1 /* 2 * LiMon Monitor (LiMon) - Network. 3 * 4 * Copyright 1994 - 2000 Neil Russell. 5 * (See License) 6 * SPDX-License-Identifier: GPL-2.0 7 * 8 * History 9 * 9/16/00 bor adapted to TQM823L/STK8xxL board, RARP/TFTP boot added 10 */ 11 12 #ifndef __NET_H__ 13 #define __NET_H__ 14 15 #if defined(CONFIG_8xx) 16 #include <commproc.h> 17 #endif /* CONFIG_8xx */ 18 19 #include <asm/cache.h> 20 #include <asm/byteorder.h> /* for nton* / ntoh* stuff */ 21 22 #define DEBUG_LL_STATE 0 /* Link local state machine changes */ 23 #define DEBUG_DEV_PKT 0 /* Packets or info directed to the device */ 24 #define DEBUG_NET_PKT 0 /* Packets on info on the network at large */ 25 #define DEBUG_INT_STATE 0 /* Internal network state changes */ 26 27 /* 28 * The number of receive packet buffers, and the required packet buffer 29 * alignment in memory. 30 * 31 */ 32 33 #ifdef CONFIG_SYS_RX_ETH_BUFFER 34 # define PKTBUFSRX CONFIG_SYS_RX_ETH_BUFFER 35 #else 36 # define PKTBUFSRX 4 37 #endif 38 39 #define PKTALIGN ARCH_DMA_MINALIGN 40 41 /* IPv4 addresses are always 32 bits in size */ 42 struct in_addr { 43 __be32 s_addr; 44 }; 45 46 /** 47 * An incoming packet handler. 48 * @param pkt pointer to the application packet 49 * @param dport destination UDP port 50 * @param sip source IP address 51 * @param sport source UDP port 52 * @param len packet length 53 */ 54 typedef void rxhand_f(uchar *pkt, unsigned dport, 55 struct in_addr sip, unsigned sport, 56 unsigned len); 57 58 /** 59 * An incoming ICMP packet handler. 60 * @param type ICMP type 61 * @param code ICMP code 62 * @param dport destination UDP port 63 * @param sip source IP address 64 * @param sport source UDP port 65 * @param pkt pointer to the ICMP packet data 66 * @param len packet length 67 */ 68 typedef void rxhand_icmp_f(unsigned type, unsigned code, unsigned dport, 69 struct in_addr sip, unsigned sport, uchar *pkt, unsigned len); 70 71 /* 72 * A timeout handler. Called after time interval has expired. 73 */ 74 typedef void thand_f(void); 75 76 enum eth_state_t { 77 ETH_STATE_INIT, 78 ETH_STATE_PASSIVE, 79 ETH_STATE_ACTIVE 80 }; 81 82 #ifdef CONFIG_DM_ETH 83 /** 84 * struct eth_pdata - Platform data for Ethernet MAC controllers 85 * 86 * @iobase: The base address of the hardware registers 87 * @enetaddr: The Ethernet MAC address that is loaded from EEPROM or env 88 * @phy_interface: PHY interface to use - see PHY_INTERFACE_MODE_... 89 */ 90 struct eth_pdata { 91 phys_addr_t iobase; 92 unsigned char enetaddr[6]; 93 int phy_interface; 94 }; 95 96 enum eth_recv_flags { 97 /* 98 * Check hardware device for new packets (otherwise only return those 99 * which are already in the memory buffer ready to process) 100 */ 101 ETH_RECV_CHECK_DEVICE = 1 << 0, 102 }; 103 104 /** 105 * struct eth_ops - functions of Ethernet MAC controllers 106 * 107 * start: Prepare the hardware to send and receive packets 108 * send: Send the bytes passed in "packet" as a packet on the wire 109 * recv: Check if the hardware received a packet. If so, set the pointer to the 110 * packet buffer in the packetp parameter. If not, return an error or 0 to 111 * indicate that the hardware receive FIFO is empty. If 0 is returned, the 112 * network stack will not process the empty packet, but free_pkt() will be 113 * called if supplied 114 * free_pkt: Give the driver an opportunity to manage its packet buffer memory 115 * when the network stack is finished processing it. This will only be 116 * called when no error was returned from recv - optional 117 * stop: Stop the hardware from looking for packets - may be called even if 118 * state == PASSIVE 119 * mcast: Join or leave a multicast group (for TFTP) - optional 120 * write_hwaddr: Write a MAC address to the hardware (used to pass it to Linux 121 * on some platforms like ARM). This function expects the 122 * eth_pdata::enetaddr field to be populated - optional 123 * read_rom_hwaddr: Some devices have a backup of the MAC address stored in a 124 * ROM on the board. This is how the driver should expose it 125 * to the network stack. This function should fill in the 126 * eth_pdata::enetaddr field - optional 127 */ 128 struct eth_ops { 129 int (*start)(struct udevice *dev); 130 int (*send)(struct udevice *dev, void *packet, int length); 131 int (*recv)(struct udevice *dev, int flags, uchar **packetp); 132 int (*free_pkt)(struct udevice *dev, uchar *packet, int length); 133 void (*stop)(struct udevice *dev); 134 #ifdef CONFIG_MCAST_TFTP 135 int (*mcast)(struct udevice *dev, const u8 *enetaddr, int join); 136 #endif 137 int (*write_hwaddr)(struct udevice *dev); 138 int (*read_rom_hwaddr)(struct udevice *dev); 139 }; 140 141 #define eth_get_ops(dev) ((struct eth_ops *)(dev)->driver->ops) 142 143 struct udevice *eth_get_dev(void); /* get the current device */ 144 /* 145 * The devname can be either an exact name given by the driver or device tree 146 * or it can be an alias of the form "eth%d" 147 */ 148 struct udevice *eth_get_dev_by_name(const char *devname); 149 unsigned char *eth_get_ethaddr(void); /* get the current device MAC */ 150 /* Used only when NetConsole is enabled */ 151 int eth_init_state_only(void); /* Set active state */ 152 void eth_halt_state_only(void); /* Set passive state */ 153 #endif 154 155 #ifndef CONFIG_DM_ETH 156 struct eth_device { 157 char name[16]; 158 unsigned char enetaddr[6]; 159 phys_addr_t iobase; 160 int state; 161 162 int (*init)(struct eth_device *, bd_t *); 163 int (*send)(struct eth_device *, void *packet, int length); 164 int (*recv)(struct eth_device *); 165 void (*halt)(struct eth_device *); 166 #ifdef CONFIG_MCAST_TFTP 167 int (*mcast)(struct eth_device *, const u8 *enetaddr, u8 set); 168 #endif 169 int (*write_hwaddr)(struct eth_device *); 170 struct eth_device *next; 171 int index; 172 void *priv; 173 }; 174 175 int eth_register(struct eth_device *dev);/* Register network device */ 176 int eth_unregister(struct eth_device *dev);/* Remove network device */ 177 178 extern struct eth_device *eth_current; 179 180 static inline __attribute__((always_inline)) 181 struct eth_device *eth_get_dev(void) 182 { 183 return eth_current; 184 } 185 struct eth_device *eth_get_dev_by_name(const char *devname); 186 struct eth_device *eth_get_dev_by_index(int index); /* get dev @ index */ 187 188 /* get the current device MAC */ 189 static inline unsigned char *eth_get_ethaddr(void) 190 { 191 if (eth_current) 192 return eth_current->enetaddr; 193 return NULL; 194 } 195 196 /* Set active state */ 197 static inline __attribute__((always_inline)) int eth_init_state_only(void) 198 { 199 eth_get_dev()->state = ETH_STATE_ACTIVE; 200 201 return 0; 202 } 203 /* Set passive state */ 204 static inline __attribute__((always_inline)) void eth_halt_state_only(void) 205 { 206 eth_get_dev()->state = ETH_STATE_PASSIVE; 207 } 208 209 /* 210 * Set the hardware address for an ethernet interface based on 'eth%daddr' 211 * environment variable (or just 'ethaddr' if eth_number is 0). 212 * Args: 213 * base_name - base name for device (normally "eth") 214 * eth_number - value of %d (0 for first device of this type) 215 * Returns: 216 * 0 is success, non-zero is error status from driver. 217 */ 218 int eth_write_hwaddr(struct eth_device *dev, const char *base_name, 219 int eth_number); 220 221 int usb_eth_initialize(bd_t *bi); 222 #endif 223 224 int eth_initialize(void); /* Initialize network subsystem */ 225 void eth_try_another(int first_restart); /* Change the device */ 226 void eth_set_current(void); /* set nterface to ethcur var */ 227 228 int eth_get_dev_index(void); /* get the device index */ 229 void eth_parse_enetaddr(const char *addr, uchar *enetaddr); 230 int eth_getenv_enetaddr(char *name, uchar *enetaddr); 231 int eth_setenv_enetaddr(char *name, const uchar *enetaddr); 232 233 /* 234 * Get the hardware address for an ethernet interface . 235 * Args: 236 * base_name - base name for device (normally "eth") 237 * index - device index number (0 for first) 238 * enetaddr - returns 6 byte hardware address 239 * Returns: 240 * Return true if the address is valid. 241 */ 242 int eth_getenv_enetaddr_by_index(const char *base_name, int index, 243 uchar *enetaddr); 244 245 int eth_init(void); /* Initialize the device */ 246 int eth_send(void *packet, int length); /* Send a packet */ 247 248 #ifdef CONFIG_API 249 int eth_receive(void *packet, int length); /* Receive a packet*/ 250 extern void (*push_packet)(void *packet, int length); 251 #endif 252 int eth_rx(void); /* Check for received packets */ 253 void eth_halt(void); /* stop SCC */ 254 const char *eth_get_name(void); /* get name of current device */ 255 256 #ifdef CONFIG_MCAST_TFTP 257 int eth_mcast_join(struct in_addr mcast_addr, int join); 258 u32 ether_crc(size_t len, unsigned char const *p); 259 #endif 260 261 262 /**********************************************************************/ 263 /* 264 * Protocol headers. 265 */ 266 267 /* 268 * Ethernet header 269 */ 270 271 struct ethernet_hdr { 272 u8 et_dest[6]; /* Destination node */ 273 u8 et_src[6]; /* Source node */ 274 u16 et_protlen; /* Protocol or length */ 275 }; 276 277 /* Ethernet header size */ 278 #define ETHER_HDR_SIZE (sizeof(struct ethernet_hdr)) 279 280 #define ETH_FCS_LEN 4 /* Octets in the FCS */ 281 282 struct e802_hdr { 283 u8 et_dest[6]; /* Destination node */ 284 u8 et_src[6]; /* Source node */ 285 u16 et_protlen; /* Protocol or length */ 286 u8 et_dsap; /* 802 DSAP */ 287 u8 et_ssap; /* 802 SSAP */ 288 u8 et_ctl; /* 802 control */ 289 u8 et_snap1; /* SNAP */ 290 u8 et_snap2; 291 u8 et_snap3; 292 u16 et_prot; /* 802 protocol */ 293 }; 294 295 /* 802 + SNAP + ethernet header size */ 296 #define E802_HDR_SIZE (sizeof(struct e802_hdr)) 297 298 /* 299 * Virtual LAN Ethernet header 300 */ 301 struct vlan_ethernet_hdr { 302 u8 vet_dest[6]; /* Destination node */ 303 u8 vet_src[6]; /* Source node */ 304 u16 vet_vlan_type; /* PROT_VLAN */ 305 u16 vet_tag; /* TAG of VLAN */ 306 u16 vet_type; /* protocol type */ 307 }; 308 309 /* VLAN Ethernet header size */ 310 #define VLAN_ETHER_HDR_SIZE (sizeof(struct vlan_ethernet_hdr)) 311 312 #define PROT_IP 0x0800 /* IP protocol */ 313 #define PROT_ARP 0x0806 /* IP ARP protocol */ 314 #define PROT_RARP 0x8035 /* IP ARP protocol */ 315 #define PROT_VLAN 0x8100 /* IEEE 802.1q protocol */ 316 317 #define IPPROTO_ICMP 1 /* Internet Control Message Protocol */ 318 #define IPPROTO_UDP 17 /* User Datagram Protocol */ 319 320 /* 321 * Internet Protocol (IP) header. 322 */ 323 struct ip_hdr { 324 u8 ip_hl_v; /* header length and version */ 325 u8 ip_tos; /* type of service */ 326 u16 ip_len; /* total length */ 327 u16 ip_id; /* identification */ 328 u16 ip_off; /* fragment offset field */ 329 u8 ip_ttl; /* time to live */ 330 u8 ip_p; /* protocol */ 331 u16 ip_sum; /* checksum */ 332 struct in_addr ip_src; /* Source IP address */ 333 struct in_addr ip_dst; /* Destination IP address */ 334 }; 335 336 #define IP_OFFS 0x1fff /* ip offset *= 8 */ 337 #define IP_FLAGS 0xe000 /* first 3 bits */ 338 #define IP_FLAGS_RES 0x8000 /* reserved */ 339 #define IP_FLAGS_DFRAG 0x4000 /* don't fragments */ 340 #define IP_FLAGS_MFRAG 0x2000 /* more fragments */ 341 342 #define IP_HDR_SIZE (sizeof(struct ip_hdr)) 343 344 /* 345 * Internet Protocol (IP) + UDP header. 346 */ 347 struct ip_udp_hdr { 348 u8 ip_hl_v; /* header length and version */ 349 u8 ip_tos; /* type of service */ 350 u16 ip_len; /* total length */ 351 u16 ip_id; /* identification */ 352 u16 ip_off; /* fragment offset field */ 353 u8 ip_ttl; /* time to live */ 354 u8 ip_p; /* protocol */ 355 u16 ip_sum; /* checksum */ 356 struct in_addr ip_src; /* Source IP address */ 357 struct in_addr ip_dst; /* Destination IP address */ 358 u16 udp_src; /* UDP source port */ 359 u16 udp_dst; /* UDP destination port */ 360 u16 udp_len; /* Length of UDP packet */ 361 u16 udp_xsum; /* Checksum */ 362 }; 363 364 #define IP_UDP_HDR_SIZE (sizeof(struct ip_udp_hdr)) 365 #define UDP_HDR_SIZE (IP_UDP_HDR_SIZE - IP_HDR_SIZE) 366 367 /* 368 * Address Resolution Protocol (ARP) header. 369 */ 370 struct arp_hdr { 371 u16 ar_hrd; /* Format of hardware address */ 372 # define ARP_ETHER 1 /* Ethernet hardware address */ 373 u16 ar_pro; /* Format of protocol address */ 374 u8 ar_hln; /* Length of hardware address */ 375 # define ARP_HLEN 6 376 u8 ar_pln; /* Length of protocol address */ 377 # define ARP_PLEN 4 378 u16 ar_op; /* Operation */ 379 # define ARPOP_REQUEST 1 /* Request to resolve address */ 380 # define ARPOP_REPLY 2 /* Response to previous request */ 381 382 # define RARPOP_REQUEST 3 /* Request to resolve address */ 383 # define RARPOP_REPLY 4 /* Response to previous request */ 384 385 /* 386 * The remaining fields are variable in size, according to 387 * the sizes above, and are defined as appropriate for 388 * specific hardware/protocol combinations. 389 */ 390 u8 ar_data[0]; 391 #define ar_sha ar_data[0] 392 #define ar_spa ar_data[ARP_HLEN] 393 #define ar_tha ar_data[ARP_HLEN + ARP_PLEN] 394 #define ar_tpa ar_data[ARP_HLEN + ARP_PLEN + ARP_HLEN] 395 #if 0 396 u8 ar_sha[]; /* Sender hardware address */ 397 u8 ar_spa[]; /* Sender protocol address */ 398 u8 ar_tha[]; /* Target hardware address */ 399 u8 ar_tpa[]; /* Target protocol address */ 400 #endif /* 0 */ 401 }; 402 403 #define ARP_HDR_SIZE (8+20) /* Size assuming ethernet */ 404 405 /* 406 * ICMP stuff (just enough to handle (host) redirect messages) 407 */ 408 #define ICMP_ECHO_REPLY 0 /* Echo reply */ 409 #define ICMP_NOT_REACH 3 /* Detination unreachable */ 410 #define ICMP_REDIRECT 5 /* Redirect (change route) */ 411 #define ICMP_ECHO_REQUEST 8 /* Echo request */ 412 413 /* Codes for REDIRECT. */ 414 #define ICMP_REDIR_NET 0 /* Redirect Net */ 415 #define ICMP_REDIR_HOST 1 /* Redirect Host */ 416 417 /* Codes for NOT_REACH */ 418 #define ICMP_NOT_REACH_PORT 3 /* Port unreachable */ 419 420 struct icmp_hdr { 421 u8 type; 422 u8 code; 423 u16 checksum; 424 union { 425 struct { 426 u16 id; 427 u16 sequence; 428 } echo; 429 u32 gateway; 430 struct { 431 u16 unused; 432 u16 mtu; 433 } frag; 434 u8 data[0]; 435 } un; 436 }; 437 438 #define ICMP_HDR_SIZE (sizeof(struct icmp_hdr)) 439 #define IP_ICMP_HDR_SIZE (IP_HDR_SIZE + ICMP_HDR_SIZE) 440 441 /* 442 * Maximum packet size; used to allocate packet storage. 443 * TFTP packets can be 524 bytes + IP header + ethernet header. 444 * Lets be conservative, and go for 38 * 16. (Must also be 445 * a multiple of 32 bytes). 446 */ 447 /* 448 * AS.HARNOIS : Better to set PKTSIZE to maximum size because 449 * traffic type is not always controlled 450 * maximum packet size = 1518 451 * maximum packet size and multiple of 32 bytes = 1536 452 */ 453 #define PKTSIZE 1518 454 #define PKTSIZE_ALIGN 1536 455 /*#define PKTSIZE 608*/ 456 457 /* 458 * Maximum receive ring size; that is, the number of packets 459 * we can buffer before overflow happens. Basically, this just 460 * needs to be enough to prevent a packet being discarded while 461 * we are processing the previous one. 462 */ 463 #define RINGSZ 4 464 #define RINGSZ_LOG2 2 465 466 /**********************************************************************/ 467 /* 468 * Globals. 469 * 470 * Note: 471 * 472 * All variables of type struct in_addr are stored in NETWORK byte order 473 * (big endian). 474 */ 475 476 /* net.c */ 477 /** BOOTP EXTENTIONS **/ 478 extern struct in_addr net_gateway; /* Our gateway IP address */ 479 extern struct in_addr net_netmask; /* Our subnet mask (0 = unknown) */ 480 /* Our Domain Name Server (0 = unknown) */ 481 extern struct in_addr net_dns_server; 482 #if defined(CONFIG_BOOTP_DNS2) 483 /* Our 2nd Domain Name Server (0 = unknown) */ 484 extern struct in_addr net_dns_server2; 485 #endif 486 extern char net_nis_domain[32]; /* Our IS domain */ 487 extern char net_hostname[32]; /* Our hostname */ 488 extern char net_root_path[64]; /* Our root path */ 489 /** END OF BOOTP EXTENTIONS **/ 490 extern u8 net_ethaddr[6]; /* Our ethernet address */ 491 extern u8 net_server_ethaddr[6]; /* Boot server enet address */ 492 extern struct in_addr net_ip; /* Our IP addr (0 = unknown) */ 493 extern struct in_addr net_server_ip; /* Server IP addr (0 = unknown) */ 494 extern uchar *net_tx_packet; /* THE transmit packet */ 495 extern uchar *net_rx_packets[PKTBUFSRX]; /* Receive packets */ 496 extern uchar *net_rx_packet; /* Current receive packet */ 497 extern int net_rx_packet_len; /* Current rx packet length */ 498 extern const u8 net_bcast_ethaddr[6]; /* Ethernet broadcast address */ 499 extern const u8 net_null_ethaddr[6]; 500 501 #define VLAN_NONE 4095 /* untagged */ 502 #define VLAN_IDMASK 0x0fff /* mask of valid vlan id */ 503 extern ushort net_our_vlan; /* Our VLAN */ 504 extern ushort net_native_vlan; /* Our Native VLAN */ 505 506 extern int net_restart_wrap; /* Tried all network devices */ 507 508 enum proto_t { 509 BOOTP, RARP, ARP, TFTPGET, DHCP, PING, DNS, NFS, CDP, NETCONS, SNTP, 510 TFTPSRV, TFTPPUT, LINKLOCAL 511 }; 512 513 extern char net_boot_file_name[128];/* Boot File name */ 514 /* The actual transferred size of the bootfile (in bytes) */ 515 extern u32 net_boot_file_size; 516 /* Boot file size in blocks as reported by the DHCP server */ 517 extern u32 net_boot_file_expected_size_in_blocks; 518 519 #if defined(CONFIG_CMD_DNS) 520 extern char *net_dns_resolve; /* The host to resolve */ 521 extern char *net_dns_env_var; /* the env var to put the ip into */ 522 #endif 523 524 #if defined(CONFIG_CMD_PING) 525 extern struct in_addr net_ping_ip; /* the ip address to ping */ 526 #endif 527 528 #if defined(CONFIG_CMD_CDP) 529 /* when CDP completes these hold the return values */ 530 extern ushort cdp_native_vlan; /* CDP returned native VLAN */ 531 extern ushort cdp_appliance_vlan; /* CDP returned appliance VLAN */ 532 533 /* 534 * Check for a CDP packet by examining the received MAC address field 535 */ 536 static inline int is_cdp_packet(const uchar *ethaddr) 537 { 538 extern const u8 net_cdp_ethaddr[6]; 539 540 return memcmp(ethaddr, net_cdp_ethaddr, 6) == 0; 541 } 542 #endif 543 544 #if defined(CONFIG_CMD_SNTP) 545 extern struct in_addr net_ntp_server; /* the ip address to NTP */ 546 extern int net_ntp_time_offset; /* offset time from UTC */ 547 #endif 548 549 #if defined(CONFIG_MCAST_TFTP) 550 extern struct in_addr net_mcast_addr; 551 #endif 552 553 /* Initialize the network adapter */ 554 void net_init(void); 555 int net_loop(enum proto_t); 556 557 /* Load failed. Start again. */ 558 int net_start_again(void); 559 560 /* Get size of the ethernet header when we send */ 561 int net_eth_hdr_size(void); 562 563 /* Set ethernet header; returns the size of the header */ 564 int net_set_ether(uchar *xet, const uchar *dest_ethaddr, uint prot); 565 int net_update_ether(struct ethernet_hdr *et, uchar *addr, uint prot); 566 567 /* Set IP header */ 568 void net_set_ip_header(uchar *pkt, struct in_addr dest, struct in_addr source); 569 void net_set_udp_header(uchar *pkt, struct in_addr dest, int dport, 570 int sport, int len); 571 572 /** 573 * compute_ip_checksum() - Compute IP checksum 574 * 575 * @addr: Address to check (must be 16-bit aligned) 576 * @nbytes: Number of bytes to check (normally a multiple of 2) 577 * @return 16-bit IP checksum 578 */ 579 unsigned compute_ip_checksum(const void *addr, unsigned nbytes); 580 581 /** 582 * add_ip_checksums() - add two IP checksums 583 * 584 * @offset: Offset of first sum (if odd we do a byte-swap) 585 * @sum: First checksum 586 * @new_sum: New checksum to add 587 * @return updated 16-bit IP checksum 588 */ 589 unsigned add_ip_checksums(unsigned offset, unsigned sum, unsigned new_sum); 590 591 /** 592 * ip_checksum_ok() - check if a checksum is correct 593 * 594 * This works by making sure the checksum sums to 0 595 * 596 * @addr: Address to check (must be 16-bit aligned) 597 * @nbytes: Number of bytes to check (normally a multiple of 2) 598 * @return true if the checksum matches, false if not 599 */ 600 int ip_checksum_ok(const void *addr, unsigned nbytes); 601 602 /* Callbacks */ 603 rxhand_f *net_get_udp_handler(void); /* Get UDP RX packet handler */ 604 void net_set_udp_handler(rxhand_f *); /* Set UDP RX packet handler */ 605 rxhand_f *net_get_arp_handler(void); /* Get ARP RX packet handler */ 606 void net_set_arp_handler(rxhand_f *); /* Set ARP RX packet handler */ 607 void net_set_icmp_handler(rxhand_icmp_f *f); /* Set ICMP RX handler */ 608 void net_set_timeout_handler(ulong, thand_f *);/* Set timeout handler */ 609 610 /* Network loop state */ 611 enum net_loop_state { 612 NETLOOP_CONTINUE, 613 NETLOOP_RESTART, 614 NETLOOP_SUCCESS, 615 NETLOOP_FAIL 616 }; 617 extern enum net_loop_state net_state; 618 619 static inline void net_set_state(enum net_loop_state state) 620 { 621 debug_cond(DEBUG_INT_STATE, "--- NetState set to %d\n", state); 622 net_state = state; 623 } 624 625 /* Transmit a packet */ 626 static inline void net_send_packet(uchar *pkt, int len) 627 { 628 /* Currently no way to return errors from eth_send() */ 629 (void) eth_send(pkt, len); 630 } 631 632 /* 633 * Transmit "net_tx_packet" as UDP packet, performing ARP request if needed 634 * (ether will be populated) 635 * 636 * @param ether Raw packet buffer 637 * @param dest IP address to send the datagram to 638 * @param dport Destination UDP port 639 * @param sport Source UDP port 640 * @param payload_len Length of data after the UDP header 641 */ 642 int net_send_udp_packet(uchar *ether, struct in_addr dest, int dport, 643 int sport, int payload_len); 644 645 /* Processes a received packet */ 646 void net_process_received_packet(uchar *in_packet, int len); 647 648 #ifdef CONFIG_NETCONSOLE 649 void nc_start(void); 650 int nc_input_packet(uchar *pkt, struct in_addr src_ip, unsigned dest_port, 651 unsigned src_port, unsigned len); 652 #endif 653 654 static inline __attribute__((always_inline)) int eth_is_on_demand_init(void) 655 { 656 #ifdef CONFIG_NETCONSOLE 657 extern enum proto_t net_loop_last_protocol; 658 659 return net_loop_last_protocol != NETCONS; 660 #else 661 return 1; 662 #endif 663 } 664 665 static inline void eth_set_last_protocol(int protocol) 666 { 667 #ifdef CONFIG_NETCONSOLE 668 extern enum proto_t net_loop_last_protocol; 669 670 net_loop_last_protocol = protocol; 671 #endif 672 } 673 674 /* 675 * Check if autoload is enabled. If so, use either NFS or TFTP to download 676 * the boot file. 677 */ 678 void net_auto_load(void); 679 680 /* 681 * The following functions are a bit ugly, but necessary to deal with 682 * alignment restrictions on ARM. 683 * 684 * We're using inline functions, which had the smallest memory 685 * footprint in our tests. 686 */ 687 /* return IP *in network byteorder* */ 688 static inline struct in_addr net_read_ip(void *from) 689 { 690 struct in_addr ip; 691 692 memcpy((void *)&ip, (void *)from, sizeof(ip)); 693 return ip; 694 } 695 696 /* return ulong *in network byteorder* */ 697 static inline u32 net_read_u32(u32 *from) 698 { 699 u32 l; 700 701 memcpy((void *)&l, (void *)from, sizeof(l)); 702 return l; 703 } 704 705 /* write IP *in network byteorder* */ 706 static inline void net_write_ip(void *to, struct in_addr ip) 707 { 708 memcpy(to, (void *)&ip, sizeof(ip)); 709 } 710 711 /* copy IP */ 712 static inline void net_copy_ip(void *to, void *from) 713 { 714 memcpy((void *)to, from, sizeof(struct in_addr)); 715 } 716 717 /* copy ulong */ 718 static inline void net_copy_u32(u32 *to, u32 *from) 719 { 720 memcpy((void *)to, (void *)from, sizeof(u32)); 721 } 722 723 /** 724 * is_zero_ethaddr - Determine if give Ethernet address is all zeros. 725 * @addr: Pointer to a six-byte array containing the Ethernet address 726 * 727 * Return true if the address is all zeroes. 728 */ 729 static inline int is_zero_ethaddr(const u8 *addr) 730 { 731 return !(addr[0] | addr[1] | addr[2] | addr[3] | addr[4] | addr[5]); 732 } 733 734 /** 735 * is_multicast_ethaddr - Determine if the Ethernet address is a multicast. 736 * @addr: Pointer to a six-byte array containing the Ethernet address 737 * 738 * Return true if the address is a multicast address. 739 * By definition the broadcast address is also a multicast address. 740 */ 741 static inline int is_multicast_ethaddr(const u8 *addr) 742 { 743 return 0x01 & addr[0]; 744 } 745 746 /* 747 * is_broadcast_ethaddr - Determine if the Ethernet address is broadcast 748 * @addr: Pointer to a six-byte array containing the Ethernet address 749 * 750 * Return true if the address is the broadcast address. 751 */ 752 static inline int is_broadcast_ethaddr(const u8 *addr) 753 { 754 return (addr[0] & addr[1] & addr[2] & addr[3] & addr[4] & addr[5]) == 755 0xff; 756 } 757 758 /* 759 * is_valid_ethaddr - Determine if the given Ethernet address is valid 760 * @addr: Pointer to a six-byte array containing the Ethernet address 761 * 762 * Check that the Ethernet address (MAC) is not 00:00:00:00:00:00, is not 763 * a multicast address, and is not FF:FF:FF:FF:FF:FF. 764 * 765 * Return true if the address is valid. 766 */ 767 static inline int is_valid_ethaddr(const u8 *addr) 768 { 769 /* FF:FF:FF:FF:FF:FF is a multicast address so we don't need to 770 * explicitly check for it here. */ 771 return !is_multicast_ethaddr(addr) && !is_zero_ethaddr(addr); 772 } 773 774 /** 775 * net_random_ethaddr - Generate software assigned random Ethernet address 776 * @addr: Pointer to a six-byte array containing the Ethernet address 777 * 778 * Generate a random Ethernet address (MAC) that is not multicast 779 * and has the local assigned bit set. 780 */ 781 static inline void net_random_ethaddr(uchar *addr) 782 { 783 int i; 784 unsigned int seed = get_timer(0); 785 786 for (i = 0; i < 6; i++) 787 addr[i] = rand_r(&seed); 788 789 addr[0] &= 0xfe; /* clear multicast bit */ 790 addr[0] |= 0x02; /* set local assignment bit (IEEE802) */ 791 } 792 793 /* Convert an IP address to a string */ 794 void ip_to_string(struct in_addr x, char *s); 795 796 /* Convert a string to ip address */ 797 struct in_addr string_to_ip(const char *s); 798 799 /* Convert a VLAN id to a string */ 800 void vlan_to_string(ushort x, char *s); 801 802 /* Convert a string to a vlan id */ 803 ushort string_to_vlan(const char *s); 804 805 /* read a VLAN id from an environment variable */ 806 ushort getenv_vlan(char *); 807 808 /* copy a filename (allow for "..." notation, limit length) */ 809 void copy_filename(char *dst, const char *src, int size); 810 811 /* get a random source port */ 812 unsigned int random_port(void); 813 814 /* Update U-Boot over TFTP */ 815 int update_tftp(ulong addr); 816 817 /**********************************************************************/ 818 819 #endif /* __NET_H__ */ 820