(a^k.X) mod f */
8934c6de856SChristian Hitz compute_trace_bk_mod(bch, k, f, z, tk);
8944c6de856SChristian Hitz
8954c6de856SChristian Hitz if (tk->deg > 0) {
8964c6de856SChristian Hitz /* compute g = gcd(f, tk) (destructive operation) */
8974c6de856SChristian Hitz gf_poly_copy(f2, f);
8984c6de856SChristian Hitz gcd = gf_poly_gcd(bch, f2, tk);
8994c6de856SChristian Hitz if (gcd->deg < f->deg) {
9004c6de856SChristian Hitz /* compute h=f/gcd(f,tk); this will modify f and q */
9014c6de856SChristian Hitz gf_poly_div(bch, f, gcd, q);
9024c6de856SChristian Hitz /* store g and h in-place (clobbering f) */
9034c6de856SChristian Hitz *h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
9044c6de856SChristian Hitz gf_poly_copy(*g, gcd);
9054c6de856SChristian Hitz gf_poly_copy(*h, q);
9064c6de856SChristian Hitz }
9074c6de856SChristian Hitz }
9084c6de856SChristian Hitz }
9094c6de856SChristian Hitz
9104c6de856SChristian Hitz /*
9114c6de856SChristian Hitz * find roots of a polynomial, using BTZ algorithm; see the beginning of this
9124c6de856SChristian Hitz * file for details
9134c6de856SChristian Hitz */
find_poly_roots(struct bch_control * bch,unsigned int k,struct gf_poly * poly,unsigned int * roots)9144c6de856SChristian Hitz static int find_poly_roots(struct bch_control *bch, unsigned int k,
9154c6de856SChristian Hitz struct gf_poly *poly, unsigned int *roots)
9164c6de856SChristian Hitz {
9174c6de856SChristian Hitz int cnt;
9184c6de856SChristian Hitz struct gf_poly *f1, *f2;
9194c6de856SChristian Hitz
9204c6de856SChristian Hitz switch (poly->deg) {
9214c6de856SChristian Hitz /* handle low degree polynomials with ad hoc techniques */
9224c6de856SChristian Hitz case 1:
9234c6de856SChristian Hitz cnt = find_poly_deg1_roots(bch, poly, roots);
9244c6de856SChristian Hitz break;
9254c6de856SChristian Hitz case 2:
9264c6de856SChristian Hitz cnt = find_poly_deg2_roots(bch, poly, roots);
9274c6de856SChristian Hitz break;
9284c6de856SChristian Hitz case 3:
9294c6de856SChristian Hitz cnt = find_poly_deg3_roots(bch, poly, roots);
9304c6de856SChristian Hitz break;
9314c6de856SChristian Hitz case 4:
9324c6de856SChristian Hitz cnt = find_poly_deg4_roots(bch, poly, roots);
9334c6de856SChristian Hitz break;
9344c6de856SChristian Hitz default:
9354c6de856SChristian Hitz /* factor polynomial using Berlekamp Trace Algorithm (BTA) */
9364c6de856SChristian Hitz cnt = 0;
9374c6de856SChristian Hitz if (poly->deg && (k <= GF_M(bch))) {
9384c6de856SChristian Hitz factor_polynomial(bch, k, poly, &f1, &f2);
9394c6de856SChristian Hitz if (f1)
9404c6de856SChristian Hitz cnt += find_poly_roots(bch, k+1, f1, roots);
9414c6de856SChristian Hitz if (f2)
9424c6de856SChristian Hitz cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
9434c6de856SChristian Hitz }
9444c6de856SChristian Hitz break;
9454c6de856SChristian Hitz }
9464c6de856SChristian Hitz return cnt;
9474c6de856SChristian Hitz }
9484c6de856SChristian Hitz
9494c6de856SChristian Hitz #if defined(USE_CHIEN_SEARCH)
9504c6de856SChristian Hitz /*
9514c6de856SChristian Hitz * exhaustive root search (Chien) implementation - not used, included only for
9524c6de856SChristian Hitz * reference/comparison tests
9534c6de856SChristian Hitz */
chien_search(struct bch_control * bch,unsigned int len,struct gf_poly * p,unsigned int * roots)9544c6de856SChristian Hitz static int chien_search(struct bch_control *bch, unsigned int len,
9554c6de856SChristian Hitz struct gf_poly *p, unsigned int *roots)
9564c6de856SChristian Hitz {
9574c6de856SChristian Hitz int m;
9584c6de856SChristian Hitz unsigned int i, j, syn, syn0, count = 0;
9594c6de856SChristian Hitz const unsigned int k = 8*len+bch->ecc_bits;
9604c6de856SChristian Hitz
9614c6de856SChristian Hitz /* use a log-based representation of polynomial */
9624c6de856SChristian Hitz gf_poly_logrep(bch, p, bch->cache);
9634c6de856SChristian Hitz bch->cache[p->deg] = 0;
9644c6de856SChristian Hitz syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
9654c6de856SChristian Hitz
9664c6de856SChristian Hitz for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
9674c6de856SChristian Hitz /* compute elp(a^i) */
9684c6de856SChristian Hitz for (j = 1, syn = syn0; j <= p->deg; j++) {
9694c6de856SChristian Hitz m = bch->cache[j];
9704c6de856SChristian Hitz if (m >= 0)
9714c6de856SChristian Hitz syn ^= a_pow(bch, m+j*i);
9724c6de856SChristian Hitz }
9734c6de856SChristian Hitz if (syn == 0) {
9744c6de856SChristian Hitz roots[count++] = GF_N(bch)-i;
9754c6de856SChristian Hitz if (count == p->deg)
9764c6de856SChristian Hitz break;
9774c6de856SChristian Hitz }
9784c6de856SChristian Hitz }
9794c6de856SChristian Hitz return (count == p->deg) ? count : 0;
9804c6de856SChristian Hitz }
9814c6de856SChristian Hitz #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
9824c6de856SChristian Hitz #endif /* USE_CHIEN_SEARCH */
9834c6de856SChristian Hitz
9844c6de856SChristian Hitz /**
9854c6de856SChristian Hitz * decode_bch - decode received codeword and find bit error locations
9864c6de856SChristian Hitz * @bch: BCH control structure
9874c6de856SChristian Hitz * @data: received data, ignored if @calc_ecc is provided
9884c6de856SChristian Hitz * @len: data length in bytes, must always be provided
9894c6de856SChristian Hitz * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
9904c6de856SChristian Hitz * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
9914c6de856SChristian Hitz * @syn: hw computed syndrome data (if NULL, syndrome is calculated)
9924c6de856SChristian Hitz * @errloc: output array of error locations
9934c6de856SChristian Hitz *
9944c6de856SChristian Hitz * Returns:
9954c6de856SChristian Hitz * The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
9964c6de856SChristian Hitz * invalid parameters were provided
9974c6de856SChristian Hitz *
9984c6de856SChristian Hitz * Depending on the available hw BCH support and the need to compute @calc_ecc
9994c6de856SChristian Hitz * separately (using encode_bch()), this function should be called with one of
10004c6de856SChristian Hitz * the following parameter configurations -
10014c6de856SChristian Hitz *
10024c6de856SChristian Hitz * by providing @data and @recv_ecc only:
10034c6de856SChristian Hitz * decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
10044c6de856SChristian Hitz *
10054c6de856SChristian Hitz * by providing @recv_ecc and @calc_ecc:
10064c6de856SChristian Hitz * decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
10074c6de856SChristian Hitz *
10084c6de856SChristian Hitz * by providing ecc = recv_ecc XOR calc_ecc:
10094c6de856SChristian Hitz * decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
10104c6de856SChristian Hitz *
10114c6de856SChristian Hitz * by providing syndrome results @syn:
10124c6de856SChristian Hitz * decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
10134c6de856SChristian Hitz *
10144c6de856SChristian Hitz * Once decode_bch() has successfully returned with a positive value, error
10154c6de856SChristian Hitz * locations returned in array @errloc should be interpreted as follows -
10164c6de856SChristian Hitz *
10174c6de856SChristian Hitz * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
10184c6de856SChristian Hitz * data correction)
10194c6de856SChristian Hitz *
10204c6de856SChristian Hitz * if (errloc[n] < 8*len), then n-th error is located in data and can be
10214c6de856SChristian Hitz * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
10224c6de856SChristian Hitz *
10234c6de856SChristian Hitz * Note that this function does not perform any data correction by itself, it
10244c6de856SChristian Hitz * merely indicates error locations.
10254c6de856SChristian Hitz */
decode_bch(struct bch_control * bch,const uint8_t * data,unsigned int len,const uint8_t * recv_ecc,const uint8_t * calc_ecc,const unsigned int * syn,unsigned int * errloc)10264c6de856SChristian Hitz int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len,
10274c6de856SChristian Hitz const uint8_t *recv_ecc, const uint8_t *calc_ecc,
10284c6de856SChristian Hitz const unsigned int *syn, unsigned int *errloc)
10294c6de856SChristian Hitz {
10304c6de856SChristian Hitz const unsigned int ecc_words = BCH_ECC_WORDS(bch);
10314c6de856SChristian Hitz unsigned int nbits;
10324c6de856SChristian Hitz int i, err, nroots;
10334c6de856SChristian Hitz uint32_t sum;
10344c6de856SChristian Hitz
10354c6de856SChristian Hitz /* sanity check: make sure data length can be handled */
10364c6de856SChristian Hitz if (8*len > (bch->n-bch->ecc_bits))
10374c6de856SChristian Hitz return -EINVAL;
10384c6de856SChristian Hitz
10394c6de856SChristian Hitz /* if caller does not provide syndromes, compute them */
10404c6de856SChristian Hitz if (!syn) {
10414c6de856SChristian Hitz if (!calc_ecc) {
10424c6de856SChristian Hitz /* compute received data ecc into an internal buffer */
10434c6de856SChristian Hitz if (!data || !recv_ecc)
10444c6de856SChristian Hitz return -EINVAL;
10454c6de856SChristian Hitz encode_bch(bch, data, len, NULL);
10464c6de856SChristian Hitz } else {
10474c6de856SChristian Hitz /* load provided calculated ecc */
10484c6de856SChristian Hitz load_ecc8(bch, bch->ecc_buf, calc_ecc);
10494c6de856SChristian Hitz }
10504c6de856SChristian Hitz /* load received ecc or assume it was XORed in calc_ecc */
10514c6de856SChristian Hitz if (recv_ecc) {
10524c6de856SChristian Hitz load_ecc8(bch, bch->ecc_buf2, recv_ecc);
10534c6de856SChristian Hitz /* XOR received and calculated ecc */
10544c6de856SChristian Hitz for (i = 0, sum = 0; i < (int)ecc_words; i++) {
10554c6de856SChristian Hitz bch->ecc_buf[i] ^= bch->ecc_buf2[i];
10564c6de856SChristian Hitz sum |= bch->ecc_buf[i];
10574c6de856SChristian Hitz }
10584c6de856SChristian Hitz if (!sum)
10594c6de856SChristian Hitz /* no error found */
10604c6de856SChristian Hitz return 0;
10614c6de856SChristian Hitz }
10624c6de856SChristian Hitz compute_syndromes(bch, bch->ecc_buf, bch->syn);
10634c6de856SChristian Hitz syn = bch->syn;
10644c6de856SChristian Hitz }
10654c6de856SChristian Hitz
10664c6de856SChristian Hitz err = compute_error_locator_polynomial(bch, syn);
10674c6de856SChristian Hitz if (err > 0) {
10684c6de856SChristian Hitz nroots = find_poly_roots(bch, 1, bch->elp, errloc);
10694c6de856SChristian Hitz if (err != nroots)
10704c6de856SChristian Hitz err = -1;
10714c6de856SChristian Hitz }
10724c6de856SChristian Hitz if (err > 0) {
10734c6de856SChristian Hitz /* post-process raw error locations for easier correction */
10744c6de856SChristian Hitz nbits = (len*8)+bch->ecc_bits;
10754c6de856SChristian Hitz for (i = 0; i < err; i++) {
10764c6de856SChristian Hitz if (errloc[i] >= nbits) {
10774c6de856SChristian Hitz err = -1;
10784c6de856SChristian Hitz break;
10794c6de856SChristian Hitz }
10804c6de856SChristian Hitz errloc[i] = nbits-1-errloc[i];
10814c6de856SChristian Hitz errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7));
10824c6de856SChristian Hitz }
10834c6de856SChristian Hitz }
10844c6de856SChristian Hitz return (err >= 0) ? err : -EBADMSG;
10854c6de856SChristian Hitz }
10864c6de856SChristian Hitz
10874c6de856SChristian Hitz /*
10884c6de856SChristian Hitz * generate Galois field lookup tables
10894c6de856SChristian Hitz */
build_gf_tables(struct bch_control * bch,unsigned int poly)10904c6de856SChristian Hitz static int build_gf_tables(struct bch_control *bch, unsigned int poly)
10914c6de856SChristian Hitz {
10924c6de856SChristian Hitz unsigned int i, x = 1;
10934c6de856SChristian Hitz const unsigned int k = 1 << deg(poly);
10944c6de856SChristian Hitz
10954c6de856SChristian Hitz /* primitive polynomial must be of degree m */
10964c6de856SChristian Hitz if (k != (1u << GF_M(bch)))
10974c6de856SChristian Hitz return -1;
10984c6de856SChristian Hitz
10994c6de856SChristian Hitz for (i = 0; i < GF_N(bch); i++) {
11004c6de856SChristian Hitz bch->a_pow_tab[i] = x;
11014c6de856SChristian Hitz bch->a_log_tab[x] = i;
11024c6de856SChristian Hitz if (i && (x == 1))
11034c6de856SChristian Hitz /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
11044c6de856SChristian Hitz return -1;
11054c6de856SChristian Hitz x <<= 1;
11064c6de856SChristian Hitz if (x & k)
11074c6de856SChristian Hitz x ^= poly;
11084c6de856SChristian Hitz }
11094c6de856SChristian Hitz bch->a_pow_tab[GF_N(bch)] = 1;
11104c6de856SChristian Hitz bch->a_log_tab[0] = 0;
11114c6de856SChristian Hitz
11124c6de856SChristian Hitz return 0;
11134c6de856SChristian Hitz }
11144c6de856SChristian Hitz
11154c6de856SChristian Hitz /*
11164c6de856SChristian Hitz * compute generator polynomial remainder tables for fast encoding
11174c6de856SChristian Hitz */
build_mod8_tables(struct bch_control * bch,const uint32_t * g)11184c6de856SChristian Hitz static void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
11194c6de856SChristian Hitz {
11204c6de856SChristian Hitz int i, j, b, d;
11214c6de856SChristian Hitz uint32_t data, hi, lo, *tab;
11224c6de856SChristian Hitz const int l = BCH_ECC_WORDS(bch);
11234c6de856SChristian Hitz const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
11244c6de856SChristian Hitz const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
11254c6de856SChristian Hitz
11264c6de856SChristian Hitz memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
11274c6de856SChristian Hitz
11284c6de856SChristian Hitz for (i = 0; i < 256; i++) {
11294c6de856SChristian Hitz /* p(X)=i is a small polynomial of weight <= 8 */
11304c6de856SChristian Hitz for (b = 0; b < 4; b++) {
11314c6de856SChristian Hitz /* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
11324c6de856SChristian Hitz tab = bch->mod8_tab + (b*256+i)*l;
11334c6de856SChristian Hitz data = i << (8*b);
11344c6de856SChristian Hitz while (data) {
11354c6de856SChristian Hitz d = deg(data);
11364c6de856SChristian Hitz /* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
11374c6de856SChristian Hitz data ^= g[0] >> (31-d);
11384c6de856SChristian Hitz for (j = 0; j < ecclen; j++) {
11394c6de856SChristian Hitz hi = (d < 31) ? g[j] << (d+1) : 0;
11404c6de856SChristian Hitz lo = (j+1 < plen) ?
11414c6de856SChristian Hitz g[j+1] >> (31-d) : 0;
11424c6de856SChristian Hitz tab[j] ^= hi|lo;
11434c6de856SChristian Hitz }
11444c6de856SChristian Hitz }
11454c6de856SChristian Hitz }
11464c6de856SChristian Hitz }
11474c6de856SChristian Hitz }
11484c6de856SChristian Hitz
11494c6de856SChristian Hitz /*
11504c6de856SChristian Hitz * build a base for factoring degree 2 polynomials
11514c6de856SChristian Hitz */
build_deg2_base(struct bch_control * bch)11524c6de856SChristian Hitz static int build_deg2_base(struct bch_control *bch)
11534c6de856SChristian Hitz {
11544c6de856SChristian Hitz const int m = GF_M(bch);
11554c6de856SChristian Hitz int i, j, r;
11564c6de856SChristian Hitz unsigned int sum, x, y, remaining, ak = 0, xi[m];
11574c6de856SChristian Hitz
11584c6de856SChristian Hitz /* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
11594c6de856SChristian Hitz for (i = 0; i < m; i++) {
11604c6de856SChristian Hitz for (j = 0, sum = 0; j < m; j++)
11614c6de856SChristian Hitz sum ^= a_pow(bch, i*(1 << j));
11624c6de856SChristian Hitz
11634c6de856SChristian Hitz if (sum) {
11644c6de856SChristian Hitz ak = bch->a_pow_tab[i];
11654c6de856SChristian Hitz break;
11664c6de856SChristian Hitz }
11674c6de856SChristian Hitz }
11684c6de856SChristian Hitz /* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
11694c6de856SChristian Hitz remaining = m;
11704c6de856SChristian Hitz memset(xi, 0, sizeof(xi));
11714c6de856SChristian Hitz
11724c6de856SChristian Hitz for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
11734c6de856SChristian Hitz y = gf_sqr(bch, x)^x;
11744c6de856SChristian Hitz for (i = 0; i < 2; i++) {
11754c6de856SChristian Hitz r = a_log(bch, y);
11764c6de856SChristian Hitz if (y && (r < m) && !xi[r]) {
11774c6de856SChristian Hitz bch->xi_tab[r] = x;
11784c6de856SChristian Hitz xi[r] = 1;
11794c6de856SChristian Hitz remaining--;
11804c6de856SChristian Hitz dbg("x%d = %x\n", r, x);
11814c6de856SChristian Hitz break;
11824c6de856SChristian Hitz }
11834c6de856SChristian Hitz y ^= ak;
11844c6de856SChristian Hitz }
11854c6de856SChristian Hitz }
11864c6de856SChristian Hitz /* should not happen but check anyway */
11874c6de856SChristian Hitz return remaining ? -1 : 0;
11884c6de856SChristian Hitz }
11894c6de856SChristian Hitz
bch_alloc(size_t size,int * err)11904c6de856SChristian Hitz static void *bch_alloc(size_t size, int *err)
11914c6de856SChristian Hitz {
11924c6de856SChristian Hitz void *ptr;
11934c6de856SChristian Hitz
11944c6de856SChristian Hitz ptr = kmalloc(size, GFP_KERNEL);
11954c6de856SChristian Hitz if (ptr == NULL)
11964c6de856SChristian Hitz *err = 1;
11974c6de856SChristian Hitz return ptr;
11984c6de856SChristian Hitz }
11994c6de856SChristian Hitz
12004c6de856SChristian Hitz /*
12014c6de856SChristian Hitz * compute generator polynomial for given (m,t) parameters.
12024c6de856SChristian Hitz */
compute_generator_polynomial(struct bch_control * bch)12034c6de856SChristian Hitz static uint32_t *compute_generator_polynomial(struct bch_control *bch)
12044c6de856SChristian Hitz {
12054c6de856SChristian Hitz const unsigned int m = GF_M(bch);
12064c6de856SChristian Hitz const unsigned int t = GF_T(bch);
12074c6de856SChristian Hitz int n, err = 0;
12084c6de856SChristian Hitz unsigned int i, j, nbits, r, word, *roots;
12094c6de856SChristian Hitz struct gf_poly *g;
12104c6de856SChristian Hitz uint32_t *genpoly;
12114c6de856SChristian Hitz
12124c6de856SChristian Hitz g = bch_alloc(GF_POLY_SZ(m*t), &err);
12134c6de856SChristian Hitz roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
12144c6de856SChristian Hitz genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
12154c6de856SChristian Hitz
12164c6de856SChristian Hitz if (err) {
12174c6de856SChristian Hitz kfree(genpoly);
12184c6de856SChristian Hitz genpoly = NULL;
12194c6de856SChristian Hitz goto finish;
12204c6de856SChristian Hitz }
12214c6de856SChristian Hitz
12224c6de856SChristian Hitz /* enumerate all roots of g(X) */
12234c6de856SChristian Hitz memset(roots , 0, (bch->n+1)*sizeof(*roots));
12244c6de856SChristian Hitz for (i = 0; i < t; i++) {
12254c6de856SChristian Hitz for (j = 0, r = 2*i+1; j < m; j++) {
12264c6de856SChristian Hitz roots[r] = 1;
12274c6de856SChristian Hitz r = mod_s(bch, 2*r);
12284c6de856SChristian Hitz }
12294c6de856SChristian Hitz }
12304c6de856SChristian Hitz /* build generator polynomial g(X) */
12314c6de856SChristian Hitz g->deg = 0;
12324c6de856SChristian Hitz g->c[0] = 1;
12334c6de856SChristian Hitz for (i = 0; i < GF_N(bch); i++) {
12344c6de856SChristian Hitz if (roots[i]) {
12354c6de856SChristian Hitz /* multiply g(X) by (X+root) */
12364c6de856SChristian Hitz r = bch->a_pow_tab[i];
12374c6de856SChristian Hitz g->c[g->deg+1] = 1;
12384c6de856SChristian Hitz for (j = g->deg; j > 0; j--)
12394c6de856SChristian Hitz g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
12404c6de856SChristian Hitz
12414c6de856SChristian Hitz g->c[0] = gf_mul(bch, g->c[0], r);
12424c6de856SChristian Hitz g->deg++;
12434c6de856SChristian Hitz }
12444c6de856SChristian Hitz }
12454c6de856SChristian Hitz /* store left-justified binary representation of g(X) */
12464c6de856SChristian Hitz n = g->deg+1;
12474c6de856SChristian Hitz i = 0;
12484c6de856SChristian Hitz
12494c6de856SChristian Hitz while (n > 0) {
12504c6de856SChristian Hitz nbits = (n > 32) ? 32 : n;
12514c6de856SChristian Hitz for (j = 0, word = 0; j < nbits; j++) {
12524c6de856SChristian Hitz if (g->c[n-1-j])
12534c6de856SChristian Hitz word |= 1u << (31-j);
12544c6de856SChristian Hitz }
12554c6de856SChristian Hitz genpoly[i++] = word;
12564c6de856SChristian Hitz n -= nbits;
12574c6de856SChristian Hitz }
12584c6de856SChristian Hitz bch->ecc_bits = g->deg;
12594c6de856SChristian Hitz
12604c6de856SChristian Hitz finish:
12614c6de856SChristian Hitz kfree(g);
12624c6de856SChristian Hitz kfree(roots);
12634c6de856SChristian Hitz
12644c6de856SChristian Hitz return genpoly;
12654c6de856SChristian Hitz }
12664c6de856SChristian Hitz
12674c6de856SChristian Hitz /**
12684c6de856SChristian Hitz * init_bch - initialize a BCH encoder/decoder
12694c6de856SChristian Hitz * @m: Galois field order, should be in the range 5-15
12704c6de856SChristian Hitz * @t: maximum error correction capability, in bits
12714c6de856SChristian Hitz * @prim_poly: user-provided primitive polynomial (or 0 to use default)
12724c6de856SChristian Hitz *
12734c6de856SChristian Hitz * Returns:
12744c6de856SChristian Hitz * a newly allocated BCH control structure if successful, NULL otherwise
12754c6de856SChristian Hitz *
12764c6de856SChristian Hitz * This initialization can take some time, as lookup tables are built for fast
12774c6de856SChristian Hitz * encoding/decoding; make sure not to call this function from a time critical
12784c6de856SChristian Hitz * path. Usually, init_bch() should be called on module/driver init and
12794c6de856SChristian Hitz * free_bch() should be called to release memory on exit.
12804c6de856SChristian Hitz *
12814c6de856SChristian Hitz * You may provide your own primitive polynomial of degree @m in argument
12824c6de856SChristian Hitz * @prim_poly, or let init_bch() use its default polynomial.
12834c6de856SChristian Hitz *
12844c6de856SChristian Hitz * Once init_bch() has successfully returned a pointer to a newly allocated
12854c6de856SChristian Hitz * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
12864c6de856SChristian Hitz * the structure.
12874c6de856SChristian Hitz */
init_bch(int m,int t,unsigned int prim_poly)12884c6de856SChristian Hitz struct bch_control *init_bch(int m, int t, unsigned int prim_poly)
12894c6de856SChristian Hitz {
12904c6de856SChristian Hitz int err = 0;
12914c6de856SChristian Hitz unsigned int i, words;
12924c6de856SChristian Hitz uint32_t *genpoly;
12934c6de856SChristian Hitz struct bch_control *bch = NULL;
12944c6de856SChristian Hitz
12954c6de856SChristian Hitz const int min_m = 5;
12964c6de856SChristian Hitz const int max_m = 15;
12974c6de856SChristian Hitz
12984c6de856SChristian Hitz /* default primitive polynomials */
12994c6de856SChristian Hitz static const unsigned int prim_poly_tab[] = {
13004c6de856SChristian Hitz 0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
13014c6de856SChristian Hitz 0x402b, 0x8003,
13024c6de856SChristian Hitz };
13034c6de856SChristian Hitz
13044c6de856SChristian Hitz #if defined(CONFIG_BCH_CONST_PARAMS)
13054c6de856SChristian Hitz if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
13064c6de856SChristian Hitz printk(KERN_ERR "bch encoder/decoder was configured to support "
13074c6de856SChristian Hitz "parameters m=%d, t=%d only!\n",
13084c6de856SChristian Hitz CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
13094c6de856SChristian Hitz goto fail;
13104c6de856SChristian Hitz }
13114c6de856SChristian Hitz #endif
13124c6de856SChristian Hitz if ((m < min_m) || (m > max_m))
13134c6de856SChristian Hitz /*
13144c6de856SChristian Hitz * values of m greater than 15 are not currently supported;
13154c6de856SChristian Hitz * supporting m > 15 would require changing table base type
13164c6de856SChristian Hitz * (uint16_t) and a small patch in matrix transposition
13174c6de856SChristian Hitz */
13184c6de856SChristian Hitz goto fail;
13194c6de856SChristian Hitz
13204c6de856SChristian Hitz /* sanity checks */
13214c6de856SChristian Hitz if ((t < 1) || (m*t >= ((1 << m)-1)))
13224c6de856SChristian Hitz /* invalid t value */
13234c6de856SChristian Hitz goto fail;
13244c6de856SChristian Hitz
13254c6de856SChristian Hitz /* select a primitive polynomial for generating GF(2^m) */
13264c6de856SChristian Hitz if (prim_poly == 0)
13274c6de856SChristian Hitz prim_poly = prim_poly_tab[m-min_m];
13284c6de856SChristian Hitz
13294c6de856SChristian Hitz bch = kzalloc(sizeof(*bch), GFP_KERNEL);
13304c6de856SChristian Hitz if (bch == NULL)
13314c6de856SChristian Hitz goto fail;
13324c6de856SChristian Hitz
13334c6de856SChristian Hitz bch->m = m;
13344c6de856SChristian Hitz bch->t = t;
13354c6de856SChristian Hitz bch->n = (1 << m)-1;
13364c6de856SChristian Hitz words = DIV_ROUND_UP(m*t, 32);
13374c6de856SChristian Hitz bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
13384c6de856SChristian Hitz bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
13394c6de856SChristian Hitz bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
13404c6de856SChristian Hitz bch->mod8_tab = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
13414c6de856SChristian Hitz bch->ecc_buf = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
13424c6de856SChristian Hitz bch->ecc_buf2 = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
13434c6de856SChristian Hitz bch->xi_tab = bch_alloc(m*sizeof(*bch->xi_tab), &err);
13444c6de856SChristian Hitz bch->syn = bch_alloc(2*t*sizeof(*bch->syn), &err);
13454c6de856SChristian Hitz bch->cache = bch_alloc(2*t*sizeof(*bch->cache), &err);
13464c6de856SChristian Hitz bch->elp = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
13474c6de856SChristian Hitz
13484c6de856SChristian Hitz for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
13494c6de856SChristian Hitz bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
13504c6de856SChristian Hitz
13514c6de856SChristian Hitz if (err)
13524c6de856SChristian Hitz goto fail;
13534c6de856SChristian Hitz
13544c6de856SChristian Hitz err = build_gf_tables(bch, prim_poly);
13554c6de856SChristian Hitz if (err)
13564c6de856SChristian Hitz goto fail;
13574c6de856SChristian Hitz
13584c6de856SChristian Hitz /* use generator polynomial for computing encoding tables */
13594c6de856SChristian Hitz genpoly = compute_generator_polynomial(bch);
13604c6de856SChristian Hitz if (genpoly == NULL)
13614c6de856SChristian Hitz goto fail;
13624c6de856SChristian Hitz
13634c6de856SChristian Hitz build_mod8_tables(bch, genpoly);
13644c6de856SChristian Hitz kfree(genpoly);
13654c6de856SChristian Hitz
13664c6de856SChristian Hitz err = build_deg2_base(bch);
13674c6de856SChristian Hitz if (err)
13684c6de856SChristian Hitz goto fail;
13694c6de856SChristian Hitz
13704c6de856SChristian Hitz return bch;
13714c6de856SChristian Hitz
13724c6de856SChristian Hitz fail:
13734c6de856SChristian Hitz free_bch(bch);
13744c6de856SChristian Hitz return NULL;
13754c6de856SChristian Hitz }
13764c6de856SChristian Hitz
13774c6de856SChristian Hitz /**
13784c6de856SChristian Hitz * free_bch - free the BCH control structure
13794c6de856SChristian Hitz * @bch: BCH control structure to release
13804c6de856SChristian Hitz */
free_bch(struct bch_control * bch)13814c6de856SChristian Hitz void free_bch(struct bch_control *bch)
13824c6de856SChristian Hitz {
13834c6de856SChristian Hitz unsigned int i;
13844c6de856SChristian Hitz
13854c6de856SChristian Hitz if (bch) {
13864c6de856SChristian Hitz kfree(bch->a_pow_tab);
13874c6de856SChristian Hitz kfree(bch->a_log_tab);
13884c6de856SChristian Hitz kfree(bch->mod8_tab);
13894c6de856SChristian Hitz kfree(bch->ecc_buf);
13904c6de856SChristian Hitz kfree(bch->ecc_buf2);
13914c6de856SChristian Hitz kfree(bch->xi_tab);
13924c6de856SChristian Hitz kfree(bch->syn);
13934c6de856SChristian Hitz kfree(bch->cache);
13944c6de856SChristian Hitz kfree(bch->elp);
13954c6de856SChristian Hitz
13964c6de856SChristian Hitz for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
13974c6de856SChristian Hitz kfree(bch->poly_2t[i]);
13984c6de856SChristian Hitz
13994c6de856SChristian Hitz kfree(bch);
14004c6de856SChristian Hitz }
14014c6de856SChristian Hitz }
1402